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Abstract

The objective of the presented thesis is the development and application of a framework for
the analysis and design of a car front bumper under the influence of polymorphic uncertainties.
The interest on the consideration of uncertainties in engineering applications has increased
in the recent years, which leads to the requirement of suitable methods for this purpose.
Uncertainties can be caused by various factors such as inherent natural variation, imprecise
or incomplete data and measurements and much more, all with their own respective demands
in view of an appropriate consideration in the application of interest. The car front bumper of
interest is made of an advanced high strength steel, a dual-phase steel. The behavior of such
a steel results from its distinct heterogeneous microstructure, however, due to the production
process this microstructure is not directly controllable. Thus, the properties of the dual-
phase steel becomes uncertain and together with further uncertainties imposed during the
production of the car front bumper, the behavior of said front bumper can not be reliable
predicted without consideration of uncertainties.

In this thesis a method is developed to quantify the uncertainty in the behavior of the dual-
phase steel, which is based on the numerical homogenization of a set of microstructure real-
izations. These microstructures are constructed, such that their variation of the microscale
is similar to the variation of the real material’s microstructure, whilst the geometrical com-
plexity of the virtual microstructures is kept as low as possible to ensure numerical efficiency.
In order to avoid the required effort to construct individual finite element meshes for each
and every considered microstructure, the Finite Cell Method is applied. Since the Finite Cell
Method requires the construction of so-called subcells, which is conventionally performed with
an Octree split, additional numerical effort is introduced. This effort can be reduced by the
application of the Optimal Decomposition approach presented in this thesis, which exploits
features of the geometry representation to construct less subcells with a better approximation
accuracy.

The obtained information on the variability of the dual-phase steels properties are then used
as input uncertainties to an uncertainty analysis of the sheet metal forming process. For
this purpose, the existing Optimal Uncertainty Quantification framework was extended to the
capability of polymorphic uncertainty quantification and additionally integrated with the idea
of discretized fuzzy numbers to allow a structured analysis of different interval combinations.
When spatially uncertain quantities should be investigated, often random fields are the tool of
choice. Random fields usually introduce significant numerical costs, such that in many cases
reliable conclusion can hardly be drawn. Thus, a nested application of the extended Optimal
Uncertainty Quantification is presented, which incorporates the often incomplete data random
fields of, e.g., spatially distributed material parameters. Eventually, the extended Optimal
Uncertainty Quantification framework is combined with reliability-based design optimization.
This allows the optimization of the car front bumper in view of the dissipated energy during
a crash, whilst a pre-defined threshold of safety is preserved.



iv

Zusammenfassung

Das Ziel der vorliegenden Arbeit ist die Entwicklung und Anwendung eines Frameworks für die
Analyse und den Entwurf eines PKW-Frontstoßfängers unter dem Einfluss polymorpher Un-
schärfen. Die Berücksichtigung von Unschärfen in ingenieurwissenschaftlichen Anwendungen
hat in den letzten Jahren an zusätzlicher Bedeutung gewonnen, weshalb geeignete Methoden
für die Unschärfequantifizierung verwendet oder gar entwickelt werden müssen. Unschär-
fen können durch verschiedene Faktoren verursacht werden, wie z.B. inhärente natürliche
Schwankungen, ungenaue oder unvollständige Daten und Messungen und vieles mehr, die alle
ihre eigenen Anforderungen im Hinblick auf eine angemessene Berücksichtigung haben. Das
Stoßelement eines PKWs, welches im Rahmen dieser Arbeit betrachtet wird, besteht aus einem
hochfesten Stahl, einem Dualphasenstahl. Das Verhalten eines solchen Stahls ergibt sich aus
seinem ausgeprägten heterogenen Gefüge, welches jedoch aufgrund des Herstellungsprozesses
nicht direkt kontrollierbar ist. Deshalb sind die Eigenschaften des Dualphasenstahls unscharf,
und zusammen mit weiteren Unschärfen, die bei der Herstellung des Stoßfängers auftreten,
kann das Verhalten des Stoßfängers ohne Berücksichtigung von Unschärfen nicht zuverlässig
vorhergesagt werden.

In dieser Arbeit wird eine Methode zur Quantifizierung unscharfer Eigenschaften des Dual-
phasenstahls entwickelt, die auf der numerischen Homogenisierung einer Reihe von Mikro-
strukturrealisierungen beruht. Diese Mikrostrukturen werden so konstruiert, dass ihre Vari-
ation auf der Mikroskala der Variation der Mikrostruktur des realen Materials entspricht,
während die geometrische Komplexität der virtuellen Mikrostrukturen so gering wie möglich
gehalten wird, um die numerische Effizienz zu steigern. Um zu vermeiden, für jede einzelne
betrachtete Mikrostruktur ein eigenes Finite-Elemente-Netz konstruieren zu müssen, wird die
Finite-Cell-Methode angewendet. Da die Finite-Cell-Methode die Konstruktion von sogenan-
nten Subcells erfordert, die herkömmlicherweise mittels eines Octree-Splits erzeugt werden,
entsteht ein zusätzlicher numerischer Aufwand. Dieser Aufwand kann durch die Anwendung
des in dieser Arbeit vorgestellten Ansatzes der Optimal Decomposition reduziert werden,
der die Eigenschaften des Geometriedatenformats ausnutzt, um weniger Subcells mit einer
besseren Approximationsgenauigkeit zu konstruieren.

Die gewonnenen Informationen über die Variabilität der Eigenschaften des Dualphasenstahls
werden dann als Eingangsunschärfen für eine Unschärfeanalyse des Blechumformprozesses
verwendet. Zu diesem Zweck wurde das vorhandene Optimal Uncertainty Quantification
Framework für die Quantifizierung von polymorpher Unschärfe erweitert und zusätzlich mit
der Idee der diskretisierten Fuzzy-Zahlen ergänzt, um eine strukturierte Analyse verschiedener
Intervallkombinationen zu ermöglichen. Für die Untersuchung räumlich verteilter unscharfer
Größen werden häufig Zufallsfelder verwendet. Wenn räumlich unscharfe Größen untersucht
werden sollen, sind häufig Zufallsfelder das Mittel der Wahl. Zufallsfelder verursachen in der
Regel erhebliche numerische Kosten, so dass in vielen Fällen nur schwer verlässliche Aussagen
getroffen werden können. Daher wird eine verschachtelte Anwendung der erweiterten Op-
timal Uncertainty Quantification vorgestellt, die die oft unvollständigen Daten resultierend
aus Zufallsfeldern von z.B. räumlich verteilten Materialparametern einbezieht. Schließlich
wird das erweiterte Optimal Uncertainty Quantification Framework mit der zuverlässigkeit-
sorientierten Designoptimierung kombiniert. Dies ermöglicht die Optimierung des vorderen
Stoßfängers eines Fahrzeugs im Hinblick auf die dissipierte Energie während eines Aufpralls,
wobei eine vordefinierte Obergrenze für die Versagenswahrscheinlichkeit eingehalten wird.
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1 Introduction

1.1 Motivation and State of the Art

Albeit the job title engineer, as it is understood today, has emerged only a few centuries ago,
one of their core capabilities has been practiced by humankind for a far longer time: the
abstraction of real processes in terms of comparatively simpler models to explain and predict
rather complex natural phenomena and processes. Whilst in earlier ages, e.g., the recurrences
of seasons and weather phenomena were important for survival, nowadays much more complex
models are used in research and development to analyze, predict or design more efficient, more
precise or otherwise improved buildings, machines and/or processes. All of these models are
based on observations of the reality and thus, try to replicate the observed causal connections
between an initial and final state of the system of interest. The construction of models is
inevitable affiliated with the introduction of uncertainties, since every model is a mathematical
idealization of the reality and therefore incomplete by nature. In this regard, the term “model”
may not only be understood in reference to the mathematical formalization of e.g., a physical
or chemical process, but also pertaining to the incorporation of the uncertainties mentioned
before. As a consequence, the engineer or model builder is faced with the challenge of not
only building an appropriate physical model, but also employing meaningful models for the
appearing uncertainties.

The appropriate choice of such models for the uncertainties depends on various factors and
circumstances of the problem at hand. One important aspect is the overall objective of the
problem, i.e., should the outcome of an existing setting be investigated due to uncertainties
in the input parameters (uncertainty quantification) or are there some adjustable parameters,
which can be tuned, such that the result improves in robustness or reliability (optimization
under uncertainties). For example, the load-bearing capacity of a bridge depends on, among
others, material properties of the building materials and the geometric design of the supporting
structure. These quantities are usually affected by uncertainties, stemming from e.g., intrinsic
variation of macroscopic concrete material properties due to its random mesostructure or an
imprecise fabrication of the supporting structure, and hence, the overall load-bearing capacity
of the bridge becomes uncertain as well. These uncertainties are instances of parametric
uncertainties, i.e. uncertainties in quantities, which servers either as model input parameters
or as ultimate values, which are compared against model output values. The bridge-example
potentially comprises another type of uncertainties, which are model uncertainties. Model
uncertainties are a result from a discrepancy between the real system and the mathematical
reflection, e.g., by negligence of certain variables or approximate (numerical) solutions such
as finite element methods. The impact of all of these uncertainties may be overcome by the
utilization of large safety factors, but a more economic, efficient and reliable design can be
obtained by incorporating a sophisticated uncertainty quantification in the design process.

Another decisive factor is the source of the uncertainties, which can be, for example, inherent
natural variation of properties and loads, impreciseness or incompleteness of measurements
and data, vague lingual information and many more. Usually, the source of the uncertainty is
directly coupled with the amount of knowledge available for the uncertain quantity. Since a
single mathematical model, that can deal with all sources of uncertainties and all amount of
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available knowledge has not yet been found, uncertainties are commonly divided in two differ-
ent classes: aleatory and epistemic uncertainties, cf., e.g. Kiureghian and Ditlevsen [73], Beer
et al. [10] or Oberkampf et al. [107]. The name aleatory stems from the Latin word alea
for dice and thus, the class of aleatory uncertainties comprises all those uncertainties, which
are caused by the mentioned inherent natural variation, which is fully known. It is well
agreed on in the literature, cf. e.g., Oberguggenberger [106], that these kind of uncertain-
ties are suitably characterized by methods from the mathematical field of probability theory,
cf. e.g., Billingsley [14]. Since additional data, e.g., in form of additional measurements or
additional experiments, can not improve the mathematical description of these uncertainties,
they are sometimes also referred to as objective or irreducible uncertainties. The second class
of uncertainties is named after the Greek word episteme (επιστηµη) for knowledge and in-
corporates all remaining uncertainties. Typically, these uncertainties are characterized by a
lack of knowledge, i.e., even if the uncertain quantity may follow a hidden natural variation,
the mathematical rules for that variation are not known, which is manifested in imprecision
or incompleteness. Therefore, additional data points can improve the description of the as-
sociated uncertainty and reduce the lack of knowledge, which is why these uncertainties can
also be referred to as reducible or subjective uncertainties. The potential origins of these
type of uncertainties are diverse and includes, among many others, errors in measurements,
insufficient data or experiments due to e.g., monetary or practical reasons, vague lingual in-
formation and many more. Since this type includes all uncertain quantities, for which the
available data ranges from nearly nothing to just shy of a full probability distribution func-
tion, several methods for the inclusion of these uncertainties in an uncertainty quantification
have been proposed in the literature. The “correct” categorization of an uncertain quantity in
one of these two categories is not only a subjective choice of the responsible engineer, but also
much discussed in the literature, cf. e.g., the works of [73] or [10]. Usually, an uncertainty
quantification problem does not contain only one or the other type of uncertainties, but rather
both. For these kind of problems, the term “polymorphic” uncertainty quantification has been
coined in the last years. It should be noted in this context, that term polymorph can also
refer to a single uncertain quantity, for which mathematical models for both types are coupled
to express a single uncertain quantity, which will be discussed later.

The overall objective of this thesis is the design of a car front bumper made out of a dual-phase
steel as exemplary illustrated in Fig. 1.1. This car front bumper is subjected to the influ-
ence of polymorphic uncertainties due to its base material as well as its production process.
Hence, the uncertainties regarding the material properties of the base steel as well as fabrica-
tion parameters should be considered during the optimization. Consequently, an uncertainty
quantification framework for both aleatory as well as epistemic uncertainties is necessary for
the uncertainty quantification during the design optimization. The optimization target is the
maximization of the dissipated energy in a crash scenario, whilst a pre-defined threshold on the
probability of failure must not be exceeded. Since the outer dimensions of the front bumper
are assumed to be fixed, the optimization design variables are laser-hardened traces, which
can be positioned on the sheet metal to locally improve the material properties, cf., Wagner
et al. [159]. These traces are hardened by a laser, which locally melts the base material. A
subsequent controlled cool-down allows a phase-transformation of the steel, leading to locally
modified and improved material properties. In this particular application, the positions of
such traces can be altered to identify the optimal location of the traces.

The material of the base sheet metal, from which the car front bumper is produced, is a dual-
phase steel (DP-steel). A dual-phase steel consists, as the name indicates, of two different
steel phases, a ferrite matrix in which island-like portions of martensite are embedded. These
martensite portions are created by a phase-transformation from austenite while the steel cools
down during the production. The martensite portions within the steel are certainly not in-
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Figure 1.1: Highlighted in orange, a normally hidden car front bumper, shown by means
of a Toyota Yaris. The overall objective of this thesis is the optimization of the performance
of such a front bumper in a crash scenario, considering polymorphic uncertainties.

clusions in a physical sense like aggregates are inclusions in concrete, but due to the typical
volume fraction of 15 to 25 %, the geometric character of the martensite portions is remi-
niscent of such inclusions. Therefore, if the martensite may be referenced to as inclusion for
clarity, it is only meant in the geometrical, but not in the physical sense. Since the exact loca-
tion and shape of these martensite portions can hardly be controlled during the production,
their location and shape are random to some extend. In consequence, the microstructure of
this type of steel is random as well, which implies an influence on the macroscopic behavior of
this steel. Since the macroscopic behavior of the DP-steel is of particular significance for the
production as well as the performance of the car front bumper, some information and insight
in the uncertain behavior of the DP-steel is necessary. Certainly, the required data could
be obtained by a series of experiments, such as e.g., tension tests, on a large set of different
specimens of the same material. However, these real experiments are expensive in terms of
costs and required labor, such that virtual experiments in terms of numerical simulations
using finite elements are a more viable approach. A crucial step for these virtual experiments
is the appropriate reconstruction of the material’s microstructure morphology. One possi-
ble approach is the quantification of the inclusion-like phase, in terms of probability density
functions (PDF), which are used to describe and generate the physical shape and spatial dis-
tribution of the inclusion, cf., e.g. Hiriyur et al. [66], Savvas et al. [125] with Stefanou et al.
[142]. For the specific class of polycrystalline alloys, a method based on reduced-order rep-
resentations of the texture evolution by means of the Karhunen-Loève expansion is proposed
in Kouchmeshky and Zabaras [75], from which stochastic quantities of interest for e.g., the
Young’s or the bulk modulus, can be derived in reasonable time. In Liu et al. [80] and Deng
et al. [23] an attempt to reconstruct the material’s microstructure from statistical correlation
of binary images of the microstructure with subsequent homogenization and experimental
validation has been presented. A first-order perturbation scheme for geometrical deviations
and material properties of the microstructure is presented in Wen et al. [160], which includes a
stochastic homogenization for the prediction of the stochastic distribution of the macroscopic
material properties. Further approaches for random microstructure morphologies are given
in Vel and Goupee [156] and Ma et al. [83]. The effective material behavior of concrete due to
random distribution and size of the aggregates is of interest in Tal and Fish [149]. Therein,
the morphology variation is quantified by scalar statistics and subsequently reconstructed,
such that the properties of interest can be computed by numerical homogenization. Many of
the discussed approaches are restricted to either a special class of material or scalar statistical
analysis. In order to capture the variability of the dual-phase steels microstructure morphol-
ogy, in Miska and Balzani [93], a general framework was proposed, which utilizes higher order,
i.e. non-scalar, statistical descriptors to construct a set of artificial microstructures, which
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exhibits the same variability as the real materials microstructure. Therein, the construction
of the artificial microstructures is based on the idea of Statistically Similar Representative
Volume Elements (SSRVEs), cf., e.g. Balzani et al. [4] and Scheunemann et al. [126]. Nu-
merical homogenization of these microstructures then leads to the distribution of macroscopic
material properties of interest.

As discussed before, the two different types of uncertainties are reflected by different mathe-
matical models in the uncertainty analysis. Whilst the aleatory uncertainties are well reflected
by probability measures, cf., e.g. Billingsley [14] or Oberguggenberger [106], the model choice
for epistemic uncertainties is not as straight forward. This is partially motivated by the wide
spectrum of characters an epistemic uncertainty can take. A quantity, for which only bound-
ing values are known, is of epistemic uncertainty type, as well as another quantity, for which
the type of an underlying probability density function can be estimated, but the exact param-
eters are only vague. Thus, many different approaches for epistemic uncertainty quantification
can be found in the literature. In the context of Bayesian Probabilities, the parameters of
probability density functions are assumed to be distributed according to their own distribu-
tion, and hence, known tools for the probability theory can be used, cf., e.g. Rackwitz [120]
or Sankararaman and Mahadevan [123]. However, a crucial step therein is the choice of the
type of distributions, which can have a potentially large impact on the computed results, see
for example Fetz and Oberguggenberger [39], Zhang and Shields [168], or Zhang and Shields
[169]. Hence, alternatives have emerged from the field of imprecise probabilities, cf. Beer et al.
[10] for an overview. Contrary to Bayesian-based methods, these alternative do not assume
probability density functions for all uncertain quantities and allow for the consideration of
only intervals or fuzzy numbers for individual uncertain quantities, cf. e.g., Zadeh [165, 166]
or Möller et al. [101]. By that, a different interpretation of uncertainties is introduced. Whilst
a probability density assigns a certain weighting to values within the range of the uncertain
quantity expressing the likelihood of values to occur, an interval or a fuzzy number only ex-
presses the possibility, that any value from within its range can occur, but does explicitely
not assume any weighting above that. Thus, a uniform distribution and an interval for the
same range do have fundamentally different meanings and interpretations for the uncertainty
quantification. Intervals and fuzzy numbers can not only be used to model an uncertain quan-
tity itself, similar to the Bayesian approach, they can also be used to model parameters of a
probability density function, see e.g., Möller et al. [102], Götz et al. [57] or Faes et al. [34].
A slightly different or rather extended interpretation of intervals and fuzzy numbers can be
found in the context of possibility theory, in which the possibility and necessity of events and
probabilities is analyzed, cf. Hose and Hanss [68].

The development and application of methods for the quantification and design of polymorphic
uncertainties has gained additional traction in the last couple of years. This may be partially
due to the priority program “Polymorphic uncertainty modelling for the numerical design of
structures” of the german research foundation (SPP1886). In this priority program, a lot of
different problem settings and methods have been investigated and proposed by individual re-
search groups. Examples of covered application examples are uncertainty quantification with
experimental verification of wind turbine blades, cf., Drieschner et al. [27], multi-objective
design optimizations of wooden structures, cf., Schietzold et al. [129], a reliability-based de-
sign optimization of tunnel linings, cf., Neu et al. [104], and the behavior of earth struc-
tures, cf., Schmidt et al. [133], among others. Moreover, methodological developments have
been made in regards to e.g., multilevel surrogate models based on artificial neural networks,
cf., Freitag et al. [45], surrogate models based on proper orthogonal decomposition and hier-
archical tensor approximations, cf., Kastian et al. [72], model order reduction, cf., Pivovarov
et al. [118] and domain decomposition approaches coupled with polynomial chaos expansion,
cf., domain decomposition Schmidt and Lahmer [132]. Further developments were published
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for the optimization under polymorphic uncertainties with nested inherence of objectives,
cf., Schietzold et al. [130], fuzzy probability random fields, cf., Schietzold et al. [128], data
driven uncertainty analysis, cf. Zschocke et al. [170]. The work in the priority program was
completed by joint works on benchmark problems, cf., Papaioannou et al. [116], Mäck et al.
[84] or Drieschner et al. [28], and joint articles, in which different approaches to polymorphic
uncertainty quantification were compared, e.g., for methods concerning uncertainty quantifi-
cation of multiscale problems in Kremer, Edler, Miska, Leichsenring, Balzani, Freitag, Graf,
Kaliske, and Meschke [76].

A method with distinct features from the methods discussed before is the Optimal Uncer-
tainty Quantification (OUQ), cf. Owhadi et al. [110]. The OUQ allows the computation of
the mathematically sharpest bounds possible on a probability of interest by considering only
bounds for the uncertain quantities itself as well as for stochastic moments of these quanti-
ties, whilst a specification of a probability density function is not necessary. This method is
based on the optimization of weights and positions of convex combinations of Dirac measures,
cf., McKerns et al. [88] for additional details and Balzani et al. [6] for an application of the
OUQ to a rupture problem of biological tissues. However, the original OUQ considers all
uncertainties as epistemic uncertainties, which makes it in principle unusable for polymorphic
uncertainty quantification problems. Therefore, in Miska and Balzani [96] the framework
was extended to incorporate aleatory uncertainties as well. Additionally, the idea of fuzzy
numbers was integrated, which allows the systematic investigation of different combinations
of intervals. This extended Optimal Uncertainty Quantification framework can also be used
for the consideration of spatially varying properties, cf., Miska, Freitag, and Balzani [100].
Therein, the spatially variation of certain material properties is modeled by means of random
fields, for which details can be found in Vořechovský [158], Ghanem and Spanos [50], Vanmar-
cke [155] and Schwab and Todor [138]. Since the OUQ framework contains an optimization
problem and the problem of interest contains a numerical problem in terms of finite elements,
it can be beneficial to substitute the costly finite element simulations by an a-priori trained
surrogate model in terms of an artificial neural network (ANN), cf, Haykin [61] or Rojas [122]
and Freitag [44] for an overview on the application of ANNs in structural mechanics . Among
others, ANNs are a popular choice as surrogate model in terms of uncertainty quantification
problems and are widely used in the literature, see for example the works of e.g., Papadrakakis
et al. [113], Hurtado [70], Papadrakakis and Lagaros [112], Most and Bucher [103], Freitag
et al. [45], Edler et al. [32] or Cao et al. [20]. Alternative approaches for polymorphic random
fields can be found in Henning et al. [63], Schietzold et al. [128] or Schmidt et al. [133].

With information on the uncertain material properties and a framework for polymorphic un-
certainty quantification at hand, only one part is missing for the overall objective of this
thesis. In order to include the uncertain quantities in the search of the optimal design of the
car front bumper, a framework for the design optimization under constraints is necessary. For
this purpose, methods for the Reliability-Based Design Optimization (RBDO) were devel-
oped, for example in Enevoldsen and Sørensen [33], Frangopol and Maute [43], Schuëller and
Jensen [137], Beaurepaire et al. [9], Valdebenito and Schuëller [154], Götz [56] or Mäck et al.
[84]. RBDO-methods aim to identify the optimal design of the structure, whilst a constraint
in regard to the reliability of the resulting structure is satisfied. Usually, this constraint is
formulated in terms of an upper limit on the probability of failure. Therefore, the extended
OUQ is integrated in an RBDO-context, at which the OUQ is not only used for the computa-
tion of the constraint, but also for the computation of the performance of the structure under
the influence of polymorphic uncertainties.

Subsequently, the proposed RBDO framework is used to optimize a car front bumper, for
which three different production and lifetime scenarios are investigated: the deep-drawing, a
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spring-back analysis with prior trimming of the sheet metal and a simplified crash scenario.
The degrees of freedom are positions of locally laser-hardened traces, by which the local
material properties such as the yield strength of the sheet metal can be significantly improved,
cf., e.g., Wagner et al. [159].

1.2 Structure

As briefly mentioned in the motivation, the overall objective of this thesis is the optimization
of a car front bumper, such that the dissipated energy due to plastic deformation in a crash is
maximized. In order to reach this goal, different methods and intermediate steps are required,
which are discussed in individual chapters.

In the next chapter, Chapter 2, the necessary notations and definitions for parametric un-
certainty quantification are introduced. Special focus is on the mathematical foundations for
probability measures, interval and fuzzy numbers, such that the mathematical models for
both aleatory and epistemic uncertainty quantification are available. Additionally, methods
such as Monte Carlo simulation and optimization methods are discussed, which are necessary
to solve uncertainty quantification problems based on the aforementioned models.

In Chapter 3 a brief overview of continuum mechanics and finite element simulations is pre-
sented. The finite elements used for numerical homogenization are based on the finite cell
method, which allow the numerical computation of macroscopic material properties in a vir-
tual lab.

Since a numerical homogenization of a set of different microstructures requires an individual
mesh for each microstructure, an automatized approach to the mesh generation is inevitable.
The selected approach here is the application of the finite cell method, which allows the
use of regular grids as finite element mesh and a geometry approximation by subcells. The
traditional approach to the construction of subcells is based on an Octree split, which can
lead to high numerical costs. Therefore, in Fangye, Miska, and Balzani [37] an enhanced
algorithm, the Optimized Decomposition, was proposed, which exploits the cuboid-shaped
nature of the geometry representation in terms of voxel data. The Optimized Decomposition
is described in detail and compared to the conventional Octree split in Chapter 4.

In Chapter 5, an approach for the quantification of macroscopic material properties related
to the hardening behavior of a Dual-Phase steel (DP-steel) resulting from variation of the mi-
crostructure morphology is described. The method, originally published in Miska and Balzani
[93], is split into three submethods: at first, the variation of the real microstructure morphol-
ogy is quantified based on a distance functional, which measures the difference of a selected
subsection of the microstructure and a representative element in terms of higher order sta-
tistical measures. Then, a set of artificial microstructures with a less complex morphology
is constructed, such that the variation of this set in terms of the morphology variation is
as similar as possible to the previously obtained real variation. Finally, these artificial mi-
crostructures are tested in a virtual lab, i.e. by numerical homogenization, such that the
macroscopic material behavior is obtained. In order to perform the computational homoge-
nization efficiently, a Multi-Level Monte Carlo approach is introduced.

In Chapter 6, the Optimal Uncertainty Quantification framework, cf. [110], is extended to
the capability of polymorphic uncertainty quantification, cf. Miska and Balzani [96]. In its
original form, only epistemic uncertainties, i.e. quantities, which are uncertain due to im-
precision or incompleteness, could be considered, the extension allows for the incorporation
of aleatory uncertainties in form of probability density functions as well. Furthermore, for
a structured investigation of different ranges of epistemic input quantities, a combination of
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the OUQ framework with fuzzy numbers is shown. The overall efficiency of the framework is
improved by the reformulation of the underlying optimization problem in terms of canonical
moments, cf. also Dette and Studden [24] and Stenger et al. [143]. A special case is the nested
application of the extended Optimal Uncertainty Quantification framework to problems with
spatially varying properties, also known as random fields, which is presented in Miska, Fre-
itag, and Balzani [100]. Since numerical simulations based on such random fields are usually
complex and therefore, expensive to evaluate, often only limited information on the statisti-
cal distribution of the target quantity can be deduced. These limited data are used for an
inner OUQ problem, whilst the remaining uncertainties of the problem are incorporated in
the outer OUQ problem. By that, assumptions on results from complex random fields can be
avoided.

In Chapter 7, the extended OUQ from Chapter 6 is embedded in a reliability-based design
optimization context. Thereby, a method is obtained to design a structure under the influence
of polymorphic uncertainties, whilst a pre-defined level of safety, which is measured in terms
of the probability of failure, is maintained. The framework is demonstrated by means of a
numerical example of a car front bumper, for which the production and a simple crash scenario
are investigated.

Lastly, this work closes with a brief summary of the presented methods and results in Chap-
ter 8.





2 Uncertainty Quantification for Engineering
Applications

As mentioned in the introduction, the abstraction of real world phenomena by means of math-
ematical and physical models is always associated with the introduction and consideration of
uncertainties. Hence, the incorporation of models for the emerging uncertainties in the design
and construction phases of appliances and structures is a sensible course of action for many
engineering fields. However, the appropriate choice of such models is not always straight
forward and may vary depending on the context of the uncertain quantity. In this chapter,
first some definitions and terminologies for different uncertainty types are introduced, before
subsequently different mathematical models and tools for uncertainty quantification problems
are discussed. Only selecting the mathematical models for individual uncertainties is, how-
ever, not sufficient for a successful uncertainty quantification. Since the engineer’s task is
to assess the preformance or safety of a certain structure, the impact of uncertain quantities
on the relevant performance measures needs to be computed, which is known as uncertainty
quantification. This task, in connection with rather complex physical models is usually not
analytically tractable and requires the use of numerical approaches. Therefore, in series to
the mathematical models for uncertainty representations, numerical tools are presented to
perform the uncertainty propagation. For the case of stochastic quantities the Monte Carlo
simulation is introduced and for epistemic uncertainties the challenge of optimization prob-
lems is discussed. As both types of uncertainties can be combined and mixed for a realistic
uncertainty analysis, the Monte Carlo simulation and optimization may be applied in a nested
manner. While both approaches rely on a large number of evaluations of the underlying de-
terministic model for the physics of the problem, the nested approach leads to an even higher
number. Thus, as closing section of this chapter a brief introduction on artificial neural
networks (ANNs) is given, because ANNs are a well-suited method to construct surrogate
models. They are numerically cheaper to evaluate than a complex physical model, while
yielding approximately the same results as the complex model.

2.1 Terminology and Types of Uncertainties

Before different mathematical models are introduced for uncertainties and uncertainty quan-
tification, first the term “uncertainty” itself and the discrimination of different uncertainties
in categories is recapitulated. By definition, uncertainty simply refers to the lack of certainty,
i.e., based on the available, potentially limited, knowledge or information, it is impossible
to exactly describe or predict the actual or future status of a system of interest. Since the
latter is a central interest in many engineering applications, the arising uncertainties should
be considered in the respective phases and actions to ensure the creation of safe designs. Due
to the various sources of uncertainties, it is unlikely, that a single mathematical model can be
sufficient to reflect all possible settings incorporating uncertainties. Thus, it is meaningful to
categorize uncertainties, for which different, suitable models and approaches can be utilized.
A common approach to this challenge is the differentiation of uncertainties by the amount of
available data and the causes for the uncertainties, respectively. If an uncertainty is solely
caused by inherent natural randomness and sufficient data for its description is available,
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these uncertainty is of aleatory type. The mathematical models commonly used for these
uncertainties stem from the field of probability theory, i.e., an uncertainty of aleatory type
can be modeled by means of a probability measure with its associated probability density.
These tools are introduced in Sec. 2.2. Since aleatory uncertainties are caused by natural
variation and are perfectly described by an probability measure, additional data samples can
not improve the mathematical description, hence, aleatory uncertainties are irreducible and
sometimes also referred to as objective uncertainties. On the other hand, however, there are
also uncertain quantities, for which fixed probability measures may not be the appropriate
choice, as e.g., to little data is available, errors in measurements could not be avoided or
only vague information is given, e.g., by subjective lingual information. These uncertainties
are called epistemic uncertainties. It can’t be precluded, that these uncertain quantities are
distributed according to a probability distribution as well, but since the available data is not
sufficient for an unique determination of such a distribution and hence, only the available
data should be used as is in the uncertainty analysis. Because additional data in form of
e.g., additional measurements, can improve their description, epistemic uncertainties are in
principle reducible and sometimes called subjective uncertainties. Furthermore, in contrast to
the aleatory uncertainties, there is no go-to choice in terms of a mathematical model, since
the class of epistemic uncertainties spans from very little knowledge, e.g. in terms of an in-
tervals for bounds on a quantity, to almost full knowledge, for which imprecise or conditional
probabilities may be utilized. In Sec. 2.3, intervals and fuzzy numbers are introduced, which
are a common choice for epistemic uncertainties. On top of that, such intervals or fuzzy num-
bers, which in itself can only express bounds on a quantity, may be used to model parameters
of probability distributions, leading the mentioned imprecise probabilities. This combina-
tion couples models for aleatory and epistemic uncertainties and is therefore also known as
polymorphic uncertainty quantification.

2.2 Probability Theory

Since tools from the field of probability theory, namely the probability measures and their
associated probability density functions (PDFs), are commonly used to model aleatory un-
certainties, this section is meant to outline the essential concepts of probability theory. The
explanations of this section are based on Billingsley [14], Borovkov [18] and Hable [58], while
the notations follow the latter reference.

2.2.1 Probability Measures and Probability Measure Spaces

Before a probability measure can be introduced, the general notation of a measure with its
requirements has to be introduced. For that matter, first a measurable space

(Ω,A) (2.1)

is defined, which consists of the sample space Ω and the associated σ-algebra A on Ω. The
sample space Ω, sometimes also referred to as possibility or outcome space, is a set, which
contains all possible outcomes or realizations ω of an experiment. In the context of probabil-
ities, commonly used examples for such experiments are tossing a coin or rolling a fair dice.
Then, the sample space would consist of the possible values the coin or the dice could take,
i.e. Ω = {1, 2, 3, 4, 5, 6} for the fair dice. It should be noted, that the dice and also the coin
experiment are examples for discrete measures, which is no premise for probability measures
and measures in general. An example for a continuous experiment, which is also not related
to probabilities, measures the area of arbitrary rectangles in a two-dimensional domain. Thus,
the sample space is Ω = R2.
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Figure 2.1: Example for a continuous two-dimensional sample set with four events A1, A2,
A3 and A4. The associated measure µ calculates the area of the rectangles.

The σ-algebra associated to the sample space Ω as mentioned in (2.1) is a set of some subsets of
Ω, for which the to be defined measure should assign a (non-zero) value, mandatory including
the empty set ∅ and the entire sample space Ω. In fact, the trivial σ-algebra on Ω contains only
∅ and Ω. In general, the choice of a σ-algebra is not unique and depends on the application
case, but in many cases the so-called Borel σ-algebra is used, which is the smallest possible
σ-algebra containing all open sets for continuous problems. The elements of A are called
measurable sets, also referred to as “events”. For the example of the rolled dice, events of
interest, aside the atomic events of a particular value, could be e.g., an odd number, i.e.
{1, 3, 5} ∈ A, or a number larger than four, i.e. {5, 6} ∈ A. Since a σ-algebra has to be
closed under complement, also the complementary events have to be an element of A, i.e.,
{2, 4, 6} ∈ A and {1, 2, 3, 4} ∈ A. These examples make also use of the closure under countable
union, i.e. since the atomic events {1}, {2}, {3}, {4}, {5} and {6} are elements of A, also all
possible unions of these events are part of A.

Based on the measurable space, a function can be defined, which assigns every element of A
a numerical value, which may be interpreted as “mass” or “size” of that particular element:

µ : A → [0,∞]. (2.2)

This function µ is called measure on the measurable space (Ω,A), and the triple (Ω,A, µ)
is referred to as measure space. The measure in Eq. (2.2) is a finite measure, if µ(Ω) < ∞
and hence, µ(A) <∞ ∀A ∈ A. Whilst a measure maps to only non-negative values, a signed
measure can map to the entire real line and at most one of {±∞}, i.e.,

µ : A → R ∪ {±∞}. (2.3)

A measure of special interest for this work is the normalized measure, for which µ(Ω) = 1.0
and 0 ≤ µ(A) ≤ 1 holds. This measure is also called probability measure, since the “mass”
assigned to the events of A can be interpreted as probability, and the triple of (Ω,A, µ) is
called probability space. Often, a probability measure µ is alternatively denoted by P. The
following text will refer to probability measures explicitly, although many presented rules
apply to general measures as well. The terms measure of an event and probability of an event
may be used interchangeably.

A probability measure µ exhibits a few properties, which are important for the calculation of
probabilities for specific events. Foremost, the empty set ∅ should have zero probability and
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thus, µ(∅) = 0. Also, if A1, A2, . . . An ∈ A are pairwise disjoint elements, i.e., A1 ∪ A2 = ∅,
the measure of the union is equal to the sum of the measure of the individual sets:

µ(
⋃
An) =

∑
µ(An). (2.4)

This property is referred to as σ-additivity and in the context of probabilities also known as
the third axiom of Kolmogorov. If an event A1 is a subset of an event A2, the measure of the
first event should be less or equal to the measure of the latter set:

A1 ⊂ A2 ⇒ µ(A1) ≤ µ(A2). (2.5)

As an extension and under the premise, that the probability of event A1 is finite, the proba-
bility of the complement of event A2 with respect to A1 is given by

A1 ⊂ A2 ∧ µ(A1) <∞ ⇒ µ(A2\A1) = µ(A2)− µ(A1). (2.6)

If two events A1 and A2 are intersecting each other, the union of both events can by computed
by the sum of the measures of the two individual events subtracted by the value of the
intersection:

µ(A1 ∩A2) <∞ ⇒ µ(A1 ∪A2) = µ(A1) + µ(A2)− µ(A1 ∩A2). (2.7)

This property is also visualized in Fig. 2.1, in which the two areas A1 and A2 are intersecting
each other. A simple addition of both areas would yield a value too large and thus, the area
of the intersection has to be subtracted.

2.2.2 Random Variables

A random variable is often used to describe a quantity, which depends an on inherent random-
ness and should be described by means of probability theory. Purely mathematically spoken,
however, a random variable Y is a deterministic function mapping from one probability space,
denoted by (Ω,A, µ), to another (Ω′,A′, µ′), i.e.,

Y : Ω→ Ω′, ω 7→ ω′. (2.8)

In many applications the random variable should yield a real value, i.e. Y : Ω → Rd, which
leads to a real, potentially vector-valued, random variable. The probability measure µ′ on
(Ω′,A′) is then given as push-forward measure by

µ′ : A′ → [0; 1], Ω′ 7→ µ′(Ω′) = µ({ω ∈ Ω |Y (ω) ∈ Ω′}). (2.9)

In this context, µ′ is called probability distribution of Y (under µ′). In practical applications,
however, the underlying probability space (Ω,A, µ) and also the exact function Y are of minor
significance, whilst the major interest is on the probability distribution µ′ of Y on Rd, since µ′

is the probability measure for all realizations of Y .

2.2.3 Discrete and Continuous Probability Measures

Up until now, only the idea of the probability measure was introduced, but no information
on how such measures are defined or actually computed. For this purpose, the two types of
probability measures, discrete and continuous measures, are differentiated and individually
discussed in the next two subsections.
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Discrete Measures A probability measure µ defined on (Ω,A) is a discrete probability
measure, if there is a subset D ⊂ Ω, which has a finite or at most a countable infinite
number of elements, for which µ(D) = 1.0 holds, see also Fig. 2.2a). In consequence, for the
remainder of the sample space outside of D, every element has a zero probability assigned
(µ(Ω\D) = 0). Additionally, every element has to be contained as set of size one in the
σ-algebra: {d} ∈ A ∀d ∈ D. A characterizing function of a discrete probability measure µ is
the probability function f, which is defined as f : D → [0; 1], d 7→ µ({d}). A simple example
for such a function is plotted in Fig. 2.2a), in which the grid points represent the events d and
the values in the boxes characterize the individual probability of the respective grid point.
Usually, these probability functions depend on one or more characteristic parameters, which
determine the exact distribution and shape of the probability function.

One of the simplest discrete probability measures is the Dirac measure. Consider a measure
space (Ω,A), a set A ∈ A and a fixed point x ∈ Ω, i.e., here D = x. Then, the Dirac measure
is defined by

δx(A) =

{
1, if x ∈ A
0, if x /∈ A,

(2.10)

which essentially measures if x is contained in a set A ∈ A. By these evaluations, the
function δx : A → [0;∞], A 7→ δx(A) is a measure on (Ω,A) and due to δx(Ω) = 1 it is
also a probability measure. Further possible choices for discrete probability measures are the
Binomial distribution or the Poisson distribution. The latter is visualized for two different
parameter choices in Fig. 2.3a).

Although there are many types of discrete probability measures, it is possible to express any
of those measures by a convex combination of Dirac measures. For this, the mass of a single
event may be defined as wd ··= µ({d}) for every d ∈ D, at which D ∈ A is again a subset of
the σ-algebra of a measurable space (Ω,A). Then, the probability measure for an event A
can be written as

µ(A) =
∑

d∈D
wd · δd(A) =

∑

d∈A∩D
wd · δd(A) +

∑

d∈D\A

wd · δd(A) =
∑

d∈A∩D
wd. (2.11)

This important property will be used in a later chapter as a central part of the Optimal
Uncertainty Quantification in Chapter 6.

Continous Measures In contrast to the discrete measures, continuous or sometimes also
general measures are defined on continuous domains, usually on R or subsets therefrom, see
also Fig. 2.2b). Here, it is not sufficient or rather not possible to assign probabilities to single
events in order to compute probabilities for general sets. Instead, a probability density is
defined on the domain of the probability measure. Thus, the evaluation of the probability
measures relies on the computation of integrals, i.e. for a measurable space (Ω,A), the
probability measure for an event A reads

µ(A) =

∫

A
dµ =

∫

A
f̂(u)du, (2.12)

wherein f̂ denotes the probability density function f̂ : R→ [0;∞] of the probability measure µ,
short PDF. In order to ensure, that µ represents a valid probability measure, a PDF has to
satisfy µ(Ω) =

∫
Ω f̂(u)du = 1.0. Similar to the probability function, which is characterizing

for a discrete probability measure, the probability density is characterizing for a continuous
probability measure. Also, the exact shape of a probability density functions is usually de-
pendent on one or more characteristic parameters. The probability density function allows
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Figure 2.2: Example illustrations of simple probability measures in a two-dimensional

space. In subfigure a), a discrete measure is plotted, for which the weights are located

only at the grid points, i.e., only at those locations a probability can be computed. Con-

tinuous measures on the other hand can only be visualized by means of their probability

density function as shown in subfigure b). The highest density is in the center and radially

fading out to the borders.

the computation of the cumulative distribution function (CDF) as

F (t) =

∫ t

−∞

f̂(u)du, (2.13)

which in itself is a probability measure for the event, that a realization drawn from the
associated random variable is less than the given argument, i.e. µ(Y ≤ t) = F (t). Examples
for continuous probability distributions are the normal distribution, uniform distribution,
beta and gamma distributions or a gumbel distribution among many others. All of these
distributions differ in regards to properties such as non-negativity, symmetry and shape. In
Fig. 2.3b) the probability density function of a normal distribution and a gamma distribution
are plotted. Both functions share the same mean and variance, which are explained in the
next section, but exhibit a completely different shape. It is clearly visible, that especially for
the estimation of events in the tails of the PDF, the choice of the type of PDF has a large
impact on the computed result.

2.2.4 Stochastic Moments

With the existence of a random variable, characterizing quantities of the distribution or
density, the so called stochastic moments can be defined. The first moment is the expectation
value of the random variable Y with respect to µ:

Eµ[Y ] =

∫

Ω

Y dµ. (2.14)

Further moments are obtained by raising the power of the random variable, wherein the power
is referred to as the order of the computed moment:

E[Y n] =

∫

Ω

Y ndµ. (2.15)

The aforementioned moments are classic or standard moments, which are computed with
respect to the origin of the underlying sample space. Since these values may become very
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Figure 2.3: a) Comparision of the Poisson distribution for two different choices of the
characterizing parameter λ. b) Illustration of a normal and a gamma probability density
function, which both exhibit a mean of E[a] = 5.0 and a variance of E[(a− E[a])2] = 1.0.

large or small, central moments are introduced, which compute the moments with respect to
the mean of the distribution, i.e.:

E[(Y − Eµ[Y ])n] =

∫

Ω
(Y − Eµ[Y ])ndµ. (2.16)

A well known central moment of second order is the variance σ2, which is obtained by setting
the order to n = 2. The square-root of the variance is known as standard deviation σ.
Sometimes, the skewness (n = 3) and the kurtosis (n = 4) are used to describe the shape
of a probability distribution beyond the variance. These two quantities are central moments,
which are normalized with respect to the respective power of the standard deviation. For
example, the skewness γ is computed by

γ = E[((Y − Eµ[Y ])/σ)3]. (2.17)

The stochastic moments are useful quantities, since they allow the description of the distribu-
tion of a random variable to an certain extend. Just based on the moments of up to order four
mentioned here, a good understanding on the location, the spread and skewness of a distribu-
tion can be gained. Additionally, reliable estimators are available to compute estimators for
said moments from given samples, e.g. from measurement data from a series of experiments.
However, while a given probability distribution function allows a straight-forward computa-
tion of the associated moments, the inverse relationship is a lot more complicated. Usually,
just a few moments are not sufficient to uniquely identify a specific distribution. Thus, if a
probability density function is assumed based on such moments without further knowledge, a
subsequent uncertainty analysis may lead to faulty results.

2.2.5 Product Measures, Covariance and Stochastic Independence

Usually, any uncertainty quantification problem of interest consists of more than one quantity
and by that, the dependence of those quantities needs to be considered. A first indicator for
the interaction of two or more random variables is the covariance, which is defined by

CoV(Y1, Y2) = E[(Y1 − E[Y1])(Y2 − E[Y2])]. (2.18)

If the covariance is equal to zero, i.e., CoV(Y1, Y2) = 0, the random variables and their
probability distributions are stochastic independent of each other. In these cases, the joint
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Figure 2.4: a) Schematic deduction of a discrete α-level of a trapeziodal fuzzy number.

b) An imprecise normal distribution with an interval-valued mean.

probability space with a joint probability measure and a joint probability density function
can be computed by means of a product measure. The product measure of n joint random
variables is defined as

µ = µ1 ⊗ · · · ⊗ µn =

n⊗

i=1

µi, (2.19)

and can be computed by the solution of the multivariate integral:

µ(A) =

∫

A

f̂1(u1) · · · · · f̂n(un)du1 · · · dun. (2.20)

2.3 Intervals, Fuzzy Numbers and Imprecise Probabilities

Whilst the stochastic tools presented in Sec. 2.2 are well suited to model aleatory uncertainties,
different models are necessary for epistemic uncertainties as discussed before in Sec. 2.1. This
is due to the lack of knowledge, which is characterizing for epistemic uncertainties, such that
no exact probability measure can be specified.

If hardly any data is available, an epistemic quantity x may only be specified to be within
certain bounds. Any additional restriction beyond that, such as a certain weighting within
these bounds, like a uniform probability distribution would assign, should be avoided. Then,
an interval would be a valid choice, which only characterizes the possibility of a range of values
for the uncertain quantities. The interval is denoted by

x ∈ [xlower, xupper], (2.21)

wherein xlower and xupper are the lower and upper bound of the interval, respectively.

In certain situations however, an interval may not be able to reflect the available knowledge
on an uncertain quantity well. For example, different experts can have different opinions on
the correct range for certain values or the data has been passed along by vague linguistic infor-
mation. Then, possibly conflicting data can occur and has to be adequately considered. One
possible approach for the systematic investigation of such information is given by normalized
fuzzy numbers, cf., e.g. [101] or [10], which allows the investigation of different combinations
of individual intervals and subsequent analysis of the resulting outcomes. A normalized fuzzy
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number Ã for the representation of a quantity x can conveniently be constructed by the spec-
ification of individual intervals on the respective α-cuts, cf. Fig. 2.4a). The α-cuts or α-levels
are the result of a normalized weighting (within the range [0, 1]) of the different intervals
through its so-called membership function ν

Ã
by

ν
Ã
: R 7→ [0, 1] with ∃x | ν

Ã
(x) = 1. (2.22)

Usually, the membership functions is denoted in the literature by µ
Ã
, but here the notation ν

Ã
is chosen to emphasize the difference to probability measures µ. In principle, the membership
function can be any arbitrary normalized function, but commonly only convex and piecewise
linear functions are used. Then, the membership function is usually not explicitly specified
and the fuzzy number is defined in a discretized form by set of α-levels, where each α-level is
defined as

Ãα =
{
x ∈ R | ν

Ã
(x) ≥ α

}
with α ∈ [0, 1] . (2.23)

This explicit definition of an α-level defines an interval containing all those possible values
of the described quantity, for which the membership function yields a value of at least α. In
practice, the intervals resulting from an α-cut are getting sharper with increasing α, i.e. the
interval for α = 0.5 is smaller than for α = 0.2. For this purpose, the condition Ãα2 ∈ Ãα1

for α2 ≥ α1 needs to hold. Then, with a convex membership function, every α-level can also
be specified through a single interval, i.e. Ãα = [xα,lower, xα,upper], cf. also Fig. 2.4a).

If the available data is sufficiently large, an interval or a fuzzy number are potentially carrying
to little information and the result of an uncertainty quantification could be improved by
the utilization of the additional data. Then, intervals and fuzzy numbers can be combined
with probability functions or probability density functions, such that models for imprecise
probabilities will result. The combination is performed by substituting the usually scalar-
valued parameters of a PDF by an interval or fuzzy number. By that, a specific type of
PDF is chosen, but due to the range of possible values for the parameters, a range of PDFs
can systematically be investigated. An example of a normal distribution with an interval-
valued mean parameter is drawn in Fig. 2.4b). Clearly visible is the substantially larger area
compared to a precise normal distribution, which is covered by this imprecise probability
density function.

2.4 Monte Carlo Simulations

The selection of appropriate models for uncertainties is only one part for uncertainty quan-
tification, also methods to quantify the influence of these uncertainty models on the result
of the structural problem are required. For the case of stochastic models, the effect of the
probability measures on the result f(Y ) can be computed by

E[f(Y )] =

∫

Ω
f(Y )dµ, (2.24)

see also Eq. (2.12). There, a similar integral notation was introduced for the computation of
moments of random variables and also for the computation of probabilities itself, cf., also the
example in Fig. 2.5. Usually, these integrals can’t be computed analytically and numerical
methods have to be employed. A common approach for this purpose are Monte Carlo methods,
cf., e.g. Zhang [167] for an overview.

The Monte Carlo simulation is based on the convergence behavior of random variables. For a
sequence of independently and identically distributed (i.i.d.) samples Y (1), Y (2), . . . following
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Figure 2.5: Illustration of an examplary integration problem, in which the colored failure

region is devided from the safe region by the limit state function g. The integral over

the failure region yields the failure probability, which is usually computed by Monte Carlo

approaches.

a random variable Y with a finite mean value E[Y ], the sample average can be computed by

Sn
··=

1

n

n∑

i=1

Y (i). (2.25)

The weak law of large number states, that for every possible positive real number ε, a sample
size n can be found, such that

P

[∣∣∣∣∣
1

n

n∑

i=1

Y (i)
− E[Y ]

∣∣∣∣∣ > ε

]
= 0 ∀ε > 0, (2.26)

wherein P is an alternative way to denote the probability measure. The strong law of large
number states, that the probability, that the limit of the aforementioned sample average equals
the mean of the random variable, is equal to one and by this, the safe event:

P

[
lim
n→∞

1

n

n∑

i=1

Y (i) = E[Y ]

]
= 1. (2.27)

These two laws are the foundation for the Monte Carlo simulation, since it allows the approx-
imation of the desired values by a sequence of generated samples Y (i) by

E[f(Y )] ≈ Sn(Y ) ··=
1

n

n∑

i=1

f(Y (i)). (2.28)

Naturally, an infinite number of samples is numerically intractable and thus, there will be a
certain approximation error due to the limited sample size. Due to the central limit theo-
rem, the values of the sample average are normally distributed with an increasing number of
samples, which allows the estimation of the approximation error by

V[Sn(f)] =
1

n2

n∑

i=1

V[f(X)] =
V[f(X)]

n
. (2.29)

Therefore, in order to increase the approximation accuracy of the Monte Carlo simulation,
the variance of the sample average should be decreased. As it can be seen from Eq. (2.29),
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the variance can be reduced by increasing the sample size n. Since an increasing sample size
leads to increasing numerical costs, alternative approaches to variance reduction have been
developed, such as importance sampling, e.g. Papaioannou et al. [115], advanced line sampling,
e.g. de Angelis et al. [22], or multilevel Monte Carlo methods, e.g. Giles [51] or Heinrich [62].
The latter will be discussed in detail and applied in Chapter 6.

2.5 Optimization Problems

While numerical integration in terms of Monte Carlo is the method of choice for the quan-
tification of the impact of aleatory uncertainties, the consideration of epistemic uncertainties
in terms of intervals, fuzzy numbers or imprecise probabilities leads to optimization problems
to identify the best or worst solution. An optimization problem itself is the mathematical
search for the some, not necessarily unique, element x, which leads to the optimal, i.e., either
the maximum or minimum value of a function f . This function f is referred to as objective
function. The general formulation of such an optimization problem is

extremize: f(x)
with respect to: x ∈ X

subject to: gi(x) ≤ 0 for i = 1, 2, . . . ,

wherein X denotes the search space and gi are constraints to the optimization. A point x
fulfilling the constraints is called feasible, which leads to the definition of the feasible set

{x ∈ X | gi(x) ≤ 0 for i = 1, 2, . . . }. (2.30)

If all constraints are absent, the optimization problem is called unconstrained, although, in
many realistic applications at least one constraint is present. Refer e.g. to Sullivan [147] for
further discussions on optimizations in context of uncertainties.

If a solution to an optimization problem can be found, depends heavily on the objective
function and the formulated constraints. If the objective function is convex, a local optimum
is also a global optimum and can be found by approaches such as gradient descend methods
using the first derivative of the objective function. On the other hand, if the objective function
is non-convex, many local optimums can exist and the global optimum is by magnitudes more
difficult to identify. Moreover, for convex optimizations the global optimum can be proven to
be found, which is not the case for non-convex problems. Here, global optimization strategies
are required. In general, a global optimization of a non-convex function with a potential high
number of local extremums is numerically hard, especially if constraints are present and the
feasible space is very small. Then, algorithms based on random search can be applied, for
which, however, no guarantee of finding the extremum can be given. One of these algorithms,
which is applied in this work, is Differential Evolution, cf.[144]. The core idea behind the
Differential Evolution is to emulate the behavior of real populations and their evolution. For
that matter, a population of solution vectors evolves over generations by preserving fitter
population members, i.e. those, who lead to a better value of the objective function, whilst
weaker members are discarded. From each generation to the next, offspring vectors are created
by adding differences between randomly selected population members to other members. If the
offspring performs better than the parent, the parent is discarded from the population and vice
versa. The optimization is stopped, if for a certain number of generations no better individual
can be found and the best value of the objective remains unchanged. The performance of the
method is controlled by hyperparameters, which influence the population size as well as the
exact way, how the offspring is generated.
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Figure 2.6: Exemplary artificial neural network with four input neurons, one output neu-
ron and three hidden layers.

2.6 Neural Networks as Surrogate Models

The methods described in this chapter, both the precise and imprecise probabilities, usu-
ally require a large number of model evaluations in order to correctly measure the events of
interest. Especially in the context of rather complex, non-linear finite element simulations,
where a single model evaluation can take hours or even days, a full uncertainty quantifica-
tion becomes computationally infeasible due to the associated numerical costs. Therefore,
several different techniques have been developed to replace the costly evaluation of the real
model with a numerically cheaper alternative, the so called surrogate models, which main-
tains a comparatively quality of the response, see e.g. Sudret et al. [146] for an overview.
Popular approaches are based on polynomial chaos expansions (PCE), see e.g., Ghanem and
Spanos [50], gaussian processes or kriging (Ebden [31]), or artificial neural networks (ANN),
e.g. Bishop [15], Goodfellow et al. [55] or Aggarwal [1]. All of these techniques require some
sort of training or a learning phase, before a suitable surrogate model is obtained. In this
work only artificial neural networks with feed-forward architecture are utilized and explained
more detailed in the following. Although artificial neural network per se do not aim to repli-
cate neural networks from the human brain, they inherited the name, since ANNs consists
of small units, the artificial neurons, which are connected to each other by links for data
exchange. Typically, an ANN with a feed-forward architecture consists of multiple layers, in
which the individual neurons are located. Special layers are the input layer Ij and the output
layer Oj , which are responsible for the input and output of data to and from the ANNs. In
between those two layers, several hidden layers can be placed, the number of those hidden
layers depends on the complexity of the actual problem the ANN should substitute. For fully
connected feed-forward ANNs, each neuron Np,j on layer p is connected to all neurons in the
previous layer p− 1 and all neurons in the next layer p+ 1, but not to neurons on the same
layer. The number of neurons on the input layer is determined by the number of input param-
eters the ANN should take, similarly the number of neurons on the output layer depends on
the number of output quantities. Again, the number of neurons on the several hidden layers
depends on the problems complexity and can be freely varied, however, a too little number
can lead to a poor approximation quality, whilst a too large number may induce overfitting
of the available data. Often, it is impossible to choose the right network architecture from
the start and multiple different architecture need to be trained and analyzed. In Fig. 2.6, an
exemplary simple artificial neural network is displayed.

A single neuron can take an input value or input signal from each of the links, which are
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connected to it from the previous layer. These signals are output values from the neurons on
the previous layer, but due to the transport on the links, this output signal is multiplied by
weighting factors wpjh. The neuron adds all input signals together, additionally a bias value
bpj may be added. The resulting value is the input to the neurons activation function aj ,
i.e., the function which dictates, how the neuron reacts to incoming signals. The output
of this function is then used as output signal np,j , which is transported to the next layer.
Since common choices for the activation function are hyperbolic tangent, linear and logistic
activation functions, usually the input signals to an ANN are transformed to dimensionless
signals in the range of [−1, 1]. With that, the output signal np,j of neuron Np,j in layer p can
be computed by

np,j = apj

(
H∑

h=1

[
np−1,h · wpjh

]
+ bpj

)
. (2.31)

As mentioned before, any ANN needs to be trained to the available data, before it can
substitute the more complex function. The free parameters of the network are the weights
and bias values on all links and neurons. In the beginning, these values are randomly initialized
and adapted by a backpropagation algorithm, see e.g., Haykin [61], in order to minimize the
error between the network output and the desired response of the quantity of interest. The
available data is usually split into training, test and validation data to prevent overfitting
and to ensure a reasonably well approximation quality. Only the data contained in the
training data is used for the training und thus, for the determination of the weights and bias
values. Since the training is performed in individual loops, the so called epochs, in which the
backpropagation is applied to modify only a few weights and bias values. Thus, a stopping
criterion is required, which is often formulated in terms of the validation test set. If the
approximation of the data contained therein is sufficiently, the training is stopped. Finally,
the performance of the trained ANN is measured by means of the test data set. The data
contained within this set is entirely new to the neural network and by that, it is possible to
judge if the ANN can predict also new scenarios or if only those scenarios contained in the
training data were learned (overfitting). Thus, the entire data set should be sufficiently large
and cover the entire input and output space. Such data sets can be prepared by e.g., regular
grids, random sampling or Latin hypercube sampling.

As it can be seen from Eq. (2.31), a lot of the computations for the evaluation of an ANN
involve addition and multiplication. These operations can be represented by matrix-matrix
and matrix-vector operations. Since modern computers have special units, in which such
operations can efficiently be computed, an evaluation of a ANN is rather quick and numerically
cheap, which is why ANNs are a suitable method for the construction of surrogate models.





3 Continuum Mechanics and Finite Element
Simulations

One of the most powerful tools for a mechanical or civil engineers are calculations based on
the finite element method. This work is no exception and in later chapters, the finite element
method is used in both the development of a new method for the numerical quantification
of material properties based on its heterogeneous microstructure as well as in uncertainty
quantification problems of sheet metal forming processes. Thus, in this chapter, the necessary
fundamentals of continuum mechanics and the finite element method (FEM) are introduced.
The notations and definitions in this chapter are based on the works of Bathe and Zim-
mermann [8], Belytschko et al. [11], Holzapfel [67], Marsden and Hughes [86], Ogden [108]
and Wriggers [163].

3.1 Continuum Mechanics

The classic continuum mechanics can be understood as a field theory, which allow the descrip-
tion and analysis of materials by means of quantities such as displacement, velocity, density or
stiffness at every spatial point. The name of this theory arises from the fact, that the described
body of interest is approximated as continuum and the underlying structure of the matter,
i.e., atoms and molecules, are significantly smaller. Instead of considering forces acting on
discrete masses (e.g. atoms) at discrete positions, all descriptive fields act as (dis)continuous
functions which can be evaluated at all points of the body.

3.1.1 Kinematics

The field of kinematics is used to describe the position and movement of material points
in a continuum over time as well as for the definition of associated strain measures. For
this purpose, an undeformed body B is assumed at time t = t0, which is also referred to as
reference configuration. Therein, each material point is uniquely described by its position
vector X = XaEA in reference to a chosen origin. Over time, the considered body is exposed
to deformation and rigid body motions and therefore, transforms to its deformed configuration,
denoted by S. In this deformed configuration, the material point is characterized by the
position vector x = xiei, which can also be seen as non-linear map from the undeformed
to the deformed configuration, i.e. x = φ(X, t) : B → S(t). With the position vectors of
a material point in both configurations, the displacement u of this material point is defined
as

u = x−X. (3.1)

The deformation of an infinitesimal element can be described by the deformation gradient F =
FiAei ⊗EA, which is defined as

F = Grad[x] =
∂x

∂X
= 1+

∂u

∂X
, (3.2)
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Figure 3.1: Relationship of a point X in the undeformed state B and its counterpart x in
the deformed state S by deformation u = x−X.

wherein 1 denotes the second order identity tensor. With the help of the deformation gra-
dient, an infinitesimal line element in the reference configuration dX can be mapped on its
counterpart in the deformed configuration x by

dx = FdX, (3.3)

refer also to the visulisation in Fig. 3.1. From a physical standpoint, the mapping based on
F needs to be bijective i.e. each material point in the reference configuration is associated
to exactly one point in the deformed configuration in order to preserve the integrity of the
continuum. To fulfill this requirement, F must not be singular, which implies, that the
Jacobi-determinant of the deformation gradient is strictly positive:

J = det[F ] > 0. (3.4)

This Jacobi-determinant J is also used to link the volume of an infinitesimal volume element
in the reference configuration dV to its counterpart in the deformed configuration dv by

dv = JdV. (3.5)

Consequently, a non-positive value of the Jacobi-determinant would describe a negative or a
vanishing volume, which is not physical. Similar to the volume elements, infinitesimal area
elements can be mapped between the both configurations by Nansons-formula:

da = nda = JdF−TNdA = JF−TdA. (3.6)

Although F measures the deformation of infinitesimal elements, it can also contain portions
of rigid-body motions and rotations and is thus, not a suitable deformation measure for the
formulation of material models. Therefore, alternative strain measures have been found, which
are based on the multiplicative split of the deformation gradient into an ortho-normal rotation
tensor R and a stretch tensor by

F = RU = V R, (3.7)

for which |R| = 1 and hence R−1 = RT holds. U and V are referred to as left and right
stretch tensors, respectively. Based on this decomposition, which is sometimes also called
polar decomposition, the left and right Cauchy-Green-tensors are defined by

b = FFT and C = FTF = UTR−1RU = UTU . (3.8)
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As it can be seen, the rotational components cancel itself out and only portions related to
the actual deformation of the body are taken into account. Both C and b will yield the
identity tensor if no deformation occurs. Therefore, a further strain measure given by the
Green-Lagrange-tensor

E =
1

2
(C − 1) , (3.9)

is introduced, which equals zero for no deformation.

3.1.2 Stress Measures

The exposition of a body to deformations leads to internal loading states, for which char-
acterization stress tensors are used. Depending on the desired configuration, different stress
measures may be used. The Cauchy stress tensor σ relates a normal vector n of a chosen
surface to the effective tension vector t, which would act on the corresponding surface by

t = σn, (3.10)

also known as Cauchy’s stress theorem. Since the Cauchy stress is posed in the deformed
configuration, it is also referred to as true stress, since it can be interpreted as the actual
force acting on the deformed surface. However, the true stress posseses difficulties in terms of
experiments and measurements. Often, it is only possible to measure the undeformed area.
Thus, another possibility is the representation of the stresses in a mixed configuration, which
may be interpreted as actual force acting on the reference surface area. This stress tensor
is referred to as first Piola-Kirchhoff stress tensor P . Similarly, the stress vector T may be
computed therefrom by

T = PN , (3.11)

at which the traction vector T is parallel to t, but related to the undeformed surface area dA,
TdA = tda. With the use of Nansons formula, cf. (3.6), the first Piola-Kirchhoff stress tensor
can be computed from the Cauchy stress by

P = JσF−T. (3.12)

In contrast to the Cauchy stress σ, P is not necessarily symmetric. The second Piola-Kirchhoff
stress tensor S, which is entirely in the reference configuration, can be computed by

S = F−1P = JF−1σF−T. (3.13)

Unlike the previous stress tensors, S does not have a physical interpretation, it is a purely
mathematical construct. However, since the formulation of constitutive equations for the
material modelling require work-conjugate pairs of stress and strain measures, the second
Piola-Kirchhoff stress tensor is required, since it forms such a pair with the Green-Lagrange-
strain tensor E: (S,E). Another work-conjugate pair is given by (P ,F ).

3.1.3 Balance Equations

With the introduction of the kinematic behavior of material points and stress measures, a
set of five balance equations can be introduced, which reflect physical observations of the
real world. These balances are fundamental for continuum mechanics, however, it should be
noted, that the following forms are only valid for closed systems and one phase continua.

Balance of Mass: The first balance equation states, that the mass of the observed system
does not change over time, i.e. the total mass of the system stays constant, which can be
expressed by

m =

∫

B
ρ0dV =

∫

S
ρdv ⇒ ρ0 = Jρ. (3.14)
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Balance of Linear Momentum: Similar to the mass balance, the balance of linear mo-
mentum states, that the change in linear momentum L over time, i.e. L̇, equals the sum of
all external forces acting on the system of interest. Usually, these forces are body forces due
to gravity and traction vectors on the surface of the body of interest,

L̇ =

∫

S
ρgdv +

∫

∂S
tda with L =

∫

S
ρẋdv, (3.15)

wherein g denotes the acceleration due the gravity of the earth. Reformulated in its local form,
the balance of linear momentum for static processes (neglecting effects of inertia), reads

Div[P ] + ρ0g = ρ0ẍ ⇒ Div[P ] + fb = 0, (3.16)

wherein fb is a short-hand notation of the body forces.

Balance of Angular Momentum: Not only the change of the linear, but also of the
angular momentum has to be equal to the acting quantities, which are the applied moments
for the angular moments. In its local form, the symmetry of the Cauchy stress tensor follows,
i.e. σT = σ, which also leads to the symmetry of the second Piola-Kirchhoff stress tensor S.

Balance of Energy: The balance of energy is also known as the first law of thermodynamics
and states, that the change of energy in a closed system equals the sum of applied power
of external forces. Since in this work only the mechanical energy is of interest, this balance
with contributions from e.g., heat sources, is not explicitly discussed. However, it may be
noted, that for sophisticated descriptions of e.g., plastic or damage processes, the dissipation
of strain energy in terms of heat can be incorporated.

Entropy Inequality: In contrast to the previous four balances, the fifth balance is an
inequality, which states, that the entropy of a system can only increase over time. Its local
form leads to the Clausius-Duhem inequality, which can be written as

S : Ė − ψ̇ ≥ 0, (3.17)

wherein ψ denotes stored energy due to deformation per unit reference volume, which is related
to the free Helmholtz-energy ψ̃ by ψ = ρ0ψ̃. An important approach with this inequality
is the Coleman Noll [21] procedure, that ensures for each independent possible process a
thermodynamic consistent model is obtained. This leads to well known relations such as
∂ψ
∂E = S, which allows the link of the stresses S and strains E by a constitutive equation for
the stored energy ψ by means of a so-called material model, cf. Sec. 3.3.

3.2 Numerical Simulation by means of Finite Elements

In the previous section, the local form of linear momentum was introduced, which allows the
mathematical description of structural mechanical problems in terms of the displacement of
points. Since that form is a partial differential equation, it can only be solved analytically
for a few, simple problems. Realistic and thus, more interesting and complex problems, need
to be solved numerically. One possible method, which will be used in the remainder of this
work, is the finite element method (FEM).

3.2.1 Variational Problem

In Sec. 3.1.3 the strong form of the linear momentum balance was introduced, cf. Eq. (3.16).
Until today, no closed, analytical solution has been found for this partial differential equation
and thus, the PDE has to be solved numerically. A first step for this purpose is the derivation
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of the weak form by means of a variational approach, i.e., the strong form is firstly multiplied
with a vectorial test function δu and then a volume integral is computed, which leads to the
following weak form

G =

∫

B

(
Div[P ] + fb) · δudV = 0, (3.18)

wherein G can be interpreted as the scalar value of the virtual work performed by the virtual
displacements δu. Since Div[P ] · δu = Div[PTδu]−P : Grad[δu], the Gauss theorem can be
applied and the volume integral can be transformed to a surface integral as

∫
B Div[PTδu]dV =∫

∂Bt
δu · tdA. Together with the prescribed boundary conditions of the problem, the weak

form can be rewritten as

G = Gint −Gext = 0 =

∫

B
P : Grad[δu]dV −

∫

∂Bt

δu · tdA+

∫

B
δufbdV. (3.19)

3.2.2 Linearization

In general, the system of equations posed by Eq. (3.19) is non-linear in the primary variable,
here u, and thus, a non-linear system of equations has to be solved. Usually, iterative pro-
cedures are used to solve such systems, e.g. the Newton-Raphson method. One particular
advantage of this method is the quadratic convergence behavior in the vicinity of the solution.
This means, the initial guess for the solution variable has to be sufficiently close to the solu-
tion, which can hardly be fulfilled if the initial guesses are randomly chosen. Thus, usually a
load-stepping scheme is employed, starting from zero load, which obviously yields the trivial
solution of zero displacement, and subsequent increments of the load by means of virtual time
steps. That allows the utilization of the solution of the previous time step as initial guess,
which should be in the neighborhood of the sought solution. However, in order to be able
to apply the Newton method to the problem at hand, the weak form needs to be linearized,
formally written as

LinG = G+∆G = 0. (3.20)

Herein, G is also referred to as the residual and ∆G denotes the increment or difference of
G between two subsequent iteration steps n. Usually, the difference operator ∆ denotes the
difference between two iteration steps of a quantity □, i.e.,

∆□n+1 = □n+1 −□n, (3.21)

however, since G is a function of a primary variable, the increment of a function • dependent
on a variable □ can be obtained by

∆ • (□) =
∂•
∂□

∣∣∣∣
□n

∆□. (3.22)

Under the assumption of conservative traction forces t, i.e. they are displacement independent,
and the negligence of the body-forces due to, e.g., gravitation, the increment of the virtual
work can be written as

∆G =

∫

B
∆P : δFdV, (3.23)

in which ∆P = ∂P
∂F : ∆F = A : ∆F . The expression ∂P

∂F = A is referred to as the tangent
modulus. Note, that the symbol A refers to the tangent modulus derived with respect to
the deformation gradient. Alternatively, the tangent modulus can be derived for the strain
measures E or C, which are work-conjugated to the stress tensor S, which results in C ··=
∂S
∂E = 2 ∂S∂C . Using the aforementioned tangent modulus A, the linearized form of G can be
written as

LinG =

∫

B
δF : PdV −

∫

∂Bt

δu · tdA+

∫

B
δufbdV +

∫

B
δF : A : ∆FdV. (3.24)



28 3 Continuum Mechanics and Finite Element Simulations

∂B

∂Bh B

Bh

∂Be

Be

Figure 3.2: Exemplary finite element approximation Bh of the real body B with a coarse
mesh on the left and a finer mesh on the right side.

3.2.3 Discretization

An important part of the application of the finite element method is the so called discretization
of the physical body of interest B into a finite set of elements and nodes. By that, the
domain of this body is subdivided into a set of smaller domains of simpler geometrical shape,
which are referred to as finite elements. A single element may be referred to as Be from
here. Every element consists of a certain number of nodes ne, which are the discrete points
within the domain, at which the governing equations are actually solved. In this context the
displacements, and all quantities derived therefrom, are interpolated at every point within
the finite element based on the nodal values. Together, the nodes and the elements form
the finite element mesh, cf. Fig. 3.2 for an illustration of two different meshes for the same
geometry. The union of all finite elements serves as approximation Bh of the domain of
interest B, i.e. B ≈ Bh =

⋃ne
e=1 Be. Similarly, the surface ∂B is approximated by the surface

of the finite element mesh ∂Bh, which consists of outward-facing element surfaces ∂Be. These
approximations, as the name already indicates, do not perfectly reflect the reality, especially
in highly-non-linear regions of the geometry. This is due to the interpolation concept within
the finite element. For this purpose, shape functions are used:

X(ξ, η, ζ) =

nn∑

I=1

NI(ξ, η, ζ)XI and x(ξ, η, ζ) =

nn∑

I=1

NI(ξ, η, ζ)xI , (3.25)

as well as

u(ξ, η, ζ) =

nn∑

I=1

NI(ξ, η, ζ)dI . (3.26)

If the shape functions are used to interpolate both the geometry and the primary variables, the
isoparametric concept is applied. Therein, any element of the same type, either in reference or
actual configuration, is mapped onto a reference element of fixed size. In Fig. 3.3, the reference
element with domain Biso and its counterparts in reference (B) and actual configuration (S)
are depicted together with the required transformation maps. It should be noted, that only
the map between the reference and actual configuration reflects an actual deformation, the
maps referencing the isoparametric element may be interpreted as fictitious deformation. As
it can be seen in the figure, the isoparametric element is defined in the coordinate system of ξ.
To transform any vector to the physical space, the necessary Jacobi matrices are defined as

J =
∂X

∂ξ
. (3.27)

With these tools at hand, the approximated form of the gradient of the displacements,
Grad[u], which is required to approximate the deformation gradient F , can be obtained
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as

Grad[u] = Grad

[
nn∑

I=1

NIdI

]
=

nn∑

I=1

Grad[NI ]dI , (3.28)

wherein Grad[NI ] may be rewritten as

Grad[NI ] =
∂NI

∂X
=
∂NI

∂ξ

∂ξ

∂X
= J−T∂NI

∂ξ
. (3.29)

A commonly used shorthand for the formulation of this gradient is the B-matrix, which
contains the derivatives of all the shape functions, cf. e.g., [163] for concrete examples. The
B-matrix allows the short notation of Eq. (3.28) as

Grad[u] =

nn∑

I=1

BIdI , (3.30)

wherein BI is the B-matrix associated to node I. With an appropriate assembly of the element
displacement vector de, the element shape function matrix N e and element B-matrix Be, the
displacement and deformation gradient at every point ξ within element e can be computed
by the matrix-vector multiplications

u = N e(ξ)de and F = 1+Be(ξ)de. (3.31)

Inserting these approximations in the linearized form of the virtual work, cf. Eq. (3.24), the
components of the virtual work for a single finite element can by computed by

Ge = δdeT
[∫

Be

BeTPdV −
∫

∂Be

N eTtdA−
∫

Be

N eTfdV
]

(3.32)

and
∆Ge = δdeT

[∫

Be

BeTABedV∆de
]
. (3.33)

Note, that these approximated formulations allow to factor out the test functions δdeT, which
is important for the solution of the finite element problem.

3.2.4 Gaussian Quadrature

The discretized form of the linearized weak form still requires the computation of integrals over
the domain of interest. Besides other numerical schemes such as the trapezoidal or Simpson’s

η

ξ

η ξ

xX

ξη

j = ∂x
∂ξJ = ∂X

∂ξ

F = ∂x
∂X

(1,1)

(-1,-1)

SBe
Biso

Figure 3.3: Isoparametric mapping for a two-dimensional quadrilateral element of four
nodes.
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Table 3.1: Points and Weights for the one-dimensional Gauss integration up to order three.

nGP l ξl wl

1 1 0.0 2

2
1 −1/

√
3 1

2 +1/
√
3 1

1 −
√

3/5 5/9

2 0.0 8/93

3 +
√

3/5 5/9

method or even Monte Carlo integration approaches, usually the Gauss quadrature is applied
to finite element problems. In contrast to the other methods, the Gauss quadrature allows
to integrate polynomials up to a chosen order exactly. As the shape functions in the scope
of this work are Lagrangian polynomials, the appearing integrals can be computed exactly
based on the Gauss quadrature. Since the isoparametric concept is used, the integral over the
physical domain of the body of interest can be transformed to an integral over the domain of
the isoparametric element, i.e.,

∫

Be

□(X)dV e =

∫

Biso
□(X(ξ)) det[J(ξ)]dV iso. (3.34)

Since the isoparametric element is the same for every finite element, the Gauss quadrature
needs to be defined only once for the isoparametric element. Following the Gauss quadrature,
the integral expression is substituted by a weighted sum of the integrand evaluated at specific
integration points:

∫

Biso
□(X(ξ)) det[J(ξ)]dV iso ≈

nGP∑

l=1

□(X(ξl)) det[J(ξl)]wl. (3.35)

The weighting factors wl and integration points ξl are chosen, such that a polynomial of order p
can be exactly integrated by nGP > (p + 1)/2 integration points. For one-dimensional poly-
nomials up to order three, the weighting factors and integration points are given in Tab. 3.1.
Points and weights for higher dimensions for cuboid-shaped elements can be generated there-
from as a product for each coordinate direction.

3.2.5 Global Assembly

Until this point, the approximation of the weak form of the linear momentum was only con-
sidered for a single finite element. In order to compute the solution field for the displacement
for the entire body of interest B, the contributions of all elements need to be assembled into
global counterparts. These global counterparts form a system of linear equations, which can
be solved by available algorithms. Thus, the elemental residual vector

re =

∫

Be

BeTPdV ≈
nGP∑

l=1

BT
l Pl det[J(ξl)]wl, (3.36)

and the elemental stiffness matrix

ke =

∫

Be

BeTABedV ≈
nGP∑

l=1

BT
l AlBl det[J(ξl)]wl, (3.37)
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are required to assemble the global stiffness matrix K and the global residual vector R using
the assembly operator A

K =

nel

A
e=1

ke and R =

nel

A
e=1

re. (3.38)

The global displacement vector, the test function and the increment of the global displacement
vector are obtained by unification of the element displacements de by

D =

nel⋃

e=1

de, δD =

nel⋃

e=1

δde and ∆D =

nel⋃

e=1

∆de. (3.39)

With these global matrices and vectors at hand, the system of equations can be written as

LinG = δDT[K∆D +R]
!
= 0 ⇒ K∆D = −R. (3.40)

Since Eq. (3.40) has to be fulfilled for every possible choice of test functions δD, the second
term in the brackets has to be equal to zero, which leads to the actual system of linear
equations, which is solved. As previously described, the actual unknown variable of the to be
solved equations are the increments of the displacement ∆D. Since the underlying problem
is linearized, the computed increments are used to update the displacements D, which leads
to a change in the residual R. Thus, the Newton iterations need to be repeated, until a
convergence criteria is met and the converged displacement vector D for a certain load is
obtained. Usually applied convergence criteria are for example based on the local energy norm
or euclidean norms of increment of the displacements |∆D| or the norm of the residual |R|,
which need to become smaller than an a-priori defined threshold.

3.3 Constitutive Material Modeling

As mentioned in Sec. 3.1.3, the Clausius-Duhem inequality allows the formulation of consti-
tutive material laws based on the stored energy ψ. Since the Clausius-Duhem inequality must
not be violated, by means of the standard argument of the rational continuum mechanics the
relation of strains F and stresses P is derived from the Clausius-Duhem inequality to

P =
∂ψ

∂F
. (3.41)

Given the variety of materials in the world, a wide variety of functions may be chosen for ψ.
However, certain demands, which are beyond the scope of this work, in regards to thermo-
dynamics and mathematical convexity must not be violated, cf. e.g. Balzani et al. [7] or
Neumeier et al. [105]. Usually, ψ is formulated in terms of C (or F ) and is thus, referred to
as strain energy function. One class of materials are compressible neo-Hookean formulations,
where characteristcally the incompressible neo-Hookean formulation µ/2(tr[C] − 3) is com-
plemented with volume penalties in terms of J . Here, it is important to formulate convex
penalties w.r.t. the dependence onto J by e.g.,

ψ(C) =
µ

2
(tr[C]− 3− 2 ln[J ]) +

λ

2
(J − 1)2. (3.42)

Therein, λ and µ are the characterizing parameters of this particular material model, the
Lame-constants. These parameters are determined by a fit, i.e. an optimization process, in
which the parameters are adjusted such that available experimental data is optimally reflected
by its virtual counterparts in terms of finite element computations. Often, material models
are constructed, such that at least some of its parameters represent material properties, such
as e.g., the Young’s modulus, Poisson’s ratio or the yield stress. However, for more complex
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material behaviors, it is certainly possible, that a set of parameters is used and fitted, for
which no physical interpretation can be found.

Considering Eq. (3.42), the neo-Hookean material law describes only elastic material behavior,
i.e., all deformations are fully reversible. More complex materials, for example for plasticity or
damage phenomena, require additional arguments in the strain energy density in order to take
the loading history and therefore the formation of microstructures of the particular material
into account. This loading history is an important quantity to correctly model permanent
strains due to plastic behavior or an increasing internal damage. The additional variables
are referred to as internal or history variables, here generally denoted by α. In these cases,
a common approach is the additive split of the strain energy into an elastic part ψel and an
inelastic part ψinel,

ψ(C,α) = ψel(C) + ψinel(α), (3.43)

wherein the elastic parts depends on the strain C, whilst the inelastic contributions are a
result of the internal variables α.

The presented approach to material modeling is a viable way for many classes of materials,
especially if the material’s microstructure is homogeneous. However, for many materials
exhibiting a heterogeneous microstructure with two or more phases, where the individual
phases show different constitutive behavior e.g. kinematic hardening in phase 1 whereas
phase 2 behaves elastically, the phenomenological material modeling becomes difficult due
to factors such as the complex interactions of the phases on a microstructural level. Then,
the approach of computational homogenization as described in the following section may be
applied.

3.4 Computational Homogenization

Albeit many engineering materials can be sufficiently described by a purely phenomenological
material model, sometimes the direct incorporation of microstructural phenomena is desired.
Then, concepts from the field of numerical homogenization can be applied, which allow the
computation of effective, macroscopic material properties from boundary value problems based
on the material’s microstructure, cf. e.g., the works of Smit et al. [140], Feyel [40], Feyel and
Chaboche [41], Miehe et al. [89], Miehe et al. [90], Schröder [135], Geers et al. [46], Geers et al.
[47], Geers et al. [48], Geers et al. [49], Tamsen and Balzani [151] and Tamsen [150], among
many others. These approaches are particularly important for materials exhibiting a distinct
microstructure, such as e.g., concrete or multi-phase steels. Thus, at least two different scales
are investigated, which differ in magnitudes, i.e. Lmacro ≫ Lmicro, wherein Lmicro refers to the
characteristic length of mechanical fields on the smaller scale, the so-called microscale, and
Lmacro to their counterparts on the larger scale, the macroscale. It is important to note, that
in this work the names of the different scales should not be understood in material science
interpretation, where macro and micro, as well as meso and nano refer to rather specific
dimensions. Instead, micro always refer to the smaller scale, on which details and features
of the material’s lower scale behavior are resolved, whilst macro is referring to the scale of
the structural problem. In the context of this description of computational homogenization,
quantities denoted by an overline, i.e. F , are associated with the macroscale, whilst quantities
without overline are related to the microscale, i.e. F .

Given at least two different length scales of interest, a naive approach to the consideration
of features from the microscale would be a finite element discretization with elements, that
are small enough to approximate the microstructure sufficiently, but over the entire domain
of interest on the macroscale, sometimes referred to as direct numerical solution (DNS). The
result would be a finite element mesh with a huge number of finite elements and thus, a large
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number of degrees of freedom. The associated numerical costs not only for solving, but also
assembling such a system of equations would be tremendously high, which is why this rather
naive approach is usually not followed.

Instead, the conceptual idea of computational homogenization and FE2 is the separation of
scales, in which individual boundary value problems are posed on sections of the material’s
microstructure of limited size. These microstructural BVPs are connected to the structural
problem on the macroscale by suitable kinematic links, by which the deformation of macro-
scopic points is used to impose boundary conditions on the microscale. The points on the
macroscale are the quadrature points of the macroscopic elements, and by that, the microscale
BVPs are used to replace the material model evaluation on the macroscale. Since a conven-
tional material model returns the stresses and stiffness, upscaling relations are used to deduce
the macroscopic stresses and stiffness from the microscale BVPs. In consequence, there are as
many microscopic boundary value problems as there are quadrature points in the macroscopic
problem. Whilst this approach to computational homogenization is certainly cheaper than
the aforementioned DNS approach, it is still linked with large numerical costs, since a full so-
lution of all microscale BVPs is necessary to compute one Newton iteration on the macroscale.
However, since the microstructural BVPs are independent of each other, the FE2-methods is
perfectly suitable for trivial parallelization on modern computers with minimal inter-process
communications.

A special, but very useful application of the FE2-method is virtual material testing, wherein
simple deformations such as homogeneous tension or shear are prescribed on the macroscale
and the material response in terms of homogenized stresses is computed by the microscale
BVPs. Due to the simple nature of the macroscopic problems, usually a single finite element
with just a single quadrature point is sufficient, such that only one microscale BVP has to
be solved. This allows an efficient virtual lab, in which many different microstructures with
different materials and morphologies can be tested without being physically produced. In
Sec. 5, this method for virtual material tests is applied in order to quantify the variation of
selected macroscopic material properties.

3.4.1 Representative Volume Element

A crucial part for the computational homogenization is the choice of the microstructure ge-
ometry for the boundary value problem on the microscale. This geometry is referred to as
representative volume element (RVE) and should be chosen, as the name already indicates,
such that it holds all information on the materials microstructure in a representative way.
Unfortunately, the term “representative” is neither objective nor unique and thus, the appro-
priate choice of an RVE is a well discussed topic in the literature. One approach following
Hill [64] is to demand the RVE to represent the average of the materials microstructure resp.
to contain a typical amount of all phases of the microstructure. Thus, the RVE has to be
large enough to do so, but still much smaller than the structure of the macroscopic problem,
cf., Hashin [60]. Alternatively, according to Drugan and Willis [29],the RVE should repre-
sent the smallest subsection of the material, which is sufficient to represent the mechanical
response of the material. Following Ostoja-Starzewski [109], a clear definition for an RVE
is only possible for perfect periodic materials, whose microstructure consists of aligned unit
cells, and for materials, in whose microstructure such a large number of inclusion is embedded,
such that statistical homogeneity can safely be assumed. An in depth overview on the various
definitions can be found in Gitman et al. [52]. Many of these RVE definitions are joint in a
sense, that a trade-off between the size of RVE and with that, the accuracy of the computa-
tions, and the efficiency is sought. One approach is to utilize simpler geometries, which are
similar to the real material’s microstructure in terms of statistical measures and mechanical
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response. These artificial microstructures are called statistically similar representative volume
elements (SSRVEs), cf. e.g., Balzani et al. [3], Balzani et al. [4], Scheunemann et al. [127] or
Sasagawa et al. [124]. In Sec. 5, the idea of these SSRVEs is further discussed and extended
to create a set of artificial microstructures with the same variability in the morphology as the
real material. Usually, a cube or cuboid is used as shape for an RVE, however, in Glüge et al.
[54], different shapes such as spheres are discussed. For the scope of the present work, only
cuboid-shaped RVEs are considered.

3.4.2 Homogenization of Deformation Gradient and Stresses

Given the conceptual idea of computational homogenization and an appropriate RVE as do-
main for the microscale BVP, the different scales still needs to be linked in terms of the me-
chanical quantities of interest. This link is usually motivated by the assumption from classical
continuum mechanics, that the deformation gradient as well as the stresses are distributed
uniformly, i.e., constant, over an infinitesimal volume element. Since the microstructure is
such an infinitesimal volume element from the perspective of the macroscale, a reasonable
approach is to assume, that the macroscopic deformation gradient F and the macroscopic
stresses P are uniform over the domain of the RVE and are equal to the volume average of
the corresponding quantities of the microscale. In this context, the volume average for an
arbitrary quantity □ is defined by

⟨□⟩ = 1

V

∫

B
□dV, (3.44)

wherein B is the domain and V the volume of the RVE. Since the macroscopic deformation
gradient F is distributed uniformly over the domain of the microstructure, it imposes an
homogeneous portion of the microscopic deformation x. Therefore, under the assumption of
a centered coordinate system in the center of the RVE, an additive split of the microscopic
deformation as follows is assumed:

x = FX + ũ, (3.45)

wherein FX represents the mentioned homogeneous part and ũ a fluctuation part. Since the
macroscopic deformation gradient F is a known quantity at the level of the microscale BVPs,
the deformation fluctuation ũ is the remaining unknown and thus, the primary variable for
the solution of the microscale BVP. Similarly, the microscopic displacements u = HX + ũ,
microscopic deformation gradient F = F + F̃ and the microscopic stresses P = P + P̃ can
be split into an macroscopic and a fluctuating part.

The definition of the microstructural deformation x according to Eq. (3.45) is not sufficient
for a meaningful computation. Without any additional constraint, the energetically most
favorable state of no deformation can be obtained, if the fluctuations ũ simply oppose the
deformation induced by the macroscopic deformation gradient, i.e., ũ = −FX. Therefore,
additional boundary constraints to the microscale BVP are required. Before these boundary
constraints can be discussed, first the macro-homogeneity condition has to be introduced.

3.4.3 Macro-Homogeneity Condition

A fundamental principle for the connection of multiple scales in terms of finite elements
is the macro-homogeneity condition, cf., Hill [65] and Mandel [85], which states, that the
macroscopic power is equal to the volume average of the microscopic power:

P · Ḟ = ⟨P · Ḟ ⟩ = 1

V

∫

B
P · ḞdV. (3.46)
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This principle, sometimes also referred to as Hill-Mandel condition, ensures, that the math-
ematical concept of the homogenization neither consumes nor produces any energy and the
scale transitions can be computed at no energetic costs. An alternative form of Eq. (3.46) is
given by

P · Ḟ =
1

V

∫

∂B
t · ẋ dA. (3.47)

Considering the additive split of the microscopic stresses and deformation gradient, it can be
shown, that the volume average of the fluctuation parts vanishes, i.e.,

⟨P̃ ⟩ = ⟨P − P ⟩ = ⟨P ⟩ − P = 0,

⟨F̃ ⟩ = ⟨F − F ⟩ = ⟨F ⟩ − F = 0.
(3.48)

With this information, the additive split can be inserted in the Hill-Mandel-condition (3.46)
by

⟨P̃ · Ḟ ⟩ = ⟨(P + P̃ ) · (Ḟ +
˙̃
F )⟩,

= P · Ḟ + ⟨P̃ · ˙̃F ⟩.
(3.49)

Comparing this result with the initial Hill-Mandel-condition (3.46), it can be seen, that the
volume average of the power contributions of the fluctuation components has to vanish, i.e.,

⟨P̃ · ˙̃F ⟩ = 0. (3.50)

3.4.4 Permissible Boundary Conditions

With the Hill-Mandel-condition (3.46) at hand, it is now possible to formulate boundary con-
ditions for the microscopic BVP, which fulfill this condition. For this purpose, the averaging
equations F = ⟨F ⟩ and P = ⟨P ⟩ are rewritten as follows. Under the assumption of no
displacement jumps due to e.g., cracks and cavities, the gradient theorem

∫

B
GradXdV =

∫

∂B
X ⊗NdA = 1V, (3.51)

can be used to transform the equality F = ⟨F ⟩ to constraints in terms of surface displacements
only. For this purpose, the macroscopic deformation gradient F is expanded to

F = F 1
V

V
=

F

V

∫

B
GradXdV =

1

V

∫

∂B
(FX)⊗NdA =

1

V

∫

∂B
x⊗NdA, (3.52)

wherein the relation x = FX is used. A reverse application of the gradient theorem proves,
that the equality F = ⟨F ⟩ is maintained:

F =
1

V

∫

∂B
x⊗NdA =

1

V

∫

B
GradxdV =

1

V

∫

B
FdV = ⟨F ⟩. (3.53)

Similarly, a formulation for the macroscopic first Piola-Kirchhoff stress tensor in terms of only
surface traction vectors t = PN can be derived as

P =
1

V

∫

∂B
t⊗XdA. (3.54)

Considering the balance of linear momentum DivP = 0 for quasi-static problems and the
divergence theorem, the macroscopic first Piola-Kirchhoff stress tensor can be computed as
volume average

P =
1

V

∫

B
PdV = ⟨P ⟩. (3.55)
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Uniform Traction Boundary Conditions: By inserting Eq. (3.52) into the alterna-
tive form of the Hill-Mandel-condition (3.47), one obtains

0 =
1

V

∫

∂B
ẋ · (PN − t)dA, (3.56)

which can be fulfilled by the boundary conditions

t = PN on ∂B. (3.57)

Linear Displacement Boundary Conditions: Similar to the uniform traction bound-
ary conditions, the insertion of Eq. (3.54) in Eq. (3.47) leads to

0 =
1

V

∫

∂B
t · (ḞX − ẋ)dA, (3.58)

which can be satisfied by the linear displacement boundary conditions

u = (F − 1)X and ũ(X) = 0, ∀X ∈ ∂B. (3.59)

Similar to standard finite elements, displacement and traction boundaries can be mixed, which
leads to the mixed boundary conditions. For this purpose, the boundary ∂B is split in two
distinct parts ∂Bu and ∂Bt, on which the individual boundary conditions are prescribed.
While the implementation of these boundary conditions is rather straight forward, although
requiring an implicit solution scheme, it has been found, that the homogenized stiffness is
often overestimated and an overall stiffer macroscopic material response is obtained.

Periodic Boundary Conditions: Thus, another type of boundary conditions is pre-
ferred for RVEs, the periodic boundary conditions (PBC). Although PBCs are designed and
well suited for periodic RVEs, sufficient results can also be obtained for non-periodic struc-
tures. Considering Eq. (3.58), the term in the parenthesis represents the time derivative of
the deformation fluctuations, cf., Eq. (3.45). Thus, Eq. (3.58) can alternatively written as

0 =
1

V

∫

∂B
t · ˙̃u dA. (3.60)

For the application of PBCs, the boundary of the RVE ∂B is split in two opposing sets of
surfaces B+ and B− with B+ ∪ B− = ∂B and B+ ∩ B− = ∅. By this split of the boundary,
the Hill-Mandel-condition can be further expanded to

0 =
1

V

∫

∂B
t(X+) · ˙̃u(X+) dA+

1

V

∫

∂B
t(X−) · ˙̃u(X−) dA. (3.61)

Given pairs of of parallel surfaces of equal size on opposite sides of the RVE, B+
i ∈ B+ and

B−
i ∈ B−, the modified form of the Hill-Mandel-condition can be fulfilled, if

ũ(X+) = ũ(X−), t(X+) = −t(X−) ∀X+ ∈ B+
i and X− ∈ B−

i . (3.62)

This introduces special requirements in view of the finite element mesh of the microstruc-
ture, since every node needs an counterpart on the other side of the RVE. Especially for
unstructured and non-periodic structures additional effort is necessary to construct a periodic
mesh.
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3.4.5 Consistent Tangent Moduli

Since the overall idea of the FE2-method is the substitution of a phenomenological material
model by BVPs on the microscale, these microscale BVPs have to return not only the ho-
mogenized stresses, but also a tangent moduli. However, unlike the stresses, a simple volume
average of the tangent moduli, i.e.,

A = ⟨A⟩ (3.63)

is mechanically only correct, if the strain field on the microscale is uniform. Otherwise, the
volume average leads to a stiffer tangent moduli, which is why a softening term has to be
considered, cf., e.g [136]. This softening term is the volume average of the sensitivity of the
tangent moduli with respect to the fluctuation of the deformation gradient, i.e. a consistent
tangent moduli is computed by

A =
1

V

∫

B
AdV +

1

V

∫

B
A : ∂F F̃dV. (3.64)

3.5 Finite Cell Method

The systematic investigation of many different microstructures by means of numerical homog-
enization as introduced in the previous section poses an additional challenge: the construction
of suitable finite element meshes. If only a few, e.g., ten or twenty different microstructures
or rather RVEs should be investigated, a manual mesh construction may be feasible. With a
further increasing number of different microstructure realizations, that should be investigated,
the manual approach becomes quite cumbersome and more time will be spent on mesh con-
struction than on actual finite element computations. Therefore, the construction of meshes
should be automatized in favor of a larger number of RVEs, that can be considered. However,
while there are algorithms and frameworks for the automatized construction of conforming
finite elements, cf., e.g. Schneider et al. [134], arbitrary microstructures with e.g., intersecting
ellipsoids in the case of SSRVEs, are still challenging for these algorithms and thus, potential
unusable finite element meshes may be generated. In this context, unusable covers for example
unnecessarily small elements, or elements, which intersect itself, or elements with degenerated
shapes.

An alternative to the manual or potentially faulty automatized generation of conforming finite
element meshes is the application of the finite cell method (FCM), cf., e.g. Parvizian et al.
[117] or Düster et al. [30]. The core idea of the FCM is the combination of fictitious domains
with higher order shape functions. The fictitious domain approach embeds the domain of
interest of arbitrarily shape in an outer domain of simpler size such as cubes, cf., e.g. the
works of Bishop [16], Ramière et al. [121] or Glowinski and Kuznetsov [53]. These outer
domains, the fictitious domains, are then meshed by means of regular grids, such that cube
or cuboid-shaped elements originate. By that approach, the meshing effort is reduced to a
minimum, as regular cartesian grids are rather simple to generate. Obviously, the resulting
meshes are no longer conforming in the sense, that the material interfaces are reflected by
element boundaries. In consequence, the approximation of the morphology of the domain of
interest is split from the approximation of the displacement field.

Originally, the FCM has been introduced to ease the mesh generation for domains with un-
regular, arbitrary shape, potentially also including holes. Then, the added fictitious domain
around the actual domain of interest was assigned a stiffness of close to zero, such that the
mechanical fields are not disturbed. Additional special treatment is required for the appli-
cation of boundary conditions, since these can only be applied to the fictitious domain, but
not to the domain of interest, cf. [30] for more in-depth discussion on the boundary condition
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a) b) c)

Figure 3.4: Illustration of a) the considered geometry of a circular inclusion in a matrix,
b) example of a structured grid used as finite element mesh for this domain and c) decom-
position of the top left finite cell from subfigure b) based on the application of the quadtree
algorithm with a recursion-depth of 4. Adapted from Fangye, Miska, and Balzani [37].

treatment. For the intended application of the FCM to the microstructure of virtual exper-
iments in the FE2-sense, the special treatment of boundary conditions can be avoided. The
domain of interest and the fictitious domain may be interpreted as two different phases with
different material properties, similar to different material phases in a material’s microstruc-
ture. Additionally, the RVEs as introduced in Sec. 3.4.1 are cuboid-shaped, such that no
fictitious domain is necessary and the domain of interest can easily be meshed by regular
grids. Since a regular grid is also periodic, the utilization of periodic boundary conditions for
the homogenization is straight-forward.

However, since the resulting meshes are non-conforming, two different material phases may
appear within a single finite element. This leads to a discontinuity of the integrand in the
computation of the element stiffness matrix, cf. Eq. (3.37), and hence, the Gauss integration
scheme can not be applied directly. Thus, as central idea of the FCM, the integrand is
decomposed into multiple parts, such that each part for itself is continuous with respect to
the material phases. Exemplary, for a microstructure with two different phases, related to
domains B1 and B2 respectively, such that B1 ∪ B2 = B and B1 ∩ B2 = ∅ holds, cf. also
the illustration in Fig. 3.4a) and Fig. 3.4b). There, the computation of the element stiffness
matrix can be decomposed in two separate integrations over the individual material phases
by

ke =

∫

Be
1

BeTA1B
edV1 +

∫

Be
2

BeTA2B
edV2. (3.65)

Since the individual integrands are continuous with respect to the material phases, the Gauss
integration can be used for each integral. The difficult part therein is the determination of
the domains Be1 and Be2. The idea within the FCM is to subdivide the finite element in smaller
subsections, the so-called subcells. Unlike the finite element, a subcell consists of only one
material phase and thus, the morphology within the finite element is approximated by the
subcells. Therefore, the computation of the element matrix may be more generally written
for an arbitrary number of subcells per element nsc and using the Gauss integration by

ke =

nsc∑

sc=1

nGP∑

l=1

(
BT
l AlBl

)
det[J(ξl)]wl. (3.66)

An open question is the decomposition of the finite element with its contained microstructure
morphology into the subcells. In the original proposal, an Octree algorithm was used, cf. [30]
or Schillinger and Ruess [131]. The two-dimensional equivalent is shown in Fig. 3.4c). One
disadvantage therein is a high number of subcells, which leads to a higher required numer-
ical effort during the assembly stage, which may partially be overcome with smart Octrees,
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cf., Kudela et al. [77]. Alternatives are moment fitting approaches, resulting in individual
integration rules for every element, cf., Joulaian et al. [71] or Hubrich et al. [69]. In many
applications, the geometry data is given in form of pixels or voxels. Since this data is already
cube or cuboid-shaped like the subcells or finite elements, it can be beneficial to exploit this
property in order to create the smallest number of subcells. An algorithm for this purpose,
called “Optimal Decomposition”, has been proposed in Fangye et al. [37] and will be discussed
in more detail in Sec. 4.





4 Optimal Decomposition of Voxel-Based
Geometries for the Finite Cell Method

Within the context of the classic Finite Cell Method (FCM) as described in Sec. 3.5, the
decomposition into subcells is mostly performed by means of the Octree algorithm. This offers
advantages, e.g., for curved surfaces or domains with arbitrary holes in it, since the Octree
algorithm will recursively create more and thus, finer subcells in regions of high geometry
discontinuity and less subcells in geometrically constant areas. However, if the geometry
representation is already given in a format, in which the smallest base unit is a cuboid, i.e., in
terms of pixels or voxels, it may be beneficial to take advantage of their properties and directly
aggregate these smaller units to larger cuboids. By that, less subcells may be generated than
from the Octree approach for the same geometry, which is favorable in view of the efficiency of
the assembly of the underlying finite element problem, since less integration point evaluations
are required. In Fig. 4.1, a simple two-dimensional example for the two different subcell
decompostion methods is shown: in Fig. 4.1a), the base domain of five by five pixels and
two different materials is depicted. If this geometry is decomposed into subcells by means of
the Octree, a decompostion as depicted in Fig. 4.1b) will result, in this case, the Octree is
refined four times. It should be noted, that the two-dimensional variant of an Octree is called
Quadtree, but in order of generalization in this thesis the algorithm is termed Octree even
for this two-dimensional example. Although rather small subcells are created, the created
subcells cannot match the material boundaries exactly, as since still a few subcells with in
theory two materials are shown. Since subcells with two materials are not permissible in
the FCM context, either the Octree has to be refined even more or the existing subcells are
assigned a single material by e.g., assigning the subcell the material with the larger volume
fraction, which would effectively shift the material boundary and modify the boundary value
problem at hand. Motivated by these shortcomings, the optimal decomposition as shown
in Fig. 4.1c) is proposed, cf. Fangye, Miska, and Balzani [37], which clusters the pixels in
an optimal way, such that the least number of subcells is created. By that, the material
boundaries are captured exactly and the required numerical effort for the assembly of the

a) b) c)

Figure 4.1: Subcell decomposition of a finite cell, a) base representation of the geometry
with 5 by 5 pixels, b) subcell decomposition by means of quadtree until level 4 with inter-
sected subcells and c) optimal subcell decomposition. Adapted from Fangye, Miska, and
Balzani [37].
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a) b) c) d) e)

f) g)) h) i) j)

Figure 4.2: Principle algorithm of the Optimal Decomposition (OD) for one single finite
cell containing 5 by 5 pixels; a) a prototype subcell, b) extension in first search direction,
c) an entire joined row, d) and e) iterations on the next row, f) the result of the extension
in the first direction, g) merge operation in second direction and h) final decomposition
result. In i) and j) the decomposition result for a permutation of the search direction is
shown. Adapted from Fangye, Miska, and Balzani [37].

finite element problem is kept as low as possible. Hence, the following chapter presenting
the method itself and a numerical comparison against the Octree method, is a reflection of
the contents of the mentioned journal paper. In addition, the developed methods have been
presented in Fangye, Miska, and Balzani [35] and Fangye, Miska, and Balzani [36].

4.1 Enhanced Subcell Decomposition Approaches for the Finite
Cell Method

4.1.1 Optimal Decomposition

The introduction example in Fig. 4.1 is rather easy so solve visually, which is however no
practical approach for arbitrary geometries and domains. Therefore, an algorithmic procedure
has been developed, which is described in the following. In order to keep this description
easy to understand, it will mainly focus on two-dimensional cases, which are also simpler
to visualize. However, this is no restriction of the method itself, which can also deal with
three-dimensional applications. If the method requires additional or modified steps for the
three-dimensional case, this will be explicitly annotated. The algorithm is explained on the
basis of the same geometry, which was used in the introductory example, cf., also Fig. 4.2a).
It represents a two-dimensional element, in which the geometry is resolved by five by five
pixel. From thereon, the following algorithm starts:

1. A start pixel or voxel is identified in a corner of the finite element, in this example the
pixel in the lower left corner, outlined by a dark purple box in Fig. 4.2a). This pixel or
voxel is considered as prototype subcell with the size of one pixel and will be extended
next.

2. Starting from the prototype subcell, a dimension is chosen as search directory, in this
example to the right, and the next neighboring pixel is checked for compatibility. In
this regard, compatibility checks a), that both the prototype and the neighbor have the
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same material, since otherwise an aggregation is not sensible and b), that the size of
the prototype and the neighbor are the same in the remaining directions, which are not
the search direction. Only then, a merge of both will result in a larger cuboid. If both
criteria are fulfilled, the prototype can be extended by the size of the neighboring pixel
as shown in Fig. 4.2b). If at least one criterion is not fulfilled, a new prototype subcell
is started.

3. The previous step is repeated, until the end of the finite element is reached, cf. Fig. 4.2c).
A subcell, which is larger than the enclosing finite element is not permissible. In the
example, the entire bottom row of pixel has been joined to one subcell.

4. Once the end of the finite element is reached in the first dimension, the algorithm shifts
by one row in the second dimension, see Fig. 4.2d). From there, the two previous steps
are repeated again, so that the result as shown in Fig. 4.2e) is obtained.

5. Steps 2 to 4 are repeated, until the end of the finite element in the second dimension
is reached as well. The resulting decomposition in Fig. 4.2f) shows, that the material
discontinuity in the middle row was captured and a new subcell was started exactly
at the material interface. For the two-dimensional example now the next step would
be performed, for a three-dimensional problem the aforementioned steps are now also
repeated in the third direction, until also there the end of the finite element is reached,
cf., also the pseudo-code in lines 3 to 12 of Alg. 1.

6. The result of the previous steps is a set of tube-shaped subcells, since the pixel and
subcells were only joined in one dimension. Thus, the next step is to try to merge these
tube-shaped subcells in a second direction, if possible. Again and similar to before, the
subcells, which should be joined, need to be checked for compatibility, i.e. both subcells
have to have the same material and the same size in the non-search directions. The first
step of this iteration is shown in Fig. 4.2g), wherein the two subcells at the bottom of
the finite element were joined. However, the row above that can not be joined, since
for both subcells in the middle row at least the size check will fail. The end result
of the merging operation in the second search direction is depicted in Fig. 4.2h). For
the two-dimensional case, at this point the end of the algorithm is reached, since all
dimensions were searched and subcells joined, if possible. This refers also to lines 14 to
20 in Alg. 1. For a three-dimensional problem, one more search direction remains, since
until now a lot of layers with plate-shaped subcells were created. Here, an additional
iteration along the third dimension has to be performed to join these subcells into larger
cuboids, if compatibility is given. This search along the third dimension is reflected in
lines 22 to 28 of Alg. 1.

One crucial part in the presented algorithm is the choice of the starting point. It can not be
guaranteed, that the optimal decomposition can be found, if the starting point is always in
the lower corner and the dimensions are searched in ascending order. Hence, the proposed
algorithm is repeated for all possible permutations of directions, which leads to two runs for
two-dimensional and six runs of the algorithm for three dimensions. The impact of different
permutations of search directions is visualized in Fig. 4.2i) and Fig. 4.2j) for the chosen
example. The tube-shaped subcells are now created in the vertical direction and also the
final result looks different. However, the number of generated subcells is the same, at least
in this example, such that the numerical cost of assembly is assumed to be the same. In the
general case, it can not be proven, that any particular order of search directions is preferable
over another, since a less number of subcells is created, or that all permutations perform
the same. Thus, in practical applications, all permutations have to be tested to obtain the
smallest number of subcells from the Optimal Decompostion. Since the smallest number of
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Algorithm 1: Optimal Decomposition (OD)
1 def OptimalDecomposition(finite_cells, voxel_data):
2 for fc in finite_cells: # loop over all finite cells
3 subcells = []
4 for vz in z-direction: # iteration to aggregate
5 for vy in y-direction: # voxels in first direction
6 for vx in x-direction:
7 vox = voxel_data[vx,vy,vz] # get actual voxel
8 last_sc = subcells.Last() # get current subcell
9 if CheckCompatibility(vox, last_sc, 1):

10 last_sc.ExtendBy(vox) # extend subcell by voxel
11 else:
12 subcells.Append(vox) # start new subcell with voxel
13

14 subcells.Sort() # sort subcells for merge in 2nd direction
15 for i in subcells.length: # loop over all prototypal subcells
16 sc1 = subcells[i] # extract neighboring subcells
17 sc2 = subcells[i-1]
18 if CheckCompatibility(sc1, sc2, 2):
19 sc2.ExtendBy(sc1) # merge neighboring subcells if possible
20 sc1.Remove()
21

22 subcells.Sort() # sort subcells for merge in 3rd direction
23 for i in subcells.length: # loop over all prototypal subcells
24 sc1 = subcells[i] # extract neighboring subcells
25 sc2 = subcells[i-1]
26 if CheckCompatibility(sc1, sc2, 3):
27 sc2.ExtendBy(sc1) # merge neighboring subcells if possible
28 sc1.Remove()
29 return subcells

subcells per finite element is considered optimal in view of the required numerical costs, the
algorithm is named Optimal Decomposition.

In the example, the bounds of the finite element correspond with the interfaces of the pixels (or
voxel), which is not necessarily true for all applications. The proposed method is able to also
consider pixel or voxel, which are only partially part of the finite element by considered only
the portion of the pixel, which is inside the finite element, for the construction of prototype
subcells. This is the main reason why the dimensions of the corresponding subcells are
carefully checked before a merge operation, to ensure that only cuboid-shaped subcells are
obtained. A potential drawback of the Optimal Decomposition is the potential construction
of narrow subcells. In the example, all tube-shaped subcells could be joined to larger subcells,
however, in real applications very long, but thin subcells may be created, which may lead to
problems concerning the numerical quadrature. In order to investigate this effect, a measure
called irregularity of the subcells is defined as the ratio of the longest and shortest size of a
subcell by

irr[sc] =
max{lsc, wsc, hsc}
min{lsc, wsc, hsc} , (4.1)

wherein lsc, wsc and hsc denote the length, width and height of the subcell sc, respectively.
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a) b) c) d) e)

Figure 4.3: Combinations of the Octree with the Optimal Decomposition; a) base geome-
try, b) Octree level 3, c) the T-M , d) the T-OD and e) the T-OD-M algorithms. Adapted
from Fangye, Miska, and Balzani [37].

4.1.2 Modifications of the Octree Algorithm

Considering the Optimal Decomposition (OD) method introduced in the previous section
with its potential drawbacks due to irregular subcells, it can be beneficial to explore the
combination of the Octree algorithm with the newly suggested OD. For this purpose, three
distinct combinations of both methods are suggested and outlined below.

Octree with Subsequent Global Subcell Merge The OcTree-Merging algorithm
(T-M) is obtained by integrating the Octree algorithm with the merge of subcells as sug-
gested in the Optimal Decomposition. To do this, the Octree is initially performed up to
specified thresholds, such as level three as illustrated in Fig. 4.3b). Next, the subcells are
merged to decrease the overall quantity of subcells, by systematically evaluating all potential
combinations of directions. Fig. 4.3c) demonstrates an instance of the outcome, revealing a
notable reduction in subcells compared to the pure Octree depicted in Fig. 4.3b). Although
the updated approach retains the fundamental principles of the Octree algorithm, it may still
fail to precisely capture material boundaries. This is because the subcells generated by the
Octree algorithm may not align perfectly with the material boundaries. In the given example,
the initial volume fraction of the orange inclusion is calculated to be 52% (13/25) as shown in
Fig. 4.3a). However, upon using the Octree algorithm up to level three, the volume fraction is
determined to be 53.125% (34/64). The Octree has altered the volume percentage, potentially
compromising the accuracy of the integration outcome.

Octree with Subsequent Local Optimal Decomposition in Finest Level The
approach at the finest level of the Octree is altered by combining it with the OD in a different
way, resulting in a method named OcTree Optimal Decomposition (T-OD). Rather than
making a simplistic assignment of the material with the highest volume percentage to each
subcell, a more efficient decomposition is carried out within each subcell at the finest level
of the octree structure. The fundamental algorithm of OD remains same, with the exception
that the boundaries of the matching subcell produced from the Octree are utilized instead of
the limits of the finite element. By utilizing an Octree to divide the domain and applying the
OD at the finest level, the regular division of the domain prevents the occurrence of excessively
small subcells, while a precise approximation of material boundaries is maintained. Utilizing
this adapted technique on the current example yields a subcell decomposition, as depicted in
Fig. 4.3d). In comparison to the implementation of the initial Octree shown in Fig. 4.3b), the
new method appropriately represents the material boundaries but requires a greater number
of subcells. Furthermore, a small number of thin subcells are created at the interfaces of
the materials. Hence, selecting the optimal finest level for a T-OD application necessitates
a trade-off between the preferred quantity of subcells and the irregularity of the generated
subcells.
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a) b) c) d) e)

Figure 4.4: Illustration of the Optimized Clustering algorithm (OC), a) randomly chosen
start pixel, b) and c) two possible restricted growth modes, d) fully grown subcell and e)
resulting subcell decomposition. Adapted from Fangye, Miska, and Balzani [37].

Octree with Subsequent Local Optimal Decomposition and Global Subcell
Merge The OcTree-Optimal Decomposition-Merging (T-OD-M) algorithm is the result of
combining the two previous separate modifications of the Octree algorithm. The Octree
algorithm is executed until a specified depth of recursion is achieved. Then, the Optimal
Decomposition is carried out locally on the subcells at the finest level that still have two
materials. Finally, all subcells are globally merged if they are compatible. Executing the
T-OD-M on the above case yields the outcome depicted in Fig. 4.3e). It is evident that the
quantity of subcells is decreased, however, this also results in the formation of thin subcells.
In this scenario, the subcells generated by the Octree algorithm are perfectly aligned with
the material boundaries, making it challenging to prevent the formation of small subcells at
interfaces. The consequences of this observed behavior are investigated by means of numerical
examples in Sec. 4.2.

4.1.3 Optimized Clustering

Given that the proposed changes to the Octree algorithm result in a greater quantity of
subcells, they do not offer a direct advantage over the Optimal Decomposition algorithm
when narrow subcells are deemed acceptable. Nevertheless, the degree to which the OD
algorithm effectively results in the smallest quantity of subcells remains uncertain. In order
to examine this issue, a new approach is presented that constructs the subcell decomposition
by resolving an optimization problem. To achieve this objective, a random voxel is selected
from within a finite element as the initial point, see the two-dimensional example problem
shown in Fig. 4.4a). Subsequently, the algorithm tries to group adjacent voxels together
in order to expand the initial voxel into a larger cuboid. Initially, it attempts to expand
uniformly in every direction, leading to the formation of a larger cubic shape. If it is no
longer feasible, such as when a voxel of a different material would be incorporated or the
bounds of the finite element are reached, the growth mode is altered. Then, the algorithm
restricts the expansion. Initially, one specific direction is restricted to expand only in positive
or negative direction, while the other two directions remain unrestricted. This case is depicted
in Fig. 4.4b) and Fig. 4.4c), showcasing two potential options for the restricted growth, since
volumetric growth is not possible due to the inclusion in the lower left corner. When a growth
mode becomes unsuccessful, the algorithm limits another level of flexibility to grow until there
are no remaining directions to restrict growth in. By that, the largest possible subcell for the
specified starting voxel is identified. Subsequently, the method proceeds by randomly choosing
another voxel that has not yet been included in a subcell to initiate the clustering algorithm
once more. This can be observed in Fig. 4.4d), where the largest feasible subcell was identified
and a new starting voxel was selected at the lower right corner, as shown in Fig. 4.4e). The
process is iterated until there are no remaining unoccupied voxels within a limited cell, as
shown in Fig. 4.4e). It is evident that specific limitations on the directions of growth offer
numerous possibilities for the subcell to expand. As illustrated in Fig. 4.4b) and Fig. 4.4c), the
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Algorithm 2: Optimized Clustering (OC)
1 def OptimizedClustering(finite_cells, voxel_data):
2 for fc in finite_cells: # loop over all finite cells
3 subcells = []
4 for idx in monte_carlo_runs: # Monte Carlo optimization
5 subcells_tmp = []
6 while unassigned_voxels in fc: # loop free voxels
7 start_vox = PickRandomlyFrom(unassigned_voxels)
8 subcells_tmp += GrowSubcells(start_vox, subcells_tmp, voxel_data, 1)
9 if subcells_tmp.size < subcells.size: # update list if new minimum found

10 subcells = subcells_tmp
11 return subcells
12

13 def GrowSubcells(startcell, subcell_list, voxel_data, growth_mode):
14 switch growth_mode do # recursive call decides growth mode
15 case 1:do
16 trial_area = grow_cube(startcell)
17 case 2:do
18 trial_area = grow_cuboidal(startcell)
19 case x:do # last growth mode is simply the startvoxel
20 trial_area = startcell
21

22 if !CheckElementBounds(): # next mode if element bounds are intersected
23 return GrowSubcells(startcell, subcell_list, voxel_data, growth_mode+1)
24 if !CheckOverlap(): # next mode if overlap with existing subcell
25 return GrowSubcells(startcell, subcell_list, voxel_data, growth_mode+1)
26 if !CheckMaterialInterface(): # next mode if material interface is cut
27 return GrowSubcells(startcell, subcell_list, voxel_data, growth_mode+1)
28

29 unassigned_voxel.RemoveVoxelInside(trial_area)
30 return trial_area

subcell has the potential to expand either horizontally or vertically within the finite element.
Due to the difficulty of determining the optimal path in advance, the algorithm employs a
heuristic approach and randomly selects a specific growth direction. However, this heuristic
approach, together with the random selection of a starting voxel, leads to a realization, that
a certain subcell decomposition obtained from this approach may not be the ideal choice in
the sense of the least number of subcells. Hence, the Monte Carlo optimization technique is
utilized to repeat the method for a specific number of times for each finite element in order
to identify the subcell decomposition with the minimum number of subcells. Similar to the
Optimal Decomposition, the algorithm of the Optimal Clustering (OC) is concisely outlined
as pseudo-code in Alg. 2.

It is important to note, that Alg. 2 is primarily introduced in order to present an estimator
for the optimal subcell decomposition, demonstrating that Alg. 1 results in a subcell decom-
position that is nearly optimal. The numerical complexity of Alg. 2 is evidently much greater
than that of Alg. 1, which has a complexity of around v3, where v represents the number
of voxels per spatial direction. The computational time for Alg. 1, which solely influence
the preprocessing time, is significantly smaller than the computational time needed to solve
the nonlinear mechanical problem. Therefore, the efficiency of the preprocessing algorithms
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itself is not of great significance. Nevertheless, substantial reductions can be achieved in the
amount of computer time needed to solve the mechanical problem.

4.2 Numerical Examples

This section analyzes the accuracy and effectiveness of the methods for subcell decompositions
proposed in 4.1 in view of their applicability for computational homogenization. Therein, the
homogenized mechanical response of various microstructures under macroscopic uniaxial stress
conditions is computed by using the Finite Cell Method and the FE2-method as described
in Sec. 3.4. In this context, a uniform problem involving uniaxial tension at the macroscale
is investigated. By that, the macroscopic finite element problem is only used to ensure, that
the stresses in the directions transversal to the direction of tension vanish. Hence, a single
finite element with only one quadrature point is sufficient on the macroscale and the major
computational effort has to be performed on the microstructure. The microstructures of
the considered examples should represent RVEs of a DP-steel, which consists of martensitic
inclusions in a matrix of ferrite. For these two phases, the finite J2 elasto-plasticity formulation
with isotropic hardening according to Klinkel [74] and Simo [139] is used. The material
parameters for both phases are taken from Brands et al. [19] and are listed in Tab. 4.1. First,
a simple microstructure consisting of a cube-shaped inclusion in a cube and utilizing only
one finite element is used to analyze the performance of the proposed algorithms for subcell
decomposition. Then, a more realistic microstructure, the SSRVE obtained from Balzani et al.
[4], is used to evaluate the performance of the algorithms in a more realistic application. In
order to perform the computations, the Finite Cell Method was implemented in a customized
version of the FE-software FEAP8.2.

4.2.1 Simple Microstructure with one Finite Element

This initial example serves as an academic demonstration of the precision and effectiveness
of the suggested OD technique in comparison to the traditional Octree algorithm. For this
purpose, two different, but very similar simple artificial microstructures based on voxels are
created. Both microstructures are discretized using a single 27-node hexahedral element,
which includes thus both the martensitic and the ferritic phase. The initial microstructure is
depicted in Fig. 4.5a) and is characterized by a volume consisting of 163 voxels, in which the
martensitic phase is situated in a single corner of the microstructure and is characterized by
the presence of seven voxels in each spatial direction. The subcells obtained for the Octree of
level four and OD approaches are depicted in Fig. 4.5b) and Fig. 4.5c) respectively. The voxel
model has been designed in such a way that the material boundaries align precisely with the
subcells following four subdivisions of the Octree method. Hence, additional subdivisions do
not alter the subcell decomposition. Whilst the total number of subcells needed for the Octree
is 323, the OD method achieves an accurate description of the microstructure with just four
subcells. The mechanical response due to each subcell decomposition method is illustrated in
Fig. 4.5d). As anticipated, the various subcell decompositions, which are caused by different
octree levels, yield distinct outcomes. The material response becomes more rigid when the

Table 4.1: Material parameters used for the ferritic and martensitic phases.

E (MPa) ν (-) y0 (MPa) y∞ (MPa) α (-) h (-)
Ferrite 206,000.0 0.3 260.0 580.0 9.0 70.0
Martensite 206,000.0 0.3 1000.0 2750.0 35.0 10.0
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Figure 4.5: a) A 163 voxels model with a ferritic (light brown color) and a martensitic
(orange color) phase, b) subcells for the Octree of level 4 (323 subcells), c) subcells for the
OD approach (4 subcells), d) macroscopic stress vs. relative elongation, e) difference of
maximal macroscopic stresses vs. level of Octree. Taken from Fangye, Miska, and Balzani
[37].

martensitic percentage increases due to the fluctuation in volume fraction of this phase at
different Octree levels. As an illustration, the integration mesh of the first level of the Octree
method, consisting of eight subcells of identical size, exhibits the most rigid material behavior
due to its highest percentage of martensite phase. The finest Octree solution is identical to the
solution obtained from the Optimal Decomposition. The comparison between the maximum
stress values of the Octree solution P

OD
x,max and the Optimal Decomposition P

T
x,max at an

elongation of five percent, is illustrated in Fig. 4.5e). The convergence of the Octree solutions
to the solution obtained from the Optimal Decomposition is clearly visible. Starting from
level four, both methods yield identical results, thanks to the design of the microstructure
that allows the Octree of level four to accurately represent the microstructures morphology.

Concerning the Octree decomposition, it is well possible that even after a certain number
of subdivisions, the boundaries of the material may not align with the boundaries of the
subcells. As an example, this applies to the model with 243 voxel as depicted in Fig. 4.6a).
Therein, the martensitic phase has a size of 113 voxel, and hence, the total number of voxel
for the geometry is no longer a multiple of the martensitic phase size. In Fig. 4.6b) and
Fig. 4.6c), the respective subcells for both the Octree with six subdivisions and the OD are
displayed. Like the previous example, the OD method needs only four subcells to precisely
depict the microstructure. However, the Octree method falls short in reliably capturing the
material boundaries, even with up to six subdivisions resulting in a total of 5923 subcells. In
Fig. 4.6d), stress-strain curves are shown for simulations with different subcell decompositions.
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Figure 4.6: a) A 243 voxels model, b) subcells for the Octree of level 6 (5923 subcells),
c) subcells for the OD approach (4 subcells), d) stress vs. relative elongation, e) difference
of maximal stresses vs. level of Octree. Taken from Fangye, Miska, and Balzani [37].

The Octree splits of level one and two, four and five, six and seven, and eight and nine, result
in the same subcell decomposition, respectively, and hence, only one of each pairs is plotted.
Fig. 4.6e) illustrates the observed behavior, with the indicated levels connected by a horizontal
line. The simulation results are influenced by the level of Octree subdivision, much like in the
prior model. It is evident that as the number of subcells increases, the findings of the Octree
method approach converge to those of the OD technique. However, even with a recursion
depth of nine, the microstructure is not precisely captured.

Both simple microstructures demonstrate that selecting the correct Octree level is not a
simple task, as the convergence towards the exact solution does not always follow a consistent
pattern. Additionally, it is not recommended to select a high Octree level from the beginning,
since it can lead to overly many subcells. Octree levels eight and nine already produce
96,069 subcells, resulting in significant computational inefficiency for this problem. These
two examples, comprising basic microstructures and a single finite element, illustrate that the
suggested Optimal Decomposition method can precisely and effectively represent the geometry
with much less subcells than the traditional Octree decomposition. It is important to consider,
that in this rather easy application, a sophisticated Octree would have yielded a significantly
reduced quantity of subcells compared to the conventional Octree as well. However, this
is solely attributed to the unique characteristics of the problem, which involves a exeactly
cuboid-shaped inclusion within a cube. Certainly, the finite element discretization employed
in the above examples cannot provide an exact solution to the boundary value problem.
However, for the purpose of this analysis, which specifically examines the distinctions among
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Figure 4.7: Subcells for the optimal decomposition approach for a SSRVE with a marten-
sitic phase (orange color) and a ferritic phase (light brown color). Adapted from Fangye,
Miska, and Balzani [37].

different subcell decomposition methods in relation to finite cells, the most precise solution
to the boundary value problem, given a fixed discretization, is a subcell decomposition that
precisely aligns with the material interface. Such a subcell decomposition is in this examples
always obtained from the Optimal Decomposition approach.

4.2.2 Complex Microstructure in Form of a SSRVE

In order to validate the findings of the preceding examples with a more complex microstruc-
ture, a SSRVE following the approach of Balzani et al. [4] is employed for a more in-depth
analysis. Also, the different combinations of the Optimal Decomposition and the Octree
method as proposed in Sec. 4.1 are analyzed. Generally, SSRVEs exhibit a reduced com-
plexity compared to the actual microstructure morphology, however they yield a comparable
mechanical behavior. Thus, they require a lower computing power compared to classical
RVEs. However, in contrast to the simple Representative Volume Element (RVE) used in
the previous examples, the microstructure of a SSRVE is considerably more intricate as it
is designed to reflect a real material. In this analysis, the SSRVE for DP steel as identified
in Brands et al. [19] is used. The geometry is represented using a resolution of 603 voxel. The
finite element mesh consists of 123 hexahedral finite elements with cubic shape functions. In
Fig. 4.7 the integration mesh of the SSRVE for the OD method is displayed as an illustrative
example. The effective macroscopic material response in terms of maximum stress is shown
against the results from various levels of the Octree algorithm in Fig. 4.8a). The acronym
“T” is used to represent the classic OcTree method in the graphs. Additionally, “T-M” is
used to refer to the OcTree-Merging technique, “T-OD” is used for the OcTree-Optimal De-
composition, and “T-OD-M” is used for OcTree-Optimal Decomposition-Merging, herein all
approaches are described before in Sec. 4.1.2.

Unsurprisingly, the T and T-M approaches yield identical outcomes due to their shared ma-
terial boundaries. While the simulation for T with level four needs a substantial amount
of computational power due to the extensive number of subcells, the effort required for the
T-M technique is considerably reduced, as depicted in Fig. 4.8c). Due to the significant
memory demands of the pure Octree method, higher Octree levels are only investigated for
approaches that use the “merging” phase “M”, specifically T-M and T-OD-M. The OD, T-OD,
and T-OD-M methods provide identical material responses, as they all precisely represent the
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Figure 4.8: Comparison of different approaches a) maximal stresses, b) irregularity, c)
number of subcells and d) computing time for different level of Octree. Taken from Fangye,
Miska, and Balzani [37].

material boundaries. The relationship between T-OD and T-OD-M exhibits a resemblance
to the relationship between T and T-M, namely in terms of the reduction in the number of
subcells. Similar to the preceding example, it can be noted that the outcomes of the T and
T-M methods exhibit a tendency to converge to the findings of OD, T-OD, and T-OD-M as
the amount of subcells increases. The irregularity of the subcells as presented in Sec. 4.1 is
shown in Fig. 4.8b). The OD, T, and T-OD approaches exhibit a constant and low level of
irregularity, but the “M” methods result in a progressively higher level of irregularity as the
Octree level increases. Nevertheless, the irregularity does not appear to impact the preci-
sion of the integration in this specific case, as the decisive factor is the maintenance of the
precise phase fraction of the different microscopic material phases. However, the computing
time as depicted in Fig. 4.8d) is influenced by the irregularity of the subcells. While the “M”
approaches have a low number of subcells for Octree levels one and two, their calculation
time is higher compared to the equivalent T and T-OD approaches. This is because the “M”
approaches have a worse convergence behavior in the Newton iterations. Currently, the OD
technique offers the most optimal balance in terms of precision, computational efficiency, and
irregularity.

The Optimized Clustering as described in Sec. 4.1.3 is also used for the SSRVE example.
Therein, the same element discretization as in the previous cases is used. Given that the
previous examples have shown that material-preserving procedures produce accurate results,



4.2 Numerical Examples 53

Table 4.2: Resulting number of subcells, computing time and subcell irregularity for dif-
ferent Monte Carlo sample sizes for the Optimized Clustering approach using 123 Elements.

Repetitions 500 1,000 5,000 10,000 50,000 100,000 500,000 1,000,000
Time in s 66 118 543 1,057 4,967 9,422 45,222 87,101
Subcells 7,853 6,839 6,573 6,490 6,385 6,355 6,296 6,285
Irregularity 5 5 5 5 5 5 5 5

the Optimal Clustering method will be analyzed in terms of the generated number of subcells
and its overall efficiency. Hence, only the preprocessing phase is investigated, specifically the
creation of subcell decompositions, without executing a complex finite element simulation.
The used microstructure yields 6,287 subcells and an irregularity value of 5 using the Optimal
Decomposition approach. The essential information on the subcell decompositions obtained
from the Optimized Clustering technique for various numbers of Monte Carlo runs can be
found in Tab. 4.2. Both approaches, i.e. the OD and OC, are similar in terms of the
irregularity of the subcells, regardless of the number of Monte Carlo iterations used in Optimal
Clustering. Upon examining the quantity of elements and voxels on a single edge, the observed
irregularity value of 5 is to be expected, as it is the consequence of dividing the number of
voxels by the number of elements. Both strategies resulted in the formation of at least one
subcell that extends to the size of only one voxel in two directions, with the third direction
being equivalent in length to an element. The total number of subcells varies as the number of
Monte Carlo iterations increases. The Optimal Clustering technique requires roughly 24 hours
of running time to obtain a minimum of 6, 285 subcells after 1, 000, 000 iterations. Therefore,
despite the fact that the Optimal Clustering method discovered a subcell decomposition with
two subcells less than the Optimal Decomposition, the Optimal Decomposition is considered
to be more efficient than the Optimal Clustering. This is because the subcell decomposition
was created with the Optimal Decomposition approach in around one second, whilst the OC
technique took substantially longer.





5 Quantification of Uncertain Macroscopic
Material Properties Resulting From
Microstructure Morphology Variation

Quite often, materials with a heterogeneous microstructure are also known to exhibit no-
table variations in the morphology of their microstructure, and thus, the morphology of the
material’s microstructure will vary depending on the position inside the material. Due to
the influence of the microstructure on the macroscopic response of the particular material,
non-deterministic variations in the material properties across different macroscopic positions
are to be expected. In principle, the uncertainties related to this variation can be measured
experimentally by conducting the same experiments on various samples from different lo-
cations of the material. Since this approach is very costly in terms of labor and material,
a substitution of physical tests with virtual ones in the context of computational homoge-
nization shows great potential. The virtual experiments are boundary value problems using
the FE2-method, cf. Sec. 3.4, which allows the computation of effective macroscopic material
properties based on the chosen microstructure. Hence, if one obtains a large set of different
microstructure realizations, which reflect the real material’s variation in the microstructure
morphology, the variation of the macroscopic material properties may be quantified and used
for further analysis. For this purpose, each of the virtual volume elements is virtually tested
to obtain the properties for this specific specimen. The obtained data is then gathered in a
histogram, which allows insight in the sought variation. Given enough samples, even a prob-
ability density function may be fitted to the obtained data. The selection of volume elements
for this technique must be made in order to accurately depict the variable microstructure
morphology of the material. While numerical simulations offer conceptual advantages over
conducting actual tests, they present two primary obstacles, particularly when dealing with
specific portions of real microstructure data as volume elements. Firstly, for a proper reflection
of the materials microstructure, a significant portion of the real material has to be measured,
which is not only costly, but also potentially infeasible in three dimensions. Secondly, with
available microstructure morphology data, numerical simulations in terms of finite elements
are numerically expensive, since usually rather complex morphologies are investigated. These
complex geometries require a fine resolution of the finite element mesh, impeding the practical
feasibility of those computations. Hence, substituting the set of actual microstructure recon-
structions with a collection of artificial microstructures that accurately represent the variable
morphology of the real material is a favorable strategy. For rather specific microstructure
morphologies, in the works of Hiriyur et al. [66], Savvas et al. [125], and Tal and Fish [149]
approaches for the construction of such artificial microstructures can be found. However,
for general complex microstructures, whose morphology can hardly be quantified in terms of
parameters of simpler geometries, a more general approach is required. A method to do so,
has been published in Miska and Balzani [93], in which a method to quantify the variation of
a real microstructure’s morphology based on artificial microstructures, which are constructed
based on higher order statistics of the microstructures morphology, is proposed. The prin-
ciple approach to derive statistics on selected macroscopic material parameter from a set of
artificial microstructures is outlined in the flowchart in Fig. 5.1. This chapter is meant to
introduce this method and discuss the results obtained for the example of a dual-phase steel
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Figure 5.1: Principial scheme to quantify macroscopic material properties based on a set
of artificial microstructures, whose morphologies vary in the same way the real material’s
microstructure does.

and thus, the contents of the aforementioned journal paper are reflected in this chapter. In
addition to the journal paper, the methods and parts of the result are presented in Balzani
et al. [5], Miska et al. [99] and Miska and Balzani [91].

5.1 Quantification of the Variation of Macroscopic Material Prop-
erties

Since the method should be applicable to a broad range of materials, a general approach to the
quantification of the material’s microstructure variation is required, since specialized methods,
which quantify e.g. the variation of radii of sphere characterizing the materials inclusion, have
to be discarded. The data obtained from this new approach is then used to construct a set of
artificial microstructures, which exhibit the same variation in their morphology. It is nearby
to utilize similar methods for the quantification of the real material’s microstructure mor-
phology and the artificial microstructure morphology. In this work, the idea of statistically
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similar representative volume elements (SSRVEs), cf. Balzani et al. [4], is extended to create
a set of artificial volume elements, which allow an increased numerical efficiency by reducing
the geometrical complexity, whilst mechanical compatibility is maintained. The resulting set
of artificial volume elements is referred to as statistically similar volume elements (SSVEs).
For the following descriptions only inclusion-matrix microstructures with two phases are con-
sidered to keep the explanations rather simple. This is, however, not a restriction and in
principle, also materials with more phases can be analyzed.

5.1.1 Definition of a Functional for Morphology Differences

To measure the differences between two arbitrary volume elements VE1 and VE2, a distance
functional is established as

L =

NL∑

L=1

ω(L)

⋆
L(L) with

⋆
L(L)=

(
PVE1

(L) − P
VE2

(L)

)2
. (5.1)

Therein, P represents suitable statistical descriptors to characterize the microstructure mor-
phology. Such descriptors are thoroughly introduced in the work of Torquato [153], the specific
descriptors used for the DP-steel are also explained in Sec. 5.1.2. A collection of NL distinct
statistical descriptors P is necessary to accurately describe the morphology of the material.
In addition, it is necessary to use not just scalar measures, but also higher order descriptors
in order to accurately capture all aspects of the morphology. Usually, the microstructure data
of actual materials is given as discrete voxel data sets in three dimensions or pixel data sets
in two dimensions. Consequently, the statistical measures will also be discrete. The brackets
in Eq. (5.1) denote a suitable calculation of the differences between discrete representations
of the generalized notion of P, which can be of scalar and higher order. The two volume
elements, VE1 and VE2, may have varying voxel/pixel resolutions and absolute physical sizes.
To achieve this objective, one can either use relative scalar descriptors like the phase volume
fraction, or in the case of higher order descriptors such as the spectral density, PVE1 and PVE2

can be scaled to the same resolution before assessing the difference. The weighting factors
ω(L) are responsible for determining the influence of each individual descriptor, hence playing
a crucial role in the selection of the statistical description. Both the selection of statistical
descriptors and the determination of weighting factors must be done in a manner that allows
for an accurate depiction of the material’s morphology.

5.1.2 Statistical Descriptors for Microstructure Morphology

In the definition of the distance functional in Eq. (5.1), higher order statistical descriptors are
used. This section will discuss selected descriptors, which are suitable for the characterization
of a DP-steel, whilst other materials may require different descriptors, such as in the work
of Sasagawa et al. [124], where fiber composites are investigated. The n-point probability
function is a useful measure for describing random microstructures. It quantifies the likeli-
hood that n points, with specific relative orientation and distance from each other, belong to
the same phase of the microstructure. The first-order function denotes the likelihood that a
specific location belongs to a particular phase, such as the inclusion phase. It is equivalent
to the proportion of the volume occupied by that phase. The two-point probability function
quantifies the likelihood that two points, separated by a specific distance and with a par-
ticular relative orientation, belong to the same phase. In the case of a discrete set, where
the microstructure is represented in terms of voxel data, a finite number of evaluations of
the two-point probability has to be computed, each of which is linked to a distinct relative
distance and orientation. This results in four times the amount of voxel computations of the
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two-point probability function, cf. also Balzani et al. [3]. As the order of the n-point proba-
bility function grows, the number of required evaluations also increases, resulting in a rapid
increase in computational demand. Therefore, in practice only a limited number of statistical
descriptors can be evaluated, even if a better description could be achieved by utilizing higher
order functions. A close relative of the two-point probability function is the spectral density.
Alternatively, the lineal-path function may be used, which calculates the likelihood that a full
line segment, with a specific relative orientation and distance, is contained entirely within a
specific phase. In Balzani et al. [4] the combination of spectral density, volume fraction and
lineal-path function was found as accurate statistical characterization of dual-phase steels.
Therefore, in this work these three statistical descriptors are investigated.

The volume fraction P(1) = V P /V is the ratio of the volume V P of the martensite inclusion
phases P with respect to the total volume V . The spectral density is given for voxel-based
representations by

P(2)(u, v, w) :=
1

2πN
|F(u, v, w)|2 , (5.2)

in which the number of voxels is denoted by N , the operator |(•)| represents the conjugate
complex of (•) and F the Fourier-transform. The latter can be computed by

F(u, v, w) =
Nx−1∑

p=0

Ny−1∑

q=0

Nz−1∑

r=0

exp
(
2 i π u p

Nx

)
exp

(
2 i π v q

Ny

)
exp

(
2 i π w r

Nz

)
χ(SD)(p, q, r) ,

(5.3)
wherein Nx, Ny, and Nz denote the spatial number of voxels, respectively. The integers u, v,
and w denote the positions of the voxels, such that each number in u, v, and w corresponds
to a physical position x(u, v, w) at the center of the voxel. The indicator function in (5.3) is
defined as

χ(SD)(p, q, r) =

{
1, if x(p, q, r) ∈ D,
0, otherwise , (5.4)

with D denoting the domain of the inclusion phase P . The spectral density may be preferred
over the computation of the two-point-probability function, since there is a number of efficient
frameworks to compute the Fourier transform efficiently. The lineal-path function requires
the definition of complete line segments −→z := −−−→x1x2 between two points x1 and x2. Based on
these line segments, an indicator function is defined as

χ(LP)(p, q, r, u, v, w) =

{
1, if −→z (p, q, r, u, v, w) ∈ D,
0, otherwise , (5.5)

where the points of the line segment are connected to the voxels by x1(p, q, r) and x2 =
x1 + y(u, v, w). The integers p = 0...Nx − 1, q = 0...Ny − 1 and r = 0...Nz − 1 represent
indices of individual voxels. The integers u, v, and w are associated with the relative position
vector y, which captures the relative orientation and distance between the two points defining
the line segment. Based on these definitions, the lineal-path function can be computed by

P(3)(u, v, w) =
1

NxNyNz

Nx−1∑

p=0

Ny−1∑

q=0

Nz−1∑

r=0

χ(LP)(p, q, r, u, v, w) . (5.6)

With the definition of these three statistical descriptors, the difference between two mi-
crostructure volume elements can be computed by

L(S) = ω(1)L(1) + ω(2)L(2) + ω(3)L(3). (5.7)

The weighting factors are chosen according to Balzani et al. [4], wherein also further important
steps such as an appropriate rebinning of the voxel data in the space of statistical measures
is discussed to compare microstructures of different sizes.



5.1 Quantification of the Variation of Macroscopic Material Properties 59

5.1.3 Reference Microstructure Data

In order to quantify the variation of microstructure morphology variation by means of the
functional introduced in Eq. (5.1), two things are missing. First, measurements of the mi-
crostructure morphology need to be obtained, which are large enough to contain sufficient
amount of information on the inherent inner variability of the microstructure. This data will
be referenced to as reference microstructure data including morphology variation (RMDV),
and can be compromised of NS many different, continuous sets of microstructure measure-
ments, which were taken in different locations of the material specimen. The second missing
piece for the distance functional is a reference microstructure, against which further sections of
the microstructure are compared. In this sense, the reference microstructure should represent
the “average” morphology of the microstructure, such that the distance functional quantifies
the deviation of the chosen second microstructure from the “average”. Therefore, the RVE is a
meaningful choice for such a dataset. Although there is extensive discussion on the literature
on the definition and selection of an RVE, see also Sec. 3.4.1, it is commonly emphasized that
the selection of the representative volume element should be done in a way that any changes
in size or position do not have a substantial impact on the statistical characteristics of its mi-
crostructure morphology. Now, to ensure all these requirements, an RVE of substantial size
has to be chosen, which implies, that the available microstructure measurements to identify
the RVE from have to be dimensions larger, which is often simply not possible. Therefore,
the requirements on the RVE in context of this work are slightly weakened. For this purpose,
the RVE is identified as subsection from the RMDV be utilizing the functional in Eq. (5.1).
If the RMDV is utilized as fixed VE1 and a smaller subsection therefrom as VE2, the RVE
can be identified from the RMDV by means of minimization of the functional, i.e. by re-
ducing the difference in terms of the chosen statistical descriptors. The required dimensions
of the RVE are established in such a way, that no larger RVE exists that would result in a
noteworthy enhancement in statistical resemblance to the RMDV. This approach may conflict
with conventional definitions of an RVE, since here the position of the RVE within the larger
microstructure measurement becomes crucial. And indeed, potentially the microstructure
identified as RVE may not represent an RVE in all demands, but the location of the selected
subsection is chosen such that the highest possible level of statistical similarity is achieved.
The choice may not be unique, which is however not important in this situation, as long as
the RVE exhibits “average” morphological characteristics. An RVE generated in this manner
serves as an appropriate reference microstructure for assessing statistical variations in other
microstructure subsections of equal dimensions. It is important to note that, in practical
applications, the analysis of different sizes and forms of a material’s microstructure is limited
due to measuring constraints. Hence, the RMDV is of utmost importance and should be
selected to be as extensive as feasible.

5.1.4 Quantification of Microstructure Morphology Variation

Given a suitable Representative Volume Element as a reference microstructure, the statistical
difference between an arbitrary volume element VE2(X) at a macroscopic position X and
the RVE can be computed, i.e., the evaluation of L(X) quantifies the extent to which the
microstructure morphology at X deviates from the average. The frequency distribution D[L]
of L is computed by varying the locations X of the volume element VE2(X) across all
feasible positions. The frequency distribution represents the variation of the microstructure
morphology of the material in relation to the deviation from the "mean", which is represented
by the RVE. Therefore, the description of the microstructure variation is simplified to a single
scalar value. Typically, only two-dimensional measurements are used to measure the RMDV,
as three-dimensional measurements are too costly and therefore, the microstructure variation
is mostly assessed by two dimensional data only. For practical reasons, the RVE may also
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be defined to be the RMDV, and the individual volume elements (VE2(X)) as subsections of
the RMDV. This avoids the necessity of constructing a suitable RVE, and the computation
of microstructure variation relies on purely two-dimensional computations. The definition of
the least squares distance functional for the volume element at location X is then given by

Lreal(X) =

NL∑

L=1

ω(L)

⋆
L(L) with

⋆
L(L)=

(
PRVE
(L) − PVE

(L)(X)
)2
. (5.8)

By varying the positions X of the volume element over all Nx possible positions Xj , j =
1...Nx, the spatial frequency distribution of Lreal of the RMDV Dreal := D[Lreal(VE(Xj))] is
computed. By means of this frequency distribution the variation in the real microstructure
morphology can be accurately described. Certainly, the size of the RVE as comparative
microstructure does influence the result of the frequency distribution. However, as this size
is specifically determined due to the procedure described in Sec. 5.1.3, an unbiased procedure
is obtained.

5.1.5 Construction of Artificial Microstructures Reflecting the Variation in
Morphology

The variation of the microstructure variation quantified in Sec. 5.1.4 is then used to construct
a set of artificial volume elements, the SSVEs. These SSVEs are designed to have a statistical
distribution of L that matches the distribution of the real microstructure. Unlike subsections
of the real microstructure, the SSVEs have the potential to enable a more effective numerical
simulation, provided that their complexity in terms of microstructure morphology is as simple
as possible. On the other hand, it is crucial that their complexity is sufficient to guarantee
statistical resemblance to the actual microstructure.

Distance Functional for SSVEs A single SSVE requires an suitable parameterization
to be constructed. This parameterization should a priori enable the construction of morpholo-
gies with reduced complexity to facilitate efficient numerical discretization. The morphology
of a single SSVE i can be parameterized using a generalized column matrix γi, which includes
all the parameters for this particular SSVE. Using this general parameterization, the distance
function of Eq. (5.1) can be modified to evaluate the deviation of a single SSVE to the
reference RVE by substituting VE1 by an RVE and VE2 by the SSVE, such that

LSSVE(γ) =

NL∑

L=1

ω(L)

⋆
L(L) with

⋆
L(L) (γ) =

(
PRVE
(L) − PSSVE

(L) (γ)
)2
. (5.9)

It is important to understand that the RVE utilized in this context does not need to be
identical to the one mentioned in Eq. (5.8) due to the property of representativeness. In
fact, since in Eq. (5.9) there is no requirement for information regarding the variation of the
actual material, it is beneficial to use a three-dimensional microstructure of smaller size as the
representative volume element. This allows for a direct comparison with three-dimensional
SSVEs. In the majority of situations, a discrete voxel dataset may be created using the SSVE
parameterization. As a result, the statistical descriptors derived from this dataset will also
be discrete.

Construction of a Set of SSVEs An entire set of SSVEs can be defined by summa-
rizing all parameters for the NSSVE SSVEs in a single matrix by Γ = [γ1,γ2, ...γNSSVE ]. By
calculating LSSVE for this set Γ of different SSVEs, the resulting frequency distribution can be
computed by DSSVE(Γ) := D[LSSVE(γi)] with γi ∈ Γ. This frequency distribution represents
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the variation of the microstructure morphology of the set of SSVEs based on their deviation
from the RVE. In order to find the specific set Γopt of SSVEs that closely resembles the
microstructure variation Dreal of the real material (calculated using the method described in
Sec. 5.1.4), an objective functional E is minimized. This functional measures the differences
between the two distributions and is defined by

Γopt = argmin [E(Γ)] with E(Γ) :=
(
Dreal −DSSVE(Γ)

)2
. (5.10)

The use of parenthesis is a shorthand for an appropriate calculation of the differences between
the discrete representations of the distributions L. Due to the high cost of minimization, it
is more efficient to acquire an accurate estimate of Γopt by initially calculating a set of
SSVEs and subsequently choosing a suitable subset therefrom using the Metropolis-Hastings
algorithm. It should be noted, that the definition of the distance functional L is similar
by to the one described in Balzani et al. [4]. Therein, a statistically similar representative
volume element (SSRVE) is obtained by minimizing the value of L. In contrast to the SSVEs,
which are constructed following the real materials morphology in certain bounds, the SSRVE
is the artificial microstructure, which minimizes the statistical difference to the real material
and is therefore representative of the material. In fact, a large collection of SSVEs can
be obtained from the optimization of the SSRVE by saving all realizations γi during the
optimization. Then, only the realizations that together provide the required distribution
need to be selected.

5.1.6 Multilevel Monte Carlo Method

Using the SSVEs derived by means of the method described in Sec. 5.1.5, a full Monte Carlo
simulation to calculate the effective macroscopic quantity of interest may be to costly in
terms of computer resources. An effective approach to decrease the computing costs is the
implementation of the multilevel Monte Carlo (MLMC) method, as proposed by Heinrich
[62] and Giles [51]. Multilevel Monte Carlo approaches utilize multiple levels, denoted by l,
which differ by the approximation accuracy of the problem. The coarser levels, which employ
simpler discretizations and/or integration techniques, are utilized to estimate the statistical
distribution of the quantity of interest. The imprecise statistical distributions that arise from
the low quality of approximation are subsequently improved at the finer levels, for which
decreasingly smaller number of samples are evaluated. Because it is challenging to acquire
various geometric representations of a sample, the utilization of MLMC methods to measure
the uncertainty of macroscopic material properties related to microstructure via computa-
tional homogenization is difficult. However, since the process of constructing SSVEs based
on Sec. 5.1.5 is applicable to voxel resolutions of any kind, various geometric approximations
in terms of the finite cell method can be incorporated. Therefore, rather than examining
various levels of discretization, as commonly suggested in the literature, the attention is di-
rected towards different levels of integration accuracy in order to establish the specific levels
of the MLMC. To achieve a large reduction in processing time, it is important to maintain a
somewhat accurate yet efficient discretization at all levels. It is important to observe that a
SSVE i is the same on all levels, i.e. the parameterization of the microstructure morphology
is the same and the sole variation lies in the resolution of the generated voxel data.

When the specific levels are selected, it is crucial to choose approximations that have distinct
differences in their accuracy. Otherwise, these levels will not contribute to an efficient correc-
tion. Hence, a numerical measure for the discrepancy in precision between a coarser level and
a more refined level can be expressed as

εl = ||Pl−1 − Pl||2 with l = 1...L, (5.11)
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where l represents the level index ranging from 1 to L and P denotes to the mechanical vari-
able of interest, here a macroscopic quantity. Subsequently, the levels are selected in a manner
that ensures εl is greater than a predefined difference. The highest level of accuracy, denoted
as L, can be achieved by a classical finite element convergence analysis. For this analysis, it
is practical to simply analyze one microstructure, for which, to achieve maximum representa-
tiveness, the Statistically Similar Representative Volume Element can be employed.

The primary objective in the MLMC approach is to determine the most optimal number of
SSVE evaluations for each level. In this context, “optimal” refers to a balanced compromise
between the least amount of computational time and the highest level of accuracy in the
calculated distribution of P . To ensure that sufficient accuracy is achieved, this problem may
be formulated as a linear optimization problem. The optimization problem is defined as the
minimization of the computational effort, i.e. the cost function

e(N0, N1, ...NL) =

L∑

l=0

Nl

(
d̂l/d̂0

)3
, (5.12)

where d̂l and d̂0 denote the characteristic approximation effort per physical dimension for
each level; Nl denotes the number of SSVEs considered at level l. In this context, the various
levels are categorized based on their levels of integration accuracy, specifically the quantity
of subcells. As the subcells are created using voxel data, this implies that each level consid-
ers a different voxel size, resulting in varying accuracy in approximating the microstructure
morphology. Thus, d̂ represents the actual length of a voxel. Additionally, a constraint is nec-
essary for the optimization problem to ensure that the statistical distribution of P achieves
a certain level of precision. Since the multilevel Monte Carlo method is still a Monte Carlo
method, the approximation accuracy can be assessed by means of the variation of the esti-
mated mean as explained in Sec. 2.4. Due to the central limit theorem, the estimated mean
of P of all SSVEs on level l, i.e. E[P ] = 1

Nl

∑Nl
i=1 Pi, is normally distributed for a varying

number of samples Nl. Hence, a suitable accuracy of P can be assumed, if the variance of
the estimated mean is smaller than a previously defined threshold, leading to a constraint
formulation of

VNl [E[P ]] 1
Nl
V[P ] < tol, (5.13)

wherein V[P ] = 1
Nl

∑Nl
i=1(Pi − E[P ])2 represents the variance of P . Since multiple levels are

employed in the MLMC, the variance is computed by a so-called telescopic sum, in which the
variance computed for the coarsest level is refined by corrections contributed from finer levels
by VML[P ] = V[P0] +

∑L
l=1V [Pl − Pl−1], wherein the last term indicates the corrections.

Then, the variance of the expectation in Eq. (5.13) is obtained by

VNl [E[P ]] = 1
N0

V[P0] +
L∑

l=1

1

Nl
V [Pl − Pl−1] (5.14)

for the multilevel Monte Carlo approach. In consquence, the entire optimization problem can
be summarized by

e :=
L∑

l=0

Nl

(
d̂l/d̂0

)3
→ min

(N0,N1,...NL)
with

1

N0
V[P0] +

L∑

l=1

1

Nl
V [Pl − Pl−1] < tol. (5.15)

The solution of this optimization problem is the optimal decomposition for the MLMC ap-
proach, allowing for an efficient computation of the distribution of P .

Given that the cost function is directly proportional to the number of samples Nl, the optimal
solution meeting the constraint may be found simultaneously with the SSVE simulations. For
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this purpose, the quantity of samples at the least detailed level is gradually increased by per-
forming the matching SSVE simulations until the adjustment in relation to VNl [E[P ]] become
smaller than a given threshold. Then, SSVEs are iteratively simulated at increasingly finer
levels until the adjustment exceeds the specified tolerance again. This suggests that conduct-
ing more computations at a less detailed level may result in more adjustments, thus requiring
additional SSVE simulations at that level until the desired degree of accuracy is achieved
once again. This process is repeated until no additional adjustment can be achieved based on
these two levels. Subsequently, the procedure is expanded to the subsequent, more detailed
level. If more improvements cannot be achieved by raising the sample size at the highest
level and the requirement remains unsatisfied, then either the tolerance for the constraint
is too narrow or the highest level lacks accuracy. To circumvent the need for implementing
this approach, one can incorporate the constraint as a weighted term in the cost function.
Specifically, e⇐ e+ ω(VNl [E[P ]]− tol), and employ a black-box optimizer. In this scenario,
the variances V[(•)] in Eq. (5.14) might be set to specific values based on SSVE simulations
that were conducted before. The optimizer yields values (N0, N1, ...NL) which can be used as
an estimator for determining the optimal distribution of additional SSVE runs for each level.
This work utilizes the latter scheme.

5.2 Numerical Example: Application to a Dual-Phase Steel Mi-
crostructure

The proposed technique is illustrated in conjunction with the modified approach for the sub-
cell decomposition on a DP steel microstructure. The study focuses solely on the variation
of the microstructure morphology, whereas the material properties of the individual phases
are considered fixed values at the microscale. Therefore, the distributions derived may not
accurately reflect the variability of the actual material behavior, as additional uncertainties,
such as those in the parameters of the constitutive material laws of the phases, are not taken
into account. Moreover, obtaining additional authentic microstructure data may be necessary
to accurately represent the change in microstructure. Furthermore, it would be necessary to
conduct experimental validation using a range of mechanical tests in order to ascertain the
extent of variance in the properties of the actual material. Hence, this section should be seen
as demonstrative example of how the microstructure variation strategy can be quantified.

Initially, it is necessary to choose suitable statistical measurements to accurately depict the
shape and structure of the steel. As already mentioned, in Balzani et al. [4] a SSRVE was
identified for the same material. Therein, the statistical description provided in Sec. 5.1.2,
including the volume fraction, spectral density, and lineal-path function, along with the re-
spective weighting factors of 1.0 for the spectral density and volume fraction, and 1000.0 for
the linear-path function, was found to be suitable. The SSRVEs were acquired by executing
the complete construction sequence using several sets of descriptors and weighting factors.

Figure 5.2: Visualization of the large two-dimensional microstructure scan of DP-steel
from [19] with a size of 16 mm by 2 mm with ferrite matrix colored in light brown and the
martensite inclusions in orange. Taken from Miska and Balzani [93], originally obtained
from [19].
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Figure 5.3: Distribution of a) Lreal obtained from the larger two-dimensional microstruc-
ture scan of DP-steel and b) LSSVE of the microstructure samples selected for the full Monte
Carlo simulation. Taken from Miska and Balzani [93].
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Figure 5.4: Analyzed macroscopic quantities: a) effective yield stress Rp,0.2 and b) hard-
ening modulus at the end of the prescribed load hend. Taken from Miska and Balzani [93].

The SSRVE that exhibited the highest level of mechanical compatibility is assumed to indi-
cate an optimal selection of the statistical description. This selection was a component of the
external optimization issue outlined in [4] and thus, the aforementioned selection of descrip-
tors and weighting variables is used here as well. The microstructure data, which includes
comprehensive information regarding the variance in morphology known as the RMDV, orig-
inates from [19] and was acquired by electron backscatter diffraction (BSD), cf. Fig. 5.2 for
an illustration of the microstructure.

The dimensions of each volume element (VE) in Eq. (5.8) are defined as 15.9 µm by 16 µm.
This size was determined to be appropriate for a representative volume element of the specific
steel studied in Brands et al. [19]. The distribution Dreal for the DP steel, which is illustrated
in Fig. 5.3a), is obtained by evaluating the distance functional for all feasible volume elements
within the RMDV. It is evident that the majority of the subdomains bear a strong resemblance
to the overall dataset, while they are not entirely identical. Therefore, the maximum frequency
is not anticipated to occur at L = 0, but is instead observed in close proximity to zero. As
L increases, the frequency declines, indicating that subdomains with greater deviation from
the overall data are less probable.

Artificial three-dimensional microstructures are created in order to obtain the set Γopt of
SSVEs. Previous studies by [4] and [126] have identified a SSRVE with three ellipsoidal
inclusions as an appropriate artificial microstructure for DP steel. Thus, in this study also
three ellipsoids are used as a parametrization for the inclusion phase. An ellipsoid is defined
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Table 5.1: Material parameters used for the ferritic and martensitic phases.

E (MPa) ν (-) y0 (MPa) y∞ (MPa) α (-) h (-)
Ferrite 206,000.0 0.3 260.0 580.0 9.0 70.0
Martensite 206,000.0 0.3 1000.0 2750.0 35.0 10.0

by its semi-axes in the directions vj , j = 1, 2, 3, the related radii in the directions of the
semi-axes rj , and the center of the ellipsoid xc. Therefore, any point x that lies within the
ellipsoid must satisfy

3∑

j=1

( |vj · (x− xc) |
rj

)2

≤ 1. (5.16)

The orientation vectors vj can be defined to align with a local orthogonal coordinate system
that is rotated from the origin by the angles ϑ, φ and θ. The vector γki for an ellipsoid (k) of
SSVE i is thus,

γ
(k)
i =

[
x(k)c , y(k)c , z(k)c , ϑ(k), φ(k), θ(k), r

(k)
1 , r

(k)
2 , r

(k)
3

]T
i
, (5.17)

resulting in the parameter vector γi =
[
γ
(1)T
i ,γ

(2)T
i ,γ

(3)T
i

]T
of the SSVE i. Given the periodic

nature of the SSVEs, one ellipsoid can be fixed at the center of the SSVE. As a result, the
center coordinates of this ellipsoid are not included in γi, and the degrees of freedom are
decreased by three. This guarantees that a direct translation of the inclusion phase is not
regarded as a novel SSVE.

In order to generate the set of SSVEs that best correspond to the actual variation in mi-
crostructure, it is necessary to identify an RVE. In this context, a three-dimensional EBSD-
measurement from [4], which has been determined to be an appropriate (RVE)for dual-phase
steel, is used here. In order to acquire a highly accurate estimation of the optimal set Γopt as
defined by Eq. (5.10), the following steps are necessary:

1. The optimally representative SSRVE is determined by minimizing a distance function, as
described in Balzani et al. [4]. This distance function is defined in Eq. (5.1), where VE1 is
substituted with the RVE and VE2 is substituted with the SSRVE. For the optimization,
the differential evolution algorithm of Storn and Price [144] implemented in the form of
the mystic framework (cf. McKerns et al. [88]) with a population size of 1000, a mutation
factor of 0.8 and a crossover constant of 0.9 is used. The ellipsoidal inclusion parameters
are utilized to create a voxel representation of the microstructure by evaluating whether
each voxel satisfies Eq. (5.16). The voxel representation is necessary to compute the
deviation between the SSRVE and the RVE in terms of the discrete statistical measures.
Since the construction of the microstructure is based on the results of [4], a voxel set
measuring 45x42x43 voxels with a total size of 4.5µm x 4.2µm x 4.3µm is employed.

2. During the optimization process, numerous microstructures are evaluated. As a result,
the parameterizations of those microstructures that produce a value of LSSVE within
the statistical similarity bounds as identified from the RMDV are stored.

3. The Metropolis-Hastings algorithm is used to pick the specific set of SSVEs Γopt from
these volume elements. This algorithm produces a distribution of statistical similarity
that is similar to the real material, as shown in Fig. 5.3b).
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The resulting set now serves as the initial reference for the mechanical analysis. Every SSVE
undergoes a macroscopic uniaxial tensile test, which is computed according to the method
outlined in Sec. 3.4 using the aforementioned user implementation in FEAP8.2. The analyzed
macroscopic quantities are the effective macroscopic yield stress Rp,0.2 (see Fig. 5.4a)) and
the macroscopic hardening modulus at the end of the prescribed loading hend (see Fig. 5.4b)).
The material model used to describe the ferrite and martensite phases of DP steel is a J2
elasto-plasticity formulation for finite strains with isotropic exponential hardening, as outlined
by Simo [139]. The implementation was carried out by Klinkel [75], and the parameters
used were obtained from Balzani et al. [4], see Tab. 5.1. It should be noted that these
parameters are constant and not included in the uncertainty analysis. The primary emphasis
lies on the variation of the microstructure’s morphology, excluding any consideration of the
microstructural material properties.

5.2.1 Full Monte Carlo Approach

Initially, a full Monte Carlo simulation is investigated. All 468 microstructure samples that
were chosen for the SSVE set Γopt, as previously explained, are being considered. Each
microstructure being studied is approximated using 50 voxels along each edge to generate
subcells. The mean and variance values for the initial yield stress and strain hardening
modulus distributions resulting from the 468 computed SSVEs are as follows: µ[Rp,0.2] =
289.4 MPa, σ2[Rp,0.2] = 26.0 MPa2, µ[hend] = 4126.4 MPa, and σ2[hend] = 107709.0 MPa2.
Due to the limited quantity of SSVEs for a complete Monte Carlo computation, the obtained
data may not be sufficient to reliably fit a precise PDF to the data. However, the findings may
serve as an approximation of the bounds of the macroscopic material properties in question,
e.g. expressed in terms of an interval or a fuzzy number. Nevertheless, if the material
properties derived from this study were to be expressed in probabilistic terms, a larger number
of samples would be necessary to provide a stable solution and a more smooth histogram that
can be matched with a suitable probability density function.

5.2.2 Application of the Multilevel Monte Carlo Method

Due to the high cost of simulating a large number of SSVEs, the multilevel Monte Carlo
method described in Sec. 5.1.6 is applied to reduce the required numerical effort. Prior to
determining the levels, it is necessary to evaluate Eq. (5.11). The variable of interest is
the mean value of the homogenized stress at the highest level of strain, calculated from 10
simulations, denoted as P11. Three levels are evaluated, with the coarsest approximation of
the microstructure morphology consisting of 10 voxels along one edge. This is followed by
25 and 50 voxels per edge for the subsequent levels. To verify that there is no substantial
difference and to confirm that 50 voxels is a reasonable finest level, the situation with 50
voxels was compared to the same setting with 100 voxels. At each level, the number of
voxels increases or decreases by a factor of around 2. This aligns with recommendations in
the literature, where this factor is advised for adjusting the level of discretization effort, as
discussed by Giles [51]. A different choice of levels would be possible, but will also lead to

Table 5.2: Resulting approximation error ε.

level l |P 11,l−1 − P 11,l| εl

1 (25 voxels/edge) 2.47511 MPa 6.1261 MPa2

2 (50 voxels/edge) 0.82994 MPa 0.6888 MPa2

3 (100 voxels/edge) 0.29141 MPa 0.0850 MPa2
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a) 213 subcells b) 694 subcells c) 2193 subcells

Figure 5.5: Comparison of the different geometry approximations using subcells on the
levels with a) 10 voxels, b) 25 voxels and c) 50 voxels along one edge of the sample. Taken
from Miska and Balzani [93].

higher computational costs for the same approximation quality. In regard to the definition of
the levels here, a higher number of voxel lead to a better integration in terms of the finite cell
method, see 4.1.

In Tab. 5.2 the approximation errors obtained according to Eq. (5.11) between two consecutive
levels are displayed. Given the sufficiently significant improvement observed between the
levels, it is appropriate to use 10, 25, and 50 voxels for the morphology approximation. The
increase in the degree of accuracy in the approximation between the levels with 50 and 100
voxels along one edge of the SSVEs is quite insignificant, which confirms the selection of 50
voxels along one edge as the finest level. The three levels being discussed are illustrated for a
randomly chosen microstructure in Fig. 5.5, with the least detailed representation shown on
the left in subfigure a, and the most detailed representation shown on the right in subfigure
c. The improvement in the approximation quality of the inclusion shapes is evident. As
stated in Sec. 5.1.6, the optimization problem in the multilevel Monte Carlo approach (refer
to Eq. (5.15)) can be resolved using a black-box optimizer. This will yield an estimate for
the number of SSVEs on each level, assuming fixed variances. In this case, the differential
evolution optimizer from the mystic-framework [88] is employed. The population size was
set to 100, while the mutation factor and crossover constant were maintained at 0.8 and 0.9,
respectively. A starting set of SSVEs is computed at the chosen levels. The samples are chosen
using the Metropolis algorithm, which ensures that the morphological variance of the samples
matches the actual variation. Subsequently, these SSVEs undergo evaluation in the simulated
macroscopic tension test to acquire the desired macroscopic material properties. Based on the
obtained data, Eq. (5.14) is computed, allowing for the solution of the minimization problem
stated in Eq. (5.15), using the aforementioned method. The outcome of the minimization
process is the “optimal” quantity of samples based on the specified variance of the calculated
samples. Since the computed variance of the estimator may not be optimal due to the selected
samples, the expected ideal number may differ in size from the actual number of samples at
hand. Therefore, due to its computational efficiency, the whole number of samples arising
from the minimization of Eq. (5.15) is not entirely computed. Instead, the number of samples
on each level is increased by a proportionate amount that is connected to the computing
cost on that level. In other words, the less expensive levels have a larger rise in samples
compared to the more expensive levels, which have a smaller increase in samples. Afterwards,
the variance of the expectation estimator is reevaluated and Eq. (5.15) is solved once more.
This procedure is iterated until the variance of the estimator falls below a suitable threshold
and the number of samples obtained from minimizing the objective function reaches a stable
value. In the present example, this procedure results in a total of 1250 SSVEs on the lowest
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Figure 5.6: Distribution of the microstructure morphology variance measure LSSVE(γ) for
the levels with a) 10 voxels, b) 25 voxels and c) 50 voxels per edge of an SSVE used in the
multilevel Monte Carlo simulation. Taken from Miska and Balzani [93].

level, with a morphology discretization of 10 voxels per edge. Among these, 420 samples
are also calculated on the intermediate level, with a geometry resolution of 25 voxels. From
these 420 SSVEs, 85 are additionally calculated at the highest level with 50 voxels per edge,
enabling the calculation of the correction between two consecutive levels using these samples.

270 280 290 300 310
0.00

0.05

0.10 µ = 289.5 MPa
σ2 = 24.2 MPa2

Rp,0.2/MPa

Fr
eq

ue
nc

y

Normalized histogram of Rp,0.2

a)

3,000 4,000 5,000
0.0000

0.0005

0.0010

0.0015 µ = 4070.0 MPa
σ2 = 106971.2 MPa2

hend/MPa

Fr
eq

ue
nc

y

Normalized histogram of hend

b)

Figure 5.7: Histograms of a) effective yield stress Rp,0.2 and b) hardening modulus at the
end of the prescribed load hend resulting from the multilevel Monte Carlo approach, which
are normalized in the sense that the area of the histogram is equal to one. Additionally, a
fitted beta-distribution function is plotted. Taken from Miska and Balzani [93].

The histograms in Fig. 5.6 illustrate the variations in microstructure morphology as measured
by Lreal(γ). It can been noted that the coarsest level, which has the most number of samples,
closely fits the given distribution. In contrast, the finer levels have a diminished capacity
to resemble this distribution. This outcome is anticipated, as the less detailed levels are
employed to align with the statistical characteristics of the quantities of interest, which may
be achieved with the given sample size. On the other hand, the more precise levels are utilized
to enhance the accuracy of the approximation, requiring progressively less samples. Fig. 5.7a)
and Fig. 5.7b) display the histograms of the macroscopic initial yield stress Rp,0.2 and the
hardening modulus, respectively. The histograms are generated by extracting the values
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from the least detailed level and adjusting the individual SSVEs using their more precisely
calculated values on the subsequent levels. This is similar to the computation of higher-order
moments in the multilevel Monte Carlo approach. In addition, the histograms of the material
parameters are fitted with a beta-distribution function that has shape parameters p and q.
The parameters for the beta-distribution are as follows: p = 6.0171 and q = 6.3610 for the
effective yield stress Rp,0.2, with the interval ranging from a = 272.0 MPa to b = 308.0 MPa.
For the hardening modulus, the parameters are p = 5.1123 and q = 4.6798, with the interval
ranging from a = 2947.0 MPa to b = 5098.0 MPa. When comparing the full Monte Carlo and
multilevel Monte Carlo approaches, a strong agreement is found. The mean value of the yield
stress Rp,0.2 is E[Rp,0.2] = 289.5 MPa, resulting in a variation of only 0.04% from the result
obtained from the full Monte Carlo simulation. The average value of the hardening modulus
shows a deviation of 1.4%, with a value of E[hend] = 4070.0 MPa.





6 Extension of the Optimal Uncertainty
Quantification for Polymorphic
Uncertainties

The aim of uncertainty quantification is to identify the influence of uncertainties in the input
space of a physical model to the respective output space, in order to gain insight in the behavior
and to improve the prediction capabilities of said physical model. In Chapter 2, mathematical
models for the characterization of uncertainties and basic tools for the uncertainty quantifi-
cation are introduced. In this chapter, the focus is on a more sophisticated framework for
uncertainty quantification, the Optimal Uncertainty Quantification (OUQ) [110]. The appli-
cation of the OUQ allows the computation of the mathematically sharpest bounds possible
on the probability of interest, wherein only available data without uncertified assumptions on
potentially underlying distribution functions is incorporated. Therein, uncertain quantities
can be characterized by bounds on the quantity itself, moreover, also precise values or bounds
for stochastic moments can be considered. However, in its original published form, the OUQ
assumes all uncertain quantities to be of epistemic nature, such that aleatory uncertainties, for
which the precise probability density function is known, can not be considered. In Miska and
Balzani [96] an extension of the OUQ is presented, which allows the incorporation of aleatory
uncertainties by two different approaches. Additionally, the idea of the α-level discretization
of fuzzy numbers is integrated in the concept of the OUQ framework, which allows the sys-
tematic analysis of different combinations of input intervals in the uncertainty analysis. The
extended framework is then used in Miska, Freitag, and Balzani [100] to incorporate spatially
varying data in terms of random fields and potentially limited data derived therefrom. The
following sections are based on the two mentioned journal papers and reflect the proposed
developments to the OUQ as well as the computed numerical examples. In addition to that,
the extended OUQ is presented in Miska and Balzani [92], Miska and Balzani [94] and Miska
and Balzani [95] .

6.1 Optimal Polymorphic Uncertainty Quantification

Since the occurrence of design failure in an engineering structure is a common concern, a
probability of special interest is the probability of failure (PoF). Therefore, the Optimal
Uncertainty Quantification framework can be used to calculate the optimal bounds on the
PoF in order to reliably assess the safety of a design or structure. Since failure is a term that
can have several meanings and subjective interpretations, the general event of failure may
be denoted by a limit-state function g : Y 7→ R, which maps from the product sample space
Y =

∏q
m=1 Y(m) spanned by a number of q uncertain quantities to the real line. A value

of less then zero from function g denotes failure and hence, a positive value is related to a
safe design. As it may be derived from this abstract notation, also all other events may be
considered in the OUQ context to compute bounds on the probability for. In the product
sample space Y, each individual sample space Y(m) is related to one uncertain quantity, which
can be e.g., input parameters for an underlying physical model or ultimate values for failure
modes. The input values y(m) ∈ Y(m) for the limit-state function g are realizations of the
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associated random variable Y (m), which is distributed according to their individual probability
space (Y(m),Σ(m),P(m)). If a specific outcome or sample y =

[
y(1), . . . , y(q)

]T leads to failure,
the limit-state function will yield a value below zero, which allows the definition of the PoF
as

PoF ··= P [g(Y ) ≤ 0] , (6.1)

wherein P denotes the joint probability measure on Y and Y =
[
Y (1), . . . , Y (q)

]T is the
vector of all considered random variables. Under the premise, that every single individual
probability measure P(m) is known precisely, the problem would be only influenced by aleatory
uncertainties and the PoF could be computed to a precise value by Monte Carlo approaches.
As already discussed, this scenario is rather unlikely and in most cases, the available data
on a few uncertain quantities will be limited, such that the associated probability measures
P(m) can not be specified exactly. Here, approaches for epistemic uncertainties come into play,
and in this case, the Optimal Uncertainty Quantification. As mentioned in Sec. 2.2.4, if the
available data is not sufficient to deduce a precise probability measure, it may be sufficient to
estimate stochastic moments of limited order by statistical methods. The Optimal Uncertainty
Quantification framework allows to incorporate such data without requiring the specification
of a probability distribution, which is potentially parameterized in those moments. Thus,
a moment of order z can be considered either as exact moment E[(Y (m))z] = c

(z)
m or more

realistically as an interval, i.e. E[(Y (m))z] ∈ [c
(z)
m,lower, c

(z)
m,upper]. The smallest amount of data,

which has to be available for a single uncertain quantity, are the bounding values, i.e., Y(m),
e.g. y(m) ∈ [y

(m)
lower, y

(m)
upper]. Theoretically, this allows an entire range of probability measures

µ on Y to agree with the available data, such that the PoF can be at most computed to lie
within a certain interval. The optimal, i.e., the mathematically sharpest, bounds on the PoF
are then computed by means of the OUQ.

6.1.1 Extended Optimal Uncertainty Quantification

Before the aleatory extensions can be discussed, to begin with the original version of the OUQ
as proposed in [110] is illustrated. Since the primary objective of the OUQ is to calculate the
optimal bounds on the potential probability of failure, two optimization problems are posed
to compute the optimal lower bound L and the optimal upper bound U by

L ··= inf
(h,µ)∈A

µ [g ≤ 0] ,

U ··= sup
(h,µ)∈A

µ [g ≤ 0] ,
(6.2)

wherein (h, µ) refers to a potential combination of a measurable performance function h, such
as a function that calculates the maximum deformation of a structure when subjected to
uncertain inputs, and a joint probability measure µ from the set of all admissible scenarios A,
which consists of all the data and information relevant to the problem. Thus, every potential
combination (h, µ) contained in A has to comply with the available data and information,
which can be represented by the generalized expression G(h, µ) ≤ 0. Then, the set of all
admissible scenarios A can be defined by

A ··= {(h, µ) ∈ G ×Mq(Y) | G(h, µ) ≤ 0} , (6.3)

wherein G denotes the set of admissible measurable performance functions h on Y and
M(q)(Y) ··=

⊗q
m=1M(Y(m)) represents the set of products of probability measures on Y(m).

Since the joint probability measure is constructed as a product measure, stochastic indepen-
dence of all uncertain quantities is induced, see also Sec. 2.2.5. The perfect, but due to the
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limited data unknown, solution, i.e., the pair of the precise probability measure P and per-
formance function H, is also a member of the set A. Due to the lack of knowledge however,
this pair is neither identifiable nor can be preferred over another pair also contained in A.
All pairs in A are equally possible and therefore, the most favorable and unfavorable pair in
regards to the PoF are sought for, since only these two pairs are of practical meaning for the
assessment of the underlying physical problem. The optimization problems in Eq. (6.2) are
of infinite dimension, since an endless number of probability measures µ and possible perfor-
mance functions h can be found, which satisfies the constraints of A. Consequently, solving
these problems in practice is deemed to be practically impossible.

At this stage, the reduction theorem as key component of the OUQ [110] is introduced.
It builds upon the findings of Winkler [162] and states that the sought after probability
measures are situated at the extreme points, i.e. on convex mixture distributions of Dirac
masses. Therefore, the joint probability measure µ = µ1 ⊗ . . .⊗ µm ⊗ . . .⊗ µq is composed of
convex combinations of Dirac masses, which are given by

µm =
nm∑

k=0

w
(m)
k · δ(y(m) − y(m)

k ), (6.4)

with y
(m)
k denoting the support points of the k-th Dirac mass of the m-th measure with

the associated weight w(m)
k , cf. also Sec. 2.2.3 and Eq. (2.11) in particular. This means,

regardless if the modeled uncertain quantity is continuous or discrete, here it is approximated
by a discrete measure. As it will be seen later, the choice of a discrete measure allows the
concentration of mass, which is in this context equal to probability, in regions of interest,
leading to the optimal bounds of interest. The number of individual Dirac masses nm +
1 is determined based on the amount of available knowledge for the respective uncertain
quantity Y (m). Since the available data is given in terms of bounds on the quantity and
potentially also in terms of moment information, the constructed probability measure should
exhibit exactly those moments in the specified bounds. Thus, the number nm has to be set
to the number of known moments on the uncertain quantity to ensure, that the constructed
probability measures has sufficient flexibility to adapt to the moments. Since Eq. (6.4) is
supposed to be a linear convex mixture, the weights have to be normalized, i.e.

nm∑

k=0

w
(m)
k = 1.0, m = 1, . . . , q. (6.5)

Example: Let a dimensionless variable x be distributed according to a nor-
mal distribution with mean E[x] = 5.0 and the variance σ2 = 0.5. Under
the assumption, that the specific distribution type is not known and only the
two mentioned moments are available, three Dirac masses are required for the
convex combination, leading to three support points and three corresponding
weights. One possible realization, while not the only one, consists of support
points positioned at x = {3.6730, 4.8526, 6.0321} and their corresponding weights
w = {0.125, 0.625, 0.25}. This configuration results in a cumulative distribution
function as shown in Fig. 6.1a). The support points of the Dirac masses corre-
spond to the locations of the distinct visible steps, whereas the magnitude of each
step is determined by the weight of the corresponding Dirac mass.

With the individual probability measures µm being reduced to a finite number of support
points and weights, the performance function h should be discussed. Usually, the performance
is assessed by means of a physical model, which involves sophisticated numerical solution
schemes. While this introduces the problem of model uncertainties, which are beyond the
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Figure 6.1: a) Comparison of the cumulative density functions (CDF) of a normal distri-
bution N with mean E[x] = 5.0 and variance σ2 = 0.5, and of a convex mixture distribution
DM composed of three Dirac masses exhibiting the same two moments. b) Optimal upper
and lower bound U and L on the probability of failure, if failure is defined by x < 4.5. Taken
from Miska and Balzani [96].

scope of this thesis, the performance function is a precisely known deterministic function
and can thus, be omitted from the further uncertainty analysis. Then, the set of admissible
scenarios reduces to

Ared =

{
µ ∈

q⊗

m=1

nm∑

k=0

w
(m)
k · δ(y(m) − y(m)

k ) | G(µ) ≤ 0

}
, (6.6)

which reduces the optimization problems of Eq. (6.2) to a finite dimension, allowing for a
numerical solution of these problems. The objective function for these optimization problems
is obtained by inserting the Dirac mass representation of Eq. (6.4) for each µm, which leads
to the following discrete formula for the probability of failure:

µ [g(Y ) ≤ 0] =

n(1)∑

i=0

. . .

nm∑

k=0

. . .

n(q)∑

l=0

w
(1)
i . . . w

(m)
k . . . w

(q)
l χ (yi...k...l) , (6.7)

wherein yi...k...l =
[
y
(1)
i , . . . , y

(m)
k , . . . , y

(q)
l

]T
is a vector of the Dirac support points for the

combination of terms i . . . k . . . l. In Eq. (6.7), function χ with arguments yi...k...l is introduced.
This function computes, wether the specific vector yi...k...l leads to a failure of the underlying
problem, which may be interpreted of the specific probability of failure for a given yi...k...l.
Since yi...k...l is a deterministic vector, the event of failure is also a deterministic quantity
and the the PoF can only take the values 0% or 100%. Thus, the function χ is the indicator
function defined as

χ (yi...k...l) =

{
1 if g(yi...k...l) ≤ 0,

0 else.
(6.8)

The actual computation of the optimal bounds of the PoF, as described in equations Eq. (6.2),
is performed by solving optimization problems with equations Eq. (6.7) as the cost function.
This process is also outlined in Alg. 3. The discrete degrees of freedom are of the weights w(m)

k

and the support points y(m)
k of the Dirac masses. If a number of nm moments is known for an

uncertain quantity, 2(nm+1) degrees of freedom are required in the optimization to construct
the associate combination of Dirac masses, if the constraint (6.5) is not incorporated a priori.
However, in order to parameterize the objective function in this manner, it is necessary to
impose constraints on the optimization process. This is because if the degrees of freedom are
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randomly generated without any restrictions, it may result in measures that are not included
in the set of permissible scenarios Ared, or that are not probability measures at all. The latter
problem is resolved by imposing the constraint of normalizing the weights of each measure,
as described in equation (6.5). In addition to that, the created probability measures need to
by constrained by the available knowledge contained in Ared. In order to do so, the classical
or central moment of order z are computed for an individual probability measure by

Eµm
[
(Y (m))z

]
=
∑nm

k=1w
(m)
k (y

(m)
k )z and

Eµm
[
(Y (m) − Eµm

[
Y (m)

]
)z
]

=
∑nm

k=1w
(m)
k (y

(m)
k − Eµm

[
Y (m)

]
)z.

(6.9)

As previously stated, the constraints formulated on the moments, calculated using equa-
tion (6.9), may not necessarily be equality constraints, since also bounds on moments can be
specified as available knowledge, leading to inequality constraints. Not only is this approach
more realistic in various situations, as it might be challenging to precisely estimate moments
from sample data, but it also eases the numerical optimization problem by relaxing the strict-
ness of equality constraints with interval constraints. Both cases, however, necessitate an
equal amount of degrees of freedom (DoF), which is only controlled by the number of, but
not the type of given moment information.

Example: Using the same normal distribution and information provided in the
previous example, the event of failure occurs when the quantity x is less than 4.5,
i.e. g(x) = x − 4.5. This is represented by the dotted vertical line in Fig. 6.1b).
Two optimization runs yield the optimal upper and lower bounds on the desired
Probability of Failure (PoF). In the upper limit, a Dirac mass is positioned very
near the failure threshold to maximize its weight, while the other two masses al-
most merge into a single mass. Therefore, the upper bound is equivalent to the
sum of the Dirac masses in the region of failure, which is U = 89.36%. Conversely,
the lower bound L is zero since it is possible to position all three Dirac masses
within the feasible zone, as depicted in the image. On the other hand, the actual
value derived from the underlying normal distribution is P[x ≤ 4.5] = 15.87%. The
value is certainly within the calculated bounds, but it is noticeably smaller than
the calculated upper bound. The significant disparity arises because the calcula-
tions for the bounds only included a restricted amount of information, specifically
the first and second order moments. Hence, this straightforward example high-
lights the significant influence of taking into account either the entire distribution
function or a restricted range of moments for an uncertain quantity. It should
be noted that the measures created are just the highest and lowest values for the
desired probability of failure, but they do not provide the best possible bounds
for the cumulative distribution function across its whole range.

Algorithm 3: Evaluation of cost function Eq. (6.7)

Data: All support points y(m)
k and weights w(m)

k with m = 1, . . . , q and k = 0, . . . , nm

Result: PoF
1 PoF ← 0
2 for yi...k...l in {set of possible combinations of support points}:
3 if g(yi...k...l) ≤ 0:
4 PoF ← PoF + w

(1)
i . . . w

(m)
k . . . w

(q)
l

5 return PoF
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Figure 6.2: a) Approach 1: convergence of the computed upper bound on the PoF with
an increasing number of moment constraints and b) Approach 2: nested stochastic analysis
within the evaluation of the objective function. Taken from Miska and Balzani [96]

Given that the optimization problems in OUQ are typically non-convex, it is essential to use
an effective global optimization algorithm like Differential Evolution, cf. Storn and Price [144].
A reference implementation using Differential Evolution for the original OUQ framework can
be found in the mystic-framework, cf. McKerns et al. [87].

The original form of the OUQ framework, as described until here, considers all uncertain quan-
tities as epistemic, since only limited data in terms of bounds on the quantity and bounds
on the moments can be incorporate. Therefore, in the following two approaches are dis-
cussed to also integrate aleatory uncertainties, which then enable a polymorphic uncertainty
quantification.

Approach 1: The first approach is a straightforward approach and is based on the as-
sumption, that an aleatory uncertainty can also be described by the complete sequence of
its stochastic moments. Since the precise probability density function is usually known for
aleatory uncertainties, in principle any moment up to infinite order, if existent, can be com-
puted. Then, these moments may be used to constrain an uncertain quantity in the context of
the OUQ as described above. As the number of moment constraints increases, the description
of the underlying probability measure becomes more accurate, and the calculated bounds on
the PoF should converge as shown in Fig. 6.2a). Nevertheless, due to the inherent uncertainty
in determining the necessary number of moments to adequately describe a quantity, it is neces-
sary to conduct multiple optimization runs with increasing numbers of moment constraints in
order to evaluate the convergence behavior. Once convergence is obtained, it can be assumed
that the number of moments used for a particular quantity is sufficient. However, the inclusion
of additional moment constraints requires additional terms in the Dirac representation of the
specific measure. As a consequence, the optimization problems become more complex, not
only in terms of constraints but also in terms of the degrees of freedom. In addition, the cost
of evaluating a single objective function grows as the number of terms in the cost function
(6.7) increases. An increasing number of terms therein leads to an increasing number of model
evaluations for the limit-state function g, which is usually a drastic performance drawback.

Approach 2: Alternatively, the second approach relies on leveraging the the properties
of aleatory uncertainties. Given that the probability density function is usually known for
aleatory uncertainties, there is no requirement to estimate the associated probability of failure
by a combination of Dirac masses in the first place. Instead, the probability of interest can
be determined by directly integrating the joint probability density function of all aleatory
uncertainties within the region of failure. By doing so, the overall shape of the cost function
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as displayed in Eq. (6.10) remains the same, but in this case χ is not defined as an indicator
function, but rather as the integral of the product of the PDFs of the aleatory uncertainties
over the failure region, i.e. where the function g(Y ) is less than or equal to zero, by

χ =

∫

g(Y )≤0

r∏

s=1

f̂s(Ŷ
(s))dŶ . (6.10)

Herein, the vector Ŷ represents the r aleatory uncertainties, for which the respective proba-
bility density functions (PDFs) are known, and f̂s represents the PDF of parameter Ŷ s. Given
that this integration strategy accounts for r uncertainties, only the q− r remaining epistemic
uncertainties of the problem are expressed as convex combinations of Dirac masses. Accord-
ingly, the vector Y is reduced in size and Z = [Y , Ŷ ] is introduced as vector containing both
aleatory and epistemic uncertain quantities. The outcome is a nested structure, as shown in
Fig. 6.2b) and described in Alg. 4. This is because each evaluation of the objective function
necessitates the computation of the stochastic problems as presented in Eq. (6.10), which,
in turn, rely on evaluations of the fundamental computational model of the problem. As a
result, the optimization problem has a reduced number of degrees of freedom and constraints
compared to the first approach, facilitating the solution of the optimization problem. How-
ever, in order to evaluate each χ, a numerical integration in probability space must be carried
out. This can be accomplished using a Monte Carlo technique, cf. e.g., Padmanabhan et al.
[111]. Therefore, this method is only practical for either an inexpensive computational model
or surrogate models, which are created using a specific number of pre-existing evaluations of
a costly computational model.

The second method with its nested approach also accommodates for polymorphic uncertain-
ties, where the probability density function may be specified with interval-valued parameters.
This is analogous to interval-probability methods, as in both cases characterizing parameters
of a chosen distribution type uncertain quantities in itself. For the specific scenario that
all uncertainties are represented solely by bounds on the quantities themselves, the solution
methods of both techniques are even the same. Then, all sums in Eq. (6.7) collapse to just
one term, so that the evaluation of Eq. (6.10) is performed for one combination of epistemic
quantities only. Yet, the Optimal Uncertainty Quantification allows to not only use intervals
for those characterizing parameters, it is also possible to specify moment constraints for mo-
ments of those parameters, such as e.g. a prescribed mean. Thus, the second approach to
integrate aleatory uncertainties in the OUQ allows the choice of intervals on one end to condi-
tional probability-like models on the other end for uncertain quantities. The latter is achieved
by progressively specifying more moment constraints on the characterizing parameters of a
PDF. An inconvenience of this approach is the quantity of Monte Carlo integrations required
to assess the cost function Eq. (6.7) when moment constraints are included. Then however,

Algorithm 4: Evaluation of the modified cost function Eq. (6.10) for Approach 2

Data: All support points y(m)
k and weights w(m)

k with m = 1, . . . , q − r and
k = 0, . . . , nm and probability density functions f̂s with s = 1, . . . , r

Result: PoF
1 PoF ← 0
2 for yi...k...l in {set of possible combinations of support points}:

3 PoF ← PoF +

∫

g(Y )≤0

r∏

s=1

f̂s(Ŷ
(s))dŶ

4 return PoF
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Figure 6.3: a) Schematic deduction of a discrete α-level of a trapeziodal fuzzy number
and b) nested solution scheme of a combined OUQ-fuzzy-analysis. Taken from Miska and
Balzani [96]

employing more effective Monte Carlo integration methods, such as sequential importance
sampling [115], advanced line sampling [22], or subset sampling [2], might yield advantageous
results. An additional use of a surrogate model that directly yields the numerical integration
result as its output value may be beneficial.

6.1.2 Combination with Fuzzy Numbers

Sometimes, a single interval is not the right choice for either the bounds of an uncertain
quantity or for the bounds on a moment, because conflicting information with varying degrees
of plausibility should by systematically investigated. Then, fuzzy numbers as introduced in
Sec. 2.3 may be a better approach, cf. also [101] or [10], and thus, a combination of the
OUQ framework with fuzzy numbers is meaningful. Since fuzzy numbers can be defined in
a discretized form, which is essentially a set of weighted intervals, the integration of fuzzy
numbers in the OUQ analysis is rather straightforward. For this objective, the subsequent
steps have to be taken into account (refer also to Alg. 5 and and Fig. 6.3b)):

• Iterate through all desired α-levels and compute the corresponding α-cut for each α-level
according to Fig. 6.3a).

• Construct and solve an OUQ-problem on each α-level with the computed α-cut as input
intervals. The OUQ-problem may include a stochastic analysis, as stated in Sec. 6.1.1.

• The output fuzzy number is constructed by means of discrete α-levels, which uses the
optimal upper and lower bound on the PoF from the OUQ analysis as interval bounds.

This approach to incorporate fuzzy numbers resembles the algorithmic methodology for fuzzy-
probabilities, which also involves a nested stochastic analysis within an outer fuzzy-analysis,
as described in [102]. The primary distinction lies only in the optimization performed at
each α-level, which is, however, in itself a significant distinction. Unlike interval optimization
in the fuzzy-probability technique, the OUQ optimization encompasses all the properties
discussed in the previous two sections. This implies that the method is not restricted to fuzzy
numbers representing a quantity or parameters of a specific probability density function.
It also permits the use of fuzzy numbers to impose bounds on moments. It is feasible to
represent an uncertain quantity with limited knowledge, which falls within a specific range
and has two different expert opinions for its mean value. The mean can thus be depicted as a
fuzzy number. No more assumptions, such as a guess on the type of an underlying probability
density function, are required. Therefore, the integration of the OUQ with fuzzy numbers
can be regarded as an extension of fuzzy probabilities. However, this generalization has a
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Algorithm 5: Solution scheme for the incorporation of fuzzy numbers in the OUQ
Data: Fuzzy numbers describing quantities and/or moments of quantities
Result: Fuzzy number of the PoF

1 PoF ← empty fuzzy number
2 for α in {α-levels to investigate}:
3 derive bounds as α-levels from fuzzy numbers, cf. Fig. 6.3a)
4 construct and solve OUQ-problems with these bounds as input, cf. Eq. (6.2)
5 add interval to PoF on level α with L and U as bounding values
6 return PoF

drawback. The general OUQ optimization is computationally more expensive compared to
interval optimization, because the OUQ optimization involves additional moment constraints
on certain quantities, which leads to more degrees of freedom in the optimization problems.
While the rise in degrees of freedom is linear, the computational effort required for solving
the resulting optimization issues is exponentially growing.

6.1.3 Improving the Efficiency of OUQ with Canonical Moments

As stated earlier, a significant amount of moment constraints, such as those found in Approach
1 for incorporating aleatory uncertainties discussed in Sec. 6.1.1, results in optimization prob-
lems with a large number of constraints. Given that optimization in the context of OUQ
typically involves non-convex objective functions in the form of Eq. (6.7), a global optimiza-
tion approaches such as evolutionary algorithms are necessary. Although these algorithms
are effective for problems without constraints, where only limits on the degrees of freedom
are specified, they face challenges in performing efficiently for constrained problems, where
functions on the degrees of freedom are also restricted, cf. e.g., Lampinen [78] or Yong Wang
et al. [164]. Given their inherent characteristics, these optimization methods are prone to pro-
ducing a significant quantity of potential solutions that do not meet the specified constraints.
Therefore, in terms of effectiveness, it is more desirable to convert the optimization problem
into an unconstrained problem, where all candidates are considered acceptable. An effective
strategy in the context of OUQ involves reformulating the objective function by expressing it
in terms of the moments of unknown quantities, which are already known within specific in-
tervals. Thus, the limitations on the functions of the Degrees of Freedom (DoFs), specifically
in relation to the moment constraints, are directly converted into restrictions on the DoFs
themselves, greatly simplifying the solution of the optimization problems.

When a probability measure within the framework of the OUQ should be constructed based
on a series of moments, a way has to be found to determine the corresponding weighting
factors and the support points of the Dirac masses from said moment sequence. For that
matter, the weighting factors can be determined by solving the linear system of equations
that arise from the specified moment constraints as

w0 + · · · + wnm = 1.0

w0(y0)
1 + · · · + wnm(ynm)1 = c(1)

...
... =

...

w0(y0)
k + · · · + wnm(ynm)k = c(k),

(6.11)

wherein c(k) denotes a classic stochastic moment of order k. The support points yi have to
be known beforehand to solve this system of equations. They can be derived as the roots of
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specifically constructed polynomials P . These polynomials have to fulfill the orthogonality
condition

∫∞
−∞ Pi(y)Pk(y)dµm(y) = 0 for i ̸= k to ensure, that the zeros are real-valued,

distinct and within the support of measure µm and thus, can be used as support points.

The issue therein is, that the measure µm is a priori not known and therefore, the construction
of an appropriate polynomial is not trivial. In [79], a potential way out is proposed by con-
structing orthogonal polynomials based on determinants of Hankel matrices of the moments
without any further knowledge on µm. In order to construct a Hankel matrix of adequate
size, it is necessary to include all moments from the known orders of 1 to nm, as well as the
moments up to the order of 2nm + 1. This ensures that the final polynomial has a total of
nm + 1 zeros. As there is no information about those higher order moments, they can be
considered as independent degrees of freedom in the context of the OUQ optimization. By
exploring this extended moment space, one can obtain all conceivable probability measures,
denoted as µm. Consequently, the most extreme measures in the context of OUQ can be iden-
tified. Unfortunately, the method relying on Hankel matrices is hindered by two numerical
limitations that make it challenging to include it into the OUQ. If a greater number of mo-
ment constraints are to be included, as demonstrated in Approach 1 in Sec. 6.1.1, the Hankel
matrices become ill-conditioned due to the disparities in the magnitudes of the moments. This
results in the occurrence of round-off errors and imprecise outcomes. Furthermore, while the
higher order moments are not explicitly specified and instead serve as degrees of freedom, they
must nonetheless satisfy specific constraints that pertain to the overall interaction between
moments of varying orders. Thus, they are still required to stay within bounds which depend
on the values of the other moments. Since these values - in case of higher order moments -
are the DoFs of the optimization problem, this will lead to dynamic changes of the bounds
on the higher order moments. This poses algorithmic inconvenience within the optimizer.

Therefore, a more effective method in form of canonical moments, as described in Dette
and Studden [24], are utilized. This approach has been demonstrated to be valuable in the
context of the original OUQ framework, as shown by Stenger et al. [143]. Canonical moments
may be interpreted as positions of classical moments relative to their admissible moment
spaces, cf. [24], page vii. Canonical moments are defined on the interval [0, 1] and similar
to the relation of classic and central stochastic moments, a finite series of moments ĉ(µm)
may be converted to either representation. For example, the first three classical moments
ĉ
(3)
m (µm) = {c(1)m , c

(2)
m , c

(3)
m } with c(z)m = Eµm [(Y (m))z] can be converted into a series of canonical

moments. The set p̂
(3)
m (µm) consists of three elements, namely p(1)m , p(2)m , and p(3)m , where each

p
(z)
m is a real number between 0 and 1. Given that classical moments may be converted

into central moments and vice versa, a sequence of such moments accurately captures the
information that can be obtained for an uncertain quantity in the setting of OUQ. The
recursive procedure for calculating the canonical moments from a series of classical moments
is described in [24], page 25 (referred to as the “Q-D Algorithm”). With an appropriate
sequence of canonical moments at hand, the sought after orthogonal polynomial Pn(y) can be
constructed with the recursive three-term formula

Pk+1(y) =(y − ylower − (yupper − ylower)(ζ2k + ζ2k+1))

· Pk(y)− (yupper − ylower)
2ζ2k−1ζ2kPk−1(y),

(6.12)

with starting values P−1 = 0 and P0 = 1. The values ylower and yupper represent the minimum
and maximum bound of the support of the measure µ, which correspond to the lower and
upper bound of the associated uncertain quantity. The numbers ζj are defined as (1−pj)pj−1

for the purpose of using a shorter notation. The polynomial Pnm+1(y) is orthogonal to the
measure µm, implying that the nm+1 zeros of the polynomial correspond to the support points
y
(m)
i of the individual Dirac masses used in constructing the measure µm. The polynomial
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Algorithm 6: PoF (strict canonical moments)

Data: sequence of higher order moments p(m)
nm+1 . . . p

(m)
2nm+1 for m = 1, . . . , q

Result: PoF
1 for m in 1, . . . , q:
2 construct orthogonal polynomial Pnm+1 based on p(m)

1 . . . p
(m)
nm and p(m)

nm+1 . . . p
(m)
2nm+1

3 compute y(m)
0 , . . . , y

(m)
nm from Pnm+1 by solving Pnm+1(y) = 0

4 compute w(m)
0 , . . . , w

(m)
nm by solving the system of linear equations in Eq. (6.11)

5 compute PoF following Eq. (6.10), cf. also Algorithm 3
6 return PoF

Pnm+1(y) of order nm+1 necessitates canonical moments up to order 2nm+1. These include
the nm known moments, as well as nm + 1 extra moments of higher order. The moments of
higher order are again free parameters and are degrees of freedom for the optimization. By
exploring all possible higher order moments {p(nm+1), . . . , p(2n

m+1)}, all probability measures
that exhibit the known lower order moments {p(1), . . . , p(nm)} can be discovered, cf. [143]. In
contrast to the approach based on Hankel matrices, the bounds for the canonical moments
do not depend on values of lower order moments and are specified within the interval [0, 1].
This allows an easy specification of the bounds for these moments during the optimization.
It is important to mention that this approach decreases the number of degrees of freedom.
Only nm + 1 higher canonical moments are considered as free parameters, as opposed to the
original approach where nm+1 Dirac support points and nm+1 associated weights leading to
a total of 2(nm+1) degrees of freedom are used for a single uncertain quantity with nm known
moments. As a result, this method improves the optimization process by converting it into a
problem that is only limited by constraints on the bounds of the DoFs, and also by significantly
lowering the number of variables. However, in Alg. 6, three extra steps must be taken for each
considered uncertain quantity during the evaluation of the objective functions. As a result, the
computational effort required for a single evaluation of the objective function is greater than
in the original framework. Nevertheless, when the number of degrees of freedom increases, the
optimization process becomes significantly more complex. Consequently, the linear increase
in processing cost for evaluating the objective function becomes rather insignificant.

The presented algorithm only considers precise moments, as opposed to the original OUQ tech-
nique, which also permits moment constraints within certain bounds. However, the method
employing canonical moments can be somewhat altered by incorporating extra degrees of
freedom to provide the same functionality. The additional degrees of freedom refer to the nm

moments of lower order, which are given as available knowledge in certain bounds. Unlike the
unrestricted higher-order moments, the known moments are degrees of freedom in the space
of classical moments. This is necessary because the calculation of the canonical moments
depends on the values of the previous moments of lower order, i.e., the degrees of freedom in
the canonical space are not independent. Therefore, the conversion from classical to canonical
moments occurs when evaluating the objective function. Therein, the sequence of known lower
order moments is known and fixed, refer to Alg. 7 for further details. This adapted approach
enables the same analysis of uncertainty as the original Optimal Uncertainty Quantification
approach, but it allows for an optimization with only bound constraints on the degrees of
freedom. Consequently, it is anticipated to provide enhanced performance. Although the
adapted method, which incorporates bounds on the moments, was briefly mentioned in the
publication [143], no particular algorithmic implementation or numerical analysis has been
provided therein. In the following numerical examples, both presented approaches, along with
the original OUQ method are tested in conjunction with the proposed expansions of the OUQ
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Algorithm 7: PoF (relaxed canonical moments)

Data: sequence of classical lower and canonical higher order moments c(1)m , . . . , c
(nm)
m and

p
(nm+1)
m , . . . , p

(2nm+1)
m for m = 1, . . . , q

Result: PoF
1 for m in 1, . . . , q:
2 transform c

(1)
m , . . . , c

(nm)
m to p(1)m . . . p

(nm)
m

3 construct orthogonal polynomial Pnm+1 based on p(1)m . . . p
(nm)
m and

p
(nm+1)
m , . . . , p

(2nm+1)
m

4 compute y(m)
0 , . . . , y

(m)
nm from Pnm+1 by solving Pnm+1(y) = 0

5 compute w(m)
0 , . . . , w

(m)
nm by solving the system of linear equations in Eq. (6.11)

6 compute PoF following Eq. (6.10), cf. also Algorithm 3
7 return PoF

to polymorphic uncertainties.

6.1.4 Random Fields for Spatially Varying Properties

For now, the uncertain quantities considered within the OUQ analysis were only parameters
for an underlying model and thus, spatially constant. Certain applications, however, require
spatially distributed parameters such as, e.g. a varying material parameter. This spatial
variation may be reflected in terms of a random field, cf. e.g., Vanmarcke [155] or Sudret [145],
which leads to substantial computational costs. Since such costs may lead to less computed
samples, the gained data from random fields can become uncertain. In the following, after
a short introduction of random fields, a method is described, which nests the evaluation of
random fields in the OUQ.

Random Fields A random field, denoted as R(x, ω), is a collection of random vari-
ables defined on a standard probability spaces (Ω,Σ,P) on the spatial domain T ⊆ Rn.
The random variables are indexed by the spatial position x, and ω represents a possible
outcome from the sample space Ω. Each point x0 ∈ T corresponds to a random variable
R(x0, ω) : Ω → R. While this description assumes a random field that is scalar and has
real-valued elements, it is also feasible to have random fields that are based on random vec-
tors. For a specific outcome denoted as ω0 ∈ Ω, the realization of the random field R(x, ω0)
is a deterministic function R(x, ω0) : T → R for all x ∈ T . Typically, second-order ran-
dom fields are applied, which are defined by a mean function E[R(x, ω)] and a covariance
function C(x1,x2) = Cov(R(x1, ω),R(x2, ω)) for x,x1,x2 ∈ T . In engineering applications,
predominantly stationary random fields are utilized, which results in a constant mean func-
tion E[R(x)] on T and the covariance is only determined by the distance between the two
points x1 − x2, without regard to their specific positions. For isotropic random fields, the
covariance is only determined by the magnitude of the distance ||x1 − x2||. The covariance
function can be decomposed into two components: the variance, which remains constant for
stationary fields, and the correlation function. The correlation function is employed to reg-
ulate the correlation between the two points x1 and x2, often aiming for a gradual decrease
as the distance between them increases. To adjust the intensity of the correlation decay,
a parameter known as the “correlation length” lc is employed. A greater correlation length
results in a more uniform field, whereas a smaller value leads to a more chaotic field. When
the correlation length approaches infinity, the random field will have the same value at every
point. In the opposite scenario, when lc tends towards zero, all random variables in the field
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Figure 6.4: a) Distributions of quantity bmax as result of Monte Carlo simulations of a
random field for different fixed values of quantity y(m). The yellow area denotes exemplarily
chosen bounds on the mean of the distributions. b) Visualization of the nested OUQ
approach, in the outer problem the quantities y(m) and bult are incorporated, the inner
problem is based on the statistics on bmax(y(m)). Taken from Miska et al. [100].

become uncorrelated and have independent values. As a result, a completely noisy random
field will be generated. Provided a random field realization R(x, ω0), it can serve as the input
for the underlying model, often relying on a numerical simulation using finite elements. Sub-
sequently, the desired target quantities, such as the maximum value of a general quantity b,
can be obtained from the numerical solution of the finite element model. However, in order to
understand the statistical behavior of these target quantities, such as the mean value E[bmax]
or the complete distribution function, it is evident that a single model evaluation with only
one realization of the random field is inadequate. Multiple realizations of the random field
need to be generated and simulated using a Monte Carlo approach. It may be noted, that
alternatives to this Monte Carlo simulation approach are available, cf. e.g., Stefanou [141] for
an overview, but these approaches are intrusive and require an adaption of the finite element
code. The Monte Carlo method, on the other hand, enables the use of finite element codes
as a “black-box” but requires more computational effort. This can be partially mitigated by
employing multi-fidelity techniques, such as those described by Biehler et al. [13]. To obtain
information about the distribution of the target quantity, one can analyze a large number of
simulated random fields, similar to traditional Monte Carlo simulations.

However, if the problem at hand is not only influenced by uncertain quantities represented by
random fields, but also by spatially constant uncertainties, such as epistemic uncertainties, as
seen in the extended OUQ framework for a polymorphic uncertainty analysis, the Monte Carlo
simulation of the random fields necessitates additional computational resources. In order to
obtain meaningful data on the distribution of the target quantity bmax, it is necessary to
perform the Monte Carlo simulation multiple times for every possible combination yi...k...l of
the spatially constant uncertainties Y . This is because the resulting information depends
on the value of these uncertainties, and it is important to cover the entire domain of these
quantities. Undoubtedly, this approach is not practical due to the significant computational
resources and time required. Therefore, Monte Carlo simulations can only be conducted for a
limited number of combinations of the constant uncertainties. The resulting distribution of the
target quantities can then be interpolated between these selected combinations. For instance,
imagine a typical situation that relies on a random field and only one epistemic quantity,
denoted as y(m), which remains constant across space. The quantity of interest, denoted as
bmax, represents the highest value of quantity b that is derived from the numerical solution of
the problem. Given that the variable y(m) has an impact on the problem, every variation in
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its value will result in a modification of the statistics related to bmax. Thus, a limited number
of values for y(m) is selected, and separate Monte Carlo simulations are conducted for each
value. These simulations are based on the random field and aim to derive statistical data
on bmax. To view an illustration, refer to Fig. 6.4a), which displays the estimated cumulative
distribution functions (ECDF) of bmax for five distinct values of y(m). To determine the
appropriate quantifier for the distribution of bmax, one must consider the specific needs for
the future use of this data. This quantifier should be able to interpolate between the selected
values of y(m). In this example, the yellow region represents the estimated upper limit of the
mean value, denoted as bmax, obtained using interpolation.

Surrogate Model for Random Field Results A surrogate model, such as one based
on artificial neural networks (ANNs), can be created to take the random field and additional
spatially constant epistemic uncertainty as input and produce the target variables as output.
Nevertheless, considering that each finite element, together with its associated parameter from
the random field, is considered as an individual input, the input dimension, as well as the
model dimension, would become significantly vast. In addition, a large data set would be
required for training, testing and validation, such that this approach is not followed here.
Instead, Monte Carlo simulations of random field realizations using finite elements for specific
combinations of epistemic quantities are conducted as previously described. The target quan-
tities obtained therefrom are then rearranged in ascending order. This allows the construction
of the estimated cumulative distribution function for each combination of examined epistemic
uncertainties, cf. Fig. 6.4a). Based on the ECDF, percentage of random field realizations that
have a target value below a specified threshold based on a certain combination of epistemic
variables, can be estimated. In the given case, the empirical cumulative distribution function
can be employed to calculate the probability of failure, as P[bmax > bult] = 1.0− ECDF(bult).
Hence, the ECDF data is utilized to build the surrogate model. Here, the epistemic quantities,
specifically the quantity y(m) and the threshold bmax, are considered as input parameters. The
output, on the other hand, is represented by ECDF(bmax). As a result, the surrogate model
can be substantially downsized, but this comes at the expense of the necessary simple Monte
Carlo runs to generate the training data. The quality of the ECDF is directly influenced by
the number of random field simulations conducted, which may be restricted.

Nested OUQ-Scheme for Incorporating Limited Random Field Data Con-
sidering the motivation provided earlier, it may be more advantageous to focus on specific
statistics of the random field results, such as the upper and lower limits or an approximation

Algorithm 8: Computation of Eq. (6.7) for the incorporation of imprecise statistics from
random field simulations

Data: Bound and/or moment information on y(m), bult and (limited) random field
statistics

Result: Upper bound on the PoF U
1 PoF ← 0

2 for y(m)
i , bult

k in {set of possible combinations of support points}:
3 evaluate random field statistics of bmax based on y(m)

i

4 construct inner OUQ problem for bmax with g(y(m), bult, bmax) following Eq. (6.14)
5 solve inner OUQ problem for U inner(y

(m)
i , bult

k )

6 PoF ← PoF + wmi · wult
k · U inner(y

(m)
i , bult

k )

7 return PoF
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of the mean within limits as depicted by the yellow region in Fig. 6.4a). Note that this infor-
mation corresponds precisely to the data that is utilized as input for the extended Optimal
Uncertainty Quantification. Unfortunately, it is not feasible to directly include the statistics
into an OUQ problem due to the fact that the statistics can vary depending on the spatially
constant unknown quantities Y . Therefore, in order to obtain the results of the random
field computations, a nested scheme of OUQ computations is required for the general case,
cf. Alg. 8 for more details. The outer problem is formulated as described in Sec. 6.1, where
the variable y(m) and a potentially uncertain ultimate value bult are included, and compared
to bmax. The computation of the function χ, as described in Eq. (6.10) for the traditional
OUQ, on the other has to be modified. In the context of the uncertain quantities y(m) and
bult, the function may be defined as

χ(y(m), bult) ··= U inner(y(m), bult) with U inner := sup
µ∈Ainner

µ[g(y(m), bult, bmax) ≤ 0], (6.13)

wherein the set of all available information on bmax is denoted by Ainner and the limit state
function is given as

g(y(m), bult, bmax) = bult − bmax(y(m)). (6.14)

Here, U inner represents the sharpest upper bound on the probability of failure of the inner
OUQ problem. This specific inner OUQ problem focuses solely on a single unknown quantity,
namely the target quantity of the random field simulations bmax. The data obtained from
the random fields, as previously explained, is utilized to establish the essential bound and
moment constraints for the maximum value of b (denoted as bmax). The quantities y(m) and
bmax are inputs from the outer OUQ problem and remain constant during the computation of
the inner problem. At every combination of (outer) support points, the statistics on bmax are
fixed, which usually requires some sort of interpolation, if the support points do not meet the
exact points, for which the random field was evaluated. Only a linear interpolation is used in
this study, but the potential impact of more advanced approaches may be explored in future
investigations. Using statistics such as bounding values and bounds on the mean of bmax, the
inner OUQ problem is formulated to determine the optimal bound on P[bmax > bult] (either
upper or lower, depending on the objective of the outer optimization). For this reason, only
bmax is approximated using Dirac masses, every other quantity is fixated. This is because the
other quantities are either constant or they are part of the outer OUQ problem. After solving
the inner optimization, the resulting bound is then given back to the outer OUQ problem. By
that, a method is available to incorporate only limited statistics on target quantities resulting
from random fields under the influence of polymorphic uncertainties.

6.2 Numerical Examples

This section showcases the implementation of the extended Optimal Uncertainty Quantifica-
tion framework as discussed in the previous sections. For this objective, two examples from
classical structural engineering and one instance employing finite elements are examined. The
first analysis focuses on the failure event of a two-span beam to compare the results of the two
distinct methods for incorporating aleatory uncertainty, as discussed in Sec. 6.1.1. Addition-
ally, this study examines the accuracy and efficiency of the two possible parameterizations
of the objective function: one using weights and positions of Dirac masses, and the other
using canonical moments. The benchmark problem for polymorphic uncertainty quantifica-
tion frameworks of Papaioannou et al. [116], is computed and assessed based on the results
obtained from the first example. Eventually, the influence of uncertain parameters on the
sheet metal forming process of an S-Rail is investigated. Therein, the influence of the spatial
distribution of material parameters is investigated and the two presented approaches for the
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incorporation of random fields in the context of the OUQ method are studied. Since this
example involves numerical simulations in terms of finite elements, surrogate models in form
of ANNs are utilized, in which the actual construction of the ANNs was backed by Prof. Dr.-
Ing. Steffen Freitag. To enhance the computational efficiency of all examples, the LSHADE44
extension following Polakova [119] has been implemented in the optimization framework mys-
tic, cf. McKerns et al. [87]. This addition not only enables the automated adjustment of
the hyperparameters of the underlying Differential Evolution algorithm [144], but it also em-
ploys various competing evolution methods to enhance the reliable global optimization of
constrained problems.

6.2.1 Two-Span Beam

Description of the problem The problem of concern is a two-span beam, subjected
to a continuous load q and two point loads F positioned at the midpoint of each span, as
depicted in Fig. 6.5. The beam’s geometric properties are assumed to be precisely known.
This includes the span-width, which is l = 5m, as well as the characteristic properties of a
HEA450 cross-section. These properties include the cross-section area, which is A = 178 cm2,
the moment of resistance, which is Wpl,y = 3216 cm3, and the area moment of inertia, which
is Iy = 63720 cm4. These values can be referenced in DIN EN 10034 [25]. The uncertain
quantities influencing the failure analysis of the beam are :

• yield strength y0: The distribution of the yield strength y0 follows a beta dis-
tribution with shape parameters p = 6 and q = 6, and it is limited to the range
y0 ∈

[
200N/mm2, 400N/mm2

]
, cf. Fig. 6.6a). Therefore, the uncertainty associated

with the yield strength is inherently random, and the two suggested approaches for in-
corporating aleatory uncertainties in OUQ will be utilized and compared. For the first
approach, the first ten central moments are calculated from the beta-distribution as
documented in Tab. 6.1. While the distribution is symmetrical, the central moments of
odd order are not precisely zero due to limitations in computer accuracy. However, due
to their significantly reduced size compared to the nearest even moments, these values
are considered sufficiently tiny and are therefore used as given in the table.

• continuous load q: The uncertainty associated with the continuous load is assumed
to be epistemic. The information regarding q is constrained to its range, which is
q ∈ [100, 150] kN/m. Additionally, the bounds of the first two moments of q, namely
E[q] ∈ [118.75, 131.25] kN/m and E[(q − E[q])2] ∈ [95.0, 105.0], are known.

• point load F : There are two different expert perspectives about the range of the point
load F , as well as the limits on its average value. Thus, F is reflected by a Dirac
mass representation. However, both the interval on F and the interval on its mean are
represented by trapezoidal fuzzy numbers to accurately represent the expert judgments.

q

F F

l l

Figure 6.5: Schematic illustration of the two-span beam problem under polymorphic un-
certainties. Taken from Miska and Balzani [96].
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Figure 6.6: Uncertain loads of the two-span beam: a) beta probability density function
of the yield strength y0, b) membership function νF̃ of force F̃ and c) membership func-
tion νẼ[F̃ ] of the mean of force F̃ . Taken from Miska and Balzani [96].

Table 6.1: Central moments of the distribution of y0 up to order 10

k E[(q − E[q])k] k E[(q − E[q])k]
1 0.0 6 4.524886878 · 1009
2 7.692307692 · 1002 7 1.371250000 · 1002
3 0.000000000 · 1000 8 1.667063590 · 1013
4 1.538461538 · 1006 9 1.702297600 · 1007
5 −5.970001221 · 10−04 10 7.144555063 · 1016

Consequently, F is determined indirectly by the two α-levels F̃0.0 = [300.0, 365.0] kN
and F̃1.0 = [330.0, 360.0] kN, cf. Fig. 6.6b) for a plot of the membership function.
The fuzzy number of the mean is defined as Ẽ[F̃ ]0.0 = [340.0, 360.0] kN and Ẽ[F̃ ]1.0 =
[348.0, 352.0] kN, cf. Fig. 6.6c).

The failure of the two-span beam is determined by comparing the maximum bending moment
ME to a permissible value MR, given that all relevant quantities are available. The maximum
bending moments of the beam under the specified loads can be calculated using the formulas
provided in standard mechanics textbooks:

ME = −0.125ql2 − 0.188Fl, (6.15)

where all necessary quantities are mentioned above. The Eurocode 3, section 1-1 [26], provides
a formula to calculate the allowable amount of the bending moment when the plastic reserves
are fully utilized, given by

MR =Wpl,y · y0, (6.16)

which leads to the limit-state function being the difference between the resistance moment
MR and the external moment ME, denoted as g ··= MR −ME. The lack of all safety factors
prescribed by the Eurocode is evident in this example.

Comparison of proposed approaches for aleatory uncertainties The primary
aim of the initial analysis of this example is to contrast the two suggested methods for in-
corporating aleatory uncertainties inside the OUQ framework. To begin, the change of the
resulting bounds on the probability of failure (PoF) is examined as the number of prescribed
moment constraints on the yield strength y0 is increased. For that matter, the moments as
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Figure 6.7: Convergence of the computed upper bound on the PoF with an increasing
number of prescribed moment constraints on the yield strength (Approach 1), compared to
the computed values using the integration approach (Approach 2). Adapted from Miska
and Balzani [96].

listed in Tab. 6.1 are used for Approach 1. Afterwards, these results are compared to the
outcomes obtained using the integration approach (Approach 2). Initially, the investigation is
performed using the conventional approach without utilizing canonical moments, i.e. the de-
grees of freedom are the support points and weights for the Dirac masses. However, it quickly
turned out, that for precise moment constraints, such a parameterization of the objective
function is problematic. When incorporating constraints on the moments only up to order
2, the optimizer had already difficulties to construct admissible candidate solutions. This
issue become even worse when the number of exact moment constraints was increased even
further. Thus, the convergence analysis addressed here focused solely on the parameterization
in terms of canonical moments, incorporating exact moment constraints as outlined in section
Sec. 6.1.3. Due to the uncertainties in the load q and the forces F , it is not meaningful to
impose exact moment constraints on those quantities, and hence, these variables are repre-
sented by Dirac masses. Therefore, the optimization problem without any constraints on the
yield stress has twelve degrees of freedom, which then increases linearly to 21 DoFs when 10
moment constraints are added to the issue. Similarly, the population size employed in the
differential evolution optimizer gradually increases from 200 at the start to 800 at the end,
in order to guarantee a sufficient exploration of the search space. Undoubtedly, a population
size that grows exponentially would enhance the solution of the optimization problems even
further, but a detailed analysis of this matter is postponed to the paragraph comparing Ap-
proach 1 and 2. The obtained maximum bounds on the PoF are graphically represented in
Fig. 6.7 for both the lower, denoted by α = 0.0, and the upper, denoted by α = 1.0, α-level
of the used fuzzy number. The lower bounds on the PoF are not visually represented as they
were all calculated to be 0 percent. The upper limit decreases for both examined α-levels as
the number of moment constraints increases, as anticipated due to the enhanced description
of the stochastic distribution function for the aleatory uncertainty of the yield strength. How-
ever, even when considering ten moment constraints, the upper bounds do not completely
converge: there are still little but significant changes in the calculated values. Conversely, im-
posing restrictions on lower order moments results in significant disparities in the calculated
bounds. This discrepancy can be seen as evidence of the significance of including information
on low-order moments, if they are available. When comparing the results of both α-levels,
the higher level consistently produces a significantly lower upper bound on the PoF. This
might be expected, as higher α-levels on uncertain input quantities are supposed to represent
sharper constraints on the input and thus, to sharper bounds of the resulting output, i.e. the
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Figure 6.8: a) Required computing time to calculate the upper bound on the PoF with
increasing number of moment constraints. b) Resulting fuzzy number for the PoF for the
integration approach (solid line), ten prescribed moments (dotted line) and four prescribed
moments (dashed line). Taken from Miska and Balzani [96].

PoF, but sharper bounds do not necessarily mean smaller bounds overall. Here, these results
stem from the fuzzy numbers for the force F , which are specified to limit the range of F and
the mean of F for a greater value of α. Reduced ranges result in lower mass of the Dirac
masses in the failure region, leading to a decreased PoF. The Fig. 6.8a) displays the average
computing times of ten separate optimization runs for the upper bound. As anticipated, the
time required increases as the number of prescribed moment constraints rises, owing to the
greater number of degrees of freedom and population sizes. The impact of population size on
computing time is highly sensitive, making the relative trend of the curves more important
than the absolute values of the needed times. Given that only a population size growing
linearly with an increasing number of moment restrictions was considered, it follows that the
computing times also increase linearly. Remarkably, in all instances, the calculations for the
higher α-level necessitated less time compared to the lower level. Given that all settings, such
as the number of degrees of freedom and population size, remain the same except for narrower
ranges on F , the sole plausible explanation lies in the reduced search space for the optimizer.

The last two bars on the right in Fig. 6.7 display the outcomes of Approach 2, the alternate
method to incorporate aleatory uncertainty. In this case, the probability density function
of y0 is integrated using a vanilla Monte Carlo technique with 107 samples. The number
of samples has been verified using an independent convergence investigation to confirm that
increasing the sample size to 108 does not affect the outcome of Approach 2. As previously
stated, employing advanced techniques like sequential importance sampling would be advan-
tageous in minimizing the influence of internal probability integration on overall efficiency. In
this specific scenario, the Monte Carlo integration was unnecessary because the cumulative
distribution function could be directly used to calculate the failure probability in this one-
dimensional case. However, as a demonstration of the concept, the Monte Carlo approach was
still employed. The results indicate that the upper bounds obtained are approximately three
times less than the bounds obtained from the optimization runs with 10 constrained moments.
Therefore, it seems that 10 moment constraints are not adequate to fully describe the corre-
sponding probability distribution, despite the fact that the variations become relatively small
as the number of moment constraints increases. The Monte Carlo integration method neces-
sitates significantly more processing time compared to the first approach, which involves ten
restricted moments on the yield stress. Specifically, it requires an average of 10,666 seconds
for α-level 0 and 8,459 seconds for α-level 1. It is important to note that significantly more
precise, or sharper, estimates of the Probability of Failure (PoF) were achieved. Implementing
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an exponential growth model for the population size, as described earlier for Approach 1, will
undoubtedly enhance the outcomes of Approach 1 by accommodating the exponential expan-
sion of the search space. Nevertheless, as the upper bound is determined by a maximization
problem, any enhancement would correspond to a higher upper bound, resulting in a greater
disparity between the outcomes of Approach 1 and Approach 2. Thus, the current findings,
which only include population sizes that increase linearly, strongly suggest that Approach 2
is more favorable for incorporating aleatory uncertainties in the uncertainty analysis.

Fig. 6.8b) displays three fuzzy numbers representing the computed probability of failure. The
solid line shows the outcome of the integration method, while the dotted line corresponds
to the calculation that takes into account moment constraints on the yield strength y0 up
to the 10th order, and the dashed line up to the 4th order. A notable feature of the image
is the ratio between the disparities in the solutions of (i) four and ten moment constraints,
and (ii) ten moment constraints and the integration approach. Given that the discrepancy
(i), resulting from six extra moment constraints on the yield strength, is smaller than the
discrepancy (ii), it can be inferred that a significant number of additional moment constraints
would be required for the first approach to achieve a similarly precise upper bounds on the
PoF as the integration approach. Both approaches necessitate a fairly iterative process of
determining either the number of moment constraints to be included for Approach 1, or the
effort invested for the probability integration for Approach 2. Converging bounds on the PoF
with increased effort need to be identified for both approaches before the obtained bounds may
be considered as final result. Thus, due to the considerable number of moment constraints
needed for Approach 1 to achieve bounds as precise as Approach 2, the latter might be deemed
more efficient. It is important to note that just a basic Monte Carlo integration method was
used for the computation in this particular situation, and there are more advanced methods
that might be used instead. Furthermore, it is more straightforward to conclude converging
bounds for Approach 2 due to the availability of well-established convergence properties on
several Monte Carlo approaches.

Convergence analysis using bounds on moments Following the investigation of
the problem with strict moment constraints, now a similar study utilizing moment constraints
within specified bounds is investigated. These bounds are derived from the values of y0 stated
in Tab. 6.1, which are permitted to fluctuate within a range of ±5% from the given value. It
is not anticipated that the calculated upper bound on the PoF will approach the value of the
Monte Carlo integration, since the added variability due to the bounded moments should allow
for additional failure scenarios. Moment constraints within bounds relaxe the optimization
problem numerically and thus, more admissible candidate solutions are expected to be created
by the optimizer. For that matter, the optimization problems relax the more, the broader
the bounds on the moments are chosen. Therefore, the parameterization of the objective
function can be compared between Dirac masses and canonical moments, in contrast to the
first study. When the moments are within the acceptable range, the method that utilizes
canonical moments necessitates almost double the number of degrees of freedom compared
to precise moment limits. However, the resulting number of DoFs is approximately the same
number needed for the Dirac mass representation. The population size utilized in this work
is exponentially raised, starting with 400 population members for a single moment constraint
on the yield strength, and reaching 2800 members for six moment constraints, in order to
accommodate the expanding search space.

The upper bounds for both α-levels, obtained by imposing one to six moment constraints, are
depicted in Fig. 6.9a) for the method employing canonical moments and in Fig. 6.9b) for the
method utilizing Dirac masses. Initially, when employing canonical moments, the observed
behavior closely resembles that of exact moment constraints. Specifically, the upper bound
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Figure 6.9: Convergence of the computed upper bounds on the PoF with moments in
bounds using a) canonical moments and b) Dirac masses as parameterization of the objec-
tive function. Taken from Miska and Balzani [96].

on the PoF decreases as more moment constraints are incorporated. Moreover, the upper
limits for the higher α-level are consistently marginally less than those for the lower level. As
anticipated, the magnitudes of the computed bounds exceed the values obtained from precise
moments. This implies that the variability in the moments enables the probability measure
to take more extreme positions in relation to the selected failure criterion. And indeed, if
the found extreme measures are investigated regarding the moments, which were constrained
in bounds, one finds that these moments are all at the limits of their individual intervals.
Exemplary, since a low yield strength is preferable in view of failure of the beam, the mean
of the extreme measures is always optimized to the lower bound of the associated interval,
whereas e.g. the mean of the continuous load is maximized, which allows for more mass in
failure region.

Examining the outcomes of the Dirac mass representation, on the other hand, reveals various
and varied discoveries. Initially, the problems with three or more moment constraints result in
maximum bounds on the PoF, which are lower than those obtained by the canonical moments
approach. Furthermore, the upper bound on level α = 1.0 when utilizing three moment
constraints is lower than the subsequent bound, suggesting an incorrect response. Similarly,
the same problem can be seen in the upper bound when employing four moment constraints
at level α = 0.0. Both findings indicate that the optimizer encounters challenges in solving
the optimization problems without using the canonical moments. Specifically, admissible
candidate solutions are obtained by decreasing the extent to which constraints are violated.
However, because of the evolutionary nature of the process and the limited search space,
the variety of the population diminishes rapidly, causing the candidate solutions to converge.
Consequently, the optimizer is susceptible to becoming trapped in an area that is not optimal
but still acceptable. This can only be resolved by significantly increasing the population sizes,
which hinders the efficiency of the algorithm. However, the outcomes obtained by imposing
only one or two moment constraints are similar to those achieved by the canonical moment
approach, as a result of the reduced number of constraints in the problems.

Comparing the required computing times plotted in Fig. 6.10a), an advantage for the canon-
ical moments approach is observed while dealing with one or two moment constraints. While
the method described in Sec. 6.1.3 necessitates extra processing steps to assess the PoF, it
offers a faster solution to the optimization problem. This is because every candidate is consid-
ered a valid solution, allowing for quicker exploration of the search space. The computation
time for problems with additional moment constraints is not displayed for the Dirac mass
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Figure 6.10: a) Comparision of the averaged computing times for relaxed moment con-
straints using canonical moments (CM) and Dirac mass (DM) parameterizations of the
objective function. b) Fuzzy numbers of the resulting PoF for strict and relaxed moment
constraints with the first three moments constrained. Taken from Miska and Balzani [96].

discretizations, as they produced suboptimal outcomes and a comparison of the computation
time would not be meaningful. As previously stated, throughout these computations, the
optimizer is prone to becoming trapped in suboptimal areas where no superior solutions are
discovered. Once a specific number of iterations has been reached without any improvement
in the optimal solution, which in this case is 500 iterations, the optimizer terminates the
computation. This process occurs very quickly in these particular areas. Further iterations
have shown to be unproductive, as the current population lacks the ability to generate exit
vectors. This would necessitate either unreasonably huge population sizes or adjustments to
the optimizer in order to generate new population vectors adaptively. The approaches using
canonical moments outlined the anticipated pattern of computation time, where the neces-
sary solution time increases in conjunction with the complexity of the optimization problems.
The computations involving variable moments are more costly compared to those with fixed
moment constraints, which is to be expected given the greater number of degrees of freedom.
Fig. 6.10b) illustrates a comparison between the fuzzy number obtained from exact moment
constraints and the fuzzy number obtained from flexible moment constraints in the instance
with three moment constraints. The substantial variance in the upper bounds is evident, and
it is only caused by the diversity in the moment constraints being examined.

6.2.2 Benchmark of DFG Priority Program 1886

In Papaioannou et al. [116], a benchmark problem is posed for polymorphic uncertainty quan-
tification frameworks. Based on the findings of the previous example, i.e. using the integration
approach for the inclusion of aleatory uncertainties and canonical moments as parameteriza-
tion of the objective function, the first challenge of this benchmark problem is addressed
in this study using the extended OUQ framework. Furthermore, the obtained results are
compared to the fuzzy-probability approach presented in the benchmark publication.

Problem description The benchmark problem involves a steel column with a wide-flange
cross-section, as shown in Fig. 6.11. The column is subjected to a compressive load, denoted
by P , which can be split into a permanent part Pp and an environmental part Pe. The steel
column will predominantly fail by buckling around the y-axis due to the load. Additionally,
the column’s initial deflection follows a parabolic shape with a maximum value of δ0 in the
middle. The geometric dimensions of the column are known precisly, the height of the column
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Figure 6.11: Illustration of the benchmark buckling problem as proposed in [116]. Taken
from Miska and Balzani [96].

is L = 7.5 m, the area is A = 120 cm2, the section modulus is Wy = 450.17 cm3, and
the moment of inertia is Iy = 6752.5 cm4. Furthermore, the problem is influenced by the
subsequent independent uncertainties:

• permanent load Pp: There is a limited amount of information accessible regard-
ing the permanent load. Specifically, there are just three expert opinions provided
in the form of intervals: P (1)

p ∈ [100 kN, 150 kN], P (2)
p ∈ [150 kN, 200 kN] and P

(3)
p ∈

[100 kN, 200 kN]. Therefore, the permanent load is considered to be an interval quantity
Pp ∈ [100 kN, 200 kN], representing the hull of all expert opinions.

• environmental load Pe: The environmental load represents the maximum snow load
that the roof, supported by the examined column, experience annually. There is a
dataset available of a measurement series over a span of twenty years of Pe, which is
represented by the histogram shown in Fig. 6.12c). This data exhibits some indications
of potentially following a Gumbel distribution, while the precise distribution function
remains unknown. This study examines two distinct approaches to include Pe, which
are detailed in Sec. 6.2.2.

• initial deflection δ0: The initial deflection is considered to be the consequence of
construction defects. As per the benchmark suggestion, the highest acceptable value is
6 cm, which is closely monitored during the construction process and serves as an upper
limit. Hence, the deflection is represented by the interval quantity δ0 ∈ [0 cm, 6 cm], as
negative deflections provide equivalent outcomes, albeit with buckling occurring in the
other direction.

• yield strength y0: Considering the material parameters, a large amount of available
data is assumed, such that a precise probability distribution can be assumed. Here, the
yield strength is represented by a log-normal probability density function with a mean
of 400MPa and a standard deviation of 32MPa, as seen in Fig. 6.12a).

• Young’s modulus E: Similar to the yield stress, it is assumed that the distribution
of Young’s modulus follows a log-normal probability density function. The mean value
is 210, 000MPa with a standard deviation of 8, 400MPa, as shown in Fig. 6.12b).

Given that the column is supported by hinges on both ends, the buckling mode is Euler mode
2. The critical load may be calculated using the formula Pb = π2EIy/L

2. The limit-state
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Figure 6.12: Log-normal probability density function of: a) yield strength y0 and b)
Young’s modulus E as well as a histogram of observed values of the environmental load Pe

in c). In subfigure d), the computed upper bounds on the PoF are plotted for the two
investigated approaches based on the OUQ and the fuzzy-interval approach (FI) from [116].
Therein, OUQ-G represents the approach utilizing the Gumbel distribution function and
OUQ-E characterizes the incorporation of the environmental load as epistemic uncertainty.
Taken from Miska and Balzani [96].

function g is then defined by

g (Pp, Pe, δ0, y0, E) = 1−
(
Pp + Pe

y0A
+

(Pp + Pe)δ0
y0Wy

· Pb(E)

Pb(E)− Pp − Pe

)
. (6.17)

If the limit-state function produces a value less than zero, the column fails. The benchmark
problem aims to obtain certification for the proposed structure based on current standards,
which mandate a failure probability of less than 1.3 · 10−6. Therefore, it is satisfactory to
calculate only the maximum bound on the PoF and compare it to the provided threshold.
It should be noted that the subsequent computations were repeated 10 times to verify the
presence of global optimizers. Identical outcomes were achieved for all 10 computations, up
to the level of accuracy specified by the given values.

Estimating the parameters of a Gumbel distribution (OUQ-G) As stated
in the above list of uncertain parameters, two distinct approaches are being examined to
incorporate the environmental load Pe. The first method involves estimating the parameters
ae and be of a Gumbel distribution by fitting it to the given data. This fitting process is
carried out using the software-package scipy [157]. However, the 20 sample points that are
currently available are inadequate for accurately estimating these parameters. As a result, the
parameters ae and be of the Gumbel distribution are being examined within a 95% confidence
interval. Furthermore, the parameter values of the best fit to the available data are regarded as
a mean constraint within a ±5% range. This leads to the following bounds on the parameters
of the Gumbel distribution: ae ∈ [188.0, 236.0] kN with E[ae] ∈ [201.4, 222.6] kN and be ∈
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[37.0, 74.0] kN with E[be] ∈ [49.685, 54.915] kN. As there are no fuzzy numbers involved in
this case, the upper limit on the PoF is a scalar value. Based on the specified data limitations,
the calculation of the maximum limits results in U = 1.19 · 10−5 > 1.3 · 10−6. This means
that the problem cannot be certified.

This lack of certification of the problem aligns with the findings of [116] and particularly with
the fuzzy-interval approach described in Section 3.2 of [116]. The chosen data representation
and solution scheme in this study are comparable to the approach used in the aforementioned
source. The fuzzy-interval approach provides an upper bound on the PoF of U = 3.555 ·10−5.
This value is almost three times larger than the result obtained by the OUQ method, cf. also
the comparison in Fig. 6.12d). The discrepancy arises from different assumptions made about
the data, specifically regarding the Gumbel parameters. In this case, additional information in
the form of a mean constraint was taken into account, which leads to the smaller upper bound
on the PoF. While the benchmark proposal does not contain information on the required
computing time, but based on the same sample size for the Monte Carlo integration (108

samples) and a population size of 100 population members, the average computation time
over the ten calculations was approximately 64,600 seconds.

Moment constraints on the environmental loads (OUQ-E) The second exam-
ined variant does not presuppose a Gumbel distribution for the environmental load. Instead, it
relies just on bounds for the first three moments. Despite the data’s insufficient amount, the in-
clusion of a third order moment is justified to accommodate for the data’s skewness. To enable
a comparison to the preceding approach, the bounds on the moments are chosen, such that the
first three moments of all possible realizations of Gumbel distributions are within the specified
bounds, which also includes the sample moments of the given data. Moreover, it is crucial to
select an appropriate range for the environmental load, taking into consideration that a narrow
interval, such as Pe ∈ [100.0, 500.0] kN would result in a failure region where the probability
of failure can only be computed as 0% due to numerical precision limitations. With that, the
constraints on the environmental load are Pe ∈ [0.0, 1000.0] kN with E[Pe] ∈ [209.4, 279.0] kN,
E[(Pe − E[Pe])

2] ∈ [2251.91, 9007.66] kN2 and E[(Pe − E[Pe])
3] ∈ [121775, 974204] kN3. Un-

der these specific data assumptions, the degree of freedoms for the optimization problems in
the OUQ are increased by 1 compared to the previous variant. This increase is due to the
removal of two uncertain quantities, namely the two parameters of the Gumbel distribution,
each having 3 degrees of freedom, whilst the uncertain quantity related to the environmental
load necessitates exactly 7 degrees of freedom. However, in this case, no uncertain assumption
about the type of distribution function is taken into account, which makes the results more
reliable. The adjusted data restrictions result in a maximum upper bound on the PoF of
4.2 · 10−3. This value is more than 100 times higher than using the Gumbel distribution with
imprecise parameters, cf. also the comparison in Fig. 6.12d). By using the Gumbel distri-
bution as a model for limited and uncertain data, one might derive significantly contrasting
conclusions about the safety of a structure. This example illustrates the substantial influence
of various assumptions on the data that is available. These assumptions must be set with
great caution, but they can also provide vital understanding of how the problem behaves
under different input choices. Clearly, the problem can not be positively certified with this
result either. The average calculating time for the 10 repeated calculations is about 39, 300
seconds, which is much lower than in the previous example. Therefore, altering the underlying
assumptions regarding the data not only affects the outcome, but also alters the behavior of
the solution process.
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6.2.3 S-Rail Sheet Metal Forming Process

The S-Rail forming process is a well-known problem used as a benchmark for sheet metal form-
ing simulations. It was introduced in the Numisheet conference in 1996, cf. Ferreita Duarte
and Barata da Rocha [38] and Fig. 6.13 for an illustration. The problem involves pushing
an S-shaped die into a flat sheet metal that is securely held in a holder, which results in
the desired shape of the sheet. To mitigate significant in-plane normal stresses, lubricants are
typically applied to the contact surface between the die and the holder to minimize friction. In
this case, the numerical simulation is conducted using the FE-software LS-Dyna R8.1.0 [82].

Definition of the Considered Uncertain Quantities Four different quantities,
which are either input parameters for the model or ultimate values for the determination
of failure, are regarded to be uncertain. The first two uncertain variables are associated with
the hardening behavior of the steel in the sheet metal. In Miska and Balzani [93], the uncer-
tainties in the macroscopic material parameters of a DP600-steel were quantified, which is also
discussed in Chapter 5 of this thesis. For the application in this example, the obtained stress-
strain curves are fitted for the Swift hardening law incorporated within LS-Dyna, cf. Swift
[148], which takes the form σy = k (ε+ εp)

N . Therein, σy denotes the yield stresses, ε refers
to the elastic logarithmic strains, and εp represents the effective logarithmic plastic strains.
The yield curve’s shape is influenced by the strength coefficient k and the exponential hard-
ening coefficient N , such that these two parameters are considered to be uncertain. The
probability distributions of both parameters are derived through a fitting procedure, in which
stress-strain curves based on the Swift hardening law are adjusted to stress-strain curves
obtained from virtual experiments conducted through computational homogenization of sta-
tistically similar volume elements as described in Chapter 5. The fitting was accomplished
through the process of least-square minimization utilizing the LS-Opt 5.2 [81] optimizer. The
obtained stress-strain curves with respective realizations of k and N are used to generate the
corresponding histograms in Fig. 6.14a) and Fig. 6.14b). Since the material parameters k and
N are strongly correlated, it is advantageous to consider only the strength coefficient k as
uncertain quantity in order to enhance the efficiency of the uncertainty quantification. The
exponential hardening coefficient N is thus computed from the parameter k using a third
order polynomial fit:

N(k) = 1.661789 · 10−10 k̂3 − 5.0435951923582 · 10−7 k̂2

+ 6.5798512505658687 · 10−4 k̂ − 0.11730087709283931741, (6.18)

wherein k̂ = k 1
MPa denotes the unitless nominal value of the strength coefficient k. The corre-

lation polynomial is also depicted in the correlation plot Fig. 6.14c). The histograms indicate
that the uncertainty of the material parameter k can be represented by a beta distribution.

a) b) c)

Figure 6.13: Illustration of the considered S-Rail forming process with a) the originally flat
sheet metal, b) an intermediate step and c) the final deformed state of the sheet metal. The
contour depicts the stress magnitude, the punch and the binder are omitted for illustration
purposes. Taken from Miska et al. [100].
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Figure 6.14: Histograms of a) the strength coefficient k and b) the exponential hardening
coefficient N for the used hardening law. Additionally, the beta probability density function
for parameter k is plotted in a). c) Correlation of parameter k and N with fitted third-order
polynomial, cf. Eq. (6.18). d) Fuzzy number of the friction coefficient fc. Taken from Miska
et al. [100].

This distribution is defined on the interval k ∈ [400.0, 1000.0]MPa and has shape parameters
q1 = 11.6161 and q2 = 13.6657.
The third uncertain parameter is the friction coefficient, denoted by fc, which characterizes
the friction between the sheet metal and the forming tools in terms of the Coloumb friction
law. Due to the difficulty in measuring this quantity, there are only a limited number of
data points available, cf. Figueiredo et al. [42]. The data is used to evaluate two distinct
intervals for the friction coefficient. Consequently, the uncertainty of the friction coefficient
is represented by a trapezoidal fuzzy number, cf. Fig. 6.14d). The interval for the friction
coefficient at level α = 0.0 is defined as f̃α=0.0

c ∈ [0.1, 0.15]. This interval includes all the
measured values. Similarly, the interval for the friction coefficient at level α = 1.0 is defined
as f̃α=1.0

c ∈ [0.1, 0.13]. This interval covers the measured values after the tools have been
used a few times. Additionally, a mean constraint E[f̃c] ∈ [0.105, 0.115] is assumed to be a
rectangular fuzzy number. This means that the interval remains the same at every α-level.
The final uncertain variable is linked to the failure of the forming process. In this case, failure
is determined using the Cockroft-Latham criterion, cf. Björklund et al. [17] or Tarigopula
et al. [152], which is defined by WC =

∫ ε
0 max(σ1, 0)dε ≥ W ult

C with ε being the equivalent
plastic strain, σ1 the first principial stress and W ult

C the ultimate admissible value. Here, the
value of WC is calculated for each finite element of the sheet metal, such that in the maximum
value over the entire sheet metal max[WC(k, fc)] can be determined and then compared to
W ult

C . With all parameters being defined, the limit-state function g of this example follows
as

g(k, fc,W
ult
C ) ··=W ult

C −max[WC(k, fc)], (6.19)
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in which max[WC(k, fc)] refers to the maximum value of the Cockroft-Latham value obtained
from a finite element simulation and W ult

C is the uncertain ultimate value for this criterion.
Due to the limited data availability for W ult

C for different materials, the measured value for
DP-800 steel from [152] is adjusted to account for DP-600 steel. This adjustment results in a
range of W ult

C ∈ [450.0, 550.0]MPa.

Case 1: Analysis of Uniformly Distributed Material Parameters First, the
sheet metal forming problem is examined under the assumption, that the material proper-
ties, namely the strength coefficient k and the exponential hardening coefficient N , remain
constant across the sheet metal domain. Since the solution of the forming process involves
a numerical simulation in terms of finite elements, an Artificial Neural Network (ANN) is
used to approximate the FE simulation. The ANN was constructed in collaboration with
Prof. Dr.-Ing. Steffen Freitag and has three inputs (friction coefficient fc, strength coefficient
k, and exponential hardening coefficient N) and one output (max[WC(k, fc)]). The network
architecture is 3–5–5–1, with two hidden layers and five hidden neurons in each layer. 375 FE
simulation results were used, and a regression coefficient of R = 0.99978 was achieved.

OUQ Analysis Using the previously described ANN, the probability of failure for the
forming problem is computed by using the extended Optimal Uncertainty Quantification.
Again, the optimization problems are addressed using the LSHADE44-optimizer [119], in
conjunction with the mystic optimization package [88, 87], which automatically adjusts the
hyperparameters of the Differential Evolution method. Due to the presence of both aleatory
and epistemic uncertainties, a numerical integration according to Eq.(6.10) has to be per-
formed in order to evaluate the function χ. Furthermore, the first method presented in
Sec. 6.1.1 for the incorporation of aleatory uncertainties is studied. This involves calculating
the first ten moments of the beta-distribution of parameter k and gradually imposing them
as constraints. The convergence behavior of the bounds on the PoF is examined, ultimately
converging towards the integration result. To accommodate the expanding search space, the
population size is exponentially expanded, ranging from 150 to 5700, as the number of mo-
ment constraints increases. The Monte Carlo integration strategy utilizes a population size of
50. For the Monte Carlo integration itself, the Combination Line Sampling method proposed
in [114] is employed.

The upper bounds on the PoF are displayed in Fig. 6.15a) for the level α = 0.0 of the
considered fuzzy numbers. The lower bound on the PoF is always zero in all scenarios.
As evident, the upper bound diminishes as the number of moment constraints increases,
aligning with the anticipated outcome derived from the findings in Sec. 6.2.1. In addition,
the inclusion of lower order moments results in a significant decrease in the upper bound,
while the introduction of higher order moments of order five or greater leads to only a slight
decrease. In contrast to the previous moments, the incorporation of order ten resulted in a
significant decrease in the calculated upper bound. However, when compared to the maximum
bound obtained from numerically integrating the probability density function for the material
parameter, all calculated upper bounds using the moment constraint approach are larger.
Hence, the findings align with Sec. 6.2.1, which demonstrated that integrating the probability
density functions over the failure region is essential for accurately accounting for aleatory
uncertainties within the framework of the OUQ. When comparing the computing times of
both approaches, it is found that similar times can be achieved for the integration approach
and the run with 10 moment constraints. Specifically, the integration approach takes an
average of 1.16 ·104 seconds over ten independent computations, while the moment constraint
approach takes 1.1·104 seconds. This discrepancy to the results of Sec. 6.2.1 can be attributed
mostly to the use of an advanced Monte Carlo technique.
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Figure 6.15: Convergence of the upper bound on the PoF for an increasing amount of
moment constraints for a) the α = 0.0 and b) the α = 1.0 level of the fuzzy friction
parameter. In both cases, the bar labelled “int.” denotes the resulting bound from the
integration approach, cf. also Eq. (6.10). Taken from Miska et al. [100].

Similar findings can be observed in the analysis at level α = 1.0, where a consistent decrease
in the upper bound of the PoF can also be observed. However, because the friction parameter
has a tighter range, the calculated bounds on the PoF are smaller compared to the initial
α-level that was investigated. Curiously, the upper bound for a single moment limitation on
the strength coefficient remains unchanged. In this situation, the upper bound obtained via
the integration method is significantly reduced, emphasizing the benefits of this strategy in
including aleatory uncertainty. Furthermore, the derived bound is significantly smaller than
the upper bound at level α = 0.0, indicating that the forming process is much more feasible
for the narrower friction range. This result is of major importance for the design of such a
process. The identification of the most advantageous design can be achieved by incorporating
various intervals on the parameter using fuzzy numbers. In this scenario, the manufacturer
must guarantee that the friction parameter remains within the correct range by, for example,
applying suitable lubrication.

Case 2: Analysis of Randomly Distributed Material Parameters Unlike the
preceding scenario, in the second variant, the material parameters are assumed to vary in
space and are therefore represented by random fields. Given the absence of spatial correlation
data for parameter k, the example focuses on the most extreme scenario, where there is
no autocorrelation among the elements of the finite element simulation. This implies that
the correlation length of lc → 0, whilst in the previous variant, where the parameters were
constant, an infinitely large correlation length lc → ∞ was present. Undoubtedly, neither
of these examples accurately represents reality, but studying extreme cases enhances the
understanding of the difference in results. The strength coefficient is distributed according
to a beta distribution, whereas the hardening exponent is determined by the polynomial
correlation fit.

The two alternatives proposed in Sec. 6.1.4 are applied and compared for the inclusion of the
random field of material parameter k. The first variant involves doing a regression analysis on
the statistical data obtained from a Monte Carlo simulation of the problem, which includes
many realizations of a random field. The second variant involves applying the nested Op-
timal Uncertainty Quantification (OUQ) approach. Both approaches require the execution
of Monte Carlo simulations on the problem, which includes random fields. Thus, a limited
collection of friction coefficient points fc is chosen, for each of which, 200 random fields of
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Figure 6.16: Illustration of the data obtained from the random field simulations, reordered
as ECDF, and indicated by the thin grey lines. Additionally, the surface plot of the con-
structed ANN for the entire parameter space is shown. Adapted from Miska et al. [100].

the material parameter k are created and subsequently computed. The chosen points are
fc ∈ {0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.155}. From each finite element solution, the maximum
Cockroft-Latham value, denoted as max[Wc(k, fc)], is derived and reordered in a manner that
allows for the creation of estimated cumulative probability distribution functions (ECDF).
These functions are represented by thin grey lines in Fig. 6.16. The generated data acts as
the initial reference for the two examined variants that are subsequently described.

Construction of the ANN-surrogate An artificial neural network is constructed to
predict the cumulative probability (ECDF) for a given friction coefficient fc and the maximum
Cockroft-Latham value max[Wc(k, fc)] of a random field simulation. The ANN uses two
hidden layers and eight hidden neurons in each layer, with a logistic activation function in
each hidden neuron and the output neuron. The ANN is trained on 1400 FE simulations
resulting from the 200 random field simulations for each of the values chosen for fc. The
ANN’s predictions are compared with the results from the FE simulation results, showing
good generalization and prediction performance.

Given that the material parameters are included in the random field simulation, the uncer-
tainty quantification using the extended OUQ method is reduced to only the friction coefficient
and the ultimate Cockroft-Latham value. The developed ANN is utilized to assess the proba-
bility of failure occurring for a specific combination of the two aforementioned variables. The
optimization problems are solved using the LSHADE44-optimizer [119] implemented in the
mystic optimization package [88, 87] with a population size of 100. The lower bound on the
PoF is calculated as 0.0 for both investigated α-levels of the friction coefficient. The upper
bound on the PoF is calculated to be 0.002 for level α = 0.0 and to 0.0 for level α = 1.0.
This information can also be seen in the comparison of the findings shown in Fig. 6.17. Due
to the fact that the OUQ problem involves just two quantities with at most a mean con-
straint, the optimizations within the OUQ are rather simple to solve. Specifically, with the
given settings, it took 9.33 · 101 seconds and 8.86 · 104 seconds to solve the problem at the
two levels, respectively. Nevertheless, since substantial preliminary work is necessary for the
OUQ calculations, as it involves conducting Monte Carlo simulations on the finite element
model and training and validating the artificial neural network, the overall time required for
this method is higher.
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Nested OUQ analysis As alternative to the regression of the ECDFs obtained from the
random field simulations by an ANN, in this second variant only bounds on max[Wc(fc)] and
bounds on the moments therefrom should be considered. The maximum value obtained from
the simulations, max[Wc(fc)], depends not only on the realization of the random fields for
the strength coefficient, but also on the constant uncertain friction coefficient. Therefore, the
nested OUQ method, as proposed in Sec. 6.1.4 is applied. For this purpose, the standard
deviation of the mean and the standard deviation of the variance resulting from the small
sample size of the Monte Carlo simulations are computed and used as bounding values for
the two moments, cf. the obtained values in Tab. 6.2. Therefore, the outer OUQ problem
is comprised of the friction coefficient and the ultimate Cockroft-Latham value, taking into
account their respective constraints and α-levels, similar to the previous variations. The inner
problem consists of the maximum Cockroft-Latham value with the mentioned two moment
constraints. The population size for the outer problem is defined to 50, whereas the inner
problem utilizes a smaller population size of 30. Due to the substantial computing effort caused
by the nested approach, which requires solving a large number of optimization problems,
parallelizing the outer problem became necessary. In this case, a total of 10 individual threads
are employed to address 10 inner optimization problems concurrently. When only the mean
constraint is taken into account, the PoF has lower and upper bounds of 0.4098 and 0.356
respectively, at the specified α-levels. By imposing the additional constraint on the variance,
the upper and lower bounds are decreased to 0.049 and 0.008 correspondingly. This reduction
is a result of the inclusion of additional information. The computation times are 5.85 · 103
seconds and 5.45·103 seconds for the mean constraint only, and 1.17·104 seconds and 7.19·104
seconds for both the mean and variance constraints. These values are considerably larger than
those of the previous method, as anticipated. For neural networks, the optimizer can evaluate
the entire population in one iteration by leveraging the vectorizing capabilities of current
CPUs. On the other hand, in the nested OUQ approach, a separate optimization problem
must be formulated and solved for each individual in the population. This is considerably
more costly in terms of computer resources.

The upper bounds on the PoF resulting from the various proposed approaches are depicted
in Fig. 6.17 for the two examined levels, α = 0.0 and α = 1.0. The bounds obtained from the
nested OUQ approach, specifically when using only a mean constraint (NOm) or both a mean
and variance constraint (NOv), are considerably larger than the bounds derived from the OUQ
computations, in which the ANN was employed to regress the ECDF, referred to as ANNRF.
This can be attributed to the data obtained from the random field, which was incorporated for
the individual calculations. In the ANNRF approach, the complete distribution of the target
quantity is represented by the empirical cumulative distribution function, but in the nested
OUQ approaches, only a limited amount of moment information on that target quantity is
considered. As a result, the inner OUQ problems were able to generate more unrestricted

Table 6.2: Resulting upper bounds on max[Wc(fc)] from the random field.

fc mean in MPa variance in MPa2

0.10 121.5± 4.7 319.5± 87.7

0.11 136.8± 4.6 306.4± 40.6

0.12 160.7± 6.1 526.2± 53.5

0.13 185.5± 6.8 671.6± 69.3

0.14 236.4± 11.8 1980.8± 249.4

0.15 299.4± 14.5 3006.2± 317.1
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Figure 6.17: Comparison of the resulting upper bounds on the PoF for a) the α = 0.0 and
b) the α = 1.0 level of the fuzzy friction parameter. Bounds resulting from the approach
assuming uniform material parameters are labelled “ANNuni”, bounds resulting from random
fields with the utilization of an ANN for the regression of the ECDF are labelled “ANNRF”.
If only limited data from the random field is incorporated following the proposed nested
OUQ approach, the bounds labelled “NOm” (only mean constraint) and “NOv” (mean and
variance constraint) were obtained. Taken from Miska et al. [100].

probability measures, thus resulting in wider limits on the PoF. Again, the results emphasize
the significance of the decision regarding the quantity of information that can be inferred
from random field simulations. Nevertheless, none of the suggested methodologies can be
universally favored over the other, and the selection of the technique must be based on the data
that is accessible. Furthermore, the findings obtained from the calculations assuming uniform
material parameters are displayed in Fig. 6.17, and are labeled as ANNuni. As anticipated,
the various assumptions on the distribution of material parameters result in distinct limits on
the PoF. The bounds obtained using the uniform material distribution method (taking into
account the complete distribution function) are larger compared to those obtained from the
random field simulation, which also considers the complete ECDF information.



7 Reliability-Based Design Optimization
Incorporating the Extended OUQ

With the availability of a framework for the computation of the mathematically sharpest
bounds possible on a probabilistic event of interest in form of the extended Optimal Un-
certainty Quantification from the preceding Chapter 6, the remaining challenge of a design
optimization with reliability constraints is accounted for in this chapter. Then, the overall
objective of this thesis, the design optimization of a car front bumper can be examined in
the numerical example section of this chapter. The methods and examples shown in this
chapter are already published as a preprint in Miska and Balzani [98] and are submitted to an
international journal for publication. Additionally, parts of this chapter have been published
in a conference proceeding Miska and Balzani [97].

7.1 Reliability-Based Design Optimization

Methods from the field of reliability-based design optimization (RBDO) aim to find the most
optimum solution for a specific problem while ensuring that it meets at least one reliability
constraint. In this regards, the reliability of said problem is often assessed in terms of the by
now well-known probability of failure (PoF). However, as the problem can be influenced not
only by aleatory uncertainties, which can be accurately described using probability density
functions, but also by epistemic uncertainties, which involve intervals or fuzzy numbers, the
PoF cannot be calculated to be a precise scalar value but rather to lie within a certain interval,
as already discussed previously. Therefore, it is essential to utilize a sophisticated framework
such as the extended OUQ for the polymorphic uncertainty quantification, which is necessary
within the RBDO. Therein, the polymorphic uncertainties do not only have an influence on the
PoF and by that, on the reliability constraint, but also on the evaluation of the cost function
itself. Based on these premises, the challenge of a reliability-based design optimization can
be formally expressed by

min
θ
K(θ,Z) s.t. Cj(θ,Z) ≤ 0, (7.1)

wherein K represents the cost function, θ is the vector of optimization parameters, i.e. the
degrees of freedom of the optimization problem, and Z ··= [Y , Ŷ ] denotes the vector of
epistemic Y and aleatory Ŷ uncertain quantities influencing the physical problem M . Since
the cost K is influenced by aleatory and epistemic uncertainties, by the same reasoning as
used for the PoF, a probabilistic quantity can only computed to be within an certain interval.
Therefore, in addition to the design optimization, inner optimizations are required to identify
the optimal bounds, leading to the definition of the cost function as

K(θ,Z) ··= max
Y

[
E
Ŷ
(M(θ,Z))

]
. (7.2)

Here, the expectation E is chosen to quantify the impact of aleatory uncertainties on the
physical model M . This is however neither necessary nor an unique choice, exemplary alter-
natives are quantiles. Then, an optimization as known from the extended OUQ is performed
to identify the bound of interest.
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RBDO: min
θ
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Y
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E
Ŷ
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Epistemic analysis: max
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Ŷ
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Figure 7.1: Integration of the extended OUQ framework within a RBDO context with the
necessary steps for the evaluation of the cost function on the left and for the reliability
constraint on the right. Adapted from Miska and Balzani [98] and Miska and Balzani [97],
respectively.

In addition to the cost function, at least one constraint is present for the RBDO, the reliability
constraint. The reliability constraint ensures, that any design θ, which leads to a PoF larger
than an admissible threshold defined before, is discarded as infeasible design. By that, only
safe designs are considered for the optimization and the required safety of the product is
ensured. Formally, the reliability constraint reads

C1(θ,Z) ··= max
Y

[µ(g(θ,Z))]− Padm, (7.3)

wherein Padm denotes the maximum admissible value for the PoF and maxz [µ(g(θ,Z))] poses
a second inner optimization problem in order to identify the largest bound on the PoF of the
problem due to the presence of uncertainties. Whilst the notation used here assumes the PoF
as suitable quantification of the safety or reliability of a problem, different measures may be
used as well, if the problem mandates.

Based on the definitions of the cost function in Eq. (7.2) and the reliability constraint in
Eq. (7.3), two optimal bounds on probabilistic quantities need to be computed for the evalua-
tion of a single design θ. Hence, employing the extended Optimal Uncertainty Quantification
as introduced in Chapter 6 is a sensible decision. Using this approach, all explained features
such as the computation of the mathematically sharpest bounds without the necessity for an
uncertified specification of a PDF on epistemic quantities can be used. Thereby, different
uncertainty models ranging from simple intervals, fuzzy numbers over bounds on moments
to imprecise or precise probability distribution functions can be utilized for the polymorphic
uncertainty quantification. The incorporation of the extended Optimal Uncertainty Quantifi-
cation into a reliability-based Design Optimization framework results in a nested optimization
or a double-loop approach, as illustrated by Fig. 7.1 and Alg. 9.. The outer optimization fo-
cuses on optimizing the design for which the design parameters θ represent the degrees of
freedom. The inner optimizations specifically target the quantification of uncertainty utiliz-
ing the extended Optimal Uncertainty Quantification approach. Hence, the efficiency of the
extended OUQ is a crucial factor, since the solution of two independent OUQ problems for
each design candidate θ leads easily to a large number of necessary OUQ solutions for the
entire design optimization, in which a significant number of designs has to be evaluated.

The description of the RBDO until now suggested a distinction between design parameters θ
and uncertain quantities Z. Yet, the double-loop approach enables the combination of both,
i.e. a dependency of an uncertainty quantity from a design parameter such as Y (m)(θ(j)) can
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Algorithm 9: Cost function for RBDO
Data: Design candidate θm, max. bound on PoF Padm, uncertainties Z
Result: cost value K

1 update Z(θ) if dependency exist
2 compute value for cost K = maxY

[
E
Ŷ
(M(θ,Z))

]

3 compute PoF µ = maxY [µ(g(θ,Z))]
4

5 if µ > Padm:
6 discard candidate θm
7

8 if K < Kbest:
9 Kbest = K

10 θbest = θm
11

12 return K

be considered. Such a scenario can be interesting to determine the allowable uncertainty in
a specific quantity, whilst a desired target in terms of the cost function are met. Due to the
formulation of the dependency, the uncertainty model resulting from Y (m)(θ(j)) is a fixated
model for a specific design candidate and the uncertainty analysis can be performed as done
before. For a changing design however, the model of the uncertainty may change in dependence
of the actual implemented dependency, such that the uncertainties can evolve during the
design optimization. In practice, a rather easy example is an interval of fixed size w, for which
the midpoint can be considered as design variable, leading to Y (m) ∈

[
θ(j) − w/2, θ(j) + w/2

]
.

Due to the unique features of the extended OUQ, not only the range of uncertain quantities can
be modified, but also the bounds on moments or imprecise probability functions. Generally,
it is even possible to change the type of a PDF in dependence of a design parameter θ(j). For
the scope of this work, however, only the optimization of an interval midpoint is considered
in example pertaining the optimization of the car front bumper.

7.2 Numerical Examples

After the theoretical introduction of the integration of the extended OUQ within a reliability-
based design optimization context, in this section the performance of the resulting framework
is studied by means of two examples. The first example is the continuation of the benchmark
problem of Papaioannou et al. [116], from which the first challenge was solved in Sec. 6.2.2.
The straightforward nature of the underlying analytic problem enables the comparison of var-
ious frameworks for uncertainty quantification, as it eliminates the need for costly numerical
simulations such as finite elements. The second scenario involves the investigation of a more
intricate problem, which aims to determine the best arrangement of locally laser-hardened
zones on a exemplary car front bumper. This example involves the numerical simulation of
three sequential processes and therefore depends on the creation of surrogate models to ensure
that the computational costs for the Reliability-Based Design Optimization (RBDO) remains
within a manageable range.

Both examples utilize the programming language Julia, cf. Bezanson et al. [12], to accomplish
the design optimization and uncertainty quantification. Again, the LSHADE44 algorithm,
cf. Polakova [119] as an extension to the Differential Evolution method [144] is used for all
examples to solve all optimization frameworks, which are in general global and non-convex.
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Figure 7.2: Comparison of the computed necessary width b for the column, which ensures
that the admissible PoF is not exceeded. Therein, OUQ-G represents the approach utilizing
the Gumbel distribution function and OUQ-E characterizes the incorporation of the envi-
ronmental load as epistemic uncertainty. FI denotes the fuzzy-interval approach from [116].
Taken from Miska and Balzani [98].

The computations are performed on nodes equipped with an Intel Xeon Phi 7210 processor,
which has 64 cores running at a maximum frequency of 1.50 GHz, and 92 GB of RAM.

7.2.1 Benchmark of DFG Priority Program 1886

The second challenge of the benchmark [116] consists of a simple reliability-based optimization
problem. The first challenge was already assessed in Sec. 6.2.2. The problem of interest is
a column with an H-shaped cross-section, which is loaded by a compression force P and
will fail due to buckling, see also the illustration in Fig. 6.11. The benchmark’s challenge is
optimizing the cross-section to minimize the area and, consequently, the amount of material
required, while ensuring that the probability of failure does not exceed Padm = 1.3 · 10−6.
While the cross-section has several defining dimensions, just the width b and height h need to
be optimized. Furthermore, the ratio between these two dimensions is constant at b/h = 1,
meaning that there is only one design parameter, θ = [b], left for optimization. Using this
information, the geometric properties of the cross-section are calculated by

A = 2btb + hth, W =
ht3h
6b

+
b2tb
3
, I =

ht3h
12

+
b3tb
6
, (7.4)

with th = 10 mm and tb = 15 mm. Since the area of the cross-section A = A(θ) is a de-
terministic value, an uncertainty quantification is only required for the reliability constraint.
Uncertainties influencing the problem are listed in Sec. 6.2.2, as well as the limit-state func-
tion g for the identification of failure.

Since the design optimization problem is linear in its parameters, the outer optimization is
solved by a gradient descent approach. The inner optimization problem remains non-linear,
for which the mentioned LSHADE44 optimizer is used along with Combination Line Sampling
for the Monte Carlo integrations, cf. Papaioannou and Straub [114]. Due to the comparable
number of degrees of freedom required by both investigated variants for the environmental
load Pe, a population size of npop = 50 and a convergence criterion of 100 iterations without
change in the objective are used in both cases. Additionally, 50 sampling lines are employed
for the integration. It is important to mention that the subsequent calculations were iterated
8 times to verify the presence of global optimizers. Indeed, the same results up to the precision
given in the provided values were obtained for all 8 calculations.
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Gumbel distribution with imprecise parameters (OUQ-G) A Gumbel distribu-
tion is used to model the environmental load in the first variant. The specific parameters for
the imprecise representation of that probability distribution can be found in Sec. 6.2.2. With
that, the design optimization yields b = h = 324.6mm with an associated area A = 12984mm2

as result. The average computational duration of the 8 computations is roughly 33 hours.
When comparing the resulting width to the outcome of the fuzzy-interval approach described
in [116], a lesser value is obtained, as shown in Fig. 7.2. The only difference among all the
uncertainties taken into account is the environmental load. Therefore, the mean constraint
on the parameters of the Gumbel distribution, is also here the decisive factor. The mean
constraint limits the range of variation in the environmental load to a small extent, whereas
the fuzzy-interval technique considers the worst-case scenarios by using parameter intervals,
which in turn necessitates a wider cross-section to ensure safety.

Moment Constraints up to order 3 (OUQ-E) In the second example, only mo-
ment information derived from the histogram is included for the environmental load, refer to
Sec. 6.2.2 for the specific values. This data provides less accurate information on the envi-
ronmental load compared to using a probability density function with imprecise parameters.
Consequently, the solution of this scenario results in a larger cross-section than for the fuzzy-
interval approach. Specifically, b = h = 329.6mm with A = 13184mm2 are obtained. These
calculations were performed with an average computation time of about 29 hours. This result
not only aligns with the varying levels of knowledge for this specific uncertain quantity, but
it also aligns with the discoveries from the first challenge of this benchmark in Sec. 6.2.2.
In this second scenario, with fixated geometric parameters, a greater Probability of Failure
(PoF) was seen compared to the previous scenario, which resulted in a lower PoF than the
fuzzy-interval strategy.

7.2.2 Optimal Positions of Locally Laser-Hardened Traces in a Car Front
Bumper

The second examined example involves optimizing the design of a car front bumper, with the
objective of determining the ideal positioning of locally laser-hardened traces. The primary
goal is to optimize the amount of energy absorbed by the front bumper during a crash in
order to provide the highest level of protection to the passenger compartment. Finite element
computations are used to simulate three distinct steps. Initially, the deep drawing process
of a sheet metal is simulated to transform it into the desired shape of the front bumper, as
depicted in Fig. 7.3a). Following that, the second phase involves removing surplus material
and doing a spring-back analysis, as shown in Fig. 7.3b). Subsequently, in the third step, a
basic frontal crash scenario is calculated, as depicted in Fig. 7.3c).

Local laser-hardening is a method that selectively enhances the characteristics of a material by
inducing a phase transformation in the sheet metal through controlled melting and subsequent

a) b) c)

Figure 7.3: The three investigated steps, a) deep-drawing of the sheet metal, b) trimming
and spring back and c) simple frontal crash. The images are taken from Miska and Balzani
[98].
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controlled cooling of the steel, cf. e.g. Wagner et al. [159]. For instance, the yield strength
of a steel base material can be enhanced by a multiplier of up to 3. Through this method,
the sheet metal can be strengthened at specified areas, resulting in a greater likelihood of
success in a forming process compared to unaltered sheet metal. Nevertheless, this procedure
has certain constraints, as the traces cannot be positioned in close proximity to one another,
meaning that the entire sheet cannot be fully covered by laser-hardened traces. This is a
result of the process of melting and cooling. If a second line is placed too close to the first
line, it will inevitably cause changes in the properties of the first line once again. In addition,
laser-hardening requires a specific processing time, which might become too lengthy when
dealing with an excessive number of traces and parts. In such instances, opting for a base
sheet composed of a superior grade of steel may be advantageous. Moreover, the width of the
hardened traces is restricted due to the diameters of the focusing lenses and the necessary laser
energy. In this particular scenario, the maximum allowable width for the trace is restricted
to 1.5mm, and the thickness of the sheet must not exceed 1.5mm. The separation between
two traces must exceed 1.5 times the width of the traces.

The finite element simulations are conducted using LS-Dyna R8.1.0 [82]. These simulations
are also run on the previously mentioned Xeon Phi nodes. However, even a single evaluation of
the function χ, which is utilized in the extended OUQ to compute the probability of interest for
a deterministic combination of points, necessitates a minimum of three numerical simulations.
Consequently, performing uncertainty quantification or design optimization based on actual
finite element simulations becomes excessively expensive in numerical terms. Thus, surrogate
models are utilized, which produce results that are almost identical to those of the finite
element simulations, but are far less expensive to analyze. This study utilizes feed-forward
artificial neural networks, which are trained on a predetermined set of samples. Given the
inherent difficulty in choosing the most suitable topology, the number of layers, number of
neurons per layer, and activation functions within these neurons have been fine-tuned using
the hyperband tuner from Tensorflow-Keras-Software.

The objective of the design optimization is to optimize the dissipated energy D during an
accident in order to achieve the highest level of protection for the car’s passenger cell. Three
distinct failure modes are taken into account, with each mode being linked to one of the three
simulation stages. The failure of sheet metal forming is primarily assessed using the Cockroft-
Latham criterion WC =

∫ ε
0 max(σ1, 0)dε ≥ W ult

C with ε being the equivalent plastic strain,
σ1 the first principial stress and W ult

C the ultimate admissible value, cf. e.g., Björklund et al.
[17] or Tarigopula et al. [152]. This failure criterion has already been used in the numerical
example of Sec. 6.2.3. Secondly, during the spring-back, a predetermined maximum limit for
the displacement of the nodes is defined, which is used to evaluate the stability of the shape.
Finally, the displacement of the car’s front bumper is restricted in order to accurately simulate
the presence of the engine and cooler located behind the bumper in an actual vehicle.

The degrees of freedom refer to the specific locations of the laser-hardened traces. To achieve
this objective, the metal sheet is allocated 38 distinct positions where the traces can be placed,
as seen in Fig. 7.4a). These locations take into account the specified geometric limitations,
such as the width and minimum distance between the traces. In this case, the traces can only
be positioned horizontally on the sheet to reduce the computing effort required for the finite
element simulations needed to generate the surrogate models. In addition, there are exactly
five traces placed, cf. e.g., Fig. 7.4b) for five traces centered in the middle of the sheet, while
Fig. 7.4c) denotes a more distributed positioning of the traces. The chosen parameterization
for the design optimization, denoted as θ = [l1, l2, l3, l4, l5] with li representing the trace index,
results in an integer optimization. Due to the nature of the design optimization problem
being a global, non-convex optimization problem, the LSHADE44 optimizer, as previously
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Figure 7.4: a) Schematic illustration of three (instead of the five used in the example)
laser-hardened traces on the sheet metal with its positions in terms of the range 1 to 38.
b) and c) are two different, possible laser trace positions. The images are taken from Miska
and Balzani [98].

described, is utilized. Therein, the parameters are rounded to the nearest whole number,
which could hinder the optimization’s performance. Additionally, it is imperative to ensure
that the locations are unique during the optimization process. This means that a duplication
of a trace index is not acceptable for physical reasons.

Problem Setting, Uncertain Quantities and Surrogate Models As previously
stated, the objective in this example is to optimize the dissipated energy during a basic crash
scenario. Therefore, the maximization and minimization operation as described in equation
(7.1) are swapped:

max
θ

min
y

[
Eŷ(D(θ, z))

]
, (7.5)

in order to maximize the worst-case scenario, specifically the minimal expected dissipated
energy D. In this example, the quantities that are being considered as uncertain are:

• Material parameters k and N : Since the same material as in the sheet metal forming
example in Sec. 6.2.3 is used, the same uncertainties in these material parameters are
assumed. Since both parameters are strongly correlated, only the strength coefficient k
is an actual uncertain quantity, whilst N is computed by Eq. (6.18).

• Material parameter ktrace: Due to the phase transition, the hardening behavior of
the steel changes. In this context, the parameter ktrace is regarded as an interval with
values ktrace ∈ [1200.0, 1800.0]MPa.

• Friction coefficient fc: In accordance to Figueiredo et al. [42], the friction coefficient
is an uncertain quantity, however, only little data is available based on experiments.
Therefore, the friction coefficient is here modeled as interval quantity with fc ∈ [0.1, 0.15]
and an additional mean constraint E[fc] ∈ [0.105, 0.115].

• ultimate value Wult
C : Similar to the friction coefficient, only a few experiments are

performed for the identification of the ultimate values for the Cockroft-Latham values,
cf. e.g. [152] or Björklund et al. [17]. In [152], values for a DP-800 steel are given, which
are here slightly reduced for the DP-600 steel. Thus, the ultimate value is modeled as
interval quantity: W ult

C ∈ [450.0, 550.0]MPa.

Two variants are being studied for the inclusion of the material parameter k. Firstly, the
inclusion as a random field, cf. Vořechovský [158], Ghanem and Spanos [50] and also Miska,
Freitag, and Balzani [100] as seen in Sec. 6.2.3. Due to the absence of spatial correlation infor-
mation, each finite element is allocated a random value of k realized from its beta distribution.
This process ensures that a histogram following the distribution is created for the entire sheet.
In the second variant, the strength coefficient k is assumed to be uniformly distributed across
the entire sheet, as the variation in the material characteristic may occur at a smaller scale
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Figure 7.5: Response surfaces from the constructed ANNs for the resulting maximum
Cockroft-Latham value Wmax

C for a selected subspace of the considered parameters and
uniform material parameters. In a), a line combination of θ = [4, 16, 34, 36, 37] and in b)
the later identified best solution θbest are used. Adapted from Miska and Balzani [97].

than the size of the elements being analyzed. Thus, in this particular case, k represents a
range of values, denoted as interval k ∈ [617.35, 734.0]MPa. This interval corresponds to the
standard deviation around the mean of the fitted beta distribution. Whilst the failure due to
the simulation is estimated on the basis of an uncertain quantity, the ultimate values for fail-
ure due to spring-back and deformation during the crash are purely deterministic, since these
are design specifications. In this case, a limit of 30mm is imposed on the nodal displacement
following spring-back and a maximum deflection of 125mm is allowed after the crash. The
acceptable maximum limit for the probability of failure is defined as Padm = 0.1%.

Based on the described problem setting, finite element simulations are carried out in order to
construct neural networks as surrogate models, cf. also Haddenhorst [59]. For this purpose,
the input parameters are separated into equal segments, resulting in the creation of a training
dataset that covers the complete range of inputs. A total of six artificial neural networks are
created to evaluate the two options for the inclusion of the strength coefficient k, with three
finite element simulations computed for each variant.

In the case of the random field, the inputs for the artificial neural networks consist of the
line positions θ, the friction coefficient fc, and the strength coefficient ktrace of the laser-
hardened traces. For each possible combination of these input parameters, 30 instances of
the random field representing the strength coefficient k are generated and calculated. From
these instances, statistical information about the quantities of interest is derived. A total of
5400 unique configurations are tested, with each configuration undergoing 3 finite element
simulations. The 30 highest values obtained for the Cockroft-Latham criterion, denoted as
maxWC, are subsequently compared to W ult

C . Additionally, the maximum displacements of
the nodes after the spring-back, resulting from 30 random field computations with a fixed input
parameter combination, are arranged in ascending order and assigned a normalized frequency
of occurrence. Consequently, an estimated cumulative distribution function is generated, as
described previously in Sec. 6.2.3, which serves as an approximation for the proportion of
random fields that yield critical values for both the maximum Cockroft-Latham value and the
maximum node displacement. Thus, an additional parameter for the neural nets is W ult

C or
the maximum admissible value for the node displacement, respectively, and the return value
is the evaluated value of the constructed ECDF. The output of the artifical neural network
is the calculated value of the created ECDF. The architecture of the neural network used to
calculate the maximum dissipated energy is somewhat modified. The output is the average
dissipated energy across all 30 randomly generated fields, denoted as Eŷ(D(θ, z)).
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a) b)

Figure 7.6: Optimization result for the random-field case with laser-hardened traces mostly
at the bottom of the sheet in a), the deformation of the same sheet after the crash simulation
in b). Taken from Miska and Balzani [98].

In the case of the uniform scenario, 5400 individual configurations were simulated. However,
in this variant, there was no need to create and simulate random fields. Therefore, the
neural networks can be seen as regression models that directly use the line positions θ, the
friction coefficient fc, and the strength coefficient ktrace in the laser-hardened traces as inputs.
The networks yield different return values according on the calculation of interest, which
might be either the maximum value reached for the Cockroft-Latham criterion (maxWC),
the maximum deformation of the nodes, or the dissipated energy (D) during the crash. In
Fig. 7.5, two exemplary surface plots from the ANN for maxWC are shown. It can be seen, that
the approximated variable is not smooth, which can indicate underlying numerical problems
with the identification of this parameter in the first place. For this example, however, the
constructed ANNs are used as is, accepting potential drawbacks during the optimization due
to the chaotic, non-smooth parameters.

Currently, the design parameters and uncertain values are clearly distinguished and there
is no interdependence. Hence, an extra scenario is examined: does additional knowledge
for the strength coefficient ktrace within the traces lead to an improvement in the dissipated
energy? The increased knowledge can for example be interpreted as an improved production
process, in which the process of the laser-hardening is better monitored to achieve more
consistent results. Here, a mean constraint on ktrace is introduced to replicate this improved
knowledge, additionally, the midpoint of the mean in bounds should be optimized for an
improved design. By doing this, a range of 200 MPa is permitted for the interval width,
namely, E[ktrace] ∈ [θk−100MPa, θk+100MPa], where θk represents the middle of the interval.
The vector of design parameters is represented by θ = [l1, l2, l3, l4, l5, θk]. The surrogate
models that have been built do not require any adjustments, as the interaction is not applied
to a random field parameter, and can be utilized in the same manner as previously.

Optimization 1: Material Parameter as Random Field With the described
problem settings, the design optimization can be performed. Due to the non-convex nature
of both design optimization and uncertainty quantification, the LSHADE44 optimizer is used
in both circumstances. The inner uncertainty quantifications employ a population size of 250
and a convergence requirement of 250 iterations. On the other hand, the design optimization
utilizes a population of 128 and requires 50 iterations for convergence. Given its nested char-
acteristic, several design candidates can be assessed in parallel in regards to the uncertainty
quantification within a single iteration of the outer design optimization In this case, a total of
64 design parameters were simultaneously examined on the 64 cores of the utilized node.

The best trace combination for the initial scenario, where there is no interaction between
design and uncertainties, is

θopt = [26, 29, 30, 31, 32], (7.6)
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a) b)

Figure 7.7: Illustration of the traces for the uniform case in a), in contrast to the trace lo-
cations of the random field case in b), depicted without the random field. Taken from Miska
and Balzani [98].

resulting in a maximized lower bound on the dissipated energy of D = 490, 864 Joule. Fig. 7.6
displays a training sample of a random field, which exhibits a similar line arrangement as the
found optimal solution. The high indices indicate the placements of all traces towards the
bottom of the sheet metal. By incorporating the mean constraint E[ktrace], the optimizer
settings remain unaltered, resulting in the optimal parameter vector

θopt = [26, 30, 31, 32, 33, 1700.0], (7.7)

with dissipated energy equal to at least D = 491, 863 Joule. When comparing the result
with the constraint to the result without it, only a marginal improvement of 0.2% in the
dissipated energy can be claimed. It is unlikely that this slight increase in benefit can justify
the necessary effort and supervision in production. Furthermore, the analysis reveals that the
maximum midpoint for the interval of the mean restriction was selected, i.e. 1, 700MPa.

Optimization 2: Uniform Material Parameter in Bounds As previously stated,
the variability of the material characteristic being included may occur on a smaller scale than
the element size being evaluated. Therefore, it would be more accurate to focus just on the
average value of the beta distribution. In this case, a range of one standard deviation around
the mean is employed, specifically k ∈ [617.35, 734.0]MPa. Given that all other parameters
of the problem stay the same, the optimizer settings used previously are employed. The best
positions are determined to be

θopt = [2, 3, 23, 24, 28], (7.8)

resulting in a maximized lower bound on the dissipated energy of D = 485, 035 Joule. Unlike
the previous scenario, where all traces were located at the bottom, the current solution leads
to the formation of two distinct groups. There is one group located at the top of the sheet,
and another group positioned closer to the middle of the sheet, cf. also Fig. 7.7a) for a similar
training candidate. Nevertheless, the total dissipated energy is lower compared to the random
field scenario. In addition, also the mean constraint E[ktrace] is examined, which leads to a
different position vector of

θopt = [2, 3, 23, 24, 28, 1700.0], (7.9)

with a maximized lower bound on the dissipated energy of D = 487, 536 Joule. Similarly to
previous observations, there is only a marginal enhancement of 0.5% in the dissipated energy.
Furthermore, the midpoint once again represented the maximum attainable value that could
be utilized.

The examined relationship between an optimization parameter and an uncertain quantity did
not lead to an enhanced design for the given situations. However, it is demonstrated that the
suggested framework for Reliability-Based Design Optimization using the extended Optimal
Uncertainty Quantification can effectively capture dependencies like these.
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The aim of this thesis is the development and application of a framework for the reliability-
based design optimization under polymorphic uncertainties. This intention is divided in a few
intermediate steps, which will be discussed individually.

The first chapters lay the foundations for uncertainty quantification by introducing important
notations for the uncertainty quantification itself with its mathematical models. This is
followed by a chapter for the fundamentals of continuum mechanics, finite elements and
numerical homogenization. The numerical homogenization is used as virtual lab, since it
allows the computation of effective material properties based on a virtual representation of
the microstructure.

Afterwards, the optimal decomposition for subcells in the context of the finite cell method is
discussed and analyzed. The finite cell method is motivated due to the ability of automated
mesh generations for the numerical homogenization. Since in a later chapter, a large set of
artificial microstructures is investigated in a virtual lab, manual mesh creation is not feasible.
However, the conventional approach for the construction of subcells, the Octree, leads to an
unnecessary high number of subcells, which impedes the numerical efficiency of the method.
Additionally, the material bounds given by the geometry representation in terms of pixel/voxel
may not exactly be represented by the created subcells. Therefore, the optimal decomposition
exploits the perpendicular nature of voxel and aggregates voxels to larger cuboids. By that,
not only the material interfaces are preserved, but also less subcells are created than for
the Octree approach. Numerical examples prove, that the optimal decomposition performs
well for numerical homogenization problems. It can be shown, that the solution of Octree
decomposition converges against the Optimal decomposition results with finer Octrees, which
leads to a better approximation of the material boundaries. Also, modifications of the Octree
decomposition are investigated, which can perform better than the classical Octree approach,
but not better than the proposed optimal decomposition.

In the next chapter, a method to quantify uncertain effective material parameters caused by
a variation of the microstructure’s morphology is presented. The method enables a general
description of the variation of microstructure morphologies by the utilization of higher order
statistical measures without being restricted to specific, potentially unique, parameterization
of the microstructure morphology. The higher order statistical measures are evaluated in a
distance functional, which quantifies the deviation of a selected subset of the microstructure
from the representative volume element. The latter is usually considered to represent the
average of the microstructure morphology, and thus the quantified deviation can be considered
as deviation of the mean in a statistical sense. An evaluation of the distance functional for
many different subsets of the materials microstructure allows the quantification of the inner
variability of the materials microstructure. Subsequently, a set of artificial microstructures,
the so called Statistically Similar Volume Elements (SSVEs), can be constructed, which exhibit
the same inner variability. This set of SSVEs is used in the aforementioned virtual lab to
compute the macroscopic material properties for each of the SSVEs. The efficiency of the
virtual lab is further improved by the application of a multilevel Monte Carlo method. The
method is applied to a dual-phase steel microstructure, for which a large two-dimensional
microstructure scan is available. A set of SSVEs matching the same variation is constructed
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and tested, both in a conventional and the multilevel Monte Carlo approach, which proves the
efficiency gain of the latter. In this example, the effective yield stress and hardening modulus
are deduced from the computed stress-strain-curves. The method itself is not limited to these
exact parameters, in principle, any parameter may be derived from the available stress-strain-
curves. Finally, the derived material parameters are compiled in histograms reflecting the
variation of said parameters. These histograms prove to be comparatively smooth, so that
the discrete distributions of the parameters can be approximated by using a continuous beta
distribution function.

Next, the Optimal Uncertainty Quantification (OUQ) is introduced and extended to the abil-
ity of polymorphic uncertainty quantification. Since in its original form, all uncertainties
are considered as epistemic uncertainties, a method for the inclusion of aleatory uncertain-
ties was added. For this purpose, the probability density function of aleatory uncertainties
is integrated over the failure region. This integral depends on the values of the remaining
epistemic uncertainties and hence, the integral has to be performed for every possible combi-
nation of epistemic support points. Furthermore, the extended OUQ framework is combined
with fuzzy numbers in their discretized form using α-levels. This allows a structured anal-
ysis of different combinations of intervals. The computational efficiency of this method is
ensured by the transformation of the objective function to the space of canonical moments.
The extended OUQ framework is then tested by means of two examples. The first example
is meant to prove the convergence behavior of the resulting bounds due to the incorporation
of an aleatory uncertainty. Furthermore, the incorporation of canonical moments leads to a
higher efficiency, or, in some cases, enable a computation at all. In the second example, a
benchmark problem for polymorphic uncertainty quantification from the DFG Priority Pro-
gram 1886 is computed. Therein, two different ways to incorporate an epistemic uncertain
parameter are investigated. The influence of assumptions on the available data is emphasized,
as the two investigated possibilities lead to a large difference in the calculated upper bound
for the probability of failure (PoF). Both examples prove, that the extended OUQ framework
is a reliable and versatile tool for the polymorphic uncertainty quantification. In contrast to
existing methods, the assumption regarding the type of distribution function can be avoided
for uncertainties for which the choice of an appropriate distribution function is difficult.

Subsequently, the extended OUQ framework is further developed by the integration of spa-
tially varying parameters in form of random fields. The idea is to perform computations
involving the random field before the uncertainty analysis. The resulting data is then used to
construct a surrogate model, here in form of artificial neural networks (ANNs). The surrogate
models are used to predict the statistical response of the system due to the random field. In
the computational example, a sheet metal forming process is investigated. Since the process
is solved numerically in terms of finite elements, the surrogate model serves a second purpose
and avoids the costly computations during the uncertainty quantification. In this example,
the ANN is trained to determine the estimated probability for failure of the sheet metal for
a given input combination of further uncertain parameters and the random field of material
parameters related to the hardening behavior. These material parameters are identified based
on the set of SSVEs as described before.

Finally, the extended Optimal Uncertainty Quantification framework is integrated in a Relia-
bility-Based Design Optimization (RBDO) context. This integration leads to a nested op-
timization, sometime also referred to as double-loop optimization. The resulting RBDO-
framework allows the incorporation of both aleatory and epistemic uncertainties, whilst the
mathematically sharpest bounds on the objective function as well as on the reliability con-
straint can be computed. Further unique capabilities of the extended OUQ are preserved, i.e.,
it is possible to include moment information on epistemic uncertainties without specifying an
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underlying probability density function. The developed framework is tested by two numerical
examples. The initial example serves as a benchmark for polymorphic uncertainty quantifi-
cation. The results obtained from this example are compared with alternative approaches
relying on fuzzy numbers or intervals for handling epistemic uncertainties. The investiga-
tion involves two scenarios with varying levels of data on epistemic uncertainties, and the
results prove to be meaningful. The second, more complex example comprised a multi-step
simulation of the production process and crash behavior of a simplified car front bumper.
In this case, the optimization focused on positioning locally laser-hardened traces within the
sheet metal to maximize energy dissipation during a crash. The increasing computational
demands poses a challenge, which is mitigated by leveraging neural networks as surrogate
models for regressing the model responses. In addition to the first example, a dependency be-
tween an optimization variable and an uncertain quantity is inspected, for which the midpoint
of an interval is optimized. While these cases do not end in improvements in the objective,
the technical integration works as anticipated, demonstrating that such dependencies can be
seamlessly incorporated within a design optimization. However, the overall objective of this
thesis was reached, since the successful integration of the extended OUQ within the RBDO
context represent the sought framework and a simplified car front bumper was optimized.

Although the presented extension of the Optimal Uncertainty Quantification as well as the
method for the quantification of uncertain macroscopic material properties offer many ad-
vantages as extensively discussed in this thesis, they are hardly an universal tool like a swiss
army knife. Uncertainty quantification in itself is a very subjective topic and thus, someone
may want to consider effects or models, which cant be dealt with the presented approaches.
And certainly, there will be a method out there, which may be employed for that specific
application. Therefore, the presented method can hardly close any research topic, since all
questions asked are answered completely, but they do enrich the zoo of available methods for
uncertainty quantification. In doing so, hopefully at some point in the future, the proposed
methods fill the gap for some engineer, such that some structures can be made safer.

While the investigated topics and developed methods of this thesis are able to answer specific
posed research questions, they are certainly not concluding and additional research can im-
prove the presented approaches even further, offering starting points for future research. Quite
obviously, in order to quantify the variation of a macroscopic material response, not only the
variation of the microstructure morphology, but also the variation of material properties of
individual phases on the microscale should be considered. With the rise of artificial neural
networks and other surrogate models, the efficiency of the method may be improved, if the
costly homogenization in terms of finite elements can be substituted by an appropriate ANN.
A faster homogenization would allow for the consideration of more different microstructures
and thus, the method would yield more reliable statistics. Also, it may be meaningful to
use the set of SSVEs directly in a fully-coupled micro-macro simulation, in which the mi-
crostructure vary in each macroscopic quadrature point. By that, the full information on
the macroscopic behavior of the microstructures could be utilized, omitting the choice and
quantification for only a few, selected macroscopic material properties. In addition to that,
alternative approaches for the subcell decomposition may be worth to be researched, since
the Optimal Decomposition approach turned out to be not applicable to crack propagation
problems, cf. Wingender and Balzani [161].

Similarly, also the extended OUQ may be further enhanced and studied. For now, all uncertain
quantities are assumed to be stochastically independent, which is hardly true for all realistic
scenarios. Thus, by further research the important reduction theorem may be applied to
correlated stochastic quantities. Also, the efficiency is still a major concern, especially for the
design optimization with a double-loop optimization. Therein, two optimizations are nested,
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which requires substantial numerical effort. In addition, a nested application of the OUQ was
proposed to incorporate limited statistical data from random fields, such that a combination
of that with an design optimization would require a three times nested optimization. Thus,
additional research for example towards multi-level surrogate models can be very beneficial,
cf. the works of Freitag et al. [45]. In the end, more realistic examples will help to evaluate
the performance and applicability of the developed methods even further.



List of Figures

1.1 Highlighted in orange, a normally hidden car front bumper, shown by means
of a Toyota Yaris. The overall objective of this thesis is the optimization
of the performance of such a front bumper in a crash scenario, considering
polymorphic uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Example for a continuous two-dimensional sample set with four events A1, A2,
A3 and A4. The associated measure µ calculates the area of the rectangles. . 11

2.2 Example illustrations of simple probability measures in a two-dimensional space.
In subfigure a), a discrete measure is plotted, for which the weights are located
only at the grid points, i.e., only at those locations a probability can be com-
puted. Continuous measures on the other hand can only be visualized by means
of their probability density function as shown in subfigure b). The highest den-
sity is in the center and radially fading out to the borders. . . . . . . . . . . 14

2.3 a) Comparision of the Poisson distribution for two different choices of the char-
acterizing parameter λ. b) Illustration of a normal and a gamma probability
density function, which both exhibit a mean of E[a] = 5.0 and a variance of
E[(a− E[a])2] = 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 a) Schematic deduction of a discrete α-level of a trapeziodal fuzzy number. b)
An imprecise normal distribution with an interval-valued mean. . . . . . . . 16

2.5 Illustration of an examplary integration problem, in which the colored failure
region is devided from the safe region by the limit state function g. The integral
over the failure region yields the failure probability, which is usually computed
by Monte Carlo approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Exemplary artificial neural network with four input neurons, one output neuron
and three hidden layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Relationship of a point X in the undeformed state B and its counterpart x in
the deformed state S by deformation u = x−X. . . . . . . . . . . . . . . . . 24

3.2 Exemplary finite element approximation Bh of the real body B with a coarse
mesh on the left and a finer mesh on the right side. . . . . . . . . . . . . . . . 28

3.3 Isoparametric mapping for a two-dimensional quadrilateral element of four nodes. 29
3.4 Illustration of a) the considered geometry of a circular inclusion in a matrix,

b) example of a structured grid used as finite element mesh for this domain
and c) decomposition of the top left finite cell from subfigure b) based on the
application of the quadtree algorithm with a recursion-depth of 4. Adapted
from Fangye, Miska, and Balzani [37]. . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Subcell decomposition of a finite cell, a) base representation of the geometry
with 5 by 5 pixels, b) subcell decomposition by means of quadtree until level
4 with intersected subcells and c) optimal subcell decomposition. Adapted
from Fangye, Miska, and Balzani [37]. . . . . . . . . . . . . . . . . . . . . . . 41



118 List of Figures

4.2 Principle algorithm of the Optimal Decomposition (OD) for one single finite
cell containing 5 by 5 pixels; a) a prototype subcell, b) extension in first search
direction, c) an entire joined row, d) and e) iterations on the next row, f)
the result of the extension in the first direction, g) merge operation in second
direction and h) final decomposition result. In i) and j) the decomposition
result for a permutation of the search direction is shown. Adapted from Fangye,
Miska, and Balzani [37]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Combinations of the Octree with the Optimal Decomposition; a) base geom-
etry, b) Octree level 3, c) the T-M , d) the T-OD and e) the T-OD-M algo-
rithms. Adapted from Fangye, Miska, and Balzani [37]. . . . . . . . . . . . . . 45

4.4 Illustration of the Optimized Clustering algorithm (OC), a) randomly chosen
start pixel, b) and c) two possible restricted growth modes, d) fully grown
subcell and e) resulting subcell decomposition. Adapted from Fangye, Miska,
and Balzani [37]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 a) A 163 voxels model with a ferritic (light brown color) and a martensitic
(orange color) phase, b) subcells for the Octree of level 4 (323 subcells), c)
subcells for the OD approach (4 subcells), d) macroscopic stress vs. relative
elongation, e) difference of maximal macroscopic stresses vs. level of Octree.
Taken from Fangye, Miska, and Balzani [37]. . . . . . . . . . . . . . . . . . . 49

4.6 a) A 243 voxels model, b) subcells for the Octree of level 6 (5923 subcells), c)
subcells for the OD approach (4 subcells), d) stress vs. relative elongation, e)
difference of maximal stresses vs. level of Octree. Taken from Fangye, Miska,
and Balzani [37]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Subcells for the optimal decomposition approach for a SSRVE with a marten-
sitic phase (orange color) and a ferritic phase (light brown color). Adapted
from Fangye, Miska, and Balzani [37]. . . . . . . . . . . . . . . . . . . . . . . 51

4.8 Comparison of different approaches a) maximal stresses, b) irregularity, c)
number of subcells and d) computing time for different level of Octree. Taken
from Fangye, Miska, and Balzani [37]. . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Principial scheme to quantify macroscopic material properties based on a set
of artificial microstructures, whose morphologies vary in the same way the real
material’s microstructure does. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Visualization of the large two-dimensional microstructure scan of DP-steel
from [19] with a size of 16 mm by 2 mm with ferrite matrix colored in light
brown and the martensite inclusions in orange. Taken from Miska and Balzani
[93], originally obtained from [19]. . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Distribution of a) Lreal obtained from the larger two-dimensional microstruc-
ture scan of DP-steel and b) LSSVE of the microstructure samples selected for
the full Monte Carlo simulation. Taken from Miska and Balzani [93]. . . . . . 64

5.4 Analyzed macroscopic quantities: a) effective yield stress Rp,0.2 and b) hard-
ening modulus at the end of the prescribed load hend. Taken from Miska and
Balzani [93]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Comparison of the different geometry approximations using subcells on the
levels with a) 10 voxels, b) 25 voxels and c) 50 voxels along one edge of the
sample. Taken from Miska and Balzani [93]. . . . . . . . . . . . . . . . . . . . 67

5.6 Distribution of the microstructure morphology variance measure LSSVE(γ) for
the levels with a) 10 voxels, b) 25 voxels and c) 50 voxels per edge of an SSVE
used in the multilevel Monte Carlo simulation. Taken from Miska and Balzani
[93]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



List of Figures 119

5.7 Histograms of a) effective yield stress Rp,0.2 and b) hardening modulus at
the end of the prescribed load hend resulting from the multilevel Monte Carlo
approach, which are normalized in the sense that the area of the histogram is
equal to one. Additionally, a fitted beta-distribution function is plotted. Taken
from Miska and Balzani [93]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 a) Comparison of the cumulative density functions (CDF) of a normal dis-
tribution N with mean E[x] = 5.0 and variance σ2 = 0.5, and of a convex
mixture distribution DM composed of three Dirac masses exhibiting the same
two moments. b) Optimal upper and lower bound U and L on the probability
of failure, if failure is defined by x < 4.5. Taken from Miska and Balzani [96]. 74

6.2 a) Approach 1: convergence of the computed upper bound on the PoF with an
increasing number of moment constraints and b) Approach 2: nested stochastic
analysis within the evaluation of the objective function. Taken from Miska and
Balzani [96] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 a) Schematic deduction of a discrete α-level of a trapeziodal fuzzy number
and b) nested solution scheme of a combined OUQ-fuzzy-analysis. Taken from
Miska and Balzani [96] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 a) Distributions of quantity bmax as result of Monte Carlo simulations of a
random field for different fixed values of quantity y(m). The yellow area denotes
exemplarily chosen bounds on the mean of the distributions. b) Visualization
of the nested OUQ approach, in the outer problem the quantities y(m) and bult

are incorporated, the inner problem is based on the statistics on bmax(y(m)).
Taken from Miska et al. [100]. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5 Schematic illustration of the two-span beam problem under polymorphic un-
certainties. Taken from Miska and Balzani [96]. . . . . . . . . . . . . . . . . 86

6.6 Uncertain loads of the two-span beam: a) beta probability density function of
the yield strength y0, b) membership function ν

F̃
of force F̃ and c) membership

function νẼ[F̃ ]
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