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Summary

Computational solid mechanics employs numerical simulations and modeling to analyze
and predict the responses of structures under diverse forces, solving intricate physical prob-
lems. These simulations, crucial when large-scale experiments are not feasible, use dis-
cretization methods such as finite elements and mesh-free approaches to model complex
material behaviors. The equations used in solid mechanics, derived from continuum me-
chanical theory, comprise three critical components:

1. Ensuring the balance of linear momentum.

2. Confirming the compatibility of kinematic quantities.

3. Applying constitutive mappings that define the relationship between stress and strain.

While the first two conditions are based on fundamental physics and geometry, the consti-
tutive model relies on data and engineering knowledge. Traditionally, this involved creating
models based on material experiments. Material modeling approaches can be broadly classi-
fied into phenomenological modeling, which focuses on capturing a material’s macroscopic
behavior, and microscopic modeling, which aims to predict material behavior by simulating
the underlying physical processes at the atomic or microscopic level. Modern modeling uti-
lizes machine learning and data-driven techniques to enhance predictions and facilitate the
development of new materials.

A fundamental challenge in traditional material modeling arises when there is no direct in-
tersection between the material model solutions and the constraints of physical laws. Kirch-
doerfer and Ortiz introduced a relaxation approach called model-free data-driven computa-
tional mechanics, which directly utilizes experimental datasets to solve mechanical prob-
lems, bypassing traditional material modeling to resolve this issue. The methodological
innovation lies in determining the state within the constraints closest to the material data
set. The state-of-the-art in this domain has witnessed significant growth in areas such as
elasticity, finite strain, and damage mechanics. The approach is particularly notable in its
ability to derive solutions that adhere more closely to the observed data. Machine learning
further extends the capabilities of model-free methods, offering solutions to the difficulties
presented by noisy, sparse, or extensive datasets.

Disseration’s outline: The cumulative dissertation advances model-free data-driven com-
putational mechanics by integrating history-dependent material properties and optimizing
data usage. The first article introduces a hybrid approach that enriches the data set with
tangent space directions to capture directional changes in material behavior, tailored for ma-
terials with complex loading histories like non-linear elasticity and elasto-plasticity. The
second article optimizes the data collection process using material symmetry and Haigh-
Westergaard coordinates, enhancing the accuracy of simulations for materials under elasto-
plastic deformation with isotropic hardening. The third article suggests leveraging a Gen-
erative Adversarial Network framework to enrich the data-driven methodology. It describes
how physical constraints inform the generator while the discriminator assesses its output
against the nearest strain-stress data points. This approach combines data-driven mechanics
with deep learning, indicating a move towards sophisticated machine learning applications
to improve predictive simulations.
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1

1 Introduction

Engineering is fundamentally the application of scientific principles for designing and cre-
ating systems, structures, and components. From tall buildings that reach the sky to the
machinery we rely on daily, engineering remains a leading force in humanity’s significant
achievements. To understand how objects behave under acting forces, more than simple
tests and basic models were required as the structures and materials we built became intri-
cate, highlighting the need for better tools to predict the behavior of structures in various sit-
uations. In this regard, simulations have become an essential tool. They allow us to explore
complicated systems in various situations. Such simulations are more than just beneficial;
they are necessary, especially when full-scale experiments are too costly or time-consuming.
In this setting, numerical simulations have become essential. Most of the methodologies
developed since the dawn of modern numerical analysis have been preoccupied with the
discretization of space and time. Finite differences, finite elements, finite volumes, molecu-
lar dynamics, and mesh-free methods are examples of different ways of estimating solution
fields.

1.1 Computational solid mechanics

Solid mechanics is the branch of continuum mechanics that focuses on studying solid mate-
rials and their behaviors, particularly their motion and deformation when subjected to differ-
ent forces, temperature changes, phase changes, and other external or internal factors. We
can understand and accurately predict how materials and structures react to various forces
through solid mechanics by developing mathematical models based on material behavior’s
physical principles. These models explain how materials experience deformation and how
internal forces, known as stresses, are distributed throughout a material under strain. By
applying concepts from areas such as elasticity, plasticity, and fracture mechanics, solid
mechanics offers a comprehensive approach to simulate complex materials behaviors and
ensure engineering designs’ structural nature and functionality.

To begin with, we consider an elastic body Ω ⊂ Rd with boundaries ΓD and ΓN such that
ΓD∪ΓN = ∂Ω and ΓD∩ΓN = ∅. In this context, a material refers to the substance or matter
that constitutes the body Ω, i.e., various solids with varying properties and behaviors under
different physical conditions. Central to the understanding of solid mechanics is the concept
of displacement, represented by the field u : Ω→ Rd, describing the movement of material
points in a body from their original position to a new position. For a point x ∈ Ω, the dis-
placement provides insight into how much and in which direction the point has moved.

Derived from the displacement field is the concept of strain, represented by the field ε :
Ω → Rd×d

sym , which quantifies the local deformation of the material and measures how it
is stretched or compressed from its original configuration. The strain and its associated
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Dirichlet boundary condition are defined locally at any material point as

ε(x) =
1

2

(
∇u(x) +∇uT (x)

)
, in Ω,

u(x) = g(x), on ΓD.
(1.1)

Here, the strain is defined by the symmetric gradient of the displacement field, called com-
patibility, constrained by essential boundary conditions with given displacement g : ΓD →
Rd. The compatibility ensures the deformation is uniform and preserves continuity locally,
cf. Fig. 1.1.1. Corresponding to strain is the concept of stress, represented by the field

(a) Undeformed microelement

(b) Compatible deformation (c) Incompatible deformation

Figure 1.1.1: Deformation states of an infinitesimal volume element concerning strain com-
patibility. (a) Undeformed state where the volume element retains its original
geometry. (b) Compatible deformation: showing uniform deformation and
preserving continuity within the volume element. (c) Incompatible deforma-
tion: showing nonuniform deformation leading to discontinuities and potential
internal stresses within the volume element.

σ : Ω → Rd×d
sym , which provides a measure of internal forces developed within a material

as a reaction to applied external forces or deformations. The conservation principle in solid
mechanics can be derived by considering an infinitesimal volume element, which ensures a
balance of forces within the material. Thus, the equilibrium equation is encapsulated by the
stress divergence and can be defined with the associated Neumann-type boundary condition
by

∇ · σ(x) = f(x), in Ω,

σ(x) · n(x) = t(x), on ΓN ,
(1.2)

where f : Ω → Rd represents body forces acting on the material. The boundary condi-
tion on ΓN accounts for external forces t : ΓN → Rd along the outer normal direction
n : ΓN → Rd of the boundary. Fig. 1.1.2 demonstrates a three-dimensional infinitesimal
element subjected to normal and shear stresses on each face. The stresses vary along the
axes, as indicated by the derivatives regarding each axis. The illustration serves as a visual
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Figure 1.1.2: Illustration of the state of stress on an infinitesimal element within a contin-
uum, demonstrating the conditions for static equilibrium by balancing the in-
ternal stresses.

aid in understanding the derivation of the equilibrium equations for a continuum, which as-
serts that the sum of the forces and moments on the element must be zero for the body to be
in a state of static equilibrium. This condition is essential for analyzing and predicting the
behavior of materials under various loading conditions in engineering and physics.

The combined state of strain and stress at any material point is described by z = (ε,σ),
mapping the domain Ω to the local phase space Zloc ⊂ Rd×d

sym × Rd×d
sym , which provides a

comprehensive view of the material’s mechanical state. The collection of state functions
z : Ω→ Zloc defines the global state space

Z := {z : z ∈ Zloc}. (1.3)

The compatibility and conservation laws are axiomatic and, therefore, material independent.
Based on this we define a material-independent constraint set C ⊂ Z defined by

C :=
{
z ∈ Z : (1.1) and (1.2)

}
. (1.4)

to be the set of states z = (ε,σ) consistent with the compatibility and conservation laws
and corresponding essential and natural boundary conditions thereof.

The constitutive equation encapsulates a material’s intrinsic relationship between stress and
strain. Since the material model is often unknown analytically, it is commonly approximated
using a material data set D ⊂ Z defined by

D = {z ∈ Z : z(x) ∈ Dloc}, (1.5)

where Dloc = {(εi,σi)}ne
i=1 ⊂ Zloc is the local material data set derived from empirical

strain-stress measurements in small-scale experiments. Here, ne ∈ N is the number of local
data points associated with the material point x ∈ Ω. To this end, the material data D is
often completely replaced by the surrogate model E formally represented as

E := {z ∈ Z : σ(x) = F(ε(x))}, (1.6)

where F : Rd×d
sym → Rd×d

sym is an approximated mapping, which maps strain to stress, char-
acterizing the material’s inherent properties and how they respond to deformation. For il-
lustration purposes, we refer to Fig. 1.1.3. Given this relationship, we identify the material



4 1 Introduction

Figure 1.1.3: Representation of the strain-stress relationship. The material model E (red, −)
outlines the theoretical relationship based on the constitutive equation. The
material data set D (black, ·) illustrates strain-stress measurements. The vi-
sualization emphasizes how the theoretical model is informed by, but distinct
from, the experimental data

set E ⊂ Z as the collection of all possible states of the material that adhere to this specific
constitutive relationship, irrespective of other constraints. The solution set of material states
z ∈ Z which comply with both compatibility (1.1) and equilibrium (1.1.2), and align with
the material model (1.6) can be expressed as C ∩ E .

1.1.1 Perspective on material modeling

Material modeling describes a solid material’s relationship between strain and stress. Tra-
ditionally, material modeling has been approached from a macroscopic perspective, treating
the material as a continuous medium and neglecting the underlying microstructure. These
properties are determined through phenomenological relations, often derived from exper-
imental data obtained through uniaxial or multiaxial tensile or compressive tests. These
relations describe the material’s bulk response, expressed through constitutive equations.
For instance, a phenomenological model E can capture the relationship between the force
applied and the resulting elongation when stretching a rubber band, mapping the macro-
scopic quantities of stress and strain tensors.
While phenomenological models provide a strong foundation, they have limitations, es-
pecially accounting for the influence of a material’s microstructure on its properties. Mi-
crostructure refers to the arrangement of a material’s fundamental building blocks, such as
atoms, grains, and pores. For example, the size and orientation of grains within a metal
can significantly impact its strength and ductility of a material. Recent advancements in
computing power have enabled researchers to analyze a material’s underlying microstruc-
ture, considering its atomic arrangements, grain boundaries, and deformations. By simu-
lating the behavior of these microscopic components, researchers can predict the material’s
macroscopic response using techniques like micromechanics and crystal plasticity. Micro-
scopic modeling offers several advantages. It allows for incorporating microstructure into
the model, leading to a more accurate representation, especially for complex materials. Ad-
ditionally, it provides insights into deformation and failure at the microscopic level, aiding
the development of new materials with tailored properties.
The scope of material modeling extends beyond the foundational principles of elasticity
and plasticity. For instance, it deals with complex areas such as damage and fracture me-
chanics, coupled time-dependent behaviors of viscoelasticity and viscoplasticity, and the
influence of environmental factors like temperature and humidity on materials. Accurately
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capturing such complex phenomena demands a profound understanding of the material’s
macro and microscopic properties. Unfortunately, this task becomes more challenging, es-
pecially with the progression of experimental techniques. Therefore, the fitting procedure
requires more advanced calibration of material parameters, leading to a combination of ex-
tensive experimental data with advanced computational techniques. Consequently, the field
is moving toward data-driven methods such as machine learning, Bayesian methods, and
materials informatics. These methods allow for precise predictions and offer improvements
over traditional modeling techniques. The ongoing goal in material modeling is to increase
the accuracy and range of these models. As technology advances, material modeling is
expanding its potential, not just in predicting behavior but also in developing new materials.

1.1.2 Integration of machine learning in model-based approaches

Machine learning is revolutionizing computational mechanics by empowering researchers
to interpret complex data patterns beyond the capabilities of traditional modeling. The new
techniques lead to more advanced material modeling, improved predictions of material be-
havior, and streamlined manufacturing processes.
Notably, through Supervised Learning [1], models are trained on datasets with known out-
comes. For instance, polynomial regression, a type of Supervised Learning, fits complex,
non-linear equations to data, effectively capturing the intricate relationships within material
responses. It constructs polynomial features of the input variables, adeptly modeling the
interaction between strain and stress [2]. Support Vector Machines (SVMs, [3]) elevate this
process by finding the optimal hyperplane that divides datasets into classes. SVMs work
by constructing a high-dimensional feature space and then identifying the hyperplane that
best separates the classes, a technique particularly useful for classifying materials based on
various attributes such as phase or property [4].
Conversely, Unsupervised Learning algorithms like K-means [5] and hierarchical clustering
[6] organize data based on inherent similarities without needing predefined labels. K-means
clusters data by minimizing variance within each cluster, which could categorize materials
based on microstructural features [7, 8]. Hierarchical clustering, in contrast, builds a tree
of clusters, offering a multilevel hierarchy that is beneficial for dissecting complex mate-
rial properties [9]. Principal Component Analysis (PCA, [10]) simplifies the data analysis
process by reducing the number of variables. It transforms a large set of variables into a
smaller one that still contains most of the original dataset’s information. It is particularly
advantageous for analyzing high-dimensional material science data [11].
Neural Networks such as Feed-Forward (FFNN, [12]), Convolutional (CNN, [13]), and Re-
current Neural Networks (RNN, [14]) leverage different structures to model complex func-
tions. FFNNs use layers of nodes to approximate non-linear relationships [15], CNNs apply
convolutional layers to parse spatial information in data like material microstructure images
[16], and RNNs use loops within their architecture to process sequential data, such as time-
series information on material fatigue [17].
Reinforcement Learning algorithms [18] learn through interaction with an environment,
seeking to maximize a reward function, which can be harnessed to find optimal material pro-
cessing conditions [19]. Deep Learning techniques like Autoencoders [20] and Generative
Adversarial Networks (GANs, [21]) also contribute by encoding data into compact represen-
tations for feature extraction [22] and generating new, synthetic material data for extensive
analysis [23]. In addition, Autoencoders offer a unique ability to learn compressed repre-
sentations of material data, which can be helpful for dimensionality reduction and anomaly
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detection in material properties. Graph Neural Networks (GNNs, [24]) treat the material as a
graph, capturing the interconnectivity between elements, which is crucial for predicting new
material properties [25]. Transfer Learning [26] and Bayesian Optimization [27] also play a
part, with the former reapplying learned models to new tasks [28] and the latter strategically
exploring and optimizing material designs using probabilistic models.
To summarize, machine learning techniques collectively enhance material science, allowing
for the intricate modeling of material behavior, advanced classification of material proper-
ties, and innovative approaches to data analysis and generation. They introduce significant
advancements in materials research and development by capturing complex relationships
within materials, optimizing processing parameters, and generating novel materials through
synthetic data.

1.2 Model-free data-driven computational mechanics

In computational mechanics, not every solution is straightforward. Even with a clear under-
standing of material behaviors by a model E , complexities can arise with the satisfaction of
the differential equation-based requirement set C. The intersection between these sets may
be empty, implying that possibly no point within the material model (1.6) aligns with the
compatibility (1.1) and equilibrium (1.2) principle; i.e. C ∩ E = ∅.
A possible resolution is to introduce a relaxation, cf. [29], of the definition of the solution
set C ∩ E . Instead of seeking a direct intersection, we consider the closest distance between
these sets within a predefined metric space, denoted as d : Z × Z → R. The solution, thus,
can be mathematically represented as:

argmin
z∈C

d(z, E). (1.7)

In addressing the minimization problem described by (1.7), we focus on a specific mapping
designed to negotiate material model points with the constraint set C. For a given material
state ẑ = (ε̂,F(ε̂)) ∈ E the mapping PC : E → C defined as:

argmin
z∈C

{d((ε,σ), (ε̂,F(ε̂)))− [(∇ · σ − f) · η + (ε−∇symu) : ς]} , (1.8)

identifies the nearest point z within the constraint set, cf. Fig 1.2.1a. In regard, η and ς ,
representing Lagrange multipliers, are introduced to ensure that the solution satisfies the
physical constraints.
Corresponding to PC , the complementary mapping PE : C → E given by

argmin
ẑ∈E

d((ε,σ), (ε̂,F(ε̂))), (1.9)

determines the closest point ẑ in the material set E for a given state z = (ε,σ) within the
constraint set C, cf. Fig. 1.2.1b.
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(a) (b)

Figure 1.2.1: Visualization of the mappings PC and PE : (a) demonstrating the projection of
a point ẑ in the material model E onto the nearest point z within the constraint
set C. (b) showcasing the reverse mapping from the constraint set to the mate-
rial set, identifying the nearest material state ẑ to a given constraint state z.

To effectively find the nearest points between the constraint set and the material model and,
therefore, solve the minimization problem (1.7), a fixed-point technique is utilized:

ẑk+1 = PE(PC(ẑ
k)), (1.10)

where k ∈ N represents the iteration step. The iteration stops if the states converge, i.e., the
same states are calculated, or a predefined distance threshold is reached. An illustration of
the fix-point approach is shown in Fig. 1.2.2.

Figure 1.2.2: Visualization of the fixed-point approach for the relaxed solution scheme (1.7).
Iteration between projections: PC , which maps data points ẑ ∈ E to the closest
constrained points z ∈ C, and the projection PE , which locates closest point
in the material set to the constrained state provided by PC . The iteration is
visualized by {(ẑk, zk), (ẑk+1, zk+1), . . .}, converging to minimum distance
dmin.
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A notable instance of such a relaxed formulation is the model-free data-driven computa-
tional mechanics approach introduced by Kirchdoerfer and Ortiz [30]. Their methodology
aims to determine the state z in the constraint set C closest to the material data set D, es-
tablishing a connection that best captures the constitutive representation of an unknown
material model E . The primary benefit of this method is that it bypasses the traditional
material modeling step altogether, paving the way for potentially more direct and accurate
solutions for even very complex materials. A straightforward representation of model-free
data-driven computing determines the measure of deviation as the distance between z and
D. From this, we can outline the corresponding data-driven distance-minimization problem
as

argmin
z∈C

d(z,D). (1.11)

To find the closest point in the constraint set to the material data set, Kirchdoerfer and Ortiz
use the fixed-point approach (1.10), denoting it by

ẑk+1 = PD(PC(ẑ
k)), (1.12)

where in this case ẑ ∈ D describes a point in the data set. The first mapping PC : D → C
projects a data state ẑ = (ε̂, σ̂) to the closest point z = (ε,σ) in the constraint set. Similar
to Eq. (1.8), the projection at iteration k can be stated for fixed data points ẑ as

argmin
z∈C

{d(ε,σ), (ε̂, σ̂))− [(∇ · σ − f) · η + (ε−∇symu) : ς]} . (1.13)

One should notice that in the original framework [30], the compatibility condition (1.1) is
directly substituted into the distance function, and only the equilibrium condition (1.2) is
enforced through the multiplier approach. In a finite-element framework, equation (1.13)
results in two linear equation systems that must be solved for actual and virtual displace-
ments u and η. Governing equations then recover the corresponding material strain-stress
state z = (ε,σ). The second projection PD : C → D finds the closest state in the data set to
the previously calculated state in the constraint set by

argmin
ẑ∈D

d((ε,σ), (ε̂, σ̂)). (1.14)

Generally, this is done by calculating the nearest neighbors in the local data sets for each
material point. Notably, the data set does not differentiate between stress and strain, treating
them, and other history variables equally. Similar to solving an unsupervised regression, we
attempt to match the current state in the constraint set to a state in the data set. As mentioned
before, solutions obtained by this data-driven paradigm depend only on the material data set
D. Thus, no effort is directed towards material modeling or approximating the local data
sets. The following section will overview recent studies and advancements in this data-
driven methodology. Fig. 1.2.3 shows the data-driven paradigm using only the data points
from small-scale measurements to find the closest material state in the constraint set.

1.2.1 State-of-the-art

Elasticity:
Elasticity modeling has seen significant changes with increasing computational capabili-
ties and data availability. Kirchdoerfer and Ortiz [30] introduced a data-driven approach to
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Figure 1.2.3: Visualization of the fixed-point approach for the data-driven relaxed solution
scheme (1.11), adapted to minimize the distance to dataset D. Iteration be-
tween projections: PC , which maps data points ẑ ∈ D to the closest con-
strained points z ∈ C, and the projection PD, which locates the closest point
in dataset D to the state provided by PC . The iterative process is depicted by
the sequence of points {(ẑk, zk), (ẑk+1, zk+1), . . .}, converging to minimize
the distance dmin.

elasticity problems. This method incorporates experimental material data into conservation
laws, eliminating the need for traditional empirical material modeling. Applications of this
method in non-linear truss mechanics and linear elasticity showed results in terms of con-
vergence and robustness. Conti et al. [29] further investigated the concept, provided a deep
mathematical formulation, and demonstrated its convergence in elasticity. In addition, they
noted challenges in handling noise but suggested that more extensive and complete datasets
improve the solutions. The work also emphasized the capacity of data-driven models to
interpret material data in ways not limited to traditional graphs. Expanding the methodol-
ogy, Kanno [31] combined the robustness of mixed-integer programming with data-driven
elasticity. This method was designed to be compatible with standard mixed-integer solvers
and showed potential as a reference for future algorithms. Transitioning to more specific
problem areas, RÃ¶ger and Schweizer [32] focused on scalar elliptic problems in a data-
driven context. This work analyzed the relaxation dynamics of datasets with one outliner.
Kirchdoerfer and Ortiz [33] resolved the issue of noise and outliers by proposing the max-
ent data-driven paradigm. By exploiting clustering analysis, the model effectively weighted
data points based on their relevance to the final solution, enhancing the method’s stability.
The original minimum-distance solver is restored as the cluster size decreases to one point.
Sanz et al. [34] emphasized the utility and relevance of the data-driven approach in tissue
biomechanics. Due to their unique microstructural and mechanical variations, biological
tissues often challenge traditional constitutive models. By applying the data-driven method
to cortical bone tissue, they captured the complex characteristics of bone tissue, such as its
heterogeneity and intricate architecture. The study asserted the potential of the data-driven
method in simulating biomechanical scenarios without the need for complex spatial models.

Finite strain:
The work of Conti et al. [29] explores finite elasticity within the data-driven framework,
particularly extending from their prior findings in geometrically linear elasticity. Their in-
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vestigation centered on establishing a robust framework where the issues of finite elasticity
are well-posed in terms of solution existence. Setting their study within deformation gra-
dients and the first Piola-Kirchhoff stresses, they introduced and expanded upon notions of
coercivity and material data set closedness. They were able to prove the existence of solu-
tions and illustrate this with examples adhering to material frame indifference. With a deeper
understanding of these mechanisms, Platzer et al. [35] evaluated their practical application
in finite strain elasticity. By employing a Lagrangian finite element formulation combined
with a novel resolution scheme, they predicted global responses of structures using sparse
and optimal databases. The findings revealed that even if compact, optimal datasets had
a distinct advantage in predicting local strain and stress states, reinforcing that problem-
specific tailored material databases enhance data-driven simulations. In [36], Platzer stud-
ied the complex relationship between data consumption and production in computational
mechanics. He extended the data-driven approach to a geometrically non-linear setting and
proposed a method for generating databases through mechanically meaningful sampling.
Building on this foundation, Platzer et al. [37] presented a finite element solver for data-
driven finite strain elasticity. Noteworthy is their introduction of an efficient tree-based
nearest neighbor search algorithm and an emphasis on maintaining angular momentum bal-
ance for the method’s convergence. In addition, Nguyen and Keip [38] discussed non-linear
elasticity. The research advanced the concept of the distance-minimizing data-driven com-
puting method by making it applicable to boundary-value problems in continuum mechan-
ics under finite strain theory. They established a foundation for finite element formulations,
highlighting the structural tangent stiffness and generalized force vectors. Thus, Nguyen
et al. [39] presented a structured variational framework for the distance-minimizing data-
driven method. By segmenting the double-minimization problem into two distinct single-
minimization problems, they formulated one as a constrained optimization problem with
solutions sought using Lagrange multipliers. Emphasis was laid on the potential of spectral
element methods, underscoring their capability to reduce computational cost without com-
promising solution accuracy.

Damage and fracture:
Developing reliable and efficient computational methods for fracture mechanics remains
crucial for design choices, improving safety standards, and optimizing material utilization.
Carrara et al. [40] made significant advancements in brittle fracture mechanics by pre-
senting a data-driven approach distinct from conventional material modeling techniques.
Their method combines governing equations from variational principles with discrete data
points. The idea is to identify a solution within the data set that either aligns with the
Kuhn-Tucker conditions derived from the variational fracture problem or minimizes a spe-
cific energy function. This dual-method approach was tested under various configurations,
proving its robustness for Griffith and R-curve type fracture behaviors, even with noise.
Building upon their initial framework, Carrara et al. [41] extended the data-driven paradigm
to rate-dependent fractures and sub-critical fatigue. The authors integrated balance govern-
ing equations, embedded in variational principles, with a set of data points characterizing
the fracture behavior of materials. The quality of their solution lies in identifying the data
point that aligns best with the stability condition. Various tests confirmed the method’s ap-
plicability across multiple rate-dependent fracture and fatigue models, irrespective of noise
factors.

Dynamics:
Kirchdoerfer and Ortiz [42] extended the data-driven paradigm with a specific focus on in-
corporating time integration into both distance-minimizing and entropy-maximizing schemes.
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This study introduces a paradigm where data points are assigned relevance based on their
proximity to the solution and their maximum-entropy weighting. The result leads to schemes
that minimize specific free energy, considering the phase space and a time-discretized mo-
mentum conservation constraint. Transitioning from dynamics, Gonzalez et al. [43] studied
the thermodynamic consistency within data-driven computational mechanics. The study
offers an approach that complies with conservative and dissipative dynamics components
while ensuring compliance with fundamental principles like energy conservation and posi-
tive entropy production.

Manifold learning & reduction techniques:
Ibañez et al. [44] showcased the potential of constructing a complete constitutive mani-
fold by focusing on several complex experimental tests. This approach offers a strategic
method for managing extended data requirements, providing a more efficient simulation
process without relying on traditionally complex models. In [45], they build upon this by
introducing a novel data-driven method embedded in manifold learning methodologies. The
research illustrates a way to extract essential information from comprehensive datasets. Re-
garding manifold learning, the study by Gonzalez et al. [46] investigated the challenge of
hidden model parameters, especially in contexts with complex microstructures. The pa-
per formulates a solution adept at handling high-dimensional models by utilizing the kernel
Principal Component Analysis to discern these elusive parameters and coupling them with
the Proper Generalized Decomposition. Combining these techniques offers a method to
deal with high-dimensional spaces effectively. In addition, Bahmani and Sun [47] presented
a new approach with the manifold embedding technique tailored for elasticity problems.
They use an invertible neural network to embed constitutive data into an Euclidean space.
This approach simplifies the local distance-minimization problem and improves the con-
sistency of the numerical solution, especially with limited or incomplete data sets. Another
approach, introduced by Eggersmann et al. [48], expands the data-driven computing method
by integrating locally linear tangent spaces into datasets. By employing the tensor voting
method, the research enhances the precision and understanding of data structures. This
method not only deals with noisy datasets but also optimizes the accuracy of the computa-
tional results.

Inelasticity
Eggersmann et al. [49] expanded the data-driven approach to inelasticity, which was crucial,
given that material behavior can evolve in time and, thus, be history-dependent. They ex-
plored several paradigms to represent the evolving material datasets, ranging from materials
with memory over differential materials to history variables. Considering the combination
of the paradigms, this research offers flexibility to choose an approach best aligned with the
specific inelastic material type. The study also showcased the potential of data-driven in-
elasticity through numerical examples in capturing complex behaviors with improved com-
putational efficiency. Bahmani and Sun [50] offered a combination of traditional and data-
driven methodologies to deal with poroelastic materials. They introduced three formula-
tions to address the interactions within fluid-infiltrating porous media, each varying based
on data availability. A feature was an efficient distance-minimized algorithm, which uti-
lized a k-dimensional tree search to accelerate the process. The model also acknowledged
the variances between solid elasticity and fluid hydraulic data. In addition, Salahshoor and
Ortiz [51] presented a framework focused on viscoelastic wave propagation. The method
is formulated in the frequency domain. It capitalizes on the advantages of the flat-norm
of the Fourier transform, allowing the system’s response to be inferred across varying fre-
quencies. The robustness and compatibility of this scheme were underscored through its
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application to real-world materials, such as polymeric truss structures and soft gel samples.
In contrast, Bartel et al. [52] addressed the difficulties of path-dependent material behav-
ior by introducing the concept of history surrogates and propagators. A notable benefit of
this method is its integration with pre-existing algorithms, enabling a smooth transition and
the flexibility to address heterogeneous problems that comprise both elastic and elastoplas-
tic materials. Lastly, Poelstra et al. [53] focused on plasticity, proposing an evolutionary
data-driven scheme. The study provided a comprehensive analysis of existence and data
convergence.

Coupled problems:
Yang et al. [54] proposed an approach that uses the data-driven paradigm in local regions
where determining material constitutive models is challenging. Simultaneously, the model-
driven method is employed in regions where material models are available. Marenic et
al. [55] addressed the challenges of multiphysics. Traditional methodologies to solve such
problems necessitate creating monophysical and multiphysics coupling operators. Marenic’s
work simplified this by introducing a data-driven approach tailored for ’smart’ materials.
The idea is to expand the phase space and formulate a new norm specific to the data-driven
solver. The study illustrated that bypassing the coupling tangent terms is feasible by ef-
fectively leveraging a comprehensive material database that inherently captures coupling
interactions. The data-driven method allows for decoupling different physical aspects while
managing their interactions through data.

Multiscale framework:
Karapiperis et al. [56] addresses the issue of nonlocal effects, which inherently exist in
microstructured materials such as metals, foams, and granular media. Although there have
been continuous efforts to solve predictive nonlocal mechanical theories, a definitive inter-
nal length scale has yet to be achieved. Karapiperis introduces a framework that eliminates
the necessity of defining any internal length scale using the data-driven paradigm. This
paradigm is expanded to generalized continua. Two applications, including a micropolar
elastic plate and the shear banding problem in quartz sand, underline the method’s robust-
ness and effectiveness. Xu et al. [57] optimized element methods, particularly for composite
materials and structures. The paper introduces the data-driven FE2 method, highlighting the
computations of correlated scales observed in classical FE2. By computing microscopic
problems in advance, they create an offline material genome database. This database subse-
quently plays a role in the macroscopic data-driven analysis, overcoming issues associated
with multiscale systems. The approach replaces the real-time computation of microscopic
problems with a more efficient database-driven approach, significantly increasing the com-
putational efficiency of structural analysis. Karapiperis et al. [58] emphasized material
history parametrization and optimal sampling of the mechanical state space. A focus on
the behavior prediction of sand, which is inherently complex and history-dependent, under-
scores the model’s effectiveness. The model offers predictions under intricate nonmonotonic
loading paths and showcases parallels with plane strain and triaxial compression shear band-
ing experiments. Mora et al. [59] implemented a multiscale data-driven approach to study
cortical bone tissue, showing that the data-driven paradigm suits real-world problems. They
obtained detailed strain fields at microscopic and macroscopic levels through biaxial load-
ing of horse cortical bone samples and subsequent digital image correlation. Their findings
at the macroscopic level highlighted nonuniform strain and stress patterns, questioning the
suitability of using a standard linear homogeneous orthotropic model for bone tissue.

Uncertainty:
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Guo et al. [60] explicitly incorporated an uncertainty analysis-based framework into data-
driven computational mechanics. Instead of restricting the analysis to a single solution
trajectory in phase space, it seeks a comprehensive solution set. The aim is to discern the
effects of multisource uncertainties linked with the data set on the resultant data-driven solu-
tions. In addition, Zschocke et al. [61] highlighted that materials like concrete or reinforced
concrete inherently exhibit behavior dictated by their heterogeneities. The study translates
heterogeneous mesoscale behavior into the macroscopic continuum by tapping into numer-
ical homogenization methods, which embed themselves in scale separation. The result is
a decoupled numerical homogenization scheme encapsulating material uncertainties within
a singular dataset. Korzeniowski [62] introduced computations driven by data generated
from stochastic fields. A highlight is the introduction of a multilevel computation technique
designed to optimize numerical efforts. Instead of using complete data sets, the approach
employs multiple simulations guided by adaptive, compact data subsets. Korzeniowski ex-
tended the data-driven methodology’s applicability, examining its capacity by addressing a
diffusion problem and integrating a fuzzy variable to build a polymorphic uncertainty model.

Material (parameter) identification:
Leygue et al. [63] research identified the strain-stress relationship of non-linear elastic ma-
terials. The data-driven approach builds a robust database by leveraging collections of non-
homogeneous strain fields, such as those measured from Digital Image Correlation (DIC).
Truss structures serve as the starting point for this methodology, eventually widening its
scope to enclose small-strain elasticity. In another study, Leygue et al. [64] introduced the
inverse data-driven approach based on full-field measurements. This technique permits the
extraction of heterogeneous and multiaxial material state fields directly from displacement
fields and external load measurements, bypassing the constraints of traditional constitu-
tive equations. Moreover, Stainier et al. [65] focused on identifying material data through
measures of displacement fields. The core Data-Driven Identification (DDI) algorithm de-
termines compatible mechanical states, the material database, and the underlying structural
response, enabling accurate predictions. Dalemat et al. [66] captured heterogeneous stress
fields by coupling the DIC and the DDI algorithm. The approach retrieves the material’s me-
chanical response from a rich database of displacement fields and loading conditions based
solely on mechanical equilibrium. Based on this, Dalemat et al. [67] investigated the data-
driven identification algorithm’s resilience against incomplete input data. By ingeniously
recovering missing data and only ensuring the balance equation, Dalemat et al. emphasized
the robustness of this approach, even in the face of missing displacement values and partial
force information. Su et al. [68] augmented the data-driven identification paradigm by inte-
grating the locally convex reconstruction method, named the Local-Convexity Data-Driven
Identification (LCDDI) approach. The method optimizes material data points considering
local data structures, offering significant improvements in data acquisition and quality in
material identification.

Stochastic:
Ayensa et al. [69] developed a method using the Mahalanobis distance to address engineer-
ing scenarios where data exhibit variance and correlation. When tested on various problems,
their approach showed improved convergence, accuracy, and flexibility performance, espe-
cially for noisy data. Beyond this, Korzeniowski and Weinberg [70] focused on situations
with sparse data. In these cases, maintaining the robustness of numerical simulations be-
comes crucial. The authors compared two methods âC“ the stochastic and the data-driven
finite element methods. Through a comparative analysis, Korzeniowski showed the ad-
vantages of the data-driven finite element method, especially when dealing with uncertain
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material data. Prume et al. [71] extended the data-driven methodology, proposing using
likelihood measures based on empirical data sets to estimate the potential outcomes of a
structure. This method avoids conventional modeling and incorporates efficient techniques
like population annealing and efficient search algorithms. Conti et al. [72] introduced a
method that derives inferences directly from empirical data. The paper introduces a novel
intersection concept between likelihood measures, disclosing how to establish system out-
comes’ likelihood. It derives explicit analytic expressions for outcome expectations by com-
bining entropic regularizations and empirical data sets.

Efficiency:
Eggersmann [73] explored the computational aspects of the data-driven paradigm, precisely
the challenge of searching for the closest matches in an extensive material data set. Various
data structures were assessed for their efficiency in this task. The findings were that using
approximate nearest-neighbor algorithms resulted in computational improvements without
affecting the accuracy of solutions. The concept by Van et al. [74] utilized unprocessed
data, which consist of displacement fields across extensive areas. This data is collected
from full-field measurements and comes from real-world structure measurements. They are
reliable for understanding movement and stress in structures. Collecting and studying the
data makes it possible to guess how new structures might react.

1.2.2 Integration of machine learning in model-free approaches

As explored in subsection 1.1.2, integrating machine learning with traditional model-based
methods in computational mechanics indicates a promising approach, offering innovative
resolutions to long-established challenges. Techniques like Neural Network Regression and
Bayesian Optimization enhance prediction accuracy while learning paradigms such as Su-
pervised, Unsupervised, and Reinforcement Learning, alongside Hybrid Models, advance
the traditional methodologies. The pertinent question is: How can machine learning be in-
strumental for model-free methods?

Unlike model-based approaches, model-free methods bypass the preliminary step of mate-
rial modeling, instead directly utilizing material datasets to solve mechanics problems. This
direct application is particularly beneficial with high-quality data. However, it encounters
noisy, sparse, or extensive data issues, which worsen when the material behavior exhibits
non-linearity or plasticity. Machine learning’s prowess in pattern recognition and predictive
analytics is pivotal, offering the potential to manage such datasets adeptly.
For instance, Kalman filtering [75] serves as an iterative enhancement tool that refines pre-
dictions by effectively accounting for noise within datasets, all without reliance on phys-
ical models. This method excels by capitalizing on the statistical characteristics intrinsic
to the data. Similarly, when confronted with the task of efficient data querying in exten-
sive datasets, KD-trees [76] provide an invaluable means to partitioning nearest-neighbor
searches within a multi-dimensional space, thus addressing the optimization challenge out-
lined by Eq. (1.14). Sparse data often presents a significant issue in model-free analysis;
here, dimensionality reduction techniques such as Principal Component Analysis (PCA,
[10]) and t-Distributed Stochastic Neighbor Embedding (t-SNE, [77]) can be transformative.
These techniques refine the nature of the data, emphasizing informative trends and patterns
crucial for the analysis, thus facilitating a clearer understanding of complex datasets.
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Furthermore, Physics-Informed Neural Networks (PINNs, [78]) and Particle Swarm Op-
timization (PSO, [79]) exemplify the synergy between machine learning and computational
mechanics optimization tasks. PINNs adeptly incorporate physical laws as constraints within
the learning process, ensuring that the predictive model adheres to known principles. The
intrinsic characteristics of Eq. (1.13) outline a loss function inherently compatible with
PINNs. Using neural networks facilitates the inclusion of supplementary conditions directly
within the loss function, embedding more complex constraints and enhancing the model’s
fidelity to physical laws. Concurrently, PSO harnesses a group’s collective intelligence to
navigate the solution space, proving particularly adept when the data is noisy or the physical
laws are incompletely understood. It employs multiple agents or ”particles” that explore the
search space and update their trajectories based on their own experience and that of their
neighbors. Its effectiveness arises from its collaborative approach and random processes,
which empower it to identify the best overall solutions even in environments with local op-
tima.

In conclusion, machine learning applied to computational mechanics facilitates more ac-
curate predictions and enhances computational efficiency. It also introduces adaptability to
new and complex data, strengthening model-free analysis’s robustness. Machine learning is
a suitable tool for an increasingly data-driven engineering field that can redefine problem-
solving paradigms.
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1.3 Outline of the enclosed articles

Article 1 – Model-free data-driven simulation of inelastic materials using structured data
sets, tangent space information and transition rules: The traditional model-free data-driven
paradigm has been effective in addressing complex non-linear elastic material behavior.
However, it faces significant challenges when dealing with materials with history-dependent
properties. In these materials, a single point in the stress-strain space can correspond to dif-
ferent material behaviors, depending on the loading history. The article in chapter 2 intro-
duces a novel mixed-method approach that integrates the traditional model-based framework
with the emergent data-driven paradigm. The method augments the dataset with experimen-
tally measured directions in the tangent space of points in stress-strain space (cf. Fig. 1.3.1),
capturing potential changes during loading. This information is crucial for differentiating
between elastic and inelastic behavior, as elastic materials exhibit a constant tangent direc-
tion throughout loading. In contrast, inelastic materials display changing tangents due to
their non-linear response. These tangents enrich the data with crucial information about the
material’s history-dependent behavior.
Moreover, the dataset is divided into subsets, each correlating to distinct behavioral pat-
terns of the material. A set of transition rules are defined to map between the subsets. The
efficiency of this method is demonstrated through its application to non-linear elastic and
elasto-plastic behavior with isotropic hardening, thereby emphasizing its potential for the
analysis and prediction of material behavior under complex loading conditions.

Figure 1.3.1: The distance minimization algorithm iterates between two steps: first, local
projection PD maps the material point zk from the conservation manifold C
onto the closest data point ẑk+1 within the data set D. Projection PC maps
the point back onto the resulting equilibrium state zk+1 in C, incorporating
the associated tangential space TD to ensure that the change in material state
between loading steps aligns with the data tangent ∆zk+1.
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Article 2 – Model-free data-driven inelasticity in Haigh-Westergaard space – a study how
to obtain data points from measurements: From the standpoint of practical application, one
of the critical aspects of the tangent space-enhanced model-free data-driven approach is
the comprehensive coverage of the relevant data states, which involves collecting qualified
data and computing the corresponding tangent spaces for each point. Leveraging material
symmetry is beneficial in this context, as it effectively reduces the data requirements with-
out sacrificing the quality of the simulation outcomes. The study in chapter 3 develops a
methodology using Haigh-Westergaard coordinates, illustrated in Fig. 1.3.2, to facilitate an
understanding of the material’s yield surface. Regarding this, we utilize a dual experimental
setup: a combined tension-torsion test to determine the yield surface and a single tensile test
to derive the tangent space at specific points. This approach provides a comprehensive data
set that accurately reflects the material’s response under different loading conditions. The
proposed data-driven approach aims to minimize the distance within the Haigh-Westergaard
space, incorporating tangent space directions while adhering to compatibility and equilib-
rium constraints. This refined paradigm accurately represents the behavior of materials
under elasto-plastic deformation with isotropic hardening.

Figure 1.3.2: Visualisation of stress σ and its deviatoric part s in the Haigh-Westergaard
stress space. The coordinates are defined by the invariants (ξ, ρ, θ), which
depend on the principal stresses (σ1, σ2, σ3). Figure from [80].
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Article 3 – A physics-informed GAN framework based on model-free data-driven compu-
tational mechanics: The article in chapter 4 proposes a novel integration of data-driven
computational mechanics within a generative adversarial network framework. This hybrid
approach leverages the strengths of both neural networks and data-driven methods. The
generator in the GAN is designed to adhere to physical constraints, ensuring consistent and
physically viable solutions are generated. Concurrently, the discriminator uses the closest
strain-stress data to assess the authenticity of the generator’s outputs. This dual mechanism
effectively addresses the challenges of sparse data and inconsistency, which are common in
standalone data-driven methods and PINNs. This combined approach offers a more robust
and versatile framework for simulating and predicting mechanical behavior under various
conditions. It demonstrates significant potential in addressing complex scenarios where
physics-informed neural networks fail due to the need for consistent physical accuracy. The
network structure is further demonstrated in Fig. 1.3.3, which shows how the GAN frame-
work is adapted for model-free data-driven applications.

Figure 1.3.3: The GAN Framework adapted for model-free data-driven methods, highlight-
ing the integration of physically informed generation and data-driven valida-
tion.
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2 Article 1:
Model-free data-driven simulation of inelastic materials
using structured data sets, tangent space information
and transition rules

This article was published as:

CIFTCI, K., & HACKL, K. (2022). Model-free data-driven simulation of inelastic materials
using structured data sets, tangent space information and transition rules. Computational
Mechanics, 70(2), 425-435.

Disclosure of the individual authors’ contributions to the article:

In model-free data-driven computational mechanics, this article is the culmination of the
collaborative endeavors of K. Ciftci and K. Hackl. The idea, introduced by K. Hackl, is the
augmentation of tangent space into the strain-stress data set and the classification of the data
into subsets of distinct material behaviors. Thus, transition rules map the modeling points to
the various subsets. K. Ciftci wrote the manuscript, led the work on the computational parts
described, and handled the numerical simulations. K. Hackl developed the mathematical
ideas, and K. Ciftci derived the corresponding equations. Both authors have reviewed the
paper and agree with its final form for publication.
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Abstract: Model-free data-driven computational mechanics replaces phenomenological
constitutive functions by numerical simulations based on data sets of representative samples
in stress-strain space. The distance of strain and stress pairs from the data set is minimized,
subject to equilibrium and compatibility constraints. Although this method operates well for
non-linear elastic problems, there are challenges dealing with history-dependent materials,
since one and the same point in stress-strain space might correspond to different material
behaviour. In recent literature, this issue has been treated by including local histories into
the data set. However, there is still the necessity to include models for the evolution of
specific internal variables. Thus, a mixed formulation of classical and data-driven model-
ing is obtained. In the presented approach, the data set is augmented with directions in the
tangent space of points in stress-strain space. Moreover, the data set is divided into subsets
corresponding to different material behaviour. Based on this classification, transition rules
map the modeling points to the various subsets. The approach will be applied to non-linear
elasticity and elasto-plasticity with isotropic hardening.

2.1 Introduction

The simulation of boundary-value problems in solid mechanics typically combine two dif-
ferent types of equations; conservation and constitutive laws. The conservation laws are
derived from universal principles containing an axiomatic character. Whereas the consti-
tutive laws are formulated through modeling based on experimental observation. Material
modeling aims to find these phenomenological models representing the data in the best way
possible. Nevertheless, the process of modeling adds error and uncertainty to the solutions,
especially in systems with high-dimensional complexity.
One approach to overcome this problem is the usage of machine learning techniques, es-
pecially artificial neural networks, to model material behaviour [81, 82, 83]. The network
is built directly from experimental data to recognize and learn the underlying non-linear
relations between strain and stresses without the construction of an explicit model. The
performance of this approach is studied well for many kind of problems including plastic-
ity [84], high-performance material [85] and multiscale analysis [86]. In relation, various
neural network architectures have found applications in prediction [87, 88, 89], modeling
[90, 91, 92, 93], control and identification design [94, 95] areas of materials science. De-
spite their good reliability, neural networks rely on hidden layers. Therefore it is unclear on
how much each independent variable is influencing the dependent variables, especially for
higher-dimensional cases.
The model-free data-driven method by Kirchdoerfer and Ortiz [30] incorporates experi-
mental material data directly into numerical calculations of boundary-value problems. The
method is based on a nearest neighbors approach. Particular in continuum mechanics, the
optimization problem consists of calculating the closest point in the material data set con-
sistent with the field equations of the problem i.e. compatibility and equilibrium. Therefore
the data-driven method provides an alternative formulation of the classical initial-boundary-
value problem completely bypassing the empirical material modeling step. For a variety of
elasticity problems like non-linear material behaviour [30, 33, 29, 38, 96], dynamics [42],
finite strain [37] and material data identification [65] the approach is elaborated and the
associated convergence properties are well analyzed. However, problems arise when deal-
ing with history-dependent data as present in inelastic materials, provides one uses nearest
neighbor clustering only. Therefore, Eggersmann et. al. [49] include local histories into the
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data set, investigating materials with memory, differential materials and history variables.
The data-driven paradigm then consists of minimizing the distance between the evolving
data set and a time-dependent constraint set. Nonetheless, it is still necessary to resort to
additional models for the evolution of internal variables. Thus, a mixed formulation is ob-
tained consisting of a combination of classical and data-driven modeling. In addition to that
a variation of the scheme has been proposed by Karapiperis et. al. [58] considering multi-
scale modeling. The framework emphasizes the parametrization of material history and the
optimal sampling of the mechanical state space.
Recently, the data-driven scheme was extended by the tangent space, which improves the
learning of the underlying data structure.Ibanez et. al. [44, 45] introduce a method based on
a manifold learning approach mapping the data into a lower-dimensional space to use locally
linear embedding. A similar second order data-driven scheme, formulated by Eggersmann
et. al. [48], uses tensor voting [97] to obtain point-wise tangent space. This enables the
search for additional states close to the original data.

This paper presents a new approach by augmenting the tangent space directly into the
distance-minimizing data-driven formulation and classify the underlying data structure into
subsets corresponding to different material behaviour. Former leads to a much more con-
cise system of equations and the integration of the tangent space enables interpolation in
regions of sparse data sampling, whilst ensuring the internal states to cohere with the data
set. The data subset classification allows to to deal with loading paths arising in inelasticity
avoiding the reliance of models for the evolution of history variables. To operate on the
data classifications, transition rules will be defined to map the internal states of the system
to the various subsets. As a consequence, the extended data-driven paradigm evaluates the
closest point in the transitioned material data subset consistent with the field equations of
the problem and additionally closest to the local tangential direction. In the present study,
we assume that all needed data is given. Furthermore, the question about data generation
and accessibility from experiments remains open. This is a crucial topic that we are going
to address in further research.

To provide a general setting, Section 2.2 introduces the basic definitions and derivation
of the classical distance-minimizing data-driven computing method. Section 2.3 presents
the extension to inelasticity predicated on the extension of the data sets by tangent space
information and the classification of the data into subsets corresponding to different mate-
rial behaviour. Additionally transition rules are defined to map the modeling points to the
various data subsets. Section 2.4 demonstrates the performance of the suggested method
via numerical examples employing non-linear elasticity and elasto-plasticity with isotropic
hardening. At the end, Section 2.5 summarizes the results and gives recommendations con-
cerning future research topics.

2.2 Classical data-driven computing paradigm

In the following the ordinary data-driven computational mechanics method will be summa-
rized for the readers convenience based on the definitions and formulations in [30, 49]. Let
Ω ⊂ Rd with d ∈ N be a discretized system encountering displacements u = {ui ∈ Rni}ni=1

subjected to applied forces f = {f i ∈ Rni}ni=1, where n ∈ N is the number of nodes and
ni the dimension at node i. The internal state is characterized by strain and stress pairs
ze = (εe,σe) ∈ R2de with de ∈ N being the dimension of stress and strain at material point
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e = 1, . . . ,m, where m ∈ N is the number of material points. The internal state of the
system is subject to the compatibility and equilibrium condition

εe = Beue, ∀e = 1, . . . ,m, (2.1)
m∑
e=1

weB
T
e σe = f . (2.2)

In this case we is a positive weight and Be is a strain-displacement matrix. Defining z =
{(εe,σe)}me=1, the constraints (2.1) and (2.2) define a subspace

C :=
{
z ∈

m
ą

e=1

R2de : (2.1) and (2.2)
}
, (2.3)

denoted as constraint set with
Ś

being the Cartesian product. Since the set is material-
independent, the connectivity between εe and σe is still missing. Instead of using a func-
tional relationship, the information about the material is given by means of a data set

D :=
{
ẑ ∈

m
ą

e=1

De

}
with De := {(ε̂i, σ̂i) ∈ R2de}ne

i=1, (2.4)

where ne ∈ N being the number of local data points; which classically consists of exper-
imental measurements or data achieved from small scale simulations. To define the data-
driven problem the local space R2de will be metricized by means of norms

∥ze∥e :=
1

2
Ee∥εe∥22 +

1

2
E−1

e ∥σe∥22, (2.5)

with numerical scalar Ee ∈ R+, typically being of the type of an elastic stiffness, e.g., a
representative Young’s modulus. One might remark that this metric differs from the metric
proposed in [30]. The corresponding local distance function

de(ze, ẑe) := ∥ze − ẑe∥e (2.6)

with ze, ẑe ∈ R2de , can be used to define a distance for z, ẑ ∈
m
Ś

e=1

R2de in the global space

by

d(z, ẑ) :=
m∑
e=1

wede(ze, ẑe). (2.7)

The distance-minimizing data-driven problem, introduced by [30], reads

argmin
ẑ∈D

argmin
z∈C

d(z, ẑ) = argmin
z∈C

argmin
ẑ∈D

d(z, ẑ), (2.8)

i.e. the aim is to find the closest point consistent with the kinematics and equilibrium laws to
a material data set, or equivalently find the point in the data set that is closest to the constraint
set. The approach as well as the convergence and well-posedness have been studied on non-
linear elastic material behaviour (cf. [30, 29]). In the following the data-driven paradigm
will be extended by the tangent space.
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2.3 Extension by tangent space

In the following, we will suggest an extension of the data-driven paradigm by including
tangent space information in order to deal with inelastic materials. This is a non-trivial task,
since the same point in stress-strain space might correspond to different material behavior.
Whereas it is proposed in [49] to include local histories into the data set, we will extend the
data set by the tangent space information. For this purpose, let us introduce the extended
data set

Dext =
m

ą

e=1

Dext
e with Dext

e := {(ẑi,Ci) | ẑi ∈ De,Ci ∈ Rde×de}ne
i=1, (2.9)

where Ci represents the total stiffness matrix at (ε̂i, σ̂i), including potential inelastic effects.
Thus, the actual independent data is given by ((ε̂i, σ̂i),Ci), i.e. strain, stress and stiffness
matrix. We are fully aware, that measuring Ci experimentally might be a formidable task.
However, it might very well be possible combining information on nearby strain and stress
pairs and employing material symmetry. We plan to elaborate on this in a subsequent paper.
For now, we will simply assume Ci to be available.
The tangent space extension allows to operate on the underlying structure of the phase space
of strain and stress pairs. In the following, we will introduce a way to incorporate the tangent
space directly into the data-driven computing paradigm.

2.3.1 Data-driven formulation

Recalling the distance-minimization problem (2.8), we start by evaluating the data point
(ẑ,C) = {(ẑe,Ce)}me=1 in the extended data set closest to the constraint set, i.e.

argmin
(ẑ,C)∈Dext

d(C, ẑ). (2.10)

Then, each local optimal data point and its corresponding tangent can then be used to define
a map ye : Rde → Rde with

ye(xe) = σ̂e +Ce(xe − ε̂e) ∀e = 1, . . . ,m, (2.11)

parametrizing the tangent space as subset of the phase space. Thus, the data sets on which
the data-driven paradigm operates can be written as

D∆ =
m

ą

e=1

D∆
e with D∆

e := {(xe,ye(xe)) |xe ∈ Rde}. (2.12)

This definition allows to incorporate the local tangent spaces directly into the distance-
minimization formulation, i.e.

argmin
z∈C

d(z,D∆), (2.13)

using the underlying data structure. For this purpose, the remaining step is the determination
of the material state z = {(εe,σe)}me=1 ∈ C closest to the data sets D∆. For given optimal
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data sets ∆ẑe = (xe,ye(xe)) ∈ D∆
e , e.g. from a previous iteration, the minimization

problem (2.13) can then be written as

Minimize
m∑
e=1

wede(ze,∆ẑe)

s.t. εe = Beue and
m∑
e=1

weB
T
e σe = f .

(2.14)

Taking the Cartesian product structure of z ∈
m
Ś

e=1

R2de into account, it is reasonable to

interchange the summation and the minimization. Therefore it is enough to calculate

min
ze∈R2de

de(ze,∆ẑe) = min
ze∈R2de

∥ze −∆ẑe∥e ∀e = 1, . . . ,m, (2.15)

where we used the definition of the distance function. One can notice that the minimizing
state can be found by evaluating the material state ze = ∆ẑe. Enforcing the compatibility
constraint by expressing the material strains in terms of displacements ze = (Beue,σe) it
follows

εe = Beue = xe ∀e = 1, . . . ,m, (2.16)
σe = ye(xe) = σ̂e +Ce(xe − ε̂e) ∀e = 1, . . . ,m. (2.17)

Substitution of Eq. (2.16) into Eq. (2.17) leads to

σe = σ̂e +Ce(Beue − ε̂e) ∀e = 1, . . . ,m. (2.18)

Now using the equilibrium constraint we have

m∑
e=1

weB
T
e (σ̂e +Ce(Beue − ε̂e)) = f . (2.19)

Finally reordering leads to a standard linear problem given by(
m∑
e=1

weB
T
e CeBe

)
u = f −

m∑
e=1

weB
T
e (σ̂e −Ceε̂e). (2.20)

Solving the equation system for u and make use of (2.16) and (2.17), we can calculate the
closest local material states to the local data sets ensuring the compatibility and equilibrium
condition.
Since we assumed given optimal data points, it remains to determine the stress, strain and
tangent space pairs (ẑe,Ce) in the local data sets Dext

e that result in the closest possible
satisfaction of compatibility and equilibrium. The determination of the optimal points can
be done iteratively. For given data points {(ẑk

e ,C
k
e)}me=1 at iteration k the modeling points

{zk+1
e }me=1 are calculated using the data-driven scheme. Next, we calculate the closest local

data points in the extended set to the latest modeling points. The iterations are performed
until the data assignment remain unchanged or the global distance d(z, ẑ) is lower than a
predefined tolerance, we reached convergence. A visualization of a single algorithmic load-
ing step is given in Fig. 2.3.1 and the detailed extended data-driven scheme is summarized
in Algorithm 1.
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Figure 2.3.1: Visualization of data-driven method extended by tangent space. Modeling
points zk+1

e minimize distance to the tangent space associated with data points
ẑk
e , respecting compatibility and equilibrium constraints. Data points ẑk+1

e

minimize distance to modeling points zk+1
e . Iterations are repeated until the

local data assignments remain unchanged or the global distance is less than a
certain tolerance.

Due to the usage of the tangent-space structure, only a few or even just one iteration are
required. This constitutes a considerable increase of efficiency in comparison with the tra-
ditional data-driven algorithm introduced in [30]. We realize that the issue about the acces-
sibility of data and its corresponding tangent space is crucial. As mentioned before, we are
assuming that all required data is given. The question about data generation and availability
will be addressed in further research.

2.3.2 Transition rules

To simulate inelastic material behaviour, the main task is to capture history dependence.
This is achieved by associating different tangent spaces to data points with different history.
Assuming an underlying data structure, as proposed in [48], the local material data sets Dext

e

are classified into subsets corresponding to different material behaviour, e.g. elastic and
inelastic:

Dext
e =

⋃̇
p

Dext, p
e with p = {elastic, inelastic}. (2.21)

Thus, data points with close or even the same strain and stress values may possess vastly
different tangent spaces; in the elastic case essentially determined by the elastic stiffness
and in the plastic case by the hardening modulus. It should be emphasized that it is easily
possible to distinguish experimentally between elastic and plastic material behaviour. Based
on the classification, transition rules map the modeling points to the various subsets.
In the following, a transition mapping is derived for the case of elasto-plasticity with isotropic
hardening. The kinematics of elasto-plasticity is governed by a yield condition of the form

σcom(σ) ≤ σy, (2.22)
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Algorithm 1 Extended data-driven solver

Input: matrices {Be}me=1, weights {we}me=1, load f , tolerance tol

Data: data points {(ẑe,Ce)}me=1, data sets {Dext
e }me=1

function DDSOLVER({Dext
e }me=1, {(ẑe,Ce)}me=1,f )

Set iteration k = 0
{(ẑk

e ,C
k)}me=1 ← {(ẑe,Ce)}me=1

while true do
Solve equation system:(

m∑
e=1

weB
T
e C

k
eBe

)
uk+1 = fk+1 −

m∑
e=1

weB
T
e (σ̂

k
e −Ck

e ε̂
k
e)

for e = 1→ m do
εk+1
e = Beu

k+1,
σk+1

e = σ̂k
e +Ck

e(ε
k+1
e − ε̂ke)

end for
for e = 1→ m do

min{de(zk+1
e , ẑk+1

e ) | (ẑe,Ce) ∈ Dext
e }

end for
if d(zk+1, ẑk+1) ≤ tol then
{ze}me=1 ← {zk+1

e }me=1

break
else

k ← k + 1
end if

end while
return {ze}me=1

end function

where σcom(σ) is a comparison stress dependent on the current stress state, e.g. σcom(σ) =√
3/2 ∥devσ∥ in the case of von Mises (J2) plasticity, and σy denotes the yield stress, a

material property depending on the loading history in the case of isotropic hardening. For
σcom(σ) < σy, we have elastic behaviour, for σcom(σ) = σy plastic behaviour.

Given values of modeling points {ze}me=1 using the data-driven algorithm 1, the transition
mapping for material state e = 1, . . . ,m at time step t+ 1 can be formulated as:

1. assign local data set D̃ext
e = Dext, p

e by

p ≡

{
elastic, if σcom(σe) < σy,e

inelastic, otherwise.
(2.23)

2. if p ≡ inelastic, set new yield stress at σy,e := σcom(σe);

3. find closest data point {(ẑe,Ce)}me=1 in data set D̃∆
e to modeling point ze by

min{de(ze, ẑe) | (ẑe,Ce) ∈ D̃ext
e }. (2.24)



2.4 Numerical examples 27

While step 1 maps the modeling points to the corresponding data sets, steps 2 and 3 define
a new yield limit and find the closest data point inside these sets for the next loading incre-
ment. These formulations give rise to corresponding representational scheme in the context
of data-driven inelasticity, which are summarized in Algorithm 2.

Algorithm 2 Data-driven transition rules for inelasticity at time step t+ 1

Input: load f , yield stresses {σy,e}me=1

Data: data points {(ẑe,Ce)}me=1, data subsets {(Dext, elastic
e ,Dext, inelastic

e )}me=1

{ze}me=1 = DDSOLVER({D̃ext
e }me=1, {(ẑe,Ce)}me=1,f )

for e = 1→ m do
if σcom(σe) < σy,e then
D̃ext

e ≡ Dext, elastic
e

else
D̃ext

e ≡ Dext, inelastic
e

σy,e = σcom(σe)
end if
min{de(ze, ẑe) | (ẑe,Ce) ∈ D̃ext

e }
end for
t+ 1← t+ 2

2.4 Numerical examples

In this section the performance of the presented data-driven solver extended by the tangen-
tial space information will be illustrated in two typical benchmark examples considering the
stress analysis of non-linear elastic material and an elasto-plastic von Mises material with
isotropic hardening. Based on this, we discuss the accuracy and convergence regarding the
number of data points. In this scope, we clarify how to add noise to a data point and how to
calculate the error between the numerical and the reference solution.
Noise mostly occurs during the collection of data and indicates uncertainties of the mea-
surement. To simulate these uncertainties in our data sets, we add some random noise
to each data point. Based on this, adding noise to a tensor A ∈ Rd×d can be done by
Anoise = A+ np(A ◦Σ), where np ∈ [0, 1] denotes the percentage of noise, Σ ∈ Rd×d is a
random tensor with elements Σi,j ∈ [−1, 1] and ◦ is the element-wise product.
The error between a data-driven solution zk and its corresponding reference solution zk,ref

shall be calculated by means of the root-mean-square deviation of strain and stress defined
by

RMSD(z)2 =

∑T
k=0 Error(zk)2

T
, (2.25)

where T ∈ N is the number of total loading steps, zk
e = (εke ,σ

k
e) the local data-driven states

and zk,ref
e = (εk,refe ,σk,ref

e ) the local reference states at step k ≤ T . The error is given by

Error(zk)2 =

∑m
e=1we∥zk

e − zk,ref
e ∥2∑m

e=1we∥zk,ref
e ∥2

, (2.26)

with ∥ · ∥ given by definition (2.5).
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2.4.1 Non-linear elastic cylindrical tube under internal pressure

The first example is the classical benchmark problem considering a non-linear elastic cylin-
drical tube under internal pressure p. Fig. 2.4.1 illustrates the geometry and the bound-
ary conditions for this particular problem. The tube has thickness r2 − r1 with inner and
outer radii r1 = 1m and r2 = 2m. Two symmetry planes can be identified and therefore
the solution domain need only cover a quarter of the geometry, shown by the shaded area.
The domain is discretized by quadratic triangles. Modeling the tube as a two dimensional

Figure 2.4.1: Discretization and boundary conditions for a cylindrical tube under internal
pressure.

plane-strain problem, the corresponding material parameters of the reference solid used for
the reference solution and data sets are Young’s modulus E = 70 · 103 Pa, Poisson’s ratio
ν = 0.3 and elasticity tensor

C = λI⊗ I+ 2µI, (2.27)

where I is the second-rank identity tensor, I is the symmetric part of the fourth-rank iden-
tity tensor and λ = Eν

(1+ν)(1−2ν)
and µ = E

2(1+ν)
are the Lamé constants. The response is

computed using a non-linear relation

σ(ε) = λf(tr(ε))I+ µε+ C : ε (2.28)

with f(x) := c1 arctan(c2x), parameters c1 = 3.0 · 10−2, c2 = 1.0 · 102. For the data-driven
computation two different types of data distributions are investigated. The first data set is
created by a zero-mean normal distribution with a standard deviation of 0.01 and the second
data set is created by a uniform distribution within [−0.02, 0.02] for strains in each direction.
The corresponding local tangents C are calculated analytically using Eq. (2.28) and endued
with some noise. Finally, the simulation of problem in Fig. 2.4.1 is performed by applying

a pressure p(t) =
5 · 104√

3
log

(
r2
r1

)
· t progressively increased with 100 incremental steps

using a constant normalized time step of ∆t = 1. Due to the random nature of the data
distribution, each simulation returns a different error. To cover a wide spectrum of the er-
rors produced, we run 100 simulations corresponding to independent realizations of both,
normal and uniform distribution.
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The error plot in Fig. 2.4.2a shows a linear rate of convergence, which corresponds to the
data-driven convergence analysis of elastic problems in [30]. Figure 2.4.2b shows the de-
pendence of the error from noising ranging from 1% to 10% of the maximum values of
strains and stresses applied to the various data sets. The shaded areas show the spread of
the error arising from the different data set realizations used in the independent simulation
runs. Note, that apparently both data sets realizations, normal and uniform distribution,
yield similar results and convergence performances. Figure 2.4.3 illustrates the occurring
stress components σxx, σyy and σxy in the non-linear elastic cylindrical tube under pressure.
In addition, it compares the stress distribution produced by the non-linear reference model
and the data-driven paradigm based on a normal distribution of size 163.

(a)

(b)

Figure 2.4.2: RMSD Error of data-driven solver for normal and uniform distributed data
points. (a) Convergence with respect to data size. (b) Dependency of the
error on applied noising for a data set of size 163 with normal and uniform
distribution. The shaded areas show the spread of the error arising from the
different data set realizations.
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Figure 2.4.3: Comparison of stress components σxx (a) and (b), σyy (c) and (d) and σxy (e)
and (f) in [Pa] between the reference model (left) and the data-driven algo-
rithm (right) based on a normal distribution of size 163.
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2.4.2 Elasto-plastic plate with a circular hole

This example illustrates the performance of the data-driven method extended by transition
rules by considering an elasto-plastic von Mises material with isotropic hardening for the
boundary value problem in Fig. 2.4.4. The plate with a hole has the dimensions of ℓ = 1m,
h = 0.2m and r = 0.05m, is clamped at its left edge and subjected to a uniform vertical
load q at its right edge. The applied load increases from 0 to 1.8 · 107 Pa, decreases to 0 and
then increases again to 2 · 107 Pa, using a constant normalized time step of ∆t = 1.

Figure 2.4.4: Discretization and boundary conditions for a rectangular plate with a circular
hole under loading.

The material parameters of the reference solid used for the reference solution and data sets
are Young’s modulus E = 200·109 Pa, Poisson’s ratio ν = 0.3, isotropic hardening modulus
H = E/20, initial yield stress σy0 = 250 · 106 Pa and elasticity tensor given by

C = (κ− 2

3
G)I⊗ I+ 2GI, (2.29)

where I is the second-rank identity tensor, I is the symmetric part of the fourth-rank identity
tensor and κ = E

3(1−2ν)
and G = E

2(1+ν)
are the bulk and shear moduli. The response is com-

puted using a J2-plasticity model based on an iterative return mapping algorithm embedded
in a Newton-Raphson global loop restoring equilibrium.

Following [49], a virtual test employing the geometry depicted in Fig. 2.4.5 is used to gen-
erate an accurate coverage of suitable local material states and loading paths of various set
sizes. As mentioned before, the corresponding tangents are assumed to be given and there-
fore calculated analytically using the plasticity model. To ensure uncertainties we endure
the total stiffness matrices with some noise.
Figure 2.4.6 shows the data-driven solution at the maximum loading magnitude using a data
sample containing 104 points. The convergence of the maximum displacement to the ref-
erence displacement based on a J2-plasticity model can be seen in Fig. 2.4.7a. Moreover,
Fig. 2.4.7b confirms a linear convergence rate towards the reference solution by increasing
the number of data points. For better representation, the convergence of the displacement is
shown for only one virtual test. However, the convergence of the error is shown for various
virtual tests leading to a deviation visualized by the shaded area.
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Figure 2.4.5: Geometry and discretization of an example virtual test of a plate with random
holes to generate suitable data sets.

(a) Reference solution

(b) Data-driven solution

Figure 2.4.6: Von Mises stress distribution at maximum loading at each Gaussian integration
point using (a) J2-plasticity model and (b) data-driven algorithm.
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(a)

(b)

Figure 2.4.7: Convergence property of the extended data-driven method using transition
rules for elasto-plastic material behaviour. (a) Maximum displacement (ver-
tical displacement of lower right vertex versus traction (resultant load of right
edge) for different data resolution. (b) RMSD Error for each data resolution.
The shaded area shows the deviation of the error arising from different inde-
pendent virtual tests.
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2.5 Conclusions

We present an approach extending the model-free data-driven computing method of prob-
lems in elasticity of Kirchdoerfer and Ortiz [30] to inelasticity. The original method uses
nearest neighbor clustering and therefore challenges arise dealing with history-dependent
data. This issue is treated in this work by extending the formulation by including point-wise
tangent spaces and classifying the data structure into subsets corresponding to different ma-
terial behaviour. Based on the classification, transition rules are defined to map the material
point to the classified data subsets, which incorporates with the idea that data points are
connected by an underlying structure to each other. Additionally, minimizing the distance
to local tangent spaces ensures data point connectivity and enables interpolation in regions
lacking information of data. Furthermore, the presented scheme can be easily applied to
non-linear elasticity as well, noticing that the resulting system of equations of the mini-
mization problem is reduced, leading to greater efficiency. A numerical example has been
presented to demonstrate the application to data-driven inelasticity and its numerical perfor-
mance.
Generally, it can be concluded that improvements in accuracy of the presented approach
increase for larger data sets and it correlates with the convergence analysis of data-driven
elasticity. Nevertheless, it should be mentioned that the ensurance of specific quality of the
data such as good coverage of material states and loading paths constitutes a critical issue
concerning the availability of real experimental data. Another issue concerns the classifi-
cation of the data into subsets corresponding to material behaviour. This could be done by
efficient machine-learning algorithms e.g. spectral or density based clustering. These gener-
alizations of the data-driven paradigm suggest important directions for future research in the
area of machine-learning methods, especially physics-informed neural networks. By defin-
ing appropriate loss-functions, these networks can not only be trained to satisfy training data
but to find optimal solutions for given physics governing equations. Since the data-driven
paradigm bypasses the material modeling step but still relies on solving governing equa-
tions, a coupled formulation of the model-free data driven and the physics-informed neural
network method is conceivable.
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Abstract: Model-free data-driven computational mechanics, first proposed by Kirchdoerfer
and Ortiz, replaces phenomenological models with numerical simulations based on sample
data sets in strain-stress space. Recent literature extended the approach to inelastic problems
using structured data sets, tangent space information, and transition rules. From an appli-
cation perspective, the coverage of qualified data states and calculating the corresponding
tangent space is crucial. In this respect, material symmetry significantly helps to reduce the
amount of necessary data. This study applies the data-driven paradigm to elasto-plasticity
with isotropic hardening. We formulate our approach employing Haigh-Westergaard coor-
dinates, providing information on the underlying material yield surface. Based on this, we
use a combined tension-torsion test to cover the knowledge of the yield surface and a single
tensile test to calculate the corresponding tangent space. The resulting data-driven method
minimizes the distance over the Haigh-Westergaard space augmented with directions in the
tangent space subject to compatibility and equilibrium constraints.

3.1 Introduction

In computational mechanics, the simulation of boundary value problems typically combines
two different types of equations; conservation and constitutive laws. While conservation
laws are derived from universal principles assuming an axiomatic character, constitutive
laws are usually acquired by fitting the parameters of a model to given strain-stress data.
Examples of such constitutive models can be found in [98]. However, the process of ma-
terial modeling is often ill-posed and adds uncertainties to the solutions, especially in sys-
tems with high-dimensional complexity. The model-free data-driven method, introduced by
Kirchdoerfer and Ortiz [30], bypasses the intermediate step of material modeling, incorpo-
rating experimental data directly into numerical calculations of boundary-value problems.
The method is elaborated for a variety of applications like non-linear elasticity [30, 33, 29,
38], dynamics [42], finite strain [37] and material data identification [65]. Additional appli-
cations can be found in the area of non-local mechanics [56], coupled electro-mechanical
[55] and electromagnetic field problems [99, 100], decoupled homogenization schemes [61],
and model-driven coupling [54]. An extension of the data-driven scheme has been made by
using the tangent space to improve the learning of the underlying data structure. Ibañez et
al. [44, 45] suggest a manifold learning approach mapping the data to a lower-dimensional
space to use the locally linear embeddings. Eggersmann et al. [48] presented a second-
order data-driven approach that uses tensor voting [97] to obtain point-wise tangent spaces
enabling the search for additional states close to the original data. For inelastic boundary
value problems, Eggersmann et al. [49] include local histories in the data set to investi-
gate materials with memory. Karapiperis et al. [58] have also suggested a variation of the
scheme, considering multiscale modeling. In addition, the authors recently developed a
method that incorporates the tangent space into the distance-minimizing data-driven formu-
lation and classifies the underlying data structure into subsets according to various material
behavior [101]. The framework uses a parametrization of the material history and an opti-
mal sampling of the mechanical system’s state space.
Nevertheless, due to possible changes from elastic to plastic behavior as a function of the
loading path, it is difficult to deal with data dependent on history as present in inelastic mate-
rials, provided one uses nearest neighbor clustering only. Eggersmann et al. [49] overcome
this issue by accounting local histories in the data set, investigating three paradigms, i.e.,
materials with memory regarding the history of deformation, differential materials regard-
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ing histories of stress and strain, and history variables. However, it is still necessary to resort
to additional models to analyze the evolution of internal variables. The proposed data-driven
approach minimizes the distance between the evolving data set and a time-dependent con-
straint set. The result is a mixed formulation comprising classical and data-driven modeling
approaches. Karapiperis et al. [58] have also proposed a variation of the scheme, consider-
ing multiscale modeling. The framework uses a parametrization of the material history and
an optimal sampling of the mechanical system’s state space.

We recently developed a novel strategy that directly incorporates the tangent space into
the distance-minimizing data-driven formulation and classifies the underlying data struc-
ture into subsets according to different material behavior [101]. The former results in a
significantly more compact system of equations and allows for interpolation in sparse data
regions guaranteeing that the internal states cohere with the data set. Categorization into
data subsetsÂ permits dealing with inelastic loading paths avoiding reliance on models for
the evolution of history variables. In addition, we define transition rules mapping the sys-
tem’s internal states to the various subsets to operate on the data categories. As a result,
the extended data-driven paradigm locates the closest point in the transitioning material
data subset compatible with the problem’s field equations and nearest to the local tangential
direction. Although the approach works sufficiently well for ideal data, the issue of data
accessibility and its accompanying tangent space arises. In particular, data sets of inelas-
tic materials could only be gathered by impractical sample testing encompassing a wide
variety of loading directions. Furthermore, using data-driven simulation necessitates the
availability of stress-strain pairs encompassing all six components, accompanied by their
respective experimental setups. However, the pure application of a data-driven approach be-
comes unmanageable and impracticable due to this requirement. Consequently, model-free
data-driven formulations require a model that extrapolates experimental data in alternative
directions.

This paper addresses the data accessibility issue for isotropic elasto-plastic materials. To
overcome the reliance on specific directions and quantities of strain-stress data points, we
propose a comprehensive data-driven approach that leverages the principal stress space by
employing the Haigh-Westergaard coordinate transformation. In regard, the tangent space
is characterized by the hardening of the material and the normal on the yield surface. For
the former, we use data from a simple tensile test. For the latter, we project the data struc-
ture using Haigh-Westergaard coordinates to the octahedral plane in principal stress space.
A combined tension-torsion test covers the underlying material yield surface information
such that the associated yield function can be determined using a preferred approximation
method, e.g., interpolation. The resulting data-driven scheme minimizes the distance to the
tensile test data and determines the associated tangent stiffness in the Haigh-Westergaard
space, subject to compatibility and equilibrium restrictions. By adopting this methodol-
ogy, we aim to alleviate the limitations associated with the availability and distribution of
data, eventually enhancing the applicability of data-driven modeling in the field of isotropic
elasto-plastic materials.

Section 3.2 provides a general setting by introducing the definitions and derivation of the
distance-minimizing data-driven computing method, including the enhancement of tangent
space and transition rules. Section 3.3 introduces a coordinate transformation to the oc-
tahedral plane based on the Haigh-Westergaard coordinates. In addition, we propose an
approach to determine the normal on the yield surface and the corresponding material stiff-
ness tangent. Furthermore, we introduce transition rules to map the modeling points to the
tangent space. Section 3.4 exhibits the performance of the proposed method using a nu-
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merical example involving elasto-plasticity with isotropic hardening. Finally, Section 3.5
summarizes the results and suggests future research subjects.

3.2 Tangent space enhanced data-driven paradigm

The following will summarize the classical data-driven computational mechanics method for
the reader’s convenience based on the definitions and formulations in [30, 49]. Let Ω ⊂ Rd

with d ∈ N be a discretized system consisting of n ∈ N nodes representing displacements
u ∈ Rn, which are subjected to applied forces f ∈ Rn resulting from distributed sources
and Neumann boundary conditions. In addition, the system Ω comprises m ∈ N material
states characterized by strain and stress fields εe ∈ Rde and σe ∈ Rde , with de ∈ N being
the dimension in Voigt notation at material point e = 1, . . . ,m. The system’s internal state
is subject to the compatibility and equilibrium conditions

εe = Beu, ∀e = 1, . . . ,m, (3.1)
m∑
e=1

weB
T
e σe = f , (3.2)

with volumes associated positive weights we ∈ R+, discrete gradient operator Be ∈ Rde×n

and discrete divergence operator BT
e ∈ Rn×de . Further, we define the set

Z :=
m

ą

e=1

Ze with Ze := {(εe,σe) | εe,σe ∈ Rde}, (3.3)

where Ze ⊆ Rde × Rde is the local phase space of material point e, and Z ⊆ Rmde × Rmde

is the global phase space of the finite system Ω.

The distance-minimizing data-driven problem, introduced by [30], reads

argmin
ẑ∈D

argmin
z∈C

d(z, ẑ) (3.4)

where C ⊂ Z denotes the constraint set defined by

C :=
{
z ∈ Z : (3.1) and (3.2)

}
; (3.5)

containing all states fulfilling compatibility and equilibrium. The set D ⊂ Z consists of
experimental measurements or results from small-scale simulations and is defined by

D :=
m

ą

e=1

De with De := {(ε̂i, σ̂i) ∈ Ze}ne
i=1, (3.6)

ne ∈ N is the number of local data points associated with the integration point e. The
distance d : Z × Z → R is defined by

d(z, ẑ) :=
m∑
e=1

wede(ze, ẑe), (3.7)
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with local distance function de : Ze × Ze → R defined by

de(ze, ẑe) := ∥ze − ẑe∥e (3.8)

metricized by the norm

∥ze∥e :=
1

2
Ee∥εe∥22 +

1

2
E−1

e ∥σe∥22, (3.9)

where Ee ∈ R+ is a numerical scalar typically being of the type of elastic stiffness.

Thus, the data-driven method aims to find the closest point z in the constraint set C to ẑ in
the material data set D, or equivalently find the point in the data set that is closest to the
constraint set.

3.2.1 Tangent space, structured data sets and transition rules

To deal with inelastic materials, we extended the classical data-driven paradigm (3.4) by
tangent space information, structured data sets, and transition rules [101]. The phase space
collects a physical system’s possible strain-stress states that a material can experience un-
der certain conditions. The tangent space extension enables us to operate on the underlying
structure of this phase space, which allows us to analyze the system’s behavior in a neigh-
borhood of a particular strain-stress point. For this purpose, we recall the definition of the
extended data set

Dext =
m

ą

e=1

Dext
e with Dext

e := {(ẑi,Ci) | ẑi ∈ De,Ci ∈ Rde×de
sym,+}ne

i=1, (3.10)

where Ci represents the symmetric positive definite stiffness matrix at ẑi = (ε̂i, σ̂i), includ-
ing possible inelastic effects. Incorporating the tangent space directly into the data-driven
computing method reads

argmin
(ẑ,C)∈Dext

argmin
z∈C

d(z, ẑ), (3.11)

with data points (ẑ,C) = {(ẑe,Ce)}me=1. Based on [30], we determine the optimal points
iteratively using a fixed-point iteration expressed by

(ẑk+1,Ck+1) = PD(PC(ẑ
k,Ck)), (3.12)

where k ∈ N denotes the current iteration.

The first mapping PC : Dext → C projects a data state (ẑk,Ck) ∈ Dext to the closest
point in the constraint set zk ∈ C. For fixed data points {(ẑe,Ce)}me=1, e.g., from a previous
iteration, the projection is performed by solving the linear equation system [101](

m∑
e=1

weB
T
e CeBe

)
u = f −

m∑
e=1

weB
T
e (σ̂e −Ceε̂e), (3.13)
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and computing the corresponding strain and stress values by

εe = Beu ∀e = 1, . . . ,m, (3.14)
σe = σ̂e +Ce(εe − ε̂e) ∀e = 1, . . . ,m. (3.15)

The second projection PD : C → Dext finds the closest state in the data set to the previously
calculated state in the constraint set. We associate different tangent spaces to data points with
different histories. The local material data setsDext

e are classified into subsets corresponding
to different material behavior, e.g., elastic and inelastic:

Dext
e =

⋃̇
p

Dext, p
e with p = {elastic, inelastic}. (3.16)

Based on the classification, transition rules map the modeling points to the various subsets.
Thus, the closest point projection PD is done by minimizing the local distances de for the
material states zk

e subject to data subset Dext, p
e . In other words, a nearest-neighbor problem

has to be solved to find the data point (ẑk+1
e ,Ck+1

e ) ∈ Dext, p
e closest to zk+1

e regarding the
metric (3.7).
In [101], we derived such a projection for the case of elasto-plasticity with isotropic hard-
ening. A yield condition governs the kinetics of elasto-plasticity by

σcom(σ) ≤ σy, (3.17)

where σcom(σ) is comparison stress dependent on the current stress state and σy denotes the
yield stress, a material property depending on the loading history in the case of isotropic
hardening. For fixed modeling points {ze}me=1 e.g. achieved from the linear equation sys-
tem (3.13), the mapping PD can be performed for material state e = 1, . . . ,m by:

1. check yield condition and assign index

p =

{
elastic, if σcom(σe) < αy,e

inelastic, otherwise;
(3.18)

2. if p ≡ inelastic, set new yield stress

σy,e ≡ σcom(σe); (3.19)

3. find closest data point (ẑe,Ce) to modeling point ze by

min{de(ze, ẑe) | (ẑe,Ce) ∈ Dext, p
e }. (3.20)

The first step maps the modeling points to the corresponding data sets; steps 2 and 3 define
a new yield limit and find the closest data point inside these sets for the next loading incre-
ment.

Studying the data-driven approach for ideal data, we realize that the issue of the accessibility
of data and its corresponding tangent space is crucial. While 100 data points are sufficient
in the 1D case, 1003 are needed for the 2D and 1006 for the 3D case [48]. Considering the
latter case, the local data sets consist of strain and stress pairs (ε̂i, σ̂i) with 12 independent
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components. By considering symmetry, the corresponding tangents Ci have 21 independent
components. This fact raises the question of obtaining suitable data sets from measurements
to cover the phase space and determine the consistent tangent space. Especially data sets
for the simulation of inelastic material behavior could only be obtained by impracticable
sample tests covering a variety of loading paths. This study demonstrates the suitability of
data sets obtained from combined tension-torsion and single tension tests for the data-driven
modeling of elasto-plasticity. It should be noted that the proposed approach primarily fo-
cuses on isotropic hardening. Nevertheless, it is worth mentioning that the framework can
be extended to enclose a broader range of symmetric hardening behaviors.

3.3 Data-driven paradigm in octahedral plane

In order to address the concern regarding the impracticable data sets, we propose the in-
troduction of the octahedral plane within the Haigh-Westergaard coordinate system. This
transformation modifies the mapping function, denoted as PD, in the principal stress space,
resulting in a reduction of the problem to only three components, specifically (σ1, σ2, σ3).
The tangent stiffness C is determined by the normal vector to the yield surface. However,
the challenge lies in accurately representing the yield surface itself. For this, we exploit
the symmetry inherent in the yield surface to construct the surface by utilizing combined
tension-torsion data sets from the symmetric portion. Consequently, an analytical expres-
sion can be derived depending on the tangent stiffness hardening variable. The hardening
variable can be implicitly obtained using strain-stress increment data from a simple tension
test. The data set is subsequently enriched with the aforementioned hardening variable. In
order to determine the optimal strain-stress increment, we find the closest hardening variable
within the tensile data set to the hardening variable of the material state obtained from the
yield surface in Haigh-Westergaard coordinates is identified. Since each material state sat-
isfying the tangent relation in the principal stress space lies on the yield surface, which may
evolve during hardening, we utilize such states as new data points in the mapping function
PD to obtain the next material state. In this section, we suggest a way to obtain data from
measurements insofar as we have to modify the data-driven fixed-point method’s projection
PD.

3.3.1 Preliminaries for tangents of isotropic elasto-plastic bodies

We start by introducing the constitutive relation for isotropic elasto-plastic materials

σ = λ tr(ε)I+ 2µ(ε− εp), (3.21)

with strain ε, stress σ, plastic strain εp, Lamé constants λ, µ and second-rank identity tensor
I. We employ strain and stress in means of tensors instead of Voigt form, i.e., (ε,σ) ∈
Rd×d × Rd×d. Taking the derivative of Eq. (3.21) and making use of plasticity theory, it
follows

σ̇ = λ tr(ε̇)I+ 2µ(ε̇− ε̇p) = C : ε̇, (3.22)

with tangent operator

C = λI⊗ I+ 2µIII− γN ⊗N . (3.23)
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In this context, III is the symmetric part of the fourth-rank identity tensor, γ ∈ R≥0 is a
parameter depending on the hardening and N is the normal given by

N =
∥∥∥∂Φ
∂σ

∥∥∥−1∂Φ

∂σ
, (3.24)

with Φ being a continuously differentiable yield function. The LamÃ© constants can be
calculated using a simple tension test. Alternatively we can decompose the tangent given in
Eq. (3.23) by C = Cel −Cpl with

Cel := λI⊗ I+ 2µIII and Cpl := γN ⊗N . (3.25)

The matrix Cel can be calculated using a principal component analysis applied to the elastic
part of data [73]. Thus, the main task to obtain tangent C at a fixed point (ε,σ) is the
computation of Cpl depending only on normal N and parameter γ ∈ R≥0.

3.3.2 Normal vector in the octahedral plane based on Haigh-Westergaard coordinates

The normal N on the yield surface Φ at a fixed point is orthogonal to the corresponding
tangent vector at this point, which can be obtained by differentiating the corresponding
position vector on the surface. Instead of performing the calculations in the Cartesian co-
ordinate system, we transform the position vector to a curvilinear system, i.e., principal
stress space (σ1, σ2, σ3), where each component of the vector is expressed by cylindrical
coordinates determining the surface. For this purpose, we introduce the Haigh-Westergaard
coordinates (ξ, ρ, θ) describing a cylindrical coordinate system within principal stress space.
Coordinate ξ is the projection on the vector (1, 1, 1) of the hydrostatic axis, and (ρ, θ) are
polar coordinates in the deviatoric plane that is orthogonal to the hydrostatic axis [102, 103].
The coordinates can be computed using invariants of the stress tensor σ and its deviator s
defined as

J1 = tr(σ), (3.26)

J2 =
1

2

[
tr(σ2)− 1

3
tr(σ)2

]
=

1

2
tr(s · s), (3.27)

J3 = det(s). (3.28)

Based on this, the Haigh-Westergaard coordinates (ξ, ρ, θ) can be obtained by

ξ =
J1√
3
=

σ1 + σ2 + σ3√
3

, (3.29)

ρ =
√

2J2 =
1

3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2, (3.30)

θ =
1

3
arccos

(
3
√
3

2
J3J

−3/2
2

)

= arccos

(
2σ1 − σ2 − σ3√

2
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

)
, (3.31)

with θ ∈ [0, π
3
]. A point σ can then be expressed in terms of the coordinates (ξ, ρ, θ) as

σ =

σ1

σ2

σ3

 =
ξ√
3

1
1
1

+

√
2

3
ρ

 cos(θ)
cos
(
θ − 2π

3

)
cos
(
θ + 2π

3

)
 , (3.32)
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with principal stresses σ1 ≥ σ2 ≥ σ3. For ξ ≡ 0, the resulting plane, known as the devi-
atoric or octahedral plane, is a subspace of Haigh-Westergaard space given by (ρ, θ). An
illustration of the coordinates and the resulting plane is given in Fig. 3.3.1.

Figure 3.3.1: Visualisation of a stress tensor σ and its deviatoric part in the Haigh-
Westergaard stress space.

In addition, the intersection of the yield surface with the octahedral plane is given by

ρ(θ) = αΦ(θ), (3.33)

with α ∈ R≥1 describing isotropic hardening. In particular, for α = 1, the equation (3.33)
represents the initial yield surface. As mentioned before, the normal to this surface at a fixed
point σ is perpendicular to any tangent vector at this point (see Fig. 3.3.2). Regarding the

Figure 3.3.2: Schematic illustration of a normal vector N̂ at a random point s of a
parametrized yield surface Φ in Haigh-Westergaard coordinates
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Haigh-Westergaard space, the tangent space is a 2-dimensional plane whose basis consists
of two tangent vectors given by

t1 =

1
1
1

 and t2 =
∂s

∂θ
, (3.34)

where s is the deviatoric part of point σ defined in Haigh-Westergaard coordinates as

s =

√
2

3
ρ(θ)

 cos (θ)
cos
(
θ − 2π

3

)
cos
(
θ + 2π

3

)
 . (3.35)

The derivative of s with respect to θ is given by

∂s

∂θ
=

√
2

3
ρ(θ)

 − sin (θ)
cos
(
π
6
− θ
)

− cos
(
π
6
+ θ
)
+

√
2

3
ρ′(θ)

 cos (θ)
cos
(
θ − 2π

3

)
cos
(
θ + 2π

3

)
 . (3.36)

Based on Szeptyński [104], the normal vector can then be calculated with the tangential
vectors given in Eq. (3.34) by

N̂ = − t1 × t2
∥t1 × t2∥2

, (3.37)

where ∥·∥2 denotes the well-known Euclidean norm. Substitution of Eq. (3.36) into Eq. (3.34)
and using trigonometric identities yields for the cross product of the tangent vectors

t1 × t2 =

√
2

3
ρ(θ)

cos
(
π
6
− θ
)
+ cos

(
π
6
+ θ
)

sin (θ)− cos
(
π
6
+ θ
)

− sin (θ)− cos
(
π
6
− θ
)
 (3.38)

+

√
2

3
ρ′(θ)

sin
(
π
6
+ θ
)
− sin

(
π
6
− θ
)

− cos (θ)− sin
(
π
6
+ θ
)

cos (θ) + sin
(
π
6
− θ
)


=
√
2ρ(θ)

 cos (θ)
− sin

(
π
6
− θ
)

− sin
(
π
6
+ θ
)
+

√
2ρ′(θ)

 sin (θ)
− cos

(
π
6
− θ
)

cos
(
π
6
+ θ
)
 (3.39)

=
√
3s+

√
2ρ′(θ)

 sin (θ)
− cos

(
π
6
− θ
)

cos
(
π
6
+ θ
)
 . (3.40)

Applying the definition of Euclidean norm to Eq. (3.40) and making use of trigonometric
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identities, it follows

∥t1 × t2∥22 =

∥∥∥∥∥∥√3s+
√
2ρ′(θ)

 sin (θ)
− cos

(
π
6
− θ
)

cos
(
π
6
+ θ
)
∥∥∥∥∥∥

2

2

(3.41)

=
(√

2ρ(θ) cos (θ) +
√
2ρ′(θ) sin (θ)

)2
(3.42)

+
(
−
√
2ρ(θ) sin

(π
6
− θ
)
−
√
2ρ′(θ) cos

(π
6
− θ
))2

+
(
−
√
2ρ(θ) sin

(π
6
− θ
)
−
√
2ρ′(θ) cos

(π
6
− θ
))2

=2ρ(θ)2
(
cos (θ)2 + sin

(π
6
− θ
)2

+ sin
(π
6
+ θ
)2)

(3.43)

+ 2ρ′(θ)2
(
sin (θ)2 + cos

(π
6
− θ
)2

+ cos
(π
6
+ θ
)2)

+ 2ρ(θ)ρ′(θ)
(
2 cos (θ) sin (θ) + cos

(π
6
+ 2θ

)
− cos

(π
6
− 2θ

))
=2ρ(θ)2

(
cos (θ)2 +

3

2
sin (θ)2 +

1

2
cos (θ)2

)
(3.44)

+ 2ρ′(θ)2
(
sin (θ)2 +

1

2
sin (θ)2 +

3

2
cos (θ)2

)
+ 2ρ(θ)ρ′(θ) (2 cos (θ) sin (θ)− 2 cos (θ) sin (θ))

= 3
(
ρ(θ)2 + ρ′(θ)2

)
. (3.45)

The normal vector in principal stress space can then be expressed in Haigh-Westergaard
coordinates by substituting Eq. (3.40) and Eq. (3.45) into Eq. (3.37) yielding

N̂ (θ) =
1√

ρ(θ)2 + ρ′(θ)2

s+

√
2

3
ρ′(θ)

 sin (θ)
− cos

(
π
6
− θ
)

cos
(
π
6
+ θ
)
 . (3.46)

The normal N̂ can be transformed back to Cartesian coordinate system by N = T ·
diag(N̂ ) · T−1, where T ∈ R3×3 consists of eigenvectors corresponding to the eigen-
values σ1 ≥ σ2 ≥ σ3 of σ and satisfies the transformation to principal stress space σ =
T · diag(σ1, σ2, σ3) ·T−1.

3.3.3 Data enforced tangent

Recalling the definition of the tangent

C = λI⊗ I+ 2µIII− γN ⊗N , (3.47)

we found a formula for the normal N in principal stress space by Eq. (3.46) provided we
have information about the initial yield surface Φ(θ), cf. Eq. (3.33). To address the latter,
we assume a combined tensile-torsion test resulting in stress fields of the form

σ̂i =

σ̂11,i 0 0
0 0 σ̂23,i

0 σ̂23,i 0

 . (3.48)
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By variation of the ratio σ̂23/σ̂11, it is possible to obtain data points
{(ρi, θi)}ne

i=1 lying on the initial yield surface, illustrated in Fig. 3.3.3. By this means, it
is possible to approximate the yield function Φ(θ) by choosing an appropriate interpolation
method, e.g., multilinear polynomial, spline, or nearest-neighbor interpolation.

Figure 3.3.3: Schematic illustration of data points (ρ̂i, θ̂i) which are gained by combined
tensile-torsion test lying on the initial yield surface Φ(θ).

Thus, the remaining task to calculate the complete tangent operator C is to determine pa-
rameter γ ∈ R≥0 depending on the hardening variable α, i.e., γ ≡ γ(α). Regarding this, we
assume a data set {(ε̂i, σ̂i)}ne

i=1 consisting of strain stress pairs of the form

(ε̂i, σ̂i) =

ε̂11,i 0 0
0 ε̂22,i 0
0 0 ε̂22,i

 ,

σ̂11,i 0 0
0 0 0
0 0 0

 , (3.49)

which can be achieved by a simple tensile test. In addition, we calculate strain and stress
increments (∆ε̂i,∆σ̂i) = (ε̂i, σ̂i)− (ε̂i−1, σ̂i−1) having the form

(∆ε̂i,∆σ̂i) =

∆ε̂11,i 0 0
0 ∆ε̂22,i 0
0 0 ∆ε̂22,i

 ,

∆σ̂11,i 0 0
0 0 0
0 0 0

 . (3.50)

Substitution of the increments into the derivative relation (3.22) results in

∆σ̂i = λtr(∆ε̂i)I+ 2µ∆ε̂i − γiN (θi)⊗N (θi), (3.51)

representing an implicit equation for parameter γi for i = 1, . . . , ne. As a consequence, cal-
culating the normals N (θi) by Eq. (3.24) and parameters γi by Eq. (3.51), we can determine
the tangents Ci for the strain stress data in (3.49). In the following, we will exploit how to
use this to calculate the tangent for a general given modeling point arising in the context of
the data-driven approach.

3.3.4 Adapted data-driven projection PD

As mentioned in Section 3.2.1, the issue of accessibility of data and its corresponding tan-
gent space is crucial. In Section 3.3.2 and 3.3.3, we introduced a way to determine the
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tangent C for strain stress data obtained by a simple tensile test (3.49) using the Haigh-
Westergaard space. To exploit this approach for the data-driven method, we recall the fixed-
point mapping PDPC in Eq. (3.12), where PC projects a data state (ẑ,C) ∈ Dext to the closest
point in the constraint set z ∈ C and computes the corresponding strain and stress values by
Eq. (3.14) and Eq. (3.15). Additionally, projection PD finds the closest state (ẑ,C) in data
set Dext to the calculated material state z. While PC only consists of solving linear equation
system (3.13) and therefore cannot be modified in general, projection PD is used to adapt
the nearest neighbor search in principal stress space.

We start by assigning the data set (3.6) by

D =
m

ą

e=1

De with De := {(ε̂i, σ̂i)}ne
i=1, (3.52)

with strain and stress points obtained by the tensile test described in (3.49). Based on this,
we calculate the invariants

J2,i =
σ̂2
11,i

3
, (3.53)

J3,i =
2σ̂3

11,i

27
, (3.54)

providing the corresponding Haigh-Westergaard coordinates (3.29)-(3.31) by

ρ̂i =

√
2

3
∥σ̂11,i∥, (3.55)

cos
(
3θ̂i

)
=

3
√
3

2
·
2σ̂3

11,i

27
· 33/2σ̂−3

11,i = 1. (3.56)

Using that Equation (3.56) yields θ̂i = 0 and substituting this into relation (3.33), we have
an equation for the hardening variable given by

α̂i =
ρ̂i

Φ(0)
=

√
2

3

∥σ̂11,i∥
Φ(0)

, (3.57)

for i = 1, . . . , ne. Accordingly, we redefine the extended data set (3.10) by

Dext =
m

ą

e=1

Dext
e with Dext

e := {(∆ε̂i,∆σ̂i), α̂i}ne
i=1, (3.58)

with strain and stress increments (∆ε̂i,∆σ̂i) = (ε̂i, σ̂i)− (ε̂i−1, σ̂i−1). The hardening vari-
able αi can replace the comparison stress in the transition rules of the data-driven mapping
PD. Following the procedure of [101], the data sets Dext

e are classified into subsets corre-
sponding to elastic and inelastic material behavior according to Eq. (3.16). In the context of
the kinetics of elasto-plasticity, the comparison stress is defined as

σcom(σ) =
ρ

Φ(θ)
= α, (3.59)

where the Haigh-Westergaard coordinates ρ, θ depend on σ and Φ(θ) is a given approxima-
tion of the yield surface, cf. Section 3.3.3. Thus, the yield condition reads

σcom(σ) ≤ αy, (3.60)

with αy ∈ R≥1 denoting the hardening parameter. Hence, for fixed modeling points {ze}me=1

the mapping PD : C → Dext can be adapted for material state e = 1, . . . ,m by:
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1. determine the Haigh-Westergaard coordinates ρe, θe

2. check yield condition and assign index

p =

{
elastic, if αe < αy,e,

inelastic, otherwise,
with σcom(σe) = αe; (3.61)

3. if p ≡ elastic:
assign tangent as elastic stiffness matrix i.e.

Ce = Cel
e ; (3.62)

4. if p ≡ inelastic:

a) set new yield condition

αy,e ≡ σcom(σe); (3.63)

b) find closest data point (∆ε̂e,∆σ̂e, α̂e) by

argmin
(∆ε̂i,∆σ̂i,α̂i)∈Dext, p

e

∥αe − α̂i∥2; (3.64)

c) calculate the diagonal matrix σD
e of σe containing principal stresses σ1,e ≥

σ2,e ≥ σ3,e and the corresponding transformation matrix Te satisfying σD
e =

T−1
e σeTe

d) calculate normal vector in octahedral plane i.e.

N̂ (θe) =
1√

ρ(θe)2 + ρ′(θe)2

se +√2

3
ρ′(θe)

 sin (θe)
− cos

(
π
6
− θe

)
cos
(
π
6
+ θe

)
 (3.65)

and transform it into the Cartesian coordinate system

N e = Te · diag(N̂ ) ·T−1
e ; (3.66)

e) determine parameter γe using the equation

∆σ̂e = λetr(∆ε̂e)I+ 2µe∆ε̂e − γeN e ⊗N e; (3.67)

f) assign tangent as

Ce = Cel
e + γeN e ⊗N e; (3.68)

5. set the closest data point (ẑe,Ce) to modeling point ze as (ze,Ce).
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The first two steps map the transition rules to the octahedral plane and the corresponding
data sets. Step 3 and 4 assign the tangent stiffness matrix distinguishing between the elastic
or inelastic assignment. While Step 3 maps the tangent to the elastic stiffness matrix, Step 4
defines a new yield limit and calculates the normal in the octahedral plane, finding the clos-
est point in the data set and using Eq. (3.46). The inelastic stiffness matrix (3.23) is then
obtained by a coordinate transformation and Eq. (3.51). Step 5 utilizes that each material
state that satisfies the tangent relation within the principal stress space is encompassed by
the yield surface, which has the potential to evolve during the process of hardening. We
capitalize on the utilization of such states as data points within the mapping function PD.
This enables us to derive a more precise determination of the subsequent material state.
Due to the definition of the adapted projection PD and the usage of the tangent-space struc-
ture in PC , the enhanced paradigm increases efficiency compared to the classical data-driven
algorithms [30, 101]. This can be shown assuming a given data state (ẑk+1,Ck+1) =
PD(z

k) with material state zk = PC(ẑ
k,Ck) obtained at the k-th fixed-point iteration. Us-

ing compatibility condition (3.1) and equilibrium condition (3.2), it follows that the linear
equation system (3.13) of projection PC(ẑ

k+1,Ck+1) at iteration k + 1 reads

(
m∑
e=1

weB
T
e C

k+1
e Be

)
uk+1 = f −

m∑
e=1

weB
T
e (σ̂

k+1
e −Ck+1

e ε̂k+1
e ) (3.69)

= f −
m∑
e=1

weB
T
e (σ

k
e −Ck+1

e εke) (3.70)

= f − f +
m∑
e=1

weB
T
e C

k+1
e εke (3.71)

=

(
m∑
e=1

weB
T
e C

k+1
e Be

)
uk, (3.72)

which yields uk+1 = uk and therefore zk+1 = zk. Consequently, only one fixed-point itera-
tion in Eq. (3.12) is required. The detailed adapted data-driven scheme PDPC is summarized
in Algorithm 3.

The methodology efficiently deals with inelasticity while considering isotropic hardening
effects by formulating the problem within the Haigh-Westergaard space. The essential con-
tribution of this approach lies in its utilization of coordinates in the principal strain and stress
space to define the yield function and the corresponding normal. This choice offers notable
advantages, such as reducing the amount of data required for storage and manipulation and
minimizing the computational effort involved in the projection steps compared to conven-
tional data-driven approaches. However, the proposed approach is mainly designed to ac-
commodate symmetric yield surfaces rather than explicitly addressing anisotropic hardening
effects. In cases of materials with anisotropic hardening behavior, additional adaptations or
extensions may be necessary to accurately capture the complex hardening effects within the
framework of the approach. The next section demonstrates the performance of the proposed
scheme via a numerical example employing elasto-plasticity with isotropic hardening.
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3.4 Numerical result for a 3D benchmark

This section illustrates the performance of the adapted data-driven solver extended by the
tangential space information in Haigh-Westergaard space in a typical benchmark, consid-
ering stress analysis of elasto-plastic material with non-linear isotropic hardening based on
experimental measurements synthetically simulated. In our scope, synthetic data consists
of strain-stress points created numerically using a material model rather than obtained by
actual experimental measurements. We restrict the simulation to noise-free synthetic data
sets. However, experimental data isÂ generally noisy and includes outliers. This issue can
be treated using noise reduction algorithms such as tensor voting [105], Kalman filtering
[75], and deep learning-based methods.

The application and the numerical performance will be demonstrated by investigating the
impact of increasing the number of tensile data on the convergence of the proposed data-
driven scheme. The significance of the quantity of tension-torsion data points is secondary
because the accuracy of the approximation of the yield surface is significantly dependent
on the method utilized, such as polynomial or spline interpolation, nearest neighbor ap-
proaches, or machine learning methods.
The root-mean-square error between the data-driven strain and stress solution zk and its
corresponding reference solution zk,ref will be calculated using

RMSD(z)2 =

∑T
k=0 Error(zk)2

T
, (3.73)

where T ∈ N is the number of total loading steps, zk
e = (εke ,σ

k
e) the local data-driven states

and zk,ref
e = (εk,refe ,σk,ref

e ) the local reference states at step k ≤ T . The error is given by

Error(zk)2 =

∑m
e=1we∥zk

e − zk,ref
e ∥2e∑m

e=1 we∥zk,ref
e ∥2e

, (3.74)

with ∥ · ∥e given by the definition in Eq. (3.9). The reference states are computed using an
iterative return mapping algorithm embedded in a Newton-Raphson global loop restoring
equilibrium.

3.4.1 Plate with a circular hole

In this benchmark, we investigate a 3D plate with a circular hole subjected to an increasing
extension ū in the length direction and a uniformly distributed load p over the thickness
direction. Due to the symmetry of geometry and load, only one-quarter of the system is
modeled. The geometry, boundary conditions, and loading are chosen according to a similar
test presented in [106] and illustrated in Fig. 3.4.1. The side lengths of the strip are equal to
a = b = 5m, and the thickness is c = 2m. The radius of the hole is r = 5m. Displacements
are fixed at the quarter plates’ left surface x = 0 in x-direction and at the bottom surface y =
0 in y-direction. For z = 0, the displacements are fixed in z-direction. The corresponding
boundary conditions read as follows:

ux = 0, if x = 0;

uy = 0, if y = 0;

uz = 0 if z = 0;

(ux, uy, uz) = (ūx, ūy, ūz) if x = a,

(3.75)
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where ux, uy, uz and ūx, ūy, ūz are the displacements in x, y and z-directions, respectively.

Figure 3.4.1: Boundary conditions and dimensions of a quadratic plate under increasing ex-
tension ū on the grey area and uniformly distributed pressure p over the thick-
ness direction.

Material parameters:

This setting considers an elasto-plastic material with non-linear isotropic hardening. The
applied material parameters are Young’s modulus E, Poisson’s ratio ν, and elasticity tensor
given by

Cel =

(
κ− 2

3
G

)
I⊗ I+ 2G III, (3.76)

with bulk and shear moduli κ = E
3(1−2ν)

and G = E
2(1+ν)

. A power law describes the non-
linear isotropic hardening by

σy(ε̄
p) =

(
1− 1

3
tan 30◦

)(
σ0 +H(ε̄p)1/h

)
. (3.77)

where σ0 ∈ R+ is the initial yield limit, H ∈ R+ is the hardening modulus, h ∈ (0, 1) is the
hardening exponent and ε̄p ∈ R+ defines equivalent plastic strain. For the simulation, we
investigate the yield criterion

F (σ) ≤ σy(ε̄
p), (3.78)

with

F (σ) :=
ρ
√
3

2
√
2

(
1 +

1

k
−
(
1− 1

k

)
cos(3θ)

)
, (3.79)
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where ρ, θ are Haigh-Westergaard Coordinates depending on σ and k ∈ R+ is a ratio that
controls the dependence of the yield surface on the principal stress. One can notice that for
k = 1 Equation (3.78) represents a von Mises yield surface, see Fig. 3.4.2, case (a). In
addition, the initial yield function can be written as

Φ(θ) = σy(0)

( √
3

2
√
2

[
1 +

1

k
−
(
1− 1

k

)
cos(3θ)

])−1

. (3.80)

Synthetic data:

The synthetic data in this benchmark setting consists of a combined tension-torsion test,
Eq. (3.48), and a single tension test, Eq. (3.49). The points σ̂i of the tension-torsion test de-
pend only on the two components σ̂11,i and σ̂23,i with i = 1, . . . , n1,e. Since the data is used
to approximate the initial yield surface function Φ(θ), it is enough to simulate points lying on
it. For this, we define uniformly distributed random components σ̂11,i ∈ [−σy(0), kσy(0)].
The points σ̂i lying on the yield surface are then determined by σ̂11,i and σ̂23,i obtained by
solving √

σ̂2
11,i + 3σ̂2

23,i

2k

1 + k + (1− k)

(
σ̂3
11,i − 9σ̂11,i σ̂

2
23,i

)(
σ̂2
11,i + 3σ̂2

23,i

) 3
2

 = σy(0). (3.81)

The second data set is generated by simulating a uniaxial tensile test subject to predefined
loading paths. The resulting data points (ε̂i, σ̂i) are then used to establish the data set (3.58)
consisting of points (∆ε̂i,∆σ̂i, α̂i) with i = 1, . . . , n2,e. The initial hardening parameter of
the data-driven comparison stress in Eq. (3.59) is given by αy,e = 1 for all material states
e = 1, . . . ,m.

Figure 3.4.2: Visualization of yield surface function Φ(θ) for (a) k = 1 and (b) k = 0.75.

Convergence and results:

The load p increases from 0.0 to 3.0 · 107 Pa, decreases to 0.0Pa and then increases to 3.5 ·
107 Pa using 150 time steps per path with a constant step size of ∆t = 1. Correspondingly,
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the applied total displacement ū on the lateral side increases to 0.3m, decreases to 0.0m
and then increases to 0.4m. The system is discretized by 10−nodal tetrahedron elements
(P2) with quadratic ansatz functions on a mesh of element size 1460. The exact material
parameters used for the reference solution and synthetic data are given in Table 3.1. For
k = 0.75, the yield surface in principle stress plane is depicted in Fig. 3.4.2, case (b).
Regarding the data-driven simulation, we fix the number of tensile-torsion data by n1,e = 50

E [Pa] ν [−] H [Pa] σ0 [Pa] h [−] k [−]
3 · 1010 0.2 2.5 · 109 3 · 108 2 0.75

Table 3.1: Material parameters

and use simple spline interpolation to approximate the yield surface Φ(θ). The displacement
and maximum principle stress convergence are then investigated for a small tensile data set
of size n2,e = [10, 20, 40, 60, 80, 90] and a more extensive data set of the size of n2,e = 10j

with j = 2, . . . , 5. Each set of tensile test data is simulated using a different number of
loading paths np chosen from the set [1, 2, 4, 6, 8, 10]. Therefore, we investigate 12 · 6 = 52
different data sets. For clarity, n2,e = 10 and np = 1 is the data set defined by a single
loading path with 10 data points. The data set consists of two loading paths containing 10
data points represented by n2,e = 10 and np = 2. The last data set consists of 10 loading
paths with 105 data points i.e., n2,e = 105 and np = 10. Figure. 3.4.3 illustrates exemplary
the generation structure of the synthetic data sets.

ε

σ

ε

σ

ε

σ

Figure 3.4.3: An illustrative visualization of synthetic tensile data. The first data set (blue,
□) is simulated using a single loading path with 10 data points, and the second
data set (red, △) consists of two loading paths containing 10 data points. The
third data set (black, ◦) consists of 10 loading paths of 105 data points.

The plot in Fig. 3.4.4 shows the convergence of the error corresponding to the increased
data size and the number of loading paths. The bias results from the chosen number of time
steps. During the simulation, we noticed that increasing the increment steps decreases the
error significantly. Figure 3.4.5 illustrates the occurring displacement in the elasto-plastic
plate with a circular hole. In addition, it compares the absolute errors of displacement to the
reference solution at internal nodes. Figure 3.4.6 shows the interpolated maximum principle
stresses in [Pa] at each integration point for time step t = 150, 300 and 450. Furthermore, we
plot the relative error compared to the reference solution. We conclude that increasing the
number of data and the number of loading paths decreases the RMSD error, corresponding
to the data-driven convergence analysis of [101].
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Figure 3.4.4: RMSD error of the boundary value problem using the adapted data-driven tran-
sition mapping to the reference solution based on the exact material model.
The graphs are illustrated concerning the size of tensile data and its corre-
sponding number of loading paths.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4.5: Contour plot of maximum displacement of the boundary value problem using
the adapted data-driven transition mapping. (a, c, e) Maximum displacement
and corresponding (b, e, f) absolute errors compared to reference solution at
each internal node at time step t = 150, 300, 450. The number of loading paths
simulating the tensile test is 10 with 105 data points.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4.6: Contour plot of maximum principal stress of the boundary value problem using
the adapted data-driven transition mapping. (a, c, e) Maximum principal stress
and corresponding (b, e, f) relative errors compared to reference solution at
each material point in [Pa] at time step t = 150, 300, 450. The number of
loading paths simulating the tensile test is 10 with 105 data points.

3.5 Conclusion

We present using the Haigh-Westergaard space to obtain data points from measurements for
the model-free data-driven inelasticity extended by tangent space. Even though the original
approach is sufficient for ideal data, the issue of data accessibility and the associated tangent
space arises. In particular, data points of inelastic materials could only be acquired through
impracticable sample testing in a comprehensive scope of loading directions.
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This paper addresses the issue of data accessibility for isotropy guaranteeing the material’s
loading direction independence. Thus, the tangent space is specified by the material’s hard-
ening behavior and the yield surface normal. For the former, we employed data from a
straightforward tensile test. We adopted Haigh-Westergaard coordinates for the latter to
project the data-driven approach onto the octahedral plane. Then, a combined tension-
torsion test provides sufficient information about the underlying material yield surface for
approximating the characteristic function. The resulting data-driven method minimizes
the distance to the tensile test data and calculates the associated tangent stiffness in the
Haigh-Westergaard space, subject to compatibility and equilibrium constraints. The result-
ing scheme leads to much greater efficiency, especially using material points as data states
reduces the fix-point problem to only one iteration.
The application and its numerical performance have been demonstrated on a 3D isotropic
elasto-plastic benchmark with non-linear hardening. The accuracy improves for larger ten-
sile data sets, and the convergence rate correlates with the convergence analysis of data-
driven inelasticity. We neglected the accounting regarding the number of tensile-torsion
data points since the quality of the yield surface approximation depends highly on the used
method, e.g., polynomial or spline interpolation, nearest neighbor approaches, or machine
learning methods. We have limited the simulation to synthetic noise-free data sets. How-
ever, experimental data is generally noisy and includes outliers. This issue can be treated
using noise reduction algorithms such as tensor voting, Kalman filtering, and deep learning-
based methods.
The developments of the data-driven paradigm propose crucial future research areas in
machine-learning methods, particularly physics-informed neural networks. By specifying
suitable loss functions, these networks can be trained to fulfill training data and discover
optimal solutions for given physics-governing equations. Since the data-driven method by-
passes the step of material modeling but still relies on solving governing equations, a com-
bined formulation of the model-free data-driven and the physics-informed neural network
method is possible.

Appendix 3.A Algorithm of the modified data-driven solver

Algorithm 3 Data-driven solver at time step t using Haigh-Westergaard coordinates

Input: matrices {Be}me=1, weights {we}me=1, load f , Lamé constants λe, µe

Data: tensile data Dext
e , Φe(θ) obtained through tension-torsion data {(ρ̂i, θ̂i)}ne

i=1

procedure DATA-DRIVEN SOLVER

if t = 1 then ▷ Initialize variables
for all e = 1, . . . ,m do

Cel
e = λeI⊗ I+ 2µeIII ▷ Elastic stiffness

ẑe = ((ε̂e, σ̂e),Ce)← ((0,0),Cel
e ) ▷ Data state

αy,e ← 1 ▷ Transition variable
end for

end if
▷ Projection PDPC

{ze}me=1 = PC({ẑe}me=1)
{ẑe,Ce}me=1 = PD({ze}me=1)
t← t+ 1

end procedure
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Projection PC(ẑ)

Solve equation system:(
m∑
e=1

weB
T
e CeBe

)
u = f −

m∑
e=1

weB
T
e (σ̂e −Ceε̂e)

for all e = 1, . . . ,m do
εe = Beu,
σe = σ̂e +Ce(εe − ε̂e)

end for
return {ze}me=1 = {(εe,σe)}me=1

Projection PD(z)

for all e = 1, . . . ,m do
σD

e ,Te = PRINCIPALSTRESS(σe) ▷ Diagonalization
(ρe, θe)←

(
2
√
J2,e,

1
3
arccos

(
3
√
2

2
J3,eJ

−3/2
2,e

))
▷ Haigh-Westergaard

αe =
ρe

Φe(θe)

if αe ≤ αy,e then ▷ Transition rule
Ce ← Cel

e

else
(∆ε̂e,∆σ̂e, α̂e) = argmin

(∆ε̂i,∆σ̂i,α̂i)∈D̂ext
e

∥αe − α̂i∥2

ρ′e = αeΦ
′
e(θe)

N e, γe = NORMAL((ρe, ρ
′
e, θe), (∆ε̂e,∆σ̂e, α̂e),Te, λe, µe)

Ce ← Cel
e − γeN e ⊗N e

αy,e ← αe

end if
end for
return {(ze,Ce)}me=1

Functions
function PRINCIPALSTRESS(σ)

return diagonal matrix σD containing principal stresses σ1 ≥ σ2 ≥ σ3 and corre-
sponding transformation matrix T satisfying σD = T−1σT
end function
function NORMAL((ρ, ρ′, θ), (∆ε̂,∆σ̂, α̂),T, λ, µ)

N̂ =
√
2√

3
√

ρ2+ρ′2

ρ
 cos (θ)
cos
(
θ − 2π

3

)
cos
(
θ + 2π

3

)
+ ρ′

 sin (θ)
− cos

(
π
6
− θ
)

cos
(
π
6
+ θ
)


N ← T · diag(N̂ ) ·T−1

γ ← ∆σ̂ = λtr(∆ε̂)I+ 2µ∆ε̂− γN ⊗N ,

return N , γ
end function
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Abstract: Model-free data-driven computational mechanics, first proposed by Kirchdo-
erfer and Ortiz, replace phenomenological models with numerical simulations based on
sample data sets in strain-stress space. In this study, we integrate this paradigm within
physics-informed generative adversarial networks (GANs). We enhance the conventional
physics-informed neural network framework by implementing the principles of data-driven
computational mechanics into GANs. Specifically, the generator is informed by physical
constraints, while the discriminator utilizes the closest strain-stress data to discern the au-
thenticity of the generator’s output. This combined approach presents a new formalism to
harness data-driven mechanics and deep learning to simulate and predict mechanical behav-
iors.

4.1 Introduction

The simulation of boundary value problems typically contains two equations: conservation
and constitutive laws. While conservation laws are derived from universal principles, consti-
tutive laws are usually obtained by fitting model parameters to given strain-stress data [98].
Nevertheless, material modeling can be ill-posed and adds uncertainties to the solutions,
particularly in highly complex systems. The model-free data-driven method, introduced
by Kirchdoerfer and Ortiz [30], bypasses the step of material modeling, incorporating ex-
perimental data directly into the numerical simulations of boundary-value problems. The
data-driven scheme computes the closest point in the material data set consistent with the
problem’s compatibility and equilibrium condition. Consequently, it provides an alternative
formulation of the classical initial-boundary-value problem based on nearest-neighbor clus-
tering.

The approach has been fine-tuned for diverse applications: from non-linear elasticity [30,
33, 29, 38, 96] to dynamics [42] and finite strain [37]. It’s also been adapted for material
data identification [65], non-local mechanics [56], electro-mechanical problems [55], ho-
mogenization schemes [61], and model-driven coupling [54]. Recent studies by Poelstra et
al. [53] have expanded this framework to address evolutionary problems in solid mechan-
ics. Similarly, Bartel et al. [52] have developed a data-driven approach for plasticity using
history surrogates in truss structures. Ibañez et al. [44, 45] refined the approach using a
manifold learning method that maps data into a lower-dimensional space to use the locally
linear embeddings. Eggersmann et al. [48] presented a second-order data-driven approach
that uses tensor voting [97] to obtain point-wise tangent space, enabling the search for ad-
ditional states close to the original data. For inelastic boundary value problems, Eggers-
mann et al. [49] include local histories in the data set to investigate materials with memory.
Karapiperis et al. [58] have also suggested a variation of the scheme, considering multi-
scale modeling. In addition, we recently developed a paradigm incorporating the tangent
space into the distance-minimizing data-driven formulation and classifies the underlying
data structure into subsets according to various material behaviors [101]. The framework
features a parametrization of the material history and an optimal sampling of the mechan-
ical system’s state space. In line with these developments, [107] emphasizes the essential
role of the tangent space within this computational framework. The authors demonstrate
the optimal convergence rate for fundamental scenarios and introduce strategies to lower
computational costs and enhance solutions’ accuracy.
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The paradigm’s dependence on the nearest-neighbor clustering of data points proposes re-
search areas in machine-learning methods, particularly Artificial Neural Networks (ANNs),
that are known to approximate any continuous function for appropriate network parame-
ters [108, 109]. The flexibility and quality of neural networks led to success in a wide
range of applications, e.g., image recognition [110], language processing [111], or genera-
tive modeling [21, 112]. An extension to neural networks is physics-informed deep learning,
successfully used in solving physical-related problems such as fluid mechanics [113, 114],
aerodynamics [115, 116], shell structures [117] or material science [118, 119]. Physics-
Informed Neural Networks (PINNs) can be trained to fulfill training data and learn optimal
solutions for allocated physics-governing equations by specifying appropriate loss functions
[120, 78]. The physics-based loss competes against a data-based loss, which is needed to
provide fundamental knowledge of the system. Thus, partial differential equations act as
additional constraints during network training, resulting in a multi-objective optimization
problem. Optimizing data and physics give physics-informed neural networks flexibility in
solving forward and inverse problems [116, 114, 115, 121, 122, 123]. The trade-off be-
tween the individual losses can be influenced using hyper-parameter [124, 125, 126]. For
example, adaptive activation functions [127, 128], or manually weighted losses [129], can
improve the quality of the neural network for specific problems. Since PINNs are based on
global ansatz functions, the optimization faces challenges in accurately displaying localized
effects through training. Henkes et al. [130] present a formidable challenge for methods
that rely on a global strategy to investigate adaptive training strategies and domain decom-
position, focusing on improving convergence in complex scenarios.
This investigation combines the model-free data-driven approach with Generative Adver-
sarial networks (GANs). In machine learning, GANs have emerged as a powerful tool con-
sisting of two neural networks âC“ the generator, which creates data, and the discriminator,
which evaluates the authenticity of the generated data. Through their adversarial game,
GANs are adept at generating high-fidelity data, often indistinguishable from actual data
[112]. An extension is the integration of physics-informed neural networks with the GAN
structure. For instance, the pursuit of robust uncertainty quantification within the frame-
work of PINNs has led to recent methodologies. The PIG-GAN framework [131] harnesses
the capabilities of a physics-informed generator to address adversarial uncertainty. On the
other hand, the PID-GAN approach [132] uses a physics-informed discriminator, carving
out a distinct avenue to achieve reliable uncertainty quantification while maintaining fidelity
to the governing physics. Another stride in this direction is the DeqGAN, which offers a
unique perspective on PINNs by learning the loss function via generative adversarial net-
works. This methodology provides a robust avenue for solving the challenges traditionally
associated with defining appropriate loss functions for PINNs [133]. In our approach, the
generator is a physics-informed neural network, and the discriminator employs the clos-
est strain-stress data to evaluate the authenticity of the generator’s results. This synergized
methodology matches model-free data-driven computational mechanics and deep learning
principles to simulate and predict intricate mechanical behaviors more accurately.

Section 4.2 provides a general setting by introducing the definitions and derivation of the
distance-minimizing data-driven computing method based on [29]. Section 4.3 introduces
the framework of artificial neural networks and generative adversarial networks. In addition,
we propose using a physics-informed GAN to solve the distance-minimizing data-driven
problem. Section 4.4 exhibits the performance of the proposed method using a numerical
example involving a non-linear elastic in-plane boundary value problem. Finally, Section
4.5 summarizes the results and suggests future research subjects.
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4.2 Model-free Data-driven setting

The following will summarize the classical data-driven computational mechanics method
for the reader’s convenience based on the definitions and formulations in [29]. For a com-
prehensive exploration of the variational framework, the reader is referred to [134].
We consider an elastic body Ω ⊂ Rd whose internal states are defined by displacement field
u : Ω→ Rd and the compatibility and equilibrium conditions

ε(x)−∇symu(x) = 0, in Ω,

∇ · σ(x)− f(x) = 0, in Ω,
(4.1)

and boundary conditions
u(x) = g(x), on ΓD,

σ(x) · n(x) = t(x), on ΓN ,
(4.2)

where ε : Ω → Rd×d
sym is the strain field and σ : Ω → Rd×d

sym is the stress field. The boundary
Γ of the domain Ω is defined by the Dirichlet (ΓD) and Neumann (ΓN ) with Γ = ΓD ∪ ΓN

and ΓD ∩ ΓN = ∅. In addition, f : Ω → Rd is the body force, and g, t,n : Γ → Rd define
the boundary displacement, applied traction and outer normal, respectively.
We define Zloc ⊂ Rd×d

sym×Rd×d
sym as the local phase space consisting of pairs z(x) = (ε(x),σ(x))

describing the local state of the system at material point x. The global phase space Z is de-
fined as the collection of the state functions, i.e.

Z = {z : z ∈ Zloc}. (4.3)

The data-driven distance-minimization problem, introduced by [30], reads

argmin
z∈C,ẑ∈D

d(z, ẑ), (4.4)

where C ⊂ Z denotes the constraint set defined by

C :=
{
z ∈ Z : (4.1) and (4.2)

}
; (4.5)

containing all states fulfilling compatibility and equilibrium. The set D ⊂ Z consists of
finite data points either obtained by experimental measurements or achieved from elaborate
simulations; and is defined by

D = {z ∈ Z : z(x) ∈ Dloc} with Dloc = {(εi,σi)}ne
i=1, (4.6)

where ne ∈ N is the number of local data points associated with the material point. The
distance d : Z × Z → R is defined by

d(z, ẑ) := ∥z − ẑ∥, (4.7)

metricized by the norm

∥z∥2 :=
∫
Ω

(
1

2
Cε : ε+

1

2
C−1σ : σ

)
dx, (4.8)

where C ∈ Rd×d×d×d is a symmetric nominal elasticity tensor being of the type of elastic
stiffness. Thus, the data-driven paradigm aims to find the closest point z in the constraint
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set C to ẑ in the material data set D.

Challenges such as data availability, noise, inconsistency, and high dimensionality fre-
quently arise in the data-driven paradigm. Traditional analytical and computational methods
may need to be adjusted when addressing these issues. Consequently, the incorporation of
machine learning, particularly methods like generative adversarial networks coupled with
physics-informed generators, is considered. This integration is aimed at effectively han-
dling the complexities of data-driven datasets, ensuring the outcomes remain consistent with
domain-specific knowledge. The following sections will present a detailed discussion on the
principles of artificial neural networks and physics-informed neural networks, illustrating
the approach of physics-informed generative adversarial networks to solve the data-driven
boundary value problem (4.4).

4.3 Generative adversarial networks with physics-informed generators
for model-free data-driven problems

This section delves into the application of Generative Adversarial Networks (GANs) equipped
with Physics-Informed Generators for addressing the model-free data-driven problem. A
GAN involves a competitive dynamic between two neural networks, forming a zero-sum
game: one network’s success implies the other’s setback. To harness GANs for resolving
the data-driven boundary value problem depicted in (4.4), Section 4.3.1 initiates with a con-
cise overview of Artificial Neural Networks (ANNs) and explains physics-informed neural
networks (PINNs). Section 4.3.2 lays out the foundational principles of GANs, and in Sec-
tion 4.3.3, we pivot to the novel approach of leveraging GANs augmented with PINNs to
solve the data-driven boundary value problem.

4.3.1 Physics-informed neural networks

Based on the universal function approximation theorem [135], an artificial neural network
is a parametrized, non-linear function composition that can approximate arbitrary Borel
measurable functions. This section introduces the basic concept based on the definitions
and formulations in [130]. For this purpose, we introduce a densely connected feed-forward
neural network, denoted by the map N : Rdx → Rdy , which is defined by a composition of
nL ∈ N non-linear functions:

N : Rdx → Rdy (4.9)

(x) 7→ N (x) = y(ℓ) ◦ . . . ◦ y(0) = y, (4.10)

for ℓ = 1, . . . , nL, where x denotes the spatial part of the input vector of dimension dx ∈ N
and y denotes the output vector of dimension dy ∈ N. In this context, y(0) and y(nL) are
called the input and output layer, such that

y(0) = x, y(nL) = N (x). (4.11)

The functions y(ℓ) are called hidden layers and define a ℓ−fold composition, mapping the
input x to the output y by

y(ℓ) = {y(ℓ)
η , η = 1, . . . , ηu}, with y(ℓ)

η = act(ℓ)
(
W(ℓ)

η y(ℓ−1) + b(ℓ)
η

)
. (4.12)
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We call y(ℓ)
η the ηth neural unit of the ℓth layer y(ℓ), where ηu ∈ N is the total number of

neural units per layer. W
(ℓ)
η and b

(ℓ)
η denote the weight matrix and bias vector of the ηth

neural unit in the ℓth layer y(ℓ). Furthermore act(ℓ)(·) : R → R is a non-linear activation
function. All weights and biases of all layers y(ℓ) are assembled in

θ =
{(

W(ℓ)
η ,b(ℓ)

η

)
; ℓ = 1, . . . , nL, η = 1, . . . , ηu

}
, (4.13)

including all parameters of the network. As a result, the notationN (x;θ) highlights the de-
pendence of a neural network’s output on the input and the current realization of the weights
and biases.

The main idea of solving boundary value problems with an artificial neural network is the
reformulation to an optimization problem [136, 78, 137], where the residual of the differen-
tial equations is to be minimized. To solve the differential Eqs. (4.1) and (4.2), a suitable
topology for the artificial neural network and, consequently, the physics-informed neural
networks has to be chosen. Thus, we define the neural network as an ansatz for the displace-
ment and stress field, i.e.

u(x, t) ≈ Nu(x;θu), (4.14)
σ(x, t) ≈ Nσ(x;θσ), (4.15)

with trainable network parameters θ := {θu,θσ}, where each network utilizes a single set
of parameters, θu for displacement and θσ for stress. Notably, there is no separate network
for the strain tensor. The strain tensor is deduced using the kinematics and differentiation
applied to the displacement network, i.e. ε = ∇symNu(x;θu). In three-dimensional space,
defined by the coordinates (x, y, z), the networks outputs are formulated as

Nu(x;θu) = {ui(x;θu) | i = x, y, z},
Nσ(x;θσ) = {σij(x;θσ) | i, j = x, y, z and ij = ji},

(4.16)

encompassing the three components ui of displacement u and the six stress components σij ,
with ij = ji ensuring the symmetry of the stress tensor σ. The topology of the artificial
neural network is visualized in Fig.4.3.1.

Figure 4.3.1: Schematic representation of the neural network’s topology, illustrating the pro-
gression from input through multiple hidden layers, resulting in displacement
u and stress σ.
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Using the neural network ansatz we can rewrite the physical Eqs. (4.1) and (4.2) as

RΩ = ∇ · Nσ(x,θσ)− f(x), in Ω,

RΓD
= Nu(x,θu)− g(x), on ΓD,

RΓN
= Nσ(x,θσ) · n(x)− t(x), on ΓN ,

(4.17)

where RΩ penalizes the residual of the equilibrium equation, and the equations RΓD
and

RΓN
describe the discrepancy of the Dirichlet and Neumann boundary conditions. Notice

that if Nu and Nσ is a solution to the original boundary value problem, they minimize the
differential equation-based residuals.
The parameters θ of the networks can be found by incorporating the physics-induced resid-
uals into the training process of a neural network as components of the loss function. For
this, we use a collocation method discretizing the domain Ω and the boundary Γ := ΓD∪ΓN

into sets of sample points SΩ and SΓ with cardinalities |SΩ| and |SΓ|. Then, an optimization
problem to find the optimal parameters θ⋆, also called training, is defined as

θ⋆ = argmin
θ

LC (4.18)

with LC := LΩ(x,θ) + LΓ(x,θ) given by the local losses

LΩ =
1

|SΩ|
∑
x∈SΩ

∥RΩ(x;θ)∥22, (4.19)

LΓ =
1

|SΓ|

 ∑
x∈SΓD

∥RΓD
(x;θ)∥22,+

∑
x∈SΓN

∥RΓN
(x;θ)∥22

 . (4.20)

The expressions penalize the residual of the governing equations and the discrepancy of
the Dirichlet and Neumann boundary conditions, respectively. Fig. 4.3.2 illustrates the
complete physics-informed topology.

Figure 4.3.2: Schematic representation of the physics-informed neural network’s topology,
illustrating the progression from input through multiple hidden layers, result-
ing in displacement u and stress σ. These outputs undergo automatic differen-
tiation to compute the physics-based loss function LC . The loss is minimized
using an optimizer to refine the network parameters θ.

While the PINN framework provides a straightforward method to solve physical-enhanced
problems, it has challenges. Notably, there have been instances where the optimization
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yields solutions with unexpected or non-physical behaviors even when carefully tailored to
encapsulate the physics [117]. Additionally, the current PINN formulation must minimize
the difference between the network’s outputs and the available strain-stress dataD due to the
nature of the data-driven distance minimization problem (4.4). If we integrate the distance
as an additional loss into the global loss, the whole problem becomes a nested optimization,
leading to training challenges. The neural network could optimize in an undesired direction
during each training epoch. If the approximated strain-stress point is not accurate, the cor-
responding data point might be suboptimal concerning the optimization algorithm, further
complicating the learning process. To address these challenges, we consider the integration
of PINNs with generative adversarial networks. GANs are proficient at generating outputs
with the same properties as actual data, providing a potential approach to generating real-
istic strain-stress solutions. Their flexibility ensures adaptability across diverse data types
suited for various physical conditions. Moreover, the inherent capability of GANs to discern
and capitalize on intricate patterns may lead to a more robust representation of underlying
physics. Additionally, with conditional GANs, generating outputs based on specific con-
ditions becomes feasible, allowing for more targeted solutions. The combined PINN-GAN
approach seeks to ensure physical consistency and alignment with observed data, leveraging
the strengths of both methodologies. For clarity, we will provide a brief overview of GAN
theory in the following.

4.3.2 Intermezzo to generative adversarial networks

Introduced by Goodfellow et al. [21], generative adversarial networks illustrate a novel ap-
proach to generating data using neural architectures. These networks comprise two distinc-
tive neural entities: the generator (G) and the discriminator (D). The underlying goal of a
GAN is to generate data instances that emulate the properties of actual data. The generation
is achieved by setting the two networks against each other in a competitive game, often de-
scribed as a dual-player minimax game.

Taking reference from the definitions provided in (4.9), we define the real data space as
Dreal ⊂ Rdy , where dy is the dimension of the space, i.e., dy = dim(Dreal). The main objec-
tive of GANs is to produce synthetic data denoted as ysyn, residing in the same space as our
real data yreal. The generator can be defined as a function G : Rdx → Rdy , which transforms
a random noise vector x into synthetic data ysyn. In contrast, the discriminator operates as
a function D : Rdy → R, that provides a measure of authenticity for a given data sample.
Mathematically, these networks can be illustrated as:

G : Rdx → Rdy

x 7→ NG(x;θG),
and

D : Rdy → [0, 1]

y 7→ ND(y;θD).
(4.21)

Here, NG(x;θG) and ND(y;θD) describe the neural networks with their corresponding
trainable parameters θG and θD. The adversarial game between the generator and the dis-
criminator during training can be encapsulated in the following objective

L(G,D) = Ey∼pdata [lnD(y)] + Ex∼px [ln(1−D(G(x)))], (4.22)

leading to the optimization:

min
G

max
D

L(G,D), (4.23)
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where E represents a random variable’s expectation or expected value. It provides a weighted
average of a function concerning its probability distribution. Specifically,

Ey∼pdata [lnD(y)] (4.24)

represents the average logarithmic score assigned by the discriminator to actual data samples
drawn from the distribution pdata. On the other hand, the expression

Ex∼px [ln(1−D(G(x)))] (4.25)

reflects the average logarithmic score the discriminator accords to the synthetic or generated
data, which is created from a random noise vector x following the noise distribution px.
The competition between the two networks is straightforward: the generator G aims to pro-
duce data that the discriminator D cannot distinguish from accurate data. In contrast, the
discriminator tries to better distinguish real data from fake data produced by G. The prob-
ability distributions pdata and px depict the actual data and noise distributions, respectively.
The terms in the objective function essentially capture the average confidence levels of the
discriminator in judging the authenticity of both original and fake data samples. The pro-
cedure of the GAN’s interplay between the generator and the discriminator is illustrated in
Fig. 4.3.3.

Figure 4.3.3: Schematic representation of a generative adversarial network (GAN) showcas-
ing the interaction between the generator producing data from random input
and the discriminator evaluating the authenticity of both real and generated
data.

Generative Adversarial Networks (GANs) have marked a significant advancement in gener-
ative modeling. However, challenges such as mode collapse, training instability, and vanish-
ing gradients often hinder their application. A particularly notable issue is mode collapse,
where the generator learns to produce a limited variety of outputs, reducing the model’s
overall effectiveness. Additionally, traditional GANs employ a sigmoid activation function
in the discriminator’s final layer, constraining the output to a [0, 1] range. It often leads to
loss of values that are difficult to interpret, complicating the assessment of training quality.
We propose utilizing the Wasserstein distance to address these challenges, as introduced
in [138]. The Wasserstein GAN (WGAN) leverages this distance to provide a more stable
training dynamic. The objective function of the WGAN is formulated as:

LWGAN(G,D) = Ey∼pdata [D(y)]− Ex∼px [D(G(x))], (4.26)
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leading to the optimization:

min
G

max
D

LWGAN(G,D). (4.27)

Building upon the foundation of the WGAN, the Wasserstein GAN with Gradient Penalty
(WGAN-GP) introduces a regularization term. This term ensures that the discriminator’s
gradients remain bounded, as described in [139], and addresses the vanishing gradient prob-
lem. The gradient penalty is crucial for enforcing the Lipschitz continuity condition and is
defined as:

GP = E
[
(∥∇ỹD(ỹ)∥2 − 1)2

]
, (4.28)

where ỹ = δyreal + (1− δ)ysyn, and δ is sampled from a uniform distribution in [0, 1]. The
optimization for WGAN-GP is thus given by:

min
G

max
D

LWGAN(G,D) + ω · GP, (4.29)

where ω ∈ R+ is a hyperparameter determining the weight of the gradient penalty in the
overall objective [140].

4.3.3 Physics-informed GANs for data-driven mechanics problems

In the classical data-driven computational mechanics paradigm Section 4.2, the objective is
to find the closest point z in the constraint set C to ẑ in the material datasetD, as formalized
in Eq. (4.4). This context motivates our modified GAN approach for data-driven mechanics
problems. To utilize GANs for solving differential equations in a data-driven mechanics
setting, we propose a novel approach wherein the generator in the GAN architecture is iden-
tified as a physics-informed neural network (PINN). In this paradigm, while the generator
outputs plausible solutions adhering to the underlying physics, the discriminator is trained
to distinguish between the generator’s predictions and actual strain-stress data.
In the conventional GAN setup from Section 4.3.2, the generator G maps the input vector
x into synthetic data, ysyn. Instead of treating x as a random noise vector, it represents
the collocation points x in the domain SΩ. Thus, the generator is formalized as a mapping
G : SΩ → (Nu,Nσ), whereNu andNσ represents the neural network approximation for the
displacement and stress field, respectively. Therefore, the generator can be defined as:

G(x,θG) := (Nu(x;θu),Nσ(x;θσ)) (4.30)

where θG := (θu,θσ) denotes the trainable parameters of the generator network. Building
upon the physics-informed aspect, we differentiate Nu and employ the kinematics equation
to obtain the strain ε. Given ε = ∇symNu, the generator’s output evolves from merely the
neural network predictions Nu and Nσ to the strain-stress pair z := (ε(Nu),Nσ).

Once we obtain the strain-stress output from the generator, to stay consistent with the data-
driven mechanics’ paradigm, we compute the strain-stress data points ẑ ∈ D closest to the
output z, which corresponds to:

ẑ = argmin
ẑ∈D

d(z, ẑ), (4.31)

with distance (4.7). We then use z and ẑ as synthetic and real data for the discriminator’s
training. For the discriminator D(y,θD), we establish the mapping D : R2d̄ → [0, 1],
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aligning with the conventional GAN framework. To accommodate strain-stress pairs as
inputs for the discriminator, we convert a pair into a 2d̄-vector y with d̄ = d2+d

2
by applying

Voigt-Notation to both the strain and stress, then merging them into a single vector. Given
strain-stress data ẑ ∈ D, it assesses the data’s authenticity, furnishing scores to guide the
generator’s training. With the generator now representing a PINN, the adversarial loss in
Eq. (4.22) has to integrate the physics-informed loss LC , derived from the residuals of the
governing differential equations:

L(G,D) = Eẑ∼pD
[lnD(ẑ)] + Ex∼pSΩ

[ln(1−D(G(x))) + LC]. (4.32)

The collaborative training between the discriminator and the physics-informed generator
ensures that the latter learns to craft data that confounds the discriminator and aligns closely
with intrinsic physics. Fig. 4.3.4 illustrated the physics-enhanced GAN approach for the
data-driven mechanics problem. Regarding Wasserstein GANs and their gradient penalty
variants, their objectives concerning the physics-informed generator must be modified. For
instance, with the Wasserstein GAN objective, the loss function becomes:

LWGAN(G,D) = Eẑ∼pD
[D(ẑ)]− Ex∼pSΩ

[D(G(x)) + LC], (4.33)

Moreover, for the WGAN-GP, the combined objective is:

L(G,D) = LWGAN + ω · GP. (4.34)

Figure 4.3.4: Schematic representation of a physics-informed generative adversarial net-
work (GAN) incorporating collocation points and strain-stress data for physi-
cal point generation and discrimination.

By incorporating GANs with physics-informed principles, the models produce data that ad-
heres to the statistics of observed datasets and the underlying differential equations. This
integration addresses the nested optimization issue commonly found in the PINN-based
data-driven mechanics. With the capability of GANs to generate outputs mirroring accurate
data, the solutions are both statistically relevant and in line with physical principles. Using
GANs simplifies the optimization process, making the training more stable and less prone
to errors from inaccurate strain-stress approximations. However, it is worth noting that the
loss values obtained while training a traditional GAN often need to be revised. In many
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studies, qualitative and quantitative evaluation methods are employed to assess the perfor-
mance of the GAN. Qualitative evaluations, while offering a quick visual validation, can be
subjective. Typically, they involve human observers who evaluate the realism of a generated
sample. The overall presumption has been that if the generated sample appears realistic,
the GAN’s training is deemed successful, regardless of potential fluctuations in loss values.
Nevertheless, such evaluations can be biased and do not always represent the complete per-
formance spectrum of the GAN. Considering these challenges, especially in the context of
our work where the goal is not generating images but accurately representing strain-stress
states, we decided on WGAN + GP. Unlike traditional GANs, the loss of WGANs has a
convergence point. Ideally, this point is reached when the generator is so adept at produc-
ing samples that no Lipschitz continuous discriminator can differentiate between real and
generated samples. This characteristic of WGAN provides a more stable and consistent eval-
uation metric, ensuring that the generated strain-stress states are physically accurate. The
effectiveness of this method will be showcased in a two-dimensional numerical example.

4.4 Numerical benchmark of a non-linear elastic plate with hole

This section illustrates the application of GANs to the data-driven computing paradigm [30]
in a typical benchmark, considering stress analysis of non-linear elastic material. We dis-
cuss the problem setup and test environments and give a proper definition of the geometry
and boundary conditions and the material parameters for data generation. We limit the
simulation to noiseless synthetic data sets, which consist of strain-stress points created nu-
merically using a material model rather than obtained by actual experimental measurements.
However, experimental data is often noisy and contains outliers. This issue can be addressed
with noise reduction algorithms such as tensor voting [105], Kalman filtering [75], and deep
learning-based techniques.

This benchmark investigates a two-dimensional in-plane plate with a hole subject to a dis-
tributed force. The geometry, boundary conditions, and displacements are chosen according
to a similar test presented in [48] and illustrated in Fig. 4.4.1.

Geometry:

The system is defined by Ω =
[
− ℓ

2
, ℓ
2

]2 \Br(0), where Br refers to the open ball of radius
r = ℓ

4
centered at the origin (0, 0). The side lengths of the plate are equal to ℓ = 2m. Due

to the symmetry of geometry, only one-quarter of the system is simulated, cf. Fig 4.4.1.
Displacements are fixed at the quarter plate’s left surface x = 0 in x-direction and at the
bottom surface y = 0 in y-direction. The corresponding conditions read as follows:{

ux = 0, if x = 0;

uy = 0, if y = 0;
(4.35)

where ux and uy are the displacements in x and y-directions, respectively. In addition, we
define boundary conditions for the stress, especially for x = ℓ

2
the plate is subjected to a

distributed force t(y) = 200 cos(πy
2
) in x-direction. The boundary conditions for the stress
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Figure 4.4.1: Illustration of a square plate subjected to external forces, alongside its top-right
quadrant representing the symmetry section with specified boundary condi-
tions and force distribution t(y) applied.

components read 
σxx = t(y), if x = 1;

σyy = 0, if y = 1;

σxy = 0, if x ∈ {0, 1} ∨ y ∈ {0, 1},
(4.36)

where σxx, σyy and σxy are the stress components in x and y-directions, respectively. Notice
that numerical methods based on the weak form of a boundary value problem innately satisfy
stress-free boundary conditions on free boundaries. However, our PINN approach utilizes
the strong form of the boundary value problem, so it is crucial to impose the zero stress
boundary conditions directly [130].

Material parameters:

The boundary value problem considers the non-linear elastic material behavior of [48] de-
fined by

σ = λg(tr(ε))I + µε+Cε, (4.37)

with g(x) = ((|x| + a)p − ap)sgn(x) and a, p ∈ R. The applied material parameters are
Young’s modulus E, Poisson’s ratio ν, and orthotropic elasticity tensor for plane strain given
by

C =

 C11 2ν(λ̄+G⊥) 0
2ν(λ̄+G⊥) λ̄+ 2G⊥ 0

0 0 G∥

 , (4.38)

where λ = Eν
(1+ν)(1−2ν)

and µ = E
2(1+ν)

are the well known Lamé constants and C11 =

4.6875E, G⊥ = 0.3E, G∥ = 0.2E and λ̄ = 2ν2+1
15−20ν2

E are additional material parameters.
The exact parameter values used for the reference solution and synthetic data are given in
Table 4.4.1.
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E [MPa] ν [−] a [−] p [−]
1× 104 0.3 0.001 0.005

Table 4.4.1: Material parameters

Synthetic data:

To simulate actual experimental measurements, we generate data artificially using the non-
linear material model (4.37) based on the given material parameters. We investigate normal
data distributions of 1003 strain-stress data points with a fixed random seed. The data is
created by a zero-mean normal distribution with a standard deviation of 0.015 in all strain
dimensions. To compare the model’s behavior under measurement uncertainties, we intro-
duce Gaussian noise to the dataset, with a maximum amplitude of 5%.

WGAN parameter:

Our study utilized the WGAN-GP framework to simulate the boundary value problem through
a data-driven approach. To fine-tune our network’s performance, we optimized hyperpa-
rameters, which involved exploring a range of network configurations to identify the most
effective setup, including the number of layers, neuron density, and activation functions.
The network is structured with a generator and discriminator setup as follows.
The generator is defined as a tuple of two neural networks by

G(x,θG) = {Nu(x,θu),Nσ(x,θσ)}, (4.39)

x = (x, y) and θG = (θu,θσ) are the network parameters regarding the displacement and
stress component, respectively. Following (4.16) the output components are given by

Nu(x,θu) = {ui(x,θu) | i = x, y},
Nσ(x,θσ) = {σij(x,θσ) | i, j = x, y and ij = ji}.

(4.40)

The networks are constructed with a series of fully connected layers. The architecture uti-
lizes 3 hidden layers, each with 128 neurons. The activation function used across these
layers is the Swish function, defined as

Hardswish(x) =


0 if x ≤ −3,
x if x ≥ 3,
x2+3x

6
otherwise.

(4.41)

In addition, to optimize the network training, we hard enforce the boundary conditions from
(4.35) and (4.36), such that the output of the generator is given by

ux(x;θu) = x · ûx(x;θu),

uy(x;θu) = y · ûy(x;θu),

σxx(x;θσ) = x · t(y) + (1− x) · σ̂xx(x;θσ),

σyy(x;θσ) = (1− y) · σ̂yy(x;θσ),

σxy(x;θσ) = xy(1− x)(1− y) · σ̂xy(x;θσ).

(4.42)
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On the other hand, the discriminator D(y,θD) comprises a network architecture of 3 hidden
layers with 128, 64 and 32 neurons, which use the LeakyReLU activation function defined
as

LeakyReLU(x) =

{
x if x ≥ 0,

αx if x < 0,
(4.43)

with a slope of α = 0.2 for negative values.

Training and Validation:

We employ a dataset comprising 1282 quasi-random points generated using the Sobol se-
quence [141] for the network’s training. It ensures a comprehensive and evenly distributed
set of training data points across Ω. For the optimization process, both the generator and
discriminator utilize the ADAM optimizer, with beta values set to (0.5, 0.999). Additionally,
a learning rate scheduler is integrated to optimize the training process. The scheduler oper-
ates with a maximum learning rate of 0.02, adjusting dynamically throughout 200 epochs for
both the generator and the discriminator. The computation of spatial derivatives for obtain-
ing the strains and optimizing the loss function is achieved through automatic differentiation.
A separate set of 2562 domain points is generated using a uniform random distribution to
validate the network’s training. The validation process involves comparing the network’s
output with the results obtained from a standard Finite Element Method (FEM) simulation.
This simulation, embedded within a Newton-Raphson algorithm, calculates the displace-
ment uref and stress distribution σref across a finite mesh of the domain. The solution fields
at the validation points are then interpolated to compare against the network’s output. To
quantify the global relative difference, we define the error function using the L2-norm, i.e.

∥z − zref∥L2(Ω)

∥zref∥L2(Ω)

, (4.44)

where z and zref represent the approximation and the reference fields, respectively.

Result:

Our analysis, depicted in Fig. 4.4.2, showcases the strain-stress distribution achieved after
training the WGAN-GP model. This analysis is part of our broader objective to compare
the WGAN-GP model’s performance with a hyper-parameter-optimized PINN model, espe-
cially in terms of accuracy against the reference solution. Fig. 4.4.3 displays these losses
for both the discriminator and generator, highlighting the balance between the two networks
to avoid stagnation in training. Notably, shallow loss values for either the generator or the
discriminator can be counterproductive. It generally indicates that one network is dominat-
ing the other, leading to stagnation in the training process. Ideally, there should be a balance
where both networks challenge each other, encouraging continuous improvement. The dis-
tance between generated states and the dataset D is further demonstrated in Fig. 4.4.4, indi-
cating convergence. Given the data-driven approach, the learning process results in losses
converging to a positive lower bound rather than zero. Notice, due to batch processing, the
number of training steps exceeds the epoch count.
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Figure 4.4.2: Visualization of displacement and stress distribution after 200 training epochs
offering insights into the material’s behavior under the applied loads and con-
ditions (4.35) and (4.36). From top-left to bottom-right: ux showcases a gra-
dient, indicating a maximum displacement at (x, y) = (1, 0); uy reveals a
displacement trend with negative values highlighted in x = 0; σx shows a
maximum stress magnitude at x = 0; σy displays a similar gradient at y = 0;
and σxy captures a pronounced shear stress distribution inside the plate.

Figure 4.4.3: Comparative Visualization of the discriminator and generator loss metrics over
training iterations for a WGAN-GP model, showcasing the dynamic interplay
and convergence patterns. The shaded area shows the maximum range of loss
for individual training batches.
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Figure 4.4.4: Visualization of the distance metrics over 200 epochs. The distance of the gen-
erated z to the dataset D illustrates how closely the model-generated outputs
match the dataset over training iterations.

In Fig. 4.4.5, we present the field components obtained through the application of the
WGAN-GP, PINN, and FEM methods for x = y within the domain Ω. Notably, the results
suggest that the WGAN-GP approach provides a more suitable approximation to the solution
of the boundary value problem, highlighted by the error analysis. The error involved both
local and global estimates to evaluate the method’s effectiveness. This approach captures
the magnitude of discrepancies through absolute errors while investigating these differences
through global relative errors. By integrating these metrics, we avoid the potential distor-
tion caused by solely focusing on one type of error, particularly in scenarios involving small
numerical values.
Each field component was individually assessed for the local absolute error, as shown in
Fig. 4.4.6. In comparison, Fig. 4.4.7 visualizes the PINN’s absolute errors. The component-
wise error analysis provides insight into both models’ accuracy at the validation points,
emphasizing its precision in resolving specific field components. Even though the GAN
approach performs better than the PINN approach, there are still regions of more significant
errors. A reason for that is the limited data size, which can be mitigated by increasing the
dataset size and reducing the peak noise within the dataset. Such adjustments are anticipated
to accelerate the data-driven method and, consequently, the precision of the error analysis
[107].

In addition, we evaluated the global relative error using (4.44) for the solution fields, reflect-
ing the models’ overall accuracy. The comparison in terms of the relative error to the FEM
solution is presented in Fig. 4.4.8, indicating that the WGAN-GP approach outperforms the
PINN method in terms of accuracy and efficiency by achieving a minimum error that is
two orders of magnitude lower than that of the PINN model. Furthermore, the WGAN-GP
model displays a much faster convergence rate, reaching its minimum error after approx-
imately 200 training epochs. In contrast, the PINN model requires one to two orders of
magnitude more training epochs to converge.
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Figure 4.4.5: Comparison of the displacements (ux, uy) and stresses (σxx, σyy, σxy) obtained
by FEM, WGAN-GP, and PINN along the line x = y within Ω.

Figure 4.4.6: Visualization of the absolute errors of displacement and stresses in x, y-
direction of the WGAN-GP solver compared to the FEM reference solution.
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Figure 4.4.7: Absolute error visualization for displacement and stresses in x, y-directions of
the PINN solver, compared to the FEM reference.

Figure 4.4.8: Global relative error comparison between the WGAN-GP and the standard
PINN approach across training epochs. Optimized through hyper-parameter
tuning, both models demonstrate convergence towards a lower error boundary.
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4.5 Conclusion

The model-free data-driven method, developed by Kirchdoerfer and Ortiz, uses experimen-
tal data directly in simulations, bypassing the entire material modeling step. The paradigm
uses nearest-neighbor clustering to reformulate boundary value problems. The approach has
been diversified for many applications. Challenges such as data availability, noise, incon-
sistency, and high dimensionality frequently arise in the data-driven paradigm. Traditional
analytical and computational methods may need to be adjusted when addressing these is-
sues. Consequently, the incorporation of machine learning methods is considered, espe-
cially physics-informed neural networks. In solving boundary value problems with ANNs,
the idea is to transform it into an optimization problem. The residual of the differential
equations is minimized, and the neural network approximates the displacement and stress
field. However, there are challenges with PINNs. There have been instances where the
optimization yields solutions with unexpected or non-physical behaviors even when care-
fully tailored to encapsulate the physics. If we integrate the distance as an additional loss
into the global loss, the whole problem becomes a nested optimization, leading to training
challenges. In addition, approximated strain-stress fields can correspond to suboptimal data
points influencing the direction and rate of the convergence.
To address these challenges, we consider the integration of PINNs with generative adversar-
ial networks. GANs are proficient at generating outputs with the same properties as actual
data, providing a potential approach to generating realistic strain-stress solutions. Their flex-
ibility ensures adaptability across diverse data types suited for various physical conditions.
Moreover, the inherent capability of GANs to distinguish and capitalize on intricate patterns
may lead to a more robust representation of underlying physics. The combined PINN-GAN
approach seeks to ensure physical consistency and alignment with observed data, leveraging
the strengths of both methodologies.
This research introduced an approach to WGANs-GP tailored for data-driven mechanics
problems. The generator is identified as a PINN, ensuring generated outputs conform to
underlying physical principles. Instead of random noise, the generator utilizes collocation
points from the domain and maps them to neural network approximations of strain and stress
fields. The discriminator is then trained using the generated and the closest actual strain-
stress data. By integrating WGANs with physics-informed principles, the model outputs
adhere to observed dataset statistics and differential equations. This results in improved op-
timization, more stable training, and accurate, physically consistent solutions. In this regard,
we investigated a non-linear elastic plate with a hole benchmark. The results indicate that
our proposed method provides reasonable outcomes. Furthermore, we observed robust and
consistent training of the networks and noted the convergence of the data-driven solution as
data size increased.
As we advance our research, we aim to delve deeper into other convergence criteria for the
GAN or WGAN. We plan to explore metrics such as the Inception Score [142], Frechet
Inception Distance [143], and perceptual similarity measures [144] to provide a broader as-
sessment of the generated outputs. These metrics will not only help to analyze the quality of
the generated material states but could also allow dealing with inelastic and path-dependent
material behavior effectively. Another area of interest is using the discriminator in the GAN
framework for material identification. The discriminator’s ability to distinguish between ac-
tual and generated outputs can be used to identify different material states. This approach
could offer a novelty to classify materials, and we want to explore this further.
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5 Conclusion & Outlook

This dissertation investigated a novel data-driven computing paradigm that bypasses tradi-
tional material models, eliminating information loss associated with them. Building upon
the initial framework proposed by Kirchdoerfer and Ortiz [30], we have significantly ex-
panded this approach through three distinct methodologies.

Extension to inelasticity: Our first paper addressed the limitations of applying data-driven
mechanics to materials exhibiting inelastic behavior, where the material response depends
on past deformations. The challenge is that the same stress-strain point could represent
different material behaviors based on this history. Our solution involved enriching the data
set with directions in the tangent space and categorizing the data into subsets based on these
behaviors. By introducing transition rules, we effectively applied our approach to non-linear
and elasto-plasticity with isotropic hardening.

Data accessibility and efficiency in inelasticity: Recognizing the importance of data cov-
erage and efficiency in practical applications, the second paper expanded the data-driven
computational mechanics approach to address the challenges of obtaining qualified data
states and calculating tangent spaces. We focused on reducing the required data for elasto-
plasticity with isotropic hardening by exploiting material symmetry and formulating the
approach using Haigh-Westergaard coordinates. This approach simplified the data acqui-
sition and leveraged the material’s inherent properties to minimize data needs. Due to the
Haigh-Westergaard space, combining tension-torsion and single tensile tests was sufficient
to cover the needed data, effectively capturing the yield surface and tangent space informa-
tion. Our adapted data-driven paradigm achieved the same results as our first paper but with
significantly less data and computational time.

Integration of machine learning: Our third study aimed to combine the model-free data-
driven paradigm with generative adversarial networks (GANs) capabilities. This integration
enhances traditional physics-informed neural networks by embedding the principles of data-
driven computational mechanics directly within the GAN framework. In the refined model,
the generator is constrained by physical principles, i.e., PINNs, ensuring that generated out-
comes remain physically admissible. Meanwhile, the discriminator, leveraging the closest
available strain-stress data, evaluates the fidelity of the generator’s output. This synthesis
offers a new method to combine the strengths of data-driven mechanics with deep learning.
It provides a more robust and consistent network training, thus a more reliable and accurate
method for simulating and predicting complex mechanical behaviors using machine learn-
ing.

In summary, we enhanced the capabilities of the model-free data-driven paradigm and inte-
grated machine learning techniques. The paradigm of data-driven computational mechanics
presents a unique opportunity to leverage existing and emerging data processing techniques
designed to handle large datasets. While machine learning has already proven its effective-
ness, several exciting areas remain for future research:
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Integration of Advanced Data-Driven Techniques: Recently developed machine learning
algorithms hold immense promise for modeling complex material behaviors, particularly
those with intricate microstructures or history-dependent responses. Inspired by the bio-
logical brain, one promising approach is the Spike Neural Network, which processes infor-
mation through short voltage pulses and offers potential advantages in capturing the spatio-
temporal dynamics of complex material behavior. Reinforcement Learning allows algo-
rithms to learn through trial and error, making it well-suited for optimizing material prop-
erties or uncovering hidden relationships within material datasets. Attention Mechanisms
focus on specific, relevant parts of the data, potentially leading to more accurate predictions
for materials with intricate microstructures or long-range dependencies. Another promising
field is the exploration of quantum computing in data-driven computational mechanics.

Quantum Computing: Another promising area is quantum algorithms, which can enhance
the processing of large datasets and complex simulations by leveraging the principles of
superposition and entanglement. Since Quantum algorithms are tailored for data analysis
tasks like classification, clustering, and pattern recognition, future research could investigate
how quantum computing can be integrated into the data-driven paradigm to solve boundary
value problems more efficiently, particularly for materials with intricate, non-linear behav-
iors. This research could lead to the discovery of new materials and designs by enabling the
rapid exploration of vast material parameter spaces.
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