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Summary

Osteoporosis is the most common bone disease worldwide. It is particularly prevalent in
the elderly population. The disease is characterized by a reduction in bone density over its
course. This results in a reduction of bone strength, thereby increasing the likelihood of
fractures. Sonography may be a promising future diagnostic method for the early detection
of osteoporosis, as it is less invasive and less costly compared to current standards. Modeling
and simulations are useful tools to support the development of this diagnostic method and
to better understand effects observed in measurements.

This cumulative thesis reports the research progress on the development of a multiscale
material model for cancellous bone. The primary objective of this work is the solution of
the forward and inverse problem of bone modeling that can be used for the early detection
of osteoporosis by sonography. The content of this thesis is given through three research
articles published by the author (and his coauthors), and presented in the following.

The first part of this thesis is devoted to the development of the material model. Due to the
heterogeneous structure of cancellous bone, a multiscale approach consisting of macroscale
and microscale is employed. On the microscale, a distinction is made between the phases
cortical bone and bone marrow. The main novelty of the material model is the considera-
tion of the full coupling of mechanical, electric, and magnetic effects, including Maxwell’s
equations. A thermodynamically consistent material model is derived from energy methods
in mechanics. The solution of the resulting coupled partial differential equations (forward
problem) is carried out using the finite element square method (FE2). Representative vol-
ume elements (RVE) with different volume percentages of cortical bone were constructed to
simulate different stages of osteoporosis. The magnetic field strength resulting from a small
mechanical displacement is determined for various models.

The second part of this thesis addresses the solution of the inverse problem. In order to
draw conclusions about the bone health, it is necessary to determine the volume percentage
of cortical bone from the magnetic field strength. A synthetic dataset was constructed from
simulation results. Subsequently, the data was utilized as input for artificial neural networks
(ANN). The objective of the networks’ training is to identify the bone structure used in the
simulation.

The third part is concerned with significant extensions to the model. On the one hand the
simulation domain is extended to also include a surrounding medium. Consequently, the
investigation of the decay of the electromagnetic fields beyond the simulated bone model
is enabled. On the other hand a distinction is made between different bone phases on the
macroscale. This improves the applicability and closeness to reality of the simulations.
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Kurzfassung

Osteoporose ist die am weitesten verbreitete Knochenkrankheit weltweit. Sie kommt ins-
besondere bei der älteren Bevölkerung vor. Die Krankheit zeichnet sich durch eine Re-
duktion der Knochendichte über ihren Verlauf aus. Dies führt zu einer Verringerung der
Knochenfestigkeit, dadurch steigt die Wahrscheinlichkeit für Knochenbrüche. Sonogra-
phie könnte ein vielversprechendes zukünftiges Diagnoseverfahren für die Früherkennung
von Osteoporose darstellen, da es weniger invasiv und weniger kostenträchtig ist als ak-
tuelle Standards. Modellierung und Simulation sind nützliche Hilfsmittel um die Entwick-
lung dieses Diagnoseverfahrens zu unterstützen und um bei Messungen beobachtete Effekte
besser zu verstehen.

Diese kumulative Doktorarbeit berichtet über den Forschungsfortschritt bei der Entwick-
lung eines Materialmodells für spongiösen Knochen. Das vorrangige Ziel dieser Arbeit
ist die Lösung des direkten und inversen Problems der Knochenmodellierung, welches zur
Früherkennung von Osteoporose mittels Sonographie verwendet werden kann. Der Inhalt
dieser Arbeit ist in Form von drei Fachzeitschriftenartikeln gegeben, welche von dem Autor
(und seinen Koautoren) veröffentlicht wurden und wird im Folgenden präsentiert.

Der erste Teil dieser Arbeit wird für die Entwicklung des Materialmodells verwendet. Auf-
grund der heterogenen Struktur von spongiösem Knochen wird ein Mehrskalenansatz beste-
hend aus Makroskala und Mikroskala angewendet. Auf der Mikroskala wird zwischen den
Phasen kortikaler Knochen und Knochenmark unterschieden. Die wesentliche Novität des
Materialmodells ist die Berücksichtigung der vollständigen Kopplung von mechanischen,
elektrischen und magnetischen Effekten, inklusive der Maxwell-Gleichungen. Ein ther-
modynamisch konsistentes Materialmodell basierend auf Energiemethoden der Mechanik
wird hergeleitet. Die Lösung der resultierenden gekoppelten partiellen Differentialgleichun-
gen (direktes Problem) wird mittels der Finite Elemente Square Methode (FE2) realisiert.
Repräsentative Volumenelemente (RVE) mit verschiedenen Volumenprozent-Anteilen von
kortikalem Knochen wurden entworfen, um die verschiedenen Stufen von Osteoporose zu
simulieren. Die Stärke des Magnetfeldes, welches aus einer kleinen mechanischen Belas-
tung resultiert, wurde für unterschiedliche Modelle ermittelt.

Der zweite Teil dieser Arbeit behandelt die Lösung des inversen Problems. Um Rückschlüs-
se auf den Gesundheitszustand des Knochens zu ziehen, ist es notwendig, den Volumenpro-
zent-Anteil von kortikalem Knochen aus der Stärke des Magnetfeldes zu ermitteln. Ein
synthetischer Datensatz wurde aus Simulationsergebnissen erzeugt. Anschließend wurden
diese Daten als Input für Künstliche neuronale Netzwerke (KNN, engl. ANN) genutzt. Das
Ziel des Trainings der Netzwerke ist es, die Knochenstruktur zu ermitteln, welche in der
Simulation verwendet wurde.

Der dritte Teil befasst sich mit wichtigen Erweiterungen des Modells. Zum einen wird
der Simulationsbereich ausgeweitet, um zusätzlich auch ein Umgebungsmedium zu berück-
sichtigen. Dadurch wird die Untersuchung des Abfalls der elektromagnetischen Felder über



das simulierte Knochenmodell hinaus ermöglicht. Zum anderen wird auf der Makroskala
zwischen verschiedenen Knochenphasen unterschieden. Dies erhöht die Anwendbarkeit und
Realitätsnähe der Simulationen.
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1 Introduction

1.1 Motivation

Osteoporosis is the most common bone disease in the world. It is especially prevalent in the
elderly and more often found in women [Reginster and Burlet (2006), Wade et al. (2014)].
In order to gain a comprehensive understanding of the disease, the anatomy of the organ
bone must first be examined in detail. Figure 1.1 illustrates the general structure of long
bones.

Cortical (compact) bone forms the outer shell of the bone. The diaphysis (bone shaft) con-
tains the medullary cavity, which is filled with bone marrow, while the epiphyses (ends of
the bone) are primarily composed of cancellous (spongy) bone. Cancellous bone, also re-
ferred to as trabecula, is a composite material consisting of cortical bone and bone marrow.
In more precise terms, its geometry resembles a network of small and thin interconnected
beams, shells and plates of cortical bone, with bone marrow situated in the interstices. Fig-
ure 1.2 illustrates the structural composition of cancellous bone, exemplified by a human
femur bone.

The disease osteoporosis is characterized by a loss of cortical bone material, i.e., bone tissue
deteriorates and the volume density of cortical bone is reduced. Typically, the trabecula is
more strongly affected than the outer shell. While the volume fraction of cortical bone in
healthy bones can reach 30%, it may be reduced to 5% in later stages of osteoporosis [Steeb
(2010), Ilić et al. (2010)]. As a result, the bone becomes weaker and thinner, making it
more susceptible to fractures. The reduction of bone density is evident from Figure 1.3, left.
Two images are shown comparing the bone condition of a healthy young man to an elderly
woman, whose bone is affected by osteoporosis. A schematic progression of the disease is
illustrated in Figure 1.3, right. Notably, some complete beams of cortical bone are absent in
the trabecula, resulting in the formation of a bone impression due to the reduced stiffness.

Currently, a number of different methods exist for the diagnosis of osteoporosis. While
radiography is a widely available diagnostic tool, it has the limitation that osteoporosis can
only be detected in the later stages of the disease [Grampp et al. (1997)]. The current "gold
standard" for the diagnosis of osteoporosis is dual energy X-ray absorptiometry (DXA),
which can accurately measure bone mineral density and provide information about fracture
risks and the necessity of treatment [Blake and Fogelman (2007)]. Both methods have
the disadvantage that patients are exposed to radiation during the procedure. For these
reasons, it is desirable to develop cheaper and less invasive tools for the early detection of
osteoporosis.

An alternative diagnostic method could be sonography. This approach relies on the piezo-
electric properties of bone, as demonstrated in Fukada and Yasuda (1957). Ultrasonic waves
entering the bone cause a small mechanical deformation, which generates an electric field.
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Figure 1.1: Schematic anatomy of a long bone, from Betts et al. (2013).

Figure 1.2: Detailed image of cancellous bone in the epiphysis of a human femur, from
Klimešová (2019), cf. also Tandler (1919). The photographed item is a part of
the anthropological collections of the Department of Biology and Environmental
Studies of the Faculty of Education of Charles University (Czech Republic). For
purposes of exhibition, the bone is shown in a dry state, i.e., the bone marrow
and other organic material have been removed.
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Figure 1.3: Left: Images of sagittal cuts through vertebral body of a young man (top) and
an elderly woman whose bone is affected by osteoporosis (bottom) (cf. Turner
Biomechanics Laboratory (2011)). Right: Schematic depiction of cancellous
bone and cortical bone for a healthy bone (top) and a bone affected by osteo-
porosis (bottom) (cf. Ringe et al. (2019)).

As the process is time-dependent, the electric field changes with time. Consequently, a mag-
netic field is induced according to the coupling in Maxwell’s equations (Ampère’s circuital
law), which relates mechanical, electric, and magnetic effects. As the composition of bone
is altered by osteoporosis, the magnetic field strength may vary depending on the health con-
dition of the bone. Thus, measuring the magnetic fields after exposing a bone to ultrasonic
waves could allow to draw conclusions about its composition [Güzelsu and Saha (1981)].
Modeling and simulation are important tools to advance the development of this diagnostic
method, pursuing the long-term ambition to enable the usage of sonography for the early
detection of osteoporosis.

The primary objective of this thesis is the development of a multiscale and multiphase ma-
terial model for cancellous bone that considers the full coupling of mechanical, electric, and
magnetic effects. Subsequently, the model is employed to solve the forward and inverse
problem of bone modeling in the context of sonography-based early detection of osteoporo-
sis. The forward problem refers to the solution of the resulting partial differential equations
(PDEs) to obtain the magnetic field strength, comparing different stages of osteoporosis.
The inverse problem is concerned with the determination of the bone health condition from
the magnetic field data.

1.2 State of the art

This chapter provides an overview of the current state of the art in various fields. It cov-
ers electromechanically coupled modeling in Chapter 1.2.1, mechanically and multiphysics
modeling of bone in Chapters 1.2.2 and 1.2.3, respectively, multiscale modeling in Chapter
1.2.4 and artificial neural networks in Chapter 1.2.5.
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1.2.1 Electromechanically coupled modeling

Electromechanical coupling describes all physical phenomena where a material produces
an electric charge when subjected to a mechanical force, or where a material exhibits a
strain response when being exposed to an electric field. The different kinds of coupling
can be divided into intrinsic effects (piezoelectricity, electrostriction, flexoelectricity) and
extrinsic effects (electrochemical effect, electrostatic effect) [Chae et al. (2018)]. Intrinsic
effects originate from the atomic structure of the material, e.g., the molecular structure or
crystal symmetry. Extrinsic effects are not directly related to the atomic structure but rather
systemic (e.g., the movement of ions). In the following, the mentioned coupling phenomena
are explained in detail. Figure 1.4 schematically summarizes the different intrinsic coupling
effects.

Piezoelectricity is a linear coupling between the domains and is the most common kind of
electromechanical coupling. The application of a force/stress to a piezoelectric material

apply stress

remove stress

apply E-field

remove E-field

apply E-field

remove E-field

Build-up of
electrical charges

induce
strain gradient

remove
strain gradient

-

+

- - -

+ + +

Figure 1.4: Schematic illustration of intrinsic electromechanical coupling effects (cf. Chae
et al. (2018)). From top to bottom: piezoelectricity, electrostriction, flexoelec-
tricity. The red arrows indicate the direction of electric dipoles. The blue arrows
represent mechanical stress.
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induces a polarization / electric field in the material (direct effect). Vice versa, an electric
field applied to the material results in a strain response (converse effect). Discovered in 1880
[Curie and Curie (1880)], piezoelectricity occurs in materials that are not centrosymmetric,
i.e., lack of inversion symmetry. The application of a force results in the displacement of
the negative and positive centers of charge, which ultimately induces a dipole moment.

Electrostriction occurs in all dielelectric materials [Chae et al. (2018)]. The material exhibits
a quadratic strain response to the application of an external electric field. Consequently, the
effect is limited to the portion of the strain response that is independent of the direction of
the electric field applied. This implies that reversing the direction of the electric field does
not reverse the direction of the deformation. The effect originates from the alignment of
electric dipoles under electric loads and thus applies to all crystal symmetries (in contrast
to the piezoelectric effect, which is linear and occurs only for materials possessing certain
crystal symmetries).

Flexoelectricity couples polarization / electric field and strain gradient of a material. For
non-uniform deformations (e.g., bending), the inversion symmetry of the material can be
broken. Therefore, flexoelectricity occurs in any dielectric material. Importantly, flexo-
electricity is size-dependent. As the length scale is reduced, the strain gradient increases,
resulting in an enhanced magnitude of the flexoelectric effect. For this reason, the effect is
especially important in very small applications, such as those at the nanoscale [Zhuang et al.
(2020)].

In the following, extrinsic electromechanical coupling effects are shortly discussed. The
electrochemical effect may occur during the exposure to an electric field, when a material
comprises an anisotropic distribution of ions. Then, the ions move and induce a mechanical
deformation. Conversly, applying a mechanical stress may induce an electric field. The
electrostatic effect originates from the Coulumb forces between seperated charges, which
can also deform the material.

Electromechanical coupled modeling has a wide range of different applications, e.g., sen-
sors and actuators [Busch-Vishniac (1998)], microelectromechanical systems (MEMS) [Bao
(2005)] and the study of biomaterials [Pandolfi et al. (2016), Chae et al. (2018)]. Many
early electric devices contained electromechanical parts until solid-state (semiconductor)
electronics replaced these parts in many modern devices.

The solution of the resulting coupled problems may be approached through the application
of a variety of methodologies. Analytical methods can be employed in the case of simple
geometries (e.g., Chaffey and Austin (2002)), however, such approaches are usually con-
strained by their inherent limitations. Other examples include the application to machine
drive systems [Szolc et al. (2014)] and energy harvesting [Zhou et al. (2021)], though the
latter contribution compares the results obtained from analytical methods to results com-
puted with numerical methods.

Many physical phenomena can be described by differential equations, which therefore com-
monly arise in modeling and engineering. The finite element method (FEM) [Zienkiewicz
et al. (2005)] is a powerful tool to numerically solve differential equations for arbitrary ge-
ometries. The most common application of the method is the field of strutural mechanics.
However, it is also commonly used in the areas of heat flow, electromagnetics or fluid flow
[Chao et al. (2002), Jin (2015)]. A key advantage of FEM is its ability to accurately solve
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the underlying equations for complex geometries, which occur frequently in engineering
applications. By contrast, the finite difference method (FDM) is susceptible to numerical
errors in the context of irregular meshes and boundaries. Due to the steadily increasing
computational power of modern computer generations, the importance of the FEM contin-
ued to grow, as complex simulations and calculations can nowadays be conducted within
reasonable computational times. The method is therefore an essential part in the design of
new products [Bathe (2006)]. Due to its flexibility, the FEM is also widely used for the
solution of electromechanically coupled problems. Here, simulations can be carried out ei-
ther in time or frequency domain [Wojcik et al. (1993), Amini et al. (2016)]. Applications
include various topics from the field of biomechanics, such as modeling of skeletal mus-
cle [Röhrle et al. (2008)] or cardiac tissues [Nardinocchi and Teresi (2013)], and energy
harvesters [Martínez-Cisneros et al. (2020)].

1.2.2 Mechanical modeling of bone

Mechanical modeling of bone has a long history. While reputedly scholars living during the
Renaissance speculated on the subject [Frost (1990)], one of the first accurate description
of mechanical effects in bone was the postulation of Wolff’s law [Wolff (1892)]. The law
introduced applied mechanics to the field of biology by stating that bone in a living, healthy
animal will adapt to increasing loads by remodeling itself to become stronger. This implies
that training and exercise, e.g., in the form of weight lifting, increases the bone density over
time, which was confirmed in experimental studies [Bassey and Ramsdale (1994)]. Con-
versely, the opposite is also true. A lack of loading means a lack of stimulus for remodeling,
which in turn weakens the bone over time. An example for this effect is "stress shielding",
which may occur in patients with a prosthesis or an implant. If the majority of the mechan-
ical load is borne by the prosthesis, which is significantly stiffer than the surrounding bone,
the bone will eventually become weakened [Mi et al. (2007)]. Therefore, preventing stress
shielding is an important aspect of implant design.

Bone is a remarkable material, inspiring interest across diverse scientific disciplines, includ-
ing material science. Hamed et al. (2010) lists the following properties: bone has a high
strength, stiffness and fracture toughness, while at the same time being very light. A crucial
mechanical property of bone is its capacity for shock absorption. Injuries and fractures oc-
cur, when the material is unable to dissipate energy (e.g., from impacts) in a timely manner.
Therefore, it is essential that bone is capable of absorbing energy in order to prevent injuries
from occuring as a result of everyday incidents [Evans and Thomas (1973)]. Spongy bone
plays an important role in the energy absorption process. Furthermore, in Evans and Thomas
(1973), spongy bone is described as a "good energy-absorbing material" due to its "foam-
like structure," referencing experiments supporting this claim conducted as early as 1827.
The rheology of bone marrow remains a topic of significant research interest [Sobotková
et al. (1988)].

Despite the early interest in modeling of bone, it took many decades for the topic to gain
importance. A main reason for this is likely that bone is a very complex organ and a lot of
theory had to be developed before accurate modeling could be achieved. Moreover, mod-
eling bone requires to combine various different mechanisms, which are usually treated in
distinct scientific fields. Wolff’s law itself only states what will happen, but not how, which
means it does not offer a mathematical framework for the description of the observed ef-
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fects. An important work advancing the field was provided by Frost and Straatsma (1964).
The authors discussed bone physiology, remodeling of bone and the nature of osteoporo-
sis. Mathematical methodology was derived by considering physical laws and patient data.
Another reason for the gradual development of the field is likely to be the advancements
in computer technology. In order to obtain accurate simulation results, high computation
power is necessary, which has become accessible only in the last decades.

Analytical solutions are often based on Biot’s theory [Biot (1956a), Biot (1956b)]. Some
recent examples of this theory used in the context of bone modeling are Buchanan and
Gilbert (2007), Steeb (2010) and Chen et al. (2018). As discussed in Chapter 1.1, bone
consists of different phases. In these works, cortical bone is modeled as a solid, while bone
marrow is assumed to be a fluid. A mathematical formulation in the context of acoustic
measurements is proposed to calculate mechanical material parameters of the bone phases,
which are then compared to parameters obtained from experiments.

The finite element method has been used for bone modeling starting in the early 1970s (cf.,
e.g., Mehta and Rajani (1970), Pugh et al. (1973)). While initial results were promising,
the computational limits at that time meant the models often had to be simplified, limiting
the validity of the results [Zysset et al. (2013)]. Overviews regarding state of the art and
usage of the FEM in the context of bone modeling can be found in Boccaccio et al. (2011),
Zysset et al. (2013) and Parashar and Sharma (2016). The latter describes how the finite
element analysis is used as a helpful tool in the diagnostics and treatment of bone diseases.
First, a CT scan of a patient is performed. Subsequently, a finite element model of the bone
is created by incorporating information regarding material properties and loads / boundary
conditions. The model can be used to perform various analyses to obtain information regard-
ing stresses and strains or fracture toughness [Ural et al. (2011)]. The described procedure
has already been used in clinical studies for the last decade and offers valuable information
regarding drug treatment effects and fracture risks [Keaveny (2010)].

Further examples include obtaining mechanical properties of bone [Zysset et al. (2013),
Robson Brown et al. (2014)], bone remodeling [Hambli et al. (2016)] and also fracture risk
and treatment [de Bakker et al. (2017), Meng et al. (2013), Uth et al. (2017)]. In Ilić et al.
(2010), the multiscale FEM is used to model bone as a complex composite material, which
is also discussed in detail in Chapter 1.2.4.

1.2.3 Multiphysics modeling of bone

In the field of bone modeling, mechanical effects are often the sole consideration. How-
ever, the underlying mechanisms for growth and remodeling involve physical, chemical,
and mechanical coupled interactions [Giorgio et al. (2019)]. This makes the problems very
complex and accurate modeling challenging. Some examples are given in the following.
In Garcia-Aznar et al. (2005), a model coupling the mechanical and biological effects for
bone remodeling was developed. A basic multicellular unit (BMU) was introduced, which
enabled the modeling of microdamage growth and repair. A similar approach can be found
in Scheiner et al. (2013). The authors directly coupled systems biology with multiscale me-
chanics. The conducted simulations of bone remodeling aligned with the experimentally
observed loss of bone density during aging.
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Following the discovery of the piezoelectric effect in bone [Fukada and Yasuda (1957)], a
number of subsequent studies were conducted which included the investigation of electric
effects in the modelling process. A review of electromechanical properties of bone tissue
and bone piezoelectricity can be found in the works of Güzelsu and Demiray (1979) and
Mohammadkhah et al. (2019). Flexoelectricity is the effect of electrical polarization induced
by a strain gradient (cf. Chapter 1.2.1). In Witt et al. (2022), both piezoelectricity and
flexoelectricity are considered for the remodeling of bone and the recovery of cracks. The
different bone cell types that are mainly involved in the remodeling process are all accounted
for, so that the resulting model includes chemo-electro-mechanical coupling.

In the field of multiphysics modeling of bone, only few studies address the inclusion of
magnetic effects. A study regarding the electro-mechanical wave propagation in long bones
was conducted by Güzelsu and Saha (1981). The authors obtained analytical solutions for
the simple case of a hollow cylinder model and compared their results with in vitro experi-
mental values. Noteworthy, the authors considered magnetic effects and highlighted that the
magnetic field created from a stress wave exists beyond the bone itself. In Spadaro (1997),
the author discusses the interactions between mechanical and electromagnetic effects in the
context of bone remodeling.

1.2.4 Multiscale modeling

Using multiple scales for the modeling of a material is a useful approach for materials with
important properties on different scales in time and/or in space. Here, a single scale is insuf-
ficient to capture all important effects to accurately model the material. While the usage of
multiple time scales is common when modeling, e.g., chemical processes, multiple scales in
space are widespread to model materials with a very complex, heterogenous microstructure.
This allows to capture effects on a small scale without the need for a very fine macroscopic
resolution.

Analytical methods. Analytical efforts calculating effective material parameters, i.e., es-
tablishing a macroscopic constitutive model based on the microscopic material composi-
tion, date back to the works of Voigt [Voigt (1889)] and Reuss [Reuß (1929)], who were
concerned with obtaining effective stiffness tensors for micro-heterogenous media, such as
isotropic polycrystals. Later it was shown that the obtained results only reflect the upper
and lower bounds of the effective parameters [Hashin and Shtrikman (1963)]. The differ-
ence between these bounds may be very noticeable [Schröder and Hackl (2013)], as not
only the volume percentage of the different microscopic phases may influence the results
but also their geometric arrangement. Further works emerged, which improved the bounds
or the overall estimates, using variational principles [Hashin and Shtrikman (1963)] or per-
turbation methods [Willis (1981)]. While analytical methods are usually easy to implement
and possess a fast computation speed, they are limited in their accuracy and can often only
be applied in the case of simple microstructures. Therefore, different numerical methods
emerged.

Phase field modeling. The phase field method is a very common choice in multiscale
modeling to describe the evolution of the microstrucure. The underlying equations were
originally introduced to model demixing of phases and solidification dynamics of crystals
[Cahn and Hilliard (1958), Cahn and Allen (1977)]. On this basis, the first phase field
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models emerged a few years later (e.g., in Langer (1986)). Since that time, the method
has continued to spread, and it is now used in a wide range of applications. Examples
from the field of microstructure modeling are damage and fracture mechanics [Wu et al.
(2020)], hydrogen embrittlement [Kristensen et al. (2020)] and many more. Reviews about
the method and its applications can be found, e.g., in Chen (2002) and Boettinger et al.
(2002).

The key idea of the method is to introduce the (local) phase field variable φ, also called
order parameter, to differentiate between two states (e.g., undamaged and damaged material
in fracture mechanics), which may correspond to the values φ = 0 and φ = 1, respec-
tively. Importantly, intermediate values are also possible, creating continuous transitions
between the phases, which makes the model easy to use. The interfaces between the phases
become diffuse. Thus, they do not have to be tracked explicitely, making the model also
efficient regarding computation times. A distinction can be made between conservative and
non-conservative models. Conservative models are relaxation-like problems tracking the
spatial rearrangement of the phases over time, e.g., phase seperation. Here, the total volume
percentages of the phases are given at the start and do not change afterwards. By contrast,
non-conservative models are diffusion-like problems, where the total amounts of the phases
may change during the evolution, as, e.g., in damage modeling. In both cases, the choice
of the underlying energy functional determines the behavior of the model, which makes the
method very flexible.

Some exemplary applications of the method combining the usage of the FEM in the field of
microscale evolution are ferroelectrics [Schrade et al. (2007)], damage and fracture [Miehe
et al. (2010), Kuhn and Müller (2010)], shape memory alloys and plasticity [Paranjape et al.
(2016)] and chemomechanics [Svendsen et al. (2018)].

Fast Fourier transform (FFT) methods. Another numerical method is the Fast Fourier
transform, an algorithm to efficiently calculate the Fourier integral transform. The method
is commonly used, e.g., in signal processing to transform a signal from time domain to
frequency domain, but can also be applied to multiscale modeling [Moulinec and Suquet
(1995)] and homogenization [Schneider (2021)]. After having been combined with FEM
for the first time by Spahn et al. in 2014 [Spahn et al. (2014)], FE-FFT methods gained
in popularity as a numerical method for multiscale simulations. A review of the method
and its state of the art can be found in Gierden et al. (2022). Example applications are
modeling the evolution of the microstructure [Kochmann et al. (2016)], damage modeling
[Fang et al. (2019)], fracture and fatigue [Lucarini and Segurado (2019), Chen et al. (2019)]
and simulations of polycrystals [Prakash and Lebensohn (2009)].

The main idea of FFT-based multiscale approaches is to reformulate the microscopic bound-
ary value problem by introducing the stiffness tensor of a homogenous reference material
and a "polarization" stress, which is the stress difference between the reference material and
its microscopic inclusions. The resulting PDE problem can be solved very fast and effi-
ciently by transforming it into Fourier space, obtaining a fixed-point scheme. One of the
main advantages of this method is its low computational time. However, in order to apply
the method efficiently, the microscopic grid must be constructed in a regular voxel-based
structure. Consequently, the method is only applicable to periodic problems and regular
grids.
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Finite element square method (FE2). The finite element square method extends the con-
cept of the standard FEM to multiple scales and is used in this thesis. Basic works include,
e.g., Willis (1981), Suquet (1987) and Castaneda and Suquet (1997). An introduction to
the method can be found, e.g., in Schröder (2000), Feyel (2003) and Schröder and Hackl
(2013). The method can be applied to a wide range of topics, for example, the modeling
of fibre/matrix composite materials [Feyel (1999)], polycrystalline materials [Miehe et al.
(1999)], piezoelectric composite materials [Schröder and Keip (2012)], thermomechanical
coupled materials [Sengupta et al. (2012)] and multiscale topology optimization [Sivapuram
et al. (2016)]. Examples of the method used in the context of bone modeling are Ilić et al.
(2010) and Klinge et al. (2013).

The key idea of the method is that, instead of using a macroscopic constitutive model, a
microscale simulation is performed, calculating the necessary flux quantities, which then
are returned to the macroscopic scale. For this purpose, usually a reprensentative volume
element (RVE) is created, which is a (periodic) microscopic unit cell resolving the heteroge-
nous structure of the simulated medium. Alternatively, a statistically similar reprensentative
volume element (SSRVE) can be used [Balzani et al. (2014)].

To consider micro-heterogeneities, the model of the microscopic scale needs to be more
detailed in some way. It follows that by sending information back to the macroscopic scale,
some information is lost. The Hill-Mandel condition [Hill (1963), Hill (1972)] states that the
virtual work during scale transition needs to stay constant, a concept which was introduced
originally to solid mechanics but can also be generalized for electric and magnetic modeling
[Schröder et al. (2016), Labusch et al. (2019)]. In practice, most macroscopic quantities can
be obtained by calculating the volume average of the corresponding microscopic quantity in
the microscopic domain. For example, for the microscopic quantity f , the volume average
is defined as

f̄(x) =
1

Ω

∫
Ω

f(y)dV . (1.1)

Here, Ω is the total volume of the microscopic domain, the coordinates x and y refer to the
macroscopic and microscopic coordinate system and the use of the bar symbol indicates the
affiliation of a quantity to the macroscopic scale. The process is illustrated in Figure 1.5 for
the example of purely mechanical modeling with small deformations.

B(x)

B(y)

ε

σ

Figure 1.5: Left: inhomogeneous example body containing inclusions and cavities. Right:
computational model of the body with scale transition for the example of struc-
ture mechanics, with macroscopic strain ε and macroscopic stress σ.

The scale transition is straightforward for static problems. By contrast, dynamic problems
are usually modeled quasistatically when applying the FE2. Recent work also included
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inertia effects in the context of finite-strain applications [Tamsen and Balzani (2021)] to
account for time-dependent effects. However, an extension to electromechanical problems
may be a topic for future research.

It is well known that the choice of the unit cell / RVE can influence the results of the calcu-
lation. In Schröder (2000), it was shown that the usage of periodic boundary conditions in
the microscopic model ensures that the obtained results are (nearly) independent from the
relative position of the inclusion used and should therefore be applied when using FE2.

1.2.5 Artificial neural networks

Artificial neural networks (ANNs, often simply called neural networks) are computing sys-
tems inspired by animal brains. Originally introduced in 1943 [McCulloch and Pitts (1943)],
important milestones were the perceptron model [Rosenblatt (1957)] and networks with
many layers [Ivakhnenko and Lapa (1965)]. The advent of high-performance computing
has led to a surge in the popularity of neural networks, particularly over the past decade.

An important property of artificial neural networks is their ability to model non-linear prob-
lems. Therefore, they are used for a wide range of applications, an overview of which can
be found in Abiodun et al. (2018). The fields of interest for the use of ANNs are, e.g., en-
gineering and science [Samarasinghe (2016)], medicine [Amato et al. (2013), Shahid et al.
(2019), Jumper et al. (2021)], finance [Bahrammirzaee (2010)] and strategy games [Silver
et al. (2016), Silver et al. (2018)].

Similar to biological neurons, an artificial neural network consists of a group of neurons,
which are nodes that are organized in layers and are interconnected. Feed-forward neural
networks restrict the possible connections between the neurons to one direction, i.e., the
output of a neuron depends only on inputs from the previous layer. Recurrent networks also
allow connections to neurons of the same or previous layers. In both cases, the first layer
receives the input data, while the last layer calculates the final result. In-between layers are
called hidden layers. Figure 1.6 illustrates the structure of a feed-forward artificial neural
network.

In order to obtain a result, the ANN has to calculate the output o(x) of each neuron, which
is carried out sequentially for each layer:

o(x) = a

(
n∑

i=1

wixi

)
. (1.2)

Here, xi is the input data (originating strictly from the previous layer in the case of a feed-
forward network), wi are the weights and n is the number of total inputs connected to the
neuron. The activation function a is applied after computing the sum, which enables, e.g.,
to represent non-linearities or to force an output within a determined interval.

The "learning" phase of the network is realized by inserting large amounts of training data
into the network and checking, if the network produces the expected (known) output. During
this phase, the network adapts to better match the output. This can be done in different ways,
e.g., by creating or deleting neurons, by creating or deleting connections and by modifying
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Figure 1.6: Schematic structure of a feed-forward neural network.

the activation functions. In practice, the easiest and most common way of network adaption
is the change of weights in each single neuron. To evaluate the quality of the network,
an error function is used to quantify the difference between computed and expected output
and the network changes the neuron weights according to a learning rule. This process is
repeated until the network produces similar output to the expected ones. Test data is used
in between to make sure that the network does not simply "memorize" the training data.
During calculations using the test data, the network is not modified. Once the network is
trained, validation data may be used to proof that the network is able to correctly predict
results based on its training for data it has never seen before.

The main challenges for constructing ANNs are choosing hyperparameters (e.g., the number
of neurons per layer, the number of hidden layers, the activation function, the learning rate
etc.) that work well. Possible problems during the training phase are underfitting (i.e.,
the difference between computed and expected output is too high) and overfitting (i.e., the
network calculates good results for the training data but is not able to generalize regarding
to the test data). ANNs are used in this thesis for the solution of the inverse problem.

1.3 Outline of the dissertation

The present cumulative dissertation is organized as follows. Chapter 2 represents one of the
author’s (and his coauthor’s) published works, which is concerned with the development of
a novel, fully coupled multiscale model of cancellous bone considering mechanical, electric,
and magnetic effects. For this purpose, the finite element square method and a two-phase
model on the microscale are employed. The goal of this model is to simulate bones affected
by different stages of osteoporosis. Solving the resulting PDEs (forward problem) reveals
that a small mechanical impact creates significantly different magnetic field responses de-
pending on the health condition of the bone.
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Chapter 3 covers the inverse problem. The objective is to recover the distribution of cortical
bone mass density from the magnetic field calculated by the FE2 simulations and thus, draw
conclusions about the bone health. Artificial Neural Networks are trained to solve this task
with high accuracies.

Finally, in Chapter 4, significant extensions of the base model introduced in Chapter 2 are
addressed. The focus here is on the division of the macroscale into different parts. This
approach permits the modeling of a surrounding medium and also allows for the application
of improved boundary conditions. Additionally, the macroscopic model is split not only
between the bone domain and the surroundings, but also within the bone domain to describe
different bone structures in a more realistic and physiological way.

A more detailed summary of each chapter, including a short conclusion and a respective
outlook, is provided in the following.

A comprehensive overview of the topic, the discussion of the state of the art and the conclu-
sion of the entire thesis is presented in Chapter 1. Chapter 2 features the multiscale material
model for cancellous bone. The microscale consists of two phases, cortical bone and bone
marrow. Cortical bone is modeled as a piezoelectric, insulating solid. Bone marrow is de-
scribed as a viscoelastic and conducting solid. The novelty of the model is the combination
of mechanical, electric, and magnetic effects, while considering full coupling originating
from both, the material model and the Maxwell equations. The reason for this model choice
is given together with a short introduction on the structure of bones. Furthermore, the ba-
sic concept of FE2 is presented. The required equations for the solution of the microscale
problem are derived from energy methods in mechanics to obtain a thermodynamically con-
sistent model. Starting with a thermodynamic energy functional, the weak and strong form
of the problem are calculated. The macroscale model is shortly introduced. The application
of FE2 to the introduced model, the transition between the scales and the implementation
are discussed.

Results are presented for different cases. Starting with the microscale, mesh independence
and quadratic convergence behavior are confirmed for a simple cubic RVE. To model differ-
ent stages of osteoporosis, six different RVEs with different volume percentages of cortical
bone are created. The calculation of the effective Young’s modulus shows a significant re-
duction for models with low volume percentage of cortical bone. Multiscale calculations
are performed for a cylinder model and a model of a human femur bone using the discussed
way of applying FE2. In both cases, all quantities are reduced, when RVEs with low volume
percentage of cortical bone are used. Most importantly, this especially applies for the mag-
netic field strength, which is the measured quantity in sonography-based early detection of
osteoporosis. The average and the maximum magnetic field strengths show a similar trend.
Notably, the difference between the obtained magnetic field strength is higher the lower the
volume percentage of cortical bone is for the RVEs used.

While the results shown are already promising for the application of sonography in diagnos-
tics, certain aspects limit the applicability of the model and, therefore, have to be addressed.
The RVEs used for the microscale calculations are coarse and contain sharp edges, which
may lead to numerical inaccuracies. Furthermore, the model does not include a boundary
box. This means, the influence of a surronding medium like air or water is not considered
and no proper decay of the electromagnetic fields is achieved. An extension of the model
concerning this point is discussed in Chapter 4. Lastly, the model only predicts the mag-
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netic field strength from given input data. The inverse problem of finding the corresponding
composition of bone (i.e., the distribution of cortical bone phase at the macroscale) from the
magnetic field strength data is of great importance for diagnostics.

Chapter 3 is concerned with solving the inverse problem. For this purpose, the material
model discussed in the previous chapter is used to generate a large sample of magnetic field
data. This data is then utilized as the input for ANNs, which are trained to output the correct
distribution of bone material. After a short reintroduction of the material model used, the
data collection and neural network design is explained. For the data generation, the cylinder
model is split into eight parts along its length and the RVEs used in each part are randomly
chosen from six different RVEs, the same set which was also investigated in the previous
chapter. Haar functions are used to obtain more realistic volume fraction distributions of cor-
tical bone, dismissing distributions where large jumps between neighboring cylinder parts
occur.

Two approaches for the design of the ANNs are investigated. The aim of the regression
approach is to approximate the volume fractions of cortical bone in the different parts of the
cylinder. For the classification approach, one network for each cylindrical part is employed
to output the ID of the RVE used. This is possible as the number of different RVEs is finite.
As discussed before, the differences between the magnetic field strength is very low if the
two RVEs with the highest volume fraction of cortical bone are used (RVE 5 and 6). To dif-
ferentiate between these classes can be troublesome for ANNs. Therefore, additional ANNs
are created that consider these two RVEs both as a single class (healthy bone). Validation
data is used together with the pocket algorithm to achieve a good performance. Overfitting
is prevented by the usage of the early stopping method.

All ANN designs show very good results by reaching accuracies of more than 96%. The
classifaction approach is slightly better compared to the single network regression approach.
Merging the fifth and sixth classes further improves the performace, as the ANNs built for
six different classes show difficulties in differentiating the last two classes. Both the choice
of the activation function and the optimizer used are shown to significantly impact the results
of the networks. Finally, the low computational cost of classification using the obtained
neural network is confirmed, which qualifies the method as a standard diagnosis tool.

The obtained results are satisfactory, but there are some aspects that require further attention
to enhance the applicability of the model with the long-term objective of making it a useful
tool in the early detection of osteoporosis. A more detailed model of the bone could be
used to improve the simulation results on which the performance of the ANNs is based. So
far, only simulations are used to obtain the required input data for the ANNs. Experimen-
tal research is necessary to validate the simulation results. Furthermore, in the model it is
assumed that the magnetic field strength is known precisely at every node of finite element
mesh. The resolution of the data for real-world setups depends on the measurement technol-
ogy used and may be worse. For this reason, future research could investigate, if ANNs are
still able to accurately predict the health of the bone when given less or less accurate input,
respectively. Lastly, finer separations of both the bone volume fractions and parts along the
length of the bone could be investigated.

Chapter 4 deals with extensions of the basic bone model presented in Chapter 2. Three
different parts are addressed, all related to subdividing the macroscopic model. A boundary
box around the cylinder model is constructed to account for effects of a surrounding medium
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(this could, e.g., be air or water) and allow the decay of the electromagnetic fields. This way,
the boundary conditions chosen for the magnetic vector potential are more suitable. Lastly,
the differentiation between the phases was not only implemented between the cylinder and
the surrounding medium, but also within the cylinder. With this approach, it is possible to
describe the macroscale in a more physiological way and assign cortical bone, bone marrow
and the phase mixture (spongy/cancellous bone) to different parts of the cylinder model.

The previously established material model is shortly reintroduced. The different extensions
of the model are presented in detail, especially considering the physiological properties of
real bones. The numerical implementation is discussed, showing the different meshes and
boundary conditions used. Noticeably, two different types of models are shown. The first
model is the cylinder model including the boundary box to investigate the influence of a
surrounding medium and to compare the results to previously obtained ones. The second
model is the three-way split cylinder model, where the cylinder is divided starting from
the center to its boundary into three parts of bone, i.e., bone marrow, spongy bone (phase
mixture where again the FE2 is applied) and cortical bone. The three-way split cylinder
model also includes the boundary box.

The results for the first model show a slight increase in magnetic field strength compared
to previous results. By contrast, the magnetic field strength at the left end of the cylinder
is significantly reduced, resulting in a symmetric field distribution due to the use of im-
proved boundary conditions. The results for the three-way split cylinder are conform with
previously obtained results.

The chapter dealt with important extensions of the basic bone model, improving the appli-
cability of the model. Especially the improvement of the boundary conditions yielded the
desired effects as shown in the results. Despite that, further improvements are possible.
Nédélec function spaces for the magnetic vector potential could be used to improve the nu-
merical performance of the model. While it is straighforward to construct a boundary box
for simple geometries like the cylinder model used, it can be very complicated for more
complex geometries, for example real human femur bones. The discontinuous Galerkin
method could be used without introducing additional computational costs. The complex
part of the geometry could be inserted into a larger boundary domain without the necessity
of matching the mesh resolution of the different parts.

1.4 Conclusion and outlook

In this thesis, multiscale modeling of cancellous bone has been investigated. A novel mul-
tiscale and multiphase material model was developed. FE2 simulations were evaluated,
demonstrating that the magnetic field strength is significantly influenced by the volume per-
centage of cortical bone of the RVEs used. The magnetic field strength is drastically reduced
for RVEs with low volume percentages of cortical bone (representing later stages of osteo-
porosis) in comparison to RVEs with high volume percentages of cortical bone (representing
a healthy bone). The inverse problem can be solved with high accuracy by employing ANNs.
The results demonstrate that the models investigated are functioning as intended. Therefore,
this work constitutes an important part of fundamental research to advance the development
of sonography for the early-detection of osteoporosis.
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While the results obtained are promising, there are several unanswered questions and aspects
that could be addressed in future research. The most significant issues are summarized
below.

For the multiscale model of cancellous bone, important aspects are given in the following:

• The presented work is purely theoretical in nature. In order to ascertain the realism
of the data obtained from the model, it must be compared with data obtained from
experiments. The outcome may be either a confirmation of the simulations and the
model, if the data is similar. Otherwise, the experimental data may show significant
differences, which would draw attention to possibly underrepresented aspects in the
simulations that have to be addressed in future research. This includes the possibility
of obtaining accurate material parameters from experiments, which could then be used
for the simulations.

• The current model uses standard (nodal) finite elements. It is well known, that nodal
elements may cause numerical issues and inaccuracies in the context of electromag-
netic problems. Spurious solutions may arise due to the inability of the shape func-
tions to resolve discontinuities in the solution fields, which may occur, for instance,
at the interface between different materials (with different material parameters). An
alternative approach is the Nédélec H(curl; Ω)-conforming finite element (introduced
in Nédélec (1980)), which possesses its degrees of freedom at the edges of the ele-
ment. However, implementation would require additional effort. In Mur (1998) the
author claims that the problems cannot be resolved by the choice of the element type
but instead by a proper finite element formulation. Further investigation is required
to review this for the presented model, in particular with regard to the behavior of the
model at the scale transition.

• The RVEs used in the simulations are very coarse and simple in their design. Different
RVEs could be investigated, which may contain, e.g., a finer resolution, a different size
or additional geometric details. Furhtermore, anisotropic RVEs could be employed.
This way, the influence of the RVE used on the macroscale results could be inves-
tigated further. This also includes random rotations of the microstructure: different
orientations for each integration point could be investigated.

• An alternative multiscale method could be used in place of FE2. A FE-FFT approach
may be suitable to utilize the periodic structure of the RVEs. This could speed up
the computations significantly and allow multiscale simulations of RVEs representing
real bone structures.

• A dimensionless formulation of the PDE system could be introduced to generalize
and simplify the problem. This improvement could enhance the numerical quality
and stability of the simulations.

Some further possible expansions of the model are:

• The Discontinuos Galerkin method may be introduced to enable the easy usage of a
boundary box for complex macroscopic geometries (e.g., the model of a human femur
bone, which was previously used without a boundary box) [Cockburn (2003)]. Here,
the main advantage would be that a matching mesh resolution of different model parts
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(e.g., femur and boundary box) is not necessarily required.

• The inclusion of flexoelectricity in the presented model could be reasonable, as the ef-
fect has been shown to be prevalent in bone, particularly at crack tips. For this reason,
the effect may play an important role in repair and remodeling of bone [Vasquez-
Sancho et al. (2018), Witt et al. (2022)]. As flexoelectric materials may have different
possible applications, the computational modeling, though not necessarily related to
bone, has been investigated extensively [Zhuang et al. (2020), Zhuang et al. (2023)],
making the implementation accessible.

• Wave propagation in bone could be investigated in more detail. By deriving the equa-
tions in the complex domain, the expansion of waves and the (eigen-)frequencies
could be obtained (cf. Ilić et al. (2010)).

• Other applications of the same or a slightly modified model may be possible, for
example the extension to soft tissues, by rewriting the equations for the case of large
deformations.

Finally, concerning the inverse modeling of cancellous bone, the following points might be
addressed in future research:

• The modeling is purely theoretical. Therefore, the obtained data from the simulations
has to be compared to experimental data to examine the quality of the results.

• In the model used it is assumed that the magnetic field strength is known precisely
at every node of the finite element mesh. In practice, this is not the case. Instead,
the resolution of the obtained magnetic field depends on the measurement techniques
applied. It is therefore likely that in real world applications the input data is less
accurate. It could be investigated, if neural networks are still able to make accurate
predictions when given less or less accurate input to account for the difference be-
tween simulations and real world.
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2.1 Abstract

Modeling of cancellous bone has important applications in the detection and treatment of
fatigue fractures and diseases like osteoporosis. In this paper, we present a fully coupled
multiscale approach considering mechanical, electric and magnetic effects by using the
multiscale finite element method and a two-phase material model on the microscale. We
show numerical results for both scales, including calculations for a femur bone, comparing
a healthy bone to ones affected by different stages of osteoporosis. Here, the magnetic field
strength resulting from a small mechanical impact decreases drastically for later stages of
the disease, confirming experimental research.

2.2 Introduction

In the present contribution, we develop a multiscale model for cancellous bone taking me-
chanical, electric and magnetic effects into account. An important application of this model
is the early detection of osteoporosis. This bone disease reduces the mass density of the
bone, making it thinner and weaker, increasing the likelihood of fractures. Sonography is
used as a cheap, fast and non-invasive early detection technique for osteoporosis [Kaufman
et al. (2008)]. Material modeling and numerical simulations are helpful tools in order to
understand and evaluate experimental measurements and enable medical diagnostics based
on this method.

Bone is a composite material with impressive properties, drawing the interest of researchers
of many different fields. As a material, it is very strong and stiff and has a high fracture
toughness, while also maintaining a light weight [Hamed et al. (2010)]. Thus in recent
decades, a lot of different approaches to investigate and simulate the material behavior of
bone have appeared. Many analytical solutions are based on Biot’s famous theory [Biot
(1956a), Biot (1956b)]. Examples include Buchanan and Gilbert (2007), Chen et al. (2018)
and Steeb (2010). Here, cortical bone is modeled as a solid, while bone marrow is assumed
to be a fluid. The acoustic properties of bone material are then used to obtain mechanical
material parameters of bone and the parameters of Biot’s model. Additionally, the results
are compared with the findings of experiments.

In contrast to the analytical solutions, many numerical approaches exist in the scope of bone
modeling as well. The finite difference method was used in Kaufman et al. (2008) to ob-
tain numerical results of ultrasound propagation in bone. Applications of the finite element
method (FEM) on the topic of bone modeling include the simulation of mechanical prop-
erties of bone [Gardner et al. (2000), Miller et al. (2002)] and the simulation of osteogenic
effects [Wang et al. (2017)]. In Christen et al. (2010) patient-specific FEM simulations are
proposed in order to estimate the likelihood of osteoporotic fractures.

Since the bone microstructure is very complex and heterogenous, material modeling should
take place on different scales. Currently used single scale models are criticized in Christen
et al. (2010) as oversimplified and multiscale approaches proposed instead. In Hamed et al.
(2010), the mechanical properties of bone are modeled on five different length scales from
the nanoscale to the macroscale. Multiscale approaches can also be combined with numer-
ical methods. The finite element square method (FE2) extends the standard FEM approach
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by applying the multiscale concept and solving the differential equation systems on two
scales via the FEM. An overview of the method can be found in Schröder (2000), Schröder
and Hackl (2013). Basic works on this method include for example Willis (1981), Suquet
(1987), Castaneda and Suquet (1997) and applications to different materials can be found
for example in Ilić and Hackl (2004), Miehe et al. (2002). An application of the FE2 within
the scope of bone modeling can be found in Ural and Mischinski (2013), Podshivalov et al.
(2011), Pahr and Zysset (2008), proposing different models to capture the microstructure
of bone, allowing to investigate mechanical effects. In Ilić et al. (2010) and Klinge et al.
(2013), macroscopic material parameters were recovered by simulations on the microscale.
The results obtained were subsequently used for macroscale simulations of wave propaga-
tion.

So far, all presented contributions focus only on the mechanical effects of bone. However,
cortical bone possesses the properties of a piezoelectric solid. After the discovery of this
effect Fukada and Yasuda (1957), Shamos et al. (1963), research considering these coupled
physical effects has started. A review on computer modeling of bone piezoelectricity can
be found in Mohammadkhah et al. (2019). There, applications are discussed as well. Since
electric and magnetic effects are coupled physically via the Maxwell equations, it may be
necessary to include magnetic effects as well. In Güzelsu and Saha (1981), bone was mod-
eled as a hollow cylinder and analytical solutions of the coupled equations of all three effects
were studied. The results were then compared to in vitro experimental measurements.

In this work, we present a fully coupled multiscale approach for modeling cancellous bone
considering mechanical, electric and magnetic effects and using two scales, the macro- and
microscale. At the microscale, we assume a heterogenous material consisting of two phases,
cortical bone and bone marrow. Cortical bone is modeled as piezoelectric, insulating solid,
bone marrow as viscoelastic, conducting solid. Electric and magnetic effects are coupled
via the Maxwell equations. Based on energy methods in mechanics, we establish a ther-
modynamically consistent material model and derive the weak and strong form of the cor-
responding boundary value problem. We apply the FEM to solve the problem numerically.
For multiscale analysis, we resort to the FE2 method. To apply this method, we constructed
a periodic representative volume element (RVE) and discuss the transition between scales.

The article is structured as follows: in Section 2.3 we discuss the material structure of
cancellous bone and the FE2 method. Then, we introduce the microscopic material model
and derive the weak and strong form of the corresponding variational problem. Additionally,
we cover the macroscale boundary value problem. In Section 2.4 we present the FEM
implementation of the model and show details regarding scale transition and programming.
In Section 2.5 we present numerical results, starting with microscale calculations, on to
multiscale simulations for a cylindrical body and finally a true to scale model of a human
femur bone. To close this article, we draw a short conclusion and give an outlook to future
research envisioned in Section 2.6.
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2.3 Material model

2.3.1 Structure and properties of cancellous bone

Our work focuses on the description of the internal structure of cancellous (spongy) bone,
which consists of small beams or shells of interconnected cortical bone and interstitial bone
marrow. Cortical bone is mainly composed of elastic collagen fibers, which act as charge
carriers. When applying a shear stress, these collagen fibers slip past each other, thus pro-
ducing a piezoelectric effect. This was first measured in Fukada and Yasuda (1957) and later
validated in Shamos et al. (1963). This means that, whenever a mechanical strain is present
in the bone, an electric field is generated due to the piezoelectric effect. A time-dependent
fluctuation of the electric field then creates a magnetic field due to Ampère’s circuital law,
coupling mechanical, electric and magnetic effects all together.

An important application of bone modeling is the early detection of osteoporosis, a bone
disease, which manifests itself in the reduction of the cortical bone phase, thus reducing
the strength of the bone and increasing the likelihood of fractures. Compared to a heal-
thy bone, the volume fraction of cortical bone for an affected bone can be reduced from
30% to 5% [Steeb (2010), Ilić et al. (2010)]. Figure 2.1 shows a comparison depending on
the osteoporosis stage and illustrates the heterogeneity of the material. During the course
of osteoporosis, the cortical bone (represented brighter) reduces and is replaced by bone
marrow (represented in dark). Thus, we will employ different RVEs for the simulations.
Here, the cortical bone phase is represented in gray, while the bone marrow phase is drawn
in transparent red color.

Figure 2.1: Bone phases depending on osteoporosis stage (cf. Laboratoires Servier (2019))
and corresponding RVEs.

Early detection of osteoporosis can be done via sonography: ultrasonic waves enter the bone
and due to the described effects create a magnetic field, which can be measured [Güzelsu
and Saha (1981)] and - depending on the results - conclusions on the health status of the
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investigated bone can be drawn. In this contribution, we introduce a material model in-
cluding all the described effects. It is important to note, that there are two different forms
of coupling: while the piezoelectric coupling is captured via a suitable material model, the
Maxwell coupling is of physical (electrodynamical) nature.

2.3.2 Concept of the FE2 method

To include micro-heterogeneities directly, an extremely fine resolution of the problem would
be necessary, resulting in a very high computation cost for the simulations. Alternatively,
the FE2 method is a homogenization technique, which captures the structure of micro-
heterogeneities by introducing a second - smaller - scale to the problem. If the material
is statistically regular on the smaller scale, it can be modeled by a corresponding RVE
[Schröder (2000),Schröder and Hackl (2013)]. In this paper, we denote the larger scale
as the macroscale and the smaller scale as the microscale. To obtain accurate results, the
quotient of the characteristic lengths between micro- and macroscale should tend to zero, so
the RVE has to be much smaller than the simulated macroscopic body. Figure 2.2 illustrates
this procedure: instead of using a material model on the macroscale, the state variables are
linked to the microscale, where the RVE problem is solved. The microscale calculations
yield average flux quantities and consistent tangent matrices, which then can be used for the
solution of the macroscale problem, replacing a macroscopic material model.

state variables

flux quantities

Figure 2.2: Transition between macro- and microscale. State variables enter as boundary
conditions of the RVE problem. Flux quantities at the macroscale are calculated
by averaging the RVE quantities.

We denote spatial coordinates on the macroscale by x and on the microscale by y. Quantities
denoted as (·) are affiliated to the macroscale. The transition between the scales regarding
energy conservation and numerical treatment is discussed in Section 2.4.2.

2.3.3 Variational formulation of the microscale problem

The domain Ω := Ωy, representing the RVE of the micro problem, is split into a cortical
bone part Ωb and a bone marrow part Ωm. For any quantity, the indices (·)m and (·)b are
used to denote the affiliation to each phase. If no index is present, the quantity or equation
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is valid for both phases. We employ the following thermodynamic energy functional at the
microscale:

Π =

∫
Ωb

Ψb(ε,E,B)dV +

∫
Ωm

Ψm(ε, ε
i,E,B) + C dV

+

∫
Ωm

∫
t

∆(ε̇i, Ȧ)dtdV +

∫
Ω

Ψg(∇ ·A)dV −Wext . (2.1)

The functional contains the energy densities Ψb and Ψm of both phases, a volume constraint
C, dissipation and gauge functionals (∆ and Ψg) and the potential of the generalized external
forces Wext. The main variables of the problem are then the mechanical displacements u,
the electric scalar potential φ and the magnetic vector potential A, yielding seven unknown
variables for the three-dimensional model. The state variables are the mechanical strain ε,
the electric field E and the magnetic flux density B, calculated as

ε =
1

2
(∇u+∇Tu) , E = −∇φ− Ȧ and B = ∇×A . (2.2)

This way, two of the four Maxwell equations are already satisfied:

∇× E = ∇× (−∇φ− Ȧ) = −Ḃ and
∇ ·B = ∇ · (∇×A) = 0 . (2.3)

For the mechanical strain, we use Voigt’s notation [Mehrabadi and Cowin (1990)] as

ε =
(
εxx εyy εzz 2 εxy 2 εyz 2 εxz

)T . (2.4)

Then, the energy densities for both phases are

Ψb =
1

2

(
ε · Cb · ε− E · ξb · E+B · µ−1

b ·B
)
− eb · ε · E and

Ψm =
1

2

(
(ε− εi) · Cm · (ε− εi)− E · ξm · E+B · µ−1

m ·B
)

, (2.5)

consisting of quadratic energies for mechanical, electric and magnetic effects, resulting in
a linear problem. We include a piezoelectric energy term for the cortical bone phase. For
the bone marrow phase, an inelastic strain εi is introduced. Here, C is the mechanical
stiffness tensor, ξ is the permittivity tensor, µ−1 is the inverse permeability tensor and eb is
the piezoelectric tensor. While it is possible to switch between state and flux variables via a
Legendre transformation, the present formulation proves as the most suitable for our model,
as it allows an easy inclusion of the Maxwell coupling and the electric dissipation. For linear
problems, the transformation would change an extremal into a saddle point problem, thus
excluding solvers, that require positive definiteness of the system matrix as a precondition.
The constraint function reads

C = λ tr(εi) , (2.6)

enforcing volume conservation of the inelastic deformation. Here, λ is a Lagrange multi-
plier. The dissipation function is

∆ =
1

2
(µ−1

v |ε̇i|2 − κ E2) , with J = κ E . (2.7)
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Thus, ∆ governs the evolution of the inelastic strain and the energy loss due to conduction.
The latter satisfies Ohm’s law (Eq. (2.7), right). Both parts of the dissipation only occur in
the bone marrow phase. Here, the viscosity parameter µ−1

v > 0, the electric conductivity
tensor κ = κ1I, with the identity tensor I, the electric conductivity κ1 > 0 and the electric
current density J are introduced. The gauge function is

Ψg =
γ

2
(∇ ·A)2 (2.8)

and ensures, that a unique solution for the magnetic vector potential A is obtained by pe-
nalizing its divergence, effectively requiring, that ∇ · A vanishes and thus improving the
numerical stability [Semenov et al. (2006)]. The penalty parameter γ is a numerical pa-
rameter used to control the gauge term. Finally, the potential of generalized external forces
is

Wext =

∫
Ω

(f · u− qv · φ+ jv ·A)dV +

∫
∂Ω

(t · u− qs · φ+ js ·A)dA . (2.9)

Here, f and t are the mechanical volume and surface forces, qv and qs are the electric volume
and surface charges and jv and js are the volume and surface currents.

By calculating the derivative of the energy density with respect to the state variables, we
find the following constitutive equations for both phases:

σ :=
∂Ψb

∂ε
= Cb · ε− eTb · E ,

D := −∂Ψb

∂E
= eb · ε+ ξb · E ,

H :=
∂Ψb

∂B
= µ−1

b ·B ,

σ :=
∂Ψm

∂ε
= Cm · (ε− εi) ,

D := −∂Ψm

∂E
= ξm · E and

H :=
∂Ψm

∂B
= µ−1

m ·B . (2.10)

For the bone marrow, the additional constitutive equations are

σ := −∂Ψm

∂εi
= Cm · (ε− εi) and

J :=
∂∆

∂E
= −∂∆

∂Ȧ
= κm E , (2.11)

introducing the flux quantities mechanical stress σ, electric displacement D and magnetic
field strength H. For the cortical bone phase the viscosity parameter µ−1

v and the electric
conductivity tensor κ vanish. The material tensors satisfy

C :=
∂σ

∂ε
, ξ :=

∂D

∂E
, e :=

∂D

∂ε
= −(

∂σ

∂E
)T ,

µ−1 :=
∂H

∂B
, κ :=

∂J

∂E
. (2.12)
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2.3.4 Weak and strong form of the microscale problem

To calculate the weak and strong form of the problem, the energy functional has to become
stationary with respect to the main variables and internal variables, leading to

t1∫
t0

Πdt→ stat
u, φ, A, εi

. (2.13)

The stationary condition of the first variation of the energy functional reads then∫
Ωb

(
∂Ψb

∂ε
δε+

∂Ψb

∂E
δE+

∂Ψb

∂B
δB

)
dV +

∫
Ωm

(
∂Ψm

∂ε
δε+

∂Ψm

∂εi
δεi

+
∂Ψm

∂E
δE+

∂Ψm

∂B
δB+

∂∆

∂ε̇i
δεi +

∂∆

∂Ȧ
δA+ λIδεi

)
dV

+

∫
Ω

∂Ψg

∂(∇ ·A)
δ(∇ ·A)dV − δWext = δΠ = 0 ∀δu,δφ,δA,δεi.

(2.14)

The variation of the generalized external forces is

δWext =

∫
Ω

(f · δu− qv · δφ+ jv · δA)dV +

∫
∂Ω

(t · δu− qs · δφ+ js · δA)dA .

(2.15)

Using the introduced energy densities, constraint, dissipation and gauge functions, Eqs.
(2.5), (2.6), (2.7), (2.8), and inserting the constitutive equations Eq. (2.10), Eq. (2.14)
simplifies to∫

Ω

(
σ · δε−D · δE+H · δB− J · δA+ γ(∇ ·A) · δ(∇ ·A)

+(−σ + µ−1
v ε̇i + λI)δεi

)
dV − δWext = 0 ∀δu,δφ,δA,δεi. (2.16)

Here, the identity vector is denoted as I. We find the evolution equation of the inelastic
strain:

−σ + µ−1
v ε̇i + λI = 0 . (2.17)

To calculate the Lagrange multiplier, the trace is applied to Eq. (2.17):

−tr(σ) + µ−1
v tr(ε̇i)︸ ︷︷ ︸

=0

+λ tr(I) = 0 ⇒ λ =
1

3
tr(σ) . (2.18)

The second term in Eq. (2.18) must vanish because of the introduced volume constraint.
This leads to the final evolution equation

ε̇i = µv σdev , (2.19)

with σdev = σ − 1
3
tr(σ) I denoting the deviatoric part of the mechanical stress σ. The

time integration of the evolution equation is discussed in Section 2.4.
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To calculate the strong form of the problem, the remaining variational equation is used:∫
Ω

(σ · δε−D · δE+H · δB− J · δA

+γ(∇ ·A) · δ(∇ ·A))dV − δWext = 0 ∀δu, δφ, δA . (2.20)

This form is later used to insert a FEM ansatz. We apply partial integration to each term.
Details can be found in Appendix A (Sec. 2.7). We obtain

∇ · σ + f = 0 in Ω

σ · n = t on ∂Ω
∇ ·D = qv in Ω

D · n = −qs on ∂Ω

∇×H = Ḋ+ J+ γ∇(∇ ·A) + jv in Ω

H× n = js − γ(∇ ·A)n on ∂Ω (2.21)

recovering the mechanical equilibrium condition, the two remaining Maxwell equations and
boundary conditions, including the gauge. Here, n is the normal vector pointing outwards.
Additionally, we receive the jump conditions between the phases 1

[[σ]]bm · n = t on ∂Ωbm

[[D]]bm · n = −qs on ∂Ωbm

[[H]]bm × n = js − γ [[∇ ·A]]bm n on ∂Ωbm (2.22)

on the interface ∂Ωbm and the evolution equation of the inelastic strain Eq. (2.19) in Ωm.
Here [[·]]12 := (·)1 − (·)2 denotes the difference between the phases. It should be noted
that the strong form is valid for both phases, but the calculation of the flux variables and
the inelastic strain evolution depends on the specific material parameters and thus in which
phase the calculation is done.

2.3.5 Macroscale problem

For the macroscale, the following boundary value problem in the domain Ωx has to be
solved: find the set {u, φ,A}, such that

∇ · σ + f = 0 in Ωx

σ · n = t on ∂Ωx

∇ ·D = qv in Ωx

D · n = −qs on ∂Ωx

∇×H = Ḋ+ J+ γ∇(∇ ·A) + jv in Ωx

H× n = js − γ(∇ ·A)n on ∂Ωx , (2.23)

1Corrected the missing equation part, cf. Blaszczyk and Hackl (2022).
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with the state variables

ε =
1

2
(∇u+∇Tu) , E = −∇φ− Ȧ and B = ∇×A , (2.24)

and the calculation of the fluxes depending on the microscale calculations

(σ,D, Ḋ,H,J) = fRVE(ε,E,B) . (2.25)

We transform the strong form into the weak form by multiplying with test functions of the
main variables and again using partial integration:∫

Ωx

(σ · δε−D · δE+H · δB− J · δA

+γ(∇ ·A) · δ(∇ ·A))dV − δW ext =0 ∀δu, δφ, δA . (2.26)

Here, the variation of the macroscopic generalized external forces is

δW ext =

∫
Ωx

(f · δu− qv · δφ+ jv · δA)dV +

∫
∂Ωx

(t · δu− qs · δφ+ js · δA)dA .

(2.27)

This form is again used in the next section to formulate the FEM.

2.4 Numerical implementation

2.4.1 Finite element method

To solve the boundary value problems on both scales, we insert a standard finite element ap-
proach [Zienkiewicz et al. (2005)] into the weak form of the problem for all main variables.
In this section, we derive the resulting system for the microscale. It should be noted that the
same system has to be solved for the macroscale, but each quantity (·) has to be replaced
by its macro-average quantity (·). The inelastic strain is only present on the microscale and
vanishes on the macroscale. Its calculation is not done via the FEM, but directly by using
the evolution equation Eq. (2.19) on the integration point level. Details regarding the calcu-
lation of macro-fluxes and consistent material tensors are given in the next subsection. Here,
we denote nodal FEM values by (̂·). For the evolution equation of the inelastic strain on the
micro-scale, we apply an explicit Euler scheme, yielding:

εin+1 = εin +∆t ε̇i with ε̇i = µvσdev . (2.28)

Here, ∆t is the time increment between two time steps. The standard FEM approach for the
remaining system is

u ≈ Nu û φ ≈ Nφ φ̂ A ≈ NA Â

δu ≈ Nu δû δφ ≈ Nφ δφ̂ δA ≈ NA δÂ (2.29)



2.4 Numerical implementation 29

approximating the main variable and their variations by shape functions times the nodal
values of the functions (·) ≈ N· (̂·). For the state variables and the gauge this approach
yields

ε̂ = Buû , Ê = −Bgradφ̂−NA
˙̂
A ,

B̂ = BcurlÂ , ∇ · Â = BdivÂ . (2.30)

Here, the operator matrices are

Bu =



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x


·Nu

Bgrad =

 ∂
∂x
∂
∂y
∂
∂z

 ·Nφ

Bcurl =

 0 ∂
∂z

− ∂
∂y

− ∂
∂z

0 ∂
∂x

∂
∂y

− ∂
∂x

0

 ·NA

Bdiv =
(

∂
∂x

∂
∂y

∂
∂z

)
·NA (2.31)

Inserting these equations into the reduced weak form of the micro-problem Eq. (2.20) and
by using the arbitrariness of the test functions, we find the final equation system in matrix
form as follows (a detailed derivation is given in Appendix B (Sec. 2.8)):

R := F−Md̈−Cḋ−Kd
!
= 0 (2.32)

with the residual vector R =
(
Ru Rφ RA

)T
=

f̂ +
∫
Ω

−BT
u σ̂dV

q̂+
∫
Ω

−BT
gradD̂dV

ĵ+
∫
Ω

(NT
A(

˙̂
D+ Ĵ)−BT

curlĤ− γBdivB
T
divÂ)dV

 (2.33)

and the generalized force and displacement vectors together with the mass, damping and
stiffness matrices as follows:

d :=

 û
φ̂

Â

 , F =

 f̂
q̂

ĵ

 ,

M =

0 0 0
0 0 0
0 0 MAA

 , C =

 0 0 CuA

0 0 CφA

CAu CAφ CAA

 ,

K =

Kuu Kuφ 0
Kφu Kφφ 0
0 KAφ KAA

 .
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Kuu := −∂Ru

∂û
=

∫
Ω

BT
u Ctang Bu dV ,

Kuφ := −∂Ru

∂φ̂
=

∫
Ω

BT
u eT Bgrad dV ,

Kφu := −∂Rφ

∂û
=

∫
Ω

BT
grad e Bu dV ,

Kφφ := −∂Rφ

∂φ̂
=

∫
Ω

−BT
grad ξ Bgrad dV ,

KAA := −∂RA

∂Â
=

∫
Ω

BT
curlµ

−1Bcurl + γBdivB
T
divdV ,

KAφ := −∂RA

∂φ̂
=

∫
Ω

NT
A κ Bgrad dV ,

CuA := −∂Ru

∂
˙̂
A

=

∫
Ω

BT
u eT NA dV ,

CAu := −∂RA

∂ ˙̂u
=

∫
Ω

−NT
A e Bu dV ,

CφA := −∂Rφ

∂
˙̂
A

=

∫
Ω

−BT
grad ξ NA dV ,

CAφ := −∂RA

∂ ˙̂φ
=

∫
Ω

NT
A ξ Bgrad dV ,

CAA := −∂RA

∂
˙̂
A

=

∫
Ω

NT
A κ NA dV ,

MAA := −∂RA

∂ ¨̂A
=

∫
Ω

NT
A ξ NA dV . (2.34)

The material tensors depend again on the phase. We calculate the mechanical stiffness
tangent matrix Ctang by introducing a time discretization as:

Ctang =
∂σn+1

∂εn+1

=

{
Cb in Ωb

Cm − Cm
∂εin+1

∂εn+1
in Ωm

(2.35)

For the bone marrow phase, the calculation depends on the inelastic strain εin+1:

∂εin+1

∂εn+1

= µv
∂σdev

∂σ

∂σ

∂εn+1︸ ︷︷ ︸
Cm

, (2.36)
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with

Ddevd :=
∂σdev

∂σ
= I− 1

3


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 =
1

3


2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

 .

(2.37)

The mechanical stiffness tangent matrix for the bone marrow phase is then

Ctang = Cm − Cm(µvDdevdCm) in Ωm . (2.38)

In order to solve the resulting second-order differential equation system, a suitable time in-
tegration scheme is necessary. Here we use a JWH-α-scheme introduced in Kadapa et al.
(2017), where also details regarding advantages and implementation of this method can be
found. For the time integration, the time increment ∆t and the additional numerical param-
eter ρ∞ are needed. By combining the method with a regular Newton-Raphson scheme, we
transform the matrix system of Eq. (2.32) to

Ri+1 := Ri(dn+αf
, vn+αf

, v̇n+αm)− S ∆d
!
= 0 , (2.39)

with the index denoting the iteration and the generalized tangent matrix

S =
α2
m

αfγ2a∆t
2
M+

αm

γa∆t
C+ αfK , (2.40)

which is the Jacobian of the system. Here ∆d is the increment of the solution vector and αf ,
αm and γa are numerical parameters depending on ρ∞ [Kadapa et al. (2017)]. The residual
Ri(dn+αf

, vn+αf
, v̇n+αm) is calculated from either initial conditions for the first iteration of

the first time step or else from the previous increment [Kadapa et al. (2017)]. The resulting
tangent matrix S is neither symmetric nor positive definite, limiting the choices for a suitable
solver of the linear system.

2.4.2 Transition between the scales

To connect the macro- and microscale in FE2, it is important to discuss the transition be-
tween the scales. The Hill-Mandel conditions [Hill (1963), Hill (1972), Schröder (2009),
Schröder et al. (2016), Labusch et al. (2019); Karimi et al. (2019)] have to be fulfilled,
guaranteeing energy conservation during the scale transition. Thus, the virtual work on the
macroscale has to be equal to the virtual work on the microscale:

σ · δε =
1

Ω

∫
Ω

σ · δεdV , D · δE =
1

Ω

∫
Ω

D · δEdV , B · δH =
1

Ω

∫
Ω

B · δHdV .

(2.41)

For the macro-to-micro transition, these conditions can be fulfilled by three different types
of boundary conditions on the microscale: Dirichlet, Neumann and periodic boundary con-
ditions [Ilić et al. (2010), Schröder (2000), Schröder and Hackl (2013)]. Here we chose



32 2 Article 1: Multiscale modeling of cancellous bone

periodic boundary conditions, as they are the only type of boundary condition, where the
results on the microscale are independent from the relative geometry of the RVE [Schröder
(2000), Schröder and Hackl (2013)]. Additionally, as the RVE is periodic in space, this
type of boundary condition is the most suitable. In the program, the periodic boundary con-
ditions were applied by fixing all degrees of freedom at all corner nodes, preventing rigid
body motions, and linking all degrees of freedom at opposite faces of the RVE, ensuring the
periodicity. The micro-state variables consist then of two parts: a term resulting from the
microscopic main variables (denoted by (̃·)), whose fluctuations are calculated, and a term
contributed by the macroscale:

ε = ε̃(y) + ε(x), E = Ẽ(y) + E(x), B = B̃(y) +B(x). (2.42)

This way, we calculate the flux variables on the microscale. For the micro-to-macro transi-
tion, the volume average of these flux quantities is sent back to the macroscale:

σ(x) =
1

Ω

∫
Ω

σ(y)dV , D(x) =
1

Ω

∫
Ω

D(y)dV , Ḋ(x) =
1

Ω

∫
Ω

Ḋ(y)dV ,

H(x) =
1

Ω

∫
Ω

H(y)dV , J(x) =
1

Ω

∫
Ω

J(y)dV . (2.43)

In this model, energy dissipation is considered in two ways. For the electric current J, the
average is calculated and included in the scale transition, resulting in no energy loss during
the scale transition. For the inelastic strain εi, the complete state in every point and for
every RVE is saved. Thus, the dissipation occurs only on the microscale and the energy
conservation is fulfilled2, as the virtual work send to the microscale is equal to the virtual
work send back added to the energy dissipation on the microscale. With the flux variables
available on the macroscale, it is now possible to obtain the macro-residual for the Newton-
Raphson method and the calculation of consistent macro-tangent moduli remains, which are
needed for the iteration. The definitions of those moduli read

C :=
∂σ

∂ε
, ξ :=

∂D

∂E
, e :=

∂D

∂ε

µ−1 :=
∂H

∂B
, κ :=

∂J

∂E
. (2.44)

The calculation can be done by applying a small numerical perturbation ∆tol = 10−8 to each
entry of the corresponding state variable

εpi = ε+∆tolei , E
pi
= E+∆tolei , B

pi
= B+∆tolei , (2.45)

with the i-th unit vector ei, and then calculating each entry of the macroscopic tangent
tensors by evaluating the perturbated fluxes σpi ,D

pi
,H

pi
,J

pi by means of the RVE as

Cji =
σpi
j − σj

εpij − εj
, ξji =

D
pi
j −Dj

E
pi
j − Ej

, eji =
D

pi
j −Dj

εpij − εj
,

µ−1
ji =

H
pi
j −Hj

B
pi
j −Bj

, κji =
J
pi
j − J j

E
pi
j − Ej

. (2.46)

Since for our model the same RVE is used everywhere and the non-linearity from the in-
elastic strain is very small, this calculation has to be done only once for all RVEs and all
time steps, making this approach very efficient. Together with the calculated macrostate
variables, this allows to solve the macroscopic FE problem.

2Corrected spelling, cf. Blaszczyk and Hackl (2022)
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2.4.3 Implementation

Start

Geometry and
boundary conditions

Macroscopic tangent cal-
culation: C, ξ, µ−1, κ, e

time loop: t = 1, ..., tmax

Newton-Raphson
loop: n = 1, .., nmax

Calculate S, R(f ,q, j)

Solve equation system

End

RVE geometry, material
description of the two
bone phases, periodic
boundary conditions

time loop:
tmic = 1, ..., tmmax

Newton-Raphson
loop: n = 1, .., nmax

Calculate S, R(ε,E,B)

Solve equation system
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age flux quantities

RVE subroutine:

• send: ε, E, B
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H, J
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Figure 2.3: Program flow of the multiscale simulations.

For the simulations, we implemented a computer program in the language JULIA [Bezan-
son et al. (2022)], using mainly the packages JUAFEM3 [Carlsson and Ekre (2022)] and
COHERENTSTRUCTURES [de Diego et al. (2022)]. As the microscale calculations are not
dependent on each other, we have parallelized the macroscale element routine, increasing
the speed of the computations drastically. As the inelastic strain εi is only present in the
microscale, we used HDF5 files to store the complete state of the inelastic strain for every
RVE for the previous and current time step. Thus, for the inelastic strain evolution no infor-
mation is lost. In order to solve the linear systems, we used the BiCGStab(l) method of the
package KRYLOVMETHODS [Ruthotto and Treister (2022)], as it is stable, fast even without
preconditioning the problem and can be used for any matrix type. Regarding the structure
of the program, Figure 2.3 shows the procedure.

3Since the publication date, the package JuAFEM.jl has been renamed to Ferrite.jl, see citation for details.
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2.5 Simulation results

2.5.1 Parameters and material tensors

In this subsection, we discuss the numerical and material parameters employed. Unless
explicity stated4 otherwise, the parameters from this subsection are used in all simulations.
Regarding the numerical parameters, we use the same parameters for both scales. The time
integration parameter is ρ∞ = 0.5, the Newton-Raphson tolerance is tolN = 1 · 10−8 and
the gauge penalty parameter is γ = 1.0 s2 A2/(kg m). The load and numerical time step
increment depending on the model are shown in Table 2.1.

Model Load Time step
Microscale cube εyz = 1 · 10−5 ∆t = 1 · 10−3 s
Cylinder umax = 2 · 10−6 m ∆t = 1 · 10−2 s
Femur bone umax = 2 · 10−6 m ∆t = 1 · 10−2 s

Table 2.1: Load and numerical time step increment for the different models.

The used default material parameters are shown in Table 2.2. Young’s modulus and Pois-
son’s ratio for both phases can be found in [Steeb (2010)]. The piezoelectric coefficient can
be found in [Fukada and Yasuda (1957)]. For the magnetic properties, bone is considered as
a nonmagnetizable material, thus having the same permeability as the vacuum [Güzelsu and
Saha (1981)]. All other parameters are of rather academical nature and influence the results
only marginally. The resulting material tensors read

C =
E

(1 + ν)(1− 2ν)
·


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2

 , (2.47)

ξ =

ξ1 0 0
0 ξ1 0
0 0 ξ1

 , e =

0 0 0 0 e15 0
0 0 0 0 0 −e15
0 0 0 0 0 0

 ,

µ−1 =

µ−1
c 0 0
0 µ−1

c 0
0 0 µ−1

c

 , κ =

κ1 0 0
0 κ1 0
0 0 κ1

 . (2.48)

We assume linear isotropic material everywhere, excluding the piezoelectric tensor which is
preferential in the z-axis due to the longitudinal orientation of the collagen fibers. It should
be noted, that due to the form of the piezoelectric tensor, the material model as a whole is
non-isotropic.

For the generation of the meshes, we used the program GMSH [Geuzaine and Remacle
(2022)]. We did the visualization of the results with PARAVIEW [Kitware Inc. (2022)] and
JULIA [Bezanson et al. (2022)].

4Corrected spelling, cf. Blaszczyk and Hackl (2022)
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Material parameter Cortical bone Bone marrow
Young’s modulus E 22.0 GPa 2.0 GPa
Poisson’s ratio ν 0.32 - 0.3 -
Permittivity ξ1 8.85 · 10−12 F/m 8.85 · 10−12 F/m
Permeability µc 1.257 · 10−6 H/m 1.257 · 10−6 H/m
Piezoelectric coefficient e15 3.0 · 10−3 A s/m2 0 A s/m2

Electric conductivity κ1 0 S/m 1.0 · 104 S/m
Viscosity parameter µv 0 s/GPa 0.5 ·∆t s/GPa

Table 2.2: Default material parameters.

2.5.2 Microscale model

In this subsection, we restrict ourselves to microscale simulations. In order to compare
periodic RVEs for different stages of osteoporosis, we introduce the lengths parameters a
and b (Figure 2.4), which allow us to control the volume fractions of the phases. By using
this convention, the total volume of the RVE is VRVE = (2a + b)3. We only use RVEs
with the same total volume of VRVE = 1 mm3, which is a suitable size for the microscale
calculations [Ilić et al. (2010)], making it easy to compare different RVEs. Thus, the choice
of a and b is restricted by 2a+ b = 1 mm. The volume fraction of cortical bone for our RVE
is ρb = (6ab2 + b3)/(2a+ b)3.

a

a

b

a

a

b

a

a

b

Figure 2.4: Periodic RVE with cortical bone phase (gray) and bone marrow phase (transpar-
ent red) and lengths parameters.

In our first example, we use a healthy bone RVE with the parameters a = 0.32 mm and
b = 0.36 mm, resulting in ρb = 29.5%. We compare different mesh resolutions. The first
RVE consists of two elements in each phase block, resulting in six elements for each spatial
direction. The second RVE consists of four elements in each block, resulting in twelve
elements for each spatial direction. Here, all degrees of freedom for all corner nodes are
restricted to zero and all opposite nodes are linked, to guarantee periodicity. Figure 2.5
shows the results of the simulations.

Both simulations show quadratic convergence behavior and periodic results. For all quan-
tities, the results between the two different used meshes look nearly identical confirming
mesh independence of the results. This is not only fulfilled on the surface of the model, but
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Figure 2.5: Microscale simulation results of a coarse and fine mesh (left and right respec-
tively) for all flux quantities. Top left: mechanical stress σxy [GPa], top right:
mechanical stress σxy [GPa] in the xz-plane with y = 0, bottom left: magnitude
of the electric displacement field D [A s/m2], bottom right: magnitude of the
magnetic field stength H [A/m].

(a) (b)

(c) (d)

Figure 2.6: Used meshes for the complete RVE (left) and only the cortical bone phase
(right). a coarse hexahedron mesh, b fine hexahedron mesh, c coarse tetrahe-
dron mesh, d fine tetrahedron mesh.

also in the inner parts, as the slice (top right) shows. It should be noted that since the FE2

method uses volume averaging, the coarse mesh with only six elements in each spatial di-
rection is sufficient enough to create accurate results for the multiscale method and is mostly
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used in the remaining examples of this paper.

The calculation of the magnetic field strength is susceptible for numerical errors. These
errors can occur, when there are sharp edges in the mesh or between the phase transitions,
which can amplify the results. To investigate this issue, we constructed smoother RVEs
by using tetrahedron elements and different mesh resolutions. Figure 2.6 shows the used
meshes. We found that despite the smoother approach, the numerical results of the RVEs
with tetrahedron elements are much worse compared to the RVEs with hexahedron elements,
showing worse convergence behavior and overestimating the magnetic field strength. One
reason for this result could be that through the mesh refinement, many additional corners
are introduced, which in total amplify the magnetic field strength more than a low number
of very sharp corners. Moreover, smaller element size leads to amplified singularities of
the corresponding fields at corners, which otherwise are regularized by the employed shape
functions. Similarly, Figure 2.5 shows an increase in the magnetic field strength for the finer
mesh resolution of the RVEs with hexahedron elements. In conclusion, the coarse RVE with
hexahedron elements shows the best numerical performance despite the low mesh resolution
and the included sharp edges.

no. a [mm] b [mm] ρb
1 0.43 0.14 5.3%
2 0.40 0.20 10.4%
3 0.38 0.24 14.5%
4 0.36 0.28 19.1%
5 0.34 0.32 24.2%
6 0.32 0.36 29.5%

Table 2.3: Lengths parameter of the different RVEs.

To compare the model behavior for different stages of osteoporosis, we created RVEs with
different volume fractions of cortical bone. Table 2.3 shows the choice of the lengths pa-
rameters and the resulting volume fractions. The macroscopic mechanical stiffness tensor
C := ∂σ

∂ε
was now evaluated for all RVEs by applying a small numerical perturbation as

discussed in Section 2.4.2. We then calculate the effective Young’s modulus as

Eeff =
C44(3C12 + 2C44)

(C12 + C44)
. (2.49)

Figure 2.7 shows a plot of the macroscopic Young’s modulus against the volume fraction of
cortical bone. Here, we observe a drastical reduction of the macroscopic Young’s modulus
with decreasing cortical bone fraction. Compared to a healthy bone (ρb = 29.5%), the
effective Young’s modulus of the degenerated bone (ρb = 5.3%) decreases to 57% (from
3.89 GPa to 2.32 GPa). Similar results can be found in Ilić et al. (2010).

2.5.3 Cylinder model

In this section, we show results for a cylinder model, which has a length of 30 cm and a
diameter of 2 ro = 3 cm. The mesh and the displacement boundary conditions are shown
in Figure 2.8. The mesh consists of 1767 nodes and 1440 hexahedral elements. The left and
right face is fixed, resulting in the boundary conditions u = 0 on the faces. Additionally,



38 2 Article 1: Multiscale modeling of cancellous bone

Figure 2.7: Effective Young’s modulus Eeff against cortical bone volume fraction ρb for dif-
ferent RVEs.

in the inner part of the left face (r < ri = 0.75 cm) depicted in Figure 2.9, the cylinder
is assumed to be grounded, resulting in φ = 0 and A = 0. We apply a time-dependent
mechanical displacement in x-direction ux = umax · a(t) to the middle part of the cylinder
and calculate 100 time steps. Figure 2.10 shows the amplitude of the displacement function
a versus the time t.

Figure 2.8: Cylinder mesh and displacement boundary conditions (red: all directions re-
stricted, orange: only the x-direction restricted, blue-gray: no directions re-
stricted).

First, we examine the simulation results for the healthy bone (RVE 6, ρb = 29.5%). Here,
we observe quadratic convergence behavior for the macroscale as well. Figures 2.11 and
2.12 show the magnitude of the average electric displacement field D and the magnitude
of the average magnetic field stength H, respectively, plotted against time t. The history of
the average electric displacement field mimics the displacement boundary condition. Thus,
the electric displacement field is caused mainly by the piezoelectric effect of the cortical
bone material phase. In contrast, the magnitude of the average magnetic field strength in-
creases until time t = 50, where the maximum is reached. Then, the magnitude decreases
again and at the end of the simulation, only a small amount of the magnetic field is present.
We conclude, that the magnetic field is caused mainly by the time change of the electric
displacement field as described by the Maxwell equations.
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ri = 0.75 cm

ro = 1.5 cm

Figure 2.9: Cylinder front in the xy-plane for z = 0 with grounded nodes in red.

Figure 2.10: Amplitude of the displacement function a against the time step t.

To compare the different stages of osteoporosis, we use different RVEs (Table 2.3). The
simulation results are shown in Figures 2.13 to 2.16. Here, the number of the specific RVE
increases from top to bottom.

As an additional example for the cylinder model, we performed a parameter study for the
electric conductivity parameter κ1, aiming to understand the interaction between the time
derivative of the electric displacement field and the electric current density in the Maxwell
equation. Figures 2.17 and 2.18 show the results for RVE 1 and κ1 ∈ {1 · 102 S/m, 1 ·
104 S/m, 1 · 106 S/m}.

For all quantities, we observe an increase for RVEs with higher volume fractions of cortical
bone. Additionally, the difference between the RVEs is greater, the lower the volume frac-
tion of cortical bone is. While the difference is barely noticable between RVE 5 and 6, the
change of all quantities excluding the stress is distinct between RVEs 1 and 2. Qualitatively,
we notice similar results between the different RVEs.

Regarding the parameter study of the electric conductivity, we observe nearly identical re-
sults for the magnetic field strength H for the first two choices of κ1, but a significant in-
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Figure 2.11: Magnitude of the average electric displacement field D [As/m2], plotted
against the time t.

Figure 2.12: Magnitude of the average magnetic field strength H [A/m], plotted against the
time t.

crease for κ1 = 1 ·106 S/m. Similarly the electric current density J increases proportionally
to the increase of the material parameter. Thus, for the first two choices of κ1, nearly no
magnetic field and electric current is visible.
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Figure 2.13: Simulation results for RVE 1 (top) to 6 (bottom): stress σxy [GPa], t = 25.

Figure 2.14: Simulation results for RVE 1 (top) to 6 (bottom): magnitude of the electric
displacement field D [As/m2], t = 25.

Real bones can be highly anisotropic. To investigate possible effects on the simulation
results, we constructed an anisotropic RVE, which is longer (Figure 2.19) and therefore
also is divided into ten instead of six elements in z-direction. We used the parameters a =
0.29 mm and b = 0.42 mm, resulting in a total RVE volume VRVE = 1.58 mm3 and a
volume fraction of cortical bone ρb = 30.6%. We compare our calculations to the isotropic
RVE 6, which has a similar volume fraction of cortical bone. The results are shown in Figure
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Figure 2.15: Simulation results for RVE 1 (top) to 6 (bottom): magnitude of the magnetic
field strength H [A/m], t = 50.

Figure 2.16: Simulation results for RVE 1 (top) to 6 (bottom): magnitude of the electric
current density J [A/m2], t = 50.

2.20 and 2.21. We obtain similar results for both RVE geometries. The calculated stress is
slightly higher for the anisotropic RVE. The magnetic field strength is about 15% increased
for the anisotropic RVE compared to the cubic RVE.
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Figure 2.17: Simulation results for RVE 1 for the magnetic field strength H [A/m] with
κ1 = 1 · 102 S/m (top), κ1 = 1 · 104 S/m (in the middle) and κ1 = 1 · 106 S/m
(bottom), t = 50.

Figure 2.18: Simulation results for RVE 1 for the electric current density J [A/m2] with
κ1 = 1 · 102 S/m (top), κ1 = 1 · 104 S/m (in the middle) and κ1 = 1 · 106 S/m
(bottom), t = 50.

2a

2a

b

a

a

b

a

a

b

Figure 2.19: Anisotropic RVE with cortical bone phase (gray) and bone marrow phase
(transparent red) and lengths parameters.
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Figure 2.20: Simulation results for RVE 6 (top) and the anisotropic RVE (bottom) for the
stress σxy [GPa], t = 25.

Figure 2.21: Simulation results for RVE 6 (top) and the anisotropic RVE (bottom) for the
magnetic field strength H [A/m], t = 50.

Figure 2.22: Femur bone mesh and displacement boundary conditions (red: all directions
restricted, orange: only the x-direction restricted, blue-gray: no directions re-
stricted).

Figure 2.23: Femur bone front with grounded nodes in red.

2.5.4 True to scale bone model

We examine a true to scale model of a human femur bone from Lifescience Database (2022)
and slightly modify it by using the software BLENDER [Blender Foundation (2021)], im-
proving the mesh. Again the model has a length of about 30 cm. The mesh and the dis-
placement boundary conditions are shown in Figure 2.22. The mesh consists of 1660 nodes
and 4944 tetrahedral elements. The grounded nodes are shown in Figure 2.23. Again, we
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apply the mechanical displacement depicted in Figure 2.10 to the middle section and cal-
culate 100 time steps. To compare different stages of osteoporosis, we use again different
RVEs (Table 2.3). Figures 2.24 to 2.29 show the results.

Figure 2.24: Simulation results for RVE 1 (top) to 6 (bottom): stress σxy [GPa], t = 25.

Figure 2.25: Simulation results for RVE 1 (top) to 6 (bottom): magnitude of the electric
displacement field D [As/m2], t = 25.

Again, the simulations show qualitatively similar results, but a significant increase for all
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Figure 2.26: Simulation results for RVE 1 (top) to 6 (bottom): magnitude of the magnetic
field strength H [A/m], t = 50.

Figure 2.27: Simulation results for RVE 1 (top) to 6 (bottom): magnitude of the electric
current density J [A/m2], t = 50.

quantities the higher the cortical bone volume fraction is. Compared to the cylinder model,
we receive slightly higher numerical values, which lie in the same magnitudes. The reason
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Figure 2.28: Simulation results for RVE 1 (top) to 6 (bottom): magnitude of the magnetic
field strength H [A/m], slice, t = 50.

Figure 2.29: Simulation results for RVE 1 (top) to 6 (bottom): magnitude of the electric
current density J [A/m2], slice, t = 50.

for this is most likely the used mesh, which has sharper corners due to the geometry of
bone. Additionally, tetrahedron elements usually perform worse compared to hexahedron
elements. The difference between the RVEs is smaller the higher the volume fraction of
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cortical bone is. Thus, both the functionality of the bone and the results of the sonography
are only slightly affected at earlier stages of osteoporosis, but significantly at later ones.
This confirms the disease as being often imperceptible for many subjects at earlier stages.
This is especially important regarding the magnetic field strength H, as it is the quantity
measured at sonography-aided early detection. To further examine the results, we calculate
the average and maximum magnetic field strength H at time step t = 50 for the different
RVEs. The results are shown in Figures 2.30 and 2.31.

Figure 2.30: Average magnetic field stength for the different RVEs at t = 50.

Figure 2.31: Maximum magnetic field stength for the different RVEs at t = 50.

Here, for both quantities a similar behavior can be observed. While there is nearly no
reduction between the two RVEs with the highest volume fraction of cortical bone, the
difference between the single RVEs increases for lower volume fractions of cortical bone.
The average magnetic field strength reduces for the ill bone (ρb = 5.3%) to 36.5% compared
to the healthy bone (ρb = 29.5%), from 3.14 ·10−7 A/m to 1.15 ·10−7 A/m. The maximum
magnetic field strength for the healthy bone is 2.711 · 10−6 A/m, while the maximum for
the degenerated bone is only 1.038 · 10−6 A/m. This equals a reduction to 38.2%. These
results show the order of magnitude to be expected for the results of experimental research.
For advanced stages of osteoporosis, sonography should measure a magnetic field strength,
whose magnitude is only about one third compared to a healthy bone.
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2.6 Conclusion and outlook

In this contribution, we present a fully coupled multiscale model for cancellous bone con-
sidering mechanical, electric and magnetic effects. We model bone as a two-phase material
with the cortical bone phase assumed as a piezoelectric, insulating solid and the bone mar-
row phase described as a viscoelastic, conducting solid. Electric and magnetic effects are
coupled via the Maxwell equations. Based on energy methods in mechanics, we establish
a thermodynamically consistent material model and derive the weak and strong form of the
microscale boundary value problem.

In order to solve the macroscale problem, we create an RVE and apply the FEM to solve
the problem numerically. For the time integration of the FEM, we use a JWH-α-scheme
[Kadapa et al. (2017)]. The numerical simulations on the microscale show mesh indepen-
dence and quadratic convergence. For finer mesh resolutions or smoother geometries of the
phases, the model tends to overestimate the magnetic field strength. Additionally, we show
that the effective Young’s modulus of the RVE depends strongly on the volume fraction of
the different phases. Here, we find a reduction by 43% for the degenerated bone (ρb = 5.3%)
compared to the healthy bone (ρb = 29.5%), achieving similar results as in Ilić et al. (2010).

For the multiscale calculations, we use FE2 and apply periodic boundary conditions and
volume averaging for the transition between the scales. We apply a time-dependent dis-
placement boundary condition. The macroscopic cylinder model again shows quadratic
convergence. To compare different stages of osteoporosis with a healthy bone, we create six
different RVEs with different volume fractions of cortical bone phase and run calculations
for all RVEs. The simulations show a strong reduction of all quantities with decreasing
volume fraction of cortical bone phase. The differences between the healthy bone RVE
(ρb = 29.5%) and a slightly degenerated bone (ρb = 24.2%) are very small, while the dif-
ferences in the later stages of the illness, (ρb = 10.4% compared to ρb = 5.3%), increase
drastically. To examine the interaction between the time derivative of the electric displace-
ment field and the electric current density in the Maxwell equation, we perform a parameter
study regarding the electric conductivity parameter κ1. Here, the results show a significant
increase of the electric current density and the magnetic field strength with increasing κ1.
To investigate the effect of anisotropy on the model, we compared our cubic RVE with an
anisotropic cuboid RVE. Depending on the used RVE geometry, the results can vary slightly.

As a final example, we apply our model to a true to scale model of a human femur bone.
Here, the results show again a similar behavior for all quantities. Between the two RVEs
with the highest volume fraction of cortical bone phase, nearly no reduction of the magnetic
field strength can be observed. With decreasing ρb, the differences grow increasingly larger.
Compared to the healthy bone (ρb = 29.5%), the bone with late stage osteoporosis (ρb =
5.3%) shows a drastic reduction of the magnetic field strength by nearly two thirds. These
results show, in which order of magnitude differences between healthy and degenerated
bones can be expected, when performing experimental research and sonography for the
purpose of early detection of osteoporosis.

For future research, we aim to solve the inverse problem by using an Artificial Neural Net-
work to predict simulation outputs for random microstructures. Here, the network should
recover the distribution of cortical bone phase in the macroscopic model from the mag-
netic field data, thus diagnosing the state of the bone. Additionally, wave propagation in
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cancellous bone will be investigated in more detail. The comparison of experimental with
simulation results could provide further insights. Accurate material parameters could be ob-
tained from the experiments, which then could be used for the simulations. To make precise
predictions for experimental setups, it is of great importance to address possible numerical
problems of the simulations. The used RVEs have a very coarse mesh resolution and contain
sharp edges. While our investigations so far show, that the coarse RVE with hexahedron ele-
ments performs best, it is still relevant to investigate in detail how the magnetic field strength
is affected for different, smoother RVEs, which model the microstructure of bone in a more
realistic way. Another important aspect is to investigate the microscale behavior for RVEs
which differ in size and structure of the phases. Depending on the geometry of the used
RVE, the simulation results can vary. Thus, for the future we plan to investigate this effect
in detail. The usage of different function spaces could improve the results. Finally, our
macroscopic models could be extended to include a surrounding medium like air or water,
allowing proper decay of the magnetic field.

2.7 Appendix A: Calculation of the strong form for the micro problem

To calculate the strong form of the problem, we use the reduced weak form:∫
Ω

(σ · δε−D · δE+H · δB− J · δA

+γ(∇ ·A) · δ(∇ ·A))dV − δWext = 0 ∀δu, δφ, δA . (2.50)

Now, we apply partial integration to each term followed by the use of a surface-volume
integral rule:∫

Ω

σ · δε dV =

∫
Ω

∇ · (σ · δu) dV −
∫
Ω

(∇ · σ) · δu dV

=

∫
∂Ω

σ · n · δu dA−
∫
Ω

(∇ · σ) · δu dV , (2.51)

t1∫
t0

∫
Ω

−D · δEdV dt =

t1∫
t0

∫
Ω

(D · δ(∇φ) +D · δȦ) dV dt

=

t1∫
t0

∫
Ω

∇ · (Dδφ)dV dt−
t1∫

t0

∫
Ω

(∇ ·D)δφdV dt

−
t1∫

t0

∫
Ω

Ḋ · δA dV dt+

∫
Ω

[D · δA]t1t0 dV

︸ ︷︷ ︸
=0

=

t1∫
t0

∫
∂Ω

D · nδφdAdt−
t1∫

t0

∫
Ω

(∇ ·D)δφdV dt−
t1∫

t0

∫
Ω

Ḋ · δA dV dt, (2.52)
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∫
Ω

H · δB dV =

∫
Ω

∇ · (δA×H) dV +

∫
Ω

∇×H · δA dV

=

∫
∂Ω

H× n · δA dA+

∫
Ω

∇×H · δA dV , (2.53)

∫
Ω

γ(∇ ·A) · δ(∇ ·A) dV

=

∫
Ω

γ∇ · ((∇ ·A) · δA) dV −
∫
Ω

γ∇(∇ ·A)δA dV

=

∫
∂Ω

γ(∇ ·A) · n · δA dA−
∫
Ω

γ∇(∇ ·A)δA dV . (2.54)

Here, n is the normal vector pointing outwards. It should be noted that the term D·δA in Eq.
(2.52) vanishes, as the test function δA does not change between the time t0 and t1. For the
magnetic energy variation Eq. (2.53), the sign is different compared to the other equations
because of the cross product rule. Additionally, the resulting triple product in the surface
integral allows cyclic permutation without changing the result. Inserting these identities in
the reduced weak form Eq. (2.50) yields

∫
Ω

(
−∇ · σ − f

)
· δudV +

∫
∂Ω

(
σ · n− t

)
· δudA

+

∫
Ω

(
−∇ ·D+ qv

)
· δφdV +

∫
∂Ω

(
D · n+ qs

)
· δφdA

+

∫
Ω

(
∇×H− Ḋ− J− γ∇(∇ ·A)− jv

)
· δAdV

+

∫
∂Ω

(
H× n− js + γ(∇ ·A) · n

)
· δAdA = 0 ∀δu,δφ,δA. (2.55)

Then, we calculate the strong form by using the arbitrariness of the test functions and by
splitting the volume and surface of the area, resulting in Eq. (2.21) and the matching condi-
tions Eq. (2.22)5.

5Corrected the references to match with the correct equations, cf. Blaszczyk and Hackl (2022).
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2.8 Appendix B: Derivation of the matrix form for the FEM

Inserting the FEM ansatz into the reduced weak form of the micro problem Eq. (2.50) yields

∫
Ωb

(
(CbBuû− eTb [−Bgradφ̂−NA

˙̂A])Buδû− [ebBuû+ ξb(−Bgradφ̂−NA
˙̂A)]

[−Bgradδφ̂−NAδ
˙̂A] + µ−1

b BcurlÂBcurlδÂ+ γBdivB
T
divδÂ

)
dV

+

∫
Ωm

(
σmBuδû− [ξm(−Bgradφ̂−NA

˙̂A)][−Bgradδφ̂−NAδ
˙̂A]

+µ−1
m BcurlÂBcurlδÂ+ γBdivB

T
divδÂ− κm[−Bgradφ̂−NA

˙̂A]NAδÂ
)
dV

−
(∫

Ω

NT
u f dV +

∫
∂Ω

NT
u tdA

)
δû+

(∫
Ω

NT
φqvdV +

∫
∂Ω

NT
φqsdA

)
δφ̂

−
(∫

Ω

NT
A jvdV +

∫
∂Ω

NT
A jsdA

)
δÂ = 0 ∀δû,δφ̂,δÂ. (2.56)

Here, we use partial integration as follows:

t1∫
t0

∫
Ω

NT
AebBu û δ ˙̂A dV dt

=

∫
Ω

[NT
AebBu û δÂ]t1t0 dV︸ ︷︷ ︸

=0

−
t1∫

t0

∫
Ω

NT
AebBu

˙̂u δÂ dV dt (2.57)

t1∫
t0

∫
Ω

NT
AξBgrad φ̂ δ

˙̂A dV dt

=

∫
Ω

[NT
AξBgrad φ̂ δÂ]t1t0 dV︸ ︷︷ ︸

=0

−
t1∫

t0

∫
Ω

NT
AξBgrad

˙̂φ δÂ dV dt (2.58)

t1∫
t0

∫
Ω

NT
AξNA

˙̂A δ ˙̂A dV dt

=

∫
Ω

[NT
AξNA

˙̂A δÂ]t1t0 dV︸ ︷︷ ︸
=0

−
t1∫

t0

∫
Ω

NT
AξNA

¨̂A δÂ dV dt (2.59)



2.8 Appendix B: Derivation of the matrix form for the FEM 53

Again, the nodal test function δÂ does not change in time, so the corresponding terms
vanish. Inserting this into Eq. (2.56) yields∫

Ωb

(
(CbBuû− eTb [−Bgradφ̂−NA

˙̂A])Buδû− [ebBuû+ ξb(−Bgradφ̂−NA
˙̂A)]

[−Bgradδφ̂] + [ebBu
˙̂u+ ξb(−Bgrad

˙̂φ−NA
¨̂A)][−NAδÂ] + µ−1

b BcurlÂBcurlδÂ

+γBdivB
T
divδÂ

)
dV +

∫
Ωm

(
BT

uCtangBuδû− [ξm(−Bgradφ̂−NA
˙̂A)][−Bgradδφ̂]

+[ξm(−Bgrad
˙̂φ−NA

¨̂A)][−NAδÂ] + µ−1
m BcurlÂBcurlδÂ

+γBdivB
T
divδÂ− κm[−Bgradφ̂−NA

˙̂A]NAδÂ
)
dV

−
(∫

Ω

NT
u f dV +

∫
∂Ω

NT
u tdA

)
δû+

(∫
Ω

NT
φqvdV +

∫
∂Ω

NT
φqsdA

)
δφ̂

−
(∫

Ω

NT
A jvdV +

∫
∂Ω

NT
A jsdA

)
δÂ = 0 ∀δû,δφ̂,δÂ. (2.60)

This equation can be split by the variations. By using the arbitrariness of the test functions
and introducing the generalized nodal forces as

 f̂
q̂

ĵ

 :=


∫
Ω

NT
u f dV +

∫
∂Ω

NT
u tdA

−
∫
Ω

NT
φqvdV −

∫
∂Ω

NT
φqsdA∫

Ω

NT
A jvdV +

∫
∂Ω

NT
A jsdA

 , (2.61)

the residual is then R =
(
Ru Rφ RA

)T
=

f̂ +
∫
Ω

−BT
u σ̂dV

q̂+
∫
Ω

−BT
gradD̂dV

ĵ+
∫
Ω

(−BT
curlĤ+NT

A(
˙̂
D+ Ĵ)− γBdivB

T
divÂ)dV

 (2.62)

By writing this equation in matrix form, we recover the equation system Eq. (2.32).
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3.1 Abstract

Artificial neural networks are used to solve different tasks of daily life, engineering and
medicine. In this work, we investigate its suitability for the examination of simulation results
of cancellous bone with the aim to evaluate whether the bone is affected by osteoporosis.
This bone disease is characterised by a reduction of the cortical bone phase, one of the two
main components of the bone. The neural network predicts the simulated volume fraction
in different parts of a cylinder, which models the bone. As a basis for its calculations,
the neural network gets the information about the magnetic field inside the cylinder from
finite element simulations. Examinations show that it is possible to train neural networks on
solving that task with very high accuracies.

3.2 Introduction

Osteoporosis is one of the most common bone diseases in the world. It is characterised by a
decrease of the mass density of the bone, making it thinner and weaker, which can eventually
lead to fractures. Currently, it is diagnosed by dual-energy X-ray absorptiometry as standard
which gives an information about the bone mineral density. However, it is desirable to find
a radiation-free and cheaper method to make it available in all countries [Wani and Arora
(2020), Yamamoto et al. (2020)].

neural network

(main content of

this work)

bone model

calculation of magnetic

field strength (FE2)

different RVEs to represent

different stages of osteoporosis

simplification output: volume fractions

of cortical bone

input: magnetic field data

from simulations

comparison to

simulation

Figure 3.1: Overview and schematic flow of the task.

Due to the ability of mapping and adapting non-linear functions (artificial) neural networks
have become a popular method for solving difficult tasks in many different areas of appli-
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cation, for example, in engineering and science, medicine, finance and games. An overview
about the method and its applications can be found in literature Abiodun et al. (2018), Good-
fellow et al. (2016). While introduced first in 1943 [McCulloch and Pitts (1943)], especially
during the last decade, miscellaneaous research has been made for example in designing
neural networks, that are helpful for diagnosis. More specifically, for the diagnosis of osteo-
porosis, there are two main inputs from which the neural networks are supposed to find a so-
lution: questionnaires giving information about the patients and images of the bone recorded
by different imaging methods [Wani and Arora (2020)]. In Ref. Mohamed et al. (2003), a
prediction about the bone mineral density is made from sex and age as well as anthropo-
metric measurements like weight, height and waist-to-hip ratio. While Chiu et al. (2006)
just adds postmenopausal status and coffee consumption to the anthropometric measure-
ments, Iliou et al. (2017) uses many additional risk factors like coffee, alcohol and nicotin
consumption as well as earlier relevant diseases, occupation and sports of the patients.

The first possibility to record images is radiography. Vishnu et al. (2015) and Singh et al.
(2017) created classification networks from X-ray images. Singh et al. (2017) additionally
compared the results to other machine learning algorithms like support vector machines.
Yu et al. (2016) combines the use of radiographic images with facts like drug and fracture
history, pain, age and gender as well as serum specimens, but requires the extraction of
features from the images by orthopedists or radiologists before applying the neural network.
As a second image recording method, an MRI is suggested in literature Deniz et al. (2018)
to train a convolutional neural network. A last possibility is used in literature Fang et al.
(2021), where a convolutional neural network is developed to determine the bone mineral
density from a CT scan.

While these approaches yield promising results, one main disadvantage is the necessity to
obtain images by X-ray or CT scan, which can be expensive and might not be avaible in ev-
ery part of the world. An alternative for the early detection of osteoporosis is the application
of sonography, which can be modeled by a suitable material model and numerical methods,
that are well known in the field of engineering. The inclusion of neural networks in the
workflow of these tasks is also a common strategy to improve simulations. For example,
neural networks can be used instead of a constitutive relation to model the material behavior
from experimental stress-strain data [Ghaboussi et al. (2012)]. Another approach is training
the neural network using numerical simulation results, obtained e.g. via the finite element
method (FEM), to eventually replace the necessity to perform those simulations by using
the considerably faster trained neural network instead for new test cases. In Ref. Chamekh
et al. (2008), a neural network for the identification of anisotropic plasticity parameters im-
portant e.g. in deep drawing, is trained by finite element simulations. The trained network
can then be used instead of the finite element simulations for parameter identification. An
application to predicting the volume fractions of functionally graded materials using data
from both experiments and simulations is presented in literature Han et al. (2003). For mul-
tiscale simulations, a neural network can be trained with the objective of replacing expensive
microscale simulations by the trained neural network [Zheng et al. (2021)]. In Ref. Kumar
et al. (2020), two neural networks are used to first find a metamaterial topology from a given
stiffness and then to calculate the stiffness of the found topology, comparing it to the queried
stiffness.

In this work, we focus on the evaluation of simulation results and create neural networks to
solve the inverse task of detecting the bone structure, which has been used to perform the
simulation. We use our model of a two-phase bone material to simulate the application of ul-
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trasound to a bone [Blaszczyk and Hackl (2022), Schlick et al. (2021), Blaszczyk and Hackl
(2021a), Blaszczyk and Hackl (2021b)]. Oftentimes, in modeling only mechanical effects
were considered. Recent research set the basis to include electric and magnetic effects as
well [Dorfmann and Ogden (2014), Gilbert et al. (2021)]. Because of the piezoelectric char-
acter of bone and the coupling of electric and magnetic effects by the Maxwell equations,
ultrasonic waves cause a magnetic field in the bone. In Ref. Blaszczyk and Hackl (2022),
we introduced a multiscale material model capturing these effects and obtained simulation
results by applying the finite element square method (FE2). To model different stages of
osteoporosis, we constructed representative volume elements (RVEs) with different volume
fraction of cortical bone ρb, which is one of the two main components of the bone besides
bone marrow. In a healthy bone, its fraction is approximately 30%, but it may be reduced up
to 5% in a degenerated bone [Steeb (2010), Ilić et al. (2010)]. We showed in the numerical
simulations, that the magnetic field strength is reduced for RVEs with lower volume fraction
of cortical bone [Blaszczyk and Hackl (2022), Schlick et al. (2021), Blaszczyk and Hackl
(2021b)]. In this contribution, we randomize the used RVEs along the length of the bone
model and calculate the magnetic field strength for different timesteps, which is the input
of the neural network model. The neural network should then output the correct volume
fractions of cortical bone, which were used for that simulation. An overview about the task
is given in Figure 3.1.

This article is structured as follows. Following the introduction, in Section 3.3 we shortly
summarize our material model for the forward problem. In Section 3.4 we introduce our
test case for the inverse problem and describe the creation of our training, validation and test
data. In Section 3.5 we explain how our neural networks are designed and which optimizers
and activation functions yield the best results. In Section 3.6 we present and discuss our
results for different neural network designs. Finally, in Section 3.7 we draw conclusions
about our work and give an outlook for future research.

3.3 Material model of the forward problem

For a better understanding we shortly introduce our material model used for the forward
problem and data generation. A detailed derivation can be found in literature Blaszczyk and
Hackl (2022). To model the microscale, we employ the following thermodynamic energy
functional in the domain Ωy

Π =

∫
Ωb

Ψb(ε,E,B)dV +

∫
Ωm

Ψm(ε, ε
i,E,B) + C dV

+

∫
Ωm

∫
t

∆(ε̇i, Ȧ)dtdV +

∫
Ω

Ψg(∇ ·A)dV −Wext, (3.1)

which contains the energy densities Ψb and Ψm of both phases, a volume constraint C,
dissipation and gauge functionals (∆ and Ψg) and the potential of the generalized external
forces Wext. The main variables of the problem are then the mechanical displacements u,
the electric scalar potential φ and the magnetic vector potential A. The state variables are
the mechanical strain ε, the electric field E and the magnetic flux density B, calculated as

ε =
1

2
(∇u+∇Tu), E = −∇φ− Ȧ and B = ∇×A. (3.2)
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From the Nabla product rules, it follows that two of the four Maxwell equations are satisfied
this way. The energy densities for both phases are

Ψb =
1

2

(
ε · Cb · ε− E · ξb · E+B · µ−1

b ·B
)
− eb · ε · E and

Ψm =
1

2

(
(ε− εi) · Cm · (ε− εi)− E · ξm · E+B · µ−1

m ·B
)
, (3.3)

consisting of quadratic energies for mechanical, electric and magnetic effects, resulting in a
linear problem. We include a piezoelectric energy term for the cortical bone phase. For the
bone marrow phase, an inelastic strain εi is introduced.

From the first and second derivatives of the energy densities with respect to the state vari-
ables, the flux quantities and material tensors can be derived. We obtain the fluxes mechan-
ical stress σ, electric displacement D and magnetic field strength H. In Eq. (3.3), C is
the mechanical stiffness tensor, ξ is the permittivity tensor, µ−1 is the inverse permeability
tensor and eb is the piezoelectric tensor. The constraint function is

C = λ tr(εi), (3.4)

enforcing volume conservation of the inelastic deformation. Here, λ is a Lagrange multi-
plier. The dissipation function reads

∆ =
1

2
(µ−1

v |ε̇i|2 − κ E2), with J = κ E. (3.5)

Thus, ∆ governs the evolution of the inelastic strain and the energy loss due to conduction.
The latter satisfies Ohm’s law (Eq. (3.5), right). Both parts of the dissipation only occur in
the bone marrow phase. Here, the viscosity parameter µ−1

v > 0, the electric conductivity
tensor κ = κ1I, with the identity tensor I, the electric conductivity κ1 > 0 and the electric
current density J are introduced. The gauge function is

Ψg =
γ

2
(∇ ·A)2 (3.6)

and ensures, that a unique solution for the magnetic vector potential A is obtained, with the
numerical parameter γ. Finally, the potential of generalized external forces is

Wext =

∫
Ω

(f · u− qv · φ+ jv ·A)dV +

∫
∂Ω

(t · u− qs · φ+ js ·A)dA. (3.7)

Here, f and t are the mechanical volume and surface forces, qv and qs are the electric volume
and surface charges and jv and js are the volume and surface currents. To calculate the weak
and strong form of the problem, the energy functional has to become stationary with respect
to the main variables and internal variables. For the inelastic strain, we derive the evolution
equation

ε̇i = µvσdev, (3.8)

with σdev = σ − 1
3
tr(σ) I denoting the deviatoric part of the mechanical stress σ. Then,

the weak form of the remaining variational equation is∫
Ω

(σ · δε−D · δE+H · δB− J · δA

+γ(∇ ·A) · δ(∇ ·A))dV − δWext = 0 ∀δu, δφ, δA. (3.9)
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This form is used to insert a FEM ansatz. We apply partial integration to each term to obtain
the strong form of the problem as

∇ · σ + f = 0 in Ω σ · n = t on ∂Ω
∇ ·D = qv in Ω D · n = −qs on ∂Ω

∇×H = Ḋ+ J+ γ∇(∇ ·A) + jv in Ω H× n = js − γ(∇ ·A)n on ∂Ω
(3.10)

recovering the mechanical equilibrium condition, the two remaining Maxwell equations and
boundary conditions, including the gauge. Here, n is the normal vector pointing outwards.
Additionally, we receive the jump conditions between the phases

[[σ]]bm · n = t on ∂Ωbm, [[D]]bm · n = −qs on ∂Ωbm and
[[H]]bm × n = js − γ [[∇ ·A]]bm n on ∂Ωbm (3.11)

on the interface ∂Ωbm and the evolution equation of the inelastic strain (Eq. (3.8)) in Ωm.
Here [[·]]12 := (·)1 − (·)2 denotes the difference between the phases.

For the macroscale, the same weak and strong form (bar the evolution equation of the in-
elastic strain) can be derived for the domain Ωx and the set of corresponding macroscale
quantities (·). The key difference here is that instead of using a material model on1 the
macroscale, the calculation of the fluxes now depends on the microscale calculations:

(σ,D, Ḋ,H,J) = fRVE(ε,E,B). (3.12)

3.4 Data Collection

To model the bone, we use a cylinder mesh, which is separated into 16 elements along its
length (Figure 3.2, (a)). Each of these parts is separated into 48 elements (Figure 3.2, (b)).

(a) (b)

Figure 3.2: Mesh of the cylinder, (a) along the length, (b) in the cross section. The different
colors refer to the sections with the same volume fractions of cortical bone.

ID 1 2 3 4 5 6
ρb 5.3% 10.4% 14.5% 19.1% 24.2% 29.5%

Table 3.1: Possible volume fraction values depending on the ID key (RVE number).

Each two of those parts, meaning all of the 96 elements, will be assigned the same volume
fraction of cortical bone ρb by using only the corresponding RVE in that part. Table 3.1
shows the values of the possible volume fractions. To obtain more realistic distributions,

1Corrected spelling, cf. Stieve et al. (2022)
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their assignment to the elements is based on Haar functions. They are usually used to ap-
proximate functions as a linear combination

h̄(x) = c0ϕ(x) +
2∑

n=0

2n−1∑
k=0

cnkψn,k(x) (3.13)

of piecewise constant functions ϕ(x) and ψn,k(x) [Aziz et al. (2014), Struzik and Siebes
(1999)]. Here, we need a piecewise constant function on eight pieces, which restricts our
choice of the parameter n to nmax = 2.

ϕ(x) =

{
1 for 0 ≤ x < 1

0 otherwise
(3.14)

and

ψ(x) =


1 for 0 ≤ x < 1

2

−1 for 1
2
≤ x < 1

0 otherwise
(3.15)

are the basis functions for the Haar wavelets. Then, we obtain the Haar system as

ψn,k(x) = 2n/2ψ(2−nx− k), n > 0, k = 0, ..., 2n. (3.16)

By the choice of the parameters cnk, the different functions are constructed [Aziz et al.
(2014), Talukder and Harada (2010), Graps (1995)]. To keep the model realistic, we will not
use those functions, where a jump of more than two volume fractions between neighboring
elements occurs. By applying the correlation

hi(x) =



6 for |h̄i(x)| ≤ 1

5 for 1 < |h̄i(x)| ≤ 2

4 for 2 < |h̄i(x)| ≤ 3

3 for 3 < |h̄i(x)| ≤ 4

2 for 4 < |h̄i(x)| ≤ 5

1 otherwise

, i = 1, ..., 8 , (3.17)

we map the values of the constant pieces of the function to the IDs corresponding to the
volume fraction values. The resulting function assigning one of the six volume fraction
values to each of the eight elements of the cylinder describes the expected outputs of the
neural network.

This information is also what we entered into the program presented in Blaszczyk and Hackl
(2022) to assign the different RVEs to the different parts of the cylinder and calculate the
magnetic field via the FE2. The displacement applied for that calculation is linearly increas-
ing during four time steps. The resulting magnetic field in the 969 nodes of the cylinder
H =

(
Hx Hy Hz

)T , with its three directional components, is the input to the neural
network.

Previously, we analyzed the interrelation between the value of the volume fractions and
the mean value of the magnetic field, which shows that the change in the magnetic field
decreases with increasing volume fraction. Between the RVEs with the highest two vol-
ume fractions, we observed nearly no difference (Figure 3.3) [Blaszczyk and Hackl (2022),
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Figure 3.3: Average magnetic field strength for different RVEs (cf.[Blaszczyk and Hackl
(2022), Blaszczyk and Hackl (2021b)]).

Blaszczyk and Hackl (2021b)]. Therefore, it seems likely that it is easier for the neural net-
work to correctly determine the smaller volume fraction values. For that reason, we will also
examine how the performance of the neural network changes when merging the fifth and the
sixth class, which is done by including every occurence of a volume fraction of ρb = 29.5%
in the class of ρb = 24.2%.

3.5 Neural Network Design

We used two approaches for the main structure of the neural networks. Firstly, we put the
eight values that have to be determined into a vector, which we then use as output. Secondly,
we use the finiteness of the number of possible volume fractions to change the problem into
eight classification problems, where each of the classes corresponds to one volume fraction.
The corresponding vector for the expected output of each problem is the onehot-encoding
of the class ID. The network outputs a probability for each class to be the correct one.

We use a feed-forward neural network for the calculation. The input layer needs to be
build out of 11628 neurons, because the three-dimensional magnetic field in 969 nodes at
four timesteps after reshaping leads to an input vector of that size. As a good compromise
between minimizing the number of calculations and maximizing the accuracy, for the first
approach we chose two hidden layers of size 200 and two hidden layers of size 100, followed
by the output layer consisting of eight neurons. For the second approach, using one hidden
layer consisting of 200 neurons and one consisting of 100 neurons is sufficient. In this case
the output layer has as many neurons as classes are possible, which means five or six for
this task. To calculate the whole volume fraction distribution, eight of those networks are
required.

1200 training data instances are sufficient for reaching a good performance. The validation
of the network is done by 500 validation data instances and 500 test data instances are used
to verify the perfomance of the network on unknown data. We used a batchsize of 32 in
the first approach, while in the second approach we trained the networks by batches of size
64. We chose the activation functions as well as the optimizers individually for each of the
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networks. The choices which yielded the best results are shown in Table 3.2.

Five possible classes Six possible classes
Network Activation function Optimizer Activation function Optimizer
all elements swish Radam relu AdamW
1 selu Adam relu Radam
2 selu Radam selu AdaMax
3 swish AmsGrad selu Radam
4 relu6 Radam relu AdamW
5 swish Radam selu Radam
6 softsign AdaMax softsign AdaMax
7 swish AmsGrad relu6 Radam
8 selu AdaMax relu Radam

Table 3.2: Used activation functions and optimizers for both approaches.

In both cases we used the pocket algorithm based on the number of elements that the net-
works classified correctly, which means that after each training step we checked on the set
of validation data instances whether the number of correct classifications increased. If this
was the case, we continued training using the new weights. For the other case, we stored
the previous weights and can reload them, such that we can continue the training with them.
To prevent overfitting, we used the early stopping method to determine when to stop the
training. The method uses the validation data to regularly check during the whole train-
ing process whether the number of correct classifications increases. If it had not increased
during ten epochs, we stopped the training.

For the implementation, we used the programming language Julia [Bezanson et al. (2022)]
and the machine learning libraries Flux.jl [Innes (2018), Innes et al. (2018) and NNlib.jl,
which provide implementations for the building blocks of the neural network.

3.6 Results

Besides the number of correct classifications, we constructed an error measure to rate the
quality of the different networks. For the first approach, the error ϵ is determined by

ϵ(ŷ, y) =
8∑

i=1

q∑
j=1

|ŷij − yij|
q · 8 ·max(ρb,max − yij, yij − 0.053)

. (3.18)

Analogeously, we calculate the error of the classification networks as

ϵ(ŷ, y) =

q∑
j=1

|oc(ŷj)− oc(yj)|
q ·max(IDmax − oc(yj), oc(yj)− 1)

, (3.19)

where oc is the onecold function. For both error measures, q is the size of the test or valida-
tion set, respectively, which is 500 for both. y describes the expected output of the network,
while ŷ is the output of the network. Both include all output values for all the elements
of the dataset. The onecold function determines the ID of the element of the output vector
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which has the highest value. By this construction, the error is a mean value of the distance
of the expected and the actual output divided by the maximum possible distance from the
expected output when staying inside the range of the possible expected outputs.

The described error as well as the number of correct classifications for each of the explained
networks is given in Table 3.3. There are 500 test data instances for each of which eight val-
ues have to be predicted, such that the maximum reachable number of correct classifications
is 4000. By having an accuracy ≥ 96% and an error ≤ 0.05, all the considered networks

Correctly classified
Number of Classes Classification networks? Error Absolute Relative
5 no 0.048 3953 98.83%
5 yes 0.004 3945 98.63%
6 no 0.047 3854 96.35%
6 yes 0.004 3934 98.35%

Table 3.3: Quality of the different networks (maximum = 4000).

lead to very good results. Comparing the different networks, the classification networks’
performance is better than the one of the single network which considers all elements of the
cylinder. In addition, merging the fifth and the sixth class increases the quality of the net-
work. The difficulties the network has in distinguishing the fifth and the sixth class can also
be seen in Table 3.4. While for the other classes an accuracy of more than 97% is reached,
for the fifth and especially for the sixth class, the quality is much lower. When using a sin-
gle network, less than 70% of the elements that should be classified to the sixth class are
classified to the sixth class. For the classification networks, the corresponding value is 90%
and therefore also much worse than for the other classes. For that reason, it can be useful to
accept both classes as healthy bone and not to distinguish between them.

For a similar reason, it is not just important how many classifications are done correctly,
but also how far away the predicted classes of the wrongly classified elements are from the
correct classes: If they are close to each other, it is still a good information about the health
of the bone. Table 3.5 shows that this is the case for the designed network. A distance of
one means that e.g. an element of class four is classified as class three or class five. In
each of the four cases all elements are classified to the correct or to the neighbouring class,
such that for all elements a useful information is given about the health of the bone in the
corresponding part of the cylinder modeling the bone. On these grounds it can be said that

Class 1 2 3 4 5

should be in this class 302 674 1109 1025 890 -
is in this class - one single network 302 674 1108 1013 856 -
is in this class - 8 classification networks 302 664 1095 1015 869 -

Class 1 2 3 4 5 6

should be in this class 302 674 1109 1025 655 235
is in this class - one single network 299 672 1104 997 626 156
is in this class - 8 classification networks 301 666 1106 1017 632 212

Table 3.4: Comparison of the network types with respect to the different classes.
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Distance for five classes Distance for six classes
Element 0 1 0 1

1 493 7 494 6
2 495 5 490 10
3 489 11 492 8
4 499 1 498 2
5 497 3 499 1
6 492 8 492 8
7 487 12 480 20
8 493 7 489 11∑

3945 54 3934 66
all 3953 47 3854 146

Table 3.5: Distances from the expected outputs.

the neural networks do nearly all classifications sufficiently well to rate the quality of the
different parts of the bone.

To reach the given results, it is important to wisely choose the adjustable parameters of the
neural networks. For this task, using bigger networks or more training data than it was done
does not lead to better results. However, using less training data or smaller networks results
in less accuracy.

The most important choices to make are the activation function and the optimizer. In Ta-
ble 3.6 and Table 3.7, the number of correct classifications is shown for different choices
of the activation function as well as different choices of the optimizer for the one-single
network approach using five classes. In both cases, the maximum possible number would

Activation function swish relu relu6 softsign selu
correctly classified absolute 3962 3885 3808 3736 3395

relative 99.05% 97.13% 95.20% 93.40% 84.88%

Table 3.6: Influence of the activation function to the number of correct classifications (max-
imum = 4000).

Optimizer Radam AdamW Adam AMSGrad
correctly classified absolute 3962 3918 3899 3857

relative 99.05% 97.95% 97.48% 96.43%
Optimizer AdaMax ADADelta RMSProp
correctly classified absolute 3833 3528 3257

relative 95.83% 88.20% 81.43%

Table 3.7: Influence of the optimizer to the number of correct classifications (maximum =
4000).

be 4000, because there are eight elements in each of the 500 validation data instances. Both
tables together show that already changing one of those parameters results in a degradation
worth mentioning of the quality of the network. Using other choices for both parameters
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leads to even worse results: As an example, using selu as activation function and RMSProp
as optimizer in the one-single network approach, only 303 classifications are done correctly
and the error of 0.936 is close to one, which would be the maximum possible error if all
outputs would be inside the bounds of the expected outputs.

A last important point besides the quality of the results of the calculations is the calculation
time. With our approach, collecting sufficient data takes about three days using a computer
cluster. Training a single network can be done in less than 1 h. Once the training is finished,
the network which calculates the volume fraction values for all the elements of the cylinder
needs approximately 1/100 s to find the solution. Each of the classification networks also
has a calculation time of 1/100 s, when doing all those calculations in a row 1/10 s is
required. Because of their independence, they can be done in parallel. Therefore, for both
approaches just approximately 1/100 s is required to calculate the distribution of volume
fractions of the cortical bone phase from a given magnetic field when using the trained
neural network.

3.7 Conclusion

We used a cylinder to model the bone. Based on that, we developed neural networks which
get the magnetic field in the cylinder as input and calculate the volume fractions of cortical
bone in different parts of the cylinder. We used two approches for the neural networks: a re-
gression approach to approximate the volume fractions in different parts of the cylinder and
a classification approach where we use one network for each part of the cylinder to choose
the class corresponding to the volume fraction value for that part. The second approach can
be used because the possible volume fractions are restricted to six different values. Both
approaches reached high accuracies of > 96% and have small calculation times. While the
quality of the classification approach is even a little higher than the one of the regression
approach, an advantage of the regression approach is its extensibility to e.g. more RVE
numbers, which is not easily possible for the classification networks. Another improvement
can be made by joining the two classes for high volume fractions both corresponding to
healthy bone. These results show that a neural network is able to predict the distribution
of the volume fraction of cortical bone simulations when knowing the magnetic field in the
bone with a high accuracy.

With further development, it could therefore be a suitable part of a diagnosis method for
osteoporosis. To reach that, a more detailed model of the bone could be used and the sur-
rounding of the bone in the body could be modeled. Additionally, precise material parame-
ters are necessary. For our simulations, we assumed, that the magnetic field data is known
to the neural network at every node of the finite element mesh. In contrast, depending on the
used measurement technology, the spacial resolution of this data might be significantly less
in real-world applications like data generated from experimental setups or patients. Thus,
for future research, it could be examined whether such neural networks can predict reliable
results even when given less accurate input. This not only refers to the resolution of the
input data, but also its accurary. Deviations from measurement errors could be simulated by
including synthetic noise in the data. Finally, it might be useful to allow additional volume
fraction values or to separate the bone into more parts.



67

4 Article 3: On the effects of a surrounding medium and
phase split in coupled bone simulations

This article was published as:

Blaszczyk M. and Hackl K. (2024). On the effects of a surrounding medium and phase
split in coupled bone simulations. ZAMM-Journal of Applied Mathematics and Mechan-
ics/Zeitschrift für Angewandte Mathematik und Mechanik 104(5), e202200595.



68 4 Article 3: On the effects of a surrounding medium

4.1 Abstract

In our previous contributions we established a multiscale, multiphase material model for the
simulation of cancellous bone with the novel idea of including the full coupling of mechan-
ical, electric and magnetic effects, which could be used for example, for the early detection
of osteoporosis. While our calculations have already shown promising results, our previous
approach lacks very important aspects, strongly limiting the applicability of our findings. In
this paper we extend our base model by considering the effect of a surrounding medium on
our bone specimen, using improved boundary conditions and differentiating between cor-
tical bone, bone marrow and spongy bone to better reflect the physiological properties of
bone. We show numerical results and compare our calculations to our previous modeling.

4.2 Introduction

Bone is a biological organ, which as a material has interesting properties. Composed of the
phases cortical bone and bone marrow, it is very stiff and strong, while maintaining a light
weight [Hamed et al. (2010)]. The most widespread bone disease in eldery population is
osteoporosis [Reginster and Burlet (2006); Wade et al. (2014)], characterized by the degen-
eration of bone tissue [Clynes et al. (2020)]. By reducing the mass density of bone, this
disease makes the bone thinner and weaker, thus increasing the likelihood of fractures [Peck
(1993); Tsukutani et al. (2015)]. In a healthy bone, the volume fraction of cortical bone is
approximately 30%, but it may be reduced up to 5% in a degenerated bone [McKelvie and
Palmer (1991); Steeb (2010)]. Current diagnosis of osteoporosis is usually done by dual-
energy x-ray absorptiometry to receive information about the bone mineral density [Blake
and Fogelman (2007)]. However, it is desirable to find less invasive and cheaper tools for
the early detection of this disease. A possible alternative may be the use of sonography
[Güzelsu and Saha (1981); Kaufman et al. (2008); Mano et al. (2007)]. Numerical simula-
tions can support the development of finding and enabling medical diagnostic based on this
method.

In material modeling of bone, previously oftentimes only mechanical effects were consid-
ered. Examples include Refs. Ilić et al. (2010); Chen et al. (2018); Gardner et al. (2000).
Recent research set the basis to include electric and magnetic effects as well [Dorfmann and
Ogden (2014); Gilbert et al. (2021)]. In a series of previous contributions [Blaszczyk and
Hackl (2022); Schlick et al. (2021); Blaszczyk and Hackl (2021a,b); Stieve et al. (2022)], we
presented a novel multiscale model of a two-phase bone material to simulate the application
of ultrasound to a bone and to investigate the resulting magnetic field strength depending
on the health of the bone. As the cortical bone material is piezoelectric, small mechanical
deformations from for example ultrasonic waves cause an electric field in the bone. A time-
depending electric field then creates a magnetic field due to the coupling by the Maxwell
equations. To capture these effects, we differentiated between the bone phases cortical bone
(modeled as a piezoelectric and insulating solid) and bone marrow (modeled as a viscoelas-
tic and conducting solid), where we indicate the affiliation to the phases by (·)b and (·)m,
respectively. Then, we obtained simulation results by applying the finite element square
method (FE2). To model different stages of osteoporosis, we constructed representative vol-
ume elements (RVEs) with different volume fraction of cortical bone ρb. We showed in the
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numerical simulations, that the magnetic field strength is reduced for RVEs with lower vol-
ume fraction of cortical bone [Blaszczyk and Hackl (2022); Schlick et al. (2021); Blaszczyk
and Hackl (2021b)].

While these results were already promising, some limitations occur, which strongly limit the
applicability of our investigations. Our macroscopic models did not contain a boundary box
to include the influence of a surrounding medium, for example, air or water. Such an ap-
proach is fine for purely mechanical modeling, but electromagnetic fields exist both within
the body and in the outside domain [Yang and Dayal (2011)]. Therefore, to allow proper
decay of the fields, the inclusion of a surrounding medium in the model may be necessary.
However, constructing such meshes can be difficult [Smajic et al. (2015)] and depending
on its size may increase the computation time significantly. Examples of coupled modeling
with the inclusion of an outside domain can be found in Refs. Bartel et al. (2018); Buck-
mann et al. (2019) for magnetomechanical coupling. In Ref. Yvonnet and Liu (2017), an
electromechanical numerical framework also including flexoelectricity is introduced, which
covers cases like modeling a soft dielectric in a surrounding medium in detail. Alterna-
tively, boundary methods, for example, perfectly matched layers [Berenger (1994)] or the
Galerkin boundary element method [Buffa and Hiptmair (2003)], could be used, but they
require additional effort regarding implementation.

Another aspect of dividing the macroscopic model is the differentiation not only between
bone and outside, but also between different domains within the bone part of our model.
Real human bones are built complicated and consist of different types of bone structure. A
detailed physiological analysis can be found in Ref. Locke (2004). Therefore, distinguishing
between different macroscopic bone phases may be necessary to obtain realistic results.

In this contribution, we extend our previous model by dividing the macroscopic model into
different domains, with the aim of improving the applicability and realism of the model.
For this purpose we constructed a boundary box around our previous used cylinder model to
capture the effects of a surrounding medium and investigate, to what extent the inclusion of
the boundary box influences the whole results. Additionally, this way we were able to apply
suitable boundary conditions, making the model more realistic. Finally, we also show new
results by applying a phase split within the cylinder to reflect the physiological properties of
long human bones.

This article is structured as follows. Subsequent to the introduction, in Section 4.3 we
shortly summarize our material model and introduce the extension to a surrounding medium.
Additionally, we cover the differentiation between different macroscopic bone phases. In
Section 4.4, we discuss the numerical implementation of the model. In Section 4.5, we
show new simulation results and compare these to our previous findings. Finally, in Section
4.6 we draw a short conclusion and present an outlook for future research.
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4.3 Material model

4.3.1 Two-phase coupled model of bone

In this subsection, we shortly repeat our material model used in our previous publications,
as we did before in Ref. Stieve et al. (2022). The detailed derivation and explanation of all
equations can be found in Ref. Blaszczyk and Hackl (2022). To model the spongy bone, we
employ the following thermodynamic energy functional in the microscale domain Ωy

Π =

∫
Ωb

Ψb(ε,E,B)dV +

∫
Ωm

Ψm(ε, ε
i,E,B) + C dV

+

∫
Ωm

∫
t

∆(ε̇i, Ȧ)dtdV +

∫
Ω

Ψg(∇ ·A)dV −Wext. (4.1)

It consists of the energy densities Ψb and Ψm of both phases, a volume constraint C, dissi-
pation and gauge functionals (∆ and Ψg) and the potential of the generalized external forces
Wext. The main variables of the problem are the mechanical displacements u, the electric
scalar potential φ and the magnetic vector potential A. Therefore, the three-dimensional
problem consists of a total of seven degrees of freedom (DoFs). We then calculate the state
variables mechanical strain ε, electric field E and magnetic flux density B as

ε =
1

2
(∇u+∇Tu), E = −∇φ− Ȧ and B = ∇×A. (4.2)

Using this formulation, it follows from the Nabla product rules that two of the four Maxwell
equations are already satisfied. We choose the following energy densities for the phases

Ψb =
1

2

(
ε · Cb · ε− E · ξb · E+B · µ−1

b ·B
)
− eb · ε · E and

Ψm =
1

2

(
(ε− εi) · Cm · (ε− εi)− E · ξm · E+B · µ−1

m ·B
)
. (4.3)

Both phases consist of quadratic energy terms for mechanical, electric and magnetic effects,
resulting in a linear problem. We include a piezoelectric energy term for the cortical bone
phase. In contrast, for the bone marrow phase we introduce an inelastic (i.e. viscous) strain
εi. The material tensors introduced in Equation (4.3) are the mechanical stiffness tensor C,
the permittivity tensor ξ, the inverse permeability tensor µ−1 and the piezoelectric tensor eb.
In general, it is possible to use a different potential formulation by performing a Legendre
transformation, switching between state and flux variables (and thus using e.g., the magnetic
scalar potential instead). A detailed tabular list can be found in Ref. Lupascu et al. (2017).
However, for our model, the present formulation is the most suitable, as it allows an easy
inclusion of the electric dissipation and the full coupling of the Maxwell equations. The
constraint function

C = λ tr(εi) (4.4)

enforces volume conservation of the inelastic deformation, with the Lagrange multiplier λ.
The dissipation function

∆ =
1

2
(µ−1

v |ε̇i|2 − κ E2) (4.5)
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governs the evolution of the inelastic strain and the energy loss due to conduction. The latter
satisfies Ohm’s law J = κE. Both parts of the dissipation only occur in the bone marrow
phase. Here, we introduce the viscosity parameter µ−1

v > 0, the electric conductivity tensor
κ = κ1I, with the identity tensor I, the electric conductivity κ1 > 0 and the electric current
density J. The gauge function

Ψg =
γ

2
(∇ ·A)2 (4.6)

introduces the numerical parameter γ and ensures, that we obtain a unique solution for the
magnetic vector potential A. Lastly, the potential of generalized external forces is

Wext =

∫
Ω

(f · u− qv · φ+ jv ·A)dV +

∫
∂Ω

(t · u− qs · φ+ js ·A)dA. (4.7)

Here, f and t are the mechanical volume and surface forces, qv and qs are the electric volume
and surface charges and jv and js are the volume and surface currents. In order to obtain
the weak and strong form of the problem, the energy functional has to become stationary
with respect to the main variables and internal variables. First, we calculate the evolution
equation for the inelastic strain

ε̇i = µvσdev, (4.8)

with σdev = σ − 1
3
tr(σ) I denoting the deviatoric part of the mechanical stress σ. The

remaining variational equation in the weak form reads∫
Ω

(σ · δε−D · δE+H · δB− J · δA

+γ(∇ ·A) · δ(∇ ·A))dV − δWext = 0 ∀δu, δφ, δA, (4.9)

allowing us to obtain the flux quantities of our problem, which are the mechanical stress
σ, the electric displacement D and the magnetic field strength H. We note that it is also
possible to derive the material tensors and the flux quantities by calculating the first and
second derivatives of the energy densities with respect to the state variables. To obtain the
strong form of the problem, we apply partial integration to each term, thus receiving

∇ · σ + f = 0 in Ω σ · n = t on ∂Ω
∇ ·D = qv in Ω D · n = −qs on ∂Ω

∇×H = Ḋ+ J+ γ∇(∇ ·A) + jv in Ω H× n = js − γ(∇ ·A)n on ∂Ω
(4.10)

where we recover the mechanical equilibrium condition, the two remaining Maxwell equa-
tions and boundary conditions, including the gauge. The normal vector pointing outwards is
denoted as n. We obtain equations containing the flux quantities and the external influences,
which were introduced in Equation (4.7). The evolution equation of the inelastic strain (cf.
Equation (4.8)) in Ωm is part of the strong form as well. As a consequence from considering
two phases, the strong form also includes the jump conditions

[[σ]]bm · n = tbm on ∂Ωbm,
[[D]]bm · n = −qs,bm on ∂Ωbm and

[[H]]bm × n = js,bm − γ [[∇ ·A]]bm n on ∂Ωbm (4.11)
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on the interface between the phases ∂Ωbm. The difference between the phases is denoted
as [[·]]12 := (·)1 − (·)2. The jump conditions describe the behavior of the flux quantities
at the phase boundary, where a sudden change in material parameters may result in a sud-
den, discontinuous change of some components of the flux quantities. This can also be
interpreted as the corresponding surface quantity at the phase boundary, in contrast to the
external contributions in Equation (4.10).

Next, we discuss the formulation for the macroscopic problem. For the multiscale parts of
the macroscopic model, we use the same equations (besides the evolution equation of the
inelastic strain) derived for the microscale. The macroscale domain is Ωx. In contrast to the
microscale model, the main difference for these macroscale calculations is that instead of
using material tensors as introduced in Equation (4.3), the flux quantities are now computed
by using the microscopic RVE:

(σ,D, Ḋ,H,J) = fRVE(ε,E,B). (4.12)

Here, we replace all microscale quantities by the corresponding macroscale quantities, de-
noted as (·).

It remains the discussion of the scale transition. The Hill-Mandel conditions have to be
fulfilled, guaranteeing energy conservation between the scales [Hill (1963, 1972); Labusch
et al. (2019)]. We ensure that for the localization (macro-to-micro transition) by using peri-
odic boundary conditions, as these are the most suitable for our problem and the results are
independent of the relative geometry of the used RVE [Schröder (2000)]. For that purpose,
in the implementation of the problem, all DoFs of nodes on opposite faces are linked and all
corner nodes are fixed to prevent rigid body motions. The microscopic state variables con-
sist of two parts, microscopic fluctuations (denoted as (̃·)) and macroscopic contributions,
which act as a load on the microscopic problem:

(·)(x,y) = (̃·)(y) + (·)(x), with (·) ∈ {ε,E,B}. (4.13)

To fulfill the Hill-Mandel conditions for the homogenization (micro-to-macro transition),
we send back the volume averages of the flux quantities to the macroscopic scale, after
solving the microscopic problem:

(·)(x) = 1

Ω

∫
Ω

(·)(x,y)dV , with (·) ∈ {σ,D, Ḋ,H,J}. (4.14)

4.3.2 Inclusion of a surrounding medium

In our previous contributions, we did our calculations of the bone model without any sur-
roundings. While this is sufficient for purely mechanical modeling of specimen, in electro-
magnetism depending on the application the surrounding medium may have to be consid-
ered in the model as well, as the electromagnetic fields also exist outside the modeled body
[Yang and Dayal (2011)]. The importance of including the surrounding medium strongly
depends on the problem the model tries to solve. For example, when modeling a MEMS
(micro-electro-mechanical system) beam, it is usually required to model the surrounding
medium as well as the specimen. The reasons for this are that, first, the electric field is ap-
plied from the outside and second, when the beam deforms due to the electric field, the field
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itself strongly changes, which can contribute even more to the deformation. The problem
is therefore strongly coupled and non-linear [Hannot (2010); Pustan et al. (2014)]. Thus,
for such applications, the surrounding medium cannot be neglected. In contrast, for some
problems the outside medium only has a minor effect on the fields inside the modeled body.

In this contribution, we investigate to what extent the overall simulation results are influ-
enced by the inclusion of a surrounding medium in the model. While the formulation is
valid for all space, only the region near the specimen is of interest [Yang and Dayal (2011)].
Furthermore, in computational modeling, the limitation of a finite domain occurs. We ad-
dress this in the result section by performing a convergence study using boundary boxes
which differ in size. We assume the bone specimen to be surrounded by air, with the sub-
script (·)o denoting the affiliation to the outside medium. Then, in the outside domain Ωo all
mechanical DoFs vanish and we reduce our energy functional to the following form

Π =

∫
Ωo

Ψo(E,B)dV +

∫
Ωo

Ψg(∇ ·A)dV −Wext. (4.15)

The energy density Ψo is given as

Ψo =
1

2

(
−E · ξo · E+B · µ−1

o ·B
)
. (4.16)

It should be noted here, that in general it is possible to adjust the model to describe another
surrounding medium as well, however this then also may require a different energy formu-
lation. Other than air (cf. Ref. Güzelsu and Saha (1981)), in practice, experiments with
bone specimen are also often done in a water tank (cf. Ref. Hosokawa and Otani (1997)),
which in return can be included by considering for example, the Helmholtz equation for
fluid pressure. Examples are given in Refs. Gilbert et al. (2021); Blaszczyk et al. (2021a,b).
From Equation (4.16), we calculate the weak form of the problem as∫

Ωo

(−D · δE+H · δB+ γ(∇ ·A) · δ(∇ ·A))dV − δWext = 0 ∀δφ, δA. (4.17)

Again using integration by parts, we obtain the strong form of the problem

∇ ·D = qv in Ωo D · n = −qs on ∂Ωo

∇×H = Ḋ+ J+ γ∇(∇ ·A) + jv in Ωo H× n = js − γ(∇ ·A)n on ∂Ωo,
(4.18)

consisting of the two remaining Maxwell equations and boundary conditions, including the
gauge. The jump conditions between the outside domain and the interior of the model
(denoted by i) are

[[D]]oi · n = −qs,oi on ∂Ωoi and [[H]]oi × n = js,oi − γ [[∇ ·A]]oi n on ∂Ωoi. (4.19)

4.3.3 Differentiation of macroscale phases

Previously, we used our two-phase model to describe the microscale at any macroscopic
point. However, real human bones are more complicated (cf. Ref. Locke (2004)). Figure
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4.1 shows the cross section of a human bone. Our two-phase model aims to capture the
structure of trabecular (spongy) bone, which is a mixture of cortical bone and bone marrow
and mostly found at the ends of long bones. However, as can be seen in the image, the
boundary of bone consists of cortical bone. Additionally, in the middle region of the long
axis, bone marrow is surrounded by a layer of spongy bone, with cortical bone forming the
closure.

Figure 4.1: Cross section of human bone, from Ref. Pbrks/Wikimedia (2022).

Figure 4.2: Schematic comparison of the structure of long human bones in the center and at
its endings with corresponding cross section models (white: cortical bone, light
red: spongy bone (phase mixture), dark red: bone marrow), image composed
from Refs. Laboratoires Servier (2022); Klimešová (2022a,b).

For these reasons, we decided to also perform simulations where we split the radial part of
our macroscopic model into different parts and apply the corresponding material model de-
pending on the model part, therefore increasing the applicability of our simulations. Figure
4.2 compares the structure of long human bones, for example, the femur bone, in the center
and at the endings of bone and shows possible radial distributions of the material model
phases. It should be noted here that in this work, we focus on the center section of bone by
using our cylinder model. Therefore we chose the split of phases as shown in the left side of
the image. For future work, an even finer differentiation would be possible, by for example,
also splitting the model in axial direction as shown in the image, however this may require
more complicated meshes of both the femur bone and the outside domain.
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4.4 Numerical implementation

To solve the previous derived equations numerically, we applied a standard FE ansatz to Eq.
(4.9) and Eq. (4.17), respective. Details regarding the resulting matrix system can be found
in Ref. Blaszczyk and Hackl (2022). For the time integration, we use the JWH-α-scheme
from Ref. Kadapa et al. (2017) with the numerical parameter ρ∞ = 0.5. For our programm,
each node has seven DoFs.

We use a cylinder (length: 30 cm, diameter: 3 cm) to model the bone. To include the outside
medium, we created a boundary box around it with an extra length of 3 cm in each direction
(i.e. the total length of the model in longitudinal direction is 36 cm). We set the mechanical
displacement to zero at nodes whose elements are only affiliated to the surrounding medium.
Additionally, we set all nodes of the cylinder bases to have no mechanical displacement. For
the electric scalar potential, it is sufficient to set a single node at the corner of the boundary
box to zero. In contrast, the magnetic vector potential needs additional restrictions to prevent
the equivalent of "rigid body motions". For this reason, we set the magnetic vector potential
to zero at three different corner nodes. Further details and different example configurations
to prevent these issues can be found in Ref. Semenov et al. (2006). Figure 4.3 shows a
schematic representation of our model, the used boundary conditions and the cylinder part,
where the load is applied. The mechanical displacement is applied on the surface in the
middle section of the cylinder within a length of 4 cm and an angle of 90◦.

Figure 4.3: Boundary conditions of the model. For the cylinder model nodes, red: u =
0, light orange: mechanical displacement in x-direction applied, blue-gray: no
directions restricted. For the outside box corner nodes, black grounding: A = 0,
red grounding: φ = 0.

Besides the applied mechanical displacement, no external contributions affect the model,
that is the external contributions in Eq. (4.7) are set to zero. Furthermore, the surface
quantities on the right-hand sides in Eq. (4.11) and Eq. (4.19) are set to zero. Therefore, the
jump conditions are fulfilled automatically, similarly to homogenous Neumann boundary
condition and no additional implementation effort was required compared to standard FEM.
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For the implementation, we wrote a computer program in the programming language Ju-
lia [Bezanson et al. (2022)], using the FE toolbox FERRITE [Carlsson and Ekre (2022)]
and the package COHERENTSTRUCTURES [de Diego et al. (2022)]. We used the software
GMSH [Geuzaine and Remacle (2022)] to create our meshes. For the postprocessing and
the creation of the result images, we used the software PARAVIEW [Kitware Inc. (2022)].

4.5 Simulation results

In this section we show numerical results for different simulation cases. Table 4.1 shows
the used material parameters for the different phases and the literature, where the numerical
values can be found. Other parameters are of rather academic nature and influence the
results only marginally. The gauge penalty parameter is γ = 1.0 s2 A2/(kg m). We set
up the boundary conditions as shown in Figure 4.3 and apply the mechanical displacement
ux = umax ·a(t) in x-direction, with umax = 2 ·10−6 m and the time increment ∆t = 1 ·10−2

s. We calculate 100 time steps by changing the amplitude over time as shown in Figure 4.4.
Additional details can be found in Ref. Blaszczyk and Hackl (2022).

Figure 4.4: Amplitude of the displacement function a against the time step t.

4.5.1 Influence of the surrounding medium air compared to previous results

To examine the influence of the introduced improvements, we created the four models (i)
previously used cylinder mesh, (ii) cylinder mesh with air, (iii) finer cylinder mesh with air
and (iv) cylinder mesh with air and wider boundary box (6 cm instead of 3 cm in each direc-
tion) and compare the results of the magnetic field strength. Table 4.2 shows the four used
meshes and provides the number of nodes and elements in each mesh. We note that the first,
second and fourth model have the same mesh resolution for the cylinder, the difference is
only the inclusion of a surrounding medium, the size of the boundary box and the improved
boundary conditions. For all models, we assume that the whole cylinder domain is filled
with the spongy bone phase mixture, where we use a RVE with ρb = 29.5%. Figure 4.5
shows the resulting magnetic field strength H after 50 time steps for the four different cases.
Figure 4.6 instead shows only a comparison between the first two meshes with an adjusted
color scale to highlight the differences of the results between these two models. To increase
the visibility and comparability of the results, in these two images we show only the cylinder
part of the models without the boundary box.
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Table 4.2: Comparison of finite element meshes used for calculating simulation results. Top
left: previously used cylinder mesh (1767 nodes, 1440 elements), top right: cylin-
der mesh with air (5365 nodes, 4608 elements), bottom left: finer cylinder mesh
with air (20165 nodes, 18432 elements), bottom right: cylinder mesh with air and
wider boundary box (10019 nodes, 8736 elements).

Figure 4.5: Simulation results for the four used meshes (only cylinder part shown): magnetic
field strength H[A/m], at t = 50. From top to bottom: previous used cylinder
mesh, cylinder mesh with air, finer cylinder mesh with air, cylinder mesh with
air and wider boundary box.

Figure 4.6: Simulation results with adjusted color scale for the previous used cylinder mesh
(top) and cylinder mesh with air (bottom, only cylinder part shown): magnetic
field strength H[A/m], at t = 50.
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Comparing the first two models, the magnetic field strength H is increased by about 15% in
the middle section of the cylinder. The finer mesh shows a slight additional increase of H
especially in the middle section and at the cylinder boundary, but the qualitative distribution
is very similar. The results for the mesh with the wider boundary box (fourth model) are
nearly identical to the mesh with the same resolution but smaller boundary box (second
model).

Figure 4.7: Simulation results for model two to four: magnetic field strength H[A/m], at
t = 50. Slice of plane with x-normal vector in the middle of the cylinder. The
white line shows the boundary of the cylinder.

To further investigate the effect of the boundary box on the results, we created slices through
the planes in normal x-direction (Figure 4.7) and z-direction (Figure 4.8) in the middle
of the cylinder. The magnetic field strength is significantly reduced at the edges of the
boundary box both for the usual and fine mesh. Both images show no visible differences
between model two and four, while the magnetic field strength is slightly increased for
the finer mesh (shown in the middle). The magnetic field decays rapidly at the cylinder
boundary over the length of one to two elements. Therefore, for the shown simulation setup,
the small boundary box with three elements in each direction allows the proper decay of
the electromagnetic fields and is already sufficient to capture the effects of a surrounding
medium, which has a noticeable impact of about 15% on the final results.

Finally, we investigate the results of the first two models at the cylinder bases to compare
the used boundary conditions, as shown in Figure 4.9. At the endings of the cylinder, the
differences between the models are greater compared to the middle section. On the left side,
the old model shows results, which are up to one magnitude higher than the new solution,
whereas the resulting magnetic field strength is reduced on the right side. In contrast, our
new model shows a symmetric behavior. The reason for this is likely due to the magnetic
boundary conditions used in the previous simulations (restricting the vector potential at the
cylinder base, cf. Ref. Blaszczyk and Hackl (2022)). Thus, the magnetic field strength
at the left ending of the cylinder model was likely overestimated in our past calculations.
However, the overall results were only marginally influenced. Moving inwards only one
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element in longitudinal direction, we received nearly identical results on both ends of the
cylinder.

The calculation for the first two models took about 8 h, making the inclusion of the boundary
box neglectable regarding computation time, as in that part FE2 is not used. The fine mesh
needed about 5 days of computation time, a big trade-off for slightly more accurate results.
Finally, the mesh with a wider boundary box required one and a half days of computation
time. All these simulations where done on a computer cluster using parallelization.

4.5.2 Results for the three-way split cylinder model

As a second example, we now combine the previous improvements of including the sur-
rounding medium with the altered boundary conditions and the differentiation of macroscale
phases within the cylinder. To differentiate between the different bone phases, we divided
the radius of the cylinder base into three equally long parts and apply the phases bone mar-
row, cancellous bone, that is, mixed phase (FE2 model) and cortical bone, respectively, from
the center to the cylinder boundary (Figure 4.10). The split only depends on the distance
from the center but not the number of elements in between. Additionally, we ensured that
the phase boundary does not lie within an element. This way, we prevent the introduction
of a mesh dependence (i.e. increasing the number of elements in the mesh does not cause
a change in volume fraction for one of the phases). We note, that is this model only in the
part, where we assume cancellous bone, the FE2 is applied, whereas the calculations reduce
to single scale FEM in all other parts.

To investigate the effect of osteoporosis on the results, we created six RVEs with different
volume percentage of cortical bone ρb, which we use for the spongy bone phase in the
model. These range from ρb = 5.3% (RVE 1, very degenerated bone) to ρb = 29.5% (RVE
6, healthy bone), with about 5% intervals in between (cf. Ref. Blaszczyk and Hackl (2022)).
Figure 4.11 shows the resulting magnetic field strength at timestep t = 50 of the simulations
by plotting the transition between cortical and spongy bone phases, which is the area where
we receive the highest magnitudes of the field.

Similarly to our previous results in Ref. Blaszczyk and Hackl (2022), the magnetic field
strength is decreasing for lower volume percentages of cortical bone. While the difference
between RVE 5 and 6 is small, the field drastically decreases for lower values of ρb. In
Figure 4.11, we show the magnetic field strength at the interface between cancellous and
cortical bone, as the magnitude is the highest in this area. We note that the absolute values
of the resulting field is decreased compared to the previous results. One possible reason
for this effect could be the insulating properties of the outer shell modeled as cortical bone
phase, that is, no current density is present to contribute to the resulting magnetic field.

4.6 Conclusion

We improved important aspects of the bone model. After shortly reintroducing the used
material model, we derived the formulation for the inclusion of air as a surrounding medium.
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Figure 4.8: Simulation results for model two to four: magnetic field strength H[A/m], at
t = 50. Slice of plane with z-normal vector in the middle of the cylinder. The
white line shows the boundary of the cylinder.

Additionally, we explained the physiological reasons for the split into different regions. We
discussed the numerical methods and implementation, before showing simulation results.

We used the cylinder model to compare our new results to previous ones. The coarser model
with a boundary box shows a magnetic field strength increase of 15% in the middle section of
the cylinder, where the magnitude of the field is the highest. While even finer meshes leads
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Figure 4.9: Simulation results: magnetic field strength H[A/m], at t = 50. Left and right
cylinder base of previous model (top) and model including surrounding medium
(bottom).

bone marrow phase

cortical bone phase

cancellous (spongy)

bone phase (FE2)

air

Figure 4.10: Cylinder model with surrounding medium and differentiation between the
macroscale phases bone marrow, cancellous (spongy) bone and cortical bone
(from the center to the cylinder boundary).

to a further increase of magnetic field strength, the calculation time increases drastically.
Balancing accuracy and computation speed, the coarser mesh with a small boundary box
containing three elements in each direction yields adequate results. Increasing the size of
the boundary box shows no visible differences in the results. Thus, using a small boundary
box is likely sufficient to capture the desired effects and is therefore necessary to obtain
precise results, but can be neglected if an error of about 15% is acceptable. Furthermore, we
improved the used boundary conditions. Our new results are more symmetric and realistic
compared to the previous model. In addition, we have shown how the macroscopic model
can be split into different parts representing different phases of the bone. Compared to our
previous findings, the simulation results show a similar qualitative behavior of RVEs with
different volume percentages of cortical bone phase.

For further development of the model, different RVEs could be used to investigate the ef-
fect of the chosen RVE geometry and mesh resolution on the simulation results. Addi-
tionally, the orientation of the used RVEs could be varied to account for anisotropies in real
bones. A different surrounding medium, for example, water, could be included in the model.
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Figure 4.11: Simulation results for the RVEs 1 (top) to 6 (bottom) for three-way split cylin-
der macroscopic model: magnetic field strength H[A/m], at t = 50.

Nédélec functions could be used to resolve discontinuities along surfaces and therefore im-
prove the numerical performance of the model. Combined with that, the discontinuous
Galerkin method could be used to perform simulations on unstructured meshes with very
good computation times. Here, the bone geometry could easily be inserted into a box mod-
eling the surrounding medium, without the need to fit the mesh resolutions of the different
parts. This is an important advantage for practical usage of very complex real bone geome-
tries from, for example, CT scans. Wave propagation in bone could be investigated and the
model could be extended to soft tissues, using a finite strain formulation. Finally, the long
term ambition of our research is the comparison of our results to experimental data obtained
from real bones.

Code Availability

The program used to produce simulation results is mainly written in Julia, using the Open-
Source Ferrite.jl toolbox. Code samples from the author were made public and can be found
at Github: https://github.com/blaszm.

https://github.com/blaszm
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the first-order generalised-alpha scheme for structural dynamic problems. In: Computers
& Structures 193 (2017), 12, pp. 226–238

[Karimi et al. 2019] KARIMI, P. ; ZHANG, X. ; YAN, S. ; OSTOJA-STARZEWSKI, M. ; JIN,
J. M.: Electrostatic and magnetostatic properties of random materials. In: Phys. Rev. E
99 (2019), pp. 022120

[Kaufman et al. 2008] KAUFMAN, J. J. ; LUO, G. ; SIFFERT, R. S.: Ultrasound simulation
in bone. In: IEEE transactions on ultrasonics, ferroelectrics, and frequency control 55
(2008), no. 6, pp. 1205–1218



92 Bibliography

[Keaveny 2010] KEAVENY, T. M.: Biomechanical computed tomography—noninvasive
bone strength analysis using clinical computed tomography scans. In: Annals of the New
York Academy of Sciences 1192 (2010), no. 1, pp. 57–65

[Kitware Inc. 2022] KITWARE INC.: ParaView. https://www.paraview.org/.
Version: 2022

[Klimešová 2019] KLIMEŠOVÁ, Markéta: Femur (caput femoris). Anthropological
collections, Department of Biology and Environmental Studies, Faculty of Education,
Charles University (Czech Republic). https://commons.wikimedia.org/
wiki/File:Femur_(caput_femoris)_-_bone_structure_detail_
(vertical_cut)_2.jpg. Version: 2019

[Klimešová 2022a] KLIMEŠOVÁ, Markéta: Femur - detail of diaphysis cross
section. Anthropological collections, Department of Biology and Environ-
mental Studies, Faculty of Education, Charles University (Czech Republic).
https://commons.wikimedia.org/wiki/File:Femur_-_detail_
of_diaphysis_cross_section.jpg. Version: 2022

[Klimešová 2022b] KLIMEŠOVÁ, Markéta: Femur (caput femoris) - bone struc-
ture detail (vertical cut). Anthropological collections, Department of Biology
and Environmental Studies, Faculty of Education, Charles University (Czech
Republic). https://commons.wikimedia.org/wiki/File:Femur_
(caput_femoris)_-_bone_structure_detail_(vertical_cut).jpg.
Version: 2022

[Klinge et al. 2013] KLINGE, S. ; HACKL, K. ; GILBERT, R. P.: Investigation of the influ-
ence of reflection on the attenuation of cancellous bone. In: Biomechanics and modeling
in mechanobiology 12 (2013), no. 1, pp. 185–199

[Kochmann et al. 2016] KOCHMANN, J. ; WULFINGHOFF, S. ; REESE, S. ; MIANROODI,
J. R. ; SVENDSEN, B.: Two-scale FE–FFT-and phase-field-based computational model-
ing of bulk microstructural evolution and macroscopic material behavior. In: Computer
Methods in Applied Mechanics and Engineering 305 (2016), pp. 89–110

[Kristensen et al. 2020] KRISTENSEN, P. K. ; NIORDSON, C. F. ; MARTÍNEZ-PAÑEDA,
E.: A phase field model for elastic-gradient-plastic solids undergoing hydrogen embrit-
tlement. In: Journal of the Mechanics and Physics of Solids 143 (2020), pp. 104093

[Kuhn and Müller 2010] KUHN, C. ; MÜLLER, R.: A continuum phase field model for
fracture. In: Engineering Fracture Mechanics 77 (2010), no. 18, pp. 3625–3634

[Kumar et al. 2020] KUMAR, S. ; TAN, S. ; ZHENG, L. ; KOCHMANN, D. M.: Inverse-
designed spinodoid metamaterials. In: npj Computational Materials 6 (2020), no. 1,
pp. 73

https://www.paraview.org/
https://commons.wikimedia.org/wiki/File:Femur_(caput_femoris)_-_bone_structure_detail_(vertical_cut)_2.jpg
https://commons.wikimedia.org/wiki/File:Femur_(caput_femoris)_-_bone_structure_detail_(vertical_cut)_2.jpg
https://commons.wikimedia.org/wiki/File:Femur_(caput_femoris)_-_bone_structure_detail_(vertical_cut)_2.jpg
https://commons.wikimedia.org/wiki/File:Femur_-_detail_of_diaphysis_cross_section.jpg
https://commons.wikimedia.org/wiki/File:Femur_-_detail_of_diaphysis_cross_section.jpg
https://commons.wikimedia.org/wiki/File:Femur_(caput_femoris)_-_bone_structure_detail_(vertical_cut).jpg
https://commons.wikimedia.org/wiki/File:Femur_(caput_femoris)_-_bone_structure_detail_(vertical_cut).jpg


Bibliography 93

[Laboratoires Servier 2019] LABORATOIRES SERVIER: Osteoporosis -
Smart Servier - image composed from SMART - Servier Medical ART
(https://smart.servier.com/category/anatomy-and-the-human-body/locomotor-
system/bones/) and Flickr: Images related to Osteoporosis, Bone structure and
Bone (https://www.flickr.com/photos/serviermedicalart/sets/72157635892724256).
https://commons.wikimedia.org/wiki/file:Osteoporosis_--_
Smart-Servier.jpg. Version: 2019

[Laboratoires Servier 2022] LABORATOIRES SERVIER: Thigh bone - Femur – Smart-
Servier. SMART - Servier Medical ART (https://smart.servier.com/category/anatomy-
and-the-human-body/locomotor-system/bones/. https://commons.wikimedia.
org/wiki/File:Thigh_bone_-_Femur_--_Smart-Servier.jpg.
Version: 2022

[Labusch et al. 2019] LABUSCH, M. ; SCHRÖDER, J. ; LUPASCU, D. C.: A two-scale
homogenization analysis of porous magneto-electric two-phase composites. In: Archive
of Applied Mechanics 89 (2019), no. 6, pp. 1123–1140

[Langer 1986] LANGER, J. S.: Models of pattern formation in first-order phase transitions.
In: Directions in condensed matter physics: Memorial volume in honor of shang-keng
ma. World Scientific, 1986, pp. 165–186

[Lifescience Database 2022] LIFESCIENCE DATABASE: Lifescience Database. https:
//lifesciencedb.jp/bp3d/. Version: 2022

[Locke 2004] LOCKE, M.: Structure of long bones in mammals. In: Journal of Morphology
262 (2004), no. 2, pp. 546–565

[Lucarini and Segurado 2019] LUCARINI, S. ; SEGURADO, J.: On the accuracy of spectral
solvers for micromechanics based fatigue modeling. In: Computational Mechanics 63
(2019), pp. 365–382

[Lupascu et al. 2017] LUPASCU, D. C. ; ANUSCA, I. ; ETIER, M. ; GAO, Y. ; LACKNER,
G. ; NAZRABI, A. ; SANLIALP, M. ; TRIVEDI, H. ; UL-HAQ, N. ; SCHRÖDER, J.:
Semiconductor Effects in Ferroelectrics. In: Ferroic Functional Materials: Experiment,
Modeling and Simulation. Cham : Springer, 2017, pp. 97–178

[Mano et al. 2007] MANO, I. ; YAMAMOTO, T. ; HAGINO, H. ; TESHIMA, R. ;
TAKADA, M. ; TSUJIMOTO, T. ; OTANI, T.: Ultrasonic transmission characteristics of
in vitro human cancellous bone. In: Japanese Journal of Applied Physics 46 (2007), no.
7S, pp. 4858

[Martínez-Cisneros et al. 2020] MARTÍNEZ-CISNEROS, E. ; VELOSA-MONCADA, L. A. ;
DEL ANGEL-ARROYO, J. A. ; AGUILERA-CORTÉS, L. A. ; CERÓN-ÁLVAREZ, C. A. ;
HERRERA-MAY, A. L.: Electromechanical modeling of MEMS-based piezoelectric en-
ergy harvesting devices for applications in domestic washing machines. In: Energies 13
(2020), no. 3, pp. 617

https://smart.servier.com/category/anatomy-and-the-human-body/locomotor-system/bones/
https://smart.servier.com/category/anatomy-and-the-human-body/locomotor-system/bones/
https://www.flickr.com/photos/serviermedicalart/sets/72157635892724256
https://commons.wikimedia.org/wiki/file:Osteoporosis_--_Smart-Servier.jpg
https://commons.wikimedia.org/wiki/file:Osteoporosis_--_Smart-Servier.jpg
https://smart.servier.com/category/anatomy-and-the-human-body/locomotor-system/bones/
https://smart.servier.com/category/anatomy-and-the-human-body/locomotor-system/bones/
https://commons.wikimedia.org/wiki/File:Thigh_bone_-_Femur_--_Smart-Servier.jpg
https://commons.wikimedia.org/wiki/File:Thigh_bone_-_Femur_--_Smart-Servier.jpg
https://lifesciencedb.jp/bp3d/
https://lifesciencedb.jp/bp3d/


94 Bibliography

[McCulloch and Pitts 1943] MCCULLOCH, W. S. ; PITTS, W.: A logical calculus of the
ideas immanent in nervous activity. In: The bulletin of mathematical biophysics 5 (1943),
no. 4, pp. 115–133

[McKelvie and Palmer 1991] MCKELVIE, M. L. ; PALMER, S. B.: The interaction of
ultrasound with cancellous bone. In: Physics in Medicine & Biology 36 (1991), no. 10,
pp. 1331

[Mehrabadi and Cowin 1990] MEHRABADI, M. M. ; COWIN, S. C.: Eigentensors of lin-
ear anisotropic elastic materials. In: The Quarterly Journal of Mechanics and Applied
Mathematics 43 (1990), no. 1, pp. 15–41

[Mehta and Rajani 1970] MEHTA, B. V. ; RAJANI, S.: Finite element analysis of the human
tibia. In: WIT Transactions on Biomedicine and Health 2 (1970)

[Meng et al. 2013] MENG, L. ; ZHANG, Y. ; LU, Y.: Three-dimensional finite element
analysis of mini-external fixation and Kirschner wire internal fixation in Bennett fracture
treatment. In: Orthopaedics & Traumatology: Surgery & Research 99 (2013), no. 1, pp.
21–29

[Mi et al. 2007] MI, Z. R. ; SHUIB, S. ; HASSAN, A. Y. ; SHORKI, A. A. ; IBRAHIM, M. M.:
Problem of stress shielding and improvement to the hip Implat designs: a review. In: J.
Med. Sci 7 (2007), no. 3, pp. 460–467

[Miehe et al. 2002] MIEHE, C. ; SCHOTTE, J. ; LAMBRECHT, M.: Homogenization of
inelastic solid materials at finite strains based on incremental minimization principles.
Application to the texture analysis of polycrystals. In: Journal of the Mechanics and
Physics of Solids 50 (2002), no. 10, pp. 2123 – 2167

[Miehe et al. 1999] MIEHE, C. ; SCHRÖDER, J. ; SCHOTTE, J.: Computational homoge-
nization analysis in finite plasticity simulation of texture development in polycrystalline
materials. In: Computer methods in applied mechanics and engineering 171 (1999), no.
3-4, pp. 387–418

[Miehe et al. 2010] MIEHE, C. ; WELSCHINGER, F. ; HOFACKER, M.: Thermodynamically
consistent phase-field models of fracture: Variational principles and multi-field FE imple-
mentations. In: International journal for numerical methods in engineering 83 (2010),
no. 10, pp. 1273–1311

[Miller et al. 2002] MILLER, Z. ; FUCHS, M. ; ARCAN, M.: Trabecular bone adaptation
with an orthotropic material model. In: Journal of biomechanics 35 (2002), pp. 247–56

[Mohamed et al. 2003] MOHAMED, E. ; MAIOLO, C. ; LINDER, R. ; PÖPPL, S. ;
DE LORENZO, A.: Artificial neural network analysis: A novel application for predicting
site-specific bone mineral density. In: Acta diabetologica 40 Suppl 1 (2003), pp. S19–22

[Mohammadkhah et al. 2019] MOHAMMADKHAH, M. ; MARINKOVIC, D. ; ZEHN, M. ;
CHECA, S.: A review on computer modeling of bone piezoelectricity and its application
to bone adaptation and regeneration. In: Bone 127 (2019), pp. 544 – 555



Bibliography 95

[Moulinec and Suquet 1995] MOULINEC, H. ; SUQUET, P.: A FFT-based numerical method
for computing the mechanical properties of composites from images of their microstruc-
tures. In: IUTAM Symposium on Microstructure-Property Interactions in Composite Ma-
terials: Proceedings of the IUTAM Symposium held in Aalborg, Denmark, 22–25 August
1994 Springer Netherlands, 1995, pp. 235–246

[Mur 1998] MUR, G.: The fallacy of edge elements. In: IEEE Transactions on Magnetics
34 (1998), no. 5, pp. 3244–3247

[Nardinocchi and Teresi 2013] NARDINOCCHI, P. ; TERESI, L.: Electromechanical model-
ing of anisotropic cardiac tissues. In: Mathematics and Mechanics of Solids 18 (2013),
no. 6, pp. 576–591

[Nédélec 1980] NÉDÉLEC, J.-C.: Mixed finite elements in R3. In: Numerische Mathematik
35 (1980), no. 3, pp. 315–341

[Pahr and Zysset 2008] PAHR, D. H. ; ZYSSET, P. K.: Influence of boundary conditions on
computed apparent elastic properties of cancellous bone. In: Biomechanics and Modeling
in Mechanobiology 7 (2008), no. 6, pp. 463–476

[Pandolfi et al. 2016] PANDOLFI, A. ; GIZZI, A. ; VASTA, M.: Coupled electro-mechanical
models of fiber-distributed active tissues. In: Journal of Biomechanics 49 (2016), no. 12,
pp. 2436–2444

[Paranjape et al. 2016] PARANJAPE, H. M. ; MANCHIRAJU, S. ; ANDERSON, P. M.: A phase
field–Finite element approach to model the interaction between phase transformations and
plasticity in shape memory alloys. In: International Journal of Plasticity 80 (2016), pp.
1–18

[Parashar and Sharma 2016] PARASHAR, S. K. ; SHARMA, J. K.: A review on application
of finite element modelling in bone biomechanics. In: Perspectives in Science 8 (2016),
pp. 696–698

[Pbrks/Wikimedia 2022] PBRKS/WIKIMEDIA: Bone cross-section. https://commons.
wikimedia.org/wiki/File:Bone_cross-section.svg. Version: 2022

[Peck 1993] PECK, W.A.: Consensus development conference: diagnosis, prophylaxis, and
treatment of osteoporosis. In: Am J Med 94 (1993), no. 6, pp. 646–650

[Podshivalov et al. 2011] PODSHIVALOV, L. ; FISCHER, A. ; BAR-YOSEPH, P.Z.: Mul-
tiscale FE method for analysis of bone micro-structures. In: Journal of the Mechanical
Behavior of Biomedical Materials 4 (2011), no. 6, pp. 888 – 899. – Bone Remodeling

[Prakash and Lebensohn 2009] PRAKASH, A. ; LEBENSOHN, R. A.: Simulation of mi-
cromechanical behavior of polycrystals: finite elements versus fast Fourier transforms.
In: Modelling and Simulation in Materials Science and Engineering 17 (2009), no. 6, pp.
064010

https://commons.wikimedia.org/wiki/File:Bone_cross-section.svg
https://commons.wikimedia.org/wiki/File:Bone_cross-section.svg


96 Bibliography

[Pugh et al. 1973] PUGH, J. W. ; ROSE, R. M. ; RADIN, E. L.: A structural model for the
mechanical behavior of trabecular bone. In: Journal of Biomechanics 6 (1973), no. 6, pp.
657–670

[Pustan et al. 2014] PUSTAN, M. ; BIRLEANU, C. ; DUDESCU, C. ; GOLINVAL, J.-C.:
Dynamic behavior of smart MEMS in industrial applications. In: Smart Sensors and
Mems. Cambridge : Elsevier, 2014, pp. 349–365

[Reginster and Burlet 2006] REGINSTER, J.-Y. ; BURLET, N.: Osteoporosis: a still increas-
ing prevalence. In: Bone 38 (2006), no. 2, pp. 4–9

[Reuß 1929] REUSS, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der
Plastizitätsbedingung für Einkristalle. In: ZAMM-Journal of Applied Mathematics and
Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9 (1929), no. 1, pp.
49–58

[Ringe et al. 2019] RINGE, J.D. ; BÜHRING, M. ; DÖREN, M. ; MÜNZENBERG, K.J. ; REIN-
ERS, C. ; SCHNEIDER, H.P.G. ; SCHULZ, A.: Osteoporose: Pathogenese, Diagnostik und
Therapiemöglichkeiten. De Gruyter, 2019. – ISBN 9783110879513

[Robson Brown et al. 2014] ROBSON BROWN, K. ; TARSUSLUGIL, S. ; WIJAYATHUNGA,
V. N. ; WILCOX, R. K.: Comparative finite-element analysis: a single computational
modelling method can estimate the mechanical properties of porcine and human verte-
brae. In: Journal of The Royal Society Interface 11 (2014), no. 95, pp. 20140186

[Röhrle et al. 2008] RÖHRLE, O. ; DAVIDSON, J. B. ; PULLAN, A. J.: Bridging scales: a
three-dimensional electromechanical finite element model of skeletal muscle. In: SIAM
Journal on Scientific Computing 30 (2008), no. 6, pp. 2882–2904

[Rosenblatt 1957] ROSENBLATT, F.: The perceptron, a perceiving and recognizing automa-
ton Project Para. Cornell Aeronautical Laboratory, 1957

[Ruthotto and Treister 2022] RUTHOTTO, L. ; TREISTER, E.: KrylovMethods.jl: Simple
and fast Julia implementation of Krylov subspace methods for linear systems. https:
//github.com/JuliaInv/KrylovMethods.jl. Version: 2022

[Samarasinghe 2016] SAMARASINGHE, S.: Neural networks for applied sciences and en-
gineering: from fundamentals to complex pattern recognition. Auerbach publications,
2016

[Scheiner et al. 2013] SCHEINER, S. ; PIVONKA, P. ; HELLMICH, C.: Coupling systems
biology with multiscale mechanics, for computer simulations of bone remodeling. In:
Computer Methods in Applied Mechanics and Engineering 254 (2013), pp. 181–196

[Schlick et al. 2021] SCHLICK, T. ; PORTILLO-LEDESMA, S. ; BLASZCZYK, M. ; DA-
LESSANDRO, L. ; GHOSH, S. ; HACKL, K. ; HARNISH, C. ; KOTHA, S. ; LIVESCU, D. ;
MASUD, A. ; MATOUS, K. ; MOYEDA, A. ; OSKAY, C. ; FISH, J.: A multiscale vi-
sion - Illustrative applications from biology to engineering. In: International Journal for
Multiscale Computational Engineering 19 (2021), no. 2, pp. 39–73. – ISSN 1543–1649

https://github.com/JuliaInv/KrylovMethods.jl
https://github.com/JuliaInv/KrylovMethods.jl


Bibliography 97

[Schneider 2021] SCHNEIDER, M.: A review of nonlinear FFT-based computational ho-
mogenization methods. In: Acta Mechanica 232 (2021), Jun, no. 6, pp. 2051–2100

[Schrade et al. 2007] SCHRADE, D. ; MÜLLER, R. ; XU, B.-X. ; GROSS, D.: Domain evo-
lution in ferroelectric materials: A continuum phase field model and finite element imple-
mentation. In: Computer methods in applied mechanics and engineering 196 (2007), no.
41-44, pp. 4365–4374

[Schröder 2000] SCHRÖDER, J.: Homogenisierungsmethoden der nichtlinearen Kontin-
uumsmechanik unter Beachtung von Instabilitäten. Stuttgart : Institut für Mechanik
(Bauwesen), Lehrstuhl I, Universität Stuttgart, 2000. – Habilitationsschrift

[Schröder and Hackl 2013] SCHRÖDER, J. ; HACKL, K.: Plasticity and Beyond: Mi-
crostructures, Crystal-Plasticity and Phase Transitions. Springer Vienna, 2013 (CISM
International Centre for Mechanical Sciences). https://books.google.de/
books?id=hg3HBAAAQBAJ. – ISBN 978–3–709–11625–8

[Schröder and Keip 2012] SCHRÖDER, J. ; KEIP, M.-A.: Two-scale homogenization of
electromechanically coupled boundary value problems: Consistent linearization and ap-
plications. In: Computational mechanics 50 (2012), no. 2, pp. 229–244

[Schröder 2009] SCHRÖDER, J.: Derivation of the localization and homogenization condi-
tions for electro-mechanically coupled problems. In: Computational Materials Science
46 (2009), pp. 595–599

[Schröder et al. 2016] SCHRÖDER, J. ; LABUSCH, M. ; KEIP, M. A.: Algorithmic two-scale
transition for magneto-electro-mechanically coupled problems: FE2-scheme: Localiza-
tion and homogenization. In: Computer Methods in Applied Mechanics and Engineering
302 (2016), pp. 253 – 280

[Semenov et al. 2006] SEMENOV, A. S. ; KESSLER, H. ; LISKOWSKY, A. ; BALKE, H.:
On a vector potential formulation for 3D electromechanical finite element analysis. In:
Communications in Numerical Methods in Engineering 22 (2006), no. 5, pp. 357–375

[Sengupta et al. 2012] SENGUPTA, A. ; PAPADOPOULOS, P. ; TAYLOR, R. L.: A multiscale
finite element method for modeling fully coupled thermomechanical problems in solids.
In: International Journal for Numerical Methods in Engineering 91 (2012), no. 13, pp.
1386–1405

[Shahid et al. 2019] SHAHID, N. ; RAPPON, T. ; BERTA, W.: Applications of artificial neural
networks in health care organizational decision-making: A scoping review. In: PloS one
14 (2019), no. 2, pp. e0212356

[Shamos et al. 1963] SHAMOS, M. H. ; LAVINE, L. S. ; SHAMOS, M. I.: Piezoelectric Effect
in Bone. In: Nature 197 (1963), no. 4862, pp. 81–81

[Silver et al. 2016] SILVER, D. ; HUANG, A. ; MADDISON, C. J. ; GUEZ, A. ; SIFRE, L. ;
VAN DEN DRIESSCHE, G. ; SCHRITTWIESER, J. ; ANTONOGLOU, I. ; PANNEERSHEL-
VAM, V. ; LANCTOT, M. et al.: Mastering the game of Go with deep neural networks and
tree search. In: nature 529 (2016), no. 7587, pp. 484–489

https://books.google.de/books?id=hg3HBAAAQBAJ
https://books.google.de/books?id=hg3HBAAAQBAJ


98 Bibliography

[Silver et al. 2018] SILVER, D. ; HUBERT, T. ; SCHRITTWIESER, J. ; ANTONOGLOU, I. ;
LAI, M. ; GUEZ, A. ; LANCTOT, M. ; SIFRE, L. ; KUMARAN, D. ; GRAEPEL, T. et al.:
A general reinforcement learning algorithm that masters chess, shogi, and Go through
self-play. In: Science 362 (2018), no. 6419, pp. 1140–1144

[Singh et al. 2017] SINGH, A. ; DUTTA, M. ; JENNANE, R. ; LESPESSAILLES, E.: Classifi-
cation of the trabecular bone structure of osteoporotic patients using machine vision. In:
Computers in Biology and Medicine 91 (2017), pp. 148–158

[Sivapuram et al. 2016] SIVAPURAM, R. ; DUNNING, P. D. ; KIM, H. A.: Simultaneous
material and structural optimization by multiscale topology optimization. In: Structural
and multidisciplinary optimization 54 (2016), pp. 1267–1281

[Smajic et al. 2015] SMAJIC, J. ; HAFNER, C. ; LEUTHOLD, J.: Coupled FEM-MMP for
computational electromagnetics. In: IEEE Transactions on Magnetics 52 (2015), no. 3,
pp. 1–4

[Sobotková et al. 1988] SOBOTKOVÁ, E. ; HRUBÁ, A. ; KIEFMAN, J. ; SOBOTKA, Z.:
Rheological behaviour of bone marrow. In: Progress and trends in rheology II. Springer,
1988, pp. 467–469

[Spadaro 1997] SPADARO, J. A.: Mechanical and electrical interactions in bone remodeling.
In: Bioelectromagnetics: Journal of the Bioelectromagnetics Society 18 (1997), no. 3, pp.
193–202

[Spahn et al. 2014] SPAHN, J. ; ANDRÄ, H. ; KABEL, M. ; MÜLLER, R.: A multiscale ap-
proach for modeling progressive damage of composite materials using fast Fourier trans-
forms. In: Computer Methods in Applied Mechanics and Engineering 268 (2014), pp.
871–883

[Steeb 2010] STEEB, H.: Ultrasound propagation in cancellous bone. In: Archive of Applied
Mechanics 80 (2010), no. 5, pp. 489–502

[Stieve et al. 2022] STIEVE, V. ; BLASZCZYK, M. ; HACKL, K.: Inverse modeling of can-
cellous bone using artificial neural networks. In: ZAMM-Journal of Applied Mathematics
and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 102 (2022), no. 6,
pp. e202100541

[Struzik and Siebes 1999] STRUZIK, Z. R. ; SIEBES, A.: The Haar Wavelet Transform in
the Time Series Similarity Paradigm. In: ŻYTKOW, J. M. (Hrsg.) ; RAUCH, J. (Hrsg.):
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