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Abstract

Gradient enhanced continuum formulations provide the ability to model size effects, avoid non-
physical stress singularities and enable corresponding numerical solution schemes to remain
mesh independent. Further, specifically in the context of damage modeling they procure the
modeled partial differential equations to remain elliptic even in the regime of severe damage
and loss of material stiffness allowing for corresponding suitable numerical schemes to remain
robust. However, due to the occurrence of higher gradients matching finite element formula-
tions are generally challenged with higher continuity requirements of the approximated fields
increasing complexity and costliness. The present thesis contributes various mixed finite ele-
ment formulations for gradient elasticity and gradient damage, which have the advantage that
through the introduction of mixed and Lagrange multiplier variables, simpler interpolation
schemes become feasible. Moreover, by choosing suitable corresponding approximation func-
tions, the increase in global degrees of freedom compared to classical formulations is kept at
a minimum. For gradient elasticity, several mixed formulations akin to the Hu-Washizu vari-
ational principle are proposed with approximation functions that allow for the condensation
of degrees of freedom corresponding to the mixed and Lagrange multiplier variable. Followed
by that is the introduction of a formulation, which through incorporation of a rotation-free
displacement gradient variable, enables for a reduced size of the problem by decoupling the
displacements from the main equation while fulfilling the relevant mathematical stability con-
ditions. For gradient damage a formulation is proposed in which by utilizing the values of
the Lagrange multiplier to distinguish between damage loading and unloading conditions no
additional sub-iterations and storage of history parameters is required. Corresponding ap-
proximation functions enable for the static condensation of the degrees of freedom of the
Lagrange multiplier as well as parts of the damage modeling variable, further minimizing
computing cost. The presented formulations are accompanied by various numerical tests on
several benchmark problems, verifying the consistency, numerical robustness and mesh con-
vergence behavior as well as computing times not far from classical local finite elements.



Zusammenfassung

Gradientenerweiterte kontinuumsmechanische Formulierungen bieten die Möglichkeit Größen-
effekte zu modellieren, unphysikalische Spannungssingularitäten zu vermeiden und führen
somit zu Netzunabhängigkeit von zugehörigen numerische Simulationen. Speziell im Zusam-
menhang mit der Schädigungsmodellierung sorgt die Gradientenerweiterung außerdem dafür,
dass die zugrunde liegenden partiellen Differenzialgleichungen auch bei starker Schädigung
und einhergehender Abnahme der Materialsteifigkeit ihre Elliptizität beibehalten und ent-
sprechende Lösungsverfahren ihre numerische Robustheit bewahren. Aufgrund des Auftretens
höherer Gradienten sind zugehörige Finite-Elemente-Formulierungen jedoch mit höheren An-
forderungen an die Kontinuität der approximierten Felder konfrontiert, was zu grundsät-
zlich zu einer Zunahme an Komplexität und Rechenaufwand führt. In der vorliegenden Ar-
beit werden verschiedene Finite-Elemente-Formulierungen für gradientenerweiterte Elastiz-
ität und Schädigung vorgestellt, welche durch die Einführung von gemischten und Lagrange-
Multiplikator-Variablen die Verwendung einfacher Interpolationsfunktionen ermöglichen. Da-
rüber hinaus wird durch die Wahl geeigneter Approximationsfunktionen die Zunahme der
globalen Freiheitsgrade gegenüber klassicher Formulierungen minimiert. Für die Gradien-
tenelastizität werden mehrere gemischte Formulierungen in Anlehnung an das Hu-Washizu-
Variationsprinzip mit Approximationsfunktionen vorgeschlagen, die ein Auskondensieren der
zu den gemischten- und Lagrange-Multiplikator-Variablen gehörigen Freiheitsgrade ermög-
lichen. Darauffolgend wird eine Formulierung eingeführt, welche durch die Einbeziehung
einer rotationsfreien Gradientenvariable einen entkoppelten Gleichungssatz ermöglicht, der
die mathematischen Stabilitätsbedingungen erfüllt. Für die Modellierung gradientenerweit-
erter Schädigung wird eine Formulierung präsentiert, bei welcher der Lagrange-Multiplikator
zur Auswertung der Schädigungsevolutionsbedingung verwendet wird. Dadurch werden weder
zusätzliche Sub-Iterationen noch die Speicherung von Geschichtsvariablen benötigt. Darüber-
hinaus ermöglichen entsprechend gewählte Approximationsfunktionen das Auskondensieren
von Freiheitsgraden und minimieren so den Rechenaufwand. Die vorgestellten Formulierun-
gen werden von zahlreichen numerischen Tests begleitet, in denen die Konsistenz, die nu-
merische Robustheit und die Netzkonvergenz sowie die Rechenzeiten, welche in den unter-
suchten Beispielen nicht weit von denen der klassischen lokalen Finiten Elemente entfernt
sind, verifiziert werden.
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Chapter 1

Introduction, Motivation and Outline

Founded on Newton’s [1687] laws of motion the essential ingredients of classical continuum-
mechanical models are Euler’s [1752] equation of motion, namely the balance of linear mo-
mentum and the balance of angular momentum combined with Cauchy’s [1823] notion of the
stress tensor, some constitutive relations (starting with Hooke’s [1678] law) and the principle
of local action (among some other principles, see e.g. the summary of Altenbach [2012]).
To this day, most of the concurrent corresponding common finite element software tools that
are used for the computation of structural mechanical problems are rooted in these classical
Cauchy-continuum (also referred to as ’local’) models, since they have been found to align
with a wide range of experimental findings. This holds true particularly for standard construc-
tion materials, which are predominantly analyzed under small strains, such as common steel
alloys used in civil and mechanical engineering applications. Also, a variety of materials that,
when in operation, experience significant deformations and exhibit nonlinear elastic behavior
can be accurately modeled by classical nonlinear continuum approaches (under consideration
of more advanced kinematics). However, classical continuum theories fail to provide satisfac-
tory models for a diverse array of materials, including granular solids, rocks, bone, animal
blood, liquid crystals, composite materials and various other types of amorphous materials.
Specifically, when the size of the material heterogeneities or microstructure becomes rela-
tively large compared to the overall size of the modeled geometry, the disparity between the
outcomes derived from classical continuum mechanics and experimental results becomes sig-
nificant. This issue becomes even more prevalent in the vicinity of cracks and sharp edges
or corners, where stress gradients are considerably large. In addition to the aforementioned
materials, discrepancies are also observed in multi-molecular bodies like polymers, where the
presence of nonlocal intermolecular attractions plays a crucial role. Another example of appli-
cations in which these beforementioned size effects play a role is e.g. in special semiconductor
components which reach overall sizes on the micro- or even nanoscale and even non-standard
electromechanical coupling effects can be observed. Another class of materials that is of grow-
ing research interest is the class of architectured, so-called metamaterials, in which through
special design of the internal structure the components can be designed to have very spe-
cific characteristics interesting for various advanced applications. Here, obviously by design
the internal structure has nonlocal effects on the material behavior, for which corresponding
material models utilized for the simulation of such need to account for. Overall it can be
stated that, while local models can satisfactorily capture the physical behavior of numerous
materials in application, still many advanced materials can not be accurately modeled. This
motivates for the introduction of more advanced continuum models (more details in the next
sections) that are able to capture the effects that are missed by local formulations. Moreover,

3
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in order to be able to use these models to numerically simulate real world application cases
the development of corresponding reliable and efficient finite element schemes (such as e.g.
those subject to the present contribution) is crucial and with regards to incorporation into
commercial software still in its infancy.

1.1 Gradient Elasticity

A remedy to the shortcomings of local elastic continuum models are non-local formulations
that can account for size effects through the addition of extra kinematic quantities that fill
in the gap between the modeled geometry’s scale and the microstructure’s scale. Propos-
als that expand the classical Cauchy continuum correspondingly date back to the work of
Cosserat and Cosserat [1909], that incorporates micro-rotations and micro-torques into
the continuum principles, resulting in the development of polar media. This concept was sub-
sequently expanded to settle the micro-rotations within a more general framework of micro-
deformations, see the landmark contributions of Mindlin’s [1964] theory of microstructure in
elasticity and Toupin’s [1964] theory of elasticity with couple stress. In this context, worth
mentioning is also the related micromorphic approach of Eringen [1999, 2002] among various
other related contributions. The gradient elasticity theory, which is subject to the present
contribution, is located within the more general framework of Mindlin [1964] and can be
considered a special case of the micro-deformation theory, in which the latter are modeled in
terms of the displacement gradients. This brings the advantage that the entire formulation can
be postulated by only one kinematic variable, namely the displacements, while still providing
the ability to constitute the full scale-dependent nonlocal relations through the incorporation
of higher order gradients. A historic overview of the emergence of gradient elasticity formu-
lations can be found in Bertram [2022], see also Askes and Aifantis [2011] which gives
an overview of various contributions made in this field. Another variational framework, from
which the strain gradient elasticity formulation is derived, can be found in Abali et al.
[2017]. A constitutive law for gradient elasticity featuring the general case of nonlinear kine-
matic descriptors is given by dell’Isola et al. [2018] and the extension of the strain gradient
elasticity approach to incorporate plasticity and damage can be found in Placidi. et al.
[2021] (among others). An active field of research in the realm of gradient elasticity models is
the correct determination of the additional constitutive parameters appearing in the model.
These parameters link the local elastic constitutive parameters to a characteristic length pa-
rameter that take into account the scale of material heterogeneities relative to the scale of the
macroscopic mechanical fields. The works of Abali [2018] and Yang et al. [2019] propose
approaches for the determination of the parameters based on action principles and asymptotic
analysis, respectively. Meanwhile, in Rezaei et al. [2024] a specific experimental procedure
is proposed using the pull-out test of a rigid bar along the symmetry axis of a cylindrical
probe to determine the characteristic length parameter. An additional benefit of the strain
gradient formulation is the ability to avoid the occurrence of stress singularities at sharp edges
of the modeled body. In these occurrences the local elasticity formulations even fail to predict
physically accurate solutions at all (cf. Rezaei et al. [2022]) and may in addition lead
to mesh sensitive corresponding numerical results. An additional area where higher order
gradient formulations find application is in the representation of aforementioned unique elec-
tromechanical coupling effects (cf. Serrao and Kozinov [2023] and Tannhäuser et al.
[2024]) observed, for instance, in nanosized semiconductor components.
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Finite Elements For Gradient Elasticity When it comes to finite element formulations
for gradient elasticity, the main challenge lies in meeting the C1 continuity requirement. This
requirement necessitates not only the continuity of the primal solution variable (i.e., the dis-
placements) but also the continuity of the gradient of the primal solution variable across
element interfaces. Therefore, interpolation schemes that are fully C1 continuous incorpo-
rate additional degrees of freedom associated with higher order derivatives along with an
increased polynomial order of the interpolating functions. Hence, the interpolation becomes
considerably more complex, posing a significant challenge in its implementation, particularly
for three-dimensional domains. In the more simple 2D scenario, the lowest order fully C1 con-
tinuous element is the well known triangular element of Argyris and Scharpf [1968] (see
also Okabe [1993]) and requires already a polynomial order of five and 21 degrees of freedom,
which is relatively large yet still usable. Meanwhile, the lowest order tetrahedral counterpart
as first proposed by Ženišek [1973] (see also Lai and Schumaker [2007] as well as section
4.2 of this contribution) demands a minimum ninth order polynomial interpolation and 220
degrees of freedom for a single displacement component. In addition, corresponding element
matrices encounter the issue of having very high condition numbers, which further questions
their usability. When using typical solvers only certain meshes with a few elements can yield
results (cf. Zhang [2008], see also the discussion in section 4.2 of this contribution). An
additional difficulty arises from the presence of face and edge derivative degrees of freedom,
making the element not belong to the family of affine elements and the transformation of the
interpolation operator from the reference to the physical element not straightforward. Yet,
some methods on kinematic transformations for complex tetrahedral interpolation schemes
are proposed by Kirby [2018]. Various tetrahedral extensions have been proposed based on
the subdivision technique, which was initially introduced in the form of the Hsiegh-Clough-
Tocher triangular finite element Clough and Tocher [1965]. These extensions offer a
reduced number of degrees of freedom and a lower polynomial interpolation order, while still
maintaining full C1 continuity. However, the reduced size of these elements comes at the ex-
pense of increased complexity, as the subdivision of the macro-element requires the definition
of corresponding shape functions and compatibility conditions for each sub-element. Never-
theless, some of these reduced interpolation approaches do not have edge- and face-derivative
degrees of freedom, allowing for affine transformations. Additionally, they possess reasonable
matrix conditions and corresponding convergence studies (cf. Walkington [2014]) are possi-
ble. For more detailed information, refer to Alfeld [1984], Lai and Schumaker [2007], and
Walkington [2014]. Furthermore, some C1 problems can be accurately solved by employing
displacement-based finite elements with simpler non-conforming approximation schemes. A
prominent example is the triangular element of Morley [1968] designed for the biharmonic
problem. However, when the weak form includes first order gradients in addition to second
order gradients, such as in gradient elasticity, the Morley element fails to achieve convergence
(cf. Nilssen et al. [2000]). While the modification proposed byNilssen et al. [2000] offers
a solution for the elliptic singular perturbation problem characterized by full first and second
order gradients in the weak form, it does not extend to symmetric gradients as encountered
in the gradient elasticity problem. Another non-conforming strategy is the so-called Hermite
interpolation method introduced by Ciarlet and Raviart [1972] (also discussed in Tabata
and Ueda [2009] and Kirby [2018]). Although the Hermite interpolation approach ensures
full C1 continuity in one-dimensional space, the corresponding two and three-dimensional
elements exhibit C1 continuity solely at the vertices, rendering them incapable of consis-
tently solving general C1 problems (cf. Kirby [2018]; see also section 4.2 in this work). A
noteworthy finite element formulation for gradient elasticity based on a hexahedral Hermite
interpolation scheme is given by Papanicolopulos et al. [2008], however a corresponding
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discussion of the fulfillment of the necessary conditions for C1 continuity (e.g. the unisolvency
of the interpolation problem on the interface1 ) is still missing. In recent times, researchers
have shown interest in the use of isogeometric analysis (IGA) for addressing higher gradi-
ent formulations. References Hughes et al. [2005], Rudraraju et al. [2014] and Wang
et al. [2016] present IGA approaches for gradient elasticity, where the computational domain
is partitioned into patches and spline interpolation functions of arbitrary polynomial order
are utilized instead of traditional finite element triangulations. One of the key advantages of
IGA formulations is the ability to achieve C1 or even higher continuity without increasing the
complexity of the formulation. However, a persistent technical challenge lies in handling gaps
and overlaps that may arise when trimming geometries to approximate the physical geome-
try, as discussed in detail in Marussig and Hughes [2018]. This challenge can be viewed
as a limitation compared to conventional finite elements, which benefit from well-established
automatic mesh generation techniques. A noteworthy contribution in the context of IGA
and tetrahedral meshes is given by Lai and Schumaker [2007], where a general framework
for spline-based interpolation schemes for triangular and tetrahedral meshes is given, how-
ever, resulting again in complex C1 elements. Furthermore, the literature has presented a
variety of non-standard methods. One innovative approach is provided by Wriggers and
Hudobivnik [2023] and utilizes the virtual finite element method for C1-continuous inter-
polations. Another method, known as the C0 interior penalty method, was first introduced
by Brenner and Sung [2005] and can be viewed as a specialized version of the discontin-
uous Galerkin method. In this technique, standard C0 interpolation functions are employed
to discretize the weak form’s volume integrals. However, to ensure the desired continuity of
displacement gradients across element interfaces, additional interface integrals are introduced
incorporating the interface continuity through penalty terms. In Ventura et al. [2021],
the application of this method to gradient elasticity is discussed. Yet, numerical experiments
have shown that satisfactory convergence is achieved only when using interpolation functions
of third order or higher. Another strategy involves the utilization of mixed finite element
formulations. A commonly employed method is akin to the variational principle of Hu [1955]
and Washizu [1955]. In this approach, a Lagrange multiplier term is introduced to establish
the compatibility between the displacement gradient and a mixed solution variable, allowing
for the use of simpler C0 continuous interpolation functions (first small strain contributions
were given by Shu et al. [1999](2D) and Zybell et al. [2012](3D)). Resulting from using
only C0 functions, corresponding interpolation functions necessitate for much fewer degrees of
freedom than the C1 schemes, while (provided the underlying variational formulation is con-
sistent) maintaining full conformity with the original formulation. However, in the mentioned
literature the fulfillment of the mixed stability conditions (see e.g. Boffi et al. [2013],
Braess [2007] and section 2.4 of this contribution) is missing leading to issues with respect
to numerical robustness. Moreover, the introduction of additional mixed variables naturally
leads to additional degrees of freedom and finding formulations incorporating discretization
schemes that remain computationally cost-efficient remains an important research objective.
Therefore, the first part of the present work contributes various mixed finite element formu-
lations for gradient elasticity which incorporate shown to be stable pairings of interpolation
functions promising for robust numerical behavior while maintaining relative cost efficiency
through specific suitable approximation techniques.

1A corresponding discussion can be found in section 4.2 of this contribution.
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1.2 Gradient Damage

The degradation of stiffness and softening of engineering and biological materials resulting
from the deterioration of the microstructure can be modeled using continuum damage formu-
lations. These models incorporate a damage variable, the evolution of which is determined by
specific constitutive relations. The progression of the damage variable leads to a decrease in
the strain energy density, reflecting the material’s softening behavior (cf. Lemaitre [1984],
Lemaitre and Chaboche [1990] and Kachanov [1986] for small strains). Formulations
for damage under finite strain conditions are presented in the works of Miehe [1995] and
Menzel and Steinmann [2001] (also see Balzani et al. [2006], Balzani. et al. [2012]
for applications in biological tissue damage modeling). While local damage schemes may pro-
vide accurate solutions for minor damage levels, the governing equations may lose ellipticity
as damage intensifies. Consequently, in such scenarios, numerical solution algorithms may
fail to converge, resulting in mesh-dependent outcomes due to the localization of numerical
values of the damage variable. Hence, in order to address this concern, several regularization
techniques have been developed, and the advancement of robust and computationally efficient
numerical formulations remains an active area of research. One strategy involves the creation
of a relaxed incremental stress potential, which transforms the original nonconvex problem
into a convex one (cf. Gürses and Miehe [2011]) and thereby providing a variational frame-
work which allows for mesh independent simulations. Additionally, the large strain approach
proposed by Balzani and Ortiz [2012] and Schmidt and Balzani [2016], as well as the
application of Miehe [2011] to multi-field dissipative problems, offer further insights into this
matter. However, these relaxation schemes initially lacked the capability to accurately model
strain-softening, resulting in limited attention. Nevertheless, recent advancements in extended
formulations have demonstrated the ability to incorporate strain softening, as evidenced by
the works of Schwarz et al. [2020] and Köhler and Balzani [2023]. Another method
involves spatial regularization by incorporating gradients of either the damage variable or the
quantities driving damage (cf. Peerlings et al. [1996], also refer to Placidi. et al. [2021]
for a strain gradient damage formulation in materials with granular microstructure). In the
former scenario, the introduction of the gradient enhancement term transforms the damage
evolution equation from a local constant equation to a partial differential equation. This
transition to higher regularity helps prevent the loss of ellipticity and enables the attainment
of mesh-independent solutions.

Numerical Methods for Gradient Damage In local damage finite element formulations,
a common approach is to interpolate the displacements the usual way with Lagrange basis
functions and to incorporate the update condition of the damage variable in terms of a local
history variable. Since the corresponding gradient damage update equation is not local any-
more (i.e. gradient operators are present), a storage of the damage variable as local history
variable in corresponding finite element subroutines is not possible anymore as the resolution
of the gradients comes with additional continuity requirements. Moreover, a straightforward
update scheme of the damage equation at the material point level as in local formulations
is no longer feasible. Yet, if the partial differential equation governing the damage evolution
is considered in strong form, updating at the material point level remains viable. Nonethe-
less, the field equation in this case involves the Laplace operator, making it challenging to
devise suitable discretization schemes. The methodology proposed by Junker et al. [2019]
presents a numerical scheme for small strains (also see Vogel and Junker [2019] for an
extension to finite strains in Junker et al. [2022] as well as section 8.3 of this contribution).
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A limitation of these methods is that due to the necessity of information exchange across ele-
ments, conventional element-internal material subroutines can not be used anymore, thereby
complicating implementation. An alternative to address this limitation is to introduce a finite
element formulation with an additional nodal solution variable to incorporate the gradient
enhancement. One of the earlier contributions in this regard is the finite element formulation
by Peerlings et al. [1996], where the damage update is influenced by an equivalent strain
measure introduced as a mixed variable, resulting in a two-field mixed formulation. An alter-
native method is presented in Liebe et al. [2001], Dimitrijevic and Hackl [2008] and the
finite strain formulation Waffenschmidt et al. [2013]. In these approaches, the damage
field itself is represented by an additional nodal variable, and its equivalence to the locally
updated history parameter is enforced through a penalty constraint term. Corresponding so-
lution schemes can be solved monolithically without the need for additional global iterations
as necessary in staggered approaches such as e.g. the related phase field formulations2 of
Miehe et al. [2010b,a], Gerasimov and De Lorenzis [2019]. When dealing with penalty
gradient damage finite element formulations, however, maintaining numerical robustness in
the presence of severe damage poses a challenge. Furthermore, when choosing low numerical
values of the penalty parameter, values of the additionally introduced relaxed variable may
vary significantly from the damage variable as the constraint condition weakens for smaller
values of the penalty parameter. In such cases, the stiffness contributions of certain elements
may be significantly reduced, resulting in difficult global matrix conditions, which are fur-
ther exacerbated when a penalty term is introduced. Hence, the second part of the present
work (specifically chapter 9) presents a Lagrange multiplier based mixed finite element ap-
proach with interpolation functions that satisfy numerical stability criteria without requiring
a penalty term enabling for robust solutions. Additionally, utilizing a discretization scheme
that allows for static condensation minimizes the size of the global tangent matrix, prevents
zero-valued diagonal submatrices, and achieves a positive definite symmetric global matrix.

1.3 Scope and Outline

The present work is structured as follows.

• Firstly, the introductory chapter 2 provides an overview of some fundamental concepts
and definitions within the realm of the continuous body and spaces that are relevant for
this contribution. Note, that here besides the rather commonly known concepts of the
first sections of this chapter specifically the section 2.4 aims to give a summary of the
stability conditions that are relevant to the numerical analysis of mixed formulations of
the succeeding chapters of the main parts of this work.

• The second introductory chapter 3 then provides an overview over some fundamentals
of finite element interpolations with special emphasis on the ingredients necessary for a
conforming approximation scheme as well as kinematics with respect to the interpolation
over reference elements.

The first main part of this work is concerned with finite elements for gradient elasticity, framed
within the general kinematic framework of finite strains.

2Noteworthy contributions in the field of phase field modeling are also the earlier works of Francfort
and Marigo [1998], Bourdin et al. [2000]. See also the approach Miehe et al. [2016] for modeling
ductile fracture at finite strains with plasticity. For a comparison between gradient damage and phase field
formulations, refer to de Borst and Verhoosel [2016].
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• Therefore, in the starting chapter 4 the original (meaning purely displacement based)
gradient elasticity problem is postulated and then the challenges accompanying C1-
conforming fully displacement based approximations are illustrated by means of the
corresponding lowest order 3D formulation.

• Providing a remedy by allowing for simple C0 approximations chapters 5 and 6 present
suitable mixed finite element formulations based on the three field mixed variational
formulation and the rot-free mixed variational formulation respectively. Here, the con-
tinuous formulations as well as the corresponding suitable approximation functions are
shown together with the fulfillment of stability conditions mentioned in chapter 2 al-
lowing for consistent, robust and efficient corresponding computations.

• In order to verify and compare the stability, robustness and efficiency of the formula-
tions of the preceding chapters chapter 7 provides numerical results and corresponding
discussions for various relevant benchmark problems together with the corresponding
constitutive large strain gradient elastic framework.

The second main part of this work is concerned with finite elements for finite strain gradient
damage.

• Therefore, chapter 8 introduces the general concept of damage formulations, the gra-
dient damage problem and illustrates challenges of some existing finite element formu-
lations motivating for the formulation of the subsequent chapter.

• Lastly, in chapter 9 an efficient Lagrange multiplier based mixed finite element formu-
lation is presented in terms of the continuous formulation, corresponding discretizations
and algorithmic treatment. The robustness, efficiency as well as applicability within
various ranges of parameters and boundary condition is shown in various numerical
tests.





Chapter 2

Continuum Mechanical Fundamentals

2.1 Definitions

This section gives an overview of general definitions for tensor- and differential operators as
well as spaces and identities that are relevant for the content of the subsequent chapters of this
contribution. On the presented fundamentals numerous literature exists. Some selected refer-
ences are Braess [2007] and Altenbach [2012]. Note, that the manifold on which everything
that follows is based is with IRd the d-dimensional Euclidean space with the corresponding

standard metric ||(•)|| =
√∑d

i=1(•)2
i (where i are the vector components).

2.1.1 Tensor Operators

In order to be able to describe field functions such as e.g. stress and strain measures, the
first ingredient is the notion of the tensor. Therefore, let (•) ∈ IRdn be some n-order Tensor
function describing the map

(•) : X → IRdn (2.1)

whereX ∈ IRd denotes a Cartesian based position vector and d ∈ {2, 3} is the space dimension.
For any two tensors (•) and (�) of the same order n the scalar product (inner product) is
defined by the map

(•) • (�) : IR3n × IR3n → IR (2.2)

and describes the sum in which each summand corresponds to each entry of (•) multiplied
with the corresponding entry of (�). The scalar product enables for the definition of the
generalized Frobenius norm

||(•)|| =
√

(•) • (•). (2.3)

On various occasions it is necessary to build the inner product only over some parts of two
tensors (•) ∈ IRdn and (�) ∈ IRdm , which now may be of different orders n and m, respectively.
The corresponding operations are with

(•) · (�) : IRdn × IRdm → IRd(n+m−2)

(•) : (�) : IRdn × IRdm → IRd(n+m−4)

(•)
... (�) : IRdn × IRdm → IRd(n+m−6)

(2.4)

denoted as the standard simple, double and triple contraction, respectively. Of course, the
contraction operators are only applicable to tensors of at least first, second and third order,

11
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respectively, since the result must at least be a scalar quantity IRd0
= IR. The exterior product

(dyadic product) is denoted by

(•)⊗ (�) : IRdn × IRdm → IRdn+m
(2.5)

such that any tensor A ∈ IRdn can be written with

Ai1...in ei1 ⊗ ...⊗ ein (2.6)

in terms of coefficients Ai1...in and corresponding base vectors ei1 , ..., ein , which throughout
this contribution for the sake of simplicity are taken to be the Cartesian base vectors. The
third important type of product is the three-dimensional cross product of tensors with vectors,
reads

(•) × (�) : IR3n × IR3 → IR3n (2.7)

and is applied row wise to tensor-valued functions. The following operators are concerned
with tensors of specific order. In the case of a second order tensor A ∈ IR3×3 and a vector
b ∈ IR3 the coefficients of the cross product explicitly read

A× b ··=

A13b2 −A12b3 A11b3 −A13b1 A12b1 −A11b2
A23b2 −A22b3 A21b3 −A23b1 A22b1 −A21b2
A33b2 −A32b3 A31b3 −A33b1 A32b1 −A31b2

 . (2.8)

Yet, in the planar case in line with the notation that is classically used e.g. when considering
the mechanics of planar motion the vector product can be written asa1

a2

0

×

b1b2
0

 =

 0
0

a2b1 − a1b2

 . (2.9)

In what follows in the two-dimensional case for the cross product the reduced notation is used,
resulting in the definition [

a1

a2

]
×
[
b1
b2

]
= a2b1 − a1b2 (2.10)

that reduces the tensorial order by one. Generalized to 2D tensors, it can be described by the
map

(•) × (�) : IR2n × IR2 → IR2n−1
. (2.11)

Thus, explicitly in this case the coefficients of the cross product of a second order tensor
A ∈ IR2×2 and a vector b ∈ IR2 then read

A× s ··=
[
A12b1 −A11b2
A22b1 −A21b2

]
. (2.12)

Introduce the symmetric operator acting on second order tensors by

sym(•) ··= 1
2((•)T + (•)) ∀(•) ∈ IR3×3. (2.13)

Further, denote S ··= {(•) ∈ IR3×3 : sym(•) = (•)} as the space of symmetric second order
tensors. Analogously to (2.13) define the symmetric operator for the coefficients (•)ijk of third
order tensors (which appear typically in gradient elasticity formulations) as follows

sym(•)ijk ··= 1
2((•)jik + (•)ijk) ∀(•) ∈ IR3×3×3. (2.14)
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Any three-dimensional second order tensor together with some arbitarily oriented unit vector
n can be decomposed as follows

(•)(n) ··= (•) · (n⊗ n) and (•)(t) ··= (•) · (1− n⊗ n). (2.15)

This becomes relevant (as will be introduced later) for the decomposition of tensors on some
surface ∂B of some body B ∈ IR3 where n is the vector normal to the surface. Then, (•)(n)

can be considered as the surface normal components of (•) and (•)(t) can be considered as
surface tangential components of (•).

2.1.2 Differential Operators

For two and three space dimensions (d ∈ {2, 3}) and any n-th order tensor field (•) ∈ IR3n

define the row-wise applied derivative operators

∇(•) ··= ∂j(·)i1...inei1 ⊗ ...⊗ ein ⊗ ej , (2.16)
Div(•) ··= ∂in(·)i1...inei1 ⊗ ...⊗ ein−1 , (2.17)
Rot(•) ··= −∂j(·)i1...inei1 ⊗ ...⊗ ein × ej , (2.18)

where e� denote Cartesian base vectors and (·)i1...in denote the tensor coefficients. In order to
simplify notation in subsequent occurrences in which the individual indices of tensor quantities
are mentioned, the coefficient notation is used and Cartesian base vectors are implied.

Remark 1. In the literature sometimes the nabla operator which in the 3D case is defined by

∇... ··= (∂1..., ∂2..., ∂3...)
T (2.19)

is utilized for the definitions for differential operators. The definitions (2.16)-(2.18) are then
written as

∇(•) ··= (•)⊗∇ Div(•) ··= (•) · ∇ and Rot(•) ··= (•) ×∇

Recall that both in two and three dimensions the gradient increases the tensorial order by one
while the divergence reduces the tensorial order by one. Meanwhile, the rotation in the 3D
case maintains the tensorial order and in the 2D case with the definition (2.11) of the cross
product reduces the tensorial order by one. Naturally, the gradient of any vector (•) ∈ IR3

yields a second order tensor. Thus, given the decomposition (2.15) define the surface normal
and tangential gradient by

(∇(•) · n)⊗ n = (∇•)(n) ≡ njD(•i)
∇Γ(•) ··= (∇•)(t) ≡ Dj(•i) (cf. Mindlin [1964], pp.67).

(2.20)

Following therefrom, by means of the standard definition of the divergence being the trace of
the gradient, the surface divergence is defined by

DivΓ(•) ··= ∇Γ(•) : 1 ≡ Dj(•j). (2.21)

Now, letH ∈ H1(B; IR(d×d)) be a second order tensor, for which a full gradient is computable.
Then the row-wise applied rotation operator (2.18) can be expressed in terms of the gradient
components by

RotH ··=
[

(∇H)121 − (∇H)112

(∇H)221 − (∇H)212.

]
for d = 2 (2.22)
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and similarly for d = 3, the relation

RotH =

(∇H)132 − (∇H)123 (∇H)113 − (∇H)131 (∇H)121 − (∇H)112

(∇H)232 − (∇H)223 (∇H)213 − (∇H)231 (∇H)221 − (∇H)212

(∇H)332 − (∇H)323 (∇H)313 − (∇H)331 (∇H)321 − (∇H)312

 (2.23)

(cf. Riesselmann et al. [2021]).

Important Identities of Differential Operators In the following, various specific prop-
erties and identities of the previously introduced differential operators are summarized and
will be used in later chapters. The following orthogonality relations hold:

The gradient of a tensor is rotation-free: Rot(∇(•)) = 0 (2.24)
The rotation of a tensor is divergence-free: Div(Rot(•)) = 0 (2.25)

Consequently, written in weak form the orthogonality (2.24) of rotations and gradients reads
ˆ
B

Rot(•) • ∇(�) dV = 0 (2.26)

with (•) and (�) being some tensor functions of matching order. The Divergence theorem in
its fundamental form reads ˆ

∂B
(•) · n dA =

ˆ
B

Div(•) dV. (2.27)

where n denotes the unit normal vector pointing outwards of the boundary ∂B of the inte-
grated domain. Applied to the inner product of two tensors (•) and (�), where the first is
one tensorial order higher than the former, the Divergence theorem can be rewritten to

ˆ
∂B

(• · n) • (�) dA =

ˆ
B

Div(•) • (�) + (•) • ∇(�) dV. (2.28)

This identity is e.g. used to get from weak forms to the strong form of variational equations
and vice versa. Note, that another corollary of the divergence theorem in the presence of the
cross product of two vectors yields the following identity

ˆ
∂B

(•× �) · n dA =

ˆ
B

(•) • Rot (�)− Rot(•) • (�) dV (2.29)

which will be made use of in chapter 6.

2.1.3 Function Spaces and Norms

For the analysis of the stability and error convergence of formulations, a necessary ingredient
is to classify the spaces and corresponding measures (norms) which the solution functions
may belong to. Further details on the following can be found in Braess [2007] and Boffi
et al. [2013] (among others). Firstly, define the domain B ∈ IR3 as closed subset of the
Euclidean space IR3, which in the continuum mechanical setting represents the solid body
of interest. Here, the first space, on which subsequently defined spaces are based on is the
so-called Lebesgue space of square integrable functions (i.e. L2-space) defined by

L2(B; IR3n) ··= {(•) ∈ IR3n : (•) is square integrable over B with the finite norm || • ||L2 .}
(2.30)
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and the respective measure is the Lebesgue measure (aka L2-norm)

|| • ||L2 ··=
(ˆ
B

(•) • (•) dV
) 1

2
. (2.31)

Note, that the present definition constitutes a generalization to n-order tensors by means of
the scalar product (2.2). The following L2 sub-spaces contain functions for which various
partial differentials must be computable and are called Hilbert spaces1. Therefore, define the
space

Hm(B; IR3n) ··= {(•) ∈ L2(B; IR3n) : ∇i(•) ∈ L2(B, ; IR3n+i
) for i = 1, ...,m} (2.32)

of functions which are m times differentiable in any coordinate direction and corresponding
gradients are square integrable over the body with the norm

|| • ||Hm ··=
(
|| • ||2L2 + ||∇(•)||2L2 + ||∇2(•)||2L2 + ...+ ||∇m(•)||2L2

) 1
2
. (2.33)

Here, the notation ∇i(•) refers to the i−th order gradient with ∇1(•) ··= ∇(•) and ∇2 ··=
∇∇(•) and so on. Thus, if a linearized variational formulation for example contains quadratic
terms of second order gradients the corresponding suitable solution space is the H2-space,
which is the case e.g. in the gradient elasticity formulation (cf. section 4.1). Furthermore, cor-
responding to each summand in (2.33) is defined the so-called seminorm |(•)|Hi ··= ||∇i(•)||L2 .
Also, note the relation

Hm(B; IR3n) ⊂ ... ⊂ H2(B; IR3n) ⊂ H1(B; IR3n) ⊂ L2(B; IR3n) (2.34)

meaning that all functions that belong to e.g. H2(B; IR3n) also belong to H1(B; IR3n) and so
on. Meanwhile, the magnitude of the norm of any function (•) ∈ Hm(B; IR3n) is ordered by
the sequence

|| • ||L2 ≤ || • ||H1 ≤ || • ||H2 ≤ ... ≤ || • ||Hm , (2.35)

which becomes relevant for estimating upper and lower bounds for some inequalities intro-
duced later on. So far, the spaces have been defined such that for the functions arbitrary
values over the domain B are possible. Yet, in boundary value problems often on some parts
of the domain fixed values of the solution functions are prescribed. Therefore, picking up on
the notation of Braess [2007] here, for those functions the most general definition of Lebesgue
spaces with generalized Dirichlet boundary conditions is introduced. For that, define by

L2
0(B; IR3n) ··= {(•) ∈ L2(B; IR3n) : each component of (•)

is constant on some part of B}
(2.36)

the L2 space with generalized Dirichlet border. The generalized Dirichlet border can be e.g.
a fixed mean integral

´
B(•) dV = 0, a subdomain of the boundary (•) = (•)? on Γ ⊆ ∂B or

the entire boundary fixed. Note, that generally throughout what follows, functions with non-
zero Dirichlet boundary conditions on subdomains are considered. There, following Braess
[2007],p35 ff. and remark 6.1 problems with functions with non-zero boundary conditions
can be transformed to problems with functions with zero-boundary conditions. Therefore,
when in later chapters stability conditions (such as Brezzi’s stability condition (cf. section
2.4)) are postulated for zero boundary conditions, they in general imply these conditions

1Hilbert spaces are also referred to as Sobolev spaces. Here, the distinction is that Hilbert spaces are based
on the L2-norm, whereas Sobolev spaces in general can be based on any Lp norm Braess [2007].
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also for problems with non-zero boundary conditions as well. Define the Hilbert space with
generalized Dirichlet boundary conditions by

Hm
0 (B; IR3n) ··= {(•) ∈ Hm(B; IR3n) : ∇i−1(•) ∈ L2

0(B, ; IR3n+i
) for i = 1, ...,m}. (2.37)

Now, the subscript H0 implies that the functions and all components of derivatives of one
order lower than those over which the space is defined to take fixed values somewhere in B.
Here, it is noteworthy that in the case of Dirichlet conditions on the boundary only surface
normal components of the higher gradients of the function need to additionally be fixed,
since the fixed surface tangential components of gradients are implied by fixed values of the
functions themselves. Thus, specifically in the case of Dirichlet boundary conditions for (2.37)
the boundary conditions become

(•)|Γ1 = (�)? , ∇(•)|Γ2 · n = (�)?? , ∇m−1(•)|Γm � (n⊗ ...⊗ n)︸ ︷︷ ︸
(m−1) times

= (�)?...?,

where Γi are some subsets of the boundary, (�)?, (�)??, ... refer to some prescribed functions
and � denotes the m − 1-order contraction. That is, e.g. in the case of Dirichlet boundary
conditions for the first and second order case the definitions

H1
0 (B; IR3n) ··= {(•) ∈ H1(B; IR3n) : (•)|Γ1 = (�)?} (2.38)

H2
0 (B; IR3n) ··= {(•) ∈ H2(B; IR3n) : (•)|Γ1 = (�)?,∇(•)|Γ2 · n = (�)??} (2.39)

follow. Analogous to the H1-space containing first order gradients, the spaces

H(Div;B; IR3n) ··= {(•) ∈ L2(B; IR3n) : Div(•) ∈ L2(B; IR3(n−1)
)} (2.40)

H(Rot;B; IR3n) ··= {(•) ∈ L2(B; IR3n) : Rot(•) ∈ L2(B; IR3n)} (2.41)

contain functions with first order divergences and rotations, respectively, with the correspond-
ing norms

|| • ||H(Div) ··=
(
||(•)||2L2 + ||Div(•)||2L2

) 1
2 (2.42)

|| • ||H(Rot) ··=
(
||(•)||2L2 + ||Rot(•)||2L2

) 1
2
. (2.43)

Note, that adding the index H0 in the case of the present H(Div) and H(Rot) spaces refers
to generalized Dirichlet boundary conditions in the same manner as discussed before.

Commuting Diagram A useful sequence in order to illustrate some relations between dif-
ferential operators and spaces relevant for the stability analysis of formulations is the following
commuting diagram also known as the De Rham complex (cf. Boffi et al. [2013])

H1(B)
∇→ H(Rot;B; IR3)

Rot→ H(Div;B; IR3)
Div→ L2(B). (2.44)

Here, it is worth noting that the image of the differential operators is the kernel of the corre-
sponding next space in the sequence, meaning that e.g. the gradient applied to H1-functions
yields rotation-free functions living in H(Rot;B; IR3). The rotation applied to functions in the
latter space yields divergence-free functions living in H(Div;B; IR3) and finally the divergence
applied to functions in the latter space yields functions in L2. Further reading on commut-
ing diagrams and their use for the construction of mixed finite element formulations besides
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Boffi et al. [2013] can be found in the generalizing framework of Arnold et al. [2006].
See also the elasticity complex and based thereon formulations of Arnold and Winther
[2002] and Arnold et al. [2008]. With the definitions (2.16)-(2.18) the commuting diagram
extends naturally to higher order tensors. Note, that in the two-dimensional case with the
2D rotation operator defined by (2.18) and (2.12) the commuting diagram simplifies to

H1(B)
∇→ H(Rot;B; IR2)

Rot→ L2(B) (2.45)

(cf. Schöberl [2009]). Furthermore, by means of the 3D commuting diagram (2.44) the
following scheme indicates suitable Hilbert spaces for the following L2 pairings including
differential operators:
ˆ
B

(•) • ∇(�) dV → (•) ∈ H(Rot0;B; IR3n+1
) and (�) ∈ H1(B; IR3n),

ˆ
B

(•) • Rot(�) dV → (•) ∈ H(Div0;B; IR3n) and (�) ∈ H(Rot;B; IR3n),

ˆ
B

(•) • Div(�) dV → (•) ∈ L2(B; IR3n−1
) and (�) ∈ H(Div;B; IR3n),

(2.46)

where H(Rot0;B; IR3n) and H(Div0;B; IR3n) are defined by

H(Rot0;B; IR3n) ··= {(•) ∈ H(Rot;B; IR3n) : Rot(•) = 0} and (2.47)

H(Div0;B; IR3n) ··= {(•) ∈ H(Div;B; IR3n) : Div(•) = 0}. (2.48)

Dual Spaces and Double Pairings Another pairing occurring in later introduced formu-
lations is the simple L2 pairing

´
B(•) • (�) dV, where (�) belongs to (�) ∈ H1(B; IR3n). Then,

provided no other restrictions with respect to differentiability of (•) (i.e. no other occurrences
of derivatives of (•) in the formulation) are present for (•) the dual space is defined by

H−1(B; IR3n) ··= {(•) ∈ IR3n with the norm || • ||H−1 defined ∀(�) ∈ H1(B; IR3n} (2.49)

and the norm defined as

|| • ||H−1 ··= sup
(�)∈H1

0 (B;IR3n )\{0}

´
B(•) • (�) dV

||(�)||H1

(cf. Braess [2007],p.117, def 3.1) (2.50)

Further, note the relations

H1(B; IR3n) ⊂ H(Div; IR3n) ⊂ L2(B; IR3n) ⊂ H−1(B; IR3n) and
|| • ||H−1 ≤ || • ||L2 ≤ || • ||H(Div) ≤ || • ||H1 ,

(2.51)

which will also become relevant for the determination of bounds of inequality conditions
(e.g. the inf-sup condition) discussed later on. Similarly, the H1-space is embedded with
H1(B; IR3n) ⊂ H(Rot; IR3n) in the H(Rot)-space and thus, every element of H1 is also an
element of H(Rot) (this is relevant to the formulation of chapter 6). In some instances in
the case of mixed formulations also double pairings, meaning that one function is paired with
two different functions, are possible. Here, the concept of defining therefore suitable spaces
is exemplified by means of one specific for this contribution relevant example. Consider the
example ˆ

B
(•) •H + Div(•) • u dV (2.52)
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withH ∈ H1(B; IR3×3) and u ∈ L2(B; IR3). In the case of the second pairing, for the function
(•) the divergence must be computable and paired with L2. Meanwhile, due to the first
pairing the function (•) must also be considered as dual to a H1-function, that is, being
an element of the space H−1. Therefore, define the solution space specifically matching the
present scenario (cf. also the formulation of section 5.2.1 as well as the alternative formulation
of Riesselmann et al. [2021]) by

H−1(Div;B; IR3×3) ··= {Λ ∈ H−1(B; IR3×3) : Div Λ ∈ L2(B; IR3)} (2.53)

with the norm

||(•)||H−1(Div) ··=
(
||(•)||2H−1 + ||Div(•)||2L2

)1
2
. (2.54)

Helmholtz Decomposition Consider the three-dimensional second order tensor field Λ ∈
L2(B; IR3×3). The theorem of Helmholtz [1858] (see also Schedensack [2015]) states that
Λ can be expressed as a superposition

Λ = ΛG + ΛR (2.55)

of an irrotational (rotation-free) field ΛG and a solenoidal (divergence-free) field ΛR. Con-
sequently, with (2.24) and (2.25) the two parts can be expressed by gradient and rotation
functions respectively:

ΛR = Rot Φ and ΛG = −∇g, (2.56)

with g ∈ H1
0 (B; IR3) being a vector-valued function and Φ ∈ H0(Div0;B; IR3×3) being the

space for tensor-valued L2 functions with vanishing divergence and normal boundary con-
ditions; see subsection 6.1.5 for details. Note, that the decomposition has been initially
postulated for vector fields but with the tensorial definition of the differential operators it
applies naturally to arbitrary tensorial orders n ≥ 1. Here it is formulated in terms of second
order tensors matching the use case in chapter 6. Note also, that whenever in some integral
expression (i.e. variational formulation) Λ is replaced by the expressions (2.56) containing
first derivatives, it becomes necessary to fix g and Φ by means of some generalized Dirichlet
conditions to maintain unisolvency.

Functions Appearing in Integral Terms on the Boundary of B: In case a variational
formulation has surface integrals such as e.g. the integral including the surface tractions of
the classical elasticity problem for the corresponding functions, specific spaces are defined.
These definitions account for the relation between the functions in the volume of the body
and the surface. For any function u defined over the body B define the corresponding space
of surface functions

H1/2(Γ; IR3) ··= {v ∈ L2(Γ; IR3) : ∃ u ∈ H1(B; IR3) with v = u|Γ} (2.57)

H3/2(Γ; IR3) ··= {v ∈ H1(Γ; IR3) : ∃ u ∈ H2(B; IR3) with v = u|Γ and ∇v · n = ∇u · n|Γ}
(2.58)

being with v ∈ L2(Γ; IR3) square integrable over the surface. The dual spaces corresponding
to (2.57) and (2.58) are given by

H−1/2(Γ; IR3) ··= {t ∈ L2(Γ; IR3) : ∃ fP ∈ P with t = fP } (2.59)

H−3/2(Γ; IR3) ··= {r ∈ L2(Γ; IR3) : ∃ fG ∈ G with r = fB} (2.60)
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where fP and fG refer to some functions of the traction duals accounting for the surface
equations specific to the formulation2. The spaces P and G denote some suitable spaces
specific to the formulation. Further details on Hilbert spaces on the boundary are given
Braess [2007], see also Schedensack [2015]. Note, that the space definitions of the present
subsection are given only for the sake of completeness and do not appear in any subsequent
analysis.

2.1.4 Important Identities

This subsection provides a summary of some identities, that are in the literature of the
numerical analysis of finite elements repeatedly referred to. Firstly, introduce the notations

(•) . (�) ··= (•) ≤ c (�) and (•) & (�) ··= (•) ≥ c (�),

which refer to an inequality where c ∈ IR+ \{0} is a positive constant and is hidden within the
operators . and &. The so called triangular inequality, which applies to sums and therefore
also to integrals, reads

|
∑
i

(•)i| ≤
∑
i

|(•)| and |
ˆ
B

(•) dV | ≤
ˆ
B
|(•)| dV. (2.61)

The Poincaré(-Friedrich) inequality applied to L2 spaces is given by

||(•)||L2 . ||∇(•)||L2 ∀(•) ∈ H1
0 (B) (2.62)

where H1
0 (B) refers to the H1-space of functions with generalized Dirichlet condition, as

discussed in section 2.1.3. Note, that the Poincaré inequality holds for any Lp-space, however
only the L2 space is of relevance within this contribution. Korn’s inequality is defined as

||∇(•)||2L2 . || sym∇(•)||L2 ∀(•) ∈ H1
0 (B; IR3), (2.63)

where (•) has some Dirichlet boundary which is larger than a point. Lastly, the Cauchy-
Schwarz inequality applied to L2 spaces is defined as

|
ˆ
B

(•) • (�) dV |2 ≤ ||(•)||2L2 ||(�)||2L2 ie. |
ˆ
B

(•) • (�) dV | ≤ ||(•)||L2 ||(�)||L2 (2.64)

2.2 Finite Strain Kinematics and Stress Measures

The present section provides an overview of the notations and kinematic relations describ-
ing the motions and deformations of the continuum mechanical body of interest. Further
reading can be found in the books of Altenbach [2012] and Wriggers [2008] (among other
contributions). Therefore, following the commonly used kinematic framework, it can be distin-
guished between the body in reference undeformed condiguration B and in the current/actual
deformed configuration S. There exists a bijective function χ ··= χ(X, t), which maps with

χ : B → S (2.65)

2In the case of local elasticity that is the Cauchy theorem and in the case of gradient elasticity that is the
corresponding first and second order surface traction equation.
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for any t ∈ t̂ ··= [t0, tend] in the considered time interval t̂ any point in the coordinates X of
the body B in reference configuration to a point of the body S in the actual configuration
with the relations

x = χ(X, t) and X = χ−1(x, t). (2.66)

where x are coordinates of the body in the actual configuration. Throughout this contribution
the coordinates X of the reference configuration are used and the material time derivative is
denoted as

˙(•) ··=
∂(•)
∂t

(
=
∂(•) ◦ χ−1

∂t
+
∂(•)
∂x

•
∂x

∂t

)
(2.67)

where (•) : denotes any n-tensor valued function. The displacement function u : (B× t̂ )→ IR3

is given through the relation x = X + u and the deformation gradient reads

F ··=
∂x

∂X
= 1 +∇u. (2.68)

The Green Lagrange nonlinear strain tensor is defined as

E(∇u) = 1
2(C − 1) = 1

2((∇u)T · ∇u+∇u+ (∇u)T ). (2.69)

In what follows all body, surface and line integrals are posed in terms of the body in reference
configuration. Therefore, to make notation more simple the subscript of n0 referring to the
reference configuration will be omitted and in what follows the normal vector with respect to
the reference configuration is simply denoted by n and the tangential vector is denoted by
s. Following Altenbach [2012] (p. 81) the kinematic relations between volume, surface and
line increments is given by

dv = detF dV, (2.70)

da = detF F−T · dA and (2.71)

dx = F · dX, (2.72)

respectively. Further, (•)−T ··= ((•)T )−1 denotes the inverse of a transposed second order
tensor and the vector valued surface and line differentials can equivalently be written as
dA = n dA and dX = sdX. The response of any body loaded with external forces is an
internal state of stress. The symmetric local stress tensor σ ∈ L2(S;S) related to the current
configuration, S is commonly referred to as the true stress tensor and in the case of classical
elasticity called the Cauchy stress tensor. Based on the previous relation (2.71) integrating the
Cauchy stress over the Neumann surface ∂Sσ in the current configuration yields the relationˆ

∂Sσ
σ · da =

ˆ
ΓN

detFF−1 · σ︸ ︷︷ ︸
··=P

·dA,

where ΓN corresponds to the corresponding Neumann surface in reference configuration and
P denotes the first Piola Kirchhoff stress tensor. The relations

P = (detF )F−1 · σ and σ = (detF )−1F · P (2.73)

are referred to as pull back of the Cauchy stress tensor and push forward of the first Piola
Kirchhoff stress tensor, respectively. At this point it is already worth mentioning the analogy
to the later discussed finite element kinematics of section 3.2. For the sake of completeness,
note the relation

S = F−1 · P with P ∈ L2(B; IR3×3) (2.74)

between the first and symmetric second order Piola Kirchhoff tensor S ∈ L2(B;S). For further
fundamental continuum mechanical concepts and notions such as e.g. balance- and constitu-
tive equations as well as principles of material theory, the reader is referred to Altenbach
[2012] (among other basic literature).
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2.3 Variational Principles

This section summarizes the well known main principles of the calculus of variations, which
are used in the context of the formulations presented in this contribution. Therefore, first a
generic example potential is introduced by which in the following the steps of time discretiza-
tion, variation and linearization are illustrated. Further reading in the context of variational
calculus can be found, e.g. in Fox [1987] and Gelfand and Fomin [2000]. Let v ··= v(X, t),
w1 ··= w1(X, t) and w2 ··= w2(X, t) be sets of arbitrary-order tensor-valued functions of time
and space, which map with v : (B, t̂) → V, w1 : (B, t̂) → W and w2 : (ΓN, t̂) → W2 a point
from the considered space-time domain (B, t̂) (and the boundary-time subdomain (ΓN, t̂) with
ΓN ⊆ ∂B) into some function space V,W1 andW2. Further, let f ··= f(v, ∂Xiv, ..., ∂tv, ...,w1)
denote a functional of v and w1 and (in the most generous case) its space- and time deriva-
tives up to an arbitrary order defined over the domain (B, t̂) and g ··= (v|ΓN

, ...w2) denote
a functional of the functions v|ΓN

(and derivatives) and w2 evaluated on some boundary
subdomain (ΓN∩∂B, t̂) 3. In order to fix ideas and keep notation simple a functional f is con-
sidered, which may depend on first order time- and space-derivatives4. Yet, the corresponding
following concepts of variation and linearization apply analogously to any set of functional
arguments. Furthermore, the global functional also referred to as (pseudo)-potential is defined
by the functional f and g integrated over the domains

Π ··=
ˆ
t̂

(ˆ
B
f(v, v̇,∇v,w1) dV +

ˆ
ΓN

g(v|ΓN
,w2) dA

)
dt (2.75)

where we denote by v ∈ V the solution functions and denote by w1 ∈ W1 and w2 ∈ W2 the
fields of external loads. Then, according to the variational principle of least action developed
in the late 1700s by Leibniz, Euler, Lagrange and others (for an overview see Pulte [1989])
among all possible arguments of f , we seek for given w1 ∈ W1 and w2 ∈ W2 those functions
over the domain B and t̂ that stationarize5 the action integral

Π⇒ stat
v

(2.76)

2.3.1 Time Discretization

Integrals such as (2.75) can usually not be solved analytically and need to be spatially dis-
cretized (by e.g. finite element approaches, of which the fundamentals are presented in detail
in the next chapter 3) and solved with numerical solution schemes such as the well known
Newton’s method. Since in the general case the formulation is nonlinear in the solution fields
and external loads, the system is therefore linearized and the stationary point is computed
by iteratively solving the linear system. However, obviously due to the nonlinearity of the
functional response, iterative solution schemes such as Newton’s method usually fail to find
the solution or provide inaccurate solutions when the entire time domain t̂ is analyzed at once.
Therefore, the time domain t̂ = [t0, tend] is divided into discrete time increments and (2.75)

3In the most general case, for each component of w2 and corresponding derivative components, the subdo-
main can be a different subset of the boundary ∂B.

4Typically, continuum mechanical models, which aim to incorporate inertial effects and the dynamic be-
havior of the system, include second order time derivatives. These are, however, not part of the present study.
Time derivatives of first order usually appear in formulations incorporating viscose or dissipative effects and
corresponding potential functions are considered pseudo potentials. Formulations including the first order
time derivative will appear in the gradient damage chapters 8 and 9 of this contribution.

5That is, depending on the problem seeking a minimum, maximum or saddle point.
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can be written as the sum of integrals over each time increment
ˆ
t̂
(•) dV =

ˆ t1

t0

(•) dV + ...+

ˆ t

tn

(•) dV + ...

ˆ tend

tend−1

(•) dV. (2.77)

Now, for any time step [tn, t] the corresponding summand in (2.77) depends both on solution
quantities of t and quantities of the previous time steps. The stationary point (2.76) is sought
subsequently for each time increment [tn, t] given the solution of the previous time steps. Note,
that applying the stationary operator to each summand of (2.77) yields the same results as
applying the stationary operator to (2.75), because (2.77) and (2.75) are equivalent. For
the discretization of the time integrals numerous approaches of various complexity (e.g. the
method of Newmark [1959] for formluations including second order time derivatives) can
be employed (see also Belytschko [1986]). In the formulations of the present contribution,
no time derivatives higher than first order turn up. Therefore, with the first order time
discretization

˙(•) ≈ (•)− (•)n
t− tn

(2.78)

the integrals in (2.77) depend only on current quantities t and quantities of the previous time
step6 tn and the following Backward-Euler numerical time integration can be used:

ˆ t

tn

(•) dV ≈ ((•)− (•n))(t− tn) (2.79)

Thus, in the time-incremental setting for each time step [tn, t] we seek for given w1 ∈ W1 and
w2 ∈ W2 the solution v ∈ V such that the integral

Π ··=
ˆ
B
f(v,∇v,w1,vn) dV +

ˆ
ΓN

g(v|ΓN
,w2) dA⇒ stat

v
. (2.80)

becomes stationary. In consequence, within the framework of the incremental load step solu-
tion procedure the stationary point of (2.75) can be computed by the sequence of stationary
points of the integral of (2.80) also known as the load step solution procedure.

2.3.2 Variation

According to the principle of calculus of variations, the stationary point v ∈ V of (2.80) is
the point at which the Gateaux derivative

D

Dε

(ˆ
B
f(v+ ε δv,∇v+ ε∇δv,w1,vn) dV +

ˆ
ΓN

g(v|ΓN
+ ε δv|ΓN

,w2) dA
)∣∣∣
ε=0

= 0 (2.81)

over all functional arguments becomes zero in the limit of the parametrization ε → 0 with
δv and δv|ΓN

being arbitrary variations of the solution functions. Further, introduce the
boundary domain Γ

(i)
D ⊆ ∂B with Γ

(i)
D ∩ Γ

(i)
N = ∅ and Γ

(i)
D ∪ Γ

(i)
N = ∂B complementary to Γ

(i)
N

on which components vi = v?i of the function values themselves can be prescribed. For the
sake of simplicity, in what follows the assumption is made that the boundary decompositions
coincide for all components i and without loss of generality, the following concepts can be
applied to arbitrary boundary decompositions. The boundary conditions vi|ΓD

= v?i |ΓD
are

denoted Dirichlet boundary conditions with the corresponding variations δvi|ΓD
= 0 being

zero. Moreover, the surface integrals containing the functions w2 ∈ W2 are denoted Neumann
6In the case of higher order time derivatives this is generally not the case cf. Belytschko [1986].
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boundary conditions, which include also the free boundary on which w2 is zero. Note, that
following a more strict notation in the potential expressions the solution functions would
have to be denoted differently (e.g. ṽ) in order to account for the fact that the potential
formulation does not display the solution yet. However, for the sake of simplicity in what
follows the simplified notation as presented before is used. The Gateaux differential (2.81) is
equivalent to the following variational equation

δvΠ ··=
ˆ
B
∂vf • δv + ∂∇vf • ∇δv dV +

ˆ
ΓN

∂vg|ΓN
• δv|ΓN

dA = 0 (2.82)

of which both the first and second integral expressions must independently be zero. The
present representation (2.82) of the problem denotes the weak form since only first order
gradients appear, although the corresponding set of local equations are of second order: By
application of the divergence theorem (2.28) and inserting δu|ΓD

= 0 the following strong
formˆ
B
∂vf • δv −Div ∂∇vf • δv dV +

ˆ
ΓN

(∂∇vf · n)|ΓN
• δu|ΓN

+ ∂vg|ΓN
• δv|ΓN

dA = 0 (2.83)

can be obtained incorporating with Div ∂∇vf(..,∇v, ...) second order derivatives. In finite
element formulations, the weak form represents the more favorable display format, since in-
terpolation schemes including only first order derivatives are more simple than those incor-
porating second order derivatives. We note that both integrals in (2.83) must independently
be zero due to the following reason: The equation needs to hold for any δu and δu|ΓN

. Thus,
it must hold for the choice δu|ΓN

= 0 on ΓN (which does not imply δu = 0 in B). Therefore,
the local equation

∂vf −Div ∂∇vf = 0 (2.84)

must always hold. Reversely, since (2.83) must always be zero even with (2.84) for any v|ΓN

the surface equation
∂∇vf · n+ ∂vg = 0 on ΓN (2.85)

must hold as well. In what follows, again for the sake of readability throughout this contribu-
tion, the subscript (•)|ΓN

is omitted from occurrences of solution variables in surface integral
expressions.

2.3.3 Linearization

In general, the functionals are nonlinear in their respective arguments. Linearizations of the
formulations are presented in various occurrences throughout this contribution, both in the
continuous and in the following discrete settings that incorporate the finite element discretiza-
tions of the weak forms. Therefore, by means of the previous example (2.82) the concept of
linearization is briefly illustrated here. Applying the Taylor series expansion up to first order
around the solution functions yields for (2.82)

Lin[δvΠ] =

ˆ
B
∂vf |i • δv+∂∇vf |i •∇δv+(∂v∂vf |i : ∆v) •∇δu dV +

ˆ
ΓN

∂vg|i • δv dA. (2.86)

where f |i is short for f(v|i,∇v|i,w1,vn) and g|i analogously and the index i refers to the value
at the point around which the Taylor series is developed. Here, to keep the expression simple
v ∈ IR3 ∩V is assumed to be a vector and f and g are assumed to be linear in v, thus, having
no second derivatives (also known as tangent operators). Furthermore, in the formulations of



24 CHAPTER 2. CONTINUUM MECHANICAL FUNDAMENTALS

this contributions i corresponds to the previous Newton iteration and ∆v = v − vi denotes
the solution increment for which the linear problem Lin[δvΠ] = 0 needs to be solved for each
iteration. Finally, by defining bilinear and linear forms

a(δv,∆v) ··=
ˆ
B

(∂v∂vf |i : ∆v) • ∇δu dV

l(δv) ··= −
ˆ
B
∂vf |i • δv + ∂∇vf |i • ∇δv dV −

ˆ
ΓN

∂vg|i • δv dA,
(2.87)

respectively, the linear problem in abstract notation can be denoted as follows. For given
w1 ∈ W1, w2 ∈ W2 and v|i ∈ V find ∆v ∈ V such that

Lin[δvΠ] = 0 ⇔ a(δv,∆v) = l(δv) (2.88)

holds for all δv ∈ V.

2.3.4 Example: Local Hyperelasticity

The most classical example in which the variational principles are applied in the continuum
mechanical context is the elasticity problem, for which f and g are defined as

f(u,∇u,f) ··= ψ(C(F ))− f • u and g(u, t) ··= t • u (2.89)

where ψ is the volume specific strain energy, F is the deformation gradient (2.68), u ∈
H1

0 (B; IR3) are the displacements with the Dirichlet conditions u = u? on ΓD, f ∈ H−1(B; IR3)
is a volume load and t ∈ H−1/2(ΓN, IR

3) are surface tractions. The variational equation then
reads ˆ

B
P • δF − f • δu dV −

ˆ
ΓN

t • δu dA = 0 (2.90)

where P ··= ∂Fψ denotes the first order Piola-Kirchhoff stress tensor (cf. section 2.2). From
the variational equation, the balance of linear momentum

−DivP = f (2.91)

corresponding to (2.84) and the Cauchy equation

P · n = t on ΓN (2.92)

corresopnding to (2.85) can be identified.

2.4 Fundamentals of Mixed Variational Formulations

In this section, some fundamental aspects around the concept of stability within the context
of mixed finite element formulations are summarized. Baseline contributions in the analysis
of stability of (mixed) finite element formulations were made by Lax and Milgram [1954],
Ladyzhenskaya [1969], Babus̆ka [1973], Brezzi [1974] and Fortin [1977]. Further, com-
prehensive overviews can be found e.g. in the books of Brenner and Scott [1994], Braess
[2007] and particularly Boffi et al. [2013]. Among others, descriptive content on this topic
can also be found in the dissertations of Schedensack [2015] (from the field of numerical
mathematics) and Viebahn [2019] (from the field of computational mechanics).
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2.4.1 Introduction to Mixed Variational Formulations

The following concepts of analytically predicting the stability of formulations are framed
within the abstract notation, including bilinear and linear forms. In order to make concepts
clear for the linear elasticity problem, specific examples of the different mixed variational
approaches are given. Starting point is the primal, purely displacement based variational
formulation. Here, to keep notation short and therefore assuming pure Dirichlet conditions,
the corresponding elastic potential reads

Πu ··=
ˆ
B

1
2∇

su : C : ∇su− f • u dV (2.93)

where C denotes the linear elastic tangent operator and ∇s ··= sym(∇) the symmetric gradient
operator. Following therefrom, the linear problem seeks u ∈ H1

0 (B; IR) for all f ∈ H−1(B; IR3)
and u?|ΓD

such that
a(δu,u) = l(δu) (2.94)

holds for all δu ∈ H1
0 (B; IR3) and the bilinear and linear form is defined as

a(δu,u) ··=
ˆ
B
∇sδu : C : ∇su dV and l(δu) ··=

ˆ
B
f • δu dV. (2.95)

Now, an example for a mixed variational formulation incorporating two solution variables can
be found following the concepts of Hellinger [1913] and Reissner [1950]. The correspond-
ing following formulation can be found in Viebahn et al. [2018] and reads

ΠHR ··=
ˆ
B

1
2σ : C−1 : σ + Divσ • u+ f • u dV (2.96)

and C−1 is called compliance tensor. The corresponding linear variational problem seeks
for given f ∈ L2(B; IR3) and the Dirichlet condition σ · n = t on ΓN the solution (σ,u) ∈
H(Div;B; S)× L2(B; IR3) such that

a(δσ,σ) + b(δσ,u) = 0

b(σ, δu) = −l(δu)
(2.97)

holds for all (δσ, δu) ∈ H(Div;S)×L2(B; IR3). Here, the bilinear and linear forms are defined
as

a(δσ,σ) ··=
ˆ
B
δσ : C−1 : σ dV and

b(δσ,u) ··=
ˆ
B

Div δσ • u dV

(2.98)

and l(δu) defined the same as in (2.95). Note, that in the case where the original problem
(2.94) consists of a pure Dirichlet boundary (ie. ΓN = ∅), for the present two-field problem
the entire boundary ∂B is of homogeneous Neumann type (cf. Carstensen et al. [2019],
see also Viebahn [2019]). For the given example σ denotes the primal variable and u, which
has the function of a Lagrange multiplier, is denoted as constraining variable in the present
case ensuring that the balance of linear momentum formulated in terms of the primal variable
σ is fulfilled. The second, constraining term in (2.96) accounts for the coupling of the two
solution variables end enforces some constraint on the primal variable.
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The third example corresponds to formulations incorporating three solution variables based
on the variational principles of Hu [1955] and Washizu [1955]. For the present problem, the
corresponding formulation can be found in Zienkiewicz and Taylor [2000]. The potential
reads

ΠHW ··=
ˆ
B

1
2ε : C : ε+ σ • (ε−∇su)− f • u dV (2.99)

and in the present local linear elasticity case the solution of the corresponding linear variational
equation can be sought in the spaces (u, ε,σ) ∈ H1

0 (B; IR) × L2(B;S) × L2(B;S) so that for
given f ∈ H−1(B; IR3) and u?|ΓD

the equations

b2(σ, δu) = l(δu)

a(δε, ε) + b1(δε,σ) = 0

b2(δσ,u) + b1(ε, δσ) = 0

(2.100)

hold for all (δu, δε, δσ) ∈ H1
0 (B; IR) × L2(B;S) × L2(B;S). The corresponding definitions of

the bilinear and linear forms read

a(δε, ε) ··=
ˆ
B
δε : C : ε dV

b1(δε,σ) ··=
ˆ
B
σ • δε dV

b2(σ, δu) ··= −
ˆ
B
σ • ∇sδu dV

(2.101)

and l(δu) unchanged from the previous cases. In the context of local linear elasticity, the
introduction of mixed solution variables is motivated by providing formulations that avoid
locking in the case of nearly incompressible material behavior (see e.g. Zienkiewicz and
Taylor [2000] and many other contributions).

2.4.2 Definition of Stability

In the following, the conditions of Lax and Milgram [1954] are introduced, which are
necessary conditions for the primal variational formulation but also for some of the bilinear
forms of the mixed variational formulations in order to produce stable solutions. In the
context of primal variational formulations, the terminology stability refers to existence of a
solution and uniqueness of such. In the context of mixed variational formulations, the term
stability additionally includes the consistency of the mixed solution with the solution of the
original problem. In the discrete finite element setting, the term stability translates to rank
sufficiency of the tangent matrix of the corresponding linear system of equations (cf. section
3.3.3) and robustness of the corresponding numerical solution procedure. Note, that the
following concepts of stability only refer to linear systems.

Boundedness and Coercivity: The theorem of Lax and Milgram [1954] states that a
problem with one primal solution variable (u in the case of problem (2.94)) is stable if the
bilinear form is bounded and coercive. Boundedness is given if the condition

|a(δu,u)| . ||u||U ||δu||U ∀u, δu ∈ U (2.102)

is fulfilled, where U denotes the solution space of u and || • ||U its corresponding norm. In
the present context of linear operators, the term boundedness is equivalent with the term
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continuity (cf. Braess [2007]). Meanwhile, coercivity is given if the condition

a(u,u) & ||u||2U ∀u ∈ U (2.103)

is fulfilled. Provided the bilinear form is elliptic, the terms coercivity and ellipticity are
interchangeable (cf. Braess [2007], p. 37). In the present notation, a positive constant
c ∈ IR+ \ {0} is hidden within the operators . and & (cf. definitions of section 2.1). A
geometric interpretation of a coercive bilinear form can be given by the observation that
the slope of the functional value of the operator can only grow as the values of its arguments
increase. A bilinear form that, as in the linear elasticity example (2.94) consists of a quadratic
functional of symmetric gradients and solution space H1

0 (B; (IR3) fulfills the boundedness and
coercivity condition. Here, (denoted by the subscript 0) it is important that the solution space
has a compact support (in other words, some generalized Dirichlet condition). Corresponding
proofs can be found in Braess [2007].

2.4.3 The Inf-Sup Condition

In the case of two-field formulations such as (2.97) due to the existence of the second bilinear
form b the previously stated Lax-Milgram stability conditions are no longer sufficient (Arnold
[1990]). Now, in order to prove the uniqueness and existence of a solution Ladyzhenskaya
[1969], Babus̆ka [1973] and Brezzi [1974] showed that another necessary condition is the
inf-sup condition (also known as LBB condition) applied to the bilinear form of the constraint
term.
For the Hellinger Reissner formulation (2.97) the condition corresponding to the continuous
formulation reads:

sup
σ∈H(Div;B;S)\{0}

b(σ,u)

||σ||H(Div)
& ||u||L2 ∀u ∈ L2(B; IR3) (2.104)

Investigations with respect to the stability of problem (2.97) incorporating with σ ∈ H(Div;B; S)
symmetric solution fields can e.g. be found in Arnold and Winther [2002] and Arnold
et al. [2008].

Remark 2. Note, that the terminology ’inf-sup’ condition stems from the fact that (2.104)
can equivalently be written as follows:

inf
u∈L2(B;IR3)\{0}

sup
σ∈H(Div;B;S)\{0}

b(σ,u)

||σ||H(Div)||u||L2

≥ c

Continuous and Discrete Inf-Sup Condition: For a stable finite element formulation,
the inf-sup condition needs to be fulfilled both for the continuous formulation (infinite di-
mensional solution space as presented here) as well as for the discretized formulation (finite
dimensional solution space). The criterion of Fortin [1977] (see also Braess [2007], section
4.8) links the continuous inf-sup condition to the discrete inf-sup condition and can be often
times applied to prove the discrete inf-sup stability. Further, for a finite element formulation
for which the discrete inf-sup stability is fulfilled, the corresponding submatrix B of (2.105)
possesses always non-zero singular values and thus making the global matrix K invertible
(provided A is also non-singular, which is linked to the ellitpicity and continuity condition of
a).
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Remark 3. Generally, the global tangent matrix corresponding to the discretization of any
two field variational formulation with the structure of the left-hand side as in the example
(2.97) has the saddle point form

K ··=
[
A BT

B 0

]
, (2.105)

where the coefficients of the submatrix A are derived from the bilinear form a(σh, δσh) and
the coefficients of the submatrix BT and B are derived from the discretized bilinear form
b(δσh,uh) and b(σh, δuh), respectively. Here, uh and σh are assumed to be suitable dis-
cretizations of (2.97). More details with respect to finite element discretizations are given in
chapter 3

Brezzis Conditions for the Stability for Two-Field Formulations: As postulated by
Brezzi and Fortin [1991], Proposition 1.1, for quadratic problems under linear constraints
the following set of stability conditions needs to be fulfilled.
Boundedness of the bilinear forms (continuity): Similar to the previous subsection, the bound-
edness condition needs to be fulfilled to both bilinear forms. Thus, for (2.97) follows:

|a(δσ,σ)| . ||σ||H(Div)||δσ||H(Div) ∀ δσ,σ ∈ H(Div;B;S)

|b(σ,u)| . ||σ||H(Div)||u||L2 ∀u ∈ L2(B; IR3), ∀σ ∈ H(Div;B; S)
(2.106)

Coercivity (ellitpicity): The coercivity condition applies to the quadratic term including the
primal variable (first bilinear form) under the condition that the constraint term is fulfilled.
Here, the latter is the case if σ belongs to the kernel space Z(σ) ··= {δσ ∈ H(Div;B;S) :
b(δσ, δu) = 0 ∀δu ∈ L2(B; IR3)}, which includes all functions σ for which the second term in
(2.97)1 vanishes.The coercivity/ellitpicity condition for the given example then reads:

a(σ,σ) & ||σ||2H(Div) ∀σ ∈ Z(σ) (2.107)

Inf-sup condition: Finally, the Brezzi’s conditions for the present two-field formulations are
fulfilled if a finite element formulation fulfills together with the boundedness conditions (2.106)
and the coercivity condition (2.107) the inf-sup condition (2.104).

2.4.4 Brezzi’s Splitting Theorem Applied to Three-Field Formulations

In the case of Hu-Washizu type formulations the situation becomes more complicated as
in formulations there are now two constraint terms. Nevertheless, corresponding stability
analysis exists as well and is shortly summarized in this subsection. The following is based on
Brezzi and Fortin’s [1991], splitting Theorem 1.1 (see also Schedensack [2015], Theorem
2.8) generalized to three field formulations of the present type (cf. Schedensack [2015],
Proposition 5.1, see also Riesselmann et al. [2021], Lemma 1, where the splitting theorem
was applied in the context of gradient elasticity formulations). Considered is a mixed three-
field formulation of the type of the example (2.100) written now in terms of some generic
solution variables in line with notations of subsequent proposed formulations:

a(δH,H) + b1(δH,Λ) = lH(δH)

b1(H, δΛ) + b2(δΛ,u) = lΛ(δΛ)

b2(Λ, δu) = lu(δu),

(2.108)

where b1(H,Λ) and b2(Λ,u) are bilinear forms of two constraint terms with some Lagrange
multiplier variables Λ ∈ L and u ∈ U and U and L being some corresponding Sobolev



2.4. FUNDAMENTALS OF MIXED VARIATIONAL FORMULATIONS 29

spaces. Analogous to the previous section, the kernel space of functions Λ that fulfill the
constraint term b2(Λ, δu) = 0 and the space of functions H ∈ H that fulfill the constraint
term b1(H, δΛ) is defined by

Z(Λ) ··= {Λ ∈ L : b2(δΛ, δu) = 0 ∀δu ∈ U} and (2.109)
Z(H) ··= {H ∈ H : b1(δH, δΛ) = 0 ∀δΛ ∈ Z(Λ)} (2.110)

respectively. Now, provided a(δH,H) is elliptic in the kernel space H, δH ∈ Z(H) and all
bilinear forms are continuous, the formulation (2.108) has a unique solution if the following
two inf-sup conditions hold:

sup
Λ∈L\{0}

b2(Λ,u)

||Λ||L
& ||u||U ∀u ∈ U (2.111)

sup
H∈H\{0}

b1(H,Λ)

||H||H
& ||Λ||L ∀Λ ∈ Z(Λ). (2.112)

The splitting theorem is applied in the analysis of formulations appearing in this contribution
in section 5.2.1 and chapter 6.





Chapter 3

Fundamentals of the Finite Element
Method

3.1 Fundamentals of Finite Element Interpolation Functions

For the finite elememt method the considered body B is subdivided into a finite number of
elements T , which for what follows are mainly taken to be tetrahedra and in some occurrences
hexahedra. Yet, the following notations refer to tetrahedral elements. The corresponding
discretized mesh is denoted by T with T ∈ T ⊆ B. The set of 4 faces F ∈ FT of one
element is denoted by FT , the set of 6 edges E ∈ ET of one element is denoted by ET and
the set of 4 vertices V ∈ VT of one element is denoted by VT . In this section, some generic
aspects of the construction of conforming finite element interpolation schemes are discussed.
The theoretical aspects are showcased by means of the tetrahedral interpolation method
based on Raviart and Thomas [1977]. Note, that all subsequent conforming discretizations
throughout this contributions fit within the following framework, yet, especially the full C1

continuous formulation of section 4.2 picks up on the following fundamentals.

3.1.1 Interpolation Problem, Degrees of Freedom and Shape Functions

For the following, firstly one single element T is considered. Let u ∈ U(T ) be a function that
is to be interpolated and U(T ) be the corresponding Sobolev space defined over the element.
The element-interpolation operator Iu : U(T ) → P (T ) maps the function u into the space
P (T ) of polynomials defined over the element. For each element, the interpolation operator
can be expressed as linear combination

Iu =
n∑
I=1

dI(u)NI ··=
n∑
I=1

dI(u(X))NI(X) (3.1)

of n degrees of freedom dI(u), which are in general functionals of the solution function and
basis functions NI , which are in general functions of the physical coordinates X. Degrees of
freedom and basis functions can be scalar-, vector- or tensor-valued. Following the standard
finite element approach, the biorthogonality condition

dJ(NI) = δIJ for I, J ∈ {1, ..., n} (3.2)

states that the evaluation of each basis function needs to be one for the evaluation of the
corresponding degree of freedom and zero for all other degrees of freedom and leads to a set

31
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of equations from which the basis functions of any specific finite element formulation can be
computed. In what follows, (3.2) is referred to as interpolation problem. Moreover, provided
the interpolation problem is unisolvent from the biorthogonality the following two properties
follow automatically:

dI(u) = dI(Iu) and Iu = IIu. (3.3)

Ciarlet’s Definition of the Finite Element and Conditions for Conformity Ac-
cording to Ciarlet [1978] (see also Nedèlec [1986]) a finite element can be defined by the
following:

• The domain T , i.e. a tetrahedron in the present case

• A space P (T ) of polynomials NI : T → P (T ) with n-coefficients (ie. P (T ) has the
dimension n).

• The set of n degrees of freedom, which are linear functionals dI : U(T ) → IR acting on
P .

Obviously, the first necessary condition for conformity is that the polynomial space P (T ) is a
subspace of the continuous solution space U(T ) so that the image of the interpolation operator
is still an element of the solution space with

Iu : U(T )→ P (T ) ⊆ U(T ). (3.4)

Secondly, the interpolation problem (3.2) needs to be unisolvent meaning that the number
of polynomial coefficients, which is also referred to as dimension of the polynomial space
dimP (T ), must be the same as the number of degrees of freedom and the set of equations re-
sulting from (3.2) needs to be linearly independent. So far, considerations were only restricted
to one element. Since, in general, the body B of interest is discretized into multiple elements
making up the mesh T with T ∈ T ⊆ B consider now the set of interpolation operators⋃
T∈T Iu|T ∈ P (T ) consisting of all element-wise defined interpolation operators and P (T ) is

the corresponding space of piecewise defined polynomials. Clearly, for a globally conforming
interpolation scheme the piecewise polynomial space needs to be with

P (T ) ⊆ U(B) (3.5)

a subspace of the global solution space U(B). According to the finite element theory, this is the
case (given the first and second condition is fulfilled) if the traces (cf. table 3.1) of interpolation
operators of two neighboring elements across the element interface are equivalent. The latter
condition is fulfilled if the dimension of the trace of the polynomial space is equivalent to
the number of degrees of freedom that evaluate the corresponding trace at one element face.
In section 3.1.2 the concept is illustrated by means of the example of the Raviart-Thomas
interpolation scheme.

Setup for Tangent Matrices and Residuals Of course, in general the finite element
method does not seek to interpolate a given solution but to compute an approximation of the
a priori unknown solution for some boundary value problem. Therefore, in the weak form
(such as e.g. (2.90)) describing the boundary value problem, the unknown solution functions
and test functions are replaced by the approximation functions

uh =
n∑
I=1

dINI and δuh =
n∑
I=1

δdINI (3.6)
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Sobolev Space Integral Theorem Trace(s) on ∂T

H1(T )

ˆ
T
∇(•) dV =

ˆ
∂T

(•)dA (•)

H(Div;T ; IR3)

ˆ
T

Div(�) dV =

ˆ
∂T

(�) · n dA (�) · n

H(Rot;T ; IR3)

ˆ
T

Rot(�) dV =

ˆ
∂T

(�) × n dA (�) × n

H2(T )

ˆ
T
∇(•) dV =

ˆ
∂T

(•)dA (•)
ˆ
T
∇∇(•) dV =

ˆ
∂T
∇(•) · n dA ∇(•) · n

Table 3.1: Overview of traces of some selected Sobolev spaces and corresponding integral
theorems. Here, (•) denote scalar-valued functions and (�) denote vector-valued functions.
Integral theorems can be found in Altenbach [2012] and are corollaries of the divergence
theorem (2.27).

and corresponding derivative occurrences, where the degrees of freedom are the unknowns.
Therefrom, as in detail described in the subsequent section 3.3, the tangent matrices and
residuals can be derived by means of which the finite element problem can be solved for the
degrees of freedom.

3.1.2 Example: Lowest Order Raviart-Thomas Interpolation

In the following, the H(Div;B; IR3)-conforming tetrahedral interpolation scheme of Nedèlec
[1980] is presented in order to showcase the previously discussed conditions for conforming
interpolation schemes. Since the tetrahedral interpolation scheme is based on the method of
Raviart and Thomas [1977], in what follows it is referred to as Raviart-Thomas interpola-
tion. The vector function to be interpolated is considered to be in u ∈ H(Div;B; IR3).

Conformity of the Interpolation Space on one Element For now, the considered
domain is one tetrahedron. The lowest order Raviart-Thomas polynomial space defined over
the tetrahedron reads

RT0(T ; IR3) ··=
{
N

(RT0)
ansatz =

ab
c

+ d

XY
Z

 with a, b, c, d ∈ IR
}
, (3.7)

where N (RT0)
ansatz denotes the vector-valued polynomial basis and a, b, c and d some real valued

coefficients. To improve readability for all subsequent occurrences throughout this and the
next section, the superscript (RT0) will be omitted. By taking the divergence DivNansatz = 3 d,
which obviously holds for all elements of the space and therefore one can write Div(RT0(T ; IR3)) =
P0(T ), it becomes clear that the result is a multiple of the constant function d ∈ P0(T ) which
is L2-integrable showcasing that the RT0-space is H(Div)-conforming. The basis functions
describe the map

NI : T → RT0(T ; IR3) ⊆ H(Div;T ; IR3). (3.8)
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As a result, it becomes clear that, provided the degrees of freedom map with

dI : H(Div;T ; IR3)→ IR (3.9)

the function to be interpolated to real scalar values, the interpolation operator

Iu =
n∑
I=1

dI(u)NI maps with Iu : H(Div;T ; IR3)→ RT0(T ; IR3) ⊆ H(Div;T ; IR3)

(3.10)
u ∈ H(Div;T ; IR3) conformingly to the polynomial subspace Iu ∈ RT0(T ; IR3) ⊆ H(Div;T ; IR3).
It remains to be shown that the degrees are such that (3.9) holds, the interpolation problem
is unisolvent and the interface condition holds.

Degrees of Freedom and Unisolvency The degrees of freedom of any k-order Raviart-
Thomas interpolation are defined by face- and volume moments

dI =

ˆ
FI

(•) · n v dA ∀v ∈ Pk − 1 (3.11)

dI =

ˆ
T

(•) · v dV ∀v ∈ Pk − 2 (3.12)

respectively, where in the lowest order case with v = 0 no volume moments are present and
with v = 1 associated to each face is one face moment, giving a total of 4 degrees of freedom.
Clearly, (3.9) holds, since the integrals result in some real scalar function values. Moreover,
the number of polynomial coefficients that is dim(RT0(T ; IR3)) = 4 is the same as the number
of degrees of freedom and the interpolation problem (3.2) is unisolvent. It remains to show
the interface condition for global conformity.

Fulfillment of the Global Conformity Condition Next to the conformity on one element
as discussed before, a necessary condition for conformity over the full discretized body T (with
T ∈ T ⊆ B) is the continuity of the trace of the interpolation operator across the interface of
neighboring elements. In the present case, that is continuity of the normal direction Iu · n
(cf. table 3.1). The proof of the interface continuity condition for the 3D case can be found
in Nedèlec [1980], following theorem 3. The corresponding necessary condition, namely the
unisolvency of the interpolation problem reduced to the interface, can also be shown by the
following argumentation. Obviously, the number of degrees of freedom that correspond to
the normal direction at the face is per definition one. It remains to show that the dimension
of the trace of the polynomial space RT0(T ; IR3) reduced to the face is also one, making the
interpolation scheme unisolvent for the trace at the interface. Therefore, consider some shape
function N1 ∈ RT0(T ; IR3) that fulfills the biorthogonality condition (3.2). By using the
divergence theorem, the following relation can be obtained:

ˆ
T

Div(N1) dV =
4∑
I=1

ˆ
FI

N1 · n dA (3.13)

Meanwhile, computing the divergence Div(N1) = d1
1, inserting into the left-hand side of

(3.13) and considering the biorthogonality on the right-hand side of (3.13) (resulting in all
summands except for one to be zero) leads toˆ

T
d1 dV =

ˆ
F1

N1 · n dA, (3.14)

1Here, d1 denotes the fourth coefficient of the ansatz and is assumed to include the factor 3
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which illustrates that the dimension of the trace of the polynomial space reduced to the face
with dim(RT0(T ; IR3)|F ·n) = 1 is also one, since on the left-hand side there is one coefficient
d1.
Now, with the unisolvency of the problem at the interface the last remaining step in order to
ensure global continuity is to ensure that the normal vectors of two neighboring elements are
defined in the same direction. To illustrate this issue, consider the interpolation operators of
two neighboring elements IT1u and IT2u and denote the shared interface by F . As stated
before, due to the biorthogonality the interpolation operator reduced to the face consists of
the corresponding face degree of freedom and reads

IT1u|F =

ˆ
F
u · n1 dA and IT2u|F =

ˆ
F
u · n2 dA

where n1 and n2 are the per definition outward pointing surface normal vectors with the
relation n1 = −n2. Thus, without modification the difference

IT1u|F − IT2u|F =

ˆ
F
u · n1 + u · n1 dA 6= 0 E

is not zero. Therefore, in order to achieve equivalence the normal vectors have to be defined
globally 2. Replacing n1 and n2 by the globally defined normal vector nF = n1 = −n2 leads
to the relation

IT1u|F − IT2u|F =

ˆ
F
u · nF − u · nF dV = 0, (3.15)

which fulfills the global continuity condition. Finally, given the interface condition in the
present example the space that consists of polynomials belonging to RT0(T ; IR3) defined
piecewise for all elements T ∈ T ⊆ B of the mesh can be postulated by RT0(T ; IR3) with
RT0(T ; IR3) ⊆ H(Div;B; IR3). Note, that by following the previously discussed scheme but
instead of the ansatz space (3.7) using now full vector valued P1 polynomials (possessing 12
coefficients) and defining three dofs per face one arrives at the H(Div)-conforming (BDM)
finite element scheme of Brezzi et al. [1985]. Furthermore, when incorporating edge mo-
ments as degrees of freedom and using polynomial ansatz spaces for which rotations are
computable by analogous considerations one arrives at the H(Rot)-conforming elements of
Nedèlec [1980] and Nedèlec [1986] referred to as edge elements of first and second kind,
respectively. Similarly to the difference between the RTk and BDM elements is that Ned-
elec’s edge element of first and second kind are based on reduced (in the lowest order case
6 dimensional) vs full (in the lowest order case 12 dimensional) vector valued polynomials.
Note, that the use of the P1(T ) ⊂ H1(T ) polynomial space is still conforming in both cases
due to the relation H1(T ; IR3) ⊂ H(Div;T ; IR3) and H1(T ; IR3) ⊂ H(Rot;T ; IR3) (cf. (2.51)
ff).

3.2 Finite Element Parametrizations

Generally, in order to keep the computational effort of the assembly procedure minimal, finite
element interpolation functions are constructed once for the reference element and are then
with isomorphic maps transformed to the actual element of the physical mesh. Therefore,
this section summarizes the fictitious kinematic relations between the reference element and

2In implementations used throughout this contribution the global sign of n is determined by the sign of
the scalar product of n1 · (1, 0, 0)T with the unit Cartesian direction and a sequence of alternative choices
(n1 · (0, 1, 0)T or n1 · (0, 0, 1)T ) in the case any of the scalar products are zero.
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the physical element that are made use of throughout this contribution. In some instances,
analogies to the finite strain kinematics, in which the deformation describes an isomorphic
map between the body in the initial configuration to the body in the deformed configuration,
become apparent. Analogously to (2.65) introduce the bijective function φ ··= φ(Ξ), which
maps with

φ : TR → T (3.16)

any point Ξ = [ξ, η, ζ]T in the coordinates of the reference element TR to a point X =
[X,Y, Z]T of the physical element in the initial configuration. The set of vertex nodes of
the reference tetrahedron reads VT (TR) = {[1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T , [0, 0, 0]T }. Usually,
the map (3.16) is described by parameterizing the physical elements with the help of nodal
physical coordinate values and corresponding Lagrange interpolation functions formulated in
terms of the reference coordinates. Thus, the notations

X(Ξ) = φ(Ξ) and Ξ(X) = φ−1(X) (3.17)

are introduced, where the parametrization is given by

X(Ξ) =
n∑
I=1

XINI(Ξ), (3.18)

n is the number of nodes, XI denote the nodal coordinates and NI denote the corresponding
Lagrange function. Specific formulas for the computation and examples of nodal Lagrange
shape functions can be found in Zienkiewicz and Taylor [2000]. The gradient

J ··=
∂X(Ξ)

∂Ξ
(3.19)

of the parametrization with respect to the reference coordinates is called Jacobian and detJ
denotes its determinant. In the case of interpolation schemes, where the parametrization is
identical to the interpolation of the degrees of freedom, the transformation is called isopara-
metric. In this case, given the interpolation order is higher than linear, curvilinear elements
can be mapped with the isoparametric concept providing more favorable approximation prop-
erties for geometries with curved boundaries (cf. Babus̆ka and Pitkäranta [1990]). In
the case of linear parametrizations the map is referred to as affine transformation, (3.18) is
identical to

X(Ξ) = J ·Ξ +X4, (3.20)

the Jacobian is constant, and the elements are referred to as straight-edge elements. In the case
of the affine transformation, the inverse map can be simply computed by Ξ = J−1(X −X4).

Kinematics of Differential Operators With (3.18) gradients can be computed with the
usual relation

∇(•) = ∂Ξ(•) · J−1. (3.21)

For the sake of completeness, note also the relations for the divergence and rotation operators

Div(•) = (detJ)−1 DivΞ(detJ J−1 ·(•)) and Rot(•) = (detJ)−1J ·RotΞ(JT ·(•)), (3.22)

respectively (cf. Schöberl [2009], lemma 14).
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Kinematics of Integral Operators Analogous to the kinematic relations (2.70)-(2.72)
between line-, surface- and volume increments of the initial and the deformed configuration
presented in section 2.2 the following relations for the mapping from the reference to the
physical element hold:

dV = detJ dV R , dA = detJ J−T · dAR and dX = J · dXR, (3.23)

where with dA = n dA the vector n is orthogonal to the surface increment and with dX =
s dX the vector s is tangential to dX. Now, let (•) ∈ IR3 be some vector function. With the
relations (3.23) integrals over physical domains can be expressed in terms of integrals over
corresponding reference domains by

ˆ
T

(•) dV =

ˆ
TR

(•) detJ dV R, (3.24)
ˆ
F

(•) · dA =

ˆ
FR

detJ (•) · dAR · J−1 =

ˆ
FR

detJ (J−1 · (•)) · nR dAR and (3.25)
ˆ
E

(•) · dX =

ˆ
ER

(•) · J · dXR =

ˆ
ER

(JT · (•)) · sRdXR. (3.26)

From the face integral relation (3.25) the co- and contravariant Piola transformation (cf.
Bentley [2017])

(detJ)J−1 · (•) and (detJ)−1 J · (•), (3.27)

can be derived, which is used when mapping interpolation operators that contain face integrals
as degrees of freedom (cf. the following section 3.2.1). Analogously, from the edge integral
relation (3.26) the co- and contravariant transformation

JT · (•) and J−T · (•), (3.28)

can be derived, which is used when mapping interpolation operators that contain edge inte-
grals as degrees of freedom such as the first and second type of edge elements of Nedèlec
[1980] and Nedèlec [1986], respectively. In some occurrences in the following the covariant
transformations are also referred to as pull back operation and the contravariant transforma-
tion is referred to as push forward operation in order to provide analogy to the finite strain
kinematics 2.2 3. Furthermore, note that in the case of straight edge elements due to J being
constant the following relations between reference and physical element volume V and VR and
triangular surface areas A and AR hold:

V = detJ V R (3.29)

An|A = detJ(AR n|AR)J−1. (3.30)

3That is, analogously to the finite strain kinematics, assuming that in the ’forward’ state is the physical
space and the ’backward’ state is the reference space. Note, that this notation might differ from other
notations in the mathematical community (e.g. Kirby [2018]) in which the ’forward’ state is considered to be
the reference space.
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Surface and Edge Parameterizations Also, for the sake of completeness note, that the
element faces and edges can be parametrized analogously to (3.18) by

X(s, t) : FR → T with X(s, t) =
n∑
I=1

X
(F)
I N

(2D)
I (s, t) (3.31)

X(s) : ER → T with X(s) =
n∑
I=1

X
(E)
I N

(1D)
I (s) (3.32)

Ξ(s, t) : FR → TR with Ξ(s, t) =

n∑
I=1

Ξ
(F)
I N

(2D)
I (s, t), (3.33)

where in (3.31) and (3.33) s and t denote the coordinates of the reference triangle with the ver-
tices VF (FR) = {[1, 0]T , [0, 1]T , [0, 0]T } and in (3.32) s denotes the coordinate of the reference
line with the vertices VE(ER) = {1, 0}. Meanwhile, n are the number of nodes correspond-
ing to the Lagrange interpolation scheme, TR, FR and ER denote the reference tetrahedron,
triangle and line, respectively and XI denote the physical coordinates of the nodes of the
tetrahedron, X(F)

I denote the physical coordinates of the tetrahedron that lie on the I-th sur-
face triangle, Ξ

(F)
I denote the reference coordinates that lie on the I-th surface triangle of the

reference tetrahedron and N (2D)
I (s, t) denote the corresponding 2D-Lagrange shape functions

of the reference triangle. With (3.33) the physical coordinates can also be written as the com-
position X(Ξ(s, t)) ··= X(Ξ) ◦Ξ(s, t) : FR → T combining (3.18) and (3.33). Then, again for
the sake of completeness note, that gradients can be computed by ∇(•) = ∂Ξ(s,t)(•) ·J−1(s, t),
where J(s, t) ··= ∂Ξ(s,t)X(Ξ(s, t)) denotes the Jacobian of the transformation and is a func-
tion of s and t. The computation of volume gradients in terms of surface parameters becomes
necessary e.g. when imposing higher order continuity conditions through element interface
integrals in discontinuous Galerkin approaches (see e.g. Brenner and Sung [2005]) or when
implementing higher order surface boundary conditions (cf. Riesselmann et al. [2024]).
Moreover, with the expression

detJA(s, t) ··= ||
∂X(s, t)

∂s
× ∂X(s, t)

∂t
|| (3.34)

the surface unit normal vector can be computed by

n(s, t) ··=
1

detJA
(
∂X(s, t)

∂s
× ∂X(s, t)

∂t
). (3.35)

At this point it is worth pointing out that detJA(s, t) is not to be confused with detJ(s, t) as
they are different quantities: J refers to the Jacobian linking the volume gradients whereas
detJA is a surface derivative quantity. In the case of straight edge elements, that is affine
transformations, the parameterization is given by

X(s, t) = X2 s +X3 t +X1 (1− s− t)
= X1 + (X2 −X1) s+ (X3 −X1) t

(3.36)

which corresponds to an interpolation with linear Lagrange shape functions where Xi de-
note the 3D coordinate values of the vertex nodes enclosing the triangle. It becomes clear
that higher order parameterization schemes can be obtained analogously with higher order
Lagrange functions interpolating the corresponding higher order set of nodal coordinates Xi.
In the linear case with (3.36) the computation of the normal vector simplifies to

n ··=
1

detJA
(X2 −X1) × (X3 −X1) with detJA ··= ||(X2 −X1) × (X3 −X1)|| (3.37)
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and the relation detJA = 2A holds, where A denotes the area of the surface triangle. Similarly,
the edge tangent vectors can be computed by

s(s) ··= ||
∂X(s)

∂s
||−1∂X(s)

∂s
and s ··=

X2 −X1

||X2 −X1||
(3.38)

for curves and straight lines, respectively. In the latter, X1 and X2 denote the coordinates
of the enclosing vertex nodes with the linear parameterization X(s) = X2s +X1(1 − s)(=
X1 + s(X2 −X1)). Explicit expressions of Lagrange shape functions can be found e.g. in
Zienkiewicz and Taylor [2000].

Kinematics for Numerical Integration With the previously discussed volume, surface
and edge parameterizations numerical integration schemes such as the Gauss quadrature can
be used. Therefore, the integrals (3.24)-(3.26) expressed in parameter form read

ˆ
T

(•) dV =

ˆ 1

0

ˆ 1−ξ

0

ˆ 1−ξ−η

0
(•) detJ dζ dη dξ (3.39)

ˆ
F

(•) · dA =

ˆ 1

0

ˆ 1−s

0
(•) · n detJA dtds (3.40)

ˆ
E

(•) · dX =

ˆ 1

0
(•) · s ||∂sX(s)|| ds (3.41)

and n and t defined in (3.35) and (3.38), respectively. Clearly, in the case of (•) ∈ IR3n being
a vector or higher tensorial quantity (3.39) results in a quantity of the same tensorial order
whereas (3.40) and (3.41) yields a quantity of order n− 1. In the case of (•) ∈ IR being scalar
valued instead of (3.40) and (3.41) the surface and edge integral relations

ˆ
F

(•) dA =

ˆ 1

0

ˆ 1−s

0
(•) detJA dtds

ˆ
E

(•) dX =

ˆ 1

0
(•) ||∂sX(s)|| ds

(3.42)

hold. Based on (3.39)-(3.42) corresponding Gauss integration schemes can be used in order
to evaluate the integrals numerically. Further reading with respect to Gauss quadrature
rules also for tetrahedra and triangles and specific quadrature point and weight factor values
can be found in Zienkiewicz and Taylor [2000] and Solin et al. [2004]. The high
order quadrature points used in section 4.2 of this contribution are based on the rules of
Grundmann and Möller [1978].
Finally, note that the size of the element becomes relevant in the analysis of interpolation and
discretization errors and is defined by

h ··= max
T∈T

(diam(T )), (3.43)

where diam(T ) defines the maximum distance between two vertices of one element. For exam-
ple, the reference tetrahedron with the vertex set v(TR) = {[1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T , [0, 0, 0]T }
has the diameter diam(TR) =

√
2.

3.2.1 Example: Raviart-Thomas Interpolation Over the Reference Ele-
ment

In this subsection the example of section 3.1.2, namely the lowest order Raviart-Thomas in-
terpolation is picked up again in order to showcase the method of solving the interpolation
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problem once for the reference element and postulating the physical interpolation operator
by means of the Piola transformation. The latter is possible, since the lowest order Raviart-
Thomas interpolation belongs to the affine family and the interpolation problem is invariant
with respect to the transformation. This means there exists a push forward operation which
when applied to the interpolation operator obtained by solving the interpolation problem (3.2)
on the reference element yields exactly the interpolation operator obtained by solving the in-
terpolation problem (3.2) on the physical element. As a result, the interpolation problem
(3.45) is independent of any transformation to the physical element. The following consider-
ations illustrate this characteristic and show the corresponding steps in the derivation of the
push forward operator that is the Piola transformation. Analogous steps can be followed in
order to derive transformation operators for other finite element interpolation schemes that
belong to the affine family (see e.g. the Hermite interpolation scheme of section 4.2.2). Yet,
for some elements the interpolation problem is not independent of the transformation as they
do not belong to the affine family (cf. the C1 interpolation of section 4.2.1). By means
of (3.25) the face moment degrees of freedom of (3.11) can be formulated in terms of the
reference element, which in the lowest order case read with v = 1:

dI =

ˆ
FRI

(detJ J−1 · (•))︸ ︷︷ ︸
··=(•)R

·nR dAR (3.44)

where (•)R : TR → H(Div;TR; IR3) denotes the function pulled back to the reference space.
Define the reference degree of freedom function dRI : H(Div;TR; IR3) → IR with dRI ··=´
FRI

(•)R · nR dAR. The interpolation problem on the reference element then reads

dRI (NR
J ) = δIJ , (3.45)

where the previously introduced (•)R is replaced by the reference basis functions NR
I (Ξ) :

TR → RT0(TR; IR3) ⊆ H(Div;TR; IR3) with RT0(TR; IR3) defined by (3.7) but with physical
coordinates replaced by reference coordinates. The solution of (3.45) leads in the present case
to the explicit expressions

NR
1 = 2

ξη
ζ

 , NR
2 = 2

 ξ
η

ζ − 1

 , NR
3 = 2

 ξ
η − 1
ζ

 and NR
4 = 2

ξ − 1
η
ζ

 (3.46)

where the ordering 1 − 4 is associated to the faces of the unit tetrahedron with the normal
vectors

nR1 =
1√
3

1
1
1

 , nR2 =

 0
0
−1

 , nR3 =

 0
−1
0

 and nR4 =

−1
0
0

 (3.47)

(cf. Bentley [2017] see also Schwarz [2009]). Furthermore, the solution (3.46) of the
interpolation problem leads to the interpolation operator

IRuR =

4∑
I=1

dRI N
R
I (3.48)

describing the map IRuR : H(Div;TR; IR3)→ RT0(TR; IR3) ⊆ H(Div;TR; IR3), which, how-
ever, when defined piecewise for each element does not lead to a conforming discretization
yet since the normal continuity condition is not fulfilled. Therefore, the aim is now to find
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the suitable transformation to IRuR such that it is equivalent to the conforming physical in-
terpolation operator Iu of (3.10). Firstly, we note that by the definition of the interpolation
problem the relation

δIJ =

ˆ
FI

NJ · dA =

ˆ
FRI

NR
J · dAR (3.49)

holds, where the left hand side expression is the physical interpolation problem and the right-
hand side is the reference interpolation problem. Now, inserting the inverse of the relation
(3.25)

´
TR(•)R · dAR =

´
T ((detJ)−1 J · (•)) · dA into the right-hand side of (3.49) yields
ˆ
FI

NJ · dA =

ˆ
FI

((detJ)−1 J ·NR
J ) · dA

which holds only true if the relation

NJ = (detJ)−1 J ·NR
J (3.50)

holds. The relation (3.50) describes the push forward operation by which the reference basis
functions NR

J corresponding to face moment degrees of freedom of the Raviart-Thomas inter-
polation scheme can be transformed to the physical basis functionsNJ . Together with (3.44),
which formulates the physical degrees of freedom in terms of the reference face integrals and
the therefrom resulting relation

dI =

ˆ
FRI

(•)R · dAR =

ˆ
FI

(•) · dA (3.51)

the physical interpolation operator can be written as

Iu =

4∑
I=1

dI(u)NI =

4∑
I=1

ˆ
FRI

(detJ J−1 · u) · dAR (detJ)−1 J ·NR
I

=

4∑
I=1

dI(u) (detJ)−1 J ·NR
I

= (detJ)−1 J · IRu

(3.52)

where in the last step the push forward operator has been factored out of the sum, showing
that for the lowest order Raviart-Thomas scheme the interpolation problem is independent
with respect to transformations.

Remark 4. Note, that the relation (3.52) holds also in the case of higher order parametriza-
tions with non-constant Jacobians. See e.g. Bertrand and Starke [2016] where a para-
metrization approach incorporating curvilinear elements applied to the lowest order Raviart-
Thomas interpolation is presented. Yet, in the case of higher order Raviart-Thomas (and for
that matter higher order Nédelec’s-edge) interpolation schemes, pushing forward operations on
the interpolation operator are not as straightforward, since due to the appearance of volume
moments for the different basis functions different push forward operators apply so that the
last step in (3.52) is not directly possible. Nevertheless, the higher order schemes still belong to
the affine family as in general it is possible to solve the interpolation problem on the reference
elements and transform it to the physical space (see also Bentley [2017]). Analogous char-
acteristics are also present for the Hermite interpolation scheme, in which different kinematic
relations apply to the gradient dof basis functions than to the nodal dof basis functions (cf.
section 4.2.2).
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Setup for the Implementation of Tangent- and Stiffness Matrices Picking up on the
considerations made in sections 3.1.1 and 3.1.2 for the example of the lowest order Raviart-
Thomas interpolation and taking into account the direction of the normal vectors yields for
the approximation functions

uh =
4∑
I

sgn(nI)dINI =
4∑
I

sgn(nI)dI (detJ)−1J ·NR
I . (3.53)

Resulting therefrom with (3.22) the approximation of the divergence reads

Divuh =
4∑
I

sgn(nI)dI DivN I =
4∑
I

sgn(nI)dI (detJ)−1 DivΞN
R
I , (3.54)

where the simplification

DivΞ((detJ)J−1 ·NI) = DivΞ((detJ) (detJ)−1J−1 · J ·NR
I ) = DivΞN

R
I

was used. Here, as discussed in section 3.1.2 in order to ensure global continuity, the normal
vectors appearing in the dof functions need to be defined globally. Therefore, from an imple-
mentation point of view, since the dofs are unknown, this fact is accounted for by adding a
sign operator such as e.g.

sgn(nI) ··=


sgn(nI · (1, 0, 0)T ) if nI · (1, 0, 0)T ) 6= 0

sgn(nI · (0, 1, 0)T ) if nI · (1, 0, 0)T ) = 0 and nI · (0, 1, 0)T ) 6= 0

sgn(nI · (0, 0, 1)T ) if nI · (1, 0, 0)T ) = 0 and nI · (0, 1, 0)T ) = 0

(3.55)

to each summand.

3.3 Example: P2-Discretization of the Elasticity Problem

This section aims to illustrate the finite element procedure by means of the simple, well known
local elasticity example. First, the suitable interpolation scheme that is conforming with
the nonlinear continuous formulation is postulated. Then the corresponding approximation
functions with unknown degrees of freedom are introduced. Finally, the tangent and residual
matrix- and vector quantities are defined, which correspond to the global linearized system
of equations. Starting point is the continuous nonlinear local elasticity problem given by
the weak form (2.90) with the solution space u ∈ H1

0 (B; IR3) where u = [u1, u2, u3]T is the
displacement vector.

3.3.1 Quadratic Nodal Lagrange Interpolation

Since in the case of nodal Lagrange interpolations of vector- or tensor-valued quantities all
components are interpolated with the same scalar-valued basis functions, for the sake of
simplicity throughout this subsection we concentrate on a scalar valued interpolation Iu where
u ∈ H1(B; IR) can be any of the three vector components of u. Furthermore, the example
of the quadratic Lagrange interpolation is chosen, since generally in the case of elasticity it
is well known to provide convergence results that are more favorable compared to the linear
interpolation. Therefore, define on one element the quadratic polynomial space

P2(T ; IR) ··= {NI is a quadratic polynomial} (3.56)
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for which on T clearly a gradient is computable and therefore fulfilling the conformity condition
P2(T ; IR) ⊆ H1(T ; IR). The degrees of freedom, basis functions and interpolation operator of
the nodal Lagrange interpolation describe the following maps

dI : H1(T ; IR)→ IR (3.57)

NI : T → P2(T ; IR) ⊆ H1(T ; IR) (3.58)

Iu : H1(T ; IR)→ P2(T ; IR) ⊆ H1(T ; IR). (3.59)

Here, the degrees of freedom are simply the functions evaluated at the nodes, which are in
the present case the four vertex nodes and the six mid-edge nodes, making up a total of 10
nodes. Since quadratic trivariate polynomials have with dimP2(T ; IR) = 10 coefficients, the
interpolation problem is unisolvent. The trace of the H1-space is the function value itself
(cf. table 3.1) on the surface. Thus, for global conformity the element interface condition
manifests in the condition that the dimension of (3.56) reduced to some interface triangle (i.e.
dimP2(T ; IR)|F = dimP2(2D)(F ; IR) = 6) must be the same as the number of nodes present at
that triangle. Since the triangular face of the nodal P2 element is enclosed by 3 vertex nodes
and 3 mid-edge nodes, the number of nodes at the face is the same as dimP2(T ; IR)|F = 6 mak-
ing the scheme unisolvent at the interface and therefore C0 continuous and H1-conforming.
Moreover, in the case of nodal Lagrange elements with the relations

dI(•) = (•)|I and δIJ = NJ |I = NR
J |I (3.60)

the transformation of the reference interpolation to the physical interpolation operator is
trivial since the resulting interpolation operators

Iu =
10∑
I=1

dINI =
10∑
I=1

dIN
R
I = IRu (3.61)

are equivalent (cf. Schöberl [2009]). The specific expressions of the nodal shape functions
NR
I can be found e.g. in Zienkiewicz and Taylor [2000]. Error estimators and expected

rates of convergence of the nodal Lagrange interpolation scheme can be found eg. in Braess
[2007]. Based on (3.61) the vector-valued approximation functions read

uh =

u1

u2

u3

 =

10∑
I=1

d
(u1)
I NI

d
(u2)
I NI

d
(u3)
I NI

 =

10∑
I=1

dINI =

10∑
I=1

dIN
R
I (3.62)

with dI ··= [d
(u1)
I , d

(u2)
I , d

(u3)
I ]T . Furthermore, with the kinematic gradient relation (3.21) the

approximation of the displacement gradients reads

∇uh =
10∑
I=1

dI ⊗∇NI =
10∑
I=1

dI ⊗∇ΞN
R
I · J−1. (3.63)

Note, that throughout this contribution, the kinematic relation (3.63) is used for the im-
plementation of all subsequent occurrences of gradient approximations by nodal Lagrange
interpolations.

3.3.2 Discrete Weak Form

Following the common Bubnov-Galerkin approach, in which in the weak form both solution
functions and test functions are approximated by the same interpolation scheme4, insert-

4Contrary to that is the Petrov-Galerkin approach, in which the test functions may be composed of a
different interpolation scheme (see e.g. Ern and Guermond [2004]).
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ing the discrete approximation functions into (2.90) yields the discrete weak form. More-
over, by means of the finite element procedure the domain is subdivided into the tetrahedral
mesh T and the discrete problem seeks u ∈ P2(T ; IR3) ∩ H1

0 (B; IR3) for given (u?,f , t) ∈
H1/2(ΓD; IR3) × H−1(B; IR3) × H−1/2(ΓN; IR3) (which are the prescribed displacements, vol-
ume loads and surface tractions) such that∑

T∈T

ˆ
T
∂∇uhψ(∇uh) • ∇δuh − f • δuh dV −

∑
F∈FT∩ΓN

ˆ
F
t • δuh dA = 0 (3.64)

holds for all δuh ∈ P2(T ; IR3)∩H1
0 (B; IR3). The discrete problem can equivalently be formu-

lated in terms of the minimization problem

Πh ⇒ min
uh∈P2(T ;IR3)∩H1

0 (B;IR3)
with

Πh ··=
∑
T∈T

ˆ
T
ψ(∇uh) dV + Πh

ext.
(3.65)

where the discretized external potential is given by

Πh
ext
··= −

∑
T∈T

ˆ
T
f • uh dV −

∑
F∈FT∩ΓN

ˆ
F
t • uh dA (3.66)

3.3.3 Matrix Notation

In the case of the present example, each element has a set of 3× 10 = 30 degrees of freedom,
which can be described in terms of the vector

d ··=
[
d

(u1)
1 , d

(u2)
1 , ... , d

(u2)
10 , d

(u3)
10

]T
. (3.67)

Furthermore, introduce the global set of degrees of freedom

D =
⋃
T∈T

dT (3.68)

where the operator ⋃
T∈T

(•)T (3.69)

denotes the union of all elements of the mesh T . Here, to provide some context, it appears
worth mentioning that in the present standard continuous interpolation approach two neigh-
boring elements share the same degrees of freedom on the interface. This is in contrary to so
called discontinuous Galerkin (DG) approaches, in which each element has an independent
set of degrees of freedom and the continuity is enforced by additional surface terms (See e.g.
the nonlinear elasticity formulations of Ten Eyck and Lew [2000] and Bayat et al. [2019]
among many other DG-contributions for various applications). Since the approximation oper-
ators (3.62) and (3.63) are (by definition of the finite element approach) linear in the degrees
of freedom, finding the dofs that correspond to the minimizer uh of Πh is equivalent to finding
the root of the tangent vector

0 =
∂Πh

∂D
=·· R(D) , (3.70)

which is typically referred to as global residual vector. In other words, the finite element
solution of the problem (3.65) corresponds to the solution of problem (3.70). Yet, in general,
as in the present example of finite strain hyperelasticity the problem (3.70) is nonlinear in
D since the strain energy function ψ can be an arbitrary function of C(∇uh). 5 Therefore,

5The classic Neo-Hooke hyperelastic strain energy function e.g. contains logarithmic components.
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in order to find the root, linearization based numerical solution schemes such as the Newton
scheme are utilized. The corresponding linearized problem seeks ∆D such that

Lin[R] = R|i +K|i∆D = 0 (3.71)

holds for each iteration i. Here, K ··= ∂R
∂D usually is referred to as global tangent matrix, (•)|i

denotes values of the previous iteration and ∆D = D−D|i refers to the solution increment.

Assembly Operator An alternative notation can be given when taking into account the
contributions of the individual element tangent matrices and element residual vectors defined
by

r ··=
∂Πh|T
∂d

and k ··=
∂r

∂d
, (3.72)

respectively. Within the so-called assembly procedure, a connectivity operator assigns to
each element vector- and matrix index of r and k a corresponding global index. Thereby, the
connectivity map is based on the order in which with (3.69) the element degrees of freedom
are placed in the global degree of freedom vector. Thus, the linearized problem (3.71) can be
written as

Lin[R] = A
T∈T

(
ki∆d+ ri

)
= 0, (3.73)

where ∆d refers to the increment ∆d = d− di and the assembly operator

A
T∈T

(•)T (3.74)

corresponds to the sum of all element vector- and matrix entries under consideration of the
global connectivity.
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Chapter 4

Purely Displacement Based
Formulation

4.1 The Gradient Elasticity Problem

In the following, the gradient elasticity approach introduced by Mindlin [1964] and Toupin
[1964] is presented in the notation of the nonlinear finite strain kinematic framework (cf.
dell’Isola et al. [2018]). Therefore, the hyperelastic strain energy, which in classical
formulations is a function of the deformation gradient F ··= 1 + ∇u, is enriched by a non-
local contribution including the second order deformation gradient

ψ ··= ψloc(F ) (classical elasticity) ⇒ ψ ··= ψloc(F )+ψnloc(F ,∇F ) (gradient elasticity).
(4.1)

A brief discussion of the fulfillment of material objectivity and isotropy condition for the
strain energy function follows in section 7.1. Within the second gradient framework for each
coordinate direction i the boundary of B is decomposed in the following way:

∂B(i) = Γ
(i)
N ∪ Γ

(i)
D with Γ

(i)
N ∩ Γ

(i)
D = ∅ and

∂B(i) = Γ
(i)
M ∪ Γ

(i)
H with Γ

(i)
M ∩ Γ

(i)
H = ∅.

(4.2)

with Γ
(i)
D and Γ

(i)
N being the standard Dirichlet- and Neumann boundaries with prescribed

ui = u?i and ti, respectively, whereas Γ
(i)
H and Γ

(i)
M are second-order Dirichlet- and Neumann

boundaries with prescribed (∇u·n)i = h?i and ri, respectively. Υ
(i)
N = ∂∂B(i)∩Γ

(i)
N is the set of

edges ∂∂B(i) on the first order Neumann boundary Γ
(i)
N on which additional line tractions li can

be prescribed. Followingly, the total elastic potential of the body B in reference configuration
is defined by

Π ··=
ˆ
B
ψ(F ,∇F ) dV︸ ︷︷ ︸

Πint

−
ˆ
B
u • f dV −

ˆ
Γ

(i)
N

uiti dA−
ˆ

Γ
(i)
M

(∇u · n)iri dA−
ˆ

Υ
(i)
N

uili dS︸ ︷︷ ︸
Πext

,

(4.3)
where Πint denotes the internal elastic potential and Πext denotes the potential due to external
loads1. The gradient elasticity boundary value problem can be formulated as the following

1In general, the components of first and second order Dirichlet boundaries do not necessarily need to
coincide and consequently neither do the components of the first and second order Neumann boundaries.
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minimization problem. For given f , t, r and l find the minimizer u ∈ U of the total potential

Π⇒ min
u

(4.4)

where Π is the total potential (4.3). Here, due to the appearance of second order gradients
the solution space U defined by

U ··= {u ∈ H2(B, IR3) : ui = u?i on Γ
(i)
D and (∇u · n)i = hi on Γ

(i)
H .} (4.5)

is a H2 sub-space, which requires conforming discretizations to be C1 continuous (cf. Braess
[2007]). The challenges connected to direct C1 continuous finite elements are discussed in
section 4.2. The corresponding set of Euler-Lagrange equations obtained by variation of (4.3)
with respect to u and integrating by parts can be found in (cf. Mindlin [1964], p.69). The
corresponding weak form is given in appendix A.1.

4.2 Challenges of a C1 Continuous Interpolation

In the following the lowest order conforming C1 continuous interpolation scheme that is suit-
able for 3D tetrahedral meshes is discussed as an example, showcasing the increased complexity
compared to Lagrange interpolations and resulting therefrom some numerical challenges. The
following approach was first introduced by Ženišek [1973] (see also Lai and Schumaker
[2007]) and is considered the 3D-analogon to the C1 continuous triangular element of Ar-
gyris and Scharpf [1968] (see also Okabe [1993]). A summary of various other existing
C1 continuous approaches is given in the introduction of chapter 1. First, in what follows,
a summary of the necessary conditions for C1 continuity is given. Then, in section 4.2.1
the degrees of freedom of the present P9-C1 interpolation are summarized, the corresponding
interpolation problem for the computation of the shape function coefficients is discussed and
the interpolation operator is presented. Based thereon, in a numerical test, the interpolation
power of the approach is shown. In section 4.2.2 the fulfillment of the interelement continuity
condition for the P9-C1 element is discussed and visualized with counter examples of the
P3-Hermite and P2-Lagrange interpolation schemes, which fail to fulfill this condition. The
discussion is followed by an example finite element computation in section 4.2.3, which unveils
the numerical issues the P9-C1 element is challenged with.

Necessary Conditions for C1 Continuity In order to obtain a full C1 continuous 3D
finite element scheme, which conformingly interpolates the field u ∈ H2(B) the following
requirements are necessary (cf. Braess [2007], Lai and Schumaker [2007]):

• On one element the polynomial space P (T ) ⊆ H2(T ) must be a subspace of the desired
H2- Sobolev space.

• For unisolvency of the interpolation problem (3.2) the number of degrees of freedom n
and the dimension of the polynomial space dimP must coincide (dimP = n).

Thus, formally the surface integrals should read
∑

(i)∈{1,2,3}
´

Γ(i)(•) dA, where Γ ∈ {ΓN,ΓM} denotes the
boundary type, i is the vector component, for which each sub-surface integral is considered independently and∑

(i)∈{1,2,3} denotes the sum of the three surface-subdomain integrals. Throughout this contribution, however
for the sake of readability for the surface integrals the short notation

´
Γ(i)(•) dA ··=

∑
(i)∈{1,2,3}

´
Γ(i)(•) dA,

is used. The same holds for the edge integrals.
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ab2 b1

c
di

d dimPd(3D) dimPd(2D) dimPd(1D)

1 4 3 2
2 10 6 3
3 20 10 4
4 35 15 5
5 56 21 6
6 84 28 7
7 120 36 8
8 165 45 9
9 220 55 10
10 286 66 11

(a) (b)

Figure 4.1: (a) Visualization of the degrees of freedom of the P9-C1-Element. Here, for the
sake of clearness, the degrees of freedom (dofs) of only one exemplary vertex, face and edge
are visualized. The element has with 35 dofs at each vertex, 8 dofs at each edge, 7 dofs at
each face and 4 dofs in the center node a total of 220 dofs. (b) List of dimensions of spaces
of d-order polynomials from 3D to 1D (note the relations (4.8)).

• Interface continuity condition: On the interface F = ∂T1 ∩ ∂T2 between two elements
T1 and T2 both the interpolated solution variable Iu and its normal gradient ∇(Iu) ·n
needs to be continuous. From the condition, the continuity of the full gradient across
the interface follows also, since the continuity of Iu automatically implies continuity of
the surface tangential direction of the gradient.

• Unisolvency of the interpolation problem reduced to the face: The polynomial space
dimP |F reduced to the face must have the same dimension as the number of degrees
of freedom (dofs) and surface tangential derivative components of the dofs at the face
(C0-continuity condition). In addition, the dimension of the polynomial space one order
lower than P reduced to the face must have the same dimension as the number of normal
derivative components of the dofs at the face (C1-continuity condition). If the present
unisolvency is fulfilled, the interface continuity condition is fulfilled.

The lowest order polynomial space for which an interpolation scheme that fulfills the condi-
tions can be constructed (and gets by without element subdivision) is of order P9 (cf. Lai
and Schumaker [2007]). Details on the implementation of the corresponding interpolation
scheme first introduced by Ženišek [1973] are presented in the following. In the subsequent
subsections, the interpolation scheme is denoted as P9-C1-element. The following illustrated
implementations are based on straight edge kinematics and the extension to kinematics with
suitable isoparametric curvilinear elements is left for the future.

4.2.1 Degrees of Freedom, Shape Functions and Interpolation Operator

Consider a single element T in physical space. By chosing a P9 polynomial space, the degrees
of freedom and the corresponding shape functions describe the following mappings

dI : P9(T )→ IR and NI : T → P9(T ) (4.6)
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Clearly, since a P9-polynomial defined over the element is 9 times continuously differentiable
the polynomial space P9(T ) ⊆ H2(T ) is a subspace of the desired H2(T ) Sobolev space,
fulfilling the first of the beforementioned conditions. In order to ensure unisolvency of the
interpolation problem (3.2), since trivariate P9-polynomials have 220 independent coefficients
(dimP9 = 220), logically the present element needs to have 220 degrees of freedom. In the
following, the specific functionals of all the degrees of freedom (visualized in figure 4.1(a)) are
listed. The vertex degrees of freedom are given by

d1 − d140 : (•)|V ,∇(•)|V ,∇2(•)|V ,∇3(•)|V ,∇4(•)|V for V ∈ VT . (4.7)

Here, the function values and Cartesian derivatives up to order 4 are considered. The sym-
metry conditions of higher derivatives (i.e. ∂XY = ∂Y X in the second order case) yield for the
orders 2-4 for each vertex 6, 10 and 15 independent derivatives, respectively giving in total
35 dofs at each vertex. Note, that the sequence is equivalent to the third column of table
(b) in figure 4.1. Here, by counting and simple comparison, it can easily be verified that the
following relations hold:

∆ dimP (3D) ≡ dimP (2D) ≡ dim∇d(•) and

∆ dimP (2D) ≡ dimP (1D) ≡ dim∇d(2D)(•)
(4.8)

Where ∆ dimP (3D) denotes the number of additional polynomial coefficients that are added
by going from one degree to the next. The edge degrees of freedom read

d141 − d188 : ∇(•)|aE · e1,∇(•)|aE · e2,∇2(•)|biE : (e1 ⊗ e1),∇2(•)|biE : (e1 ⊗ e2),

∇2(•)|biE : (e2 ⊗ e2) for i ∈ {1, 2} and E ∈ ET
(4.9)

where e1 and e2 denote vectors orthogonal to the edge vector s defined by (3.38). Note that
in order to ensure that the dofs are defined uniformly for adjacent elements the orientation
of e1 and e2 has to be defined globally2. The face degrees of freedom are defined by

d189 − d216 : (•)|cF ,∇(•)|diF · n for i ∈ {1, ..., 6} and F ∈ FT (4.10)

where n denotes the face normal vector based on definition (3.37). Here, however, analogous
to the Raviart-Thomas discretization (cf. sections 3.1.2 and 3.2.1) (and to the preceding
definition of e1 and e2) in order ensure global continuity between elements the direction of n
needs to be defined globally. Finally, the internal degrees of freedom associated to the center
node of the element are given by:

d216 − d220 : (•)|C ,∇(•)|C (4.11)

where (•)|C denotes the value evaluated at the center of the element. The P9-polynomial
ansatz reads

N
(P9)
ansatz = a1γ

9
1 + a2γ

8
1γ2 + ...+ a220γ

9
4 , (4.12)

where the polynomial is written in terms of the four barycentric coordinates γi and is called
Bernstein polynomials (B-polynomial) (cf. Lai and Schumaker [2007])3. Inserting (4.12)

2In the present implementation, e1 and e2 are defined by the cross product of s with the Cartesian unit
directions (i.e. e1 = s× (1, 0, 0)T e2 = s× (0, 1, 0)T and a sequence of alternative choices in case any of the
cross products yield the zero vector)

3Alternatively, the ansatz with a polynomial representation in terms of the trivariate coordinates Nansatz
I =

b1 +b2X+ ...+b220Z
9 makes no difference conceptually and can be used as well. However, the use of Bernstein

polynomials makes the computation of coefficients more simple (cf. Lai and Schumaker [2007]).
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into the biorthogonality condition (3.2) yields for the computation of e.g. the second shape
function I = 2 a linear equation system, which can be written as

d(c) = Mc = [0, 1, 0, ...]T with M ··= ∂cd (4.13)

and c2 = [a1, ..., a220]T ∈ IR220 denoting the vector of coefficients corresponding to the second
shape function, the right-hand side given by the vector [0, 1, ...0]T ∈ IR220 and

d(c) = [d1(N
(P9)
ansatz), ..., d220(N

(P9)
ansatz)]

T ∈ IR220

denoting the vector of values of degrees of freedom resulting from inserting (4.12) into the
functionals (4.7)-(4.11). Note, that the system of equations is linear since the polynomials are
a linear combination of the coefficients and the degrees of freedom are linear functionals. The
entire matrix C = (c1|c2|...|c220) ∈ IR220×220 (where the columns correspond to the different
shape functions and the rows correspond to the different coefficients) of 48400 coefficients of
all shape functions can be computed by inverting M :

MC = 1 ⇔ C = M−1 (4.14)

where the right-hand side 1 ∈ IR220×220 is the unity matrix representing the right-hand side
of the biorthogonality condition (3.2). Note, that following Lai and Schumaker [2007]
the shape function coefficients of the 220 by 220 matrix can be computed successively with
explicit formulas and by solving sub-equation systems, since especially in the case of the
Bernstein polynomial representation some of the degrees of freedom (namely the vertex degrees
of freedom) depend exclusively on subsets of c leading to a decoupled, cheaper set of equations.
Nevertheless, for the computation of the 220 × 220 coefficients for one element alone, an
extensive amount of formulas and equation systems has to be solved. Moreover, another
drawback of the present element is, that due to the existence of degrees of freedom associated
to directional derivatives on the edges and faces, the P9-C1 element does not belong to the
family of affine elements anymore. Correspondingly, a computation of the shape functions
once and a mapping between the reference- and the physical tetrahedron (analogous to the
Piola transformation in the case of Raviart-Thomas elements cf. section 3.2.1) is not possible.
Note, however, that e.g. for the more simple also not affine Argyris triangle the theory of
quasi affine elements (Ciarlet [1978]) can be applied for corresponding transformations (see
also Braess [2007]). In this context noteworthy is also the contribution of Kirby [2018],
where a general procedure including matrix operators acting on the basis functions has been
proposed e.g. for the Argyris triangle and the triangle of Morley [1968]. In the case of the
present P9-C1 element, after the mesh is generated, in a preprocessing step the shape function
coefficients are computed explicitly for each element. With the computed shape functions,
the interpolation operator for interpolation of the field u ∈ H2(B) reads

Iu =

220∑
I

dI(u)NI (4.15)

where Iu is defined piecewise for each element.
In what follows, the interpolation power of the P9-C1 scheme is tested. Therefore, let u ∈
C9 ⊆ H2(B) be the smooth field

u = (X(1−X)Y (1− Y )Z(1− Z))2, (4.16)
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(a) (b)

Figure 4.2: Convergence results of the interpolation problem for the P9-C1 element. (a)
shows the refinement sequence of the considered mesh. (b) shows the convergence of the
interpolation errors ||u− Iu||L2 and ||∇u−∇Iu||L2

5and corresponding rates of convergence in
the table.

which is at least 9 times continuously differentiable. Given in Lai and Schumaker [2007],
Theorem 18.5 the optimal rates of convergence of the interpolation error of the n-th derivative
can be computed by

||∇n(u− Iu)||L2 . h10−n||∇9u||L2 . (4.17)

Starting from the tetrahedron with the vertex nodes {(1, 0, 0), (0, 1, 0), (0, 0, 1)} (cf. image
of figure 4.2(a)) in a uniform refinement sequence visualized in the subsequent images the
L2-norms of the interpolation errors ||u − Iu||L2 and ||∇u − ∇Iu||L2 are plotted in figure 4.2
(b). As shown in the corresponding table in the same figure, within the considered refinement
steps rates of convergence close to the optimal rates can be observed. Here, the convergence
rates r are computed by

rs(•) =
ln((•)s−1)− ln((•)s)

ln(hs−1)− ln(hs)
, (4.18)

where s refers to the refinement step, h to the element size (3.43) and (•) denotes the error
measure (cf. Gallistl [2017]).

4.2.2 Visualization of the Interelement Continuity

In the preceding subsection, the computation of the shape functions has been discussed so
far without addressing the interface condition mentioned in the beginning of this section.
While the interface continuity condition is in general not a necessary condition to produce
converging results for the interpolation problem, it is very much a necessary condition in
order to produce consistent results for actual finite element computations. Therefore, in
what follows, it is illustrated how the P9-C1 formulation fulfills the condition that ensures
C1 continuity, while e.g. the comparative P3 Hermite approach does not and corresponding
solutions of finite element problems that require C1 continuity fail to converge. Firstly, for
the P9-C1 element the fulfillment of the unisolvency condition necessary for C0 continuity
stated at the beginning of this section is discussed by counting for one element face F the
degrees of freedom associated to the function values themselves and the degrees of freedom

5Note, that for the present implementation, the computation of the results of the last refinement step of the
gradient of the interpolation error was not possible within feasible computing times and are therefore omitted.
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T1

T2

P9-C1

P3-Hermite

P2-Lagrange

(a) (b) (c)

Figure 4.3: (a) Visualization of the face tangential components of the degrees of freedom of
the P9-C1 element. (b) Two arbitrary tetrahedral elements with shared face F = ∂T1 ∩ ∂T2.
(c) Visualization of the surface parametrizations of the interpolation operators I(T1)u|F (s, t)
and I(T2)u|F (s, t) with u given in (4.16). Clearly, since the elements are C0 continuous, the
interpolation operators for both elements yield the same results.

associates to derivatives that have a surface tangential component. The number of dofs that
are function values themselves are 1 at each vertex and 1 at the midface node. The number of
surface tangential components of the gradient dofs of the vertex are for first gradients 2, for
second gradients 3, for third gradients 4 and for fourth gradients 5 giving with the 1 function
value itself a total of 15 degrees of freedom at each vertex. Independent of the order of the
derivative the edge degrees of freedom have only one surface tangential component and that
is normal to the edge (cf. figure 4.3(a)), since the edge degrees of freedom have per definition
(4.9) no component tangential to the edge. The remaining surface normal face degrees of
freedom are not considered, since they are orthogonal to the tangential direction. Thus, the
total count of dofs restricted to the surface tangential direction is

3× 15︸ ︷︷ ︸
VF

+ 1︸︷︷︸
FF

+ 3× 3︸ ︷︷ ︸
EF

= 55 = dimP9(F ), (4.19)

which is equivalent to the dimension of the corresponding 2D polynomial space dimP9(F )
(cf. figure 4.1(b)) and the unisolvency condition is fulfilled. In order to visualize the interface
continuity, the example interface of two arbitrary elements (cf. figure 4.3(b)) is considered.
Associated to that is figure 4.3(c), in which the surface parametrization (cf. section 3.2) of
the operators I(T1)u|F (s, t) and I(T2)u|F (s, t) is visualized. It becomes clear that due to the
C0 continuity, the results of both Iu|∂T1∩F (s, t) and Iu|∂T2∩F coincide.
The C1 continuity condition can be illustrated analogously to the previous considerations.
Here, the derivative degrees of freedom of the P9-C1 element that have a surface normal
direction need to be considered. A corresponding illustration is given in figure 4.4(a). This
yields at the vertex node a count of 1 for the first derivative, 2 for the second derivative, 3 for
the third derivative and 4 for the fourth derivative, adding up to 10 per vertex node. Note,
that, e.g. in the case of second derivatives the mixed directions ∇(•)|V : (n ⊗ s) need to
be accounted for. Therefore, it has a count of 2 and analogously consideration lead to the
counts for the higher derivative orders. Analogous to the previous consideration are the edge
degrees of freedom. That is, independent of the derivative order, each node produces a count
of 1 since the edge tangential direction is per definition zero. Finally, the face dofs are the
first normal derivative dofs themselves, producing a count of 1 at each node. In summary,
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T1

T2

P9-C1

P3-Hermite

P2-Lagrange

(a) (b) (c)

Figure 4.4: (a) Visualization of the face normal derivative components of the degrees of
freedom of the P9-C1 element. (b) Two arbitrary tetrahedral elements with shared face
F = ∂T1 ∩ ∂T2. (c) Visualization of the surface parametrizations of the arbitrary derivative
direction ∂X of the element interpolation operators ∂XI(T1)u|F (s, t) and ∂XI(T2)u|F (s, t) with
u given in (4.16). Here, it becomes visible that at the interface the gradients of the element
interpolation operators of the P2-Lagrange and the P3-Hermite element yield different results,
whereas the C1 continuous P9-C1 element yields coinciding results.

the total count can be written as

3× 10︸ ︷︷ ︸
VF

+ 6× 1︸ ︷︷ ︸
FF

+ 3× 3︸ ︷︷ ︸
EF

= 45 = dimP8(F ) (4.20)

which is equivalent to the dimension of the 2D polynomial space dimP8(F ) (cf. figure 4.1(b))
fulfilling the unisolvency condition resulting together with the previously discussed condition
in a full C1 continuous approximation. The corresponding values of the first Cartesian com-
ponent of the gradient of the interpolation operator ∂XI(T1)u|F (s, t) and ∂XI(T2)u|F (s, t) at
the interface F of the two elements are visualized in figure 4.4(c). Here, it becomes visible
that for the present P9-C1 element, the gradients of both interpolation operators coincide.
Note, that, since the face normal direction of F in the present example is not the X-direction
the arbitrary gradient component ∂X moreover visualizes, that the continuity not only applies
to the normal direction but also (due to the C0 continuity) to any direction. Meanwhile, it
becomes visible that the comparative Lagrange and Hermite elements, which do not fulfill
normal gradient unisolvency condition (cf. following discussion), produce results that are not
coinciding.

Comparative Elements To provide a comparison, the interface conditions for the P3-
Hermite element are briefly discussed in the following. The degrees of freedom of the Hermite
element are the function values at the vertices and the midface nodes as well as the first
derivatives at the vertex nodes, giving a total of 20 dofs. The C0 continuity for the Hermite
element can be illustrated by the following expression

3× 3︸ ︷︷ ︸
VF

+ 1︸︷︷︸
FF

+ = 10 = dimP3(F ) (4.21)

as the tangential components of the derivative degrees of freedom are 2 for each vertex, giving
with the function values a count of 3. The P3-Hermite element however fails to pass the C1
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continuity condition, since the vertex derivative degrees of freedom restricted to the surface
normal direction yield a count of 1 for each vertex:

3× 1︸ ︷︷ ︸
VF

= 3
E
6= 6 = dimP2(F ), (4.22)

whereas the required number of dofs for unisolvency is given by dimP2(F ) = 6 6. The
violated C1 continuity manifests in the deviations of the gradients (i.e. ∂XI

(T1)u|F (s, t) 6=
∂XI

(T2)u|F (s, t)) of the interpolation values across the surface of two neighboring elements
(cf. figure 4.4(c)). For the P2 Lagrange element, showing the violation of the unisolvency
condition in face normal direction is trivial, since no derivative degrees of freedom exist.

4.2.3 Finite Element Computation

While as shown in the preceding sections the P9-C1 formulation exhibits high order interpo-
lation power and provides full C1 continuity, its applicability as finite element approach is
faced with significant numerical challenges that are illustrated in the following. Therefore,
the following fourth order elliptic boundary value problem as a simplification of the gradient
elasticity problem is considered: For a given volume load f find u such that

c1 Div Div∇2u− c2 Div∇u = f in B and u = ∇u · n = 0 on ∂B (4.23)

with the constants c1 ∈ {1, 0} and c2 ∈ {0, 1} enabling to switch from the biharmonic problem
with (c1, c2) = (1, 0) to the Laplace problem with (c1, c2) = (0, 1). Here, problem (4.23) is
considered instead of the gradient elasticity problem as it is already sufficient to showcase
the relevant issues of the discussed formulations. Moreover, in the case of gradient elasticity
solutions can not be obtained at all since the issues shown in the following become even
more severe. The potential of the discrete displacement based formulation corresponding to
problem (4.23) reads

Πh =
∑
T∈T

ˆ
B

c1

2
∇2uh • ∇2uh +

c2

2
∇uh • ∇uh − fuh dV. (4.24)

where the interpolation functions uh and corresponding gradients are defined for each element
T of the mesh T and read

uh|T =

220∑
I

dINI and ∇uh|T =

220∑
I

dI∇NI and ∇2uh|T =

220∑
I

dI∇2NI (4.25)

The expressions corresponding to the comparative P3-Hermite and P2-Lagrange elements
are the same but instead of (4.25) with the respective interpolation functions inserted into
(4.24). By defining a global vector D as the union of all element degrees of freedom the

6A similar observation can be made for the hexahedral element of Papanicolopulos et al. [2008] men-
tioned in the introductory chapter 1 of this contribution. The formulation is based on tri-cubic polynomials
with 64 coefficients. Since the proposed dofs of the entire element count 64 the interpolation problem is
unisolvent. However, the polynomial space when reduced to the interface has the dimension 16, which does
not appear to match the number of tangential components of the degrees of freedom at the interface. A
similar observation can be made when comparing the dimension of the first derivative of the polynomial space
reduced to the face (that is 9) to the number of normal derivative components of the degrees of freedom. Yet,
interestingly, for the benchmark tests chosen in Papanicolopulos et al. [2008] the formulation appears to
yield converging results.
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Figure 4.5: Unit cube convergence results of the C1 continuous P9-C1 element compared to
the non-C1 continuous P3-Hermite and P2-Lagrange element for (a) the first order Laplace
problem and for (b) the second order biharmonic problem. As expected in the case of the
first order problem the results of the local elements converge and diverge in the case of the
second order problem. Meanwhile, the results of the P9-C1 element appear to converge in the
case of the biharmonic problem for the first refinement step. However, due to bad conditions
of the global tangent matrix, the linear solver fails to produce solutions for finer meshes. The
largest possible refinement steps are marked with a red cross.

corresponding tangent matrices are defined by R = ∂DΠh and K = ∂DR, respectively,
resulting in the following global linear system

KD = −R, (4.26)

of which the solution inserted into (4.25) yields the finite element solution uh approximating
the exact solution u to problem (4.23).

Unit Cube Test For what follows, again the constructed solution (4.16) is considered as
reference. Due to its definition, u and∇u take the value zero at the points 0 and 1, respectively
in each coordinate direction. Therefore, the unit cube B = [1, 0]× [1, 0]× [1, 0] mm3 is a suited
geometry to for a boundary value problem that is set up to have u as analytical solution and
the Dirichlet boundary condition u = ∇u · n = 0 on ∂B (where n is the outward pointing
unit vector normal to the surface). See also section 7.2, where the unit cube geometry is
also used for finite strain gradient elasticity benchmark testing. The corresponding right-
hand side f is computed by inserting u into equation (4.23). Now, the consistency and
the approximation power of the present formulations can be evaluated by discretization of
the geometry, applying the volume load condition f and Dirichlet boundary condition and
computing the finite element solution uh. Then, the finite element solutions are compared to
the exact solutions in terms of the L2 error measure ||∇2u−∇2uh||L2 . To evaluate the rates
of convergence, the meshes are refined uniformly and results of the error are plotted for each
refinement step. The corresponding plots are shown in figure 4.5. Here, the results of plots
(a) correspond with (c1, c2) = (0, 1) to the first order Laplace problem and those of plots
(b) correspond with (c1, c2) = (1, 0) to the second order biharmonic problem. Note, that in
the case of the first order Laplace problem, prescribing ∇u · n on ∂B is not necessary but
possible since the gradient of the reference solution is zero on the boundary anyway. The
Dirichlet boundary conditions are imposed by fixing all degrees of freedom on the boundary
that correspond to the function values and additionally in the case of the biharmonic problem
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Figure 4.6: Singular value spectra for various mesh refinements of (a) the P9-C1 element
compared to the P2-Lagrange element (b) and parameters corresponding to the biharmonic
problem. In figure (a) the deterioration of the lower end of the singular value spectrum for
the P9-C1 element becomes visible. Some of the lower singular values even take values below
computer precision. Remarkably, even though already for the second refinement step some
singular values of the P9-C1 element were below computer precision the PARDISO solver was
able to compute a solution (cf. figure 4.5 (b)).

and the P9-C1 and the P3-Hermite element that correspond to the derivatives of first order.
As expected in the case of the first order problem the results of the P3-Hermite and the P2-
Lagrange elements converge and the results of the same elements clearly diverge in the case
of the second order problem due to the non-existing C1 continuity. Meanwhile, the results
of the P9-C1 element appear to converge in the case of the biharmonic problem for the first
refinement step. However, for the P9-C1 element only results of very low refinement stages are
computable as the linear system of equations becomes unsolvable for standard linear solvers7

at higher refinements. The last refinement step before the issue occurs is marked with a red
cross. Here, while in the present studies in the case of the biharmonic problem two refinement
steps are computable, in the case of the Laplace problem not even more than one step is
computable. And that is despite the fact that in the present study, the first refinement step
consists of only one element patch with five elements. Thus, the considerable element size
of the P9-C1 element becomes clear as it even with consideration of the Dirichlet conditions
for one element patch in the first step already exhibits 404 degrees of freedom. Meanwhile,
the P3-Hermite element has in the first refinement step less 4 degrees of freedom that are
not fixed. Since in the case of the P2-Lagrange element for only one element patch there is
nothing to calculate since all dofs are prescribed, the results shown start with the smallest
mesh consisting of 40 elements.
The failure of the linear solver to produce solutions can be explained by the fact that the
condition number κ = max(σi)/min(σi) of the global tangent matrix quickly grows to infinity
as the mesh gets finer. A corresponding study is presented in figure 4.6 (a), where the singular
values of the tangent matrix K are plotted for each mesh refinement step. While in theory
the tangent matrices of the P9-C1 element are not singular, it can be seen from plot (a)
that at the third refinement the lowest singular values are sink below computer precision
(see also the discussion of Zhang [2008]), whereas in the comparative plot (b) showing the
singular values of the P2-Lagrange element the lower ends of the singular value spectra remain
well above computer precision. For the present studies for the P9-C1 element a numerical

7For the present study, the AceGen/AceFEM software package and the PARDISO linear solver were used.
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integration scheme incorporating 126 Gauss points (cf. Grundmann and Möller [1978],
see also Solin et al. [2004]) has been used as for a further increase of Gauss integration
points no improvement of the results was observed.

4.2.4 Summary and Discussion of Challenges

In the preceding, it was shown that the P9-C1 element has optimal interpolation power and
fulfills the C1 continuity condition, making it fully H2(B) conforming and in theory suitable
for the solution of gradient elasticity problems. Yet, due to its complexity it faces some
numerical challenges summarized as follows:

• The number of degrees of freedom is very large and a total of 48400 shape function
coefficients of one element alone makes the computation of shape functions already
a numerically challenging task. Moreover, the condition number of the global stiffness
matrix is due to the different orders of magnitude of shape function coefficients very high
and grows at extremely high rates as the mesh gets finer. In consequence, conventional
linear solvers quickly reach their limits in the ability to compute a solution as the lowest
singular values of the global stiffness matrix fall below computer accuracy, as shown in
the present numerical studies (see also results of Zhang [2008]).

• Due to the existence of face normal and edge tangential derivatives the element does
not belong to the affine family and operators mapping the interpolation functions of
the reference element to interpolation functions of the physical element do not get by
without distorting the derivative directions. Nevertheless, as discussed in Zhang [2008]
the P9-C1 element can be considered as almost affine making -analogous to the case
of the Argyris triangle (cf. discussion of Braess [2007])- in principle, the application
of corresponding mapping operators possible without loss of optimal convergence rates.
Yet, so far the introduction of specific mapping operators as done e.g. by Kirby [2018]
for the Argyris triangle is missing in the literature. For present implementations coeffi-
cients have to be computed in a preprocessing step, increasing the computing time since
for each element 48400 coefficients have to be computed.

• Since the interpolation space is P9, in order to ensure no decrease of convergence rates
in the case of geometries and boundary conditions with corresponding curvature (cf.
Babus̆ka and Pitkäranta [1990]) a P9-parametrization of corresponding curvilinear
elements would be the necessary choice, for which again implementation appears to be
cumbersome and numerical integration expensive.

Numerous approaches exist in the literature proposing formulations that get by with less
challenging sets of element degrees of freedom. A possible approach is the use of the so-called
macro element technique and the use of reduced polynomial spaces as proposed by Walking-
ton [2014] following the approach for triangular elements of Clough and Tocher [1965].
There, through element subdivision and incorporating special polynomial spaces which have
a reduced order at the element faces, the corresponding interpolation scheme gets by with P5
polynomials and derivative degrees of freedom similar to the Argyris triangle8, yet at the cost
of increased complexity due to additional compatibility conditions that the shape functions
of the sub-elements need to fulfill. Moreover, by even further subdividing the element inter-
polations with only P2 polynomials and only 16 degrees of freedom is possible but with the

8Namely, up to second order gradients at the vertices, normal derivatives at the midface nodes and field
values at the element center node giving a total of 45 degrees of freedom.
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downside of having to subdivide the element into 24 sub-elements and impose an even larger
number of internal compatibility conditions making an implementation even more challenging
(cf. Walkington [2014]). Among other approaches (cf. introduction of chapter 1) another
much simpler remedy is the use of mixed formulations, in which through modification of the
underlying continuous variational formulations additional solution variables are introduced
enabling for much simpler C0 continuous interpolation schemes. Various corresponding for-
mulations that are suitable for gradient elasticity are subject of the present contribution and
discussed in the following chapters.





Chapter 5

Mixed Finite Elements for Gradient
Elasticity Based on the Hu-Washizu
Variational Principle

In order to circumvent the challenges connected to conforming C1 continuous interpolations
illustrated in chapter 4 and other purely displacement based approaches discussed in chapter
1 a remedy allowing for simple C0 continuous interpolation functions are three field mixed
formulations akin to the Hu-Washizu variational principle. The present chapter discusses
several such mixed three field finite element formulations for gradient elasticity both in the
continuous setting as well as corresponding suitable approximation schemes: Firstly, section
5.1 presents the three field formulation of Riesselmann et al. [2019] extended by the so
called rot-rot stabilization to account for any kind of nonlocal strain energy. Then in section
5.2 a modification of the formulation is proposed allowing for L2 and H(Div) approximation
functions of which the corresponding pairing is known to be stable, while being applicable to
any kind of nonlocal gradient elastic model. Moreover, the approximation scheme of Arnold
and Brezzi [1985] together with a volume bubble approximation of the mixed variable is
proposed enabling static condensation and a relatively low number of global degrees of freedom.
Lastly, section 5.3 introduces the finite strain extension of the small strain gradient elasticity
formulation of Riesselmann et al. [2024], which incorporates symmetric solution variables
reducing the number of degrees of freedom and allowing for a formulation suitable for nonlocal
energies of the strain gradient type without the need for the rot-rot stabilization parameter.

5.1 Straightforward Approach

In the following, a finite element approach for gradient elasticity based on Riesselmann
et al. [2019] (see also the small strain contributions of Shu et al. [1999] and Zybell
et al. [2012]) is presented

63
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5.1.1 Contiuous Formulation

Starting point of the straightforward approach enabling the use of C0 continuous interpolation
functions is the following Lagrangian

ΠH1 ··=
ˆ
B
ψloc(∇u) + ψnloc(H,∇H) + Λ • (H −∇u) dV + Πext + ΠΓ + Πrot, (5.1)

where H is a mixed variable associated to the dispacement gradient and Λ is the Lagrange
multiplier variable. The corresponding saddle point problem seeks for given external loads
(Πext defined in (4.3)) the functions (u,H,Λ) ∈ H1

0 (B; IR3)×H1
0 (B; IR3×3)×H−1(B; IR3×3))

so that
ΠH1 ⇒ stat

u,H,Λ
(5.2)

becomes stationary. Here, the Lagrange multiplier term

Πlag ··=
ˆ
B

Λ • (H −∇u) dV (5.3)

enforces compatibility of the mixed variableH = ∇u associated to the displacement gradient.

Treatment of Boundary Conditions Meanwhile, the term

ΠΓ =

ˆ
∂B

(Ḡ · n) • (∇u−H) dA (5.4)

ensures consistency with the surface terms of the original formulation (4.4) (Ḡ ··= ∂∇Hψ
denotes the higher order stress tensor in terms of H). The kinematics for the discretization
of the surface integrals are given in section 3.2 and further details on the implementation
can be found in Riesselmann et al. [2024], where also corresponding numerical studies
investigate the influence of ΠΓ under special boundary conditions. Note, that there, the
surface integral terms in ΠΓ are introduced for the small strain analogon to the reduced
formulation of section 5.3. Here, for the sake of simplicity and since the numerical examples
throughout this contribution consider problems in which the addition of ΠΓ is not necessary1

in the subsequent discretizations (5.4) is not considered. The components i of the first order
Dirichlet conditions are given by

(u = u)?i and ((H)(t) = ∇Γu
?))i on Γ

(i)
D , (5.5)

where (•)(t) refers with definition (2.15) to the surface tangential components of (•). Mean-
while, the components i that belong to the second order Dirichlet boundary of the original
problem are given through:

(H · n = ∇u · n = h?)i on Γ
(i)
H (5.6)

Here, prescribing (H)
(t)
i on Γ

(i)
D and (∇u · n)i on Γ

(i)
H is not strictly necessary, since the

information of the prescriptors is already given via (∇Γu = ∇Γu
?)i (implicitly imposed via

(u = u?)i) on Γ
(i)
D and (H · n = h?)i on Γ

(i)
H and coupled to the other field via the Lagrange

multiplier term. More details on the variational equations are given in appendix A.1 where also
the equivalence of the variational problem corresponding to (5.2) with the original variational
equation (4.4) is shown.

1The consideration of ΠΓ is not necessary, because on the boundary of the present problems there are either
Dirichlet conditions or (G · n)i is taken to be zero.
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Rot-Rot Stabilization In the potential (5.1) the additional rot-rot stabilization term

Πrot ··=
ˆ
B

α

2
RotH • RotH dV (5.7)

as proposed for the formulation of Riesselmann et al. [2021] (see also chapter 6) with the
scalar numerical parameter α ∈ IR+ ensures unisolvency in the case of non-local strain energies
which are formulated solely in terms of symmetric functions ofH (eg. ψnloc ··= ψnloc(E,∇E)
with the Green Lagrange tensor E ··= 1

2(HT ·H+HT +H), cf. section 7.1). In the following
discussion, this type of non-local energy is referred to as symmetric energy. In this case
without the addition of Πrot corresponding discrete residual equations for the 9 nodal degrees
of freedom of H yield only 6 linearly independent equations and the corresponding element
sub-tangent matrices kH (cf. following section 5.1.2) lose rank sufficiency, which is a crucial
condition for stability.
In the following it is shown that the loss of linear independence is inherent already to the
present continuous formulation and how this fact translates to any corresponding discrete sys-
tem. Consider the symmetric energy function ψ = ψ(E,∇E) with Ekl being the components
of the beforementioned Green-Lagrange tensor E with the symmetry relations Ekl = Elk and
Elm,n = Eml,n (and therefore symmetric stress quantities Skl ··= ∂Eklψ = ∂Elkψ = Slk and
Blmn ··= ∂Elm,nψ = ∂Eml,nψ = Bmln). Then, due to the symmetries, the following relations
hold

∂ψ

∂Hij
=

∂ψ

∂Ekl

∂Ekl
∂Hij

=
∂ψ

∂Ekl

∂Ekl
∂Hji

=
∂ψ

∂Hji

∂ψ

∂Hij,k
=

∂ψ

∂Elm,n

∂Elm,n
∂Hij,k

=
∂ψ

∂Elm,n

∂Elm,n
∂Hji,k

=
∂ψ

∂Hji,k

(5.8)

showcasing that differentiation with respect to Hij and Hji as well as Hij,k and Hji,k yields
the same result, respectively. As a consequence, without the rot-rot stabilization any residual
expressions

rdHij =
∑
T∈T

ˆ
T

∂ψ(Hh
ij , H

h
ij,k)

∂dHij
dV and rdHji =

∑
T∈T

ˆ
T

∂ψ(Hh
ij , H

h
ij,k)

∂dHji
dV, (5.9)

that correspond to differentiation of the global functional with respect to the discrete degrees
of freedom dHij and dHji , respectively must be equivalent (rdHij = rdHji ) for any nodal

interpolation scheme Hh
ij =

∑
I d

(Hij)
I NI and Hh

ij,k =
∑

I d
(Hij)
I (NI),k leading to linearly

dependent equations.
Now, in the following, it is illustrated how adding the rot-rot stabilization restores the linear
independence of the discrete residual equations. By simply comparing the components of
RotHh given by (2.23) one can easily verify that the rotation operator with

(RotHh)ij 6= (RotHh)ji (5.10)

is not symmetric. As a consequence, following an analogous argumentation as before the
residual components under consideration of the rot-rot stabilization become

r̃dHij = rdHij +
∂Πh

rot

∂dHij
and r̃dHji = rdHji +

∂Πh
rot

∂dHji
(5.11)

and are with

rdHij = rdHji and
∂Πh

rot

∂dHji
6= ∂Πh

rot

∂dHji
(5.12)

not equivalent anymore, and the therefrom arising problem of linear dependency disappears.
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Remark 5. Note, that in the present formulation the issue applies only to the non-local con-
tribution ψnloc since the local contribution is a functional of ∇u. Yet, the preceding discussion
of the necessity of the rot-rot stabilization is applicable analogously in subsequently introduced
formulations of which the entire strain energy (not only the non-local part) might be functions
of H and ∇H, since (5.8)-(5.12) hold without loss of generalization in that case.

Furthermore, it is worth noting that the addition of (5.7) does not alter the solution to the
continuous formulation since the function H that satisfies the constraint (5.3) is rotation-
free anyway (cf. discussion in appendix A.1.1). Yet, in the discrete setting, where the mesh
resolution is not infinite, the constraint Πlag is not fully converged and the rot-rot stabilization
leads to a set of linearly independent equations that is superposed with the originally linearly
dependent equations leading to a solvable system. Moreover, since as the mesh gets finer due
to the convergence of the constraint Hh = ∇uh and thereby implied RotHh = 0 converging
towards zero (again, cf. appendix A.1.1, see also results of figure 7.4) the amount by which
Πrot deviates the solution from the original solution also converges towards zero. Note also
Riesselmann et al. [2021] proof of proposition 1 (see also chapter 6), where continuity
and coercivity is shown for the linearized version of the energy symmetric in H with added
rot-rot stabilization. This implies the same characteristics for the bilinear form of the present
formulation that corresponds to the sub-matrix kH (cf. next section 5.1.2) in the discrete
setting.

5.1.2 Discretizations

In the following, the interpolation functions and corresponding degrees of freedom for a tetra-
hedral finite element discretization T ∈ T of the body B are presented and corresponding
expressions of the element tangent matrices and residuals are given. Since the solution vari-
ables u and H belong to the standard H1-Sobolev spaces, Lagrange interpolation functions
can be used. With Λ ∈ H−1(B; IR3×3) ⊇ L2(B; IR3×3) ⊇ H1(B; IR3×3) for the Lagrange mul-
tiplier variable both piecewise constant and Lagrange interpolation functions are conforming
choices.

Proposed P2u-P1BH-P0Λ Interpolation The discrete displacements uh ∈ H1
0 (B; IR3) ∩

P2(T ; IR3) and the corresponding deformation gradients F h interpolated over the tetrahedron
T ∈ T read

uh|T =

10∑
I=1

d
(u)
I N

(P2)
I and F h|T =

10∑
I=1

d
(u)
I ⊗∇N

(P2)
I + 1 (5.13)

withN (P2)
I : T → H1(T )∩P2(T ) being the quadratic tetrahedral Lagrange interpolation func-

tions and d(u)
I = (d

(u1)
I , d

(u2)
I , d

(u3)
I )T denoting the standard degrees of freedom d

(ui)
I : H1(B)→

IR giving the values of the components ui at the corresponding nodes. A necessary condition
for rank sufficiency of the resulting finite element tangent matrix is the count criterion, re-
quiring for any possible mesh configuration that the number of degrees of freedom of Hh is
larger than the number of degrees of freedom of the Lagrange multiplier Λh. Thus, for the
interpolation of the mixed variable with Hh ∈ H1

0 (B; IR3×3) ∩ (P1(T ; IR3×3)⊕B4(T ; IR3×3))
a composition of P1-linear Lagrange functions and the volume bubble Lagrange function is
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used (cf. Boffi et al. [2013]):

Hh|T =

4∑
I=1

d
(H)
I N

(P1)
I +d

(H)
B N

(P4)
B and ∇Hh|T =

4∑
I=1

d
(H)
I ⊗∇N (P1)

I +d
(H)
B ⊗∇N (P4)

B

(5.14)
whereas the approximation RotHh of RotH appearing in Πrot is given by evaluating (2.23)
in terms of ∇Hh. Here, N (P1)

I : T → H1(T ) ∩ P1(T ) denote the linear Lagrange interpo-
lation functions and d

(Hij)
I : H1(B) → IR denote the components of the degrees of freedom

corresponding to the vertex nodes I. Meanwhile, d(Hij)
B : H1(B)→ IR denote the components

of the degrees of freedom of the element center node and the corresponding shape function
N

(P4)
B : T → H1(T )∩P4(T ) is given by the quartic Lagrange functionN (P4)

B = 1/256γ1γ2γ3γ4,
where γi denote the barycentric coordinates of the tetrahedron. The shape function N

(P4)
B

takes the value 1 at the center node and is zero valued at the boundary of the tetrahedron
and therefore referred to as “volume bubble” function. Further reading with respect to the
volume bubble enrichment can be found in Boffi et al. [2013] and Braess [2007]. The
Lagrange multiplier Λh ∈ H−1(B; IR3×3)∩P0(T ; IR3×3) is interpolated element-wise constant
as

Λh|T = d(Λ)N (P0), (5.15)

where d(Λij) : H−1(B)→ IR denotes the element-constant degrees of freedom and N (P0) = 1 is
the corresponding (trivial) basis function. The vector- and tensor valued degrees of freedom
consist of the entries

d
(u)
I
··=

du1

du1

du3


I

, d
(H)
I/B
··=

dH11 dH12 dH13

dH21 dH22 dH23

dH31 dH32 dH33


I/B

and d(Λ) ··=

dΛ11 dΛ12 dΛ13

dΛ21 dΛ22 dΛ23

dΛ31 dΛ32 dΛ33


(5.16)

Altogether, assigned to one element are 30 nodal displacement degrees of freedom (as usual
per P2-Lagrange displacement elements) and 36 displacement gradient degrees of freedom.
Moreover, the condensable degrees of freedom assigned to the element center are 9 displace-
ment degrees of freedom and 9 Lagrange multiplier degrees of freedom, leaving a total of
66 global element degrees of freedom. In the numerical tests of chapter 7 the discretization
scheme is referred to as P2u-P1BH -P0Λ-element. Explicit expressions of the Lagrange shape
functions can e.g. be found in Zienkiewicz and Taylor [2000]. The discrete Lagrangian
reads

Πh
H1 =

∑
T∈T

(ˆ
T
ψloc(∇uh) + ψnloc(Hh,∇Hh) + Λh • (Hh −∇uh) dV

)
+ Πh

ext + Πh
rot

(5.17)

Note, that in what follows, no additional higher surface tractions r or line tractions l (cf.
section 4.1) are considered and therefore, the discrete external potential of the form given by
(3.66) is used. The expression for Πh

rot is obtained by replacing in (5.7) RotH by RotHh.

Matrix Notation and Static Condensation The following presents expressions corre-
sponding to the element degrees of freedom and residual vectors, the element tangent matrix
of the P2u-P1BH -P0Λ formulation. The vectors of the various element degrees of freedom
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are defined as

du ··=
[
d

(u1)
1 , d

(u2)
1 , ... , d

(u2)
10 , d

(u3)
10

]T
dH ··=

[
dTHI , d

T
HB

]T with

{
dHI
··=
[
d

(H11)
1 , d

(H12)
1 , ... , d

(H32)
4 , d

(H33)
4

]T
dHB

··=
[
d

(H11)
B , d

(H12)
B , ... , d

(H32)
B , d

(H33)
B

]T
dΛ
··=
[
dΛ11 , dΛ12 , ... , dΛ32 , dΛ33

]T
d ··=

[
dTu , d

T
H , d

T
Λ

]T
(5.18)

From differentiation of the discrete Lagrangian (5.17) the following element residual and
tangent matrix components associated to the different solution fields can be derived:

ru ··=
∂Πh|T
∂du

ku ··=
∂ru
∂du

kuH ··=
∂ru
∂dH

= 0 kuΛ
··=

∂ru
∂dΛ

rH ··=
∂Πh|T
∂dH

kHu ··=
∂rH
∂du

= 0 kH ··=
∂rH
∂dH

kHΛ
··=

∂rH
∂dΛ

rΛ
··=

∂Πh|T
∂dΛ

kΛu
··=

∂rΛ

∂du
= (kuΛ)T kΛH

··=
∂rΛ

∂dH
= (kHΛ)T kHΛ

··=
∂rΛ

∂dΛ

= 0

(5.19)
The global residual RH1

··=
∂ΠhH1
∂D corresponds to the stationary point of Πh

H1 with the global
solution vector D ··=

⋃
T∈T dT . Linearization leads to the following system of equations to

be solved by the iterative solution procedure:

Lin[RH1] = A
T∈T

( ku 0 kuΛ

0 kH kHΛ

kΛu kΛH 0


i

∆du
∆dH
∆dΛ

+

rurH
rΛ


i

)
= 0, (5.20)

where the assembly operator given in (3.74) and [•]i denotes the matrix values corresponding
to the previous iteration. Following the steps for the static condensation of the internal degrees
of freedom (cf. appendix B.1) yields the reduced system

A
T∈T

([ k??u k??uH
k??Hu k??H

]
i

[
∆du
∆dH

]
+

[
r??u
r??H

]
i

)
= 0. (5.21)

Alternative P2-P2-P1 Interpolation While the displacement interpolation remains un-
changed from (5.14) for the alternative P2u-P2H -P1Λ formulation Hh ∈ (H1(B; IR3×3) ∩
P2(T ; IR3×3)) is interpolated with quadratic Lagrange polynomials and Λh ∈ (H1(B; IR3×3)∩
P1(T ; IR3×3)) ⊆ H−1(B; IR3×3) with linear Lagrange polynomials:

Hh|T =
10∑
I=1

d
(H)
I N

(P2)
I , ∇Hh|T =

10∑
I=1

d
(H)
I ⊗∇N

(P2)
I and Λh|T =

4∑
I=1

d
(Λ)
I N

(P1)
I (5.22)

Yet, for the present interpolation scheme, no degrees of freedom can be condensed and the
corresponding tangent matrix remains the saddle point structure (5.39). Moreover, the ele-
ment is with 156 global degrees of freedom significantly more expensive. Nevertheless, due
to the higher polynomial order of the interpolation functions of Hh for some boundary value
problems an improved convergence behavior compared to the P2u-P1BH -P0Λ is possible (cf.
numerical results of section 7.2).
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5.2 H-DivΛ-Formulation

This section introduces a novel approach which is based on a simple modification of the three
field formulation of the previous section 5.1. By making use of the divergence theorem the
formulation yields a displacement Lagrange multiplier pairing (

´
B Div Λ • u dV ) for which

the inf-sup stability is well known in other contexts and some hints on the mathematical
stability in the present context are given as well (together with robust numerical results, cf.
chapter 7). Moreover, since now the second constraint term fulfills the inf-sup condition, it
becomes possible to formulate the entire strain energy (local and nonlocal part) in terms of
H. This was not possible in the formulation of the previous section 5.1. Moreover, for the
corresponding H(Div;B; IR3×3) conforming discretization of the Lagrange multiplier the hy-
bridization approach of Arnold and Brezzi [1985] is used, which together with the volume
bubble discretization of Hh enables for static condensation. In what follows the formulation
is presented in the continuous setting with some hints on the inf-sup stability followed by
the discretization approach together with corresponding matrix expressions. Numerical re-
sults showing the stability and cost efficiency compared to other approaches are given in the
following chapter 7.

5.2.1 Continuous Formulation

Starting from the potential (5.1), replacing the displacement gradients in the local part
ψloc(∇u) → ψloc(H) of the strain energy by the mixed variable H and applying the di-
vergence theorem to the term −

´
BΛ • ∇u dV yields the formulation

ΠH2 ··=
ˆ
B
ψ(H,∇H) + Λ •H + Div Λ • u dV −

ˆ
∂B

(Λ · n) • u dA+ Πext + ΠΓ + Πrot

(5.23)

which is the basis for the present approach. Clearly, since both sides of the equation of
the divergence theorem are equivalent, the formulation (5.23) still enforces the constraint
∇u = H. Thus, showing that variation of (5.23) is identical to variation of (5.1) and therefore
identical to the original problem (4.4) is straightforward (cf. appendix A.1.2). In consequence,
unchanged from the formulation of section 5.1 remains the observation that RotH = 0 holds
(cf. discussion of appendix A.1.1). Therefore, as in section 5.1.1 the addition of the rot-rot
stabilization Πrot does not change the problem (see also study of figure 7.4). The solution in
the stationary point of (5.23) can now be found in the spaces (u,H,Λ) ∈ U ×H×L defined
as

U ··= {u ∈ L2
0(B; IR3)}

H ··= {H ∈ H1
0 (B; IR(3×3))}

L ··= {Λ ∈ H−1(Div;B; IR3×3)}
(5.24)

(definitions of spaces given in section 2.1.3). The Dirichlet boundary conditions remain un-
changed from section 5.1. The corresponding variational equations and bilinear forms of the
linearization are given in appendix A.1.2. Note, that as in the previous section, the further
treatment of ΠΓ is left for the future. Yet, it is noteworthy that by the volume interpolation
of uh with Crouzeix-Raviart functions (cf.(5.32)) the interpolation of ∇uh · n appearing in
ΠΓ is also possible.
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Hints on the Stability of the Continuous Formulation: The following section provides
some considerations regarding the mathematical stability conditions (cf. section 2.4) of the
linearization of the variational equation corresponding to (5.23) with Dirichlet boundary con-
ditions. The corresponding expressions leading to the definitions of the following bilinear- and
linear forms can be found in appendix A.1.2. The extension of Brezzi’s conditions to the non-
linear case is to the best of the authors knowledge a research issue that has not been solved.
Nevertheless, the following considerations on the linear system might give hints towards the
stability of the present formulation. Variation and linearization of (9.2) yields the following
problem to be solved in each iteration: For the given external loads and residual values from
the previous iteration find the solution increments (∆u,∆H,∆Λ) ∈ U ×H× L such that

b2(∆Λ, δu) = lu(δu)

a(δH,∆H) + b1(δH,∆Λ) = lH(δH)

b2(δΛ,∆u) + b1(∆H, δΛ) = lΛ(δΛ)

(5.25)

holds for all U × H × L. The problem (5.25) is of the same structure as (2.108), therefore
Brezzi’s splitting theorem is applicable and the following inf-sup conditions need to be fulfilled.

sup
Λ∈L\{0}

b2(Λ,u)

||Λ||L
& ||u||L2 ∀u ∈ U (5.26)

sup
H∈H\{0}

b1(H,Λ)

||H||H
& ||Λ||L ∀Λ ∈ Z(Λ). (5.27)

where the kernel space (cf. section 2.4.4) is defined as Z(Λ) ··= {δΛ ∈ L : b2(δΛ, δu) =
0 ∀δu ∈ L2(B; IR3)}. Appendix A.1.2 presents some findings of preceding contributions that
strongly suggest the fulfillment of the inf-sup condition. The inf-sup stability together with
the ellipticity and continuity of a which is shown in the proof of proposition 1 of Riesselmann
et al. [2021] (see also section 6.1) proofs that (5.25) has a unique solution.

5.2.2 Discretization

The following discusses the interpolation functions that are used for the discretization of
the present approach. Firstly it can be noted, that while the Lagrange interpolation of Hh

can remain unchanged from section 5.1, a suitable choice for uh and Λh would now be the
interpolation approach of Raviart and Thomas [1977] (discussed in section 3.1.2 of this
contribution), since with RT0(T ; IR3×3) ⊆ H(Div;B; IR3×3) ⊆ H−1(Div;B; IR3×3) =·· L the
Raviart-Thomas space RT0 is conforming with the present solution space L. The corre-
sponding displacement interpolation would with uh ∈ P0(T ; IR3) ⊆ U be piecewise constant.
However, to further increase efficiency and to obtain displacement degrees of freedom that
live on the element boundary and therefore simplifying the incorporation of the displacement
Dirichlet conditions the H(Div)-conforming hybridization approach of Arnold and Brezzi
[1985] is used in the following. The idea is to instead of choosing Raviart-Thomas functions for
Λh and therefore incorporating the necessary condition of normal continuity across element
interfaces directly, instead interpolate Λh elementwise discontinuous and enforce the normal
continuity with Lagrange multipliers living on the element faces. As a result, when using the
volume bubble interpolation of Hh as before, the Lagrange multiplier degrees of freedom can
be statically condensed again yielding a reduced element tangent matrix. Moreover, in the
present case the Lagrange multiplier degrees of freedom are in the limit equivalent to the dis-
placement values of the mid-face nodes (cf. Arnold and Brezzi [1985], Theorem 1.4) and
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can therefore be taken as displacement degrees of freedom enabling for a direct incorporation
of the displacement boundary conditions. Since in the present case interpolation functions
appear that are not higher than linear on edges and faces, for the approximation of the el-
ement geometry and corresponding kinematics straight edge elements used in the following.
The discretization of Hh ∈ H∩ (P1(T ; IR3×3)⊕B4(T ; IR3×3)) and its gradient is identical to
(5.14).

Discretization of Λ: Recall that T ∈ T denotes a tetrahedron as an element of the mesh
T and F ∈ F denotes a triangle as an element of the set of all faces F within the mesh.
Further, let FT denote the set of faces of one element T . The discretization of Λh follows the
approach described in Gallistl [2017], Remark 7 based on Arnold and Brezzi [1985].
Namely, Λh ∈ (L ∩ P0(T ; IR3×3)) is sought to consist of elementwise constant functions

Λh|T = d(Λ)N (P0) (here: N (P0) = 1) (5.28)

and the second constraint term is approximated by the following (for details on the derivation,
see appendix B.3)

ˆ
B

Div Λ • u dV → −
∑
T∈T

∑
I∈FT \∂B

Λh|T · n|AI • d
(u)
I AI , (5.29)

where AI is the area of each element face I, n|AI is the corresponding outwards pointing unit
normal vector defined by (3.37) and FT \ ∂B denotes the set of element faces that are within
the body (and not on the boundary). Thus, each face AI in (5.29) is the interface of two
neighboring elements. Evaluating one summand of (5.29) at one such example interface I
yields the term (

Λh|T1n|
(T1)
AI
−Λh|T2n|

(T1)
AI

)
• d

(u)
I AI . (5.30)

Note, that the second term gets the negative sign through the relation n|(T2)
AI

= −n|(T1)
AI

. From

(5.30) it can be seen that d(u)
I act as Lagrange multipliers constraining the continuity of Λh

in normal direction across two interfaces. Thus, due to the opposing signs of the normal
vectors of two adjacent elements (5.29) ensures normal continuity across all interfaces of T
within the body. In appendix B.3 it is shown that (5.29) is equivalent to the Raviart-Thomas
discretization.
Remark on Notation: Note, that in line with the notation common for other discontinuous
approaches (references mentioned in chapter 1) (5.29) can alternatively be written as the
single sum over all element interfaces as∑

T∈T

∑
I∈FT \∂B

Λh|T · n|AI • d
(u)
I AI = −

∑
F∈F\∂B

ˆ
F

[[Λh · nF ]] • d
(u)
F dA, (5.31)

where [[•]]F denotes the difference (5.30) of the neighboring quantities and due to the straight-
edge kinematics and Λh and d(u)

F being constant the integral expression is interchangeable
with the expression [[Λh · nF ]] • d

(u)
F AF .

Discretization of u: As shown in Arnold and Brezzi [1985], theorem 1.4 the Lagrange
multipliers d(u)

I living on the mid-face nodes FT are a piecewise constant approximation of u.
Therefore, in order to provide integrability over the element volume, which is needed for the
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evaluation of the volume loads and the evaluation of the L2-displacement-error, the following
linear interpolation is used for bu uh

uh =
∑
I∈FT

d
(u)
I N

(CR)
I and ∇uh =

∑
I∈FT

d
(u)
I ⊗∇N

(CR)
I (5.32)

where N (CR)
I denote the shape functions corresponding to the method of Crouzeix and

Raviart [1973], given on the reference tetrahedron by

N
(CR)
I (ξR) ∈ {−2 + 3ξ + 3η + 3ζ, 1− 3ζ, 1− 3η, 1− 3ξ} (5.33)

With the L2-integrability given through interpolation (5.32) follows uh ∈ U . Here, it is worth
noting that the Crouzeix-Raviart interpolation is non-conforming with H1 since it is only
continuous at the midpoints of the element faces. Yet, with uh ∈ L2

0(B; IR3) = U being in the
larger L2-space the interpolation is conforming in the present case. A noteworthy contribution
in this context is the work of Marini [1985] showing that at the lowest order the solution of
the mixed method of Raviart and Thomas [1977] can be obtained from the solution of the
P1-nonconforming method.

Discretization of the boundary: The discretization (5.29) can also without the need for
any modifications be used for the discretization of the surface term in (5.23) by defining (5.29)
also on the element faces that live on the surface ∂B:

−
ˆ
∂B

(Λ · n) • u dA→ −
∑
T∈T

∑
I∈FT∩∂B

Λh|T · n|AI • d
(u)
I AI , (5.34)

where now FT ∩ ∂B denotes the element faces on the boundary of the domain. Here, since on
the boundary ∂B the difference (5.30) reduces to a single term, the expression does not act as
constraint term enforcing continuity, but simply as discrete boundary surface term, through
which the boundary conditions can be incorporated. The Dirichlet boundary conditions e.g.
are incorporated the usual way by prescribing the corresponding values for d(u)

I on ΓD. By
combining (5.29) and (5.34) one can define

Πh
Λn
··= −

∑
T∈T

∑
I∈FT

Λh|T · n|AI • d
(u)
I AI , (5.35)

corresponding to the discretization of
´
B Div Λ • u dV −

´
∂B(Λ · n) • u dA.

Discrete Lagrangian Finally, inserting the discretization functions into the potential (5.23)
yields the discrete expression

Πh
H2 =

∑
T∈T

(ˆ
T
ψ(Hh,∇Hh) + Λh •Hh dV

)
+ Πh

Λn + Πh
ext + Πh

rot (5.36)

A visualization of the degrees of freedom of the present interpolation scheme is given in
figure. The entries of the nodal degree of freedom vectors d(u)

I and matrices d(H)
I/B and d(Λ)

are unchanged from (5.16). The present discrete formulation is in following numerical tests
denoted by CRu-P1BH -P0Λ. The present formulation is with 4×9+4×3 = 48 global degrees
of freedom smaller as e.g. the P3-Lagrange element and the P3-Hermite element, both of
which have 60 degrees of freedom and are only suitable for local problems. Interestingly, the
global degrees of freedom of the CRu-P1BH -P0Λ formulation are the same as the degrees of
freedom of the P3-Hermite element.
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Figure 5.1: Visualization of the degrees of freedom on the reference tetrahedron corresponding
to the CRu-P1BH -P0Λ formulation

Matrix Notation and Static Condensation The expressions related to the degrees of
freedom and residual vectors, as well as the element tangent matrix of the CRu-P1BH -P0Λ
formulation, are provided below. The definitions of the element degrees of freedom are un-
changed from (5.18) with the exception of the displacement degrees of freedom now given
by

du ··=
[
d

(u1)
1 , d

(u2)
1 , ... , d

(u2)
4 , d

(u3)
4

]T (5.37)

Further, also the notation for expressions of the element residual and tangent matrix compo-
nents derived from differentiation of (5.36) are unchanged from (5.19) the only difference now
being that in the present case the sub-matrix

ku ··=
∂ru
∂du

= 0 (5.38)

is zero. Analogously to section 5.1.2 the global residual RH2
··=

∂ΠhH2
∂D corresponds to the

stationary point of Πh
H2 and the global solution vector reads D ··=

⋃
T∈T dT . The system of

equations to be solved by the iterative solution procedure obtained by linearization reads:

Lin[RH2] = A
T∈T

( 0 0 kuΛ

0 kH kHΛ

kΛu kΛH 0


i

∆du
∆dH
∆dΛ

+

rurH
rΛ


i

)
= 0, (5.39)

where again [•]i denotes the matrix values corresponding to the previous iteration the assembly
operator is defined by (3.74). Due to the fact that H is enriched with the volume bubble
function associated to the element center node as well as the piecewise constant interpolation
of Λh, the local degrees of freedom can be condensed giving the following reduced system (cf.
appendix B.1)

A
T∈T

([ k??u k??uH
k??Hu k??H

]
i

[
∆du
∆dH

]
+

[
r??u
r??H

]
i

)
= 0 (5.40)
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5.3 Formulation with Symmetric Solution Fields

Since the local and non-local strain energy functions of common strain gradient elasticity mod-
els (see e.g. Mindlin [1964]) and corresponding finite strain extensions (see e.g. dell’Isola
et al. [2018]) can be formulated solely in terms of symmetric strain tensor quantities and
their gradient, the present section presents a modification of the approach of section 5.1 in
which instead of the full gradient a symmetric mixed solution variables and corresponding
symmetric compatibility condition is introduced. Furthermore, the following formulation is
the large strain analogon to the small strain gradient elasticity formulation of Riesselmann
et al. [2024].

5.3.1 Continuous Formulation

The Lagrangian of the present formulation reads

ΠH3 ··=
ˆ
B
ψloc(∇u) + ψnloc(E,∇E) + Σ • (E −E(∇u)) dV + Πext + Πs

Γ (5.41)

where E ∈ H1
0 (B;S) denotes the mixed variable, Σ ∈ H−1(B; S) the Lagrange multiplier

enforcing compatibility and E(∇u) is the Green Lagrange nonlinear strain tensor (2.69)
formulated in terms of the displacements u ∈ H1

0 (B; IR3). Refer to section 2.1 in which S is
defined as the space of symmetric second order tensors. The surface term that analogous to
(5.4) ensures consistency with the surface terms of the original formulation (4.4) (cf. appendix
A.1.3) reads

Πs
Γ
··=
ˆ
∂B

(B̄ · n) : (E(∇u)−E) dA (5.42)

with the symmetric higher order stress tensor B̄ ··= ∂∇Eψ defined in terms of the mixed
variable E. Again, in what follows the addition of Πs

Γ is not necessary since either Dirichlet
conditions are considered or (G · n)i = (F · B · n)i is taken to be zero. Further details
on the kinematic relations of the higher order strain and stress tensors can be found in
section 7.1. For a detailed discussion on implementation and numerical influence of the
corresponding formulation in the case of linear strain gradient elasticity, see Riesselmann
et al. [2024]. Note, that formulation (5.41) is applicable to strain gradient type elasticity
models (see discussion of 7.1) and gets by without the additional rot-rot term (5.7) that
was present in formulations of the previous sections. The first order Dirichlet conditions are
imposed as in the previous section through the displacements u = u? on ΓD.
Meanwhile, for the incorporation including the second order Dirichlet boundary a direct in-
corporation via the mixed variable E is possible in the case of coinciding first and second
order Dirichlet conditions by

E = E(∇Γu
?,h?) on ΓD ∩ ΓH, (5.43)

where through the decomposition (2.20) by inserting ∇u = ∇Γu
? + h? ⊗ n into the Green

Lagrange strain tensor both the first and second order Dirichlet functions u? and h? are
included. In general, in the case where (5.43) is not applicable2, following the small strain
formulation of Riesselmann et al. [2024] based on the method of Nitsche [1971] (see also

2That is, in the case of higher order Dirichlet conditions on boundary subdomains ΓH 6⊆ ΓD that do not
belong to the first order Dirichlet boundary.
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J. and Stenberg [1995]) a possible way to incorporate the higher order Dirichlet boundary
could be adding the surface integral

ΠH3 ← ΠH3 +

ˆ
ΓH

(F · B̄) : (n⊗ n) • (∇u · n) +
β

2
(∇u · n)2 dA, (5.44)

where β is some penalty parameter. A corresponding implementation for the present large
strain case is left for the future.

5.3.2 Discretization

The continuous solution spaces of the present formulations are analogous to the formulation
of section 5.1 with the only difference being that in the present case symmetric tensors are
considered. Thus, the corresponding discrete solution spaces read

uh ∈ H1
0 (B; IR3) ∩ P2(T ; IR3)

Eh ∈ H1
0 (B;S) ∩ P1(T ;S)⊕B4(T ;S)

Σh ∈ H−1(B; S) ∩ P0(T ; S)

(5.45)

and the same Lagrange interpolation functions as in section 5.1 are used. Only the nodal
degree of freedom vectors d(E)

I and d(Σ) are defined differently, since they now contain only
six independent degrees of freedom instead of nine. The corresponding symmetric degree of
freedom matrices read

d
(E)
I/B
··=

dE1 dE6 dE5

dE2 dE4

sym. dE3


I/B

and d(Σ) ··=

dΣ1 dΣ6 dΣ5

dΣ2 dΣ4

sym. dΣ3

 (5.46)

where the order of the individual degrees of freedom follows the Voigt notation. In what
follows the present discrete formulation is denoted by P2u-P1BE-P0Σ and exhibits 30 nodal
displacement degrees of freedom and 24 nodal degrees of freedom associated to Eh. The
discrete Lagrangian on which the following implementations and numerical evaluations are
based on reads:

Πh
H3 =

∑
T∈T

(ˆ
T
ψloc(∇uh) + ψnloc(Eh,∇Eh) + Σh • (Eh −E(∇uh)) dV

)
+ Πh

ext (5.47)

Matrix Notation and Static Condensation The vectors of the various element degrees
of freedom of the P2u-P1BE-P0Σ element are defined as

du ··=
[
d

(u1)
1 , d

(u2)
1 , ... , d

(u2)
10 , d

(u3)
10

]T
dE ··=

[
dTEI , d

T
EB

]T with

{
dEI
··=
[
d

(E1)
1 , d

(E2)
1 , ... , d

(E5)
4 , d

(E6)
4

]T
dHB

··=
[
d

(E1)
B , d

(E2)
B , ... , d

(E5)
B , d

(E6)
B

]T
dΣ
··=
[
dΣ1 , dΣ2 , ... , dΣ5 , dΣ6

]T
d ··=

[
dTu , d

T
E , d

T
Σ

]T
(5.48)

The definition of the element residual and tangent matrices is analogous to (5.19). Again
analogous to the previous formulations, with the global solution vector D ··=

⋃
T∈T dT the
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global residual RH3
··=

∂ΠhH3
∂D corresponds to the stationary point of Πh

H3 and Linearization
yields following system of equations:

Lin[RH3] = A
T∈T

( ku 0 kuΣ

0 kE kEΣ

kΣu kΣE 0


i

∆du
∆dE
∆dΣ

+

rurE
rΣ


i

)
= 0, (5.49)

Following the steps for the static condensation of the internal degrees of freedom (cf. appendix
B.1) yields the reduced system

A
T∈T

([k??u k??uE
k??Eu k??E

]
i

[
∆du
∆dE

]
+

[
r??u
r??E

]
i

)
= 0 (5.50)

to be solved at each iteration of the Newton-Raphson solution procedure.

Alternative P2-P2-P1 Interpolation Analogous to the alternative formulation of section
5.1 the present alternative formulation incorporates the discretization

uh ∈ H1
0 (B; IR3) ∩ P2(T ; IR3)

Eh ∈ H1
0 (B;S) ∩ P2(T ;S)

Σh ∈ H−1(B;S) ∩ P1(T ; S)

(5.51)

The interpolation functions are analogous to those of the alternative P2-P2-P1 formulation
of section 5.1 with the only difference being that in the present case, again the symmetric
degree of freedom matrices (5.48) are used. The alternative symmetric formulation is in what
follows, denoted by P2u-P2E-P1Σ element.



Chapter 6

Rotation-Free Mixed Finite Elements
for Gradient Elasticity

This chapter presents the finite strain mixed finite element approach of Riesselmann et al.
[2021] (see also the related contributions Riesselmann et al. [2022], Riesselmann et al.
[2021b], Riesselmann et al. [2019b] and Riesselmann et al. [2019c] ), in which, through
a rot-free constraint, the displacement and displacement gradient solution variables appear in
a decoupled set of variational equations promising increased computational efficiency while
fulfilling the stability conditions allowing for numerically robust computations. In section 6.1,
the continuous variational setting is discussed, while section 6.2 focuses on suitable finite
element interpolations and the corresponding set of discrete matrix-vector notations at the
element level. The proposed approaches are further supported by a stability analysis of the
small strain counterparts in section 6.1.5 and section 6.2.4 for the continuous and discrete
settings, respectively.

6.1 Continuous Formulation

This section covers the continuous formulation of the RotFEM approach of Riesselmann
et al. [2021]. Therefore, the assumption is made that the body B has a finite size and is
simply connected with a connected essential boundary ΓD.

6.1.1 Decomposed Lagrange Multiplier Method

Starting point is the Hu-Washizu type Lagrangian similar to the approaches of chapter 5,
which in the strain energy function includes solely first order gradients, allowing for C0 con-
tinuous finite elements. Therefore, the total elastic potential (4.3) is reformulated into the
Lagrangian

ΠH ··=
ˆ
B
ψ(H,∇H) dV + Πext + Πlag (6.1)

where ψ denotes the gradient enhanced strain energy (4.1). Here, ψ is a functional of the
displacement gradient variable H, compatibility with the displacement u is enforced by the

77



78 CHAPTER 6. ROTATION-FREE MIXED FE FOR GRADIENT ELASTICITY

constraint term Πlag =
´
BΛ•(H−∇u) dV given by (5.3). The potential Πext of external loads

remains a functional of the displacements and is unchanged from (4.3). Now, a key feature
of the following approach is the decomposition of the Lagrange multiplier Λ = −∇g+ Rot Φ
according to relations (2.55) and (2.56) into a gradient and a rotation enabling the decoupling
of the displacements. Thereby, by making use of the divergence theorem (2.29) the original
constraint (5.3) can be written as

ΠR,lag =

ˆ
B

(
∇g • (∇u−H) + Φ • RotH

)
dV. (6.2)

Note the exclusion of ∇u in the second term of (6.2), since the scalar product of rot and
gradient tensor functions vanishes with (2.26). The second term of (6.2) can be interpreted
as constraint term enforcing H to be rot-free, which is a necessary condition for gradient
functions.

Remark 6. In the scenario where the nonlocal contribution of the strain energy density dis-
appears (ψnloc = 0), Λ can be identified as the first Piola Kirchhoff stress tensor P , and
−∇g + Rot Φ can be interpreted as the respective split of the latter. This verification can be
done through the Euler-Lagrange equations obtained by varying (6.1) based on the Hu-Washizu
variational principle.

Rot-Rot Stabilization In order to take into account the case in which the nonlocal contri-
bution becomes small, the stabilization term Πrot (5.7) discussed in section 5.1.1 is added to
(6.1). By incorporating this augmentation term, the problem retains its well-posedness even
when the nonlocal contribution approaches zero. Additionally, the inf-sup stability condition
is satisfied. The problem (6.1) remains unaffected by the stabilization term because the so-
lution fulfills δHΠrot = 0 (see also the discussion of section 5.1.1). An analysis showing the
coercivity and continuity of the corresponding relevant bilinear form of the linearized system
is given in section 6.1.5.

6.1.2 Continuous Lagrangian of the RotFEM Approach

Under consideration of the previously discussed decomposition the Lagrangian of the current
approach which in what follows will be referred to as RotFEM approach reads

ΠR ··=
ˆ
B

(
ψ(H,∇H) +∇g • (∇u−H) + Φ • RotH

)
dV + Πext + Πrot (6.3)

The corresponding problem seeks for given volume loads and surface tractions the functions
(u,H,Φ, g) ∈ H1

0 (B; IRd)×H1
0 (B; IRd×d)×Q×H1

0 (B; IRd) such that

ΠR ⇒ stat
u,H,Φ,g

(6.4)

becomes stationary. Here, the definition of the Lagrange multiplier space

Q ··=
{

Φ ∈ L2(B; IR2) :
´
BΦ dV = 0 for d = 2

Φ ∈ H(Div;B; IR3×3) : Div Φ = 0 and Φ · n = 0 on ΓD for d = 3

}
(6.5)

depends on the space dimension d ∈ {2, 3}, since the Rot-operator has different characteristics
in 2D than it has in 3D. Namely, in the first case it yields L2-vector functions and in the second
case it yields divergence-free second order tensor functions (see also the corresponding legs of
the commuting diagrams (2.44) and (2.45)).
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Treatment of Boundary Conditions The Dirichlet boundary conditions read as follows

u = u? , H × n = ∇u? × n , Φ · n = 0 , g = 0 on ΓD and
H · n = h? on ΓH

(6.6)

Note, that in contrary to the boundary conditions of the three field formulations discussed
in section 5.1.1, where prescribing besides the displacements the tangential direction of H
was not strictly necessary, in the present formulation it is crucial for stability to prescribe
both the values for u and the tangential components of H with H×n on the boundary ΓD.
Moreover, the Dirichlet boundary needs to be connected. The reason therefore is discussed in
the following section. Note further, that analogous to the formulations of chapter 5 adding ΠΓ

(5.4) to ΠR might improve rates of convergence for the special the case of non-homogeneous
higher order contributions of the Neumann boundaries (cf. sections 5.1.1 and A.1, see also
Riesselmann et al. [2024]). Yet, for the sake of simplicity it is omitted, since it is expected
to only become relevant in the case of the rather special boundary configuration, where
individual vector components of the boundary are of first order Neumann and second order
Dirichlet type (cf. Riesselmann et al. [2024]).

6.1.3 2D Variational Formulation

In the two-dimensional case d = 2 with definitions (2.18) and (2.12) RotH simplifies to the
vector

RotH =

[
∂1H12 − ∂2H11

∂1H22 − ∂2H21

]
. (6.7)

Thus, in this case the Lagrange multiplier Φ also needs to be only vector-valued and fulfills
the inf-sup stability condition (cf. (6.22) in section 6.1.5 of this chapter) without further
restrictions with respect to differential operations as it is in the 2D case simply an element
of the Sobolev space Φ ∈ L2

0(B; IR2) (cf. definition (6.5) ). The weak form corresponding to
(6.4) reads

δuΠ = 0 =

ˆ
B
∇δu • ∇g dV + δΠext, (6.8)

δHΠ = 0 =

ˆ
B

(δH • P +∇δH •G+ Rot δH • Φ + αRot δH • RotH − δH • ∇g) dV,

(6.9)

δΦΠ = 0 =

ˆ
B
δΦ • RotH dV, (6.10)

δgΠ = 0 =

ˆ
B
∇δg • (∇u−H) dV. (6.11)

The system of equations from (6.8) to (6.11) illustrates the division of the second-order weak
form (A.2) into a series of first-order equations. This method was, before being introduced
for the gradient elasticity problem in Riesselmann et al. [2021], initially proposed for
polyharmonic problems in Gallistl [2017] and is also based on initial concepts introduced
in Ortiz and Morris [1988] in the context of discretizing Kirchhoff’s equations of thin plate
bending using C0 finite elements. Within the present equation framework, the displacement
function u is decoupled from (6.9) and (6.10), which in what follows is referred to as main
problem. The displacements are solely present in the straightforward Laplace-type equations
(6.8) and (6.11), which in what follows are denoted as the pre- and post-processing steps,
respectively. The fact that the displacements are decoupled from the main problem (6.9)
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(6.10) provides sub-problems that are reduced in complexity, promising increased efficiency
and robustness. Yet, for the incorporation of the essential boundary condition, special care
has of ensuring that the information regarding the prescribed displacements enters the main
problem. Therefore, it becomes clear that prescribing H ×n = ∇u? ×n on ΓD is crucial in
order to accord to the main problem the necessary boundary information. The stability of the
linearized version of the present formulation is presented in subsection 6.1.5 and propositions
1 and 2.

6.1.4 3D Variational Formulation

In the three-dimensional case (d = 3), to fulfill the inf-sup condition (6.22) (cf. section 6.1.5),
the Lagrange multiplier Φ ∈ Q (with Q defined in (6.5)) needs to be divergence-free with
vanishing boundary trace Φ ·n = 0 on ΓD. Therefore, in this case, the second constraint term

ΠR ← ΠR + Πdiv with Πdiv ··=
ˆ
B
µ • Div Φ dV (6.12)

is added to (6.3) in order to weakly impose the divergence-free condition, where µ is a vector-
valued, second Lagrange multiplier sought in the space µ ∈ L2

0(B; IR3) where µ is fixed by
the mean integral value

´
B µ dV = 0. Similar to the previous case, together with (6.12), the

weak form corresponding to the extended Lagrangian (6.12) now reads

δHΠ = 0 =

ˆ
B

(δH • P +∇δH •G+ Rot δH • Φ + αRot δH • RotH − δH • ∇g) dV,

(6.13)

δΦΠ = 0 =

ˆ
B

(δΦ • RotH + Div δΦ • µ) dV, (6.14)

δµΠ = 0 =

ˆ
B
δµ • Div Φ dV, (6.15)

with the spaces for u, g andH unchanged and δuΠ and δgΠ according to (6.8) and (6.11). See
propositions 1, 2 and 3 in the following subsection 6.1.5 stating the stability of the linearized
version of the present formulation.

6.1.5 Stability of the Linearized Continuous Formulation

In this section, the stability of the proposed approach in the linearized framework is discussed.
The proofs for the propositions, lemmas, and corollaries presented in this section can be found
in the appendix of Riesselmann et al. [2021]. With pure Dirichlet boundary conditions,
linearization of the variational equation (A.2) corresponding to the original problem yields
the problem

a(∇δu,∇u) = l(δu) for all δu ∈ U . (6.16)

for which the small displacement increments u ∈ U are sought for all δu ∈ U and given right-
hand side. The bilinear and linear forms a and l are defined by (A.5) and original solution
space with pure Dirichlet boundary is defined as

U ··= {u ∈ H2
0 (B; IR3) : u|∂B = 0 and ∇u · n|∂B = 0}. (6.17)

Define the spaces

G ··= {g ∈ H1
0 (B; IRd) : g|∂B = 0} and V ··= {H ∈ H1

0 (B; IRd×d : H|∂B = 0) (6.18)
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With Q defined by (6.5) define the bilinear form b : V ×Q → IR by

b(δH, δΦ) := 〈Rot δH, δΦ〉. (6.19)

(note the L2 scalar product definition (A.1)). Now, introducing the bilinear form with added
stabilization term ã : V × V → IR by

ã(H, δH) := a(H, δH) + α〈RotH,Rot δH〉. (6.20)

where a is defined by (A.5) and the original arguments ∇δu and ∇u have been replaced by
δH and H). Note, that (6.20) is equivalent to the first bilinear form of (A.12) of the H-DivΛ
approach (cf. section 5.2.1). The small strain-analogon to (6.9) seeks (H,Φ) ∈ V × Q for a
given g ∈ G such that

ã(H, δH) + b(δH,Φ) = 〈∇g, δH〉
b(H, δΦ) = 0

(6.21)

holds for all (δH, δΦ) ∈ V×Q. It is now shown that (6.21) is stable and robust for a vanishing
nonlocal contribution c1 → 0, where c1 > 0 refers to the constant nonlocal parameter which
the tangent operator L defined in appendix A.1 is a positive linear function of. The robustness
is proven with respect to the following energy norm on V that depends on the nonlocal
contribution,

|||δH||| :=
(
c1‖∇δH‖2L2(B) + α‖Rot δH‖2L2(B) + ‖C1/2 sym δH‖2L2(B)

)1/2
.

The unique existence of solutions to (6.9) with stabilization in the linear case is postulated
by the subsequent proposition.

Proposition 1. Let max{α, c1} > c > 0 and max{α, c1} < C < ∞. There exists a unique
solution (H,Φ) ∈ V ×Q to the problem (6.21). (Riesselmann et al. [2021])

For the proof of (1) the inf-sup condition

sup
H∈V\{0}

b(H,Φ)L2(B)

|||H|||
& ‖Φ‖L2(B) (6.22)

needs is the main ingredient. The proof of (6.22) and (1) is given in Riesselmann et al.
[2021].

Remark 7. It should be noted that Proposition 1 still holds true even if the stabilization term
is not included in the bilinear form. In other words, if ã is replaced by a in (6.21). This
is due to the fact that functions in the kernel of b are divergence-free and a is coercive on
this kernel. However, this property no longer holds for the discretization process, hence the
inclusion of the stabilization term. See also the discussion regarding the rot-rot stabilization
of section 5.1.1.

The subsequent proposition asserts that the reformulated problem is indeed synonymous with
the original problem.

Proposition 2. If u ∈ U is a solution of the original problem (6.16) then there exists Φ ∈ Q
and g ∈ G such that (u,∇u,Φ, g) ∈ G × V × Q × G solves (6.8), (6.21) and (6.11). On the
other hand, if (u,H,Φ, g) ∈ G × V × Q × G solves (6.8), (6.21) and (6.11), then u solves
(6.16). (Riesselmann et al. [2021])
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Stability of the 3D Variational Formulation With Two Lagrange Multipliers It is
now shown that in the linearized framework the solution of the 3D variational formulation
(6.13) through (6.15) coincides with the solution of the original problem. Define the spaces
of the Lagrange multipliers

Q̃ ··= {Φ ∈ H(Div;B; IR3×3) : Φ · n|∂B = 0} and M ··= L2
0(B, IR3). (6.23)

The linearized version of equations (6.13), (6.14), and (6.15) can be expressed as the following
problem. Find (H,Φ,µ) ∈ V × Q̃ ×M such that

ã(H, δH) + b(δH,Φ) = 〈∇g, δH〉
b(H, δΦ) + 〈Div δΦ,µ〉 = 0

〈Div Φ, δµ〉 = 0

(6.24)

holds for all (δH, δΦ, δµ) ∈ V × Q̃ ×M.
The following states the continuous stability of (6.24), meaning it has a unique solution and
the solution is consistent with the solution to the problem (6.21) (where in the 3D case the
divergence-free condition is explicitly implied by definition of Q).

Proposition 3. Let max{α, c1} > c > 0 and max{α, c1} < C < ∞. There exists a unique
solution to (6.24). Furthermore, if (H,Φ,µ) ∈ V × Q̃ × M is a solution to (6.24), then
(H,Φ) ∈ V × Q is a solution to (6.21). On the other hand, if (H,Φ) ∈ V × Q is a solution
to (6.21), then there exists µ ∈M such that (H,Φ,µ) ∈ V × Q̃ ×M is a solution to (6.24).
(Riesselmann et al. [2021])

Proposition 3 together with Proposition 2 implies that (6.8), (6.24) and (6.11) are equivalent
to (6.16).

6.2 Finite Element Approximations

In line with discretizations of previously discussed formulations of this contribution for the
finite element approximation, a partition of B into a set of simplices T ∈ T is considered,
where F is the set of corresponding element faces. According to the standard continuous
Galerkin approach, the solution variables and test functions in the continuous weak forms
discussed in section 6.1 are substituted with piecewise polynomial functions outlined in the
subsequent subsections. Additionally, matrix vector representations for the discretized weak
forms are provided.

6.2.1 Interpolation Matrices Pre- and Postprocessing Step

Let du and dg denote element vectors of the nodal degrees of freedom for the preprocessing
and postprocessing problems (6.8) and (6.11). The corresponding vector-matrix interpolation
operators read

uh = Nudu, δuh = Nuδdu, ∇uh = Budu, ∇δuh = Buδdu, (6.25)

gh = Nudg, δgh = Nuδdg, ∇gh = Budg, ∇δgh = Buδdg, (6.26)

whereNu andBu represent suitable finite element interpolation matrices containing standard
Lagrange shape functions (suitable choices of interpolation orders given in table 6.1 and 6.2)



6.2. FINITE ELEMENT APPROXIMATIONS 83

and corresponding derivatives (cf. appendix B.2 for details on the matrix notation). By
incorporating equations (6.25) and (6.26) into equations (6.8) and (6.11), one arrives at the
subsequent matrix equations:

δuΠh =
∑
T∈T

δdTu

( ˆ
T
BT
uBu dV︸ ︷︷ ︸
ku

dg −
ˆ
T
NT

uf dV −
ˆ
δT
NT

u t dA︸ ︷︷ ︸
rext
u

)
= 0 and (6.27)

δgΠ
h =

∑
T∈T

δdTg

( ˆ
T
BT
uBu dV︸ ︷︷ ︸
ku

du−
ˆ
T
BT
uNHd

ext
H dV︸ ︷︷ ︸

rext
H

)
= 0, (6.28)

where d ext
H denotes the element vector of nodal degrees of freedom that correspond to Hh

computed in the previous step. Note, that the pre- and postprocessing steps are linear.
Therefore, even in the finite deformation regime, there is no need for further linearization of
equations (6.27) and (6.28).

6.2.2 Interpolation Matrices of the Main Step in 2D

The matrix interpolation operators (cf. appendix B.2) introduced for the discretization of the
weak form (6.9) are as follows.

Hh = NHdH , ∇Hh = BHdH , RotHh = RHdH ,

δHh = NHδdH , ∇δHh = BHδdH , Rot δHh = RHδdH .
(6.29)

The variable H is sought in the space H ∈ H1
0 (B; IRd×d), leading to the use of Lagrange

interpolation functions and derivatives in the matrices NH and BH , respectively. The con-
struction of the rotation operator matrix RH is discussed in appendix B.2. In the case of two
dimensions, the Lagrange multiplier Φ ∈ L2 is discretized using interpolation functions given
by

Φh = NΦdΦ and δΦh = NΦδdΦ. (6.30)

In the analysis of section 6.2.4 in 2D it has been established that any combination of interpola-
tion functions that is stable for the Stokes problem (as discussed in Boffi et al. [2013]) can
be considered as a suitable choice for the approximations Hh and Φh. As a result, the MINI
interpolation scheme here denoted by P1BH -P1Φ and the Taylor-Hood interpolation schemes
here denoted by P2H -P1Φ and P3H -P2Φ are proposed (cf. table 6.1, details in section 6.2.4).
In the MINI interpolation scheme, NH comprises of linear Lagrange shape functions that
correspond to the vertex nodes of the linear P1-triangle, as well as the cubic Lagrange shape
function that corresponds to the interior node of the cubic P3-triangular element. The latter
is also known as the volume bubble function (as discussed in section 6.2.4, cf. also the analo-
gous 3D quintic volume bubble function of the formulations of chapter 5). The discretization
of (6.29) and (6.30) is given by

δHΠh =
∑
T∈T

δdTH

( ˆ
T

∂ψ(dH)

∂dH
+ αRT

HRHdH dV︸ ︷︷ ︸
rH(dH)

+

ˆ
T
RT
HNΦ dV︸ ︷︷ ︸
kHΦ

dΦ−
ˆ
T
NT

HBud
ext
g dV︸ ︷︷ ︸

rext
g

)
,

(6.31)

δΦΠh =
∑
T∈T

δdTΦ

( ˆ
T
NT

ΦRH dV︸ ︷︷ ︸
kΦH

dH

)
, (6.32)
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Element name Hh Φh gh/uh

P1BH -P1Φ (MINI) lin.(vertex), cubic (intern.) (4) linear (3) quadratic (6)
P2H -P1Φ (Taylor-Hood) quadratic (6) linear (3) cubic (10)
P3H -P2Φ (Taylor-Hood) cubic (10) quadratic (6) quartic (15)

Table 6.1: Overview of the 2D finite element interpolation schemes used. Each scheme is
accompanied by the number of interpolation nodes, which is indicated within parentheses.
The pre- and postprocessing elements are named P2g,u, P3g,u and P4g,u. The order of this
listing corresponds to the order of the elements appearing in the table.

where kHΦ = kTΦH represents the element submatrix corresponding to the rot-free constraint
condition, whereas r ext

g depicts the nodal load vector with d ext
g obtained from the solution

of the preprocessing step (6.27). Generally, the strain energy function ψ is nonlinear in Hh

and ∇Hh, making it nonlinear in dH as well. Therefore, the solution is obtained using the
incremental Newton-Raphson load step solution procedure, which involves linearizing (6.31).
The linearized discrete problem can be expressed as follows:

Lin[δHΠh + δΦΠh] =
∑
T∈T

[
δdH
δdΦ

]T ([
kH kHΦ

kΦH 0

] [
∆dH
∆dΦ

]
+

[
rH(d̄H) + rext

g

0

])
= 0, (6.33)

In the above equations, ∆dH and ∆dΦ represent the increments of the nodal solution vectors,
while d̄H represents the nodal solution from the previous step. The element tangent submatrix
kH is given by:

kH =
∂rH(dH)

∂dH
=

ˆ
T

(
∂2ψ(dH)

∂d2
H

+ αRT
HRH

)
dV. (6.34)

The second term in the equation represents the discretization of the rot-rot stabilization
term. Finally, as usual, the integrals over the element are evaluated numerically using Gauss
quadrature of the reference element (cf. section 3.2).

6.2.3 Interpolation Matrices of the Main Step in 3D

In order to obtain a stable discrete set of equations in three dimensions, the Lagrange multi-
plier is discretized conforming to the H(Div)-Sobolev space (cf. section 6.1.5). Consequently,
the lowest order Raviart-Thomas interpolation method (cf. chapter 3) is employed for Φh.
Through the use of suitable interpolation operator matrices, approximations can be written
as

Φh = SΦdΦ, Div Φh = DΦdΦ,

δΦh = SΦδdΦ, Div δΦh = DΦδdΦ,
(6.35)

where SΦ and DΦ contain the Raviart-Thomas shape functions and their respective diver-
gences. Appendix B.2 provides information regarding the construction of SΦ and DΦ. Since
the second Lagrange multiplier µh appearing in (6.14) and (6.15) is sought in the space
L2

0(B; IR3), a piecewise constant approximation is used. Define the corresponding interpola-
tion matrices Nµ (cf appendix B.2) by

µh = Nµdµ and δµh = Nµδdµ. (6.36)

An outline of the Lagrange- and Raviart-Thomas interpolation schemes utilized to satisfy the
stability conditions of section 6.2.4 is presented in table 6.2. In the interpolation of Hh, the
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Variable name Interpolation scheme Interpolation type

Hh linear (vertex), cubic (midface) (8) Lagrange
Φh linear in face normal direction (midface) (4) Raviart-Thomas
µh constant (internal node) (1) Piecewise constant
uh/gh quadratic (10) Lagrange

Table 6.2: Overview of the 3D finite element interpolation schemes (P1FBH -RT0Φ-P0µ).
For each scheme, the number of interpolation nodes is given in parantheses. The pre- and
postprocessing elements are denoted by P2g,u.

matrix NH is composed of the linear Lagrange shape functions corresponding to the four
vertex nodes of the (linear) P1-tetrahedron and the cubic Lagrange shape functions corre-
sponding to the four midface nodes of the (cubic) P3-tetrahedral element. In section 6.2.4,
the latter are denoted as cubic face bubble functions (cf. also Gallistl [2017]). Analogously
to the discretization procedure discussed in the previous section, with (6.29), (6.35) and (6.36)
the following linearized system corresponding to the discretization of (6.13) through (6.15) is
obtained:

Lin[δHΠh + δΦΠh] =
∑
T∈T

δdHδdΦ

δdµ

T ( kH kHΦ 0
kΦH 0 kΦµ

0 kµΦ 0

∆dH
∆dΦ

∆dµ

+

rH(d̄H) + rext
g

0
0

) = 0.

(6.37)
The element tangent submatrices kΦµ = kTµΦ and kHΦ = kTΦH , which correspond to the
rot-constraint and the div-constraint, respectively, are given by

kΦµ = kTµΦ =

ˆ
T
DT

ΦNµ dV and (6.38)

kHΦ = kTΦH =

ˆ
T
RT
HSΦ dV. (6.39)

In the following, the discretization scheme (6.37) is denoted by P1FBH -RT0Φ-P0µ and in the
3D numerical tests of chapter 7 it is referred to as RotFEM approach.

6.2.4 Stability Analysis of the Finite Element Approximations

In this section the stability of the finite element approximation schemes discussed in the
previous sections is stated. Proofs of the propositions and lemmas of this section can be
found in Riesselmann et al. [2021].

Stability of the 2D Finite Element Approximations In the 2D scenario (d = 2) any
finite element combination that exhibits stability for the Stokes equations can be considered
an appropriate choice for discretizing (6.9) and (6.10). This assertion is validated by the
following proposition.

Proposition 4. Let c1 > 0, max{α, c1} > c > 0 and max{α, c1} < C < ∞. If Vh × Qh
is a stable finite element pair for the Stokes equations, then Vh × Qh is a stable pairing for
the discretization of (6.21) for d = 2. Therefore, there exists a unique solution (Hh,Φh) ∈
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Vh ×Qh of the discretization with

|||H −Hh|||+ ‖Φ−Φh‖L2(B)

. inf
(δHh,δΦh)∈Vh×Qh

|||H − δHh|||+ ‖Φ− δΦh‖L2(B)
(6.40)

where (H,Φ) ∈ V ×Q is the solution to problem (6.21) (Riesselmann et al. [2021]).

Denote the discrete spaces corresponding to the MINI element (P1BH -P1Φ) by

VhM ··= V ∩ P1(T ; IR2×2)⊕B3(T , IR2×2), (6.41)

QhM ··= Q∩ P1(T ; IR2). (6.42)

Here, B3(T , IR2×2) is the space of cubic bubble functions defined on the triangle (cf. Braess
[2007]). The discretization of (6.21) then seeks (Hh,Φh) ∈ VhM × QhM such that (6.21) is
solved for all test functions (δHh, δΦh) ∈ VhM × QhM. The inf-sup condition for the Stokes
equations Boffi et al. [2013], theorem 8.8.1 together with proposition 4 proves the stability
of this discretization and therefore, a unique solution exists and the error satisfies (6.40). The
Taylor-Hood finite element subspaces (cf. Braess [2007]) are

VhTH
··= V ∩ Pk + 1(T ; IR2×2) and QhTH

··= Q∩ Pk(T ; IR2) for k ≥ 1 (6.43)

and the discrete problem seeks (Hh,Φh) ∈ VhTH × QhTH such that (6.21) is solved for all
(δHh, δΦh) ∈ VhTH × QhTH. Again, the inf-sup condition for the Stokes equations Boffi
et al. [2013] together with proposition 4 proves that this defines a stable discretization. For
k = 1 and k = 2 respectively, the corresponding finite elements are referred to by P2H -P1Φ
and P3H -P2Φ in the following (see also table 6.1). Numerical tests verifying the postulated
stability and rates of convergence independent on the magnitude of the nonlocal contribution
for the 2D RotFEM formulation can be found in Riesselmann et al. [2021].

Stability of the 3D Finite Element Approximations As discussed in section 6.1.5,
for d = 3 the Lagrange multiplier Φ ∈ Q is required to be divergence-free. Thus, the
formulation from section 6.1.4 with an additional Lagrange multiplier enforcing the divergence-
free condition weakly is employed with the following discrete subspaces:

Vh ··= V ∩ P1(T ; IR3×3)⊕B3(F , IR3×3), (6.44)

Qh ··= Q̃ ∩RT0(T ; IR3×3) and (6.45)

Mh ··=M∩ P0(T ; IR3). (6.46)

Here, B3(F , IR3) denotes the space of cubic face bubble functions vanishing on the element
edges. Furthermore, RT0(T ; IR3) is the finite element space of Raviart and Thomas
[1977] introduced in section 3.1.2. The discretization of the modified problem (6.24) seeks
(Hh,Φh,µh) ∈ Vh×Qh×Mh such that (6.24) is solved for all test functions (δHh, δΦh, δµh) ∈
Vh ×Qh ×Mh. This linear problem corresponds to the P1FBH -RT0Φ-P0µ discretization of
section 6.2.3 and is referred to as RotFEM formulation in subsequent tests of chapter 7. The
subsequent proposition states the stability of this discretization method.

Proposition 5. Let c1 > 0, max{α, c1} > c > 0 and max{α, c1} < C < ∞. The dis-
cretization of (6.24) with the above choice of spaces has a unique solution (Hh,Φh,µh) ∈
Vh ×Qh ×Mh satisfying

|||H −Hh|||+ ‖Φ−Φh‖L2(B)

. inf
(δHh,δΦh)∈Vh×(Qh∩Q)

|||H − δHh|||+ ‖Φ− δΦh‖L2(B),
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where (H,Φ) ∈ V ×Q is the solution to (6.21) (Riesselmann et al. [2021]).

Corresponding numerical results for the 3D RotFEM formulation verifying the postulated
stablity and convergence are given in the next chapter 7, where also an assessment of the
performance of the present approach compared to the approaches of chapter 5 is given for
various benchmark problems.





Chapter 7

Numerical Studies Comparing the
Gradient Elasticity Formulations

This chapter presents numerical results and corresponding discussions for various relevant
benchmark problems aiming to verify and compare the stability, robustness and efficiency of
the formulations proposed in the preceding chapters 5 and 6. Therefore, firstly the nonliear
constitutive framework is introduced in section 7.1, followed by the numerical studies on var-
ious benchmark tests (section 7.2-7.4). Finally, an overview of the results and a concluding
discussion is given in section 7.5. For the numerical results the AceFEM/AceGen software
package was used. In all tests loads were applied with a linear increasing parametrization,
solutions were obtained with the Newton-Raphson solution procedure and the PARDISO linear
solver. Note, that for the evaluation of computing times in order to account for fluctuations
of computer operations multiple computations were done and the average computing time was
taken. Computations were performed on a local workstation.

7.1 Constitutive Framework

This section shortly presents the constitutive framework of gradient elasticity for the general
nonlinear case at finite deformations and finite strains. First, briefly some aspects of isotropy
and objectivity in the gradient elasticity context are discussed. Further, some relevant aspects
of the higher gradient kinematics are provided. Finally, the specific strain energy functions
that are used in the following numerical tests are presented. More details on the topic can
be found in Triantafyllidis and Aifantis [1986], Wriggers [2008], dell’Isola et al.
[2018], Münch and Neff [2018] and Bertram [2022].

A Note on Objectivity and Isotropy of the Strain Energy Function In the case
of non-local strain energies a straightforward application of the local isotropy condition
ψ(F ,∇F ) = ψ(FQ,∇(FQ)) and objectivity condition ψ(F ,∇F ) = ψ(QF ,∇(QF )) can
be considered too strict if with Q = Q(X) arbitrary differentiable orthogonal 2nd order ten-
sors are considered. This is due to the fact that with the matrix Q(X) not being constant
inhomogeneous rotations need to be accounted for in the aforementioned conditions, which

89
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contradicts the notion of rigid body motions 1 (Münch and Neff [2018]). Therefore,Münch
and Neff [2018] introduce for isotropy and objectivity conditions constant rotations Q = Q̄
and corresponding energies are called right global SO(3)-invariant (isotropic) and left global
SO(3)-invariant (objective) (While local SO(3)-invariance denotes the fulfillment of the be-
fore mentioned conditions when considering Q = Q(X)). As a result it can be distinguished
between two sets of strain energies:

III ··= {ψ = ψloc(C) + ψnloc(∇C)} (7.1)

II ··= {ψ = ψloc(C) + ψnloc(F T∇F ) : ψ /∈ III} (7.2)

of which III is both left- and right local and global SO(3)-invariant and II is left- and right
global SO(3)-invariant. In what follows, ψI ∈ II is referred to as type-I nonlocal energy
and ψII ∈ III is referred to as type-II nonlocal energy. Note, that the present notation is
in analogy to the small strain setting of Mindlin’s type I (ψ ··= ψ(ε,∇∇u)) and type II
(ψ ··= ψ(ε,∇ε)) models. In both cases the following first and second order stress tensors are
defined as

P ··= ∂Fψ = ∂∇uψ and G ··= ∂∇Fψ = ∂∇∇uψ (7.3)
S ··= ∂Eψ and B ··= ∂∇Eψ (7.4)

where P and S correspond to the first and second Piola Kirchhoff stress tensors, respectively
andG andB are their higher order counterparts. Here, it is worth noting that in the nonlinear
gradient elasticity framework both P and S have non-local contributions (cf. dell’Isola
et al. [2018]) Further reading on finite strain gradient elasticity models in the context of
invariance conditions can be found in Triantafyllidis and Aifantis [1986], dell’Isola
et al. [2018] and Bertram [2022].

Remarks on the Kinematics of the Higher Gradient Quantities The nonlocal parts
of the proposed mixed finite element formulations are either functions of ∇Hh(= ∇F h) or
∇Eh(= 1/2∇Ch). Therefore, in the following, the applicability of the formulations to either
type-I or type-II material models are discussed. While with the conversion formula

∇C = ∇(F T · F ) = (FaiFaj),k = Fai,kFaj + FaiFaj,k (7.5)

∇C can directly be expressed in terms of ∇F and F the reverse case is with F = F−T ·C,
F T = C · F−1 and

∇F = ∇(F−T ·C) = ((F−T )iaCaj),k = (F−T )ia,kCaj + (F−T )iaCaj,k (7.6)

not straightforward in the sense, that ∇F can not be expressed solely in terms of C and
∇C. Thus, for the formulations P2u-P1BE-P0Σ and P2u-P1BE-P0Σ with symmetric mixed
solution variables (cf. section 5.3), if strain energies of type-I are to be used, the nonlocal parts
of the strain energy can not exclusively be expressed in terms of the mixed variable Eh and
∇Eh and has with ∇F−T (∇uh) a second gradient contribution. In consequence, the standard
Lagrange interpolations of uh are in this special case non-conforming and corresponding
numerical results can not be expected to converge (cf. results of figure 7.3). This makes
the P2u-P1BE-P0Σ and P2u-P1BE-P0Σ formulations rather suitable for type-II energies
(such as the common strain gradient elasticity model). Since reversely with (7.5) ∇Ch can

1In the local case, the discussion about differentiability of Q does not occur since the terms ∇(QF ) and
∇(FQ) are not present.
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solely be expressed in terms of Hh and ∇Hh the formulations with full gradients as mixed
solution variables have no restriction with respect to applicability to the type of strain energy
function.
Analogously to the kinematic relation of the first order stress tensor

P = F · S (7.7)

for the higher order stress tensors the following kinematic relation can be postulated:

G = F ·B (7.8)

The relation can be verified by application of the chain rule

G ··=
∂ψ

∂∇F
=

∂ψ

∂∇E︸ ︷︷ ︸
··=B

...
∂∇E
∂∇F

= B
...
∂F T · ∇F
∂∇F

= B
... (F T ·

6
I) = F ·B, (7.9)

where
6
I denotes the sixth order identity tensor. Here, it is worth pointing out that, with

∇E = 1/2∇C the relation (7.5) simplifies to ∇E = F T · ∇F only due to the symmetry
Bijk = Bjik. In the general case, when ∇E is not paired with a tensor exhibiting symmetry
of first and second index (7.5) can not be further simplified.

Models Used in the Following Tests The template finite strain gradient elastic energy
functions (based on Triantafyllidis and Aifantis [1986] and Münch and Neff [2018])
used throughout the following tests read

ψI = ψloc(C) +
µl2

2
(F T · ∇F ) • (F T · ∇F ) (7.10)

ψII = ψloc(C) +
µl2

8
∇C • ∇C = ψloc(C) +

µl2

2
∇E • ∇E (7.11)

with the kinematic relation ∇C = 2∇E. In what follows, for the local part of the strain
energy function the Neo-Hooke energy (cf. Wriggers [2008])

ψloc(C) ··=
µ

2
(I1 − 3) +

λ

4
(J2 − 1)− λ

2
ln J − µ ln J (7.12)

is considered with I1 = tr (F T · F ), J = detF and the Lamé parameters λ = Eν/((1+ν)(1−
2ν)) and µ = E/(2(1 + ν)). Throughout the tests of this section the numerical values of the
local elasticity parameter are set to E = 1000 MPa and ν = 0.3.

7.2 Unit Cube Benchmark Problem

In order to assess the convergence behavior of the proposed formulations for this first boundary
value problem the unit cube geometry B = [0, 1] × [0, 1] × [0, 1] mm3 (cf. figure 7.1 (a)) is
considered. The domain has the pure Dirichlet condition u = ∇u · n = 0 on the whole
boundary ∂B. A reference body force f is computed analytically by making use of the
balance of linear momentum of the gradient elasticity problem

−DivP + Div DivG = f . (7.13)
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Figure 7.1: (a) Example mesh including reference coordinate system and dimension of the
unit cube problem. (b) Visualization of the Z-component of the constructed reference solution
evaluated at Z = 0.5 mm. (c) Z-component of the right-hand side of the balance of linear
momentum (7.13) computed analytically from the reference solution uref

Z . Here, the strain
energy (7.11) and a nonlocal parameter value l = 0.1 mm was used to compute f .

Therefore, a constructed smooth reference solution

uref = [ 0 , 0 , β (X(1−X)Y (1− Y )Z(1− Z))2 ]T , (7.14)

is inserted in terms of corresponding derivatives appearing in P and G into (7.13). Here,
β = 500 mm−11 is a scaling factor in order to arrive at larger displacements activating
nonlinearities. Visualizations of the reference displacement and corresponding body force
are given in figure 7.1. Due to the pure Dirichlet boundary the Neumann surface equations
corresponding to problem (4.4) (cf. explicit equations (A.3) in appendix A.1) are not present.
Therefore, uref is also the analytical solution to the global problem (4.4) where f is the
external load. Thus, applying the volume load values of f as external load at the Gauss points
of the corresponding finite element problem the FE-solution uh of a consistent formulation is
expected to in the limit of infinite mesh resolution coincide with the reference solution uref .
Hence, by comparing the FE solutions uh,Hh (and Eh) to the reference solution uref the
yields exact L2-error norms

||uref − uh||L2 , ||∇uref −Hh||L2 and ||E(∇uref)−Eh||L2 , (7.15)

where volume integrals of (7.15) are computed by imposing the values of the reference dis-
placements and corresponding derivatives at the Gauss points. For the following studies, the
structured meshes of the unit cube geometry (cf. figure 7.1) are uniformly refined. In addition
to the error values (7.15) the corresponding rates of convergence are given with the relation
(•) ∝ hr, where h ··= maxT∈T (diam(T )) is an element size measure and (•) denotes the error
measure. The convergence rates r are computed with the formula (4.18).

Results of the Convergence Study The first convergence study of figure 7.2 shows the
results of all proposed formulations for a study with a nonlocal parameter value of l = 0.1 mm
and the type-II nonlocal model. The rot-rot parameters used for this and following tests are
given in table 7.1. In (a) the L2 errors of displacement are shown whereas in (b) the L2 errors
of the mixed variables (that is Hh for the formulations incorporating full gradients and Eh

for the formulations P2u-P2E-P1Σ and P2u-P1BE-P0Σ) are presented. It becomes clear that
all formulations converge. Moreover, since the solution is a high order polynomial, for the
present problem the formulations P2u-P2H -P1Λ and P2u-P2E-P1Σ that use quadratic instead
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Figure 7.2: Unit Cube convergence results of the proposed formulations for a nonlocal
parameter value of l = 0.1 mm and the type-II nonlocal model. In (a) the L2 errors of
displacement are shown whereas in (b) the L2 errors of the mixed variables (that is Hh for
the formulations incorporating full gradients and Eh for the formulations P2u-P2E-P1Σ and
P2u-P1BE-P0Σ) are shown. It can be observed that all formulations converge. Due to the
smoothness of the solution in the present problem, the results of the formulations incorporating
quadratic instead of linear interpolation of the mixed variable are slightly superior.

of linear interpolation functions yield superior rates of convergence. Yet, in subsequent studies
it will be shown that these elements require significantly larger computing times. Moreover, for
problems in which the solution is not smooth, the superior convergence behavior vanishes (cf.
results of section 7.4). The subsequent plots of figure 7.3 show results of an analogous study,
but with a problem now based on a type-I strain energy function instead of a type-II strain
energy function. While for the elements incorporating full gradients as mixed solution variable
the convergence results remain qualitatively unchanged, it becomes visible that the results
of the P2u-P2E-P1Σ and P2u-P1BE-P0Σ fail to converge towards the reference solution.
As discussed in section 7.1 for the type-I strain energy (7.10) since ∇F h can not solely be
expressed in terms of Eh and ∇Eh (cf. section 7.1) the latter formulations incorporate higher
order displacement gradients ∇F−T (∇uh) and are thus not suitable for these models. Note,
however, that the type-I energy model constitutes rather a special case and type-II models
(including the linear strain gradient elasticity model of Mindlin [1964]) can be considered
as more common. Nevertheless, in what follows, whenever the numerical test incorporates
the type-I strain energy function (7.10) the not suitable elements P2u-P2E-P1Σ and P2u-
P1BE-P0Σ will not be considered. The plots of figure 7.4 visualize the convergence of the
L2-norm of the rotation ||RotHh||L2 . Shown are the results of all formulations incorporating
the full gradient Hh as mixed solution variable. Here, figure 7.4(a) corresponds to the study
of figure 7.3 and figure 7.4(b) corresponds to the study of figure 7.2 It becomes visible that
for all formulations and both types of nonlocal model the rotation of the mixed variable Hh

converges towards zero, which is in correspondence to the characteristic of gradient fields
Hh ≈ ∇uref ∈ H1(Rot0;B; IR3×3) (cf. identity (2.24)). The superior convergence behavior
of the P2u-P2H -P1Λ-element is in line with the results of the previous figures and can be
attributed to the high smoothness of the solution of the present problem.

Results of the Parameter Study The parameter study of figures 7.5 and 7.6 aim to
investigate the influence of the numerical value of the nonlocal parameter l for type-I and type-
II problems, respectively. The results of figure 7.5 (a) and (c) present the convergence of the
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Figure 7.3: Unit Cube convergence results of the proposed formulations for the type-I
nonlocal model. In (a) the L2 errors of displacement are shown whereas in (b) the L2 errors
of the mixed variables (that is Hh for the formulations incorporating full gradients and Eh

for the formulations P2u-P2E-P1Σ and P2u-P1BE-P0Σ) are shown. It becomes visible that
while all elements incorporating full gradients as mixed solution variable the formulations
P2u-P2E-P1Σ and P2u-P1BE-P0Σ are not suitable for type-I models since ∇F h can not
solely be expressed in terms of Eh and ∇Eh (cf. section 7.1).
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Figure 7.4: Convergence of the L2-norm ||RotHh||L2 of all the formulations incorporating
the mixed solution variable Hh. (a): results corresponding to the study of figure 7.3. (b):
results corresponding to the study of figure 7.2. It becomes clear, that for all formulations
for both types of nonlocal model the rotation of Hh converges towards zero, marking the
characteristic of gradient fields (cf. identity (2.24)).
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Figure 7.5: Convergence plots comparing the results of the proposed formulations on the
unit cube type-I problem for varying values of the nonlocal parameter l. (a) and (c) show
the convergence and performance plots of the displacement error, respectively, at a relatively
large value of l = 1 mm. (b) and (d) show the convergence and performance plots of the
displacement error, respectively, at a smaller value of l = 0.001 mm. It becomes visible that
for large values of l the performance of the RotFEM formulation is significantly higher than
the performance of the straightforward approach (P2u-P2H -P0Λ and P2u-P2H -P1Λ). Yet,
for the smaller value of l = 0.001 mm the reverse behavior can be observed. The performance
of the CRu-P1BH -P0Λ appears not to be affected by the numerical value of l.



96 CHAPTER 7. NUMERICAL STUDIES FOR GRADIENT ELASTICITY

displacement error over number of degrees of freedom and total computing time, respectively
at a relatively large value of l = 1 mm, whereas figure (b) and (d) show the convergence over
number of degrees of freedom and total computing time, respectively at a smaller value of
l = 0.001 mm. It becomes visible that for large values of l the performance of the RotFEM
formulation is significantly higher than the performance of the P2u-P2H -P0Λ and P2u-P2H -
P1Λ formulations. Meanwhile, for the smaller value of l = 0.001 mm the reverse behavior
can be observed, where the convergence behavior of the latter is significantly higher than the
convergence of the RotFEM element. Here, the performance can be improved by increasing
the value of α from α = 1 (green) to α = 10 (yellow). Interestingly, for the present study
the convergence behavior of the CRu-P1BH -P0Λ appears not to be affected by the numerical
value of l. Moreover, when comparing in the plots (b) and (c) the results of the formulations
CRu-P1BH -P0Λ and P2u-P2H -P1Λ it can be observed that although the CRu-P1BH -P0Λ
requires one refinement step more than the P2u-P2H -P1Λ element to arrive at similar error
values, due to the reduced size of the first the performance behavior with respect to computing
times is similar. Yet, for the results corresponding to the smaller value l = 0.001 mm for
the CRu-P1BH -P0Λ element a rot-rot parameter α = 1 is necessary to maintain numerical
robustness, whereas for larger values (analogous to the RotFEM formulation) α = 0 can be
zero (cf. table 7.1). The subsequent study of figure 7.6 shows analogous plots to figure 7.5 but
now with a type-II elastic strain energy making on the one hand side the use of the symmetric
solution field formulations P2u-P1BE-P0Σ and P2u-P1BE-P0Σ feasible. On the other side,
all formulations incorporating the full gradient Hh as solution variable require the rot-rot
term to be switched on (cf. (5.7), see also table 7.1 for the values of α). For the case of a large
nonlocal contribution (l = 1 mm, figure 7.6(a) and (c)) for the P2u-P2E-P1Σ formulation
issues with respect to numerical robustness are observed as the iterative solution procedure
fails to produce results beyond mesh refinement step 2. The same behavior is observed for
the P2u-P1BE-P0Σ formulation, where the same issue occurs beyond mesh refinement step 2.
For large l the results of the CRu-P1BH -P0Λ show the most favorable convergence behavior.
Meanwhile, from the results of figure 7.6 (b) and (d) it becomes obvious that at lower values
of l = 0.001 mm clearly the performance of the P2u-P1BE-P0Σ is most favorable.

7.3 Cook’s Problem

The following study aims to investigate the convergence behavior of the presented formulations
in a bending dominated problem with mixed boundary conditions. Therefore, the 3D modified
Cook’s problem (cf. figure 7.7(a)) is considered where the boundary is taken to be of first
and second order Dirichlet type ΓD = ΓH on the left side (X = 0 mm) with u = ∇u · n = 0
and to be of first and second order (natural) Neumann type everywhere else. On the right
side (X = 48 mm) the geometry is loaded with the surface traction t = [ 0 , 0 , p0 ]T with
p0 = 100 MPa. In the finite element simulations the surface traction is imposed via surface
elements corresponding to the discretization of the surface integral

´
ΓN
u • t dA (cf. section

3.2) and on the Dirichlet boundary all components of uh|ΓD
= 0 and Hh|ΓD∩ΓH

= 0 are
set to zero. Another relevant feature of Cook’s problem is that it is known of non-gradient
enhanced formulations to produce solutions that possess a stress localization at the corner
point denoted B in figure 7.7(a). Thus, it is a suitable benchmark problem to investigate
the ability of the gradient elasticity formulations to avoid excessive stress concentrations. In
figure 7.7(b)-(d) contour plots of the volume averaged strain energy

〈ψ〉T =

´
T ψ dV´
T dV

(7.16)



7.3. COOK’S PROBLEM 97

●

●

●

●

■

■

■

■

◆

◆

◆

▲

▲

▲

▼

▼

▼

○ ○

102 103 104 105

10-1

10-2

10-3

ndof


u

r
e
f
-
u

h


L
2

l = 1
ψ ∈ III

7

7
● CRu-P1BH-P0Λ

■ P2u-P1BH-P0Λ

◆ P2u-P2H-P1Λ

▲ RotFEM

▼ P2u-P1BE-P0Σ

○ P2u-P2E-P1Σ

(a)

●

●

●

●

■

■

■

■

◆

◆

◆

▲

▲

▲
▼

▼

▼

▼

○

○

○

102 103 104 105

10-2

10-3

10-4

ndof


u
r
e
f
-
u

h


L
2

l = 0.001
ψ ∈ III

● CRu-P1BH-P0Λ

■ P2u-P1BH-P0Λ

◆ P2u-P2H-P1Λ

▲ RotFEM

▼ P2u-P1BE-P0Σ

○ P2u-P2E-P1Σ

(b)

●

●

●

●

■

■

■

■

◆

◆

◆

▲

▲

▲

▼

▼

▼

○ ○

0.1 1 10 100

10-1

10-2

10-3

computing time (s)


u

re
f
-
u

h


L
2

l = 1
ψ ∈ III

7

7

(c)

●

●

●

●

■

■

■

■

◆

◆

◆

▲

▲

▲
▼

▼

▼

▼

○

○

○

0.1 1 10 100

10-2

10-3

10-4

computing time (s)


u

re
f
-
u

h


L
2

l = 0.001
ψ ∈ III

(d)

Figure 7.6: Convergence plots comparing the results of the proposed formulations on the
unit cube type-II problem for varying values of the nonlocal parameter l. (a) and (c) show
the convergence and performance plots of the displacement error, respectively, at a relatively
large value of l = 1 mm. (b) and (d) show the convergence and performance plots of the
displacement error, respectively, at a smaller value of l = 0.001 mm. When the nonlocal
contribution becomes dominant at large values of l = 1 mm ((a) and (c)) the P2u-P2E-
P1Σ formulation faces issues with respect to numerical robustness as the iterative solution
procedure fails to produce results beyond mesh refinement step 2 (marked with red cross).
Meanwhile, at l = 1 mm ((a) and (b)) the results of the CRu-P1BH -P0Λ show the most
favorable convergence behavior. On the other hand, from the results of (b) and (d) the
superior convergence behavior of the symmetric solution field formulation P2u-P1BE-P0Σ
stands out.
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Figure 7.7: 3D Cook’s problem: (a) geometry description. Non-smoothed 〈ψ〉T (7.16) contour
plots of the (d) local displacement element P2u and of the RotFEM and CRu-P1BH -P0Λ
element (b) and (c), respectively for l = 0.0005L. Here at the corner point B the stress
concentration of the local formulation compared to the gradient elasticity formulation becomes
visible.

visualize the localized strain energy response at point B for the local P2u-element (b) firstly
and secondly the non-localized response of the gradient elasticity formulations (c)-(d). More-
over, the ability to model size effects due to the additional stiffness introduced by the nonlcoal
parameter l can be investigated. The numerical results of corresponding studies are presented
in figure 7.8. Here, firstly in figure 7.8(a) the ability to model size effects is shown as for
various values of the nonlocal parameter l the displacements uZ at point A (cf. description in
figure 7.7(a)) yield results that dependent on the value of l. The results are compared to the
results of a purely local P2u standard displacement element. Here, it becomes visible that the
results of all proposed formulations coincide. Moreover, for l = 0 the results of the proposed
formulations coincide with the results of the local reference P2u element. Note, that since
the displacement degrees of freedom of the CRu-P1BH -P0Λ formulation are located at the
midface nodes and not on the vertex nodes, in order to get results of the vertex-node corner
point A the same post-processing equation (6.28) as used for the RotFEM formulation is
employed to compute vertex displacement values from Hh. In (b) convergence of the volume
averaged norm

〈Hh〉T ··=
´
T H

h •Hh dV´
T dV

(7.17)

of the displacement gradient of the element adjacent to point B (cf. figure 7.7(a)) is shown
for a nonlocal parameter l = 0.05L (labeled in (a)). On the one hand side, for the local P2u
element, the tendency to produce increasing values of (7.17) as the mesh gets finer becomes
visible. This is in line with the appearance of stress localization at this point (cf. figure 7.7(b)).
Meanwhile, it becomes clear that the values of the gradient elasticity formulations remain
bounded. Moreover, as the mesh gets finer the values even decrease, which can be attributed
to the higher order Dirichlet boundary inducing a surface layer of zero displacements and
displacement gradients (see e.g. Rezaei et al. [2022]). As the element diameter decreases
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Figure 7.8: Results of the proposed formulations on the 3D modified Cook’s problem. (a)
shows the ability to model size effects as displacements uZ at point A (cf. description in figure
7.7(a)) depend on the value of the length scale parameter l. Here it becomes visible that the
results of all proposed formulations coincide. Moreover, for l = 0 the results of the proposed
formulations coincide with the results of the reference element. In (b) convergence of the
volume averaged norm (7.17) of the element adjacent to point B (cf. figure 7.7(a)) is shown
for a nonlocal parameter l = 0.05L (labeled in (a)). On the one hand side, the tendency of the
local P2u element to produce increasing values of (7.17) as the mesh gets finer becomes visible.
On the other side, it becomes clear that the values of the gradient elasticity formulations
remain bounded and even decrease due to the non-locality of the surface layer induced by
the higher order Dirichlet boundary condition. (c)-(e) compare the computing times of the
proposed formulations for the various refinement steps marked in (b). It becomes visible,
that the condensed elements are significantly cheaper than the non-condensed elements and
computing times of the first are rather in the order of magnitude of the purely local P2u
element.
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Figure 7.9: (a) Geometry description of the plate with hole benchmark problem. The full
domain is modeled. (b) Example mesh.

the volume portion of the element that lies within the surface layer induced by the higher
order Dirichlet condition becomes larger leading to results converging towards zero. Finally,
the plots (c)-(e) compare the computing times of the proposed formulations for the various
refinement steps marked in (b). It becomes visible, that the computing times of the condensed
elements P2u-P1BH -P0Λ and CRu-P1BH -P0Λ are significantly lower than those of the non-
condensed RotFEM and especially the P2u-P2H -P1Λ element. This tendency becomes even
more prevalent as the problem gets larger. Moreover, the order of magnitude of the computing
times of the condensed elements the same as the order of magnitude of the purely local
elasticity element.

7.4 Plate With Hole

The goal of the third benchmark problem of this chapter is to test the proposed formulations
on a geometry that is non-simply connected (that is non-contractible due to the hole in the
middle) and has non-connected Dirichlet boundary conditions. Therefore, the entire domain
of the plate with hole geometry (cf. figure 7.9(a)) is considered. A corresponding example
mesh is shown in figure 7.9(b). The geometry is fixed in Y -direction on the bottom (Y =
−100 mm) and a large displacement load u?Y = 250 mm is applied at the top (Y = 100 mm).
At the top, the geometry is also fixed in X- and Z-direction. In figure 7.10 deformed
contour plots of the volume averaged strain energy (7.16) for the proposed formulations of
Hu-Washizu type are shown. It becomes clear that all formulations yield the same strain
energy distribution. Note, that without further modifications, the RotFEM formulation is not
applicable to the plate with hole boundary value problem. Since the displacements are not part
of the main step (6.37) of the RotFEM formulation, the information of the constant non-zero
prescribed displacement value u?Y does not directly enter the problem. Meanwhile, imposing
the prescribed displacement indirectly via the displacement equations (6.27) and (6.28) is not
possible without coupling the equation to the main step. Yet, the investigation of a possible
remedy of imposing to the main step additional integral expressions connecting the Dirichlet
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Figure 7.10: Contour plots of the strain energy 〈ψ〉T for the (a) P2u-P2E-P1Σ, (b) P2u-
P1BE-P0Σ, (c) P2u-P2H -P1Λ (d) CRu-P1BH -P0Λ formulations

boundary and inducing the missing information about the non-zero displacement values is
left for future research. In figure 7.11 convergence results of the Hu-Wahizu formulations on
the plate with hole problem are shown. Here, in (a) the convergence of the displacements
uY at point A (cf. description in figure 7.9(a)) are presented. It can be observed that
the condensed formulations P2u-P1BH -P0Λ, P2u-P1BE-P0Σ and CRu-P1BH -P0Λ converge
towards the same solution. Meanwhile, the results of the non-condensed elements P2u-P2H -
P1Λ and P2u-P2E-P1Σ could not entirely reach an agreement with the results of the condensed
formulations within the considered mesh refinements. Still taking into account the relatively
large magnitude of displacement the remaining deviation is with less than 239.80/239.55 ≈
0.08% relatively small. Furthermore, corresponding rates of change (%) from the second to
the third step relative to the converged value are shown in figure 7.11(c), where similar rates
of change for all formulations become visible. Similar to the results of the Cook’s problem of
the previous section this showcases that the increased polynomial order for the interpolation
of Hh of the non-condensed formulations in the present problem does not improve the rates
of convergence (other than in the unit cube example, where due to the smoothness of the
solution the non-condensed formulations showed in some cases superior convergence behavior).
Meanwhile, the convergence of the L2-norm of the displacement gradients is presented in
figure 7.9(b). Here, since the formulations P2u-P2E-P1Σ and P2u-P1BE-P0Σ incorporate
Eh instead of Hh as mixed variable the ||Hh||L2-norm is evaluated in terms of the gradient
of the displacement solution ∇uh. From the curves in figure 7.9(b) it becomes visible that
the results converge towards the same value. The corresponding computing times of the third
refinement step are visualized in figure (d) showing an increase of computing efficiency of the
condensed elements by more than an order of magnitude.

7.5 Summary

In this chapter, an overview of the numerical results of the proposed formulations evaluated on
various benchmark tests have presented. An overview of the values of the rot-rot parameters
imposed via Πrot (cf. (5.7)) that are used throughout the tests of this chapter is given
in table 7.1. The elements P2u-P1BE-P0Σ and P2u-P2E-P1Σ do not require the rot-rot
term but are, however restricted to type-II problems. Yet, the type-II models include the
rather common linear strain gradient elasticity model of Mindlin [1964]. Meanwhile, the
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Figure 7.11: Convergence results of the plate with hole benchmark test. (a) shows the
convergence of the displacements uY at point A (cf. description in figure 7.9(a)). It becomes
visible that the condensed formulations converge towards the same solution whereas the results
of the non-condensed elements could not entirely reach an agreement with the other results
within the considered mesh refinements. (c) shows the corresponding rates of change (%)
from the second to the third step relative to the converged value. Similar rates of change
become visible, showcasing that the increased polynomial order for the interpolation of Hh

of the non-condensed formulations in the present problem does not improve the rates of
convergence. (b) shows the convergence of the ||Hh||L2-norm of the displacement gradient
values. The corresponding computing times of the third refinement step are visualized in
figure (d) showing a significantly superior efficiency of the condensed elements.
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Problem FE-Formulation

Benchmark Figure ψ ∈ l (mm) 1 2 3 4 5 6

Unit Cube 7.2,7.4(b) III 0.1 10 1 1 1 3 3

7.3,7.4(a) II 0.1 10 0 0 0 - -
7.5(a),(c) II 1 0 0 0 0 - -
7.5(b),(d) II 0.001 1,10 1 0 0 - -
7.6(a),(c) III 1 100 1 1 10 E E
7.6(b),(d) III 0.001 100 1 1 1 3 3

Cook’s Problem 7.8(a) II 0 100 L 1 L 1 1 - -
7.8(a)-(d) II ≥ 0.05L 0 0 0 0 - -

Plate with Hole 7.11 III 0.1L - 10 L 10 L 10 L 3 3

Table 7.1: Overview of values of rot-rot Parameter α (cf. (5.7)) used throughout the numer-
ical tests of this section. The formulations are indexed as follows: 1: RotFEM 2: P2u-P1BH -
P0Λ, 3: P2u-P2H -P1Λ, 4: CRu-P1BH -P0Λ 5: P2u-P1BE-P0Σ 6: P2u-P2E-P1Σ. Here,
3indicates a formulation without rot-rot term and no issues, E indicates issues with numerical
robustness and “-” indicates that results are not relevant and/or not computed because the
formulation is not suitable for the problem (cf. section 7.1).

formulations incorporating the full gradient Hh as solution variable are applicable to both
types of problems, require however in the case of type-II models the rot-rot stabilization.
Further, the RotFEM formulation and the CRu-P1BH -P0Λ require rot-rot stabilization in the
case of type-II energies and small values of l. The elements of the straightforward approach
do not require the rot-rot stabilization in the case of type-I energies, yet lose performance
for larger values of l. At this point it shall be mentioned again that the rot-rot term Πrot (cf.
(5.7)) ensures rank sufficiency of the tangent matrix kH , yet it does not change the converged
solutions of any of the formulations, since in all approaches in the limit H is rot-free (cf.
(5.7), the stability discussion of section 5.1.1 see also results of figure 7.4). In order to give an
overview of the results with respect to performance, that is rates of convergence, numerical
robustness and computing efficiency in table 7.2 the main observations are summarized and
briefly discussed in the following. Generally, it can be observed that the condensed elements
exhibit significantly lower computing times that are even in the same order of magnitude as

Element Usability Performance

II III Non-con. ΓD Large l Small l Cook’s Probl. Plate w. Hole

P2u-P1BE-P0Σ 7 3 3 − ++ n/a ++
P2u-P2E-P1Σ 7 3 3 E + n/a −
P2u-P1BH -P0Λ 3 3 3 −− ++ ++ ++
P2u-P2H -P1Λ 3 3 3 − + −− −−
CRu-P1BH -P0Λ 3 3 3 ++ +/− ++ ++
RotFEM (3D) 3 3 7 ++ −− − n/a

Table 7.2: Overview of the main observations of the numerical tests comparing the proposed
formulations. Here, 3denotes that the formulation is applicable to the corresponding problem
and 7that it is not. The E symbol denotes that issues with respect to numerical robustness
were observed. The symbols −−, −, + and ++ rate the observed relative performance from
least to most favorable.
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the simple local P2u displacement element at in most cases similar convergence rates as the
non-condensed elements. Furthermore, from the results it can be concluded that the P2u-
P1BE-P0Σ- formulation can be considered most favorable for strain gradient elasticity type
problems (ψ ∈ III). Meanwhile, the CRu-P1BH -P0Λ element can be considered the most
versatile and meanwhile efficient formulation that is applicable to both type-I and type-II
problems and any range of numerical value of l. The RotFEM formulation (applicable to
geometries with connected ΓD) has superior convergence behavior for large values of l and
type-I energies, whereas the P2u-P1BH -P0Λ performs well for small values of l and type-I
energies.
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Finite Element Formulations for
Gradient Damage
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Chapter 8

Introduction to Gradient Damage
Formulations and Some Challenges

The present chapter starts by introducing the framework of damage modeling by means of
a local formulation. To motivate for the gradient damage approach, the challenges of mesh
dependency and lack of numerical robustness are shown in corresponding numerical examples.
In the following the general gradient damage formulation is presented followed by two example
corresponding finite element approaches and some remaining numerical challenges they are
facing. Presented are a penalty approach used as reference in Riesselmann and Balzani
[2023] and the finite strain neighbored element approach of Junker et al. [2022] (see also the
related contribution Riesselmann et al. [2021a]). In corresponding numerical studies the
ability to produce mesh independent results and some challenges of the penalty approach (i.e.
dependency of the solution and numerical robustness on the value of the penalty parameter)
are presented motivating for the mixed approach of the next chapter 9.

8.1 Local Damage Formulation

This section presents an example local damage formulation and visualizes in a corresponding
numerical study the challenge of mesh sensitivity and lack of numerical robustness discussed
in the introduction of chapter 1. For the following, the finite strain kinematic framework
introduced in section 2.2 is considered. Based on the idea of modeling the stiffness reduction
due to deterioration of the microstructure, the strain energy function can be written as

ψ(F , α) ··= (1−D(α))ψ0(F ). (8.1)

Here, ψ0 denotes the fictitiously undamaged hyperelastic strain energy function and the dam-
age function D : IR+ → [0, 1) models the material softening, where the limit D → 1 corre-
sponds to the complete deterioration and loss of stiffness, whereas D = 0 corresponds to the
completely undamaged state. In what follows, the simple damage function

D(α) ··= 1− e−α (8.2)

is considered, which models the damage propagation in terms of an internal damage variable
α. In order to maintain thermodynamic consistency, the internal variable is constrained to
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change value only in positive direction (α̇ ≥ 0). Under the assumption of adiabatic, isothermal
and quasi static conditions the local damage problem can be written as follows. Find u and
α such that

−DivP = f on B (8.3)
P · n = t on ΓN (8.4)

u = u? on ΓD (8.5)
α̇ ≥ 0 in B (8.6)

holds at any given time in the considered time domain t ∈ [t0, tend] and for any given rate
u̇, α̇. Here, P ··= ∂Fψ denotes the first Piola Kirchhoff stress tensor. Throughout this
contribution, a discontinuous damage model (cf. Miehe [1995]) is considered. Therefore, a
model for the evolution of the damage variable can be given via the Karush-Kuhn Tucker
inequality conditions (further reading on constrained optimization in Bertsekas [1982])

Φ α̇ = 0 α̇ ≥ 0, and Φ ≤ 0 with Φ(F , α) ··= ϕ(F , α)− Y. (8.7)

Here, Φ can be denoted as dissipation surface, level set- or threshold function. Depending
on the reference, ϕ(F , α) is denoted as equivalent stress, energy release rate or driving force,
which can be defined by ϕ(F , α) = −∂αψ and Y denotes a threshold value. For references,
see Menzel and Steinmann [2001], see also Liebe et al. [2001]. The Clausius Duhem
inequality corresponding to problem (8.3)-(8.6) reads

P • Ḟ − ψ̇ = γ̇ ≥ 0 (8.8)

where γ ··= γ(α, α̇) is a function modeling the volume specific dissipated energy due to the
damage evolution. It becomes clear that with (8.6) thermodynamic consistency is maintained
if γ is a continuously monotonic increasing function of its arguments. From (8.3)-(8.8) the
global energy balance

ˆ
B
ψ̇ + γ̇ dV =

ˆ
B
f • u̇ dV +

ˆ
ΓN

t • u̇ dA (8.9)

can be obtained1. Throughout this contribution, for the dissipation a rate independent model
with the simple quadratic function

γ ··=
d1

2
α2 + d0α (8.11)

(cf. Riesselmann and Balzani [2023]) is considered with the damage modeling parameters
d0 and d1. By the relation Y = ∂αγ the threshold value Y appearing in the update function
(8.7) can be modeled in terms of the derivative of the dissipation function γ (cf. analogous
ideas eg. in Junker and Balzani [2021] or Junker et al. [2022]). Note, that choosing d1

equal to zero corresponds to the model used in Dimitrijevic and Hackl [2008]. Using both
parameters d0 and d1 leads to a model similar to the model used in Waffenschmidt et al.

1Using the integration by parts formula
ˆ
∂B

(P · n) • u̇ dA =

ˆ
B

(
P • ∇u̇ + DivP • u̇

)
dV (8.10)

and inserting (8.3), (8.4) and (8.5) (with Ḟ = ∇u̇)) yields the relation
´
B P •Ḟ dV =

´
B f •u̇ dV +

´
ΓN

t •u̇ dA,

which is inserted into the domain integral of equation (8.8).
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[2013]. Moreover, choosing d1 = 0 leads to a constant threshold value ∂αγ =·· Y = d0 used in
the formulation of Junker et al. [2019] and Junker et al. [2022] (see also the following
section 8.3.2). Finally, choosing either d0 or d1 equal to zero corresponds to the cases AT1 or
AT2 used in Gerasimov and De Lorenzis [2019]. Note that in the case of both nonzero
d1 and d0 the resulting release rate Y = ∂αγ = d0 + d1α takes the form described in Menzel
and Steinmann [2001], where α concurrently serves as hardening variable. In what follows,
for the virtually undamaged hyperelastic energy density ψ0 the Neo-Hooke function (7.12) is
used.

8.1.1 Mesh Dependency and Lack of Robustness

The following study aims to visualize the numerical problems that finite element formulations
based on the previously introduced problem face. Therefore, the plate with hole geometry
with description and model parameters given in figure 8.1 is considered. Note, that due to
the symmetry only the upper right quarter of the total structure needs to be considered.
Therefore, the geometry is fixed in Y -direction at the lower surface (Y = 0 mm) and fixed in
X-direction at the left surface X = 0 mm. A prescribed displacement u? = (0, u?Y , 0)T mm is
applied at the upper surface (Y = 100 mm). The following numerical results of figure 8.2 are
an extension of the study given in Riesselmann and Balzani [2023] providing results of
local finite element computations corresponding to the solution of problem (8.3)-(8.6). In the
present study, the maximal value of the prescribed displacement is u?Y = 3.5 mm is applied
with a linear increasing load function and nsteps = 500 load steps. Here, in the plots of figure
8.2(a) and (b) force displacement curves for various mesh hexahedral (a) and tetrahedral (b)
mesh refinements are shown. Therefore, as in all subsequent force displacement plots of the
plate with hole problem, the value of the reaction forces F in Y direction (which is recovered
from the upper surface Y = L) is plotted over the value of the prescribed displacement u?Y .
From results which in both plots vary significantly and do not converge for the different mesh
refinement stages the problem of mesh dependency becomes clear. Moreover, the lack of
numerical robustness of local formulations manifests in the present study through the failure
of the iterative solution to produce results beyond the chosen prescribed displacement of
3.5 mm. Due to the localization of the damage accumulation, the finer meshes encounter this
issue at even earlier load stages that is in both plots a prescribed load of ≈ 2.4 mm (marked
with a red cross). Figure 8.2(a)-(c) presents contour plots of the damage field D corresponding
to the different meshes at the final load stage marked with bullets in figure 8.2(d) and (e).

8.2 The Gradient Damage Problem

The present section introduces the gradient damage problem and corresponding potential
functionals, on which the finite element formulations of this contribution (discussed in the
following section 8.3 and in the following chapter 9) are based. The gradient enhanced damage
formulation is obtained by enriching the local strain energy introduced in the previous section
by the nonlocal contribution ψnloc with

ψ = ψloc(F , α) + ψnloc(∇α) (cf. Liebe et al. [2001]), (8.12)

where the local part ψloc is given by (8.1). Inserting (8.12) into the energy balance (8.9) and
integrating the Clausius Duhem inequality (8.8) over the domain yields the global form of
first and second law of thermodynamics

Π̇ = 0 and Γ̇ ≥ 0, (8.13)
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E-modulus E 1000 MPa
Poisson ratio ν 0.3 -
Damage parameter d0 ∈ {0, 1} MPa
Damage parameter d1 ∈ {0, 1} MPa
Load steps nsteps varying -
Length L 100 mm
Radius R 50 mm
Thickness H 10 mm

(b)

Figure 8.1: (a) Description of the geometry of the plate with hole benchmark problem. (b)
Geometric and boundary parameters used throughout the tests of this contribution. (c) Mesh
visualizations of exemplary mesh refinement steps (view from the side, front and bottom for
each step).
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Figure 8.2: Visualization of the mesh dependency of the local damage formulation with
(a): contour plot of the hexahedral mesh corresponding to the final load stage and nel = 400
marked in the plot (d). (b)-(c): contour plots of the tetrahedral mesh corresponding to the
first and second refinement at final load stage marked in the force displacement curves in the
plot (e). (d): force displacement curves of the hexahedral element. (e): force displacement
curves of the tetrahedral element. The lightning symbol marks the divergence of the iterative
solution procedure (occurring for both meshes at mesh refinements above step 3 (nel = 3200,
nel = 16000) in the load range u?Y ≈ 2.25− 2.4 mm).
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respectively, with the corresponding potential functions defined as

Π ··=
ˆ
B

(
ψloc(F , α) + ψnloc(∇α) + γ(α)

)
dV︸ ︷︷ ︸

Πint

−
ˆ
B
u • f dV −

ˆ
ΓN

u • t dA︸ ︷︷ ︸
Πext

and (8.14)

Γ ··=
ˆ
B
γ(α) dV. (8.15)

From (8.13) and integrating by parts2 (cf. Riesselmann and Balzani [2023]) the gradient
damage problem can be postulated as following local set of equations: Find α and u such
that the balance of linear momentum (8.3), Cauchy theorem (8.4) Dirichlet conditions (8.5)
and surface flux

∇α · n = 0 on ∂B (8.17)

holds at any given time in the considered time domain t ∈ [t0, tend] and for any given rate u̇,
α̇ with the Karush Kuhn Tucker constraint conditions

Φ α̇ = 0 α̇ ≥ 0, and Φ ≤ 0 with Φ ··= −∂αψ + Div ∂∇αψ − ∂αγ. (8.18)

For the sake of clarity, here it is worth pointing out, that Φ in (8.18) is defined such that the
equation Φ α̇ is contained in the energy balance (8.13). Or, following the reverse argumen-
tation the definition of Φ and the equation Φ α̇ = 0 follows from the energy balance (8.13).
This can be checked by simply evaluating

ψ̇ + γ̇ = P • Ḟ + ∂αψ α̇+ ∂∇αψ • ∇α̇+ ∂αγ α̇

in Π̇ and using the integration by parts formula (8.16), which yields equations (8.17) and
(8.18).

8.3 Some Challenges of Existing Gradient Damage Formula-
tions

The goal of this section is to present two existing gradient damage finite element approaches
with an extract of corresponding numerical results, highlighting favorable features and some of
the challenges discussed in the introduction of chapter 1. Presented are a penalty formulation
similar to Waffenschmidt et al. [2013] based on Dimitrijevic and Hackl [2008] and
the neighbored element approach of Junker et al. [2022] based on Junker et al. [2019]
(see also Vogel and Junker [2019]).

8.3.1 Penalty Formulation

The following approach is introduced as comparative approach inRiesselmann and Balzani
[2023] and is similar to the approaches of Waffenschmidt et al. [2013] and Dimitrijevic
and Hackl [2008]. In order to enable a finite element discretization with standard Lagrange
interpolation functions while maintaining the evolution criterion in the form of the update of

2Here, besides the integration by parts formula (8.10) the following formula is used
ˆ
B
∂∇αψ • ∇α̇ dV =

ˆ
∂B

(∂∇αψ · n) α̇ dA−
ˆ
B

Div ∂∇αψ α̇ dV. (8.16)
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a local history variable, the penalty approach introduces an additional variable and enforces
compatibility via a penalty term. Therefore, the potential (8.14) is modified as follows

Πpen ··=
ˆ
B

(
ψloc(F , α) + ψnloc(∇α) + γ(α̃) +

p

2
(α− α̃)2

)
dV + Πext, (8.19)

where α̃ denotes the additionally introduced purely local history variable and p/2(α − α̃)2

denotes the penalty term enforcing compatibility. Following the same steps analogous to
the previous section under consideration of the balance equations (8.13) yields the following
update conditions

Φ̃ ˙̃α = 0 ˙̃α ≥ 0, and Φ̃ ≤ 0 with Φ̃ ··= p(α− α̃)− ∂αγ (8.20)

and the additional compatibility equation

− ∂αψ + Div ∂∇αψ = p(α− α̃). (8.21)

Meanwhile, the displacement equations (8.3)-(8.5) and the surface flux equation (8.17) remain
unchanged. The penalty finite element approach is based on finding the minimizer

Πpen ⇒ min
u,α,α̃

subject to Φ̃ ≤ 0. (8.22)

Following the well known arguments of constrained optimization (see e.g. Bertsekas [1982]),
as the penalty parameter with p → ∞ reaches infinity the corresponding minimizers α and
α̃ become equal. Thus, by inserting α̃ = α into (8.19) and (8.20) it can easily be veryfied
that for the limit case of an infinite penalty parameter value the solution to problem (8.22)
is equivalent to the solution of the original problem. In return, in the numerical application
case, where the penalty parameter is not infinity, the solution to (8.22) is not exactly the
same as the solution to the original problem. Corresponding numerical results showcasing
this issue can be found in figure 8.3 (see also figure 9.3, where a comparative study with the
proposed approach of chapter 9 is given).

Discretization The discretization of the body and subdividing integration over the elements
follows the standard approach presented in section 3.3. In the potential (8.19) first gradients
of the variables u and α are apparent. Thus, they are elements of the Sobolev spaces u ∈
H1

0 (B; IR3) and α ∈ H1
0 (B) and can conformingly be discretized with standard Lagrange

interpolation functions. Here, piecewise quadratic functions are chosen for the interpolation
of

uh|T =
10∑
I=1

d
(u)
I N

(P2)
I with ∇uh|T =

10∑
I=1

d
(u)
I ⊗∇N

(P2)
I (8.23)

and piecewise linear functions are chosen for the interpolation of

αh|T =
4∑
I=1

d
(α)
I N

(P1)
I with ∇αh|T =

4∑
I=1

d
(α)
I ∇N

(P1)
I . (8.24)

whereN (P2/P1)
I denote quadratic/linear Lagrange shape functions and d(u)

I = (d
(u1)
I , d

(u2)
I , d

(u3)
I )T

and d(α)
I denote the standard corresponding nodal degrees of freedom. Meanwhile, the addi-

tional variable α̃ ∈ L2(B) is a purely local variable and is stored as history variable at each
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Figure 8.3: Results of the gradient damage penalty formulation (P2u-P1α-pen) on the plate
with hole problem. (a) Convergence of the force displacement curves for a penalty parameter
value of p = 0.1 MPa. (b) Force displacement curves for varying values of the penalty
parameter. Since the results vary significantly, clearly the value of the penalty parameter
p = 0.1 MPa is not high enough in order to arrive at results that are consistent with the
original problem (cf. section 8.2). However, solutions for higher values of p can not be
computed as the formulation loses numerical robustness and the iterative solution procedure
fails to converge (failure is marked with red cross). The issue becomes more severe as the
value of p gets larger.

Gauss point of each element. The history variable needs to fulfill the constraint condition
Φ̃ ≤ 0, is defined as

ᾱh ··=

root
ᾱh

Φ̃(αh, ᾱh) if Φ̃(αh, ᾱhn) > 0

ᾱhn else
(8.25)

and is updated at each step of the incremental load step solution procedure. The discrete
Lagrangian reads

Πh
pen
··=
∑
T∈T

ˆ
T

(
ψ(F h, αh,∇αh) + γ(α̃h) +

p

2
(αh − α̃h)2

)
dV + Πh

ext. (8.26)

Since the constraint term is posed in terms of a penalty parameter, no Lagrange multipliers are
present and no inf-sup condition needs to be fulfilled for stability. Yet, as will be shown in the
following (figure 8.3) the choice of the numerical value of the penalty parameter is crucial for
the robustness of the iterative solution procedure of the non-linear problem. Throughout the
numerical studies of this section and those of in the following chapter 9 the penalty approach
is referred to as P2u-P1α-pen“X” formulation, where “X” denotes the numerical value of the
penalty parameter p.

Numerical Results In the present study the plate with hole problem is considered (cf.
figure 8.1), where a prescribed displacement is applied with a linear increasing load up to a
value of u?Y = 25 mm (which is significantly higher than in the local study of figure 8.2). The
values of all further corresponding problem parameters are given in figure 8.1 and figure 8.3.
Following the references mentioned in this subsection 8.3.1, for the nonlocal strain energy the
simple quadratic function

ψnloc =
c

2
∇α • ∇α (8.27)
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is considered, where c constitutes the nonlocal parameter. The local strain energy and dis-
sipation function were given in section 8.1. The plots of figure 8.3 show force displacement
curves corresponding to the results obtained with the penalty formulation. Here, in figure
8.3(a) the different curves corresponding to the various steps of the uniform mesh refinement
are presented. The results of figure 8.3(a) are obtained for a penalty parameter value of
p = 0.1 MPa. In this case, the ability of the formulation to produce mesh independent results
becomes visible and converging iterative solution procedures up to the final load stage are
observed, showcasing the increased numerical robustness due to the gradient enhancement.
Yet, when considering the results of figure 8.3(b), in which force displacement curves for vary-
ing values of the penalty parameter are shown (for a fixed mesh with nel = 250 elements), it
becomes also visible that the results vary significantly depending on the value of the penalty
parameter. This suggests that the value of p = 0.1 MPa considered in figure 8.3(a) is not
sufficiently high to produce results that are consistent with the original formulation, because
otherwise in the case of p approaching sufficiently high values converging curves should be
observed. However, for the present problem choosing higher values for p causes numerical
problems as the iterative solution procedure fails to converge after a certain load stage, which
becomes even lower as the penalty parameter gets higher. Summarizing, the penalty approach
offers increased robustness compared to local formulations and mesh independent results that
are, however, dependent on the penalty parameter. In addition to that, a loss of numerical
robustness for larger values of the penalty parameter is observed, further limiting the choice
of possible penalty parameter values to a rather low range.

8.3.2 Neighbored Element Formulation

The formulation discussed in this section was introduced for large strains in Junker et al.
[2022] and is based on the small strain approach of Junker et al. [2019] (see also Vogel
and Junker [2019]). In the mentioned references, the continuous formulation is presented
in terms of integrals in the framework of the so-called extended Hamilton’s principle (cf.
Junker and Balzani [2021]). In the notation of the present contribution, the formulation
is given by the minimization problem

Π⇒ min
u

subject to Φ ≤ 0 (8.28)

with Π given in (8.14) and Φ given by (8.18). Other than in the previously discussed penalty
formulation and the formulation presented in the next chapter 9 in the present case different
functions are used for the nonlocal strain energy function

ψnloc ··=
β

2
∇f • ∇f (8.29)

with f ··= 1 − D(α) = exp (−α) and β being the nonlocal parameter and the dissipation
function

γ(α) ··= r α (8.30)

with r ≡ d0 being the damage threshold parameter also referred to as dissipation parameter.
Note, that the displacement and surface equations (8.3)-(8.5) resulting from (8.28) and the
update conditions remain unchanged from (8.3)-(8.5), (8.17) and (8.18), respectively. Yet, for
the present case the specific expressions presented in Junker et al. [2022] are obtained by
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making the insertions3

− ∂αψ = fψ0, Div(∂∇αψ) = −β f∆f and ∂αγ = r, (8.31)

where ∆(•) ··= Div∇(•) denotes the Laplace operator. With the insertions, the first variation
of (8.28) reads

ˆ
B

1
2S • δC dV + δΠext = 0 subject to Φ ··= fψ0 − β f∆f − r ≤ 0 (8.32)

where C = F T · F denotes the right Cauchy Green tensor (cf. section 2.2) S ··= 2 ∂Cψ
loc

denotes the second Piola Kirchhoff stress tensor. Here, the balance of linear momentum is
considered in weak integral form (as usual), whereas the update condition is considered in
local form. Due to the appearance of the non-local operator ∆(•) in the update conditions,
corresponding discretizations require special treatment (cf. following subsection).

Discretization While the previously discussed penalty approach considers a coupled formu-
lation with two finite element solution variables and incorporates the inequality in terms of
the update of a local history variable, in the present formulation only u ∈ H1

0 (B; IR) is consid-
ered as global finite element solution variable. In the present approach, hexahedral elements
are considered and uh is interpolated with corresponding Lagrange shape functions. For the
inequality condition, f is considered as solution variable. Due to the appearance of the sec-
ond order differential operator ∆(•) information about the neighboring elements is required
for a consistent discretization. Therefore, a finite difference related discretization scheme is
used. The discrete system is solved with a staggered solution procedure, therefore numerical
robustness can be expected (cf. Gerasimov and De Lorenzis [2019], see also following
numerical results). Yet, from the practitioner’s point of view the combination of finite element
and the special finite difference related discretization can be considered as drawback, since
common finite element interfaces can not be used. Details regarding the discretization and
the algorithmic treatment can be found in Junker et al. [2022].

Numerical Results The present study from Junker et al. [2022] aims to highlight the
robustness and efficiency of the approach, yet show that results are not independent of the
chosen step size. For the study the geometry parameters from figure 8.1 are considered,
whereas for the material parameters the values E = 500 MPa, ν = 0.3, r = 5 MPa and
β = 100 N are used. In the force displacement curves of figure 8.4 (a) (enlargement in (b))
the convergence of the curves under uniform mesh refinement becomes visible. Moreover, since
the solution algorithm incorporates a feature, which numerically imposes a complete loss of
element stiffness once the damage has reached the critical value Dcrit = 1 − fcrit = 0.95 the
reaction forces can be modeled to become zero. Thus, in the present study after surpassing the
softening transition zone, the reaction forces reach completely zero values. This corresponds to
a complete detachment from the lower boundary Y = 0 along which the damage propagated.
The contour plots of figure 8.4 (c) visualize the evolution of the damage field D = 1 − f
corresponding to different load stages marked with bullets in figure 8.4 (a) and (b). No loss
of robustness of the solution procedure is observed. The subsequent study of figure 8.5 (a)
shows the force displacement curves for a fixed mesh over varying values of load increments

3Here, the specific choice of the function f(α) leads to −∂αψ = −∂αf ψ0 = f ψ0. Meanwhile, application
of the chain rule ∇f = ∇(exp (−α)) = − exp (−α)∇α = −f ∇α yields with the nonlocal energy (8.29) the
expression ∂∇αψ = ∂∇α(β/2(−f ∇α)(−f ∇α)) = −β f ∇f .
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Figure 8.4: Convergence results (cf. Junker et al. [2022]) showing for the large strain
neighbored element method (a) force/displacement curves (higher resolution in (b)). In (c)
corresponding contour plots depict the damage evolution for a mesh with 3200 elements at
three different load steps which are depicted as bullets in (a). The load increment is 0.025mm.
The results suggest mesh independence, since the curves converge as the mesh gets finer.
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Figure 8.5: Time step convergence and computing efficiency study (cf. Junker et al.
[2022]). (a) shows force/displacement curves for varying load increments for a 3200 element
mesh and β = 100N. It becomes visible that the results converge as the load increments get
finer. Yet, for the coarser time step resolutions of 100 and 250 time steps (first two curves) the
deviations are rather significant. (b) GD: Computing time until reaching the marked point
at u? = 8.575mm in (a) with the load increment 0.01mm. EL: computing time of a purely
elastic 8-node hexahedral reference element until the same load of u? = 10.85mm

of the load step solution procedure. Here, it becomes visible that the results converge as
the load increments get finer. Yet, for the coarser time step resolutions of 100 and 250
time steps (first two curves) the deviations are rather significant. Thus, in order to achieve
convergence a relatively high time step resolution compared to other approaches (cf. section
9.2) can be necessary taking a toll on the overall computing time. Yet, as shown in figure
8.5 (b) when comparing the present approach with the same formulation and the same preset
number of load steps but purely elastic problem parameters similar computing times can be
observed. In summary, the present formulation provides mesh independent numerically robust
and relatively cost-efficient results with a numerical feature that enables to model complete
material failure. Yet, load increments have to be chosen sufficiently small in order to provide
accurate results.



Chapter 9

A Simple and Efficient Mixed Finite
Element Formulation for Gradient
Damage

The present chapter introduces the mixed finite element formulation for gradient damage pro-
posed in Riesselmann and Balzani [2023]. The proposed approach takes into account the
non-locality of the damage variable by incorporating it as a nodal solution variable (see also
Riesselmann and Balzani [2022]) and the damage evolution constraint is included in terms
of a Lagrange multiplier term. Presented are the continuous formulation and a corresponding
suitable choice of interpolation functions enabling for the static condensation of the Lagrange
multiplier variable. The proposed formulation neither requires cross-element information (as
eg. the formulation of section 8.3.2) nor does it incorporate a penalty parameter which might
deduce numerical robustness (as eg. the formulation of 8.3.1). Moreover, numerical tests
of the proposed approach show mesh-independent solutions, robustness of the solution proce-
dure for states of severe damage and under cyclic loading conditions at computing times in
the same order of magnitude as purely elastic computations. Adding to Riesselmann and
Balzani [2023], here some considerations with respect to inf-sup stability are given and the
incorporation of an element erosion technique (cf. Junker et al. [2022]) with corresponding
numerical results showing mesh convergence.

9.1 The Proposed Approach

In the following, both the continuous and discrete formulation as well as the algorithmic
treatment of the proposed approach is presented.

9.1.1 Continuous Formulation

While the comparative formulations of section 8.3 incorporate the inequality conditions (8.18)
by evaluating the constraint Φ ≤ 0, the present approach considers directly the condition
α̇ ≥ 0 as primary constraint. In what follows the time discrete setting is considered with the
simple time discretization α̇← (α− αn)/∆t where αn denotes the value of the previous time

119
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step and ∆t = t− tn denotes the time step. The problem is formulated as follows:

Find Πλ ⇒ stat
u,α,λ

subject to α− αn ≥ 0 (9.1)

with the Lagrangian defined as

Πλ ··= Π +

ˆ
B
λ (α− αn) dV, (9.2)

where Π = Πint + Πext is the total potential defined by (8.14) and λ denotes the Lagrange
multiplier. Note, that since the used material models are rate independent and the condi-
tions are considered quasi static ∆t has no influence of the solution other than a scaling the
constraint term. Thus, ∆t is considered to be contained in λ and the problem is written as
in (9.2). The Karush Kuhn Tucker conditions corresponding to problem (9.1) read

λ ≤ 0, α− αn ≥ 0 and λ (α− αn) = 0 (9.3)

where the sign of the (trial) value of the Lagrange multiplier λ (evaluated from previous iter-
ations of corresponding numerical solution procedures) can be used to identify the evolution
and no-evolution case. Moreover, by replacing αn by the local control variable ᾱ defined as

ᾱ ··=

{
αn for no damage evolution
α for damage evolution

(9.4)

the inequality condition is per definition fulfilled, since in the no-evolution case with λ (α−αn)
damage evolution is suppressed whereas in the evolution case with λ (α − α) the constraint
term vanishes and α is allowed to evolve. Further details with respect to the numerical
treatment of the constraint are given in section 9.1.3. The solution variables are sought in
the following solution spaces (defined in section 2.1.3)

u ∈ H1
0 (B; IR3), α ∈ H1

0 (B) and λ ∈ H−1(B) (9.5)

To ensure boundedness of the bilinear form a2(δα,∆α) corresponding to α (defined in ap-
pendix A.2) and resulting therefrom increased numerical robusntess α is defined to have a
compact support (cf. Braess [2007]) meaning it lives in in H1

0 (B) and not in H1(B)1. There-
fore, α can be either defined to be fixed with α = α? on some subdomain ΓαD ∈ ∂B or its volume
mean integral can be fixed by imposing

´
B α dV = 0. Here the space for the Lagrange multi-

plier is given by H−1(B), since it denotes the proper dual space to H1
0 (B) given through the

pairing
´
B λα dV (cf. Braess [2007]). Note, that in Riesselmann and Balzani [2023] the

space for λ is given by L2(B). Nevertheless, the corresponding proposed L2-conforming piece-
wise constant discretization for λh (cf. section 9.1.2) is with L2(B) ∈ H−1(B) (cf. Braess
[2007],p.117) also conforming with the space H−1(B). In what follows for the non-local strain
energy ψnloc the quadratic function (8.27) is considered. Variation of (9.2) and integrating

1This is necessary because for the case D → 1 and γ = d0α in the potential (9.2) only gradients ∇α
(and not the variable α itself) appear in the terms that correspond to the bilinear form a1(α, δα) of the
linearized problem (cf. section 9.1.1) resulting in the tangent matrix kα of the discretized system (cf. section
9.1.2). Here, without prescribing the support, the tangent matrix kα would possess a zero singular value.
This observation is analogous to the appearance of three zero singular values in the matrix ku of standard
local quasi static elasticity finite elements for which no Dirichlet conditions are prescribed, since the bilinear
from which ku in that case is derived also only contains derivatives of u and not u itself. In some references
imposing the support condition is referred to as “fixing the constant”. Moreover, by defining α to be in H1

0 (B)
and not in H1(B) the inf-sup condition (cf. next subsection) is fulfilled by definition (cf. Braess [2007]).
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by parts (cf. appendix of Riesselmann and Balzani [2023]) yields the displacement and
surface equations (8.3)-(8.5) and (8.17) as well as the equation

Φ(F , α,∇α) = λ in B, (9.6)

which shows, that the Lagrange multiplier λ is associated to the function Φ.

Hints on the Stability of the Linearized Continuous Formulation The subsequent
part discusses some aspects concerning the mathematical stability (cf. section 2.4) of the
linearized continuous formulation. It should be noted that the extension of Brezzi’s conditions
to the nonlinear scenario involving gradient damage remains an unresolved research matter, to
the best of the authors’ knowledge. However, the insights provided on the linear system could
offer clues regarding the stability of the nonlinear problem, leaving further exploration for
future studies. The variation and linearization of (9.2) result in the following linear problem to
be solved in each iteration. For given (f , t,u?) ∈ H−1(B; IR3)×H−1/2(ΓN; IR3)×H1/2(ΓD; IR3)
find the solution (∆u,∆α,∆λ) ∈ H1

0 (B; IR3)×H1
0 (B)×H−1(B) such that

a1(δu,∆u) + b1(δu,∆α) = lu(δu)

b1(∆u, δu) + a2(δα,∆α) + b2(δα,∆λ) = lα(δα)

b2(∆α, δλ) = lλ(δλ)

(9.7)

holds for all (δu, δα, δλ) ∈ H1
0 (B; IR3) × H1

0 (B) × H−1(B). The explicit expressions corre-
sponding to all bilinear- and linear forms can be found in appendix A.2. Problem (9.7) can
be considered as the two-field mixed formulation

a2(δα,∆α) + b2(δα,∆λ) = lα(δα)

b2(∆α, δλ) = lλ(δλ)
(9.8)

coupled to the weak form of the balance of linear momentum (9.7)1 via the coupling term b1.
In what follows some considerations are presented suggesting inf-sup stability of 9.8. In the
present case the inf-sup condition (cf. section 2.4) reads

sup
α∈H1

0 (B)\{0}

b2(α, λ)

||α||H1

& ||λ||H−1 ∀λ ∈ H−1(B) (9.9)

with b2 defined by b2(α, λ) ··=
´
B λα dV. Here, since the bilinear form b2 is the simple L2-scalar

product and the H−1-norm is defined as

||λ||H−1 = sup
α∈H1

0 (B)\{0}

´
B λα dV

||α||H1

(cf. (2.50)), (9.10)

the fulfillment of the inf-sup condition is trivial: Inserting (9.10) into (9.9) yields with

sup
α∈H1

0 (B)\{0}

b(α, λ)

||α||H1

& sup
α∈H1

0 (B)\{0}

´
B λα dV

||α||H1

on both sides the same expression always fulfilling the condition. The proof of the remaining
necessary stability conditions (ellipticity and continuity of a2 on the kernel of b2 and ellipticity
and continuity of a1) is left for the future. For further reading see Brezzi and Fortin [1991]
p.44 ff.
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9.1.2 Discretizations

Since the solution variables u and α belong to the standard H1-Sobolev spaces Lagrange
interpolation functions can be used. Meanwhile, for the Lagrange multiplier λ a piecewise
constant interpolation is sufficient. In the following the shape functions and degrees of freedom
of the corresponding interpolation functions are presented both for elements T of a tetrahedral
mesh T and for elements TQ of a hexahedral mesh TQ.

Tetrahedral Interpolation The interpolation functions for the displacements uh ∈ H1(B; IR3)∩
P2(T ; IR3) and the deformation gradient F h read for the tetrahedron T ∈ T

uh|T =
10∑
I=1

d
(u)
I N

(P2)
I and F h|T =

( 10∑
I=1

d
(u)
I ⊗∇N

(P2)
I

)
+ 1, (9.11)

where N (P2)
I : T → H1(T )∩P2(T ) are the quadratic tetrahedral Lagrange interpolation func-

tions and d(u)
I = (d

(u1)
I , d

(u2)
I , d

(u3)
I )T denote the standard degrees of freedom d

(ui)
I : H1(B)→

IR giving the values of the components ui at the corresponding nodes. As also discussed in
chapter 5 a necessary condition for rank sufficiency of the resulting finite element tangent
matrix is that for any possible mesh configuration the number of degrees of freedom corre-
sponding to αh surpasses the number of degrees of freedom corresponding to the Lagrange
multiplier λh (the criterion is also referred to as count criterion). Therefore, in line with Boffi
et al. [2013] for the interpolation of the damage variable with αh ∈ H1

0 (B)∩(P1(T )⊕B4(T ))
a composition of P1-linear Lagrange functions and the volume bubble Lagrange function is
used similar to the elements of chapter 5, just that here the field is scalar valued and not
tensor-valued. The interpolation reads

αh|T =

4∑
I=1

d
(α)
I N

(P1)
I +d

(α)
B N

(P4)
B and ∇αh|T =

4∑
I=1

d
(α)
I ∇N

(P1)
I +d

(α)
B ∇N

(P4)
B (9.12)

with standard linear tetrahedral interpolation functions N (P1)
I : T → H1(T ) ∩ P1(T ) and

degrees of freedom d
(α)
I : H1(B) → IR corresopnding to the vertex nodes I. Meanwhile, d(α)

B

denotes the degree of freedom corresponding to the element center node and the correspond-
ing shape function N

(P4)
B : T → H1(T ) ∩ P4(T ) is given by the quartic Lagrange function

N
(P4)
B = 1/256γ1γ2γ3γ4. The shape function N (P4)

B takes the value 1 at the center node and
is zero valued at the boundary of the tetrahedron and thus referred to as “bubble” function.
Here, γi denote the barycentric coordinates of the tetrahedron. The element-wise constant
interpolation of the Lagrange multiplier λh ∈ H−1(B) ∩ P0(T ) reads

λh|T = d(λ)N (P0), (9.13)

where d(λ) : H−1(B)→ IR denotes the element-constant degree of freedom and the nodal basis
function is N (P0) = 1. In what follows the tetrahedral interpolation scheme is denoted by
P2u-P1Bα-P0λ. A numerical example evaluating the count criterion of the present formulation
can be found in Riesselmann and Balzani [2023].

Hexahedral Interpolation Analogous to the previous subsection in the following the in-
terpolation functions for hexahedral elements are presented. The hexahedral displacement
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interpolations uh ∈ H1(B; IR3) ∩Q2(TQ; IR3) read:

uh|TQ =
27∑
I=1

d
(u)
I N

(Q2)
I and F h|TQ =

( 27∑
I=1

d
(u)
I ⊗∇N

(Q2)
I

)
+ 1. (9.14)

Here, N (Q2)
I : T → H1(TQ)∩Q2(TQ) are the tri-quadratic hexahedral Lagrange interpolation

functions and d(ui)
I : H1(B)→ IR the components of the degrees of freedom corresponding to

the 27 Q2-nodes. The bubble-enriched interpolation of αh ∈ H1(B) ∩ (Q1(TQ) ⊕ BQ2(TQ))
is given by

αh|TQ =
8∑
I=1

d
(α)
I N

(Q1)
I + d

(α)
B N

(Q2)
B and ∇αh|TQ =

8∑
I=1

d
(α)
I ∇N

(Q1)
I + d

(α)
B ∇N

(Q2)
B

(9.15)
with the 8 trilinear Lagrange shape functions N (Q1)

I : TQ → H1(TQ) ∩ Q1(TQ) and degrees
of freedom d

(α)
I : H1(B) → IR. In the hexahedral case the volume bubble function N

(Q2)
B :

T → H1(T ) ∩Q2(T ) is given by the tri-quadratic Lagrange shape function (N (Q2)
B ≡ N

(Q2)
27 )

2 associated to the center node degree of freedom d
(α)
B . Unchanged from the tetrahedral case

the discrete Lagrange multiplier λh ∈ H1(B) ∩ P0(TQ) is element-wise constant with

λh|TQ = d(λ)N (P0), (9.16)

where now the element is a hexahedron and the basis is again N (P0) = 1. The tetrahedral
interpolation scheme is denoted by Q2u-Q1Bα-P0λ.

Discretized Lagrangian Since in the present approach only Lagrange interpolation func-
tions occur, kinematic relations for mapping from the reference element and numerical inte-
gration are standard and follow the concepts introduced in section 3.2 (see also Zienkiewicz
and Taylor [2000], where also explicit expression for the Lagrange shape functions are pro-
vided). For the tetrahedral formulation a four point Gauss integration and for the hexahedral
formulation a 27 point Gauss point integration is used. The discretized problem is obtained
by inserting the interpolation function into (9.1) giving the discretized Lagrangian

Πh
λ
··=
∑
T∈T

(ˆ
T
ψloc(F h, αh) +

c

2
∇αh • ∇αh + γ(αh) + λh (αh − ᾱh) dV

)
+ Πh

ext (9.17)

with the discrete external potential Πh
ext defined in (3.66). The tetrahedral formulation and

the hexahedral formulation are the same only with the change of notation T ← TQ and
T ← TQ. Here, ᾱh refers to the control variable (cf. definition (9.4)), whose values in the
discrete setting are provided by the Gauss point values of αh or αhn depending on the sign of
λh (cf. section 9.1.3).

Matrix Notation In the following the notation corresponding to the tangent matrix and
residual is presented. Therefore, the following element-wise vectors of degrees of freedom
associated to the different solution variables are defined by

du ··=
[
d

(u1)
1 , d

(u2)
1 , ... , d

(u2)
10 , d

(u3)
10

]T
, dα ··=

[
d

(α)
1 , ... , d

(α)
4 , d

(α)
B

]T
, dλ ··=

[
d(λ)

]
.

(9.18)
2That is, assuming in the general Q2-interpolation over the 27 Q2-hexahedral nodes the center node has

the number I = 27.
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Define the element degree of freedom vector

d ··=
[
dTu , d

T
α , d

T
λ

]T and the global solution vector D ··=
⋃
T∈T

dT , (9.19)

with the union operator defined in (3.69). Note that for the sake of simplicity for the expres-
sions of this section whenever the notations |T and T appear it is assumed to include both
the tetrahedral and the hexahedral case. Following the element residual and tangent matrix
definition (3.72) the element sub-residuals are given by

ru ··=
∂Πh|T
∂du

, rα ··=
∂Πh|T
∂dα

, rλ ··=
∂Πh|T
∂dλ

, (9.20)

the element residual by

r ··=
[
rTu , r

T
α , r

T
λ

]T and the global residual by R ··= A
T∈T

r|T , (9.21)

with the assembly operator (3.74). The element sub-matrices are given by

ku ··=
∂ru
∂du

, kα ··=
∂rα
∂dα

, kλ ··=
∂rλ
∂dλ

, kuα ··=
∂ru
∂dα

, kuλ ··=
∂ru
∂dλ

, and kαλ ··=
∂rα
∂dλ
(9.22)

of which the former three are coupling matrices. The element tangent matrix is symmetric
and analogous computations lead to the counterparts of the coupling sub matrices with the
relations kuα = (kαu)T , kuλ = (kλu)T = 0, kαλ = (kλα)T Moreover, the diagonal sub matrix
kλ = 0 corresponding to the Lagrange multiplier is zero. The stationary point Πλ,h → stat

uh,αh,λh

corresponds to the solution of the nonlinear problem R = 0. At each time interval [t, tn] the
linearized system of equationsR|i+K|i∆D = 0 3 is updated with Newton-Raphson iterations,
where i denotes the previous iteration and ∆D is the solution increment. The linear system
of equations expressed in terms of the element sub-matrices reads

A
T∈T

( ku kuα 0
kαu kα kαλ
0 kλα 0


i

∆du
∆dα
∆dλ

+

rurα
rλ


i

)
= 0. (9.23)

where [•]i denotes the matrix values corresponding to the previous Newton iteration. Follow-
ing the steps given in appendix B.1 the internal degrees of freedom are statically condensed
yielding the reduced system

A
T∈T

([k??u k??uα
k??αu k??α

]
i

[
∆du
∆dα

]
+

[
r??u
r??α

]
i

)
= 0 (9.24)

9.1.3 Algorithmic Treatment

In this section the solution algorithm including the incorporation of the inequality condition
for the present approach is discussed. Moreover, an extension of the solution algorithm given
in Riesselmann and Balzani [2023] by the element erosion technique (cf. Junker et al.
[2022]) is presented. As shown in algorithm 1, in the time incremental setting, at each time

3The linearized system of equations corresponds to the discretization of (9.7).
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Algorithm 1 Solution strategy for each time step [tn, t]

initialize Du|0 = Dn
u , Dα|0 = Dn

α and Dλ|0 = Dn
λ . initialize from previous time step

update f = f |t, t = t|t,uB = uB|t . update time-dependent boundary conditions
for i = 0, ... do . Newton-Iterations

FE-update Di+1 = Di - (Ki)−1Ri . solve linear system of equations
for each Gauss point g ∈ G|T in each element T ∈ T do

?apply erosion strategy algorithm 2
ᾱh|i+1 = αhn . turn on constraint
if λh|T,i+1 > 0 ∧ i 6= 1 then . check evolution criterion

ᾱh|i+1 = αh|i+1 . switch off constraint
end if

end for
if ||Di+1 −Di|| < tol then . Newton-Iteration exit criterion

exit
end if

end for

step tn → t after the initialization of the solution values from the previous time step n
and update of the boundary conditions, the algorithm enters the Newton-Loop, in which for
each iteration i → i + 1 the global linearized system of equations is solved for the nodal
solution vector Di+1. After the global update the history variables ᾱh|i+1 are updated at
each integration as follows:

ᾱh|i+1 ←

{
αhn if λh|i+1 ≤ 0 (no evolution: constraint switched on)
αh|i+1 if λh|i+1 > 0 (evolution: constraint switched off)

(9.25)

In the first case, with λh|i+1(αh|i+1 − αhn) the constraint is switched on and evolution is
suppressed in the upcoming iteration. In the second case, with λh|i+1(αh|i+1 − αh|i+1) = 0
the constraint is switched off enabling the damage variable to evolve in the upcoming iteration,
since the value of the Lagrange multiplier remains fixed. Note, that in the iteration i = 0 the
constraint term is automatically always switched off (λh|0(αh|0 − ᾱh|0) = λhn (αhn − αhn)). For
i = 1 the internal variable is always updated with the first case of (9.25) to enable reactivation
of the constraint term (which becomes relevant in the case of transition from damage loading
to de-loading). At an example Gauss point, where damage loading (λhn > 0) occurred in the
previous step n, the update sequence reads

λhn > 0
i=0→

constraint off
λh|1 = λhn

i=1→
constraint on

λ
h|2 ≤ 0 (de-loading, constraint on)

i=3→ · · ·

λh|2 > 0 (further loading, constraint off)
i=3→ · · · .

(9.26)
Here, the first case depicts the transition to the de-loading state, while the second case depicts
further damage loading. Note that, no additional storage space for the history parameter is
needed, since with (9.25) in both cases the value of the history parameter is assigned with
quantities that are given from the global iterative procedure (αhn and αh|i+1). Moreover, while
additional computational resources are needed for the numerical evaluation of some trial func-
tion Φ as e.g. in Liebe et al. [2001], Dimitrijevic and Hackl [2008], Waffenschmidt
et al. [2013] (see also section 8.3), in the present case the value of λh|i+1 is already given
from the global Newton iteration (without increasing the size of the global system due to the
static condensation).
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Algorithm 2 Element erosion strategy for the proposed P2u-P1Bα-P0λ formulation
if α|i+1 > αmax then . check erosion criterion

set r = 0 . eliminate element residual
set (k)ij = δijscrit . erode element stiffness
exit . exit Gauss loop

end if

Element Erosion Strategy The present approach is extended by an element erosion strat-
egy (similar to the strategy presented in Junker et al. [2022]), which enables to model the
complete loss of stiffness of the element once a certain maximal damage value is succeeded.
Therefore, in the present case, if this feature is switched on, the erosion algorithm 2 is embed-
ded into the element Gauss point loop of algorithm 1 (at the position marked with asterisk).
Here, once at one Gauss point of the element the maximal damage value α|i+1 > αmax (with
αmax being a prescribed model parameter) is surpassed4 the element erosion is set to occur for
the current element and the Gauss loop exited, moving forward to the next element. The ele-
ment erosion consists of setting the corresponding element residual vector and tangent matrix
to zero. In order to maintain numerical robustness, the value scrit = 10e−10 is set to remain
on the diagonal of the element tangent matrix. Corresponding numerical studies testing the
influence of the element erosion technique can be found in sections 9.2.4 and 9.2.5.

9.2 Numerical Results

In this section, the tetrahedral P2u-P1Bα-P0λ and the hexahedral Q2u-Q1Bα-P0λ finite ele-
ment discretizations of the gradient damage formulation of the previous section are numeri-
cally tested on a variety of boundary value problem settings. The aim is to prove numerical
robustness and the ability to avoid mesh-dependency, which appears in simulations using local
damage formulations (cf. section 8.1). Further, a comparative study aims to establish the
computing efficiency compared to competitive approaches. Moreover, the incorporation of the
element erosion technique is analyzed for the proposed approach. Finally, the functionality
of the formulation is tested for various parameter ranges. For the following studies the same
damage model as given in section 8.1 (i.e. the strain energy ψ(F , α) given by definition (8.2)
and the dissipation function γ(α) given in (8.11)) is utilized. The gradient damage formula-
tions are tested on the plate with hole benchmark problem also introduced in section 8.1 (cf.
figure 8.1). The geometry, boundary- and local constitutive parameters of the problem are
shown in the table (b) of figure 8.1. For the solution of the linearized system of equations
a Newton-Raphson solution scheme with the PARDISO linear solver and the Newton exit
parameter value tol = 10−8 (cf. algorithm 1) is considered.

9.2.1 Convergence Study

For the following study the gradient damage parameter is set to c = 100 Nmm, the number of
load steps is set to ns = 500 and all further parameters are taken from table 8.1(b). The value
of the prescribed displacement u?Y increases linearly with each time step until for n = 500 the
value u?Y,max = 25 mm is reached. In figure 9.1 the results of the tetrahedral P2u-P1Bα-P0λ
element and in figure 9.2 the results of the hexahedral Q2u-Q1Bα-P0λ element are shown.
Figures 9.1 (a)-(b) and 9.2 (a)-(b) present the force displacement curves of the values of the
reaction force FY recovered from the FE-solution at the upper surface (Y = L) over the value

4The criterion can with (8.2) be translated to the criterion D(α|i+1) > D(αmax).
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Figure 9.1: Visualization of the mesh independence of the tetrahedral P2u-P1Bα-P0λ gradi-
ent damage formulation with: (a),(b) force displacement curves corresponding to the different
mesh refinement stages nel ∈ {250, 2000, 16000, 128000} ((b) shows the enlargement of the
transition area framed with a dashed line in (a)). (c)(2)-(e)(2) show damage contour plots cor-
responding to the load stages u?Y ∈ {3.5, 5, 25} mm (marked with bullets in (a) and (b)) for
mesh refinement stage 2 (nel = 2000). (c)(16)-(e)(16) show damage contour plots corresponding
to the same load stages for mesh refinement stage 3 (nel = 16000).
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Figure 9.2: Visualization of the mesh independence of the hexahedral Q2u-Q1Bα-P0λ gradi-
ent damage formulation with: (a),(b) force displacement curves corresponding to the different
mesh refinement stages nel ∈ {50, 400, 3200} ((b) shows the enlargement of the transition area
framed with a dashed line in (a)). (c)(2)-(e)(2) show damage contour plots corresponding to
the load stages u?Y ∈ {3.5, 5, 25} mm (marked with bullets in (a) and (b)) for mesh refinement
stage 2 (nel = 400). (c)(16)-(e)(16) show damage contour plots corresponding to the same load
stages for mesh refinement stage 3 (nel = 3200).
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of the prescribed displacement u?Y . While figures 9.1 and 9.2 (a) depict the results of the entire
load spectrum, in figures 9.1 and 9.2 (b) an enlargement of the softening transition area framed
with a dashed line in figures (a) is displayed in order to make the convergence behavior of
the curves visible. Both in figures 9.1 (a)-(b) and 9.2 (a)-(b) the mesh independence become
visible. In fact, for each single curve corresponding to one refinement step, the deviation from
the curve of the previous step becomes smaller. Yet, when comparing figures 9.1 (a) and
(b) of the tetrahedral element to figures 9.2 (a) and (b) of the hexahedral element it can be
observed that for the given meshes the first exhibit slightly superior rates in which the curves
converge. This can be explained by the following: In both cases, the number and distribution
of vertex nodes is the same for each refinement step. Let us denote the domain enclosed by
8 vertex node by one “cell unit”. While in the hexahedral mesh one “cell unit” is populated
by one element, in the corresponding tetrahedral mesh the same cell unit is populated by five
elements. Since the Lagrange multiplier is piecewise constant over one element, the resolution
of the constraint condition is therefore higher in the tetrahedral mesh than in the hexahedral
mesh (cf. Riesselmann and Balzani [2023]).
Figures 9.1 (c)-(e) and figures 9.2 (c)-(e) show the contour plots visualizing the distribution
of the damage field where the value of ||D(α)||L2 is plotted for each element. Each plot
shows a view on the computational domain from the front, from the side and from below.
To illustrate the evolution of the damage field the plots from (c) to (e) correspond to the
different load stages marked with bullets in figure 9.1 (a)-(b) and 9.2 (a)-(b), respectively.
Further, to exemplify the mesh independence by comparing the distribution of the damage
field for different refinement steps, in each figure the contour plots are shown for the second
and third refinement step, respectively. To be specific, although the resolution of the plots of
figure 9.1 (c)(2)-(e)(2) and figure 9.2 (c)(0.4)-(e)(0.4) of the lower refinement stages is of course
lower compared to the plots of the higher refinement stages of figure 9.1 (c)(16)-(e)(16) and
figure 9.2 (c)(3.2)-(e)(3.2), respectively, the qualitative distribution is very similar.

9.2.2 Comparative Study

The present study aims to investigate the performance of the P2u-P1Bα-P0λ and the Q2u-
Q1Bα-P0λ element with respect to convergence behavior and computing time compared to
an existing penalty approach and a purely elastic reference computation with a standard P2u
Lagrange displacement element. Therefore, the same parameters as in the previous section
are used and again a linear increasing load with u?Y,max = 5 mm is applied. Figure 9.3 (a)
shows the total value of the displacement L2-norm ||u||L2(T ) at the final load stage plotted
over the total number of degrees of freedom corresponding to each mesh refinement step.
Compared are the proposed formulations with the comparative penalty formulation P2u-P1α-
pen-‘X” described in section 8.3.1. Here, “X” denotes the various numerical values of the
penalty parameter. From figure 9.3 (a) it can be seen that both the P2u-P1Bα-P0λ and
the Q2u-Q1Bα-P0λ converge towards the same value. Yet, the convergence behavior of the
P2u-P1Bα-P0λ element is slightly superior to the behavior of the Q2u-Q1Bα-P0λ element
(cf. discussion of section 9.2.1). Further, as to be expected, for increasing numerical values
of the penalty parameter the results of the penalty formulation converge towards the results
of the proposed Lagrange multiplier formulations. However, for the penalty formulation, the
increased accuracy when using higher penalty values comes at the cost of loss of numerical
robustness: In the present problem for numerical values of the penalty parameter & 1000 the
iterative solution procedure fails to converge. Figure 9.3 (b) shows the rates of change of the
norm ||u||L2(T ) for each refinement step relative to the value of the previous step. Here, the
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Figure 9.3: Comparative study: (a): Convergence plot of the L2-norm ||uh||L2(T ) of the
displacement solution over number of degrees of freedom of the P2u-P1Bα-P0λ, Q2u-Q1Bα-
P0λ and the comparative penalty formulation. (b): Rate of change ∆||uh||L2(T ) (cf. (9.27))
of the displacement norm over number of degrees of freedom. (c): Total assembly times
(left) and solver times (right) of the P2u-P1Bα-P0λ- and Q2u-Q1Bα-P0λ- element for each
refinement step compared to corresponding times of a purely elastic reference computation.
As can be seen from (c), the computational effort is not far from a simple elastic simulation
with a standard P2-element.
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rate is defined as
∆||uh||L2 ··= ||uh||(s+1)

L2 − ||uh||(s)
L2 , (9.27)

where s denotes the previous mesh refinement step. The results are plotted over the total
number of degrees of freedom corresponding to the refinement steps s + 1 ∈ {2, 3, 4}. It can
be observed that the rates of change tend towards zero indicating mesh convergence for all
formulations. Moreover, the slightly superior accuracy of the results of the P2u-P1Bα-P0λ
becomes visible through the lower rates of change in figure 9.3 (b) compared to the results
of the other elements. Finally, the overall computing times of the P2u-P1Bα-P0λ- and Q2u-
Q1Bα-P0λ compared to a purely elastic quadratic tetrahedral Lagrange element (denoted by
P2u) is visualized in figure 9.3 (b). Compared are the assembly times (left-hand side) and
solution times (right-hand side) for the refinement steps 1-4. The solution times of both the
hexahedral and the tetrahedral proposed formulations are not too far from the solution times
of the simple purely elastic reference element. Also, assembly times of the tetrahedral P2u-
P1Bα-P0λ element are in similar orders of magnitude as the assembly times of the elastic
reference element. The slightly increased assembly time of the hexahedral Q2u-Q1Bα-P0λ
element can be attributed to the higher number of Gauss points (i.e. 27 points) compared
to the tetrahedral elements. Both the P2u-P1Bα-P0λ element and the P2u elastic element
incorporate a four point Gauss integration.

9.2.3 Behavior Under Cyclic Loading

In order to investigate the numerical behavior of the proposed approach under loading-
unloading conditions a boundary value problem with the increasing cyclic load function

u?Y (t) =
t0.6 sin(t) + t0.6

2(8.5π)0.6
u?,max
Y with u?,max

Y = 25 mm (9.28)

is considered, where u?Y (t) is again the prescribed Y -component of the displacement at the
upper surface of the geometry (cf. figure 8.1). A plot of the function (9.28) is given in the
upper right of figure 9.4 (a). The geometry and material parameters are unchanged from the
previous subsections and the tetrahedral P2u-P1Bα-P0λ element is used. Figure 9.4 (a) and
(b) show the resulting force displacement curves for the various mesh refinement stages for a
prescribed number of load steps of ns = 500 and ns = 200, respectively. It can be observed,
that the results of (b) corresponding to the coarser load step refinement are qualitatively very
similar to the results of the finer load step refinement in (a). For the 200 load step time
discretization despite the larger propagation of the solution quantities within one Newton
loop, no loss of convergence is observed. In figure 9.4 (c) and (d) the mesh convergence of the
total norm ||α||L2(T ) of the damage variable is plotted for various load step refinements over
(c)-the total number of degrees of freedom and (d)-the total computing time. The range of
the chosen number of load steps is ns ∈ {50, 500, 1000, 2000}. From (c) it becomes obvious
that the results remain independent on the chosen load step refinement. For the load step
discretizations ns = 500 and ns = 1000 the deviation

relative deviation = |1−
(||α||L2(T ))ns

(||α||L2(T ))2000
|

relative to the converged solution (||α||L2(T ))2000 of the finest load step discretization is com-
puted. The very small deviation of the numerical values of the results are shown in the upper
right-hand side of figure 9.4 (c). Only at the (for the given load scenario impractical) load
step resolution of ns = 50 a loss of convergence of the iterative solution procedure for larger
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Figure 9.4: Force displacement plots for the cyclic prescribed displacement function (9.28)
for varying number of time steps. ((a) ns = 500, (b) ns = 200). As can be seen, the resulting
mesh independence turns out to be insensitive to the choice of the time step size. Plot (c)
and (d) show for various numbers of time steps the convergence of the L2 norm of the damage
variable ||α||L2 over total number of degrees of freedom (c) and overall computing time (d),
respectively. Again, it becomes visible that the results are almost identical for the various
time step refinements. Even for the impractically coarse time refinement ns = 50 results could
be obtained, yet for the finest mesh the iterative solution procedure failed to converge.
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systems ndof > 105 can be observed. The loss of convergence can be attributed to the large
jumps of the damage and displacement propagation in each Newton iteration and the more
challenging matrix condition numbers of the larger sized systems.

9.2.4 Element Erosion

The study of this subsection aims to investigate the ability of the proposed P2u-P1Bα-P0λ
formulation to model complete material degradation by incorporation of the element erosion
technique described in section 9.1.3. Therefore, a problem setting identical to the convergence
study corresponding to figure 9.1 is chosen, but now with element erosion switched on. For
the present study the erosion is set to appear once the maximum damage value Dmax = 0.95
5 is reached. Figure 9.5 (a) and (b) show the resulting force displacement curves, where (b)
provides an enlargement of the softening and erosion transition area marked with a dashed
line in (a). The corresponding contour plots visualizing both the damage evolution and
the element erosion are provided in figures (c)-(d) for meshes corresponding to the second
and third refinement step, respectively. Here, the transparent elements correspond to the
completely eroded state. Since the propagation of the erosion follows the propagation of the
damage evolution, for the present boundary value problem the erosion propagates along the
lower boundary, resulting in a complete detachment of the geometry from the boundary. This
behavior corresponds to the results of the force displacement curves, where, once the element
erosion has propagated, zero resulting reaction forces are computed. Further, in figure (b)
when comparing the results corresponding to the finer meshes, it appears that for the present
example even with element erosion mesh convergence can be obtained. Yet, for the coarser
meshes a deviation of the results in the regime of propagating erosion can be observed. This
might be due to the fact that the element size is larger than the domain where Dmax-values are
succeeded yielding non-instantaneous propagation of the erosion. A corresponding observation
can be made when comparing the contour plot (d)(2) to (d)(16) (both corresponding to load
stage u?Y = 5 mm), where in the first some elements of the row closest to the lower boundary
are not eroded completely.

9.2.5 Parameter Study

The plots of figure 9.6 show results of the proposed P2u-P1Bα-P0λ formulation for a variation
of parameters. Shown are force displacement curves for a linear increasing loading scenario
as in the previous subsection. The mesh size for all curves corresponds to nel = 16000
elements and a time discretization with ns = 500 load steps. First, in order to investigate the
functionality of the approach for a variation of the local damage parameters, in figures 9.6
(a) and (b) the results for the parameter ranges (d0, d1) ∈ {0.5, 1, 2, 4}MPa are shown. For
the chosen nonlocal parameter c = 100 Nmm for all variations of d0 and d1 the formulation
remains robust and convergence of the solution procedure can be observed. In order to analyze
the behavior with respect to varying values of the nonlocal parameter for the results in figure
9.6 (c) parameters c ∈ {50, 100, 200, 400}Nmm are used. Here, the regularizing effect of the
nonlocal parameter becomes clear: As the value of the nonlocal parameter c increases, the
softening occurs less rapidly ie. the slope in the softening regime of the curves of figure (c)
decreases. This corresponds to the fact that for higher values of c the penalization of the
gradient ∇α is stronger leading to a more distributed but less rapid damage propagation as
the load increases. On the other hand, once the degree of regularization becomes small, the

5Correspondingly, the threshold parameter in algorithm 1 is set to αmax = − ln (1− 0.95).
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Figure 9.5: Visualization of the mesh independence of the P2u-P1Bα-P0λ element with
erosion (cf. section 9.1.3). Plots (a) and (b) show force displacement curves corresponding to
the different mesh refinement stages (nel ∈ {250, 2000, 16000, 128000} (figure (b) shows the
enlargement of the transition area framed with a dashed line in (a)). (c)(2)-(e)(2) show damage
contour plots corresponding to the load stages u?Y ∈ {4.42, 5, 25} mm (marked with bullets
in (a) and (b)) for mesh refinement stage 2 (nel = 2000). (c)(16)-(e)(16) show damage contour
plots corresponding to the same load stages for mesh refinement stage 3 (nel = 16000).
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Figure 9.6: Force displacement plots of the P2u-P1Bα-P0λ element for various parameter
ranges: Plots (a) and (b) show results for varying values of the local damage parameters d0

and d1, respectively. Plot (c) shows results for varying values of the nonlocal parameter c.
For plot (d) the element erosion is switched on. The plot shows results for various threshold
parameter values for which the erosion is set to occur. Here, the threshold values of the
damage variable αmax ∈ {1, 2, 3} correspond to maximal values Dmax ∈ {0.632, 0.865, 0.950}
of the damage field. All curves correspond to a mesh with nel = 16000 elements (i.e. the third
refinement step of previous studies).
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formulation approaches the purely local formulation (cf. section 8.1) and correspondingly
shows loss of numerical robustness. For the present parameter setting a loss of robustness
of the solution procedure is observed for values going below c = 10 Nmm. Lastly, for the
parameter study of figure 9.6 (d) the element erosion technique (cf. algorithm 1) is activated.
The plot shows the force displacement curves for a variation of the threshold parameters
αmax ∈ {1, 2, 3} at which the erosion in the element is set to occur. With the conversion
according to (8.2) the threshold parameters correspond to activation of the erosion at the
damage percentages of Dmax = 63.2%, 86.5% and 95.0%, respectively. Here, models with
lower numerical values of the parameter αmax correspond to material responses which account
for less softening until failure and vice versa. Accordingly, in the force displacement curves
of figure 9.6 (d) the lower the value of αmax the lower the load stage at which the reaction
force jumps to zero due to the element erosion. For the present parameter variations, the
propagation of the erosion of the elements (see also the contour plots of figure 9.5 (c)(16)-
(e)(16)) occurs almost instantaneous. Yet, no loss of convergence of the solution procedure is
observed for the present choices of αmax.
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Conclusion and Outlook

The present work dealt with the development of mixed finite element formulations for gradient
enhanced elasticity and gradient enhanced damage models. The main focus was to establish
formulations that ensure numerical robustness and cost efficiency. Therefore, various mixed
formulations and corresponding suitable numerical approximation schemes were proposed that
keep computation cost low while possessing numerical stability. The proposed formulations
were numerically tested on various benchmark problems, confirming the stability in terms of
convergence, numerical robustness and relative computing efficiency.
Part I of this thesis was focused on finite element formulations for gradient elasticity. Firstly,
the original displacement based formulation and some challenges of corresponding fully C1

continuous primal formulations were illustrated. Then, in the following chapter, various mixed
three field formulations that allow for much simpler C0 continuous approximations have been
presented. For each formulation, some investigation regarding consistency with the original
problem as well as stability was provided. Moreover, suitable approximation schemes that
allow for static condensation while keeping the number of degrees of freedom at a minimum
were proposed. In addition to that, in the subsequent chapter the so called RotFEM approach
was presented. The special feature of this formulation is the incorporation of a mixed rotation-
free variable associated to the displacement gradients. This enables for a set of variational
equations in which the displacements are decoupled from the main problem and thereby reduce
the size of the problem. Moreover, the corresponding linearized formulation has been shown
to fulfill the relevant stability conditions both in the continuous and the presented discrete
framework, promising numerical robustness. Finally, the stability, robustness and efficiency
of the proposed formulations were verified on several numerical tests on various benchmark
problems. Remarkably, for some of the three field formulations (cf. figure 7.8) computing
times could be achieved that are not far off the times of simple standard local elasticity
elements.
Yet, future research efforts could extend the approximation schemes of the additional sur-
face terms, which were proposed in Riesselmann et al. [2024] for the framework of the
symmetric three field formulation, to all proposed formulations as these surface terms may
further enhance the convergence behavior for special configurations of higher order boundary
conditions. Another area of interest of future research efforts could be to find specialized
interpolation schemes for the mixed variable that are by design rotation free and symmetric.
Corresponding schemes could be applicable to both the three field approaches and the Rot-
FEM approach, might eliminate the necessity of the rot-rot stabilization and in the case of
the RotFEM approach even entirely remove the need for Lagrange multipliers in the main
problem. However, the construction of corresponding schemes is not trivial and might require
again higher order polynomials. See e.g. the approach of Arnold et al. [2008] which intro-
duces a suitable approximation scheme of symmetric tensors in H(Div;B; S). In the context
of the RotFEM formulation another remaining challenge is the applicability to problems with
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non-connected Dirichlet conditions and the fact that information about the constant parts of
prescribed displacement functions on the boundary does (without modification) not enter the
main problem. Here, a remedy could be the incorporation of additional line integral terms
connecting the boundaries and carrying information about the missing constant parts.
Part II of this work was concerned with mixed finite element formulations for gradient dam-
age. Therefore, firstly the comparative formulations, namely the penalty approach and the
neighbored element approach have been presented and some challenges of the penalty ap-
proach have been illustrated. In the following chapter an efficient mixed formulation has been
presented, which ensures compatibility between the nodal damage variable and a local vari-
able through a Lagrange multiplier constraint eliminating the need for a penalty term while
providing more accurate solutions. The key aspect of this constraint term lies in the integra-
tion of the damage evolution inequality conditions. By utilizing the Lagrange multiplier value
to distinguish between damage loading and unloading scenarios, along with updating a local
variable, the no-healing inequality has effectively been incorporated. This proposed method
offers the advantage of not requiring additional computational resources for evaluating the
evolution/no-evolution condition and storing history parameter values, as these quantities are
already available from the global iterative solution process. Through volume-bubble-enhanced
interpolation of the damage variable, an approximation scheme that provides rank-sufficient
tangent matrices for piecewise constant Lagrange multipliers has been proposed. The pro-
posed approach has been accompanied by a stability analysis of the corresponding linear
system indicating inf-sup stability. Additionally, the discretization allows for static conden-
sation, resulting in a positive symmetric global matrix with a reduced number of equations,
similar to competitive penalty methods. Numerical tests of the proposed approach have shown
mesh-independent solutions, robustness of the solution procedure for states of severe damage
and under cyclic loading conditions. Worth mentioning are the computing times that in the
numerical studies have been observed to be in the same order of magnitude as purely elas-
tic computations. Moreover, the integration of a method for element erosion to account for
complete failure has been discussed and accompanied by numerical outcomes demonstrating
mesh convergence, further validating the reliability of the proposed approach.
Possible future research efforts in the context of the proposed gradient damage formulation
could further explore various suitable pairings of higher order interpolation schemes together
with higher order integration schemes in order to increase the resolution of the damage field
and corresponding points of evaluation of the evolution criterion. This might be especially of
interest when applying the approach to phase-field type of models by providing the possibility
for p-adaptive refinement schemes in intricate subdomains of the geometry, e.g. in the vicin-
ity of crack tips. In this context, also a comparison with h-adaptive schemes might be worth
investigating. Of course, corresponding studies would have to include a comparison of com-
puting efficiency to establish if possible trade-offs with respect to cost increase are feasible.
Moreover, model extensions in order to account for plasticity could also be considered.
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Appendix A

Continuous Expressions

A.1 Continuous Gradient Elasticity Formulations

In order to shorten the expressions in what follows, the L2 product over the volume, surface
and edge is denoted by
ˆ
B
••� dV ··= 〈•, �〉

3∑
i

ˆ
Γ(i)

(•)i(�)i dA ··= 〈〈•, �〉〉Γ and
3∑
i

ˆ
Υ(i)

(•)i(�)i dA ··= 〈〈〈•, �〉〉〉Υ

(A.1)
respectively. Here, Γ(i) ∈ {Γ(i)

D ,Γ
(i)
H ,Γ

(i)
N ,Γ

(i)
M } is a placeholder for any surface subdomain. For

the sake of readability, a simplified notation is used, which implies the sum of the surface
subdomain integrals corresponding to the three coordinate components i (cf. section 4.1).
If the entire surface Γ = ∂B is considered, the subscript is omitted. Thus, the variational
equation corresponding to the original problem (4.4) reads

〈P ,∇δu〉+ 〈G,∇∇δu〉+ δΠext = 0 with
δΠext ··= −〈f , δu〉 − 〈〈t, δu〉〉ΓN

− 〈〈r,∇δu · n〉〉ΓM
− 〈〈〈l, δu〉〉〉ΥN

(A.2)

where the stress tensors P and G are defined in (7.3). Following the steps of integrating by
parts and application of Stoke’s theorem (for details see Mindlin [1964]) yields the corre-
sponding Euler-Lagrange equations

−DivP + Div DivG = f in B

(P · n+ (DivΓn)G : (n⊗ n)−DivΓ(G · n)− (DivG) · n = t)i on Γ
(i)
N

([[G : (m⊗ n)]]Υ = l)i on Υ
(i)
N

(G : (n⊗ n) = r)i on Γ
(i)
M

(u = u?)i on Γ
(i)
D

(∇u · n = h?)i on Γ
(i)
H

(A.3)

where denotes the surface tangential vector pointing in the direction normal to the edge Υ
and [[•]] denotes the difference between the values of the neighboring surfaces across the edge
(cf. Mindlin [1964], see also Riesselmann et al. [2024]). Meanwhile, making use of the
concepts introduced in section 2.3.3 and for the sake of simplicity assuming pure Dirichlet
boundary conditions for the linearization of (A.2) the bilinear form

a(∇δu,∇∆u) ··= 〈∇δu,C : ∇∆u〉+ 〈∇∇δu,L
... ∇∇∆u〉 (A.4)
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can be defined, where ∆u are small displacement increments, C = C|i ··= ∂∇uP |i and L =
L|i ··= ∂∇∇uG|i are first and second order tangent operators, respectively and i refers to
values of the previous Newton iteration. For the commonly used elastic energy functions, the
symmetries (C)ijkl = (C)jilk can be assumed. Therefore, due to the symmetrizing effect of C
the bilinear form (A.4) can together with the linear form equivalently be written as

a(∇δu,∇∆u) ··= 〈sym∇δu,C : sym∇∆u〉+ 〈∇∇δu,L
... ∇∇∆u〉

l(δu) ··= 〈f , δu〉 − 〈∇δu,P |i〉 − 〈∇∇δu,G|i〉
(A.5)

The linearized problem corresponding to (A.2) is given in section 6.1.5

A.1.1 Formulations Corresponding to Section 5.1.1

In the following, the explicit expressions of the variational equation corresponding to problem
(5.2) are given and equivalence to the original problem is shown. Therefore, due to the
existence of the Dirichlet boundary conditions (5.5) and (5.6) only the components of ΠΓ of
(5.4) that do not belong to the Dirichlet boundaries (5.5) and (5.6) are considered yielding
the following explicit expressions:

〈〈Ḡ · n,∇u〉〉 ⇒ 〈〈Ḡ · n,∇Γu〉〉ΓN
+ 〈〈Ḡ : (n⊗ n),∇u · n〉〉ΓM

〈〈Ḡ · n,H〉〉 ⇒ 〈〈Ḡ · n, (H)(t)〉〉ΓN
+ 〈〈Ḡ : (n⊗ n),H · n〉〉ΓM

(A.6)

where H and ∇u have been decomposed into surface normal and surface tangential compo-
nents according to (2.15) and (2.20), respectively1. Variation of (5.1) leads to the following
set of equations

〈P loc,∇δu〉 − 〈Λ,∇δu〉+ 〈〈Ḡ · n,∇Γδu〉〉ΓN
+ 〈〈Ḡ : (n⊗ n),∇δu · n〉〉ΓM

+ δuΠext = 0

〈P nloc, δH〉+ 〈Ḡ,∇δH〉+ 〈Λ, δH〉 − 〈〈Ḡ · n, (δH)(t)〉〉ΓN
− 〈〈Ḡ : (n⊗ n), δH · n〉〉ΓM

+〈〈δḠ · n,∇Γu− (H)(t)〉〉ΓN
+ 〈〈δḠ : (n⊗ n), (∇u · n−H · n)〉〉ΓM

+ δHΠrot = 0

〈δΛ,H −∇u〉 = 0

(A.7)

With P loc ··= ∂∇uψ
loc, P nloc ··= ∂Hψ

nloc and P = P loc + P nloc accounting for nonlocal
components of the first order stress tensor (cf. section 7.1). The following argumentation
shows that the solution H that solves (A.7)3 for any δΛ ∈ H−1(B; IR3×3) is rotation-free
(RotH = 0). With the Helmholtz decompositions, splitting any L2 function into a rotation
and a gradient part (cf. Schedensack [2015]) δΛ = Rot δΛ̃ +∇δλ̃ and H = Rot H̃ +∇h̃
equation (A.7)3 reads

〈δΛ,H −∇u〉 = 〈Rot δΛ̃ +∇δλ̃,Rot H̃ +∇h̃−∇u〉 = 〈Rot δΛ̃,Rot H̃〉+ 〈∇δλ̃,∇h̃−∇u〉.

(Recall the identity (2.26)). Moreover, due to the orthogonality (2.26) of rotations and gra-
dients both terms on the right-hand side of the previous equation must vanish independently.
In other words, the solution H must be such that the term 〈Rot δΛ̃,Rot H̃〉 vanishes, which
is only the case for any δΛ if (with 〈Rot δΛ̃,Rot H̃〉 ⇒ 〈δΛ̃,Rot Rot H̃〉 after applying the
divergence theorem) Rot Rot H̃ = RotH vanishes. Therefore, the term δHΠrot = 0 does not

1Note the relation 〈〈Ḡ · n, (•)(n)〉〉 = 〈〈Ḡ : (n⊗ n), (•) · n〉〉 (verifiable via index notation).
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affect the continuous solution2 and can be omitted in the following expressions. With the
integration by parts formula

〈Ḡ,∇δH〉 = −〈Div Ḡ, δH〉+ 〈〈Ḡ · n, (δH)(t)〉〉ΓN
+ 〈〈Ḡ : (n⊗ n), δH · n〉〉ΓM

(A.8)

(here, under the consideration of the Dirichlet conditions (δH)(t) = 0 on ΓD and (δH)(n) = 0
on ΓH) equation (A.7)2 can be written as

〈P nloc, δH〉 − 〈Div Ḡ, δH〉+ 〈Λ, δH〉+ 〈〈δḠ · n,∇Γu− (H)(t)〉〉ΓN

+〈〈δḠ : (n⊗ n), (∇u · n−H · n)〉〉ΓM
= 0,

(A.9)

since the fourth and fifth term of (A.7)2 cancel out with the second and third term of (A.8).
In the following (analogously to Riesselmann et al. [2019], Lemma 1 but with consideration
of the surface terms) it is shown that for every solution u ∈ U to (A.2) there exists a (H,Λ)
such that (A.7) holds. Conversely, if (u,H,Λ) is a solution to (A.7) then u coincides with
the solution of (A.2) and is in the space U (cf. (4.5)).

Proof. First it is shown that for H = ∇u (and therefore Ḡ ··= ∂∇Hψ = ∂∇∇uψ =·· Ḡ)
problem (A.7) is identical to problem (A.3). InsertingH = ∇u into (A.9) makes the last two
terms vanish giving

〈P nloc, δH〉 − 〈DivG, δH〉+ 〈Λ, δH〉 = 0

which holds only true if −P nloc + DivG = Λ in B. Inserting this result into (A.7)1 yields
with P = P loc + P nloc

〈P ,∇δu〉 − 〈DivG,∇δu〉+ 〈〈G · n,∇Γδu〉〉ΓN
+ 〈〈G : (n⊗ n),∇δu · n〉〉ΓM

+ δΠext = 0

Now, inserting the integration by parts formula

− 〈DivG,∇δu〉 = 〈G,∇∇δu〉 − 〈〈G · n,∇Γδu〉〉ΓN
− 〈〈G : (n⊗ n),∇δu · n〉〉ΓM

(A.10)

(here, under consideration of the Dirichlet boundary conditions (5.5) and (5.6)) equation
(A.7)1 becomes

〈P ,∇δu〉+ 〈G,∇∇δu〉+ δΠext = 0.

showing that if H = ∇u problems (A.3) and (A.7) are equivalent.
The following sentences conclude the proof. Let u ∈ U ⊆ H1

0 (B; IR3) be the solution to (A.2).
Then, the choice H ··= ∇u and Λ ··= DivG makes (u,H,Λ) a solution to (A.7). Reversely,
let (u,H,Λ) be the solution to (A.7). When looking at (A.7)3 it becomes clear, that for
arbitrary δΛ ∈ H−1(B; IR3×3) the conditions H = ∇u and RotH = 0 must hold. Therefore,
the corresponding solution u is a solution to (A.3), since for ∇u = H problems (A.3) and
(A.7) are equivalent. Moreover, ∇u = H ∈ H1

0 (B; IR3×3) implies u ∈ U .

A.1.2 Formulations Corresponding to Section 5.2.1

Variation of the potential (5.23) yields

〈Div Λ, δu〉 − 〈〈Λ · n, δu〉〉+ δuΠΓ + δΠext = 0

〈P̄ , δH〉+ 〈Ḡ,∇δH〉+ 〈Λ, δH〉+ δHΠΓ + δHΠrot = 0

〈δΛ,H〉+ 〈δDiv Λ,u〉 − 〈〈δΛ · n,u〉〉 = 0

(A.11)

2It is, however, for some strain energy models necessary in order to ensure rank sufficiency of the element
stiffness matrix of the corresponding discrete system (cf. chapter 7).
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where P̄ ··= ∂Hψ denotes the first order stress tensor (7.3) formulated entirely in terms ofH.
The expressions δuΠΓ and δHΠΓ stand for all the terms that correspond to the variation of
(A.6) and are unchanged from (A.7). By applying the divergence theorem back in the other
direction giving

〈δDiv Λ,u〉 − 〈〈δΛ · n,u〉〉 = −〈δΛ,∇u〉
it becomes clear that (A.11)3 is equivalent to (A.7)3 and therefore for the function H that
solves (A.11) the relations H = ∇u and RotH = 0 must hold as before. Further, with
H = ∇u follows P̄ = P and Ḡ = G and (A.11)2 holds true only if

Λ = −P + DivG

holds (Note, that the terms corresponding to δHΠΓ are vanishing, analogous to the previous
section (cf. (A.9))). Inserting this into (A.11)1 yields together with (A.10) again as in the
previous section the original weak form (A.2). In what follows, the explicit expressions of the
linearization of (A.11) are presented in terms of the bilinear- and linear forms used in (5.25).
After that, the inf sup conditions are discussed. Linearization of (A.11) yields for Dirichlet
boundary conditions the system of equation (5.25), where the linear- and bilinear forms are
defined as

a(δH,∆H) ··= 〈δH,C|i : ∆H〉+ 〈∇δH,L|i
... ∇∆H〉+ α 〈Rot δH,Rot ∆H〉

l(δH) ··= −〈δH, P̄ |i〉 − 〈∇δH, Ḡ|i〉 − α 〈Rot δH,RotH|i〉 − 〈δH,Λ|i〉
b1(δΛ,∆H) ··= 〈δΛ,∆H〉

l(δΛ) ··= −〈δΛ,H|i〉 − 〈Div δΛ,u|i〉
b2(∆Λ, δu) ··= 〈Div ∆Λ, δu〉

l(δu) ··= 〈f , δu〉 − 〈Div Λ|i, δu〉

(A.12)

and the tangent operators defined as C ··= ∂HP̄ and L ··= ∂∇HḠ. In the following, the inf-sup
stability (5.26) is shown. As shown in the proof of proposition 3 in Riesselmann et al.
[2021] based on the proven inf-sup condition for the Stokes equation (Ladyzhenskaya lemma,
Amrouche and Girault [1992]) the condition

sup
Λ∈H(Div;B;IR3×3)\{0}

〈Div Λ,u〉
||Λ||H(Div)

& ||u||L2 ∀u ∈ L2(B; IR3)

holds. Following Braess [2007] (p.117, def 3.1) the relation ||(•)||L2 ≥ ||(•)||H−1 holds.
Therefore, from definitions (2.54), (2.42) and (2.51) it can directly be seen that ||(•)||L ··=
||(•)||H−1(Div) ≤ ||(•)||H(Div) must be true. Therefore, since the space L is larger than the space
H(Div;B; IR3×3) (L2(B) ⊆ H−1(B)⇒ H(Div;B; IR3×3) ⊆ L, see again Braess [2007], p.117,
def 3.1) it can be written

sup
Λ∈L\{0}

b2(Λ,u)

||Λ||L
≥ sup

Λ∈H(Div;B;IR3×3)\{0}

b2(Λ,u)

||Λ||L

≥ sup
Λ∈H(Div;B;IR3×3)\{0}

〈Div Λ,u〉
||Λ||H(Div)

& ||u||U ∀u ∈ U ,

which shows that the inf-sup condition (5.26) holds with U and L defined in (5.24). That
the other inf-sup condition (5.27) holds is shown in the proof of proposition 4 in Riessel-
mann et al. [2021]. The key ingredient for the proof is that the kernel space Λ ∈ Z(Λ) is
divergence-free and thus with ||Div Λ||L2 = 0 the norm for L simplifies to

||Λ||L = ||Λ||H−1
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which per definition (2.50) fulfills the inf-sup condition with

sup
H∈H\{0}

b2(H,Λ)

||H||H
& sup
H∈H1

0 (B;IR3×3)\{0}

〈H,Λ〉
||H||H1

=·· ||Λ||L ∀Λ ∈ Z(Λ)

since on both sides of the inequality appears the same expression. Note, that equation (5.25)3
differs from the corresponding equation treated in Riesselmann et al. [2021] in the fact
that in the present case the right-hand side is not zero. This, however, does not change the
result, since problem (5.25) can always be reduced to a problem where the corresponding
right-hand side is zero (cf. Brenner and Scott [1994]). This can also be shown by the
following consideration: Introduce the function Λ̃ ∈ L with b2(Λ̃, δu) = b2(Λ, δu) − l(δu)
and the following relations Λ̃ = Λ+ Λ̂, δΛ̃ = δΛ, Div Λ̃ = Div Λ−f , Div δΛ̃ = Div δΛ, with
Λ̂ ∈ L . Then, problem (5.25) can be expressed by the identical problem but formulated in
Λ̃:

b2(∆Λ̃, δu) = 0

a(δH,∆H) + b1(δH,∆Λ̃) = lH(δH)

b2(δΛ̃,∆u) + b1(∆H, δΛ̃) = lΛ(δΛ̃)

(A.13)

From the inf-sup condition (5.27) on the kernel space Z(Λ) which is associated to the present
representation (A.13), the inf-sup condition for the problem (5.25) follows as well, since (A.13)
and (5.25) are equivalent. In consequence, the appearance of the linear forms l(•) is irrelevant
to the stability analysis as long as the values of the prescribed functions in the residual are
bounded. Thus, whether they contain only the integrals including the load functions or also
the integrals incorporating the values of the previous iteration resulting from the linearization
makes no difference to the stability of the linear system. Nevertheless, Brezzi’s conditions can
of course only make a prediction about the stability of the solution of the linearized system
and give in general no conclusion about the convergence of the superordinate iterations of the
load step solution procedure.

A.1.3 Formulations Corresponding to Section 5.3.1

The following shows that the variational equations corresponding to the potential ΠH3 of
section 5.3.1 are equivalent to the original problem (A.2). Variation of the potential ΠH3

defined in (5.41) reads

〈Sloc, δE(u)〉 − 〈Σ, δE(∇u)〉+ 〈〈B̄ · n, δE(∇u)〉〉+ δuΠext = 0

〈Snloc, δE〉+ 〈B̄,∇δE〉+ 〈Σ, δE〉 − 〈〈B̄ · n, δE〉〉+ 〈〈δB̄ · n,E(∇u)−E〉〉 = 0

〈δΣ,E −E(∇u)〉 = 0

(A.14)

with the second Piola Kirchhoff stress tensor Sloc ··= ∂E(∇u)ψ
loc formulated in terms of ∇u

and the nonlocal contribution Snloc ··= ∂Eψ
nloc formulated in terms of E adding up with

S = Sloc +Snloc to the first order stress tensor as defined in section 7.1 (see also dell’Isola
et al. [2018]). The solution of (A.14)3 implies E = E(∇u) resulting in B̄ = B and
simplifying equation (A.14)2 to

〈Snloc, δE〉+ 〈B,∇δE〉+ 〈Σ, δE〉 − 〈〈B ·n, δE〉〉 = 〈Snloc, δE〉 − 〈DivB, δE〉+ 〈Σ, δE〉 = 0
(A.15)
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after applying the divergence theorem

〈B,∇δE〉 = 〈〈B · n, δE〉〉 − 〈DivB, δE(∇u)〉

and canceling out the surface term. Equation (A.15) implies Σ = −Snloc + DivB. Inserting
this together with (A.18) into (A.14)1 yields

〈S, δE(∇u)〉 − 〈DivB, δE(∇u)〉+ 〈〈B · n, δE(∇u)〉〉+ δuΠext = 0 (A.16)

The divergence theorem applied to the surface term of (A.16) reads

〈〈B · n, δE(∇u)〉〉 = 〈DivB, δE(∇u)〉+ 〈B,∇δE(∇u)〉,

which inserted into (A.16) leads to

〈S, δE(∇u)〉+ 〈B,∇δE(∇u)〉+ δuΠext = 0 (A.17)

Finally, following from the kinematics discussed in section 7.1 for any L2 integrable second
and second order tensor (•) ∈ L2(B;S) and (�) ∈ L2(B;S× IR3), respectively with the present
symmetries we note the relations

〈〈(•), δE(∇u)〉〉 = 〈〈F · (•),∇δu〉〉 and 〈〈(�),∇δE(∇u)〉〉 = 〈〈F · (�),∇∇δu〉〉 (A.18)

(note also the relations ∇δu = δF and ∇∇δu = ∇δF ). Together with the relations F ·S = P
and F ·B = G yields after applying (A.18) to (A.17) the equation

〈P ,∇δu〉+ 〈G,∇∇δu〉+ δΠext = 0

which is the original problem (A.2).

A.2 Continuous Proposed Gradient Damage Formulation

Variation of (9.1) leads to the set of equations

〈P ,∇δu〉 − 〈f , δu〉 − 〈〈t, δu〉〉ΓN
= 0

〈∂αψ, δα〉+ 〈∂∇αψ,∇δα〉+ 〈∂αγ, δα〉+ 〈λ, δα〉 = 0

〈δλ, α− αn〉 = 0

(A.19)

with the first Piola Kirchhoff stress tensor P ··= ∂Fψ. Note, that applying the divergence
theorem to equation (A.19)2 yields the relation (9.6) and the surface flux equation (8.17).
Linearization of (A.19) leads to the system of equations (9.7), where the linear- and bilinear
forms are defined by

a1(δu,∆u) ··= 〈δ∇u,C|i : ∆∇u〉
a2(δα,∆α) ··= 〈δα, d|i ∆α〉+ 〈∇δα, c|i ∆α〉
b1(δu,∆α) ··= 〈∆αD|i,∇δu〉
b2(δα,∆λ) ··= 〈δα,∆λ〉

l(δu) ··= 〈f , δu〉+ 〈〈t, δu〉〉ΓN
− 〈P |i,∇δu〉

l(δα) ··= −〈∂α(ψ + γ)|i, δα〉 − 〈∂∇αψ|i,∇δα〉 − 〈λ|i, δα〉
l(δλ) ··= −〈δλ, α|i − αn〉

(A.20)

where (•)|i denotes the values of the previous iteration, ∆(•) ··= (•)−(•)i denotes the solution
increment and the tangent operators are defined as C ··= ∂∇uP , d ··= ∂α∂α(ψ + γ), c ··=
∂∇α∂∇α(ψ + γ) and D ··= ∂αP . Further, note the relations ∇δu = δF and ∇∆u = ∆F .
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Discrete Expressions

B.1 Static Condensation

Since throughout this contribution the static condensation procedure starting from the same
structure of element submatrix-expressions is applied repeatedly, the present section presents
the transformation steps with a generic example linearized system that has the same structure
as those of presented formulations. Starting point is the system of equations

A
T∈T

(
kv kvhI kvhB

kvρ
khIv khI khIhB

khIρ
khBv

khBhI
khB

khBρ

kρv kρhB
kρhI 0



dv
dhI
dhB

dρ

+


rv
rhB

rhB

rρ

) = 0, (B.1)

of which v, h and ρ are placeholders for the solution variables corresponding to the actual
proposed formulations. Here, h denotes the submatrices of the discrete solution field that is
enriched with volume bubble functions and ρ denotes the discrete solution field corresponding
to the first Lagrange multiplier variable. For example, in the case of the formulation of section
5.1.2 u, h and ρ correspond to u, H and Λ, respectively. Note, that (B.1) constitutes a more
detailed notation in which the sub-matrixes and vectors corresponding to the vertex degrees
of freedom dhI and the internal degrees of freedom dhB

of the variable h are considered
separately. Moreover, the most general case in which all non-zero tangent submatrices except
for the submatrix corresponding to the Lagrange multiplier ρ is considered. By multiplying
the third row of (B.1) from the left by (khB

)−1 we obtain for the internal degrees of freedom
corresponding to the volume bubble function

dhB
= −(khB

)−1(khBv
dv + khBhI

dhI + khBρ
dρ + rhB

) (B.2)

Inserting (B.2) into rows 1,2 and 4 for each element on the left-hand side of (B.1) yields the
expressions

kvdv + kvhIdhI − kvhB
(khB

)−1(khBv
dv + khBhI

dhI + khBρ
dρ + rhB

) + kvρdρ + rv

khIvdv + khIdhI − khIhB
(khB

)−1(khBv
dv + khBhI

dhI + khBρ
dρ + rhB

) + khIρdρ + rhI

kρvdv + kρhIdhI − kρhB
(khB

)−1(khBv
dv + khBhI

dhI + khBρ
dρ + rhB

) + rρ,

(B.3)
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from which the following substitute expressions can be identified:

k?v ··= kv − kvhB
(khB

)−1khBv
r?v ··= rv − kvhB

(khB
)−1rhB

k?vh ··= kvhI − kvhB
(khB

)−1khBhI
= (k?hv)

T r?h ··= rhI − kvhB
(khB

)−1rhB

k?vρ ··= kvρ − kvhB
(khB

)−1khBρ
= (k?ρv)

T r?ρ ··= rρ − kvhB
(khB

)−1rhB

k?h ··= khI − khIhB
(khB

)−1khBhI

k?hρ ··= khIρ − khIhB
(khB

)−1khBρ
= (k?ρh)T

k?ρ ··= −kρhB
(khB

)−1khBρ
,

(B.4)

so that problem (B.1) can now be written as

A
T∈T

( k?v k?vh k?vρ
k?hv k?h k?hρ
k?ρv k?ρh k?ρ

 dvdhI
dρ

+

r?vr?h
r?ρ

) = 0. (B.5)

The second step of the condensation procedure is based on multiplying (B.5) from the left by
(k?ρ)

−1, which yields for the Lagrange multiplier degrees of freedom

dρ = −(k?ρ)
−1(k?ρvdv + k?ρhdhI + r?ρ) (B.6)

At this point it becomes obvious that the additional volume bubble degrees of freedom dhB

are necessary for the condensation of dρ, because only due to the previously discussed con-
densation (B.2)-(B.5) the sub-matrix k?ρ on the lower right of (B.5) is not zero and (B.6)
computable. Inserting (B.6) for each element into the second and third row on the left-hand
side of (B.5) yields the expressions

k?vdv + k?vhdhI − k
?
vρ(k

?
ρ)
−1(k?ρvdv + k?ρhdhI + r?ρ) + r?v

k?hvdv + k?hdh − k?hρ(k?ρ)−1(k?ρvdv + k?ρhdhI + r?ρ) + r?h
(B.7)

from which we identify the substitute matrix and residuals

k??v ··= k?v − k?vρ(k?ρ)−1k?ρv r??v ··= r?v − k?vρ(k?ρ)−1r?ρ

k??vh ··= k?vh − k?vρ(k?ρ)−1k?ρh = (k??hv)
T r??h ··= r?h − k?hρ(k?ρ)−1r?ρ

k??h ··= k?h − k?hρ(k?ρ)−1k?ρh

(B.8)

and problem (B.5) can be written as the reduced equation system

A
T∈T

([k??v k??vh
k??hv k??h

] [
dv
d?h

]
+

[
r??v
r??h

])
= 0 (B.9)

B.2 Interpolation Matrices of the RotFEM Approach

The subsequent relationships demonstrate the shift from tensor notation to matrix notation.

uh =
∑
I

d
(u)
I NI ⇒ uh = Nudu,

Hh =
∑
I

d
(H)
I NI ⇒ Hh = NHdH ,

∇uh =
∑
I

d
(u)
I ⊗∇NI ⇒ ∇uh = Budu,

∇Hh =
∑
I

d
(H)
I ⊗∇NI ⇒ ∇Hh = BHdH .
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In this context, the representation in tensor notation is shown in the left column, where
dI(•) represents the vector/tensor of degrees of freedom and NI represents the Lagrangian
shape function corresponding to the I-th element node. The specific suitable choices of the
Lagrange shape functions corresponding to the 2D and 3D cases, respectively, are given in
section 6.2. When expressed in matrix notation, the solution variables (e.g. Hh,∇Hh,...)
and the associated element-wise vectors of nodal degrees of freedom (dH ,du...) are treated
as column-matrices, while the element-wise interpolation operators (e.g. NH ,BH ,...) are
considered as matrix quantities. The piecewise constant interpolation of the second Lagrange
multiplier variable of section (6.2) is carried out in a similar manner through

µh = d(µ)N (P0) ⇒ µh = Nµdµ,

with N (P0) = 1 and the vector d(µ) corresponding to the degrees of freedom of the internal
node of the element. For the construction of the rotation operator matrix, consider the
relation:

RotHh (B.10)

where RotHh is obtained by inserting ∇Hh into the relations and (2.22) and (2.23) for
d = 2 and d = 3, respectively. Similarly to the preceding explanations, the Raviart-Thomas
interpolation matrices can be constructed from the following relations

Φh =

4∑
I=1

sgn(nI)d
(Φ)
I ⊗N (RT0)

I ⇒ Φh = SΦdΦ

Div Φh =

4∑
I=1

sgn(nI)d
(Φ)
I DivN

(RT0)
I ⇒ Div Φh = DΦdΦ

where for the implementation of the physical basis functions N (RT0)
I the kinematic relations

(3.53) and (3.54) are used (details in section 3.2.1). Note that here, the vector-approximation
scheme (3.53) corresponds to each row of the second order tensor Φh. Thus, the corresponding
nodal degrees of freedom d

(Φ)
I are vector-valued yielding together with the vector-valued

basis a tensor-valued approximation function (see also Schwarz [2009] and Viebahn et al.
[2018]).

B.3 Details on the H-DivΛ Discretization

Starting from the approach of Raviart and Thomas [1977] in the following, the constraint
term (5.29) is derived following the approach of Arnold and Brezzi [1985] together with
the Crouzeix-Raviart interpolation (5.32) for the displacements. Note, that for the sake of
readability we use the simplified notation Λh ··= Λh|T and uh ··= uh|T . The Raviart and
Thomas [1977]-discretization of the bilinear form b2 defined in (A.12) would read

b2(ūh, Λ̄h) =
∑
T∈T

ˆ
T

Div Λ̄h • ūh dV (B.11)

with the finite element spaces for (Λ̄h, ūh) ∈ RT0(B; IR3×3)× (P0(T ; IR3)∩L2
0(B; IR3)) where

RT0(T ; IR3×3) is defined as (cf. section 3.1.2):

RT0(T ; IR3×3) ··=

 Λ̄h = aT + bT ⊗X with
aT ∈ P0(T ; IR3×3), bT ∈ P0(T ; IR3)

:
Λ̄h is continuous in normal di-
rection across elem. interfaces

⇔ Λ̄h ∈ H(Div;B; IR3×3)


(B.12)
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Since the degrees of freedom corresponding to the Raviart-Thomas discretization Λ̄h live on
the interelement boundaries, static condensation on the element level is not possible. The aim
of the following is to enable static condensation of the Lagrange multiplier by using a piecewise
continuous interpolation. Therefore, following Arnold and Brezzi [1985] (Lemma 1.2 ff),
discretization (B.11) can be replaced by the following∑

T∈T

ˆ
T

Div Λ̄h • ūh dV ←
∑
T∈T

(ˆ
T

Div Λh • uh dV −
ˆ
∂T\∂B

Λh · n|∂T • dFT

)
(B.13)

with the finite element space Λh ∈ P0(T ; IR3x3)∩H(Div;B; IR3×3), 1 where dFT ∈ P0(F ; IR3)
are discrete Lagrange multipliers defined on the midface nodes of the element interfaces FT
enforcing normal continuity of Λh across element interfaces. Further, in Arnold and Brezzi
[1985] (Theorem 1.4 ff) it is shown that the Lagrange multipliers dFT approximate the dis-
placements u on the element mid-interfaces. Thus, the Crouzeix Raviart interpolation (5.32)
(cf. Braess [2007])

uh =
∑
I∈FT

d
(u)
I N

(CR)
I

is introduced and the Lagrange multipliers dFT ≡ d
(u)
I are considered as displacement degrees

of freedom. The Crouzeix Raviart finite element space is defined as follows:

CR0(T ; IR3) ··=

{
uh ∈ P1(T ; IR3) ∩ L2

0(B; IR3) :
uh is continuous at the midpoints

of the element faces FT

}
.

(B.14)
Note, that in our specific case (5.32) is a conforming discretization of u with CR0(T ; IR3) ⊂ U ,
because U is not defined over H1 but over L2 (cf. (5.24)). In the following, it is shown that
(5.29) is equivalent to the replacement (B.13).

Proof. Fort this, we consider the divergence theorem on one tetrahedron applied to the fol-
lowing expression:

ˆ
∂T

Λh · n|∂T • uh dA =

ˆ
T

Λh • ∇uh + Div Λh • uh dV (B.15)

In the following it is shown, that for the discretization (5.28) and the Crouzeix-Raviart in-
terpolation (5.32) the left-hand side and the first term of the right-hand side of (B.15) are
identical and therefore

´
T Div Λh • uh dV = 0.

Left-hand side of (B.15): With (5.32) and Λh chosen constant over the element and therefore
taken out of the element volume integral, the left-hand side of (B.15) can be written as

ˆ
∂T

Λh · n|∂T • uh dV =
∑
I∈FT

Λhn|AI •
ˆ
AI

N
(CR)
I dA d

(u)
I (B.16)

Since at each element face AI , where the surface integral is evaluated, the corresponding
Crouzeix Raviart basis function has the value N (CR)

I = 1 it follows:∑
I∈FT

Λhn|AI •
ˆ
AI

N
(CR)
I dA d

(u)
I =

∑
I∈FT

Λhn|AI •AI d
(u)
I

1Λh is embedded in H(Div;B; IR3×3), since normal continuity is enforced through the interface constraint
term.
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Table B.1: Comparing ∇ξRN
(CR)
I with geometric quantities of the reference tetrahedron. The

volume of the reference tetrahedron is V R = 1/6

I ARI n|ARI
ARI
V R
n|ARI ∇ξRN

(CR)
I

1
√

3/2 1/
√

3 (1, 1, 1)T 3 (1, 1, 1)T 3 (1, 1, 1)T

2 1/2 (0, 0,−1)T 3 (−1, 0, 0)T 3 (−1, 0, 0)T

3 1/2 (0,−1, 0)T 3 (0,−1, 0)T 3 (0,−1, 0)T

4 1/2 (−1, 0, 0)T 3 (0, 0,−1)T 3 (0, 0,−1)T

Reordering leads to the notation∑
I∈FT

Λhn|AI •AI d
(u)
I = Λh •

∑
I∈FT

(d
(u)
I ⊗AIn|AI ) (B.17)

Right-hand side of (B.15) (first term): Inserting (5.32) into the first term of the right-hand
side of (B.15) and rearranging terms similar to (B.17) leads to the following expression:ˆ

T
Λh • ∇uh dV = Λh •

∑
I∈FT

(d
(u)
I ⊗

ˆ
T
∇N (CR)

I dV ) (B.18)

We now show that
´
T ∇N

(CR)
I dV = AIn|AI and therefore (B.17) being identical to (B.18).

For this we consider the reference tetrahedron and compute ∇ξRN
(CR)
I , where ∇ξR(•) is the

gradient with respect to the reference coordinates ξR. A simple comparison of ∇ξRN
(CR)
I

with geometric quantities of the reference tetrahedron (cf. table B.1) yields

∇ξRN
(CR)
I =

ARI
V R

n|ARI

where ARI , n|ARI and V R denote the face area, corresponding normal vector and volume of
the reference tetrahedron. From inserting relations (3.21), (3.29) and (3.30) it follows:

∇N (CR)
I = ∇ξRN

(CR)
I J−1 =

AI
V
n|AI

Since all coefficients are constant, the volume integral simplifies to
´
T dV/V = 1 so that

ˆ
T
∇N (CR)

I dV = AIn|AI

holds. Inserting into (B.18) yieldsˆ
T

Λh • ∇uh dV = Λh •
∑
I∈FT

(d
(u)
I ⊗AIn|AI ) (B.19)

Since (B.17) and (B.19) are equivalent, the remaining term
´
T Div Λh • uh dV = 0 must be

zero and expression (B.13) simplifies to (5.29) 2.

Note, that as a consequence, for the chosen spaces Λh ∈ P0(T ; IR3x3) ∩H(Div;B; IR3×3) and
uh ∈ CR0(T ; IR3) constraint term (5.29) and

´
T Λh • ∇uh dV are interchangeable.

2Again, due to all coefficients being constant the integral is replaced by
´
∂T\∂B n|∂T =

∑
I∈FT

AInI
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