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Summary

The modeling of damage enables failure predictions, which is why it has become an important
tool for academic research and industrial applications. Thereby, characteristic softening and lo-
calization effects lead to ill-posed boundary value problems due to non-convex and non-coercive
energies. Consequently, numerical instabilities and mesh-dependent finite element results oc-
cur, which do not allow for physically correct failure predictions. In order to solve the afore-
mentioned problems, regularization strategies are applied. However, regularization is usually
accompanied by a high numerical effort leading to longer computation times in the end. Subject
of current research is the development of novel approaches that regularize damage models with
less disadvantages. Exactly this research describes the main topic of the present work. Con-
sequently, three novel approaches are introduced, which are based on different strategies. The
first model is based on energy relaxation along with a non-linear homogenization of two phases.
The second model uses a limitation of the rate in connection with an emulated representative
volume element. The third model has a gradient-enhanced formulation and efficiently evaluates
the Laplace operator. After calibrating the parameters for all models, numerical calculations
for three different boundary value problems were performed. These include the double-notched
beam, the plate with a centered hole, and the cracked plate. The results are compared with
respect to damage distributions as well as to global structural responses. By this and other as-
pects, such as computation times and implementation, the different novel models are contrasted
with each other and assessed.

Kurzfassung

Die Modellierung von Schädigung ermöglicht Versagensvorhersagen, wodurch sie zu einem
wichtigen Mittel für wissenschaftliche Forschung und industrielle Anwendung geworden ist.
Dabei führen charakteristische Entfestigungs- und Lokalisierungseffekte aufgrund von nicht
konvexen und nicht koerziven Energien zu schlecht gestellten Randwertproblemen. Folglich tre-
ten numerische Instabilitäten und netzabhängige Finite-Elemente-Ergebnisse auf, welche kei-
ne physikalisch korrekten Versagensvorhersagen ermöglichen. Um die genannten Probleme zu
lösen, werden Regularisierungsstrategien angewendet. Allerdings geht die Regularisierung nor-
malerweise mit einem hohen numerischen Aufwand einher, welcher letztlich zu längeren Be-
rechnungszeiten führt. Gegenstand aktueller Forschung ist die Entwicklung neuartiger Ansätze,
welche Schädigungsmodelle mit weniger Nachteilen regularisieren. Genau diese Forschung be-
schreibt das zentrale Thema der vorliegenden Arbeit. Folglich werden drei neuartige Ansätze
vorgestellt, welche auf unterschiedlichen Strategien basieren. Das erste Modell basiert auf Ener-
gierelaxierung zusammen mit einer nicht linearen Homogenisierung zweier Phasen. Das zwei-
te Modell verwendet eine Limitierung der Rate im Zusammenhang mit einem emulierten re-
präsentativen Volumenelement. Das dritte Modell hat eine Gradienten-erweiterte Formulierung
und wertet den Laplace Operator sehr effizient aus. Nach einer Kalibrierung der Parameter aller
Modelle werden numerische Berechnungen anhand von drei verschiedenen Randwertproble-
men vorgenommen. Dabei enthalten sind der doppelt gekerbte Balken, die zentral gelochte Plat-
te und die vorgekerbte Platte. Die Ergebnisse werden hinsichtlich der Schädigungsverteilung
sowie der globalen Strukturantwort verglichen. Mit diesen und anderen Aspekten, zum Be-
spiel Berechnungszeiten und Implementierung, werden die unterschiedlichen neuartigen Mo-
delle einander gegenübergestellt und bewertet.
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1

1 Introduction

1.1 Motivation and Objectives

The modeling of damage enables to capture the degradation of material strength or material
resistance as a result of microscopic defects. Consequently, such material models play an im-
portant role for both academic research as well as for industrial applications: it allows for failure
predictions and describes the resulting behavior of completely or partially damaged materials.
An accurate prediction of failure is essential for respective stages of component development
with regard to material selection and design concept. Therefore, components can be constructed
that resist loads to be expected within defined tolerances. Damage modeling can also be applied
for the examination of suitability of existing components with respect to changed conditions,
for example.

In light of past experience, it is well-known that damage modeling is accompanied by soft-
ening and localization effects. Due to the underlying non-convex and non-coercive energies,
ill-posed boundary value problems occur. In context of finite element calculations, this leads
to numerical instabilities and mesh-dependent results. Thus, numerical calculations no longer
allow for physically correct interpretations regarding failure prediction and material behavior.

Consequently, regularization strategies have to be applied in order to solve the aforemen-
tioned numerical instability problems and particularly to achieve mesh-independent finite ele-
ment results. In the last decades, different regularization techniques have been developed and
are now frequently used. The most common strategies thereby are gradient-enhanced, integral-
type, and viscous regularization. However, regularized damage models usually suffer from a
high numerical effort that leads in turn to high computation times. This particularly applies for
the gradient-enhancement and the use of integral terms. Additionally, the regularization usually
has a huge impact on the damage distribution and therefore on the final results. This impact is
even depending on the applied loading rate in case of viscous regularization, which is limited to
specific materials only due to its formulation. Although the literature provides a large amount
of well-established regularized damage models and innovative ideas, further improvements are
an object of current research. Hereby, the main focus is on the improvement of model efficiency
providing shorter computation times. The core functions of mesh-independent and physically
expectable numerical results remain important, of course. This also includes reasonable impacts
on the damage distribution in order to remain typical crack characteristics, which can be distin-
guished in brittle or ductile damage. Besides that, the models are expected to be numerically
stable, mathematically conform and preferably easy to implement.

The objectives of this thesis are directly derived from the aforementioned desired improve-
ments demanding for novel procedures of regularization. In recent years, during my research at
the Institute of Mechanics of Materials at the Ruhr-Universität Bochum, I have been working on
different regularization approaches for damage models that have been inspired by established
procedures from the literature interacting with completely new ideas. Consequently, several
novel approaches have been developed, each of which exhibit interesting features and new ideas
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to be mentioned. Three of these novel regularized damage models are considered in this work.
Herein, the model derivations and descriptions are presented in the same order as they have
been derived during my research. Finally, the main task of this thesis is the comparison of the
novel regularized damage models by contrasting the different approaches and numerical results
with each other with a focus on efficiency and mesh-independence.

1.2 Outline

This thesis is structured as follows: after this introductory part contained in Chapter 1, the fun-
damentals are introduced in Chapter 2 providing the mathematical and methodical foundations
for this work. Additionally, a detailed insight into both the damage modeling by considering
different descriptions as well as different kinds of regularization strategies is given in Chapter 3.
Based on that, the three newly derived regularized damage models are presented in Chapter 4.
The first model is based on energy relaxation in connection with a two-phase damage approach
involving an undamaged and a damaged state. The second one combines a rate-limitation with a
novel interpretation of an underlying microstructure, which is represented by the new emulated
representative volume element. The third model is enhanced with a gradient formulation, in
which the Laplace operator is evaluated very efficiently and suitable operator splits are applied.
Afterwards in Chapter 5, the aforementioned investigations are initially prepared by providing
the applied boundary value problems including a double-notched beam, a plate with a centered
hole, and a cracked plate. Furthermore, the respective set of parameters are identified and cali-
brated. Representative simulation examples are subsequently performed by means of the finite
element method in Chapter 6. The three considered damage models are compared with respect
to different damage characteristics and stated boundary value problems. A detailed discussion
of the numerical results is object of Chapter 7. In conclusion, the key aspects, findings and
results as well as additional and possible future research are summarized in Chapter 8.
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2 Fundamentals

This chapter provides relevant fundamentals in regards to this thesis. In Section 2.1 the math-
ematical notation is clarified. Section 2.2 introduces the calculus of variations. The Legendre-
Fenchel transformation is presented in Section 2.3. Afterwards, the laws of thermodynamics
are provided in Section 2.4. Based on that, Section 2.5 applies the free energy in context of con-
stitutive equations. In Section 2.6 the Hamilton’s principle is derived. Section 2.7 describes the
numerical treatment of the evolution equations. The finite element method is established in Sec-
tion 2.8. Hereto, the stresses and the material tangent are given in Section 2.9. Corresponding
literature is respectively indicated.

2.1 Mathematical Notation

The notation and mathematical principles, which are applied throughout this thesis, are pre-
sented in this section. Initially, the tensor notation is given in Subsection 2.1.1, afterwards
tensor products are introduced in Subsection 2.1.2, then Subsection 2.1.3 briefly describes the
tensor analysis and finally the Voigt notation is given in Subsection 2.1.4. The provided infor-
mation is mainly based on the works of Altenbach and Altenbach (1994) and Holzapfel (2000).

2.1.1 Tensor Notation

In general, tensors are categorized by their order. With regard to an exemplary Cartesian basis ei
with i = 1, 2, 3 the tensor of zeroth order corresponds to a scalar denoted as a, b, c, ..., whereas
the tensor of first order corresponds to a vector denoted as a, b, c, ... with

a =

a1

a2

a3

 , (2.1)

additionally the tensor of second order corresponds to a dyadic denoted asA,B,C, ... with

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , (2.2)

and there are also tensors of higher order, for example fourth order is denoted as A,B,C, ....

Even though the symbolic notation is illustrative, the index notation more precisely describes
mathematical operations and is therefore used here. By doing this, the vector a becomes

a = a1e1 + a2e2 + a3e3 , (2.3)
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considering Einstein’s summation convention for two identical indices leads to

a = aiei:=
∑
i

aiei . (2.4)

Additionally, the tensor of second orderA can be formulated as

A = Aijei ⊗ ej , (2.5)

and the tensor of fourth order A respectively

A = Aijklei ⊗ ej ⊗ ek ⊗ el . (2.6)

2.1.2 Tensor Products

The dot product or scalar product of two vectors a and b

a · b = aibi = c (2.7)

provides a scalar quantity c, the dot product of a tensor of second orderA and a vector b

A · b = Aijbjei = c (2.8)

provides a vectorial quantity c, and the dot product of two tensors of second orderA andB

A ·B = AijBjlei ⊗ el = C (2.9)

provides a tensor of second order C. Furthermore, the double dot product of a tensor of forth
order A and a tensor of second orderB is described by a double contraction

A : B = AijklBklei ⊗ ej = C (2.10)

providing a tensor of second order C again. Besides that, the dyadic product or tensor product
for also exemplarily two vectors a and b

a⊗ b = aibjei ⊗ ej = C (2.11)

provides a tensor of second order C and have already been used before.

2.1.3 Tensor Analysis

The Nabla operator∇ is a fundamental tool and basis for other operations. Generally, the Nabla
operator is a vector containing partial derivatives with respect to the basis ei, therefore

∇ :=
∂

∂xi
ei . (2.12)
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In regard to a function f(x), the dyadic product of∇ and f is the gradient of f

gradf = ∇f =
∂f

∂xi
ei , (2.13)

In regard to a vector a(x), the dot product of∇ and a is the divergence of a

diva = ∇ · a =
∂ai
∂xi

. (2.14)

2.1.4 Voigt Notation

The relation between strains ε and stresses σ is described by the Hooke’s law as follows

σ = E : ε . (2.15)

Hereby, the three-dimensional stiffness tensor E, a tensor of fourth order, is of size 3×3×3×3
with consequently 81 entries whereas the stress tensor σ as well as the strain tensor ε are of
size 3× 3 with consequently 9 entries presented as follows

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 , ε =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 . (2.16)

In order to simplify the notation and implementation as well as to save data, the Voigt notation
introduced by Voigt (1910) and denoted by ˜( · ) is considered, thus

σ̃ = Ẽ · ε̃ . (2.17)

The Voigt notation takes advantage of redundant information due to symmetry and reduces the
stress and strain tensors to vectors of length 6 and reduces the stiffness tensor to the second
order possessing a size of 6× 6 with consequently 36 entries, the following applies

σ11

σ22

σ33

σ23

σ13

σ12

 =


E1111 E1122 E1133 E1123 E1113 E1112

E2211 E2222 E2233 E2223 E2213 E2212

E3311 E3322 E3333 E3323 E3313 E3312

E2311 E2322 E2333 E2323 E2313 E2312

E1311 E1322 E1333 E1323 E1313 E1312

E1211 E1222 E1233 E1223 E1213 E1212

 ·

ε11

ε22

ε33

2ε23

2ε13

2ε12

 . (2.18)

The stiffness tensor E is often denoted by E0 in this thesis relating to undamaged material.

2.2 Calculus of Variations

This section introduces functionals on the basis of classical examples. The Gâteaux derivative
as well as the stationarity point are considered with help of linearization. The subsequent is
based on the works of Lanczos (1970), Dacorogna (1989), Simo and Hughes (2000), Gelfand
and Fomin (2000), and Kielhöfer (2010) with a focus on Elsgolc (1961) and Junker (2016).
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Initially, a function f relates a variable x, serving as the argument, to a value q. The expres-
sion f(x) = q is consequently used. Moreover, this function f(x) itself can basically constitute
as an argument as well, this is realized by a functional F that relates f(x) to a value r, in this
case the expression F [f(x)] = r is used.

The application of functionals can be illustrated by the classical examples of calculating the
length of a curve or the size of a surface area. The length l of a curve y(x) is thereby given by

l := F [y(x)] =

∫ x1

x0

√
1 + (y′(x))2 dx , (2.19)

while the area A of a surface z(x, y) can be determined in consideration of the boundary ∂Ω by

A := F [z(x, y)] =

∫
∂Ω

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dA . (2.20)

In context of functions, the variations are preferably termed as the increment ∆x of the argument
x of a function f(x) while the increment is the difference of two values ∆x = x − x0. A
function f(x) is thereby called continuous if small variations of the argument x lead to small
variations of the function f(x). Analogously in the context of functionals, the increment or
preferably termed the variation δf of the argument f(x) of a functional F [f(x)] is described by
the difference of two functions δf = f(x)− f0(x). Thereby, the functional is called continuous
if small variations of the argument f(x) lead to small variations of the functional F [f(x)].

Continuous functions and functionals can be differentiated in order to determine extrema.
At this point, the differentiation of functionals, also referred to as the calculus of variations,
is regarded. For this purpose, the linear approximation as a necessary tool is first introduced
for functions and then transferred to functionals. Initially, the function f(x) will undergo a
coordinate transformation with the new origin x̄, direction δx and length ω in direction δx, thus

f(x)→ f(x̄+ ωδx) . (2.21)

The related derivative around x̄ is given by

d
dω
f(x̄+ ωδx)

∣∣∣∣
ω=0

= lim
ω→0

f(x̄+ ωδx)− f(x̄)

ω
= f ′(x̄)δx =: Df(x̄)(δx) . (2.22)

According to this, the derivative of f(x) around x̄ in direction of δx is described by the operator
D. Finally, building on this, the linearization for f(x) around x̄ in direction of δx is described
by the operator L as follows

Lf(x̄)(δx) = f(x̄) + Df(x̄)(δx) . (2.23)

The transformation for functionals reads

F [f ]→ F [f̄ + ωδf ] , (2.24)

the related derivative, known as the Gâteaux derivative, is given by

d
dω
F [f̄ + ωδf ]

∣∣∣∣
ω=0

= lim
ω→0

F [f̄ + ωδf ]−F [f̄ ]

ω
= F ′[f̄ ]δf =: DF [f̄ ](δf) , (2.25)
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and the linearization of the functional is achieved by

LF [f̄ ](δf) = F [f̄ ] + DF [f̄ ](δf) . (2.26)

Finally, extrema of functionals are determined by the stationarity condition as follows

DF [f̄ ](δf) = 0 ∀ δf , (2.27)

consequently, f̄ is the stationarity point of F if the derivatives in all directions δf are equal to
zero. In this thesis, the shorter notation for the Gâteaux derivative is used

DF [f̄ ](δf) =: δF . (2.28)

2.3 Legendre-Fenchel Transformation

The Legendre-Fenchel transformation is introduced in this section and an illustration with the
aid of a simple example is provided afterwards. Literature on the Legendre-Fenchel transforma-
tion is given by Dacorogna (1989), Šilhavý (1997), Gelfand and Fomin (2000), and Kielhöfer
(2010) which are taken into account here. However, the subsequent is mainly based on the
works of Lanczos (1970) and Rockafellar and Wets (1998).

The Legendre-Fenchel transformation, mentioned in the framework of dualization, trans-
forms a function f with a set of variables xi into a new function f ∗ with a new set of variables
yi, which corresponds to the partial derivatives of the original function f . In case of con-
vex functions, a further transformation of the new function f ∗ results in the original function
f ∗∗≡f , thus both systems, f and f ∗, are considered to be equivalent. This transformation is
also called dual transformation. The main idea is to transform a function and particularly its
variables into an equivalent function with different variables which can more easily be han-
dled. The general formulation of the Legendre-Fenchel transformation, which is also valid for
non-convex functions, as well as the partial derivative of f are given by

f ∗(y) := sup
x
{x · y − f(x)} , (2.29)

y(x) =
∂f(x)

∂x
. (2.30)

The transformation backwards in case of convexity and the respective partial derivative read

f = f ∗∗(x) := sup
y
{y · x− f ∗(y)} , (2.31)

x(y) =
∂f(y)

∂y
. (2.32)

The application of the supremum allows to consider non-convex and non-continuous functions,
as well. However, the duality gets lost due to possible identical gradients and not uniquely
differentiable functions. Thus, convexity and continuity are required for duality, see Dacorogna
(1989) and Šilhavý (1997).
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2.4 Laws of Thermodynamics

The first law is characterized by the balance of energy given in Subsection 2.4.1 and the second
law by the imbalance of entropy given in Subsection 2.4.2. Both are the foundation for Hamil-
ton’s principle allowing for a thermodynamically consistent derivation of the presented material
models. The subsequent is based on works of Šilhavý (1997), Holzapfel (2000), and Demtröder
(2017) and especially on Gurtin et al. (2010), Müller (2016), and Holm (2018).

2.4.1 First Law of Thermodynamics: Balance of Energy

The first law of thermodynamics deals with the balance of energy in a closed system considering
the rate of the internal energy Ė and kinetic energy K̇ as well as the mechanicalW and thermal
power Q. The global form is given by

Ė + K̇ =W +Q . (2.33)

Hereby, the internal energy E corresponds to

E =

∫
Ω

Ψ dV +

∫
Ω

θs dV , (2.34)

including the Helmholtz free energy Ψ, the absolute temperature θ, and the specific entropy s.
The volume of the considered body is denoted by Ω. Moreover, the kinetic energy K reads

K =

∫
Ω

1

2
ρ|v|2 dV , (2.35)

taking the density ρ and the velocity v into account. The mechanical powerW is defined as

W =

∫
Ω

f · v dV +

∫
∂Ω

t · v dA (2.36)

=

∫
Ω

(
d

dt

1

2
ρ|v|2 + σ : ε̇

)
dV , (2.37)

with the volume forces f and externally acting traction forces t. Hereby, the application of
Cauchy’s theorem t = σ · n and the balance of linear momentum ∇ · σ + f = ρv̇ to the first
equation results in the second equation. Finally, the thermal power Q is presented by

Q =

∫
Ω

h dV −
∫
∂Ω

q · n dA (2.38)

=

∫
Ω

(h−∇ · q) dV , (2.39)

containing the internal heat source h and the heat flux q which flows perpendicularly across the
boundary ∂Ω as described by the normal vector n. The second equation is obtained by applying
the Gauß theorem to the first one. Altogether, the balance of energy can be assembled as follows∫

Ω

(
Ψ̇ + ˙(θs) +

d

dt

1

2
ρ|v|2

)
dV =

∫
Ω

(
d

dt

1

2
ρ|v|2 + σ : ε̇+ h−∇ · q

)
dV . (2.40)
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Eliminating the identical integrals transfers the balance of energy into its local form and addi-
tionally reducing the redundant kinetic therm provides

Ψ̇ + θ̇s+ θṡ = σ : ε̇+ h−∇ · q . (2.41)

2.4.2 Second Law of Thermodynamics: Imbalance of Entropy

The second law of thermodynamics is characterized by the imbalance of entropy dealing with
the direction and irreversibility of processes and follows the first law from the last Subsection
2.4.1. Hereby, entropy is defined differently in the literature, Holm (2018) for instance de-
scribes the entropy as a measure of energy amount that irreversibly transforms from a state of
for mechanical work usable into unusable energy or alternatively from an ordered into less or-
dered state. Heating a system thereby corresponds to transforming usable into unusable energy
by dissipation that is consequently accompanied by an increase of entropy. Only in case of
equilibrium, the entropy can stay constant. Both the increase as well as the constant state of
entropy are basically the main statements of the imbalance of entropy for irreversible processes
in closed systems.

In this context the entropy is denoted as the absolute entropy production H and corresponds
to the following formulation

H =

∫
Ω

(
ṡ+∇ · q

θ
− h

θ

)
dV , (2.42)

which for the mentioned reasons exhibits non-negativity regarding closed systems, thus

H ≥ 0 . (2.43)

The volume-weighted quantity of the absolute entropy production H is the entropy production
S defined as

H =

∫
Ω

S dV (2.44)

Again, the elimination of identical integrals provides the local form of the second law of ther-
modynamics in Equation (2.45) and additionally applying the quotient rule transforms this for-
mulation into the second Equation (2.46), consequently

S = ṡ+∇ · q
θ
− h

θ
(2.45)

= ṡ+
1

θ
∇ · q − 1

θ2
q · ∇θ − h

θ
. (2.46)

Naturally, the non-negativity also applies for the entropy production S, thus

S ≥ 0 . (2.47)

The local form of the first law can be solved for the internal heat source h as follows

h = Ψ̇ + θ̇s+ θṡ− σ : ε̇+∇ · q . (2.48)
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Multiplying the local form of the second law of thermodynamics in Equation (2.46) with the
absolute temperature θ provides the first subsequent equation. Taking into account h from
Equation (2.48) leads to the second one

θS = θṡ+∇ · q − 1

θ
q · ∇θ − h (2.49)

= θṡ+∇ · q − 1

θ
q · ∇θ − Ψ̇− θ̇s− θṡ+ σ : ε̇−∇ · q . (2.50)

After some simplifications the reduced form of the second law of thermodynamics is resulting

θS = −Ψ̇− 1

θ
q · ∇θ − θ̇s+ σ : ε̇ ≥ 0 , (2.51)

which contains the dissipation θS on the left-hand side and the Clausius-Duhem inequality on
the right-hand side.

2.5 Free Energy and Constitutive Equations

This section basically results from the laws of thermodynamics presented in the previous Sec-
tion 2.4 and introduces constitutive equations on the basis of the Clausius-Duhem inequality
(Equation 2.51), by means of the Coleman-Noll procedure (see Coleman and Noll (1963) and
Coleman and Gurtin (1967)) and by considering the Helmholtz free energy. These constitutive
equations are the foundation for the Hamilton’s principle in Section 2.6. The subsequent is
based on works from Šilhavý (1997), Holzapfel (2000), Gurtin et al. (2010), and Holm (2018).

The subsequent general formulation of the constitutive equations connects the process quanti-
ties that include the strain ε, the temperature θ, the gradient of temperature∇θ, and the internal
variable λ (assumed to be scalar in line with most of the used material models in this thesis and
also typical for the applied isotropic considerations) with the response or constitutive functions
that includes the Helmholtz free energy Ψ, stress σ, entropy s, and heat flux q. Therefore

Ψ = Ψ (ε, θ,∇θ, λ) , σ = σ (ε, θ,∇θ, λ) ,

s = s (ε, θ,∇θ, λ) , q = q (ε, θ,∇θ, λ) . (2.52)

Hereby, the underlying Helmholtz free energy Ψ is in a general form and can be customized in
order to describe a desired material behavior. The corresponding rate of the general Helmholtz
free energy is achieved by applying the chain rule as follows

Ψ̇ =
∂Ψ

∂ε
: ε̇+

∂Ψ

∂θ
θ̇ +

∂Ψ

∂(∇θ)
· ˙(∇θ) +

∂Ψ

∂λ
λ̇ . (2.53)

The first subsequent equation can be derived by inserting Ψ̇ into the Clausius-Duhem inequality
in Equation 2.51. Rearranging then provides the second one

θS = −∂Ψ

∂ε
: ε̇− ∂Ψ

∂θ
θ̇ − ∂Ψ

∂(∇θ)
˙(∇θ)− ∂Ψ

∂λ
λ̇− 1

θ
q · ∇θ − θ̇s+ σ : ε̇ (2.54)

=

(
σ − ∂Ψ

∂ε

)
: ε̇−

(
s+

∂Ψ

∂θ

)
θ̇ − ∂Ψ

∂(∇θ)
· ˙(∇θ)− ∂Ψ

∂λ
λ̇− 1

θ
q · ∇θ ≥ 0 . (2.55)
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At this point, the Coleman-Noll procedure (Coleman and Noll (1963) and Coleman and Gurtin
(1967)) allows an interpretation of the second Equation (2.55) by considering all terms sepa-
rately resulting in the wanted constitutive equations.

Equation (2.55) has to be valid for all materials or processes and therefore for all extreme
cases. Initially, a pure elastic deformation without any internal variables under constant tem-
perature in time and homogenous temperature in space is assumed, which consequently only
results in a change of strains ε. This allows to calculate the stresses σ in accordance with

σ − ∂Ψ

∂ε
= 0 (2.56)

⇔ σ =
∂Ψ

∂ε
. (2.57)

Afterwards, a pure cooling or heating without any internal variables under constant strain and
homogenous temperature in space is assumed, which thus only results in a change of tempera-
ture θ in time. Herewith, the entropy s is given by

s+
∂Ψ

∂θ
= 0 (2.58)

⇔ s = −∂Ψ

∂θ
. (2.59)

As for example mentioned in the works of Bargmann and Steinmann (2005) or Gurtin et al.
(2010), the Helmholtz free energy Ψ as well as the temperature θ are independent from the
gradient of the temperature∇θ, therefore

∂Ψ

∂(∇θ)
= 0 (2.60)

⇒ Ψ = Ψ (ε, θ, λ) . (2.61)

Now, analogously to the stresses and entropy, the term including the internal variable λ can be
considered separately as well. The subsequent expression allows to define the thermodynamic
driving force p that also provides information about the evolution direction of the internal vari-
able. The following applies

− ∂Ψ

∂λ
λ̇ ≥ 0 (2.62)

⇒ −∂Ψ

∂λ
=: p . (2.63)

The aforementioned case regarding the internal variable can be assigned to mechanical dissipa-
tion whereas the following to thermal dissipation, respectively. Hereby, the heat flux q causes
an opposite directed temperature gradient ∇θ in order to fulfill the heat conduction inequality
in line with works of Holzapfel (2000), Gurtin et al. (2010), or Demtröder (2017) for example.

− 1

θ
q · ∇θ ≥ 0 (2.64)

⇒ q ∼ −∇θ . (2.65)

With the derived relations of the constitutive equations necessary foundations for the Hamilton’s
principle in Section 2.6 have been achieved.
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2.6 Hamilton’s Principle

Continuous materials with conservative and non-conservative behavior are considered in Sec-
tion 2.6.1 and 2.6.2. The Gibbs energy for non-conservative materials includes a general and
a special case. The general case in Section 2.6.3 is addressed to materials including a gradient
of the internal variable. The special case in Section 2.6.4 does not include this gradient and
results in the well-known principle of the minimum of the dissipation potential (PMDP). The
subsequent is mainly based on the work of Junker (2016). Additionally, the derivation of the
Hamilton’s principle is based on and inspired by works of Hamilton (1834), Hamilton (1835),
and Bedford (1985) while Bailey (2002) presented a different view on this topic. The PMDP
originates from works of Onsager (1931), Ortiz and Repetto (1999), Ortiz and Stainier (1999),
Carstensen et al. (2001), and Hackl and Fischer (2008) and for non-isothermal processes from
work of Hackl et al. (2011) and Junker et al. (2014).

2.6.1 Conservative Materials

Continuous materials are assumed and therefore the Gibbs energy can be formulated by consid-
ering the internal and external potential, Πint and Πext, according to

G := Πint + Πext . (2.66)

Πint includes the Helmholtz free energy Ψ based on the strains ε and an internal variable λ, thus

Πint :=

∫
Ω

Ψ(ε, λ) dV , (2.67)

and Πext considers the volume forces f and the tractions t as follows

Πext := −
∫

Ω

f · u dV −
∫
∂Ω

t · u dA . (2.68)

The Gibbs energy can then be composed to

G :=

∫
Ω

Ψ(ε, λ) dV −
∫

Ω

f · u dV −
∫
∂Ω

t · u dA . (2.69)

Initially, conservative materials are considered that naturally do not take into account dissipative
processes and consequently only involve the kinetic energy that is defined by

K :=

∫
Ω

1

2
ρ |u̇|2 dV . (2.70)

Thus, the Hamilton’s principle for continuous and conservative materials reads∫ t1

t0

(δK − δG) dt = 0 , (2.71)

the static case simplifies the Hamilton’s principle by neglecting the kinetic energy, hence

δG = 0 . (2.72)
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2.6.2 Non-Conservative Materials

In contrast to conservative materials, non-conservative materials take into account dissipative
processes. The dissipative character of microstructural evolution can be taken into account by
means of a so-called dissipative force p̂ (not equal to driving force p), which is assumed to be
derivable from a dissipation potential D as

p̂ :=− ∂D
∂λ̇

. (2.73)

At this point the aforementioned dissipation function D is introduced in more detail. It de-
scribes the amount of energy that is converted from elastic or kinetic to dissipative energy. This
process is irreversible and is characterized by the production of heat. Several approaches for the
dissipation function are generally possible, the most common ones are presented subsequently.

A standard approach for rate-independent material models of elastoplastic-type is

D := r1|λ̇| , (2.74)

with the dissipation parameter r1 serving as an energetic threshold. Rate-dependent material
models of viscoelastic-type can be described by

D :=
r2

2
λ̇2 , (2.75)

whereby the parameter r2 describes the viscosity of the material. Both approaches can be
merged to an elasto-viscoplastic-type as follows

D := r1|λ̇|+
r2

2
λ̇2 . (2.76)

Finally, the Hamilton’s principle for continuous and non-conservative materials is defined by∫ t1

t0

(δK − δG + δV) dt = 0 . (2.77)

Analogously to Equation (2.71), the kinetic energy is neglected again and an additional term
related to the dissipative work is considered. This results in a simplified Hamilton’s principle as

δG − δV = 0 . (2.78)

Thereby, δV is referred to as virtual work of the dissipative forces V and is given by

δV =

∫
Ω

p̂ δλ dV . (2.79)

Altogether, Hamilton’s principle for continuous and non-conservative material under static con-
ditions is provided by

δG +

∫
Ω

∂D
∂λ̇

δλ dV = 0 . (2.80)

Depending on the Gibbs energy, different cases are available that are presented hereinafter.
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2.6.3 General Usage of Hamilton’s Principle

The most general case of the Hamilton’s principle assumes a Gibbs energy that is depending on
the displacement field u (and strains ε), the internal variable λ, and its gradient∇λ, thus

G = G (u, λ,∇λ) . (2.81)

As a result, the Hamilton’s principle becomes

δG +

∫
Ω

∂D
∂λ̇

δλ dV = δuG + δλG +

∫
Ω

∂D
∂λ̇

δλ dV = 0 ∀ δu, δλ , (2.82)

whereat the displacement field u and the internal variable λ are considered separately by δuG
and δλG yielding the two independent stationarity conditions∫

Ω

∂Ψ

∂ε
: δε dV −

∫
Ω

f · δu dV −
∫
∂Ω

t · δu dA = 0 ∀ δu , (2.83)∫
Ω

∂Ψ

∂λ
δλ dV +

∫
Ω

∂Ψ

∂∇λ
·δ∇λ dV +

∫
Ω

∂D
∂λ̇

δλ dV = 0 ∀ δλ . (2.84)

Integration by parts of the first stationarity condition regarding the displacement field u and
with σ = ∂Ψ/∂ε according to Equation (2.56) provides

∇ · σ + f = 0 ∀ x ∈ Ω , (2.85)

σ · n = t ∀ x ∈ ∂Ω , (2.86)

whereby the first equation is assigned to Cauchy’s equation of equilibrium and the second one
to Cauchy’s theorem, see works of Altenbach and Altenbach (1994), Holzapfel (2000), and
Willner (2003) for instance. Moreover, integration by parts of the second stationarity condition
with respect to the internal variable λ in Equation (2.84) provides

∂Ψ

∂λ
−∇ ·

(
∂Ψ

∂∇λ

)
+
∂D
∂λ̇

= 0 ∀ x ∈ Ω , (2.87)(
∂Ψ

∂∇λ

)
· n = 0 ∀ x ∈ ∂Ω , (2.88)

at which the first equation is referred to as the Helmholtz equation and the second one is the
Neumann boundary condition, see for example works of Achenbach (1975), Schäfer (1999),
and Riley et al. (2006). Application of this general case is presented for damage modeling by
Junker et al. (2018) or for topology optimization by Junker and Hackl (2016), for instance.

2.6.4 Principle of the Minimum of the Dissipation Potential

The principle of the minimum of the dissipation potential (PMDP) assumes a Gibbs energy that
is no longer depending on the gradient of the internal variable ∇λ. Only the displacement field
u (and consequently on the strains ε again) and the internal variable λ are considered, thus

G = G (u, λ) . (2.89)
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The two independent stationarity conditions of Hamilton’s principle simplify to∫
Ω

∂Ψ

∂ε
: δε dV −

∫
Ω

f · δu dV −
∫
∂Ω

t · δu dA = 0 ∀ δu , (2.90)∫
Ω

∂Ψ

∂λ
δλ dV +

∫
Ω

∂D
∂λ̇

δλ dV = 0 ∀ δλ . (2.91)

Integration by parts provides the strong form of the balance of linear momentum (see Equations
(2.85) and (2.86)), but the second stationarity condition can be transformed into the following
simple expression

∂Ψ

∂λ
+
∂D
∂λ̇

= 0 , (2.92)

which is known as Biot’s equation, see work of Biot (1962). Integration then with respect to the
rate of the internal variable λ̇ provides

∂Ψ

∂λ
λ̇+D +A → min

λ̇
, (2.93)

which has to be minimized with respect to λ̇ and involves an integration constant A that is
arbitrary and can be defined as

A :=
∂Ψ

∂ε
: ε̇ . (2.94)

Finally, the Lagrangian can be formulated by

L := Ψ̇ +D → min
λ̇
, (2.95)

where the first term Ψ̇ collects the derivatives of Ψ with respect to both included quantities: the
stresses ε and the internal variable λ. This Lagrangian actually represents the PMDP. It is a
mathematical potential that allows to consider constrains by appropriate penalty terms.

The PMDP as a special case of Hamilton’s principle for continuous and non-conservative
materials underlying a restricted Gibbs energy without consideration of gradients of the internal
variable is now been derived as well. It is also firmly established in the literature for example
in the area of damage modeling represented by works of Dimitrijevic and Hackl (2008) and
Schwarz et al. (2018b), but also in other research areas like for instance topology optimization in
the work of Junker and Hackl (2015) or the modeling of shape memory alloys that is extensively
presented by investigations of Waimann (2018).

A similar approach is the principle of the maximum dissipation that can be found in works of
Hackl and Fischer (2008), Hackl et al. (2011), and Junker (2011) for example.

2.7 Numerical Treatment of Evolution Equations

The numerical treatment of evolution equations is presented in this section taking up the evolu-
tion equations from the previous Section 2.6 and preparing their numerical application. There-
fore, the works of Schäfer (1999) and Simo and Hughes (2000) served as a basis.
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In general, the material behavior with respect to an internal variable λ depends on the applied
dissipation function which are introduced in Subsection 2.6.2. Thereby, the rate-independent
(“RI”) material behavior is related to a dissipation function of elastoplastic-type given byDRI :=
r1|λ̇| in Equation (2.74). In return, the rate-dependent (“RD”) material behavior is related to
a dissipation function of elasto-viscoplastic-type given by DRD := r1|λ̇| +

r2

2
λ̇2 in Equation

(2.76). Provided that r1 is the dissipation parameter and r2 the viscosity parameter.

Application of Hamilton’s principle from Subsection 2.6.3 or of the PMDP from Subsec-
tion 2.6.4 provides the evolution equation for the internal variable λ. In accordance with the
underlying material behavior, the evolution equation has the following form

λ̇RI =
|λ̇|
r1

pRI =∆ρ pRI , (2.96)

λ̇RD =
1

r2

[|pRD| − r1]+ , (2.97)

where |λ̇|/r1 can be identified as the consistency parameter ∆ρ ≥ 0, p is the driving force of the
internal variable λ and [x]+ := (x+ |x|)/2 only permits positive values. In the rate-independent
case, the mentioned consistency parameter ∆ρ has to be determined. Hereto, the Legendre
transformation according to Section 2.3 is performed as follows

D∗RI = sup
λ̇

{
pRIλ̇−DRI

}
= sup

λ̇

{
|λ̇|(pRI sgnλ̇− r1)

}
= sup

λ̇

{
|λ̇|
r1

(p2
RI − r2

1)

}
. (2.98)

Consequently, a yield function Φ is obtained by

Φ := p2
RI − r2

1 ≤ 0 , (2.99)

which carries the same information as

Φ := |pRI| − r1 ≤ 0 . (2.100)

Finally, the consistency parameter ∆ρ can be computed from the condition Φ = 0. Thus, the
Karush-Kuhn-Tucker conditions read

∆ρ ≥ 0 , Φ ≤ 0 , ∆ρ Φ = 0 . (2.101)

rate-dependentrate-independent

���

��� ���

l , pRI RI

.
l , pRD RD

.

Figure 2.1: Schematic illustration of the rate-independent and rate-dependent (left/right) evolu-
tion of the internal variable λ with respect to the yield function Φ. Image inspired
by Simo and Hughes (2000).
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Both, the rate-independent and rate-dependent evolution of the internal variable λ, are pre-
sented in Figure 2.1. This evolution is defined by the direction and amount. The direction
is always given by the respective driving force p whereas the amount depends on the respec-
tive formulation. In the rate-independent case, the determination of the consistency parameter
∆ρ leads to an amount of evolution which exactly fulfills the yield function Φ. In turn, the
rate-dependent evolution of λ is limited by the viscosity parameter r2 and by the subsequently
introduced time increment ∆t. Therefore, the damage variable evolves in a direction normal
to the yield surface. However, in the viscous case no microstructural state granting Φ = 0 is
(necessarily) reached. For the evolution equations different time discretizations are used in this
thesis: the explicit method, the implicit method and, in some cases, different time discretizations
are applied to the strains and internal variable resulting in an operator split.

The explicit time discretization, also referred to as forward Euler method, is related to the
previous time step m by means of λm+1 = λm+1(εm, λm), thus

λm+1
RI = λm +

{
∆ρ pRI(ε

m, λm) for |pRI| > r1

0 else
, (2.102)

λm+1
RD = λm +


∆t

r2

(|pRD(εm, λm)| − r1) for |pRD| > r1

0 else
. (2.103)

The implicit time discretization, also referred to as backward Euler method, is related to the
current time step m+ 1 by means of λm+1 = λm+1(εm+1, λm+1), thus

λm+1
RI = λm +

{
∆ρ pRI(ε

m+1, λm+1) for |pRI| > r1

0 else
, (2.104)

λm+1
RD = λm +


∆t

r2

(
|pRD(εm+1, λm+1)| − r1

)
for |pRD| > r1

0 else
. (2.105)

The combined time discretization applies different methods to the strains and internal variable
resulting in an operator split. The strains from the previous time step m can be combined with
the internal variable of the current time step m+ 1 by means of λm+1 = λm+1(εm, λm+1), thus

λm+1
RI = λm +

{
∆ρ pRI(ε

m, λm+1) for |pRI| > r1

0 else
, (2.106)

λm+1
RD = λm +


∆t

r2

(
|pRD(εm, λm+1)| − r1

)
for |pRD| > r1

0 else
. (2.107)

Otherwise, the internal variable from the previous time step m can be combined with the strains
of the current time step m+ 1 by means of λm+1 = λm+1(εm+1, λm), thus

λm+1
RI = λm +

{
∆ρ pRI(ε

m+1, λm) for |pRI| > r1

0 else
, (2.108)

λm+1
RD = λm +


∆t

r2

(
|pRD(εm+1, λm)| − r1

)
for |pRD| > r1

0 else
. (2.109)
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2.8 Finite Element Method

The finite element method is introduced in this section. The discretization is given in Subsection
2.8.1 and the shape functions and interpolation in Subsection 2.8.2. Then the operator matrix
and strains are presented in Subsection 2.8.3. In Subsection 2.8.4 the Gauß quadrature is intro-
duced and finally the formulation and treatment of the residual is given in Subsection 2.8.5. The
following is mainly based on the works of Schäfer (1999), Zienkiewicz et al. (2005), Fish and
Belytschko (2007), and Taylor (2017a) but also on Wriggers (2001), Bathe (2002), Zienkiewicz
and Taylor (2005), Hermann (2011), and Taylor (2017b).

2.8.1 Discretization

The basic concept of the finite element method is the discretization transforming continuous
problems with infinite computing effort into discrete and resolvable problems, see Zienkiewicz
et al. (2005). For an accurate solution, the number of discrete elements can be high. The starting
point for the discretization is the division of the considered body with the total volume Ω into a
finite number Ne of the already mentioned elements with the volume Ωe, thus

Ω =
Ne∑
e=1

Ωe , (2.110)

whereby these elements are also referred to as finite elements. This discretization can then be
transferred to the integrals of variational equations in accordance with∫

Ω

( · )dV =
Ne∑
e=1

∫
Ωe

( · )dV . (2.111)

A similar procedure can also be applied to the boundaries of the considered body. The men-
tioned elements are built up by a specific numberNn of nodes n (eight for cubic-like or so-called
hexahedral elements), whereby these nodes are described by physical coordinates x denoted as

x =
(
x1 x2 x3

)T
. (2.112)

2.8.2 Shape Functions and Interpolation

The discretization of the body usually does not provide regular cubes of equal length due to the
given boundary value problem, thus the elements are differently and arbitrarily shaped hexahe-
drons. For that reason, the coordinates as well as the displacements are consistently mapped
to a reference element with cubical shape, which represents the simplest case and allows for a
straightforward application of the Gauß quadrature introduced later in Subsection 2.8.4. The
nodes of the reference element are described by so-called natural coordinates ξ denoted as

ξ =
(
ξ1 ξ2 ξ3

)T
. (2.113)

Both an arbitrarily shaped element related to the physical coordinates as well as the mentioned
reference element related to the natural coordinates are illustrated by Figure 2.2.
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Figure 2.2: Arbitrary/reference element in physical/natural coordinates (left/right).

Hereby, the mapping from the physical coordinate system to the natural one requires an in-
terpolation that is introduced by the shape functions N . These shape functions are identically
applied to the nodal coordinates x̂ as well as to the nodal displacements û, both related to the
corner points of the physical coordinate system, in accordance with the isoparametric concept
and furthermore the same shape functions are also applied to the variation of the nodal displace-
ments δû according to the Galerkin (or Bubnov-Galerkin) method. The following applies

x = N · x̂ , u = N · û , δu = N · δû . (2.114)

As mentioned before, the elements in the physical coordinate system have different and arbitrary
shapes, therefore the applied trilinear shape functions for hexahedral elements are only related
to the consistent natural coordinate system by means of

N I(ξ) =
1

8
(1 + ξI1ξ1)(1 + ξI2ξ2)(1 + ξI3ξ3) , (2.115)

provided that ξI =
(
ξI1 ξI2 ξI3

)T with ξIj ∈ {−1, 1} are the nodal coordinates (corner points)
of the natural coordinate system with I ∈ {1, 2, 3, 4, 5, 6, 7, 8} resulting in eight shape functions
N I . It is also provided that the origin of the natural coordinate system is located in the center
of the cube and that the edges of the cube have a length of two. The eight shape functions
originating from Equation (2.115) are then assembled to a matrix, accordingly

N = N (ξ) = (2.116)N
1(ξ) 0 0 N2(ξ) 0 0 · · · N8(ξ) 0 0

0 N1(ξ) 0 0 N2(ξ) 0 · · · 0 N8(ξ) 0

0 0 N1(ξ) 0 0 N2(ξ) · · · 0 0 N8(ξ)

 ,

whereas the nodal coordinates x̂ and nodal displacements û of the physical coordinate system
are related to a specific element e and assembled to the vectors

x̂ = x̂e =
(
x̂1

1 x̂1
2 x̂1

3 x̂2
1 x̂2

2 x̂2
3 . . . x̂8

1 x̂8
2 x̂8

3

)T
, (2.117)

û = ûe =
(
û1

1 û1
2 û1

3 û2
1 û2

2 û2
3 . . . û8

1 û8
2 û8

3

)T
, (2.118)

so that the interpolated coordinates x and displacements u are depending on the natural coor-
dinate system according to x = x(ξ) and u = u(ξ) respectively. The transfer between the
physical and natural systems is enabled by the Jacobian matrix J introduced hereinafter.
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2.8.3 Operator Matrix and Strains

The strain ε is determined under the assumption of small deformations by

ε =
1

2
(∇u+ u∇) . (2.119)

This strain-displacement relation can also be formulated by the strain operator matrix B̃ con-
taining the corresponding derivatives under consideration of the Voigt notation, therefore

ε̃ = B̃ · u , (2.120)

with

B̃ =



∂

∂x1

0 0

0
∂

∂x2

0

0 0
∂

∂x3

0
∂

∂x3

∂

∂x2

∂

∂x3

0
∂

∂x1

∂

∂x2

∂

∂x1

0



. (2.121)

Taking into account the shape functions from Equation (2.114) allows to substitute as follows

ε̃ = B̃ ·N · û = B · û , (2.122)

corresponding to a derivative of the natural coordinates ξ in N with respect to the physical
coordinates x in B̃. This derivative is denoted by the operator matrix B = B̃ · N . The
components ofB can be determined by considering ∂N (ξ)/∂x using the chain rule, thus

∂N (ξ)

∂x1

=
∂N (ξ)

∂ξ1

∂ξ1

∂x1

+
∂N (ξ)

∂ξ2

∂ξ2

∂x1

+
∂N (ξ)

∂ξ3

∂ξ3

∂x1

, (2.123)

∂N (ξ)

∂x2

=
∂N (ξ)

∂ξ1

∂ξ1

∂x2

+
∂N (ξ)

∂ξ2

∂ξ2

∂x2

+
∂N (ξ)

∂ξ3

∂ξ3

∂x2

, (2.124)

∂N (ξ)

∂x3

=
∂N (ξ)

∂ξ1

∂ξ1

∂x3

+
∂N (ξ)

∂ξ2

∂ξ2

∂x3

+
∂N (ξ)

∂ξ3

∂ξ3

∂x3

. (2.125)

This set of equations can be reformulated as follows

∂N (ξ)

∂x1

∂N (ξ)

∂x2

∂N (ξ)

∂x3

 =



∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3

∂x1

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3

∂x2

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3

∂x3

 ·


∂N (ξ)

∂ξ1

∂N (ξ)

∂ξ2

∂N (ξ)

∂ξ3

 , (2.126)



2.8 Finite Element Method 21

or alternatively shorter in accordance with

∂N (ξ)

∂x
= J−1 · ∂N (ξ)

∂ξ
, (2.127)

including the inverted well-known Jacobian matrix J−1. Then, inverting this equation yields

∂N (ξ)

∂ξ
= J · ∂N (ξ)

∂x
. (2.128)

Generally, the Jacobian J is defined as follows

J =
∂x

∂ξ
=
∂ (N · x̂)

∂ξ
=
∂N

∂ξ
· x̂ . (2.129)

This Jacobian can easily be calculated element-wise just by considering the given shape func-
tionsN and the respective geometry x̂. Then, Equation (2.127) allows to calculate all required
derivatives for the operator matrixB, which have to be allocated appropriately.

2.8.4 Gauß Quadrature

At this point the Gauß quadrature is taken into account, see Zienkiewicz et al. (2005), Fish and
Belytschko (2007), and Hermann (2011) for example. The objective is to avoid integrating over
the element volumes and to take advantage of the numerical integration instead, thus∫ 1

−1

f(x) dx ≈
m∑
j=1

w(xj)f(xj) . (2.130)

This is exact for polynomial degrees o premising o ≤ 2m − 1 with m sampling points under
the assumption of an appropriate choice of the weights w(xj) and coordinates xj and for the
specified boundaries. For the given application, the integral is extended to the three-dimensional
consideration and adjusted according to the integrals of the natural elements. In context of finite
elements the Gauß points are denoted by NGP . Therefore∫ 1

−1

∫ 1

−1

∫ 1

−1

f(ξ) detJ(ξ) dξ1 dξ2 dξ3 =

NGP∑
g=1

wGP f(ξgGP ) detJ(ξgGP ) . (2.131)

Exact integration is provided because of two sampling points m = 2 in each spatial direction,
which always fulfills the condition o < 4−1 in the present case. The determinant of the Jacobian
detJ is considered as a result of the coordinate transformation. Furthermore, the weights are
constant and prescribed by wGP = 1 and the prescribed coordinates of the Gauß points denoted
by the subscript ( · )GP and of number NGP = m3 = 8 are given by

ξ1
GP =

(
+1/
√

3 −1/
√

3 −1/
√

3
)
, ξ2

GP =
(
+1/
√

3 +1/
√

3 −1/
√

3
)
,

ξ3
GP =

(
−1/
√

3 +1/
√

3 −1/
√

3
)
, ξ4

GP =
(
−1/
√

3 −1/
√

3 −1/
√

3
)
,

ξ5
GP =

(
+1/
√

3 −1/
√

3 +1/
√

3
)
, ξ6

GP =
(
+1/
√

3 +1/
√

3 +1/
√

3
)
,

ξ7
GP =

(
−1/
√

3 +1/
√

3 +1/
√

3
)
, ξ8

GP =
(
−1/
√

3 −1/
√

3 +1/
√

3
)
. (2.132)



22 2 Fundamentals

2.8.5 Residual and Tangent Matrix

The Gibbs energy according to Equation (2.69) is the starting point, therefore

G :=

∫
Ω

Ψ(ε, λ) dV −
∫

Ω

f · u dV −
∫
∂Ω

t · u dA . (2.133)

Analogously to Equation (2.83), the stationarity condition for the Gibbs energy with respect to
the underlying primary variable u corresponding to the displacement field can be derived as

δG =

∫
Ω

σ : δε dV −
∫

Ω

f · δu dV −
∫
∂Ω

t · δu dA = 0 ∀ δu , (2.134)

with stresses σ = ∂Ψ/∂ε according to Equation (2.56), which have to be determined as pre-
sented in Section 2.9. Finally, the derived shape functions N as well as the operator matrix B
can be inserted into the variation of the Gibbs energy in Equation (2.134) providing the residual
Ru of the displacement field. After eliminating the superfluous δû, the following results

Ru =

∫
Ω

BT · σ̃ dV −
∫

Ω

NT · f dV −
∫
∂Ω

NT · t dA
!

= 0 . (2.135)

These integrals over the total volume of the considered body can now be discretized by the
subdivision into element-wise integrals according to Equation (2.111), therefore

Ru =
Ne∑
e=1

∫
Ωe

BT · σ̃ dV −
Ne∑
e=1

∫
Ωe

NT · f dV −
Ne∑
e=1

∫
∂Ωe

NT · t dA
!

= 0 . (2.136)

Finally, the derived element-wise residual Ru from Equation (2.136) under consideration of
the Gauss quadrature in Equation (2.131) has to become zero. Hereto, the Newton-Raphson
method, see works of Schäfer (1999), Zienkiewicz et al. (2005), Fish and Belytschko (2007),
and Hermann (2011) for example, is applied as follows

Rk+1
u = Rk

u +
dRk

u

duk
·∆uk+1 !

= 0 , (2.137)

with the iteration number k and the displacement increment ∆u by means of

∆uk+1 = −
[

dRk
u

duk

]−1

·Rk
u , (2.138)

so that the displacements can be updated by

uk+1 = uk + ∆uk+1 . (2.139)

Within the residualRk
u the stresses σ̃ are included and have to be determined as done in the Sec-

tion 2.9 hereinafter. Moreover, the derivative of the residuum with respect to the displacements
dRk

u/du, which is denoted as the tangent matrix, has to be calculated, therefore

dRk
u

du
=

Ne∑
e=1

NGP∑
g=1

BT · dσ̃

du
detJ =

Ne∑
e=1

NGP∑
g=1

BT · dσ̃

dε̃
·B detJ , (2.140)
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where the notation of the Jacobian, which is depending on the element and each Gauß point,
was shortened for clarity. The newly occurred derivative dσ̃/ dε̃ is denoted as the material
tangent and is also determined in the following section. The material tangent describes the
linear or non-linear slope of the stress-strain curve of the material.

2.9 Determination of Stresses and Material Tangent

As described in the previous Subsection 2.8.5, the determination of the stresses as well as the
material tangent is necessary in order to calculate the residual as well as the tangent matrix from
Equations (2.136) and (2.140). In this section the Voigt notation is used.

2.9.1 Linear Material Behavior

For materials with a linear stress-strain relation according to the pure elastic case, the stresses
σ̃ are only depending on the strains ε̃ as described by Hooke’s law as

σ̃ = σ̃(ε̃) = Ẽ0 · ε̃ . (2.141)

Then, the material tangent can trivially be determined by

dσ̃

dε̃
= Ẽ0 , (2.142)

where the material tangent is exactly corresponding to the stiffness matrix Ẽ0. For the present
linear elastic behavior, the material tangent is obviously constant and thus the tangent matrix as
well. Consequently, the Newton-Raphson method converges in one step or is not required at all
and the displacements could analytically be solved.

2.9.2 Non-Linear Material Behavior

It should be mentioned that the non-linearity is limited to the stress-strain relation as a result of
microstructural changes, for example. Geometrical non-linearity is not considered here. For the
non-linear stress-strain relation, the stresses σ̃ are no longer only depending on the strains ε̃ but
also on the internal variable λ, which in turn can also depend on ε̃ according to the respective
evolution equations. Hence, the stresses, which are described here in a generally applicable
formulation, are formulated as

σ̃ = σ̃(ε̃, λ) . (2.143)

At this point a linear approximation of the stresses by use of the Taylor’s theorem, see work of
Hermann (2011) for example, is done resulting in

σ̃m+1 = σ̃m +
∂σ̃

∂ε̃

∣∣∣∣m ·∆ε̃+
∂σ̃

∂λ

∣∣∣∣m ∆λ , (2.144)
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including the increment of the strains ∆ε̃ = ε̃m+1 − ε̃m, the increment of the internal variable
∆λ = λm+1 − λm and the stresses from the previous time-step σm. Based on that, the material
tangent can be derived by

dσ̃

dε̃

∣∣∣∣m+1

=
∂σ̃

∂ε̃

∣∣∣∣m +
∂σ̃

∂λ

∣∣∣∣m ⊗ ∂λ

∂ε̃

∣∣∣∣m+1

, (2.145)

whereat the first two terms on the right-hand side can straightforwardly be calculated and can
also be used for the determination of the stresses. The third one, the derivative of the internal
variable (∂λ/∂ε̃) |m+1, has to be investigated in more detail. Hereby, the rate-independent and
the rate-dependent case have to be distinguished as subsequently presented.

Rate-Independent Material Behavior

The evolution equation for rate-independent behavior according to Section 2.7 might appear as

λm+1 = λm + ∆ρ p(ε̃m+1, λm) , (2.146)

with the consistency parameter ∆ρ depending on the current strains

∆ρ = ∆ρ(ε̃m+1) . (2.147)

The wanted derivative of the internal variable (∂λ/∂ε̃) |m+1 can be derived as

∂λ

∂ε̃

∣∣∣∣m+1

= ∆ρ
∂p(ε̃m+1, λm)

∂ε̃m+1 +
∂∆ρ

∂ε̃m+1 p(ε̃
m+1, λm) . (2.148)

Here, the first term can be calculated directly whereas the second one, the derivative of the con-
sistency parameter ∆ρ, has to involve the yield function Φ introduced in Section 2.7, therefore

Φ = Φ(ε̃m+1, λm+1) (2.149)

=
∣∣p(ε̃m+1, λm+1)

∣∣− r1
!

= 0 (2.150)

=
∣∣p(ε̃m+1, λm + ∆ρ p(ε̃m+1, λm))

∣∣− r1
!

= 0 (2.151)

This derivative of ∆ρ can be achieved by taking the derivative of the yield function

dΦ

dε̃m+1 =
∂Φ

∂ε̃m+1 +
∂Φ

∂∆ρ

∂∆ρ

∂ε̃m+1

!
= 0 (2.152)

and subsequently by rearranging as follows

∂∆ρ

∂ε̃m+1 = −
(
∂Φ

∂∆ρ

)−1
∂Φ

∂ε̃m+1 . (2.153)

The both appearing terms can again be calculated straightforwardly. Finally, the wanted deriva-
tive of the internal variable is derived by

∂λ

∂ε̃

∣∣∣∣m+1

= ∆ρ
∂p(ε̃m+1, λm)

∂ε̃m+1 −
(
∂Φ

∂∆ρ

)−1
∂Φ

∂ε̃m+1 p(ε̃
m+1, λm) . (2.154)
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Rate-Dependent Material Behavior

In the other case of rate-dependent material behavior, see Section 2.7, the evolution equation no
longer has a consistency parameter but is described by viscous quantities as follows

λm+1 = λm +
∆t

r2

p(ε̃m+1, λm) . (2.155)

In contrast to the previous case, the wanted derivative of the internal variable (∂λ/∂ε̃) |m+1 can
easily be achieved by

∂λ

∂ε̃

∣∣∣∣m+1

=
∆t

r2

∂p(ε̃m+1, λm)

∂ε̃m+1 . (2.156)
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3 Damage Modeling and Regularization Strategies

This section introduces damage modeling initially with Section 3.1 providing different perspec-
tives on damage in general. Afterwards, these perspectives are further discussed starting with
Section 3.2 in which failure criteria are presented. This is followed by Section 3.3 introducing
micromechanical damage models. Finally, in Section 3.4 continuum damage models are pre-
sented. Building on that, several regularization strategies are discussed. First, the necessity of
regularization strategies is justified in Section 3.5. Then, Section 3.6 introduces the viscous reg-
ularization, followed by integral-type regularization in Section 3.7. Finally, gradient-enhanced
regularization is presented in Section 3.8. The provided information is based on the literature
given by Krajcinovic (1996) and Hornbogen et al. (2008) with a focus on the works of Skrzypek
and Ganczarski (1999) and Gross and Seelig (2011). Further literature is respectively stated

3.1 Different Perspectives on Damage

Damage characterizes the degradation of material strength or material resistance resulting as
a macroscopic effect of causing microscopic defects. Hereby, material damage in general de-
scribes the mere existence of voids, cavities and tiny cracks (microcracks) on the microstruc-
tural level, which are also already contained in the initial state of all materials up to a certain
level. Notwithstanding the previous description, the damage evolution results from processes of
void nucleation, growth and coalescence as well as from processes of microcrack initiation and
propagation leading to macroscopic damage in the end, see Figure 3.1. The mentioned damage
evolution is basically what damage modeling in this theses is about. Thereby, damage is not to
be confused with fracture mechanics as described by Hertzberg et al. (2013), Anderson (2005),
and Gross and Seelig (2011) for example, which basically describes the behavior of a specific
crack in contrast to the present damage description that rather constitutes a smeared quantity of
the material’s state. However, the evolving damage can also be interpreted as a crack in the case
of thin damage zones approaching zero stiffness for example.

Figure 3.1: Failure by brittle damage of a bike’s pedal arm. Image taken from Lokilech (2007).



28 3 Damage Modeling and Regularization Strategies

In the mentioned context, different scales of consideration can be distinguished for damage
modeling as shown in Figure 3.2, starting with the usually unconsidered atomic scale that takes
into account molecular dynamics and the configuration and breaks of atomic bonds. On the
next level, the already introduced microscopic scale includes the previous mentioned defects
and processes on which many damage formulations are based on. And finally, the most widely
used macroscopic scale is described by the continuum mechanics and can be related to the
microscopic scale. As a result, several techniques of transition, averaging or simplification
were developed across the different scales.

atomic scale

macroscopic scale

microscopic scale

Figure 3.2: Schematic illustration of damage on different scales: macroscopic scale (top), mi-
croscopic scale (left) and atomic scale (right). Image inspired by Skrzypek and
Ganczarski (1999).

Generally, damage models can not only be distinguished by the scale of consideration, but
also by their global response during damage, which can be categorized by a brittle or ductile
behavior, see Figure 3.3. Brittle damage is usually related to the initiation and propagation of
microcracks whereat the resulting macroscopic crack, which arises as a consequence of unstable
material deterioration and which develops suddenly and dominating compared to other cracks,
usually has a preferred direction. This brittle behavior leads to a sudden drop of the otherwise
linear global material response and to a very fine crack propagation. A typical example for
brittle behaving materials are for example glasses.

original ductilebrittle �

ductile

brittle

Figure 3.3: Schematic illustration of damage characteristics: tensile specimen in original and
damaged/failed state with brittle/ductile damage and related stress-strain diagram
(from left to right). Image inspired by Gross and Seelig (2011).
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In contrast, ductile damage is usually related to the nucleation, growth and coalescence of
voids and occurs in the context of plasticity. Ductile cracks usually develop slowly compared
to the brittle case, which is physically induced by a plastic zone propagating in front of the
crack tip and decreasing stresses. Since a lot of energy conversion is involved in these plastic
deformations, ductile materials are usually more resistant against crack propagation. The global
material response of this ductile materials is usually characterized by plastic behavior and a
smooth drop while the crack propagation is accompanied by plastic zones and therefore more
distributed. A typical example for ductile behaving materials are sorts of metals. It should
be considered that the behavior of materials related to brittleness or ductility is temperature-
dependent in most cases.

The presented models in this thesis do not consider plasticity at all. Even though accord-
ing enhancements to plasticity are partly existing, for example in the work of Schwarz et al.
(2018b) and Hoormazdi et al. (2019), they are not part of this investigation. Since no plastic
deformations are included, the models cannot directly be related to ductile behavior. However,
the manner how damage is occurring and propagating and the related impact on the global ma-
terial response can certainly be classified as being rather brittle or being rather ductile. For this
purpose, the intensity of the drop of the material’s global response as well as the thickness of
the cracks are accordingly assigned. The objective hereby is to investigate and evaluate how
the respective damage models are able to constitute rather brittle or rather ductile behavior or
something inbetween. In this context, the models behavior is described as being brittle-like
with localized damage or on the contrary as being ductile-like with diffusive damage without
disclaiming the actual physical meaning.

3.2 Failure Criteria

The simplest method of damage modeling is just to completely disregard any conditions or pro-
cesses on lower scales by defining a failure criterion based on stress or strain states. This is
also one of the oldest procedures to characterize material failure. In this context, damage dis-
tinguishes only two states namely completely intact and completely failed material. Hereto, the
failure criterion somehow represents a yield limit whose exceeding separates the two mentioned
states. This can exemplarily be illustrated by the following equation

σ ≤ σfail , (3.1)

inducing the state of failure when exceeding σfail. This corresponds to a maximum damage
state dmax with for example dmax = 1 in case of a damage function f = 1 − d. The respective
evolution of damage d for the current time step m+ 1 could be described as follows

dm+1 = dmax . (3.2)

In general, failure criteria do not affect the material description or behavior. Therefore, failed
material in context of finite element calculations for example can be implemented by deleting
according elements or by zero stress assumptions which can result from the above mentioned
maximum damage state.

In this context, the following well-known failure criteria can be mentioned for example:
Taking into account the maximum normal stresses as a failure criterion goes back to Rankine



30 3 Damage Modeling and Regularization Strategies

(1857), whereas Saint-Venant (1856) therefore concerned the maximum normal strains and
Tresca (1864) the maximum shear stresses. A combination of both, the maximum shear stresses
as well as the maximum normal stresses, were considered by the Coulomb-Mohr criterion based
on the works of Coulomb (1776) and Mohr (1906). The implementation of damage models
based on the idea of failure criteria was for example shown in connection with eigenfracture
schemes by Schmidt et al. (2009) and Pandolfi and Ortiz (2012) in which the erosion of elements
is described by a jump from elastic to failed material.

3.3 Micromechanical Damage Models

Micromechanical damage models take into account microstructural processes. Hereto, the in-
formation of void nucleation, growth and coalescence is transferred to the macroscopic scale by
simplification or homogenization. On the macroscopic scale this information is captured by a
therefore smeared or sort of effective damage variable describing the microstructure usually by
the volume fraction of voids. These volume fractions can be determined in different ways. The
aforementioned simplification is related to an appropriate mathematical formulation describing
microstructural effects, for example by modeling dislocations and inclusions or using equivalent
descriptions for general inhomogeneities. Homogenization is usually related to the involvement
of a representative volume element (RVE) gathering the microstructural processes as accurately
as possible and averaging this description to a macroscopic quantity, see Figure 3.4.

homogenization

V

x

Eeff

macroscopic scale

microscopic scale

Figure 3.4: Schematic illustration of homogenization (right) by mapping the microscopic scale
(left) by the effective stiffness tensor Eeff to the macroscopic scale (top). Image
inspired by Gross and Seelig (2011).

This averaging procedure relates the stresses and strains of a specific material point of the
macroscopic scale x to a specific volume area V of the microscopic scale where the stresses
and strains arise as fluctuation fields. Averaging these microscopic fields is denoted by 〈 · 〉 and
provides the macroscopic quantities given by

〈σ〉 =
1

V

∫
V

σ(x)dV , (3.3)

〈ε〉 =
1

V

∫
V

ε(x)dV . (3.4)
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This allows to define an effective stiffness tensor Eeff as follows

〈σ〉 = Eeff : 〈ε〉 . (3.5)

A well-known and often quoted example for describing the void volume fraction as an internal
variable is done in the work of Gurson (1977) in which the void nucleation and growth was
related to local plastic flow for porous ductile materials. Based on that, Tvergaard (1981) im-
proved the formulation of Gurson by adjustable parameters and a further modification in the
work of Tvergaard and Needleman (1984) is widespread in the literature until today. The use of
representative volume elements (RVE) is popular in many applications as is also for the descrip-
tion of the microstructure in context of damage, which is described in the works of Krajcinovic
(1996), Skrzypek and Ganczarski (1999), and Gross and Seelig (2011) for example.

3.4 Continuum Damage Models

In contrast to the previous, continuum damage models are rather a phenomenologically mo-
tivated approach for damage modeling and not directly related to microstructural processes.
These models are formulated in a more pragmatic way in context of effective stresses or strains
for example. Incidentally, an investigation regarding these effective quantities is given by Simo
and Ju (1987) and Simo and Ju (1989). The material softening for continuum damage models
is also described by an internal damage variable with smeared or averaging character whose
specific physical meaning is related to its respective application.

no

damage

�

A F

F

F

F

equivalent

state

�eff

A�Ad

with

damage

�

Ad

Figure 3.5: One-dimensional schematic illustration of the effective stress concept providing a
state with no damage and a cross-section area A (left), a state with damaged cross-
section area Ad (center) and an equivalent state with effective stresses based on
the remaining undamaged cross-section area A − Ad (right). Image inspired by
Skrzypek and Ganczarski (1999).

The phenomenological description of damage models originates from the work of Kachanov
(1958) and Kachanov (1999) in which a scalar damage variable is applied in context of effective
stresses. A more physical interpretation was introduced by Rabotnov (1959) who related the
reduction of the cross section area due to defects with the damage variable. This for continuum
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damage models underlying concept is illustrated in Figure 3.5. The effective stresses shown
there are based on the remaining undamaged cross section area A− Ad, consequently

σeff =
F

A− Ad
=

σ

1− d
, (3.6)

with the applied forces F and the damage d. Besides a scalar formulation of the damage vari-
able, also vectorial damage variables or second-, fourth- or even eighth-order damage tensors
can by found in the literature. The scalar formulation is usually related to isotropic damage, for
example in the works of Lemaitre (1971) and Wriggers and Moftah (2006), and higher-order
tensors on the contrary for anisotropic damage, in the work of Chaboche (1981), Matzenmiller
et al. (1995) and Menzel et al. (2005) for instance. Another approach of continuum damage
models is given by two-state models that were introduced by Francfort and Marigo (1993), de-
veloped by Francfort and Garroni (2006) and are related to Allaire and Kohn (1993) and Allaire
and Lods (1999). Hereby, two phases, an undamaged and damaged one, are considered and the
current damage state is described by a mixture of both phases by the use of relaxation.

3.5 Necessity of Regularization

Damage models are characterized by softening effects and localization corresponding to dis-
continuous deformation states in the limit case, described by Simo et al. (1993) for example. It
is well-known that these models share ill-posed boundary value problems which results from
non-convex and non-coercive energies as investigated for instance by Ball (1977), Dacorogna
(1982a), Dacorogna (1982b), Ciarlet (1988) and Francfort and Mielke (2006). These energies
prevent finding a unique global stationarity point for the numerical calculations. At this point,
coercivity and convexity are generally introduced with respect to a function f on the basis of
Rockafellar and Wets (1998).

A function f(x) is called coercive if it has a superlinear growth, consequently

lim
|x|→∞

f(x)

|x|
=∞ . (3.7)

This is illustrated in the diagram on the left-hand side of Figure 3.6 in which f1 represents a
coercive and f2 a non-coercive function. Both are separated by the limit case of a linear function
illustrated by the dashed line. In regard to damage modeling, the requirement of zero stresses
σ = ∂Ψ/∂ε after failure, as shown on the left-hand side of Figure 3.7, leads to an energy Ψ
possessing a slope which is equal to zero. Therefore, this energy is no longer growing and
accordingly non-coercive. Finding a stationarity point for a non-coercive energy that becomes
constant after some limit strain is of course problematic.

Moreover, a function f(x) is called convex if any point, described by τ ∈ (0, 1), on an
arbitrary secant of the two points at x0 and x1 is always above the function, consequently

f((1− τ)x0 + τx1) ≤ (1− τ)f(x0) + τf(x1) ∀τ ∈ (0, 1) . (3.8)

An illustration is again provided, the diagram on the right-hand side of Figure 3.6 presents a
convex function. In regard to damage modeling, the decrease of the material stiffness is accom-
panied by a non-convex energy Ψ, as shown on the right-hand side of Figure 3.7. The depicted
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secant is obviously located below the energy curve. Non-convex energies are also problematic
for finding a stationarity point, since the local minimum does not necessarily correspond to
the global one. This is why convexity can also be interpreted as the stability of the function
regarding superimposed fluctuations of the argument of the function.
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Figure 3.6: Schematic illustration of coercivity (left) and convexity (right) with respect to a
function f . Inspired by Rockafellar and Wets (1998)

� �

Figure 3.7: Schematic illustration of a non-coercive energy resulting in not-rising stresses for
infinite strains (left) and a non-convex energy (right) in context of damage modeling.

Those critical energies lead to numerical instabilities and mesh-dependent finite element re-
sults. For that reason, strategies that somehow take into account the non-local behavior of the
damage have to be considered in order to achieve well-posedness and therefore stability and
mesh-independence. This is also often described by the incorporation of an internal length
scale. In general, those strategies are called regularization, which can be distinguished in sev-
eral categories depending on their respective operating principle. The most common regular-
ization strategies are gradient-enhanced regularization, integral-type regularization and viscous
regularization. Hereto, an overview is given by Forest and Lorentz (2004) and a comparison
of non-local and gradient-enhanced formulations by Peerlings et al. (2001). Of course, there
are further strategies for regularization and some models can not clearly be assigned to a spe-
cific category, for example the work of Yang and Misra (2012) who distance themselves from
other regularization strategies and at the same time describe the model as a development of the
gradient theory. Subsequently, the three mentioned most common regularization strategies are
presented in more detail.



34 3 Damage Modeling and Regularization Strategies

3.6 Viscous Regularization

The main idea of viscous regularization is to limit and thus slow down the evolution of damage
in a specific element. For a standard formulation of the energy Ψ by means of

Ψ =
1

2
ε : f(d)E0 : ε , (3.9)

with a to be selected damage function f(d) according to Section 4.1, the viscous regularization
can exemplarily be described by the evolution equation in Equation (2.97) which results from an
elasto-viscoplastic dissipation function. The evolution of the damage d for the current time-step
m+ 1 corresponds to

dm+1 = dm +
∆t

r2

[
|p(εm+1, dm)| − r1

]
+

(3.10)

with the driving force p(εm+1, dm) and the threshold r1. The aforementioned limitation is given
by the viscosity parameter r2 and the time-increment ∆t. The latter is based on the combined
time discretization from Equation (2.109). The consequent missing amount of dissipated energy
due to the limited evolution is then counterbalanced by surrounding elements evolving damage
in order to maintain at least the same total energy dissipation compared to the case of no reg-
ularization. As a result, propagating damage zones in finite element calculations are no longer
limited to individual or rows of elements but smooth transitions between damaged and undam-
aged zones are occurring. Viscously regularized damage models do not possess a direct spatial
internal length scale but there is rather a conforming length scale in time that corresponds to
the same regularizing effects. Therefore, stable and mesh-independent finite element results
are achieved. Furthermore, viscous effects can easily be implemented and the numerical effort
is low compared to other regularization strategies. However, it should be considered that the
calculations are strongly depending on the loading velocity in return and this rate-dependence
is a remarkable drawback since the corresponding viscous parameters are hardly or difficultly
applicable to materials like metals or concrete.

The first who introduced viscous regularization to localization problems was Needleman
(1988) by presenting a rate-dependent formulation that implicitly introduces a length scale elim-
inating the pathological mesh sensitivity associated with localization problems for quasi-static
as well as dynamic problems. Moreover, numerical instability problems for approaching the
rate-independent limit were investigated. Some time later, Sluys and De Borst (1992) applied
the viscous regularization for localization problems of cracked medium in relation to wave prop-
agation and reflections on the cracked zone. It was also stated that the width of the localization
zone is depending on the length scale parameter as well as the loading rate and limit cases
were investigated as well. In another example, the relation between the material length scale
and the width of shear bands in context of viscoplastic regularization is examined by Wang
et al. (1996). In the work of Dube et al. (1996), a damage model with a rate-independent for-
mulation was converted into a rate-dependent one with the objective of capturing more effects
regarding the loading rate of concrete. This procedure was based on the Perzyna viscoplastic-
ity, considering some modifications, and it was possible to achieve well-posedness as well as
mesh objectivity of the numerical results also in relation to wave propagation. Furthermore, the
mentioned Perzyna viscoplasticity was instrument for regularization in the work of Faria et al.
(1998) in which a new constitutive model was introduced capturing tensile-compression asym-
metry by two scalar damage variables and applied to massive concrete structures. An interesting
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investigation on the rate-dependence of viscous damage models was done by Chaboche et al.
(2001) who applied interface debonding models, resulting in a new kind of viscous regulariza-
tion with a limited dependence on the loading rate. Departing from viscous regularization, a
similar approach is presented in the work of Suffis et al. (2003) in which the delay effect is used
analogously to viscosity in order to slow down the damage evolution and therefore to achieve
mesh objectivity. Thereby, the characteristic damage length was investigated by a comparison
of numerical and analytical studies. Another damage model by Allix (2012) investigates some
limitations of the rate-dependencies by bounding the rate of the internal variables, described as
the bounded rate concept. This has certain similarities to the damage Model II [ERVE] pre-
sented in Section 4.3 in this thesis. A further model based on viscoplasticity by Niazi et al.
(2013) takes up viscous regularization in order to critically investigate and evaluate the reason
for existence of this regularization strategy in comparison to gradient-enhancement or integral-
type. Deeper studies yield that there are many restrictions but for rate-dependent materials, for
high temperature or for high deformation rates the viscous regularization can provide physical
results. A development of the viscous regularized damage Model I [REL], presented in Section
4.2, is given by Langenfeld et al. (2018).

3.7 Integral-Type Regularization

None of the presented damage models in this thesis are related to integral-type regularization
which seems to have become less important over time at least for damage modeling. In contrast,
a similar procedure is quite popular in context of topology optimization by applying density
filters with integral terms, see for example works of Bourdin (2001) and Hägg and Wadbro
(2017). However, the concept of integral-type regularization for damage modeling is obvious
and there is a lot of literature on that topic. The main idea for integral-type formulations is to no
longer relate the governing equations to a specific point but to instead replace this relation by an
integral term, which functions as an weighted spatial average over the defined surroundings of
the considered point. Exemplary for the integral-type regularization in general, this is illustrated
by the following formulation based on the works of Bažant and Pijaudier-Cabot (1988) and
Jirásek (1998), which are further discussed later. The underlying energy Ψ is based on the
non-local damage variable d̄(x) at position x as described by

Ψ =
1

2
ε : (1− d̄(x))E0 : ε . (3.11)

This non-local quantity arises from the integral over the neighborhood by means of

d̄(x) =

∫
Ω

α?(x, ζ)d(ζ)dζ , (3.12)

with the volume of the entire body Ω and a to be selected non-local weight function α?(x, ζ)
taking effect in the range of the points ζ and x. The evolution of the damage d ∈ [0, 1] for the
current time-step m+ 1 is given by

dm+1 = 1− (1 + α(p(εm+1)− r1))−β , (3.13)

with the energy release rate p(εm+1) analogously to the driving force, the local damage thresh-
old r1 and the material parameters α and β. Due to the defined surroundings an internal length
scale is introduced and directly described by an adjustable parameter. This finally leads to stable
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and mesh-independent finite element results, which, depending on the respective implementa-
tion, can be numerically expensive.

The first practically applied and in this context frequently quoted damage model with integral-
type regularization was presented by Pijaudier-Cabot and Bažant (1987). In this work, previous
approaches were improved by basically limiting the non-local treatment only to variables that
control strain softening and to consider elastic parts of the strain as local. In this early stage
of development, a usually typical weighting function was initially not included in the model
but mentioned. Shortly thereafter, this weighting function was then implemented by Bažant
and Pijaudier-Cabot (1988) besides some other improvements and investigations. Almost at
the same time Bažant and Lin (1988) additionally introduced a smeared cracking with rotat-
ing orientation depending on the maximum principal strain in order to achieve more physical
numerical results that are closer to experimental data. In the work of Jirásek (1998) a compar-
ison of several integral-type approaches is provided under consideration of numerical as well
as analytical solutions. An integral-based strategy can also be found in the work of Liu et al.
(1999) in context of multiple-scale mesh-free methods as an alternative to commonly applied
numerical methods for example the finite element method. Comi (2001) proposed a damage
model with two isotropic damage variables and two internal length scales in order to capture
tensile-compression asymmetry for rock-like materials. A further very detailed comparison
of integral-type approaches is given by Bažant and Jirásek (2002) who additionally take into
account plasticity. They discuss the progress of integral-type regularization models and their
physical explanations, advantages, and applications. Also Lorentz and Andrieux (2003) consid-
ered several non-local approaches and extensively analyzed them in regards to thermodynamic
consistency and discussed the dilemma between formulations providing effective regularization
and fulfilling the thermodynamics. A coupled damage-plasticity model based on the non-local
integral-type regularization is presented by Nguyen et al. (2015). This model is addressed to
ductile materials and is able to consider the pre-cracking hardening as well as the post-cracking
softening and further focuses on the determination of model parameters related to experimental
data with a novel calibration method.

3.8 Gradient-Enhanced Regularization

The probably most common regularization technique is the gradient-enhancement. The main
idea is to directly or indirectly apply a gradient to the internal variable, or more precisely the
damage variable in the present case. This gradient is then penalized which corresponds to pe-
nalizing the differences or transitions between completely damaged and completely undamaged
zones. In context of finite element calculations for example, this results in transforming indi-
vidual or series of individual damaged elements into smooth transitions between these damaged
and undamaged parts of the considered geometry. For this purpose, several strategies for apply-
ing the gradient to the model are available, whereat a non-local quantity can only be considered
of course. First formulations hereby applied the gradient on the strains, for example in the work
of Pijaudier-Cabot et al. (1988) as described hereinafter, and these formulations are related to
so-called micromorphic models which are still used today. However, the today probably most
common approach is to introduce a field function that is coupled to the local damage variable.
Exemplary for the gradient-enhanced regularization in general, this approach is illustrated with
a specific energetic formulation which is based on the work of Dimitrijevic and Hackl (2008),
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which is again mentioned later. This energy Ψ is provided by the following equation

Ψ =
1

2
ε : f(d)E0 : ε+

α

2
(ϕ− d)2 +

β

2
|∇ϕ|2 , (3.14)

with the damage variable d, a to be selected damage function f(d) according to Section 4.1, the
regularization parameters α and β, the field function ϕ and the gradient of the field function∇ϕ.
The first term of the equation is related to a standard damage model. The mentioned coupling
between the damage variable and the field function is done by the second term which penalizes
the differences between both quantities depending on α. Hereto, the field function has to be
calculated with the help of the additional stationarity condition∫

Ω

α (ϕ− d) δϕdV +

∫
Ω

β∇ϕ · ∇δϕdV = 0 ∀δϕ . (3.15)

The actual regularization is then enabled by penalizing the gradient of the field function in the
third term which can be adjusted by β. The evolution of the damage d for the current time-step
m+ 1 is described by

dm+1 = dm + ∆ρ p(εm+1, dm+1, ϕm+1) , (3.16)

with the driving force p(εm+1, dm+1, ϕm+1). This implicit and rate-independent formulation is
based on Equation (2.104) and can be solved with the yield function Φ = |p(εm+1, dm+1, ϕm+1)|
−r1 considering the threshold value r1. The described procedure introduced an internal length
scale that corresponds, roughly said, to the range of the gradient which is adjustable with β
or a corresponding prefixed parameter in other damage models. In general, this strategy of
gradient-enhancement leads to mesh-independent finite element results in the end. However,
the field function in the mentioned approach increases the number of unknowns at the nodes
and therefore drastically also the numerical effort.

The first gradient-enhanced damage models were applied to the strains and these formula-
tions are referred to as micromorphic models as mentioned before. They are originating from
integral-type damage models which can be transformed by use of the Taylor series, incidentally
this procedure does not apply for all gradient-enhanced formulations in general. Pijaudier-
Cabot et al. (1988) dealt with this topic by comparing several approaches and by describing
the transfer from integral-type to gradient-enhancement. However, in that work some physical
explanations were not yet clarified and the gradient-enhancement was still presented as a spe-
cial case of the integral formulations. A more general investigation of gradient formulations,
which is related to localization in regards to fracture but also to the formation and propagation
of deformation bands describing plastic flow, is given by Aifantis (1992). A consistent imple-
mentation into the finite element scheme is for example given by Peerlings et al. (1995) for
a gradient-enhanced damage model considering quasi-brittle failure mechanisms. As already
mentioned before, the gradient was initially applied directly to the strains but further research
provided formulations that are affecting the internal variables instead, as for example done by
De Borst and Mühlhaus (1992) in regard to plasticity who also presented the corresponding nu-
merical treatment. This procedure was later adopted to damage modeling as for example shown
in the work of Lorentz and Andrieux (1999) in which a variational framework for models with
gradients of internal variables was generally derived and then, amongst others, applied to an
already existing damage model based on homogenization. Based on that, Lorentz and Benal-
lal (2005) discussed several numerical aspects with a focus on the numerical integration of the
gradient constitutive equations providing a specific algorithm. Another very interesting work
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is presented by Abu Al-Rub and Voyiadjis (2005) who formulated a new algorithmic imple-
mentation for gradient-enhanced damage models in order to circumvent large modifications of
existing finite element codes for the computation of the higher-order gradient terms. The idea
is close to the presented damage Model III [LAP] in Section 4.4 of this thesis, however the im-
plicit scheme is solved globally, which is expensive, and the model is limited to regular meshes
only. Finally, the at the beginning mentioned gradient-enhanced formulation with use of the
coupled field function, which probably can be considered as the most common approach for
gradient-enhanced regularization today, is introduced by Dimitrijevic and Hackl (2008). The
procedure has already been explained before, the model was also extended to the framework
of plasticity by Dimitrijevic and Hackl (2011) and was applied in context of fragmentation of
nano-structured nodes for batteries by Dimitrijevic et al. (2012). Furthermore, phase-field mod-
els can also be interpreted as gradient-enhanced models. For example Miehe et al. (2010a)
presented a thermodynamically consistent approach based on variational principles and multi-
field finite element implementations and an alternative including a more robust algorithm based
on operator splits is also given by Miehe et al. (2010b). Another example for phase-field models
is given by Strobl and Seelig (2015), who has taken the orientation of cracks into account in
order to satisfy crack boundary conditions. This work was continued also by Strobl and Seelig
(2016) in which the focus was on the choice of the constitutive assumptions in regard to achieve
more flexible formulations. Brepols et al. (2017) presented a gradient-enhanced model, which
is a current example for micromorphic damage models, including a two-surface formulation for
the distinct but coupled treatment of damage and plasticity. An example related to the extended
finite element method (XFEM) is given by Peters and Hackl (2005) in which different numer-
ical aspects were investigated. Moreover, XFEM was also subject of investigation in the work
of Pezeshki et al. (2018). Therein, crack propagation under dynamic loading is modeled with a
continuous-discrete approach in context of gradient-enhanced damage.

3.9 Selected Regularization Strategies for Investigation

The previous Sections 3.7 to 3.8 have introduced different strategies for the regularization of
damage models, some of which have been used for the three novel approaches referred to as
Model I [REL], Model II [ERVE], and Model III [LAP] presented in Chapter 4. In addition, all
of these approaches can be assigned to an underlying damage model according to the previous
Sections 3.2 to 3.4.

All of the damage models presented in this theses belong to the group of continuum damage
models. Hereby, Model I [REL] is based on two-state models. These models only consider an
undamaged and damaged phase and allow for mixtures in order to represent different damage
states. Model II [ERVE] indeed emulates a microstructure for numerical reasons but the damage
is still phenomenologically formulated. The latter also applies for Model III [LAP].

Even though the novel approaches belong to the same group of damage models, the regu-
larization strategies are different. Model I [REL] and Model II [ERVE] are related to different
kinds of viscous regularization whereas Model III [LAP] is related to the gradient-enhanced reg-
ularization. Integral-type regularization has not been considered for investigation since, from
our point of view, this strategy has become less popular in context of damage modeling and is
furthermore too expensive.
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The viscous regularization in case of Model I [REL] interacts with the non-linear homoge-
nization of the energy. Nevertheless, the regularization of the model is fundamentally based on
the involvement of viscous effects. A completely different kind of viscous regularization is ap-
plied in case of Model II [ERVE]. This regularization combines a rate-limitation of the evolving
damage variable with an numerical interpretation of the microstructure by use of an newly in-
troduced emulated representative volume element (ERVE). A special feature is the elimination
of rate-dependence. The gradient-enhancement of Model III [LAP] is highly improved by a
very efficient evaluation of the Laplace operator as well as a skilled selection of operator splits.
All applied regularization strategies are expected to improve existing and common approaches.
More details on the models are presented hereinafter followed by the respective investigations.
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4 Novel Approaches to Regularized Damage Models

In this chapter three underlying regularized damage models are presented. Initially, fundamen-
tals of damage modeling relating to different damage functions are introduced in Section 4.1.
Afterwards in Section 4.2, Model I [REL] is presented which is based on two phases and energy
relaxation. Subsequently, Section 4.3 introduces Model II [ERVE] using an emulated represen-
tative volume element (ERVE). Finally, Model III [LAP] that efficiently evaluates a Laplacian
for gradient-enhancement is presented in Section 4.4.

4.1 Fundamentals of Damage Modeling

Typical damage functions are introduced as most damage models are based on their application
like the present models in this thesis. Only Model I [REL] has an alternative formulation that
is based on the mixture of the underlying phases. Nevertheless, a general interpretation as a
mixture of phases can basically be done for all presented damage models. The Helmholtz free
energy Ψ of a material suffering from damage is formulated as follows

Ψ = f(d) Ψ0 , (4.1)

with the energy Ψ0 related to the undamaged material described by

Ψ0 =
1

2
ε : E0 : ε , (4.2)

and with the damage function f(d) that is based on the damage variable d. This damage variable
d increases from 0, representing the undamaged state, to a specific value or towards infinity. Ac-
cordingly, the damage function f(d) describes the reduction of material stiffness and decreases
from 1 to 0, thus from a completely undamaged to a completely damaged state. For that reason,
the behavior of the damage variable and function have to be coordinated and furthermore, the
damage function has to meet several requirements based on the formulation of the respective
damage models. Usually, the damage function has to be at least twice differentiable in order to
ensure damage depending driving forces for example. A typical choice is

f(d) = e−d , (4.3)

with d ∈ [0,∞[ and d = 0 representing the undamaged material whereas the damaged material
is striving towards infinity. This exponential function has the advantage, that the damage vari-
able is not bounded, the derivatives can easily be achieved as often as required and furthermore
these derivatives are corresponding to the negative initial function, thus f ′(d) = −f(d). It is
applied in the works of Dimitrijevic and Hackl (2008) and Dimitrijevic and Hackl (2011) for
example. Moreover, a more popular choice for a damage function is

f(d) = (1− d)2 , (4.4)
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with d ∈ [0, 1] and again d = 0 for the undamaged material that is striving due to evolving
damage against d = 1 for the completely damaged state. This damage function is often used in
the literature, for example in work of Miehe et al. (2010b) and Brepols et al. (2017). A further
common and basic damage function is given by

f(d) = 1− d , (4.5)

with basically the same properties as before but with a slightly different behavior. However, the
main difference is that this linear damage function results in thermodynamic driving forces that
are independent from the damage variable d. This function is actually the first formulated one
and can for example be found in the works of Kachanov (1958), Lemaitre (1985), Kachanov
(1999), and Wriggers and Moftah (2006).

4.2 Model I: Relaxation Based Regularization with Two-Phases

In this chapter a regularized damage model based on relaxation with use of two phases is pre-
sented. The model is directly based on the works of Junker et al. (2016) and Schwarz et al.
(2016) and was also enhanced with plasticity in the works of Schwarz et al. (2017) and Schwarz
et al. (2018b). The model is denoted as Model I [REL] in this thesis.

Subsequently, Subsection 4.2.1 first introduces two-phase damage models by relaxation,
afterwards the non-linear homogenization between the Reuß and Voigt energy is presented
in Subsection 4.2.2, then in Subsection 4.2.3 viscosity is additionally considered for mesh-
independence. The stresses and material tangent is determined in Subsection 4.2.4 and finally
Subsection 4.2.5 provides the respective algorithm on the material point level.

4.2.1 Two-phase Damage Modeling by Relaxation

The underlying idea of the two-phase model is to distinguish an undamaged and a damaged
phase and to allow intermediate states by (volume) fractions that are described by the damage
variable d. But first, the two phases are introduced by respective Helmholtz free energies

Ψ0(ε) :=
1

2
ε : E0 : ε , (4.6)

Ψ1(ε) :=
1

2
ε : κE0 : ε , (4.7)

whereby the subscripts refer to the undamaged (0) and damaged (1) material and the numerical
factor κ� 1 describes the reduction of the damaged phase in relation to the undamaged phase.
The two energies are illustrated by Figure 4.1 in the condensed space. The color green is
related to the undamaged and red is related to the damaged phase. For the consideration in the
condensed space, dissipative processes and therefore the dissipation function D is taken into
account. The condensed energy state Ψcond is defined as

Ψcond := Ψ +

∫
D(ḋ) dt , (4.8)
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with the rate of the damage parameter denoted by ḋ. As already mentioned before, the damage
variable d ∈ [0, 1] allows to describe the prescribed damage states as well as the intermediate
states and serves as a volume fraction: d = 0 is related to the completely undamaged state, d = 1
is related to the completely damaged state, and all values inbetween are related to intermediate
states that describe the increase of the damage from 0 to 1. Hereto, a mixture of the energy
states Ψ0 and Ψ1 has to be realized that can be done by several homogenization methods.

The opposite ends hereby are the Voigt and the Reuß bounds: while the Reuß energy de-
scribes a linear transition from Ψ0 to Ψ1 leading to a convex energy that is associated with
mesh-independent numerical results, the Voigt energy on the contrary describes an instanta-
neous jump from Ψ0 to Ψ1 at the intersection point leading to a non-convex energy that is
associated with mesh-dependent numerical results.

Figure 4.1: Model I [REL]: Undamaged and damaged energy in the condensed space.

The relaxed Reuß energy Ψrel = ΨReuß as well as the Voigt energy ΨVoigt are defined by

ΨReuß = inf
εi
{(1− d) Ψ0(ε0) + dΨ1(ε1) | (1− d) ε0 + d ε1 = ε} , (4.9)

ΨVoigt = inf {Ψ0,Ψ1} , (4.10)

accordingly these expressions results in

ΨReuß =
1

2
ε : EReuß : ε , (4.11)

ΨVoigt =
1

2
ε : EVoigt : ε , (4.12)

with the related elastic tensors

EReuß =

[
(1− d)E−1

0 + d
1

κ
E−1

0

]−1

= fReuß(d) E0 , (4.13)

EVoigt =

{
E0 : Ψ0 < Ψ1

κE0 : else
, (4.14)
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and respective damage function

fReuß(d) =

[
1− d+ d

1

κ

]−1

. (4.15)

Finally, the stresses can be achieved by the derivative of the total energy, thus

σReuß =
∂ΨReuß

∂ε
= EReuß : ε , (4.16)

σVoigt =
∂ΨVoigt

∂ε
= EVoigt : ε . (4.17)

Both homogenization energies and related stresses are illustrated by Figures 4.2 to 4.5: the
green curves correspond to the undamaged states, the red curves to the damaged states as before,
and additionally, the blue curves to the homogenized intermediate states. Figures 4.2 and 4.3
present the Reuß bound and Figures 4.4 and 4.5 the Voigt bound.

Although the Reuß energy seems to be the more appropriate choice because of the convexity
and the associated mesh-independent results, the stress behavior is unexpected from a physical
point of view: there is absolutely no drop of the stresses but a plateau instead. Usually, one
would expect a significant drop of stresses for damage problems. Therefore, the Reuß bound
requires more investigation, but first the plots for the Voigt bound are presented.

Whereas the Voigt energy provides a very significant drop of stresses, which complies with
the characteristic of damage problems, unfortunately it comes along with a non-convex energy
that is associated with mesh-dependent results by default. Therefore, this energy cannot be an
appropriate choice for a regularized damage model. For the mentioned reasons, the Reuß bound
is generally preferable since mesh-independent results are in the focus of interest at this point,
therefore further investigation are continued considering the Reuß bound.

Figure 4.2: Model I [REL]: Energies in condensed space for the Reuß bound.
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Figure 4.3: Model I [REL]: Stresses for the Reuß bound.

Figure 4.4: Model I [REL]: Energies in condensed space for the Voigt bound.

Figure 4.5: Model I [REL]: Stresses for the Voigt bound.
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In order to achieve the evolution equation for the damage variable d the Hamilton principle
based on Section 2.6 is applied

δG +

∫
Ω

∂D
∂ḋ

δd dV = 0 , (4.18)

which can be transformed into the principle of the minimum of the dissipation potential (PMDP)
according to Subsection 2.6.4, since there is no dependence on the gradient of d. The La-
grangian L, which has to be minimized with respect to the rate of the internal variable d, reads

L := Ψ̇Reuß +D + C → min
ḋ
. (4.19)

Hereby, the Lagrangian L consists of three parts: the time-derivative of the Helmholtz free
energy Ψ̇Reuß, the dissipation functionD and the constraints C that have to be taken into account.
The time-derivative of the Helmholtz free energy Ψ̇Reuß is derived by the chain rule, thus

Ψ̇Reuß =
∂ΨReuß

∂ε
: ε̇+

∂ΨReuß

∂d
ḋ . (4.20)

The dissipation function is first chosen to be rate-independent (RI), therefore an elasto-plastic
approach of order one is used as given by

DRI = r1|ḋ| , (4.21)

where the dissipation parameter r1 functions as an energetic threshold for the damage evolution.
Since the damage variable d can only increase and only until d = 1 for physical reasons, the
damage evolution is constrained by the Karush-Kuhn-Tucker parameter γ as follows

γ =


−γ? : ḋ < 0

γ? : ḋ > 0 ∧ d = 1

0 : else .

(4.22)

Collecting all parts of the Lagrangian L provides the underlying equation for the PMDP

L :=
∂ΨReuß

∂ε
: ε̇+

∂ΨReuß

∂d
ḋ+ r1|ḋ|+ γḋ→ min

ḋ
. (4.23)

The minimization condition for the Lagrangian L reads

∂L
∂ḋ

=
∂ΨReuß

∂d
+ r1

ḋ

|ḋ|
+ γ 3 0 . (4.24)

After introducing the driving force

p = −∂ΨReuß

∂d
= −1

2
f ′Reuß(d) ε : E0 : ε , (4.25)

where

f ′Reuß(d) =

(
1− 1

κ

)(
1− d+ d

1

κ

)−2

, (4.26)



4.2 Model I: Relaxation Based Regularization with Two-Phases 47

the rate-independent (“RI”) evolution equation of the damage variable d can finally be derived
solving Equation (4.24) for the rate of the internal variable considering an active-set for the
Karush-Kuhn-Tucker parameter γ and introducing the consistency parameter ∆ρ, thus

ḋRI := ḋ = ∆ρ p =
|ḋ|
r1

p . (4.27)

Performing the Legendre transformation for D provides

D∗ = sup
ḋ

{
pḋ−D

}
= sup

ḋ

{
|ḋ|(p sgnḋ− r1)

}
, (4.28)

which allows to determine the consistency parameter ∆ρ by the obtained yield function

Φ := |p| − r1 . (4.29)

A rate- and mesh-independent damage model with a convex energy has been derived.

The proceeding numerical treatment in regard to finite element calculations is postponed to
Appendix A since this model variant is not the final one. The stresses are analogous to Equation
(4.52) and read as follows

σ̃m+1 = fReuß(d
m) Ẽ0 · ε̃m+1 + f ′Reuß(d

m) Ẽ0 · ε̃m∆d . (4.30)

The material tangent, analogous to Equation (A.17), corresponds to

dσ̃

dε̃

∣∣∣∣m+1

= fReuß(d
m) Ẽ0 −

(
Ẽ0 · ε̃m

)
⊗
(
Ẽ0 · ε̃m+1

)
×

∆ρf ′Reuß(d
m)2

−f ′Reuß(d
m)
−f ′Reuß(d

m+1) +
1

2
f ′′Reuß(d

m+1)ε̃m+1 · Ẽ0 · ε̃m+1∆ρ f ′Reuß(d
m)

1

2
f ′′Reuß(d

m+1)ε̃m+1 · Ẽ0 · ε̃m+1


(4.31)

and, according to Equation (A.18), in case of no evolving damage the tangent simplifies to

dσ̃

dε̃

∣∣∣∣m+1

= fReuß(d
m) Ẽ0 . (4.32)

The overall finite element procedure is additionally provided by Algorithm 5. In order to inves-
tigate the behavior of the model in more detail, finite element calculations for a double-notched
plate (geometry given in Section 5.1 and parameters in Subsection 5.2.4) have been performed
and the results are provided subsequently: the global structural response is presented in Figure
4.6 and the related damage distribution is presented by Figure 4.7.

Although the damage distribution in the coarse mesh at first glance slightly differs from
the other meshes in Figure 4.7 by having a thicker damage zone, the total amount of dam-
age seems to be comparable to the coinciding middle and fine meshes since the value of the
damage function is smaller. The difference in the damage distribution can be a result of a too
coarse mesh or distorted elements for example, however, the global response by means of the
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force-displacement curves in Figure 4.6 confirm the expected mesh-independent behavior of the
convex damage model for all three meshes.

The obvious disadvantage of the convex damage model is the missing drop in the force-
displacements diagram in Figure 4.6 as already assumed by the mathematical derivation of
stresses providing the plateau in Figure 4.3. This missing drop also has an impact on the damage
distribution since the results differ from other results that are presented later. The plateau behav-
ior contradicts the physical expectations and thus further modifications are necessary. Hereto,
the following Subsection 4.2.2 deals with a modification of the homogenization method.

Figure 4.6: Model I [REL] rate-independent: Comparing different numbers of elements (as
stated) by double-notched plate for structures meshes.

Figure 4.7: Model I [REL] rate-independent: Distribution of f(d) for the double-notched plate
with 994, 4992, and 10074 structured elements (left to right).
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4.2.2 Non-Linear Homogenization between Reuß and Voigt

The previous Subsection 4.2.1 presented a convex damage model based on the Reuß bound. The
model provided mesh-independent results but at the expense of unphysical stress-strain/force-
displacement curves: the expected drop of stresses/forces was missing. For that reason, the
homogenization method has to be modified in order to achieve an energy that provides mesh-
independent results as well as a typical physical behavior including decreasing stresses/forces.

The fundamental idea is to find a compromise between the Reuß and Voigt bound and thus
between a completely convex and non-convex energy. While the Reuß bound provides a linear
transition between the damage states, the Voigt bound directly jumps from one state to the other.
The new energy will be considered inbetween and thus provide a non-linear behavior. This non-
linear homogenization of the damage states is supposed to ensure the dropping stresses/forces.
At the same time, the energy has to be close enough to the Reuß bound in order to ensure mesh-
independent results. The introduction of a parameter β allows for the mentioned non-linear
homogenization and a switch between the Reuß and the Voigt energy or naturally something in
between. Thus, the energy Ψβ is introduced by

Ψβ := inf
εi

{(
1− αd− dβ

)
Ψ0(ε0) +

(
αd+ dβ

)
Ψ1(ε1)

∣∣(
1− αd− dβ

)
ε0 +

(
αd+ dβ

)
ε1 = ε

}
, (4.33)

with the very small parameter 1� α > 0, which ensures non-zero driving forces in Equations
(4.38) and (4.39) in case of ε 6= 0 and d = 0, and the parameter β > 1 of course, which controls
the non-linear homogenization. This modified expression finally results in

Ψβ =
1

2
ε : Eβ : ε , (4.34)

with the related elastic tensor

Eβ =

[(
1− αd− dβ

)
E−1

0 +
(
αd+ dβ

) 1

κ
E−1

0

]−1

= fβ(d) E0 , (4.35)

and the respective damage function

fβ(d) =

[
1 + (αd+ dβ)

(
1

κ
− 1

)]−1

. (4.36)

As in the previous section, the stresses can be calculated by taking the derivative of the energy

σ =
∂Ψβ

∂ε
= fβ(d) E0 : ε . (4.37)

The modified energy is illustrated by Figures 4.8 and 4.9. Again, the green and red curves are
related to the undamaged and damaged states and the blue curves to the homogenized states.
The blue dashed curves reminds of the convex Reuß energy whereas the blue solid curves rep-
resent the new non-linear homogenization. Finally, decreasing stresses are achieved due to the
modification. This is due to the non-linearity of the energy whose derivative is no longer con-
stant but linearly decreasing. The intensity of the drop of stresses is naturally depending on the
curvature of the energy and therefore on the chosen homogenization parameter β, which in this
context acts as the regularization parameter. Further investigations are following hereinafter.
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Figure 4.8: Model I [REL]: Energies in condensed space for the non-linear homogenization.

Figure 4.9: Model I [REL]: Stresses for the non-linear homogenization.

Analogously to the last Section 4.2.1, the evolution equation for the damage variable d has to
be derived with the PMDP, see Subsection 2.6.4. Identical steps are skipped. The driving force

pβ := −∂Ψβ

∂d
= −1

2
f ′β(d) ε : E0 : ε (4.38)

for the modified energy is derived including

f ′β(d) =
(
α + βdβ−1

)(1

κ
− 1

)(
1 +

(
αd+ dβ

)(1

κ
− 1

))−2

. (4.39)

Herewith a modified, rate-independent damage model with an “almost” convex energy which is
capable of dropping stresses/forces has been derived. The numerical parameter α as well as the
regularization parameter β allow to control the homogenization that includes the opposite ends
of convexity: a distinction into three cases is possible: a parameter set of α = 0 and β = 1 leads
to the completely convex energy characterized by the Reuß bound, a parameter set of α = 0
and β →∞ leads to the completely non-convex energy characterized by the Voigt bound, and a
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mixture between both opposite cases is realized by a parameter set of α 6= 0 and β > 1 leading
to the desired modified energy. The numerical treatment in regard to finite element calculations
is analogous to the last section, the stresses are based on Equation (4.52) resulting in

σ̃m+1 = fβ(dm) Ẽ0 · ε̃m+1 + f ′β(dm) Ẽ0 · ε̃m∆d , (4.40)

the material tangent is based on Equation (A.17), therefore

dσ̃

dε̃

∣∣∣∣m+1

= fβ(dm) Ẽ0 −
(
Ẽ0 · ε̃m

)
⊗
(
Ẽ0 · ε̃m+1

)
×

∆ρf ′β(dm)2

−f ′β(dm)
−f ′β(dm+1) +

1

2
f ′′β (dm+1)ε̃m+1 · Ẽ0 · ε̃m+1∆ρ f ′β(dm)

1

2
f ′′β (dm+1)ε̃m+1 · Ẽ0 · ε̃m+1

 , (4.41)

and for no evolving damage it is based on Equation (A.18), consequently

dσ̃

dε̃

∣∣∣∣m+1

= fβ(dm) Ẽ0 . (4.42)

Based on that, numerical results are presented for different regularization parameters β. In
regard to the results for the double-notched plate, it is focused on the global responses presented
in Figure 4.11 in order to evaluate the behavior of the modified energies. Nevertheless, the
related damage distribution for different meshes presenting the strongest force-decreasing case
at β = 1.3 is provided in Figure 4.10 for illustrations.

Figure 4.10: Model I [REL] rate-independent and non-linear: Distribution of f(d) for finite
element calculations with 994, 4992 and 10074 structured elements (left to right)
for the double-notched plate considering the regularization parameter β = 1.3.
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Concluding the global responses in Figure 4.11, the modification of the damage model by
means of applying a non-linear homogenization method allows for a more physical behavior
due to the dropping stresses/forces, but unfortunately even for small values of the regulariza-
tion parameter β and therefore slight drops of stresses/forces this modification leads to mesh-
dependent finite element results. Adjusting the regularization parameter β to a smaller value
in order to move the non-linear energy even closer to the Reuß bound improves the mesh-
independence but at the expense of the physical meaningfulness: the drop of stresses/forces
disappears and finally the improvement of the modification disappears as well. There is no ac-
ceptable compromise between a more convex energy providing mesh-independent results and a
less convex energy providing physical behavior.

For illustration purposes, the most physical case with the strongest drop, which is still not
sufficient, is presented in Figure 4.10. The regularization parameter for this case is β = 1.3 and
the mentioned mesh-dependence can clearly be seen by the different and localized cracks.

For the stated reasons, a less convex energy with physical correct behavior providing drop-
ping stresses/forces has to be chosen and the consequent mesh-dependence has to be removed
by considering some viscosity as presented in the subsequent Subsection 4.2.3.

Figure 4.11: Model I [REL] rate-independent and non-linear: Study on regularization param-
eters β = {1.0, 1.1, 1.2, 1.3} (top left to bottom right) with different numbers of
elements (as stated) by double-notched plate for structured meshes.
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4.2.3 Additional Consideration of Viscosity for Mesh-Independence

A damage model considering a non-linear homogenization method providing physical correct
drops of stresses/forces but also mesh-depending results is presented in the previous Subsection
4.2.2. After choosing physical meaningful regularization parameters, which ensure a sufficient
drop of stresses/forces, the resulting mesh-dependence has to be removed by adding viscous
effects to the model. Therefore, the model becomes rate-dependent.

The desired viscosity is considered by choosing a rate-dependent (“RD”) dissipation function
D by means of an elasto-viscoplastic approach of order two as follows

DRD = r1|ḋ|+
r2

2
ḋ2 . (4.43)

At this point the procedure is again analogous to Subsection 4.2.1 and also based on the non-
linear homogenized model from the last Subsection 4.2.2. Identical steps are skipped again.
The modification of the dissipation function D results in changes of the Lagrangian L, thus

L :=
∂Ψβ

∂ε
: ε̇+

∂Ψβ

∂d
ḋ+ r1|ḋ|+

r2

2
ḋ2 + γḋ→ min

ḋ
, (4.44)

while the minimization condition for the Lagrangian L turns into

∂L
∂ḋ

=
∂Ψβ

∂d
+ r1

ḋ

|ḋ|
+ r2ḋ+ γ . (4.45)

The driving force pβ conforms to the last Subsection 4.2.2. The rate-dependent evolution equa-
tion of the damage variable d is derived by solving Equation (4.45) for the rate of the internal
variable considering, again, an active-set for the Karush-Kuhn-Tucker parameter γ, therefore

ḋRD =
1

r2

[|pβ| − r1]+ , (4.46)

whereas [x]+ := (x+|x|)/2, permitting only positive values. Finally, a physical meaningful and
mesh-independent damage model is achieved including a non-linear homogenization method
as well as viscous effects resulting in a rate-depending behavior. The numerical treatment is
presented in Algorithm 1 provided in Subsection 4.2.5 and this model is selected for the main
finite element calculations and results in the corresponding Chapters 5 and 6.

4.2.4 Determination of Stresses and Material Tangent

The determination of stresses and the material tangent for the rate-dependent case presented in
the previous Subsection 4.2.3 is based on Section 2.9. The stresses are given by

σ̃ = σ̃(ε̃, d) = f(d) Ẽ0 · ε̃ , (4.47)

and a linear approximation by means of the Taylor’s theorem results in

σ̃m+1 = σ̃m +
∂σ̃

∂ε̃

∣∣∣∣m ·∆ε̃+
∂σ̃

∂d

∣∣∣∣m ∆d , (4.48)
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with the increment of the strains ∆ε̃ = ε̃m+1− ε̃m and the increment of the internal variable or
rather damage variable ∆d = dm+1 − dm. The stresses σ̃m from the last time-step as well as
both appearing derivatives can straightforwardly be calculated by

σ̃m = f(dm) Ẽ0 · ε̃m , (4.49)

∂σ̃

∂ε̃

∣∣∣∣m = f(dm) Ẽ0 , (4.50)

∂σ̃

∂d

∣∣∣∣m = f ′(dm) Ẽ0 · ε̃m , (4.51)

resulting in the following formulation for the stresses

σ̃m+1 = f(dm) Ẽ0 · ε̃m+1 + f ′(dm) Ẽ0 · ε̃m∆d . (4.52)

Now, the tangent can be derived by

dσ̃

dε̃

∣∣∣∣m+1

=
∂σ̃

∂ε̃

∣∣∣∣m +
∂σ̃

∂d

∣∣∣∣m ⊗ ∂d

∂ε̃

∣∣∣∣m+1

, (4.53)

including the two already determined derivatives as well as the derivative of the damage variable
(∂d/∂ε̃) |m+1. For the latter, the evolution equation has to be taken into account, thus

dm+1 = dm +
∆t

r2

(
p(ε̃m+1, dm)− r1

)
. (4.54)

The according derivative of the damage variable is given by

∂d

∂ε̃

∣∣∣∣m+1

=
∆t

r2

∂p(ε̃m+1, dm)

∂ε̃m+1 , (4.55)

with the same derivative of the driving force as in the previous case

∂p(ε̃m+1, dm)

∂ε̃m+1 = −f ′(dm)Ẽ0 · ε̃m+1 . (4.56)

This can simply be inserted into the material tangent derived in Equation (4.53), therefore

dσ̃

dε̃

∣∣∣∣m+1

= f(dm) Ẽ0 −
∆t

r2

f ′(dm)2
(
Ẽ0 · ε̃m

)
⊗
(
Ẽ0 · ε̃m+1

)
. (4.57)

Again, in case of no damage evolution, the material tangent becomes

dσ̃

dε̃

∣∣∣∣m+1

= f(dm) Ẽ0 . (4.58)

4.2.5 Algorithm on Finite Element Level

The subsequent presented Algorithm 1 provides an overview of the implementation of Model
I [REL] presented in Section 4.2, whereby it is related to the rate-dependent model variant in
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Subsection 4.2.3. The algorithm for the rate-independent model variants of Subsections 4.2.1
and 4.2.2 is postponed to the Appendix A and presented by Algorithm 5.

Algorithm 1: Model I [REL]: Rate-dependent finite element algorithm.

input: ε̃m, ε̃m+1, dm

calc: pm+1 = p(ε̃m+1, dm)

calc: Φm+1 = Φ(p(ε̃m+1, dm))

if Φm+1 > 0 then

dm+1 = dm +
∆t

r2

(pm+1 − r1)

else
dm+1 = dm

calc: σ̃m+1 = σ̃(ε̃m, ε̃m+1, dm, dm+1)

calc:
dσ̃m+1

dε̃m+1 =
dσ̃

dε̃
(ε̃m, ε̃m+1, dm, dm+1)

4.3 Model II: Relaxation Based Regularization with the Emulated RVE

This chapter presents a regularized damage model based on variational modeling and the emu-
lated representative volume element (ERVE). The model, which is denoted as Model II [ERVE]
in this thesis, is directly based on the work of Schwarz et al. (2018a) and Schwarz et al. (2019b).

In Subsection 4.3.1 a basic variational damage model is introduced. Afterwards, in Subsec-
tion 4.3.2 the time-incremental setting is considered. The problem of non-coercivity is solved
due to rate-limitation of the damage evolution in Subsection 4.3.3. Then in Subsection 4.3.4,
quasi-convexity is achieved by relaxation. In Subsection 4.3.5, the stated ERVE is introduced.
A rate-independent formulation of the model is provided in Subsection 4.3.6. Subsequently in
Subsection 4.3.7, the stresses and the tangent operator are calculated and finally algorithms for
the material point as well as for the finite element level are presented in Subsection 4.3.8.

4.3.1 Variational Damage Modeling

The model is based on the Helmholtz free-energy function Ψ with isotropic damage, thus

Ψ = f(d) Ψ0 , (4.59)

considering the damage function f(d), see more details in Section 4.1, and

Ψ0 =
1

2
ε : E0 : ε . (4.60)
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For the present model, the damage function f(d) = e−d with d ∈ [0,∞[ is used for material
point simulations and f(d) = (1− d)2 with d ∈ [0, 1] is used for finite element simulations.

Applying the principle of the minimum of the dissipation potential (PMDP), according to
Subsection 2.6.4, allows to obtain the evolution equation for d as

ḋ = arg min

{
Ψ̇(ε, d) +D(ḋ)

∣∣ ḋ} . (4.61)

Therein, D(ḋ) is the dissipation function that can be defined according to the assumed material
behavior. The rate-independent formulation

D(ḋ) =

{
r1 ḋ for ḋ ≥ 0

∞ for ḋ < 0
, (4.62)

is applied to the present model, in which the parameter r1 equals the yield limit for the initiation
of damage and it is already considered that the damage can only increase but not decrease.

4.3.2 Condensed Energy without Coercivity

Initially, investigations of energies without the coercivity are taken into account. The time-
incremental setting is hereto considered in order to allow for a better understanding of problems
regarding the ill-posedness. Thus, the so-called dissipation distance ∆D is introduced by

∆D(d0, d1) = min

{ ∫ t1

t0

D(ḋ)dt
∣∣ ḋ; d(t0) = d0, d(t1) = d1

}
, (4.63)

with ∆t = t1 − t0. The dissipation distance describes the dissipated energy from the damage
state d0 to d1 within ∆t. Therefore, the dissipation distance for the aforementioned dissipation
function in Equation (4.62) becomes

∆D(d0, d1) =

{
r1(d1 − d0) for d1 ≥ d0

∞ for d1 < d0

. (4.64)

The Gibbs energy according to Equation (2.69) is written in the form

G =

∫
Ω

Ψ dV +

∫
Ω

∆D(d0, d1) dV−
∫

Ω

f · u dV −
∫
∂Ω

t · u dA (4.65)

and the related minimization problem reads

{u, d1} = arg min
{
G
∣∣ u, d1

}
. (4.66)

The minimization with respect to d1 results in a time-incremental version of the evolution equa-
tion presented in Equation (4.61), yielding

d1 = arg min
{

Ψ(ε, d1) + ∆D(d0, d1)
∣∣ d1

}
, (4.67)
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and this minimization is a point-wise operation inducing the condensed energy

Ψcond
d0

(ε) = min
{
f(d1) Ψ0(ε) + ∆D(d0, d1)

∣∣ d1

}
. (4.68)

The minimization with respect to u leads to the elastic equilibrium analogously to Equation
(2.83). Hereby, a purely elastic problem as to be solved, it follows

u = arg min

{ ∫
Ω

Ψcond
d0

dV−
∫

Ω

f · u dV −
∫
∂Ω

t · u dA
∣∣ u} . (4.69)

By means of this purely elastic problem the well-posedness of the time-incremental formulation
can be investigated since these kinds of problems are well understood, see for example the
work of Ball (1977). The existence of a solution is ensured by coercivity and quasiconvexity,
see Section 3.5 for more information. Initially, the coercivity is investigated which describes
the superlinear growth of energy as a function of strains. Hereto, the stress of the completely
damaged (d = dmax) material

σ = f(dmax)
∂Ψ0

∂ε
=
∂Ψcond

d0

∂ε
= f(dmax)E0 : ε (4.70)

has to be able to describe the complete material deterioration for large strains as illustrated on
the left-hand side of Figure 4.12, therefore

lim
‖ε‖→∞

σ = lim
‖ε‖→∞

f(dmax)E0 : ε = 0 , (4.71)

whereat this is also an additional condition for f(d1). Thereby, the stationarity condition

f ′(d1) Ψ0 + r1 = 0 for d1 ≥ d0 (4.72)

relates d1 and ε with each other. Taking into account Equations (4.71) and (4.72) leads to

lim
‖ε‖→∞

Ψcond
d0

(ε) ≤ C , (4.73)

with C > 0 depending on d0 and E0 only. This constant C ensures zero stresses and there-
fore fulfills the condition in (4.71). However, the sublinear growth of the energy violates the
coercivity conditions as illustrated on the right-hand side of Figure 4.12. Moreover, Figure 3.6
illustrates the limit case of coercivity.

Figure 4.12: Schematic illustration of the non-coercivity by zero stresses for infinite strains
(left) and resulting constant energy (right) limited by C.
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4.3.3 Coercivity by Rate-Limitation

Coercivity of the condensed energy can be achieved by rate-limitation of the evolution of dam-
age. Hereto, the dissipation function has to be modified such that

D(ḋ1) =

{
r1 ḋ1 for 0 ≤ ḋ1 ≤ k
∞ else

, (4.74)

with the positive parameter k limiting the amount of evolving damage. Thus, ∆D becomes

∆D(d0, d1,∆t) =

{
r1(d1 − d0) for 0 ≤ d1 − d0 ≤ k∆t
∞ else , (4.75)

which explicitly is depending on ∆t. Therefore, the model is henceforward rate-dependent.
In contrast to other two-state models for example in the works of Allaire and Kohn (1993),
Francfort and Marigo (1993), Allaire and Lods (1999), and Francfort and Garroni (2006), the
restriction to only two damage states is not asserted in a global sense but, in the present case, it is
applied to individual time-increments. Consequently, stresses are able to decrease in contrast to
usual two-state models and therefore Equation (4.71) is not violated. Assuming that f ′(d1) Ψ0+
r1 = 0 provides the unique solution d?1(Ψ0/r1) which allows to pose the condensed energy as

Ψcond
d0

(ε) =


f(d0) Ψ0 for d?1(Ψ0/r1) < d0

f(d?1(Ψ0/r1))Ψ0 + r1(d?1(Ψ0/r1)− d0) for d0 ≤ d?1(Ψ0/r1) < d0 + k∆t

f(d0 + k∆t)Ψ0 + r1k∆t for d?1(Ψ0/r1) > d0 + k∆t

.

(4.76)

The condensed energy Ψcond
d0

consists of three parts: two convex parts represented by the first
(marked green) and third (marked red) term describe different damage states and a linear part
(marked blue) represented by the second term describes a mixture state. The effective energy
over all time-steps results in a concave development due to the material deterioration.

All mentioned parts are also illustrated in Figures 4.13 and 4.14, where solid lines are always
assigned to the current time-step and dashed lines to the previous time-steps: the green lines
(first term in Equation (4.76)) arise from the energy landscape of the previous time-steps, the
red lines (third term in Equation (4.76)) correspond to the energy landscape of the current time-
step, and the blue relaxation curve (second term in Equation (4.76)) is the mixture energy that
is always tangential to the mentioned green and red lines. While damage is evolving during
loading, see Figure 4.13, the stiffness correspondingly reduces and therefore the slope of the
energies (green and red lines) decreases as well. As a result, the mixture energy (blue curve)
evolves in time providing an effective energy over all time-steps that is presented by the black
line in Figure 4.14. This effective energy arises as follows: the damage microstructure realized
in the material is based on the discretized current load (indicated by the external strain ε(t)) as
well as on the (fixed) damage state of the previous time-step, whereby the damage increment is
limited by the exact amount of k∆t and therefore the energy of the current time-step is directly
given. Consequently, Ψcond

d0
can directly be computed and complies with the set of relaxed

energy states over all discretized time-steps. Even though the condensed energy has achieved
the property of coercivity, due to the resulting concave development in Figure 4.14 based on
Equation (4.76), the energy is still not quasiconvex and therefore still ill-posed.
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Figure 4.13: Model II [ERVE]: Time-incremental energies of evolving damage for time steps t1
to t3 (from top to bottom).
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Figure 4.14: Model II [ERVE]: Time-incremental energies for effective energy over all time
steps of evolving damage (black curve).

4.3.4 Quasiconvexity by Relaxation

After considering coercivity, at this point quasiconvexity is additionally taken into account.
Quasiconvexity describes the stability of energy in the context of superimposed fluctuations of
the displacement field, see Section 3.5 for more information. Hereto, calculating the quasicon-
vex envelope of the potential leads to the desired property of quasiconvexity, thus

QΨcond
d0

(ε) = inf

{ ∫
Ωrep

Ψcond
d0

(ε+∇u(x))dV
∣∣ u;u periodic on ∂Ωrep

}
, (4.77)

whereby u = u(x) describes a superimposed fluctuation field that is considered for finding the
optimal fluctuation by minimization defined on a representative volume element Ωrep, which
has a unit volume. See for example work of Dacorogna (1982a). In this context, the strain field
as well as the damage variable are wanted quantities. Solving is quite challenging particularly
because there are not only two global damage states like in several other works for example
by Allaire and Kohn (1993), Allaire and Lods (1999), and Francfort and Garroni (2006), but
there are many damage states evolving due the time-incremental setting by means of the rate-
limitation, see Figure 4.14 for illustration.

Therefore, the rate-limited damage within a time-increment becomes a field d0 = d0(x) as
well, which is build on the stationarity condition in Equation (4.72). This distributed damage
field arises from a distributed strain field ε = ε(x) in Ωrep and functions as the initial condition
of the next time-increment. This practice leads to the following quasiconvex energy with a fixed
damage distribution

QΨ(ε, d1) = inf

{∫
Ωrep

Ψ(ε+∇u(x), d1(x))dV
∣∣u;u periodic on ∂Ωrep

}
. (4.78)
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An appropriate dissipation functional considering ḋ1 = ḋ1(x) is given by

Ď(ḋ1) =

∫
Ωrep

D(ḋ1(x))dV , (4.79)

whereas the evolution of the damage variable d is described by

ḋ1 = arg min

{
QΨ̇(ε, d1) + Ď(ḋ1)

∣∣ ḋ1

}
. (4.80)

Since it is numerically expensive to calculate QΨ, which involves solving a high dimensional
global optimization problem, this approach (Equation (4.80)) is unsuitable for modeling damage
evolution. Consequently, the compatibility of the fluctuation field is no longer regarded but
therefore the quasiconvex envelope is calculated, which ensures a well-posed damage model.

Furthermore, the damage distribution inside Ωrep is not directly calculated, but in contrast, it
can be interpreted as a microstructured damage variable that is modeled by assuming a specific
number of subdomains. This approach is called the emulated representative volume element
(ERVE), adopted from Schwarz et al. (2019b).

4.3.5 The Emulated Representative Volume Element

The emulated representative volume element (ERVE) covers the description of damage distri-
bution inside Ωrep by a specific number of subdomains. This idea originates from the interpreta-
tion as a microstructured damage variable as presented by the systematic development in Figure
4.15: Initially, a mixture between a completely undamaged state and a damaged state occurs that
is represented by two subdomains, see n = 2, whereby the damage increase is prescribed by
k∆t = 0.1. Then, these subdomains are again subdivided in the next time-step of evolving
damage, see n = 4. Afterwards, this process reiterates, see n = 8, and with every time-step
the number of subdomains increases exponentially, see n = 2t. This can be interpreted as a
microstructured damage variable that however can by substituted by a specific number of sub-
domains n over all time-steps in order to simplify the numerical effort for describing the damage
distribution inside Ωrep. Finally, this results in the mentioned ERVE, see rightmost.

n = 2 n = 4 n = 8 n = 2t ERVE

Figure 4.15: Model II [ERVE]: Development of ERVE starting from interpretation as mi-
crostructured damage variable leading to a fixed number of subdomains whereas
the damage increase is always prescribed by k∆t = 0.1.

Figure 4.16 provides an exemplary application of the ERVE for a better understanding and
a more detailed interpretation. A simplified case of the microstructured damage distribution
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inside Ωrep (left-hand side) and the corresponding ERVE (right-hand side) are presented by
schematic illustrations and compared with each other. Hereby, the subdomains in the ERVE
(right-hand side) emulate the damage structures (left-hand side) in such a way that the total
amount of damage coincide in both illustrations. Therefore, the purple and green structures on
the left-hand side are related to the purple and green subdomains constituting a corresponding
damage distribution on the right-hand side. The prescribed increase of damage in this example
is set to k∆t = 0.1 again.

Figure 4.16: Model II [ERVE]: Exemplary application of ERVE by a simplified case of mi-
crostructured damage distribution (left-hand side) compared to corresponding in-
terpretation of the ERVE (right-hand side) considering a prescribed damage in-
crease of k∆t = 0.1.

A more precise description is following at this point. The volume Ωrep is divided into n
subdomains of equal volume, constant strain εi and constant damage di. The energy is no
longer minimized with respect to u but indeed with respect to all εi originating from the given
overall strain ε. This results in

Ψrel(ε, {di}) = inf

{
1

n

n∑
i=1

f(di) Ψ0(εi)
∣∣ εi; ε =

1

n

n∑
i=1

εi

}
. (4.81)

Minimization of the problem provides the strains of each subdomain

εi =
f̄

f(di)
ε , (4.82)

and the relaxed energy

Ψrel(ε, {di}) = f̄Ψ0 , (4.83)

which is described with the effective damage function

f̄ = n

(
n∑
i=1

1

f(di)

)−1

, (4.84)
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capturing the damage states of all subdomains. The corresponding dissipation function reads

Drel({ḋi}) =
1

n

n∑
i=1

D(ḋi) , (4.85)

and evolution of ḋi can now be defined as

{ḋi} = arg min

{
Ψ̇rel(ε, {di}) +Drel({ḋi})

∣∣ {ḋi}} . (4.86)

Finally, a conclusive time-incremental setting is present with a dissipation distance provided by

∆Drel({d0i}, {d1i},∆t) =
1

n

n∑
i=1

∆D(d0i, d1i ,∆t), (4.87)

and is considered in the corresponding variational formulation

{di} = arg min
{

Ψrel(ε, {di}) + ∆Drel({d0i}, {di},∆t)
∣∣ {di} } . (4.88)

Derivating the energy yields the driving forces

pi = −∂Ψrel

∂di
= − f̄

2

n

f ′(di)

f(di)2
Ψ0 (4.89)

regarding each subdomain. Investigating Equation (4.88) allows to determine

pi <
r1

n
⇒ di = d0i,

d0i < di < d0i + k∆t ⇒ pi =
r1

n
,

pi >
r1

n
⇒ di = d0i + k∆t .

(4.90)

Several numerical simulations led to the experience that the second case of Equation (4.90) is
never realized. These values of di are related to linear mixture states of the energy plot and are
vanishing during relaxation processes.

4.3.6 Elimination of Rate-Dependence

Due to the rate-dependent formulation of Model II [ERVE] the numerical results directly depend
on the applied loading rate. This rate-dependence can be eliminated by relating the maximum
damage rate ḋ, considered in Equation (4.74), to the power of external forces `ext given by

`ext(u̇) =

∫
Ω

f · u̇dV +

∫
∂Ω

t · u̇dV . (4.91)

During elastic equilibrium, these external forces can directly be expressed in terms of material
properties only. This provides

Ġ =

∫
Ω

Ψ̇ +DdV = `ext(u̇) . (4.92)
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The quantity G describes the total stored energy of the volume Ω and Ġ represents the well-
known energy release rate. In context of finite element calculations the power of external forces
`ext can easily be calculated as

`ext(u̇) =
∆u ·

∑
f ?

∆t
, (4.93)

with the increment of applied displacements ∆u = um+1 − um and related sum over the
resulting forces f ?. The aforementioned maximum damage rate ḋ is then limited by the power
of external forces in consideration of a factor α, consequently

0 ≤ ḋ ≤ α`ext . (4.94)

In regard to the implementation in Equation (4.90), the prior quantity k∆t is accordingly sub-
stituted by α`ext∆t. This procedure ensures same conditions for different loading rates by an
adapting rate-limitation.

The achievement of rate-independent numerical results is proven in Subsection 5.3.1. Fur-
thermore, the parameter α allows to adjust the rate-limitation and consequently the power of
regularization. The influence of α is investigated in Subsection 5.3.3.

4.3.7 Determination of Stresses and Material Tangent

Based on Section 2.9 the determination of the stresses and the material tangent is presented in
this Section. The stresses of the current model are given by

σ̃ = σ̃(ε̃,d) = f̄(d) Ẽ0 · ε̃ , (4.95)

containing the damage variable d as a vector of length n corresponding to the number of sub-
domains of each material point. The linearized stresses are given by Taylor’s theorem, thus

σ̃m+1 = σ̃m +
∂σ̃

∂ε̃

∣∣∣∣m ·∆ε̃+
∂σ̃

∂d

∣∣∣∣m ·∆d . (4.96)

Thereby, the increment of the stains ∆ε̃ = ε̃m+1− ε̃m and the increment of the damage variable
∆d = dm+1 − dm functioning as the internal variable are included. Straightforwardly, the
stresses from the previous time-step σ̃n and the appearing derivatives are calculated as follows

σ̃m = f̄(dm) Ẽ0 · ε̃m , (4.97)

∂σ̃

∂ε̃

∣∣∣∣m = f̄(dm) Ẽ0 , (4.98)

∂σ̃

∂d

∣∣∣∣m =
(
Ẽ0 · ε̃m

)
⊗

n∑
j=1

(
f ′(dmj )

nf(dmj )2
f̄(dm) ej

)
, (4.99)

wherewith the stresses are resulting in

σ̃m+1 = f̄(dm) Ẽ0 · ε̃m+1 +
(
Ẽ0 · ε̃m

)
⊗

n∑
j=1

(
f ′(dmj )

nf(dmj )2
f̄(dm) ej

)
·∆d . (4.100)
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The material tangent can be derived as

dσ̃

dε̃

∣∣∣∣m+1

=
∂σ̃

∂ε̃

∣∣∣∣m +
∂σ̃

∂d

∣∣∣∣m · ∂d∂ε̃
∣∣∣∣m+1

, (4.101)

where the first two terms on the right-hand side are already determined in contrast to the third
one. The derivative of the damage variable (∂d/∂ε̃) |m+1 requires more investigations.

Since every material point includes a predefined number of subdomains with a separate dam-
age evolution given by

dm+1
i = dmi + α`ext∆t , (4.102)

and this separate damage evolution is surrounded by a loop including a continually changing
driving force, see Section 4.3.8 for more details, it is quite complicated to derive the wanted
derivative of the vectorial quantity d. For that reason, the energy Ψ0 is taken into account as

∂d

∂ε̃

∣∣∣∣m+1

=
∂d

∂Ψ0

∣∣∣∣m+1

⊗ ∂Ψ0

∂ε̃

∣∣∣∣m+1

=
∂d

∂Ψ0

∣∣∣∣m+1

⊗
(
Ẽ0 · ε̃m+1

)
, (4.103)

which allows to perform a numerical derivation of the damage derivative by applying the toler-
ance tol = 10−8 to Ψ0, see Hermann (2011) more information, consequently

∂d

∂Ψ0

∣∣∣∣m+1

=
dm+1
tol (Ψm+1

0 + tol)− dm+1(Ψm+1
0 )

tol
. (4.104)

Incidentally, this numerical procedure is not very expensive, since only a scalar quantity is
affected by the numerical fluctuation due to the application of the tolerance. The result can then
be considered for the derivative of the damage variable d according to

∂d

∂ε̃

∣∣∣∣m+1

=
dm+1
tol (Ψm+1

0 + tol)− dm+1(Ψm+1
0 )

tol
⊗
(
Ẽ0 · ε̃m+1

)
. (4.105)

Finally, all components can be inserted into Equation (4.101) providing the material tangent

dσ̃

dε̃

∣∣∣∣m+1

= f̄(dm) Ẽ0 +
(
Ẽ0 · ε̃m

)
⊗

n∑
j=1

(
f ′(dmj )

nf(dmj )2
f̄(dm) ej

)

· d
m+1
tol (Ψm+1

0 + tol)− dm+1(Ψm+1
0 )

tol
⊗
(
Ẽ0 · ε̃m+1

)
. (4.106)

In case of no evolving damage the material tangent reads

dσ̃

dε̃

∣∣∣∣m+1

= f(dm) Ẽ0 . (4.107)

4.3.8 Algorithm on Material Point and Finite Element Level

The Algorithms 2 and 3 presented in this subsection describe the numerical implementation
of Model II [ERVE] in Section 4.3. Obviously, the algorithms are fairly simple and short. The
first one, Algorithm 2, does not include the modification for rate-independence from Subsection



66 4 Novel Approaches to Regularized Damage Models

4.3.6 and is therefore rate-dependent. However, this model variant can completely be described
on the material point level in contrast to the other algorithm 3 which involves external forces.
For that reason 2 is also used for the calculations on material point level presented in the fol-
lowing Subsection 4.3.9. As already mentioned, the rate-independent model variant described
by Algorithm 3 considers the power of external forces `ext which is related to the last time-step
of the finite element calculation, and can therefore not be limited to the material point level.

Algorithm 2: Model II [ERVE]: Rate-dependent material point algorithm.

input: εm+1,dm

set: dm+1 = dm

for i = 1, ..., n do

calc: qi(εm+1,dm+1)

if qi >
r1

n
then

dm+1
i = dm+1

i + k∆t

if dm+1
i > 0.999 then

set: dm+1
i = 0.999

set: dm+1(dm+1
i )

Algorithm 3: Model II [ERVE]: Rate-independent finite element algorithm.

input: εm+1,dm, `ext

set: dm+1 = dm

for i = 1, ..., n do

calc: qi(εm+1,dm+1)

if qi >
r1

n
then

dm+1
i = dm+1

i + α`ext∆t

if dm+1
i > 0.999 then

set: dm+1
i = 0.999

set: dn+1(dn+1
i )

calc: σ̃m+1 = σ̃(ε̃m, ε̃m+1,dm,dm+1)

calc:
dσ̃m+1

dε̃m+1 =
dσ̃

dε̃
(ε̃m, ε̃m+1,dm,dm+1)
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4.3.9 Numerical Results on Material Point Level

In this subsection some numerical results on material point level based on Algorithm 2 from
the previous Subsection are provided because the microstructural description of the present
model by means of the ERVE includes interesting events and calculations and these results
are expected to allow a better understanding of the functioning and behavior of the model. The
presented calculations are strain-controlled, three-dimensional and the used material parameters
are given by Table 4.1. In contrast to the finite element results provided later in Chapters 5 and 6,
the present case of material point calculations was based on a damage function with exponential
behavior f(d) = e−d. The maximum strain εmax =

(
0.01 −0.0033 −0.0033 0 0 0

)T was
applied in 100 loading steps and the according results are given by Figures 4.17 to 4.21.

E ν r1 n k ∆t

200 GPa 0.33 [-] 0.1 MPa 20 [-] 0.11 1/s 1 s

Table 4.1: Model II [ERVE]: Parameters for material point simulations.

Figure 4.17 presents the damage variable di of each subdomain i plotted for the last time-step.
The number of subdomains was set to n = 20 and they are mirrored for presentation purposes
in order to pretend a crack-like appearance in the microstructure of the ERVE.

Figure 4.17: Model II [ERVE]: Damage variable di over mirrored subdomains i of number n =
20 on material point level in last time-step

This interpretation of a crack is not only given due to the mirroring of the subdomains but
also by the behavior of the damage evolution in the subdomains by itself: the damage starts to
evolve always in the first subdomain due to the order of access to the subdomains as presented
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in Algorithm 3, and afterwards further subdomains are filled successively until the energetic
equilibrium described by Equations (4.89) and (4.90) is achieved by the total amount of damage
over all subdomains. In this way and due to the mirroring, the crack-like appearance with an
amplitude in the middle of the mirrored x-axis is resulting.

Then, Figure 4.18 no longer presents the damage variable di for the last time-step only but
instead the evolution of the damage variable di over all time-steps and therefore over the in-
crease of the strains ε. This is again done for each subdomain i separately. In the beginning
approximately until ε = 0.001, the material behaves purely elastic and accordingly no damage
is evolving. Afterwards, obviously the driving forces of several subdomains exceed their ener-
getic threshold limits r since damage is initiating and evolving. This continues until energetic
equilibrium can be achieved for each time-step again. As described for the last Figure 4.17,
subdomains are successively filled and by this separately evolving damage the branching struc-
ture of Figure 4.18 is resulting. The final damage structure at maximum strain complies with
the damage distribution of Figure 4.17, of course. Interestingly, in both figures the subdomains
are filled successively starting with i = 1, ending with i = 18 and due to energetic conditions
the subdomains i = 19 and i = 20 remain unaffected by damage evolution.

Figure 4.18: Model II [ERVE]: Evolution of damage variable di in subdomains i of number
n = 20 over increase of strains ε on material point level.

Then, considering the mentioned damage function f(d) = e−d for each subdomain i provides
the plot in Figure 4.19, in which the evolution of these damage functions fi are presented over
the increasing strains ε. Therefore, this plot is directly related to Figure 4.18, which is why
the same elastic and damage parts can be identified. Since the damage function describes the
material stiffness here for each subdomain separately, it is decreasing from 1 to 0, representing
completely intact or damaged subdomains respectively.

For the material behavior in a global sense it is much more interesting and meaningful to
observe the material stiffness over all subdomains. This is done in Figure 4.20 by plotting
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the evolution of the effective damage function f̄ over the increasing strains ε. Herewith, the
subdomains and therefore the microstructure is no longer considered but the global behavior of
the macrostructure instead. It is also more interesting to consider this effective damage function
since it is also used for the calculation of stresses.

Figure 4.19: Model II [ERVE]: Evolution of damage function fi in subdomains i of number
n = 20 over strains ε on material point level.

Figure 4.20: Model II [ERVE]: Effective damage function f̄ over strains ε on material point
level.
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These stresses σ are also plotted over the strains ε as presented in Figure 4.21 and possess
a typical behavior for damage models including an initial elastic part as well as the significant
drop due to the damage evolution afterwards. This drop is, as already described before, the
result of the decreasing damage functions fi of each subdomain i which, in turn, are resulting
from the respective damage evolution di in each subdomain i. It should be noticed at this point,
that the presented model is able to describe a global answer approaching zero stresses.

Figure 4.21: Model II [ERVE]: Stresses σ over strains ε on material point level.

4.4 Model III: Gradient-Enhanced Regularization with Efficient Laplacian

In this chapter a gradient-enhanced model with an efficient evaluation of the Laplace operator
is presented. This is directly based on the works of Junker et al. (2018), Jantos et al. (2018) and
Schwarz et al. (2019a) and is denoted as Model III [LAP] in this thesis.

The variational damage modeling is introduced in Subsection 4.4.1. Then, Subsection 4.4.2
presents the numerical treatment of the displacement field, whereas Subsection 4.4.3 presents
the same for the damage function initially limiting to the one-dimensional case. More-dimensi-
onal cases are afterwards considered for structured meshes in Subsection 4.4.4 and for unstruc-
tured meshes in Subsection 4.4.5. Subsection 4.4.6 describes the allocation of the neighborhood
relations. Finally, the algorithm on the finite element level is derived in Subsection 4.4.7.

4.4.1 Variational Damage Modeling

This model is described by the total Helmholtz free-energy function

Ψ = Ψm + Ψr (4.108)



4.4 Model III: Gradient-Enhanced Regularization with Efficient Laplacian 71

consisting of two parts: the mechanical energy Ψm and the regularization energy Ψr.

The first part, the mechanical energy Ψm, is based on the elastic energy Ψ0 and extended by
the isotropic damage function f(d). See Section 4.1 for more details. The following applies

Ψm = Ψm(ε, d) = f(d)Ψ0 , (4.109)

with

Ψ0 =
1

2
ε : E0 : ε . (4.110)

For the current model the damage function f(d) = exp(−d) with the internal damage variable
d ∈ [0,∞) is chosen. The special property that its derivative is corresponding to its own
negative function, thus f ′(d) = −f(d), will be used later.

The second part, the regularization energy Ψr, is a quite common gradient-enhanced ap-
proach. The gradient is directly applied on the damage function though and not on the damage
variable or an according field function as often done in the literature, see for example work of
Dimitrijevic and Hackl (2008), consequently

Ψr =
1

2
β|∇f |2 . (4.111)

The parameter β allows to adjust the power of the gradient and thus the power of regularization.
This formulation, which is directly based on the damage function, leads to numerical advantages
and allows a better and more natural understanding of the material failure.

In order to obtain the stationarity conditions, the Hamilton’s principle based on Subsection
2.6.3 is applied as follows

δuG + δdG +

∫
Ω

∂D
∂ḋ

δd dV = 0 ∀ δu, δd . (4.112)

The variations of the two unknown quantities δu and δd, which are related to the displace-
ment field and the internal damage variable, are independent from each other and have to be
considered individually. In regard to Equation (4.112), the Gibbs energy

G :=

∫
Ω

Ψ(ε, d) dV −
∫

Ω

f · u dV −
∫
∂Ω

t · u dA (4.113)

and the dissipation function

D = r1|ḋ| (4.114)

have to be defined. For the dissipation function a rate-independent approach is chosen in order
to prevent viscous effects. This assumption leads to a model preferred for a rather brittle damage
behavior. The parameter r1 in the dissipation function serves as an energetic threshold quantity
that has to be overcome to start the damage evolution. The individual treatment of the variations
δu and δd results in the stationarity conditions

δuG = 0 ∀ δu and δdG +

∫
Ω

∂D
∂ḋ

δd dV = 0 ∀ δd . (4.115)
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A closer look at the first stationarity condition with respect to the displacement field u pro-
vides the following formulation for δuG

δuG =

∫
Ω

∂Ψm

∂ε
: δε dV −

∫
Ω

f · δu dV −
∫
∂Ω

t · δu dA = 0 ∀ δu . (4.116)

Taking into account the mechanical stresses σ = ∂Ψm/∂ε = f E : ε leads to the formulation∫
Ω

σ : δε dV −
∫

Ω

f · δu dV −
∫
∂Ω

t · δu dA = 0 ∀ δu , (4.117)

which can be solved by the finite element method considering the Dirichlet boundary conditions
u = u?, on ∂Ωu. The second stationarity condition for the internal variable d corresponds to∫

Ω

Ψ0 f
′δd dV +

∫
Ω

β∇f · ∇(f ′δd) dV +

∫
Ω

∂D δd dV = 0 ∀ δd , (4.118)

since δf = f ′δd. The three included terms can be identified as the mechanical and regu-
larization parts of the Helmholtz energy as well as the dissipation function. Due to the non-
differentiability of the dissipation function D at ḋ = 0, a sub-differential ∂D has to be intro-
duced. Hereby, the non-differentiable case is circumvented by substituting the derivative by
prescribed quantities as

∂D :=

r1
ḋ

|ḋ|
for ḋ 6= 0

[−r1, r1] else
. (4.119)

Unfortunately, the stationarity condition for δd is complicated to solve in connection with the
finite element method due to the sub-differential. Therefore, an integration by parts of the
second term of Equation (4.118) is performed∫

Ω

β∇f · ∇(f ′δd) dV =

∫
∂Ω

βn · ∇f f ′δd dA−
∫

Ω

β∇2f f ′δd dV . (4.120)

Two terms are resulting, the first one refers to the boundary by introducing the normal vector n
while the second one introduces the Laplace operator ∇2 for the first time. Here, the Laplacian
is applied on the damage variable and corresponds to the sum of all unmixed second derivatives
with respect to all spatial directions, thus

∇2f := ∇ · ∇f =
3∑
i=1

∂2f

∂x2
i

. (4.121)

Inserting the outcome of the integration by parts in Equation (4.120) into the stationarity condi-
tion for δd in Equation (4.118) leads to its strong form

f ′Ψ0 − βf ′∇2f + ∂D 3 0 x ∈ Ω (4.122)

∇f · n = 0 x ∈ ∂Ω . (4.123)

Hereby, the first term serves as the basis for the calculation of the damage evolution and the
second term serves as the Neumann boundary condition for first equation. In order to deter-
mine an indicator function, which distinguishes between damage or no damage evolution, the
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Legendre-Fenchel transformation of the dissipation function D∗ is performed

D∗ = sup
ḋ

{
pḋ−D

}
= sup

ḋ

{
|ḋ|(p sgn(ḋ)− r1)

}
. (4.124)

The outcome basically consists of two parts: the expression |ḋ| describes the amount of increas-
ing damage while the expression p sgn(ḋ)− r1 constitutes the indicator function, which can be
simplified later. First, the driving force p is defined as

p := −f ′Ψ0 + βf ′∇2f (4.125)

= f Ψ0 − βf ∇2f , (4.126)

whereby the special property of the damage function f ′ = −f was used. In general, the driving
force competes against the threshold energy value r and therefore initiates the damage evolution.
Since healing is not allowed in this model according to physical expectations, it can be assumed
that sgn(ḋ) = {0, 1}. Therefore, the indicator function can be defined from Equation (4.124) as

Φ := p− r1 ≤ 0 , (4.127)

which distinguishes between two cases: either the driving force achieves the energetic threshold
value r1 and damage evolution occurs ḋ > 0 or the driving force stays under this limit case and
there is no evolution of damage ḋ = 0, see

p ∈ ∂D

⇔

ḋ > 0 : p = r1

ḋ = 0 : p ≤ r1

. (4.128)

The governing equations can be summarized as∫
Ω

σ : δε dV −
∫

Ω

f · δu dV −
∫
∂Ω

t · δu dA = 0 ∀ δu , u = u? ∀ x ∈ ∂Ωu ,

(4.129)

ḋ ≥ 0 , Φ := fΨ0 − βf∇2f − r1 ≤ 0 , ḋ Φ = 0 . (4.130)

Herewith, the calculation of the displacement field u as well as the damage function f is com-
pletely described. However, the detailed numerical treatment is presented afterwards.

4.4.2 Numerical Treatment of the Displacement Field

According to typical procedures, the displacement field u is determined by the finite element
method. Analogously to Subsections 2.8.2 and 2.8.3 and by taking into account the Voigt no-
tation, the shape functions N and the operator matrix B are considered. The stationarity con-
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dition for the displacements u, based on Equation (2.136), can be written in terms of the finite
element method as the residualRu

Ru =
Ne∑
e=1

∫
Ωe

BT · σ̃ dV −
Ne∑
e=1

∫
Ωe

NT · f dV −
Ne∑
e=1

∫
∂Ωe

NT · t dA
!

= 0 . (4.131)

This residual is in a common shape. Nevertheless, due to the differential inequality for f pre-
sented in Equation (4.130), the damage function is directly depending on the elastic energy and
is therefore coupled to local strains. This relation increases the effort for calculating the current
displacement field of the current time-step ε̃m+1 and for that reason a first operator split is in-
troduced at this point: it is assumed that the damage function f is always considered from the
last time-step fm, therefore the stresses are calculated by

σ̃m+1 = fm Ẽ0 · ε̃m+1 . (4.132)

This first operator-split separates the damage function and the strains (or displacements) for the
computation of the current displacement field. As a consequence, the non-linearity of the sta-
tionarity condition converts into a linear algebraic equation and the tangent matrix in Equation
(2.140) becomes constant for each time-step including the following material tangent

dσ̃

dε̃

∣∣∣∣m+1

= fm Ẽ0 . (4.133)

This first operator split accompanies with the requirement of small loading increments in order
to not obtain viscous-related effects. This effect will be analyzed in Subsection 5.3.1.

4.4.3 Numerical Treatment of the Damage Function for One-Dimensionality

In order to introduce the numerical treatment of the damage evolution, the problem is applied
to the simplest case by restricting to one-dimensionality first. Hereto, the Laplace operator ∇2

corresponds to the second derivative of the damage function with respect to the one-dimensional
spatial coordinate x. This second derivative can easily be described with the finite difference
method, which directly takes into account the related neighbors, see 4.22, even without intro-
ducing any additional (computation) time-consuming quantities at the nodes.

i –1 i +1
i

Figure 4.22: Model III [LAP]: Neighborhood relations of central element i for the one-
dimensional case with two selected neighbors.

The distance to the neighboring elements is described by the spatial quantity ∆x, which is
here assumed to be constant for simplicity, as shown in Figure 4.23.
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�x�x
i

Figure 4.23: Model III [LAP]: Spatial quantity regarding central element i for the one-
dimensional case with two selected neighbors.

First, the damage function is evaluated at the center of mass of each element i and therefore
the indicator function is defined element-wise, such as

Φi := fiΨ̄0,i − βfi∇2fi − r1 ≤ 0 . (4.134)

Consequently, all Gauß points within one element basically have the same damage functionfi
and it should be noted that even the formulation of element-wise damage allows for considerably
sharp damage zones or cracks, as shown later. Then, the second derivative of the damage
function or rather the Laplace operator is replaced by the finite differences discretization. The
term transfers to

Φi := fiΨ̄0,i − βfi
fi−1 − 2fi + fi+1

∆x2
− r1 ≤ 0 . (4.135)

Hereby, the discretization is based on the direct left (i − 1) and right (i + 1) neighbor of the
central element i. For the Neumann boundary conditions, ghost elements are introduced mir-
roring the damage function of the first and last element. Hereto, some investigations were done
by Stacey (1994) for example. The indicator function also considers the averaged elastic energy

Ψ̄0,i =
1

Ωi

∫
Ωi

Ψ0 dV , (4.136)

which can be computed for each element i with volume Ωi by capturing the accumulated nu-
merical volumes of the Gauß points. The indicator function Φi in Equation (4.135) is defined
for each element i and due to the Laplace operator in addition to the damage function fi also
the direct neighbors fi−1 and fi+1 are included. For that reason, the equations are coupled with
each other leading to a system of equations with a coefficient matrix of the dimension ne × ne

with ne as the number of finite elements. This is quite expensive to solve. Consequently, a
second operator split is introduced at this point: it is assumed that the damage function f is
always considered from the last iteration-step fk, therefore the indicator function converts to

Φk
i = fki Ψ̄m+1

0,i − βfki
fki−1 − 2fki + fki+1

∆x2
− r1 ≤ 0 , (4.137)

with iteration step k. This second operator-split prevents the coupling between the neighbors
and thus between the equations because all entries are known from the last time-step. As a
consequence, the system of coupled inequalities of the dimension ne×ne converts into a system
of uncoupled inequalities of dimension ne. Besides, the second operator-split circumvent using
neighbored damage functions and considers the neighboring damage functions fi−1 and fi+1

to be fixed for each iteration step. As a result, the damage functions are calculated for each
element separately while the indicator function is violated, according to Φk

i > 0. As soon as the
indicator function has converged to zero again, thus Φk

i = 0, the damage functions are updated
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by the Newton method, such as fki → fk+1
i . Hereby, the Newton-Raphson method, see works

of Schäfer (1999), Zienkiewicz et al. (2005), Fish and Belytschko (2007), and Hermann (2011)
for example, is applied to the computation of the damage functions that looks as follows

fk+1
i = fki −

Φk
i

∂Φk
i /∂f

k
i

, (4.138)

with the derivative of the indicator function with respect to the damage function

∂Φk
i

∂fki
= Ψ̄m+1

0,i − β
fki−1 − 2fki + fki+1

∆x2
+ βfki

2

∆x2
. (4.139)

4.4.4 Numerical Treatment of the Damage Function for Structured Meshes

After considering the one-dimensional case, the two- (2D) or three-dimensional (3D) cases for
structured meshes, inspired by the work of Jantos et al. (2018), are presented here. The work of
Abu Al-Rub and Voyiadjis (2005) can be mentioned as a similar approach. Previously, only two
direct neighbors were present, the left and right neighbor, for a multi-dimensional treatment the
number of elements is increased: there are four direct neighbors for the two-dimensional and
six direct neighbors for the three-dimensional case.

This is illustrated by Figure 4.24: on the left-hand side the two-dimensional case with four
direct neighbors (north, east, south and west) and on the right-hand side the three-dimensional
case with two additional direct neighbors (f ront and back) is presented.
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Figure 4.24: Model III [LAP]: Neighborhood relations of central element i for 2D with four
selected neighbors (left) and for 3D with six selected neighbors (right).

For further procedure, the distances between the mid-point of the central element i and the
mid-points of the neighboring elements have to be involved, hereto the spatial increments de-
noted by ∆xn, ∆xs, ∆xe, ∆xw, ∆xf , and ∆xb are considered as presented in Figure 4.25.
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Figure 4.25: Model III [LAP]: Spatial increments regarding central element i for 2D with four
selected neighbors (left) and for 3D with six selected neighbors (right).

The allocation of neighbors to respective elements and the determination of the spatial incre-
ments is done once before the main finite element calculation starts. In Subsection 4.4.6 more
information about the neighborhood relations and dealing with the Neumann boundary condi-
tions is provided. In accordance with Equation (4.121) and related to Figure 4.25, the second
derivatives of fi in all three spatial directions for the three-dimensional case are defined as

∂2fi
∂x2

1

≈ 2(fw − fi)
∆xw(∆xw + ∆xe)

+
2(fe − fi)

∆xe(∆xw + ∆xe)
, (4.140)

∂2fi
∂x2

2

≈ 2(fn − fi)
∆xn(∆xn + ∆xs)

+
2(fs − fi)

∆xs(∆xn + ∆xs)
, (4.141)

∂2fi
∂x2

3

≈ 2(ff − fi)
∆xf (∆xf + ∆xb)

+
2(fb − fi)

∆xb(∆xf + ∆xb)
, (4.142)

with fn, fs, fe, fw, ff , and fb indicating the damage functions of the neighboring elements.
In case of a two-dimensional consideration, the third spatial direction as well as the front and
back relations are neglected. Combining the second derivatives in the vector Λf finally yields
the Laplace operator for the three-dimensional case as follows

Λf = (Λf )iei :=
3∑
j=1

∂2fi
∂x2

j

ei i = 1, . . . , ne . (4.143)

The length of the vector accordingly depends on the number of elements ne. It should be
emphasized here that, due to the formulation by means of the finite differences scheme and
the direct relations to the neighboring elements, this numerical treatment is not applicable for
unstructured meshes. This is because the neighboring elements are not located in line with the
respective considered central element. However, this problem can be solved by the subsequent
numerical treatment for unstructured meshes that is based on the idea of meshless methods by
means of the inverted Taylor series expansion.
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4.4.5 Numerical Treatment of the Damage Function for Unstructured Meshes

In order to extend the scope of application, the numerical treatment must be able to consider
unstructured meshes as well. Subsequently, the derivation originating from the Taylor series
expansion is presented for the two- and particularly the three-dimensional case. The procedure
is inspired by the work of Jantos et al. (2018).

Instead of applying the finite differences scheme as before, meshless methods accounting for
a more general procedure have to be used, see for example works of Prax et al. (1996) and
Basic et al. (2018). Therefore, the Taylor series expansion is adjusted by inverting the idea of
the Taylor series: usually the derivatives and spatial increments are known and the functions are
the wanted objective, whereas in the present case the derivatives are the wanted objectives and
the spatial increments and functions are known. More details about the Taylor’s theorem are
provided for example by Hermann (2011).

Initially, the Taylor series expansion for the damage function fi around a central element xi
up to degree two can be written as

∆fi,j := fj − fi =
3∑

k=1

( ∂fi
∂xk

∆xj,k +
1

2

3∑
p=1

∂2fi
∂xk∂xp

∆xj,k∆xj,p

)
. (4.144)

Hereby, the spatial increments, or more precisely the distances between the neighboring element
xj and the central element xi in all three spatial directions, are captured by the vector

∆xj := xi − xj =

xi,1 − xj,1xi,2 − xj,2
xi,3 − xj,3

 , (4.145)

whereby the index j runs over all neighboring elements. A deeper look at the Taylor series
expansion for f(d) leads to the following findings: there are nine unknown derivatives (five
in 2D) and therefore, in order to be able to solve this system of equations, nine neighboring
elements (five in 2D) are needed. Up to now, only the six direct neighbors n, s, e, w, f , and b
were considered in 3D (four direct neighbors n, s, e, and w in 2D). For that reason, the three
additional neighbors o, p, q have to be taken into account for the three-dimensional case (2D
only requires one additional neighbor o). There are specific requirements for the additional
neighbors, particularly the additional neighbors have to be selected once for a spatial plane and
preferably close to the central element.

In general, the allocation of neighbors to the respective elements and the determination of the
spatial increments is here again done once before the main calculation starts. More information
about the neighborhood relations (also about the newly introduced additional neighbors) and
dealing with the Neumann boundary conditions is provided in Subsection 4.4.6.

In the next step, the Taylor series expansion from Equation (4.144) can be combined in a
linear system of equations appearing as

∆f i = D · ∂f i . (4.146)

This system of equations consists of the following, which is now described in more detail:
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On the left-hand side of Equation (4.146), the known increments of the damage function
captured by the vector ∆f i of length 9 (5 in 2D) is provided, thus

∆f i = (∆fi,j)ej , j ∈ {n, s, e, w, f, b, o, p, q} (4.147)

The first place on the right-hand side of Equation (4.146) provides the known spatial increments
collected by the coefficient matrixD of size 9× 9 (5× 5 in 2D). The entries

Dj,1 = ∆xj,1 , Dj,4 = ∆xj,1∆xj,2 , Dj,7 =
(∆xj,1)2

2
,

Dj,2 = ∆xj,2 , Dj,5 = ∆xj,1∆xj,3 , Dj,8 =
(∆xj,2)2

2
,

Dj,3 = ∆xj,3 , Dj,6 = ∆xj,2∆xj,3 , Dj,9 =
(∆xj,3)2

2

(4.148)

have to be applied for each neighbor j describing only one line of the whole coefficient matrix.

Finally, at second place on the right-hand side of Equation (4.146), the unknown partial
derivatives captured by the vector ∂f i of length 9 (5 in 2D) is provided. The transposed form
reads as follows

∂f i :=

(
∂fi
∂x1

∂fi
∂x2

∂fi
∂x3

∂2fi
∂x1∂x2

∂2fi
∂x1∂x3

∂2fi
∂x2∂x3

∂2fi
∂x2

1

∂2fi
∂x2

2

∂2fi
∂x2

3

)T

. (4.149)

At this point, the system of equations is solved for the unknown quantity, the partial derivatives
∂f i, therefore

∂f i = D−1 ·∆f i . (4.150)

According to Equation (4.121), for the calculation of the laplace operator∇2 only the unmixed
second derivatives of the damage function f are necessary: the first six entries of ∂f i can be
neglected (first three in 2D) and only the last three entries have to be considered (last two in
2D). Hereto, the matrix B∇

2

of size 3 × 9 (2 × 5 in 2D) is introduced. This matrix replaces
the inverted coefficient matrix D−1 but only collects the last three lines (last two in 2D). This
results in neglecting the unneeded partial derivatives. Consequently,B∇

2

is defined as

B∇
2

l,j := D−1
l+6,j , l ∈ {1, 2, 3} , j ∈ {1, . . . , 9} , (4.151)

such that only the unmixed second derivatives remain

B∇
2 ·∆f i =

∂2fi
∂x2

l

el , l ∈ {1, 2, 3} . (4.152)

SinceB∇
2

is only depending on mesh topology analogously to the coefficient matrixD, it can
be calculated together with the allocation of neighbors and determination of spatial increments
once before the main finite element calculation starts.

Finally, the Laplace operator by Equation (4.121) for each element i is calculated as

(Λf )i =
3∑
l=1

(
B∇

2 ·∆f i
)
l
. (4.153)
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Moreover, the Laplace operator’s derivative with respect to damage function is given by

(DΛf )i :=
∂(Λf )i
∂fi

=
3∑
l=1

(
B∇

2 · ∂∆f i
∂fi

)
l
= −

3∑
l=1

(
B∇

2 · 1
)
l
, (4.154)

with the identity vector 1 of length 9 (5 in 2D). All things considered, the yield function for an
unstructured mesh can be written as

Φk
i = fki Ψ̄m+1

0,i − βfki (Λf )i − r1 ≤ 0 (4.155)

with

fk+1
i =

f
k
i −

Φk
i

Ψ̄m+1
0,i − β(Λf )i − βfki (DΛf )i

if Φk
i > 0

fki else .
(4.156)

4.4.6 Allocation of the Neighborhood Relations

At this point the allocation of neighborhood relations is presented. The neighborhood relations
are accompanied with handling the Neumann boundary conditions. Both are inspired by the
work of Jantos et al. (2018). There are three different cases: the one-dimensional (Section 4.4.3)
as well as the more-dimensional consideration with structured (Section 4.4.4) or unstructured
(Section 4.4.5) mesh. For all cases, the distances between the elements are always related to
the center of mass. The numerical treatment of a one-dimensional consideration, based on
Section 4.4.3, is quite easy: the neighborhood relations directly correspond to the numbering
of the mesh or rather finite differences discretization. At the beginning and end of the one-
dimensional specimen the Neumann boundary conditions are acting: no gradient is allowed and
therefore additional pseudo-nodes are mirroring the damage function.

In case of a structured mesh for a two- or three-dimensional consideration, presented in Sec-
tion 4.4.4, the neighborhood relations are not directly given by the discretization numbering.
Since the geometry of the mesh is assumed to be constant during the whole finite element cal-
culation following the assumption of small deformations, the relations of neighboring elements
only have to be determined once before the main calculation starts. This is basically done by
searching for a common edge that is corresponding to two common global nodes for the two-
dimensional case or a common plane that is corresponding to four common global nodes for
the three-dimensional case. Subsequently, a classification of the local numbering of the com-
mon nodes within the central element is done in order to assign the neighboring element to
a direction n, s, e, w, and, if applicable, f and b. For simplicity, this is illustrated only for
the two-dimensional case by Figure 4.26: in accordance with the schematic figure, the local
numbers 1 and 4 of the common global nodes always correspond to the neighbor n, 2 and 3 to
the neighbor s, 3 and 4 to the neighbor e, and 1 and 2 to the neighbor w. This is analogously
done for the three-dimensional case: the local numbers of four common global nodes have to be
assigned and the neighbors f and b have to be considered in addition. The Neumann boundary
conditions, which prevent a gradient at the boundaries, are similarly considered as before in the
one-dimensional case: pseudo-nodes are introduced at the boundary by mirroring the damage
function of the outer elements. Some investigations on that are given by Stacey (1994).
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Figure 4.26: Model III [LAP]: Local numbering of central element i for structured mesh under
two-dimensional consideration with four selected neighbors.
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Figure 4.27: Model III [LAP]: Diagonal elements with respective distances and local numbering
of central element i for unstructured mesh under two-dimensional consideration
with five selected neighbors.

The most complicated case is an unstructured mesh for a two- or three-dimensional consid-
eration, see Section 4.4.5. In principle, the same procedure as for the structured mesh is applied
(see previous paragraph), but additionally the elements o (2D) and if applicable p and q (3D)
have to be taken into account in order to allow for solving the system of equations in Equation
(4.146). The requirements of these three additional elements are that they have to be selected
once for each spatial plane and preferably close to the central element. Usually, these additional
elements are the closest ones located in diagonal direction as illustrated in Figure 4.27. Again,
only the two-dimensional case is presented for reasons of simplicity. The diagonal neighbors
are basically assigned by searching for a common global node for the two-dimensional case or
for a common edge that is corresponding to two common global nodes for the three-dimensional
case. In case that there is no diagonal neighbor the closest element in the relevant plane is being
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searched. Related to Figure 4.27 the closest diagonal element is o. Comparably to the structured
mesh, the Neumann boundary conditions prohibiting a gradient at the boundaries are considered
by pseudo-nodes mirroring the damage function of the outer elements.

4.4.7 Algorithm on Finite Element Level

This subsection provides the related Algorithm 4 for Model III [LAP] presented in Section 4.4.
The implementation is based on the element level of the finite element calculations.

Algorithm 4: Model III [LAP]: Finite element algorithm on element level.

after convergence of the finite element routine for ûm+1:

input: ε̃m+1, fm

calc: Ψ̄m+1
0,e

calc: σ̃m+1 = σ̃(ε̃m+1, fm)

calc:
dσ̃m+1

dε̃m+1 =
dσ̃

dε̃
(fm)

while
√

Φk ·Φk > tol ×Ne do
calc: Laplace operator Λf and derivative DΛf

for e ≤ Ne do
set: fke = fme

calc: Φk
e = fke Ψ̄m+1

0,e − βfke (Λf )e − r1

if Φk
e < tol then
Φk
e = 0

fk+1
e = fke

else

fk+1
e = fke −

Φk
e

Ψ̄m+1
0,e − β(Λf )i − βfke (DΛf )e

set: fm+1
e = fk+1

e

calc: Φk
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5 Preparatory Work for Finite Element Results

The preparatory work for the finite element calculations is provided in this chapter starting
with the presentation of the underlying boundary value problems in Section 5.1, followed by
the parameter identification for the considered damage models. Hereby, Section 5.2 presents
the investigations related to Model I [REL], Section 5.3 respectively to Model II [ERVE] and
Section 5.4 to Model III [LAP].

Each parameter identification includes several parameter studies based on the double-notched
plate with unstructured mesh and a final selected parameter set. The material parameters E and
ν as well as the loading rate u̇ are anticipated in Table 5.1 since they are uniformly applied for
all presented models and boundary value problems in this thesis.

E ν u̇

210 GPa 0.33 [-] 15× 10−6 mm/s

Table 5.1: Uniformly applied material parameters and loading rate for finite element results.

All finite element calculations in this thesis have been performed with the software FEAP
(A Finite Element Analysis Program) developed by the University of California, Berkeley in
the United States of America, further information to FEAP is provided for example by Taylor
(2017a) and Taylor (2017b).

The previous creation of the geometries, accordingly the preprocessing, have been done with
the software Gmsh developed by Geuzaine and Remacle (2009). The subsequent postprocessing
of the finite element calculations have then been done with the software GiD developed by the
International Center for Numerical Methods in Engineering (CIMNE) in Spain.

5.1 Boundary Value Problems for Investigations

In this section the underlying boundary value problems are presented which are applied for the
numerical calculations in regard to the model comparison in Chapter 6 as well as for the param-
eter identification hereinafter. Hereby, the double-notched plate is included in Subsection 5.1.1,
the plate with a centered hole in Subsection 5.1.2 and the cracked plate in Subsection 5.1.3. The
three-dimensional specimens are fixed to all directions at the top and bottom and additionally
a displacement is applied on the top. Therefore, plane stress conditions are prescribed. Details
on the number of elements as well as indications of size are respectively provided.
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5.1.1 Double-Notched Plate

Figure 5.1: Structured finite element meshes with 994, 4992, and 10074 elements for the
double-notched plate with dimensions 1.0× 1.5× 0.01 mm (left to right).

Figure 5.2: Unstructured finite element meshes with 986, 5064, and 10161 elements for the
double-notched plate with dimensions 1.0× 1.5× 0.01 mm (left to right).

5.1.2 Plate with a Centered Hole

Figure 5.3: Structured finite element meshes with 1024, 5032, and 10000 elements for the plate
with a centered hole with dimensions 1.0× 1.0× 0.01 mm (left to right).
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Figure 5.4: Unstructured finite element meshes with 996, 5090, and 10140 elements for the
plate with a centered hole with dimensions 1.0× 1.0× 0.01 mm (left to right).

5.1.3 Cracked Plate

Figure 5.5: Structured finite element meshes with 1024, 4970, and 10000 elements for the
cracked plate with dimensions 1.0× 1.0× 0.01 mm (left to right).

Figure 5.6: Unstructured finite element meshes with 1007, 5001, and 10040 elements for the
cracked plate with dimensions 1.0× 1.0× 0.01 mm (left to right).
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5.2 Parameter Identification for Model I

Below, the rate-dependence is investigated in Subsection 5.2.1 and the homogenization param-
eter β in Subsection 5.2.2. Subsection 5.2.3 examines the viscosity r2 and the final selected
parameters are given in Subsection 5.2.4.

5.2.1 Investigation of Rate-Dependence

Since Model I [REL] is rate-dependent, the numerical results are rate-dependent as well. This is
shown for five loading rates u̇ = {75.00, 37.50, 25.00, 18.75, 15.00}× 10−6 mm/s by the global
structural response in Figure 5.7. Hereby, the localized (brittle-like) as well as the diffusive
(ductile-like) case are distinguished with r2 = 0.20/1.00× 108 MPa s and β = 2.0.

Figure 5.7: Model I [REL]: Study on loading rate u̇ = [mm/s] by the double-notched plate with
986 unstructured elements for localized/diffusive cases with r2 = 0.20/1.00 × 108

MPa s (left/right) and β = 2.0.

The rate-dependence can further be observed by the contour plots in Figures 5.8 and 5.9 for
the localized and diffusive cases. The selected loading rates u̇ = {75.00, 25.00, 15.00} × 10−6

mm/s underline the strongly rate-depending results. The higher the loading rate the stronger the
regularization is acting. Thus, the damage distribution becomes more diffusive. This allows to
transform the localized case on the right-hand side of Figure 5.8 into a diffusive case as shown
on the left-hand side. Moreover, the diffusive case on the right-hand side of Figure 5.9 can be
transformed into an extremely diffusive damage zone as shown on the left-hand side.

Due to the rate-dependence, the loading rates can be chosen in any manner and other param-
eters have to be adjusted, accordingly. However, in coordination with the other damage models
in this thesis, the loading rate is set to u̇ = 15.00× 10−6 mm/s for further investigations.
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Figure 5.8: Model I [REL]: Distribution of f(d) for the double-notched plate with 986 unstruc-
tured elements with u̇ = {75.00, 25.00, 15.00}×10−6 mm/s (left to right) at the last
loading step for the localized case with r2 = 0.20× 108 MPa s and β = 2.0.

Figure 5.9: Model I [REL]: Distribution of f(d) for the double-notched plate with 986 unstruc-
tured elements with u̇ = {75.00, 25.00, 15.00}×10−6 mm/s (left to right) at the last
loading step for the diffusive case with r2 = 1.00× 108 MPa s and β = 2.0.

5.2.2 Investigation of Homogenization

Next, the influence of the homogenization parameter is investigated, which only allows for the
drop in the force-displacements diagrams. The values β = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4}
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are selected for this purpose. For a better overview, the results are limited to the diffusive
(ductile-like) results with r2 = 1.00× 108 MPa s at a loading rate of u̇ = 15.00× 10−6 mm/s.

Figure 5.10: Model I [REL]: Study on homogenization parameter β by the original (top), single-
normalized (left), and double-normalized (right) force-displacement diagram for
the double-notched plate with 986 unstructured elements considering the diffusive
case with r2 = 1.00× 108 MPa s (left/right) and u̇ = 15.00× 10−6 mm/s.

The top diagram in Figure 5.10 reveals that an increase of β leads to a strong increase of
global forces. This is due to the impact on the driving forces resulting in a shifted damage
evolution. In order to allow for a better comparison of the characteristics of β, the forces are
normalized yielding the diagram on the left-hand side of Figure 5.10 and a further normalization
of the displacements yields the diagram on the right-hand side. Both diagrams clearly show that
an increasing β improves the physically expected behavior by reinforcing the drop of the forces
up to a specific point. All values over β = 2.0 cause a quite similar global response with respect
to their dropping behavior that seems to converge from β = 2.2 (see right diagram). However,
higher values of β also delay the occurring drop in relation to the applied displacements and
therefore require a higher maximum loading (see left diagram).

The influence of the homogenization parameter β is also investigated by the damage distri-
bution as shown in Figure 5.11. The parameters β = {1.0, 1.2, 1.6, 1.8, 2.0, 2.4} are considered
here. Obviously, small values of β are not suitable since the damage is remarkably distributed



5.2 Parameter Identification for Model I 89

and far too diffusive in order to characterize cracks. On the other end of the range, the results
for β = 2.0 and β = 2.4 are quite similar again.

Figure 5.11: Model I [REL]: Distribution of f(d) for the double-notched plate with 986 un-
structured elements for β = {1.0, 1.2, 1.6, 1.8, 2.0, 2.4} (top left to bottom right)
at the last loading step for the diffusive case with r2 = 1.00×108 MPa s (left/right)
and u̇ = 15.00× 10−6 mm/s.

Summarizing, it was established by the force-displacement curves , especially by the double-
normalized ones, that the dropping behavior converges for higher values of β. However, the
drop of forces is delayed to increased displacements. With respect to the other damage models
in this thesis and to comply with similar force-displacement conditions, the homogenization
parameter is set to β = 2.0. The contour plots for the damage distribution support this choice
by almost identical results compared to even higher values of β.
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5.2.3 Investigation of Regularizing Viscosity

After defining the loading rate and the homogenization parameter, the regularization parameter
by means of the viscosity is investigated. Hereby, it is focused on the impacts on the damage
distribution and general model behavior and not on the actual regularization in regard to mesh-
independent results, this is dedicated to Chapter 6 dealing with the model comparisons.

Figure 5.12: Model I [REL]: Study on viscosity parameter r2 = [MPa s] by the double-notched
plate with 986 unstructured elements with β = 2.0 and u̇ = 15.00× 10−6 mm/s.

The general model behavior is now examined by considering the global structural response
for the parameters r2 = {5.00, 1.00, 0.50, 0.33, 0.25, 0.20} × 108 MPa s in Figure 5.12. At the
same time, the parameters β = 2.0 and u̇ = 15.00 × 10−6 mm/s stay constant. Obviously,
the peaks of the curves in this diagram are increasing with an increasing viscosity parameter
r2. This is expected since the viscosity parameter is included in the evolution equation as an
inverted quantity, namely by ∆t/r2 with ∆t = 1 s, and the increase of viscosity therefore leads
to a slower damage evolution resulting in a delayed drop. Besides that, the global response does
not provide further information about the model behavior or damage distribution.

In order to achieve more information about the model behavior and damage distribution in
relation to the viscosity, the contour plot in Figure 5.13 providing the distribution of f(d) is
taken into account. The same increments of the parameter are presented here and it is obvi-
ous that the viscosity has a huge impact on the results. Analogously to the force-displacement
considerations, an increase of the viscosity parameter slows down the damage evolution. There-
fore, more distributed and diffusive damage zones due to the stronger regularization effect are
resulting. In contrast, smaller values of r2 are leading to a higher damage evolution causing a
smaller regularization effect that finally provides sharper and more localized zones or cracks.

Consequently, the extension and sharpness of the propagating damage can directly be ad-
justed by the viscosity. In accordance with the overall concept of the model comparisons, a
localized (brittle-like) as well as a diffusive (ductile-like) parameter set is in demand. There-
fore, the parameter r2 = 0.20×108 MPa s, illustrated by the middle contour plot at the bottom of
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Figure 5.13, is chosen for the localized case. The parameter r2 = 1.00× 108 MPa s, illustrated
by the middle contour plot at the top, is selected for the diffusive case.

Figure 5.13: Model I [REL]: Distribution of f(d) for the double-notched plate with 986 un-
structured elements for r2 = {5.00, 1.00, 0.50, 0.33, 0.25, 0.20} × 108 MPa s (top
left to bottom right) at the last loading step with β = 2.0 and u̇ = 15.00 × 10−6

mm/s.

5.2.4 Selected Parameter Set

Selected parameters from previous investigations regarding rate-dependence in Subsection 5.2.1,
homogenization in Subsection 5.2.2, and viscosity in Subsection 5.2.3 are finally collected. Ba-
sically, two approaches are considered here. The rate-dependent approach from Subsection
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4.2.3 is used for investigations in this chapter as well as for the regularized calculations for the
comparisons in Chapter 6. Additionally, the rate-independent approach from Subsection 4.2.2
is used only for the non-regularized and therefore mesh-dependent calculations in Subsection
6.1. The latter approach is separately considered because the viscous-based regularization can
only be deactivated by neglecting these viscous effects by a rate-independent formulation.

The damage and regularization parameters are provided in Table 5.2 in which the localized
and diffusive parameter sets as well as the set without regularization is included. Generally,
in order to obtain comparable conditions for all damage models in this thesis, the energetic
threshold value for damage r1 was initially set to r1 = 1 MPa. However, due to the strong
impact of the homogenization and the viscosity on the peaks of the force-displacement curves,
this value had to be adjusted to r1 = 200 MPa in order to achieve reasonable results. Only for
the rate-independent case, at which a smaller value for β and naturally no viscosity was present,
the initial value for r1 could be applied. Besides, the numerical parameter α is always constant.

r1 α β r2 ∆t

no regularization 1 MPa 1× 10−5 [-] 1.4 [-] [-] [-]

localized damage 200 MPa 1× 10−5 [-] 2.0 [-] 0.20× 108 MPa s 1 s

diffusive damage 200 MPa 1× 10−5 [-] 2.0 [-] 1.00× 108 MPa s 1 s

Table 5.2: Model I [REL]: Damage and regularization parameter for finite element results.

For the rate-independent approach, the parameters r2 and ∆t are not available, of course.
Besides that, a relatively small value of β was chosen in order to underline that only little
differences from the Reuß case at β = 1.0 leads to mesh-dependent results already.

5.3 Parameter Identification for Model II

This section provides the parameter identification for Model II [ERVE]. Initially, the rate-
dependence is examined in Subsection 5.3.1. Afterwards in Subsection 5.3.2, the number of
subdomains is investigated. The regularizing rate-limitation is inspected in Subsection 5.3.3
and conclusively Subsection 5.3.4 presents the final selected parameter set.

5.3.1 Investigation of Rate-Dependence

The rate-dependence of Model II [ERVE] is eliminated as presented in Subsection 4.3.6 and thus
no influences by different loading rates u̇, excepting small numerical fluctuations, are expected.
To answer this expectation the global structural response in Figure 5.14 is taken into account.



5.3 Parameter Identification for Model II 93

Figure 5.14: Model II [ERVE]: Study on loading rate u̇ = [mm/s] by the double-notched plate
with 986 unstructured elements for the localized/diffusive with α = 5000/500
1/(N mm) cases (left/right) and n = 20.

Figure 5.15: Model II [ERVE]: Distribution of f(d) for the double-notched plate with 986 un-
structured elements with u̇ = {75.00, 25.00, 15.00} × 10−6 mm/s (left to right) at
the last loading step for the localized case with α = 5000 1/(N mm) and n = 20.

While other parameters are set to α = 5000/500 1/(N mm) and n = 20, the loading rates u̇ =
{75.00, 37.50, 25.00, 18.75, 15.00} × 10−6 mm/s are considered. Obviously, all rates yield the
same force-displacement curves and even small fluctuations can hardly be seen. Interestingly,
the curves in the localized case on the left-hand side have an even better agreement than the
curves for the diffusive case on the right-hand side. Obviously, the rate-independence is more
stable for a slight regularization corresponding to the localized behavior.
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The contour plots for the loading rates u̇ = {75.00, 25.00, 15.00} × 10−6 mm/s are given by
Figure 5.15 for the localized (brittle-like) and Figure 5.16 for the diffusive (ductile-like) case.
The results underline the previous observed behavior of rate-independence by quasi-identical
damage distributions for the respective cases.

Figure 5.16: Model II [ERVE]: Distribution of f(d) for the double-notched plate with 986 un-
structured elements with u̇ = {75.00, 25.00, 15.00} × 10−6 mm/s (left to right) at
the last loading step for the diffusive case with α = 500 1/(N mm) and n = 20.

For the mentioned reasons, an arbitrary choice for the loading rate can be made. However,
in accordance with the other damage models presented in this thesis, a common loading rate of
u̇ = 15.00× 10−6 mm/s is selected.

5.3.2 Investigation of Regularizing Subdomains

It can be assumed that the subdomains do not directly affect the characteristics of the damage
or regularization, but for numerical reasons a minimum number of subdomains n has to be
ensured. This allows for the microstructural description in regard to the emulated representative
volume element (ERVE). The minimum number of subdomains is determined in the following.
In order to keep this investigation simple, this is done by means of the diffusive case only. Other
parameters are fixed to α = 500 1/(N mm) and u̇ = 15.00× 10−6 mm/s.

Initially, Figure 5.17 provides different numbers of subdomains with n = {1, 5, 10, 15, 20, 25}
for two different meshes: 986 elements are considered on the left-hand side as opposed to 5064
elements on the right-hand side. Both indicate that only five subdomains are enough to achieve
convergence. In order to circumvent any potential exceptions, the number is set to n = 20.
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Figure 5.17: Model II [ERVE]: Study on subdomains n by the double-notched plate with 986
(left) and 5064 (right) unstructured elements for the diffusive case with α = 500
1/(N mm) and u̇ = 15.00× 10−6 mm/s.

Regarding this selection, Figure 5.18 confirms mesh-independence in contrast to only one
subdomain. The latter case prevents the concept of the ERVE and thus regularization can not
work properly. The comparison of the coarse and medium mesh with 986 and 5064 elements is
sufficient since this is more problematic than a further comparison to a finer mesh.

Figure 5.18: Model II [ERVE]: Comparing the number of subdomains n = 1 (blue lines) and
n = 20 (dark yellow lines) by the double-notched plate with 986 (dashed lines)
and 5064 (solid lines) unstructured elements for the diffusive case with α = 500
1/(N mm) and u̇ = 15.00× 10−6 mm/s.

Moreover, the distribution of the damage is also investigated. Hereto, the contour plots in
Figure 5.19 considering the mesh with 986 elements and Figure 5.20 for 5064 elements are
taken into account. Three different numbers of subdomains with n = {1, 10, 20} are included.
Thereby, the same observations can be made since only the case of a single subdomain leads to
different and unexpected results. For n = 10 and n = 20 the distributions of f(d) are apparently
equal in case of both numbers of applied elements.
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Figure 5.19: Model II [ERVE]: Distribution of f(d) for the double-notched plate with 986 ele-
ments with n = {1, 10, 20} (left to right) at the last loading step for the diffusive
case with α = 500 1/(N mm) and u̇ = 15.00× 10−6 mm/s.

Figure 5.20: Model II [ERVE]: Distribution of f(d) for the double-notched plate with 5064
elements with n = {1, 10, 20} (left to right) at the last loading step for the diffusive
case with α = 500 1/(N mm) and u̇ = 15.00× 10−6 mm/s.

Concluding, the number of subdomains is obviously sufficient starting with n = 5. As a
precaution, the subdomains are set to n = 20. Incidentally, this number of subdomains is also
used for the numerical results on material point level in Subsection 4.3.9, in which interestingly
almost all subdomains are affected by damage evolution during the calculation.
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5.3.3 Investigation of Regularizing Rate-Limitation

The rate-limiting parameter α mainly influences the regularization in this damage model. Anal-
ogously to the previous model, the present investigation is not related to the mesh-independence
of the calculations, this is dedicated to Chapter 6. At this point, the impacts of the rate-limitation
on the damage distribution and general behavior of this damage model is examined. The pa-
rameters n = 20 and u̇ = 15.00× 10−6 mm/s are fixed in this context.

Figure 5.21: Model II [ERVE]: Study on rate-limiting factor α = [1/(N mm)] by the double-
notched plate with 986 unstructured elements with n = 20 and u̇ = 15.00 × 10−6

mm/s.

The parameter α strongly influences the force-displacement curves in Figure 5.21 including
the values α = {80, 500, 800, 1800, 5000, 50000} 1/(N mm). The arising global responses are
delayed to higher peaks which results from the decreasing α. This leads to a stronger rate-
limitation and regularization and can be matched to viscous regularization in general.

In order to obtain information about the damage distribution, the contour plot in Figure 5.22
is considered including the same range of values for the parameter α as before. Also these
results, illustrating f(d), show a strong influence of the rate-limitation as already detected for
the global responses. Again, a decrease of the parameter α leads to a stronger rate-limitation
accompanied by a stronger regularization that arises here by a strongly diffusive distribution
of the damage zone. In contrast, a decreasing of α enlarges the damage evolution leading to a
weaker regularization that results in more localized damage zones appearing like thin cracks.

Altogether, the crack behavior or rather the thickness of the propagating damage zone can be
adjusted by the rate-limiting parameter α. Analogously to the previous model, two parameter
sets are chosen in order to obtain a localized (brittle-like) as well as a diffusive (ductile-like)
behavior for the comparisons to the other damage models. Hereto, the first case is enabled by
α = 5000 1/(N mm), represented by the middle contour plot at the bottom of Figure 5.22, and
the second one by α = 500 1/(N mm), represented by the middle contour plot at the top.
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Figure 5.22: Model II [ERVE]: Distribution of f(d) for the double-notched plate with 986 un-
structured elements for α = {80, 500, 800, 1800, 5000, 50000} 1/(N mm) (top left
to bottom right) at the last loading step with n = 20 and u̇ = 15.00× 10−6 mm/s.

5.3.4 Selected Parameter Set

At this point, the selected parameters for Model II [ERVE] from the previous examinations
in regard to rate-dependence in Subsection 5.3.1, regularizing subdomains in Subsection 5.3.2
and to the rate-limitation in Subsection 5.3.3 are conclusively collected. The damage and reg-
ularization parameters presented in Table 5.3 consider different cases: the first parameter set is
related to calculations without any regularization, the second one for the localized and the third
one for the diffusive case. The energetic threshold value r1 is identically chosen for all cases
and set to r1 = 1 MPa in order to ensure equal conditions for all damage models (excepting
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Model I [REL] in which another value had to be selected).

r1 n α ∆t

no regularization 1 MPa 1 [-] 5000000 1/(N mm) 1 s

localized damage 1 MPa 20 [-] 5000 1/(N mm) 1 s

diffusive damage 1 MPa 20 [-] 500 1/(N mm) 1 s

Table 5.3: Model II [ERVE]: Damage and regularizing parameter for finite element results.

The case without regularization is restricted to one subdomain and has an quasi-unlimited
damage rate with α = 5000000 1/(N mm), for which it has separately been proofed that no
regularization effects are remaining. It should be mentioned that the increase of the damage
has always been limited to dmax = 0.999. In the present case, the applied damage function
f(d) = (1− d)2 yields a lower limit of f(dmax) = 1× 10−6 for maximally destroyed material.

5.4 Parameter Identification for Model III

The parameter identification for Model III [LAP] is presented in this section. First, Subsection
5.4.1 investigates the rate-dependence. Subsequently, the regularizing gradient is examined in
Subsection 5.4.2 and lastly the final selected parameter set is presented in Subsection 5.4.3.

5.4.1 Investigation of Rate-Dependence

Due to the rate-independent formulation of Model III [LAP] different loading rates u̇ should not
have an impact on the results. However, the applied operator splits in the derivation cause rate-
dependent effects. In order to overcome these influences the loading rate has to be decreased
until a converged behavior can be observed.

Figure 5.23: Model III [LAP]: Study on loading rate u̇ = [mm/s] by the double-notched plate
with 986 unstructured elements for localized/diffusive cases with β = 0.002/0.015
MPa mm2 (left/right).
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This is investigated by the force-displacement curves in Figure 5.23 by the loading rates
u̇ = {75.00, 37.50, 25.00, 18.75, 15.00} × 10−6 mm/s for the localized and diffusive cases with
β = 0.002/0.015 MPa mm2. These curves are converging as assumed. Loading rates smaller
than u̇ = 25.00× 10−6 mm/s are considered to be close enough to the final converged result.

Figure 5.24: Model III [LAP]: Distribution of f(d) for the double-notched plate with 986 un-
structured elements with u̇ = {75.00, 25.00, 15.00} × 10−6 mm/s (left to right) at
the last loading step for the localized case with β = 0.002 MPa mm2.

Figure 5.25: Model III [LAP]: Distribution of f(d) for the double-notched plate with 986 un-
structured elements with u̇ = {75.00, 25.00, 15.00} × 10−6 mm/s (left to right) at
the last loading step for the diffusive case with β = 0.015 MPa mm2.
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The related contour plots are provided by Figure 5.24 for the localized case with β = 0.002
MPa mm2 and by Figure 5.25 for the diffusive case with β = 0.015 MPa mm2. Here, the
loading rates are limited to u̇ = {75.00, 25.00, 15.00} × 10−6 mm/s. Both figures underline the
previously described convergence for values smaller than u̇ = 25.00× 10−6 mm/s with almost
identical damage distributions for the respective two contour plots on the right-hand side of
each case. In line with the other damage models in this thesis, the loading rate is prescribed by
u̇ = 15.00× 10−6 mm/s.

5.4.2 Investigation of Regularization Parameter

Besides the investigation of the loading rate, the only investigated further parameter is the reg-
ularization parameter β. As before, the mesh-independence is not subject of investigation here,
this is part of the model comparison in Chapter 6. At this point, the impact of the gradient pa-
rameter on the damage distribution and general model behavior is examined for an prescribed
loading rate of u̇ = 15.00× 10−6 mm/s.

Hereto, it is started with the global structural response in Figure 5.26 including the parameters
β = {0.000, 0.002, 0.010, 0.012, 0.015, 0.100} MPa mm2. The gradient parameter strongly
influences the behavior of the curves. Obviously, an increasing of β leads to higher peaks and a
delayed damage evolution. This is a result of the increasing regularization.

Figure 5.26: Model III [LAP]: Study on gradient parameter β = [MPa mm2] by the double-
notched plate with 986 unstructured elements with u̇ = 15.00× 10−6 mm/s.

The characteristics of the regularization parameter β can be observed by considering the
contour plots in Figure 5.27 for the same parameter selection as before. These contour plots
show the damage distribution by means of f(d) and underline the previous observations: an
increasing parameter β intensifies the regularization providing a more diffusive and distributed
damage propagation. In contrast, a decrease results in very sharp and thin damage zones that
are characteristic for cracks.

The final choice for the finite element simulations and model comparisons is done consid-
ering two sets of regularization again: analogously to the other damage models, a parameter
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related to a localized damage distribution (brittle-like behavior) with β = 0.002 MPa mm2 and
a parameter related to a diffusive damage distribution (ductile-like behavior) with β = 0.015
MPa mm2 are selected. The first case is illustrated by the middle contour plot at the bottom of
Figure 5.27, the second case by the middle contour plot at the top.

Figure 5.27: Model III [LAP]: Distribution of f(d) for the double-notched plate with 986 un-
structured elements with β = {0.000, 0.002, 0.010, 0.012, 0.015, 0.100}MPa mm2

(top left to bottom right) at the last loading step with u̇ = 15.00× 10−6 mm/s.

5.4.3 Selected Parameter Set

Finally, the selected parameters from the previous investigations of the rate-dependence in Sub-
section 5.4.1 and the regularizing gradient in Subsection 5.4.2 are collected. The damage and
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regularization parameters are provided by Table 5.4. In accordance with the other damage mod-
els in this thesis, the damage related energetic threshold value r1 is chosen to be r1 = 1 MPa for
all calculations. On the contrary, the regularizing gradient parameter β is naturally depending
on the respective application. A calculation without regularization and the already investigated
cases of localized and diffusive damage are distinguished.

r1 β

no regularization 1 MPa 0.000 MPa mm2

localized damage 1 MPa 0.002 MPa mm2

diffusive damage 1 MPa 0.015 MPa mm2

Table 5.4: Model III [LAP]: Damage and regularization parameter for finite element results.
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6 Model Comparison with Finite Element Results

This chapter compares the three damage models introduced in Chapter 4. The underlying basis
are the parameter studies and model validations described in Chapter 5. In the following, three
different cases are distinguished: firstly, the initial situation of the damage models without any
regularization is presented in Section 6.1. Secondly, the results of the localized damage behav-
ior, which is related to a brittle-like characteristic, are given in Section 6.2. Thirdly, the diffusive
damage behavior related to a ductile-like characteristic is considered in Section 6.3. Each case
includes the three previously introduced boundary value problems. Three different mesh dis-
cretization levels are considered, where structured as well as unstructured meshes are utilized.
Furthermore, the solution of each boundary value problem provides the damage distributions
for Model I [REL], Model II [ERVE] and Model III [LAP], respectively. The contour plots
are always related to the legend of the damage function f(d) in Figure 6.1. Additionally, the
overall structural response is discussed in terms of force-displacement diagrams. Subsequently,
the computation times of the different models are taken into account in Section 6.4.

Figure 6.1: Legend representing the damage function f(d) from 1 (undamaged) to 0 (damaged).

6.1 Damage Modeling without Regularization

As alluded in Chapter 3, the characteristic localization leads to numerical instabilities and mesh-
dependent results. For illustration purposes and for enabling a direct comparison between non-
regularized and regularized results, this section is related to non-regularized results.

The numerical examples in Subsections 6.1.1 to 6.1.9 provide expected results for all con-
sidered damage models: the damage is locally distributed and mainly limited to only one or a
few element rows. Therefore, the width of the damage zones directly depends on the size of
the element. Furthermore, in some cases different or splitting up crack paths are observed that
have no physical reason but are only present due to numerical instabilities. The corresponding
force-displacement curves in Subsections 6.1.3, 6.1.6, and 6.1.9 additionally underline this de-
pendence on the size of the elements via different global responses. In case of Figures 6.9 and
6.18 the curves seem to be identical resulting from the abrupt and vertical drop. However, the
peaks of the curves are different and the related contour plots are different anyway.

Obviously, the presented results are not suitable for the modeling of damage mechanisms. To
this end, regularization strategies have to be applied such which are presented in Chapter 3. This
has been done for the novel approaches from Chapter 4. The numerical results are presented
afterwards in Sections 6.2 and 6.3 for the localized and diffusive characteristics.
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6.1.1 Damage Distributions for the Double-Notched Plate (Stru. Mesh)

Figure 6.2: Model I [REL]: Distribution of f(d) for the double-notched plate with 994, 4992,
and 10074 structured elements (left to right) at the last loading step with u̇ = 75.00×
10−9 mm/s, r1 = 1 MPa and β = 1.4 (rate-independent).

Figure 6.3: Model II [ERVE]: Distribution of f(d) for the double-notched plate with 994, 4992,
and 10074 structured elements (left to right) at the last loading step with u̇ = 15.00×
10−6 mm/s, r1 = 1 MPa, n = 1 and α = 5000000 1/(N mm).

Figure 6.4: Model III [LAP]: Distribution of f(d) for the double-notched plate with 994, 4992,
and 10074 structured elements (left to right) at the last loading step with u̇ = 15.00×
10−6 mm/s, r1 = 1 MPa and β = 0.000 MPa mm2.
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6.1.2 Damage Distributions for the Double-Notched Plate (Unstru. Mesh)

Figure 6.5: Model I [REL]: Distribution of f(d) for the double-notched plate with 986, 5064,
and 10161 unstructured elements (left to right) at the last loading step with u̇ =
75.00× 10−9 mm/s, r1 = 1 MPa and β = 1.4 (rate-independent).

Figure 6.6: Model II [ERVE]: Distribution of f(d) for the double-notched plate with 986, 5064,
and 10161 unstructured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 1 MPa, n = 1 and α = 5000000 1/(N mm).

Figure 6.7: Model III [LAP]: Distribution of f(d) for the double-notched plate with 986, 5064,
and 10161 unstructured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 1 MPa and β = 0.000 MPa mm2.
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6.1.3 Force-Displacement Diagrams for the Double-Notched Plate

Figure 6.8: Model I [REL]: Structured/unstructured (left/right) elements of stated number.

Figure 6.9: Model II [ERVE]: Structured/unstructured (left/right) elements of stated number.

Figure 6.10: Model III [LAP]: Structured/unstructured (left/right) elements of stated number.



6.1 Damage Modeling without Regularization 109

6.1.4 Damage Distributions for the Plate with a Centered Hole (Stru. Mesh)

Figure 6.11: Model I [REL]: Distribution of f(d) for the plate with a centered hole with 1024,
5032, and 10000 structured elements (left to right) at the last loading step with
u̇ = 50.00× 10−9 mm/s, r1 = 1 MPa and β = 1.4 (rate-independent).

Figure 6.12: Model II [ERVE]: Distribution of f(d) for the plate with a centered hole with
1024, 5032, and 10000 structured elements (left to right) at the last loading step
with u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa, n = 1 and α = 5000000 1/(N mm).

Figure 6.13: Model III [LAP]: Distribution of f(d) for the plate with a centered hole with 1024,
5032, and 10000 structured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa and β = 0.000 MPa mm2.
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6.1.5 Damage Distributions for the Plate with a Centered Hole (Unstru. Mesh)

Figure 6.14: Model I [REL]: Distribution of f(d) for the plate with a centered hole with 996,
5090, and 10140 unstructured elements (left to right) at the last loading step with
u̇ = 50.00× 10−9 mm/s, r1 = 1 MPa and β = 1.4 (rate-independent).

Figure 6.15: Model II [ERVE]: Distribution of f(d) for the plate with a centered hole with 996,
5090, and 10140 unstructured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa, n = 1 and α = 5000000 1/(N mm).

Figure 6.16: Model III [LAP]: Distribution of f(d) for the plate with a centered hole with 996,
5090, and 10140 unstructured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa and β = 0.000 MPa mm2.
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6.1.6 Force-Displacement Diagrams for the Plate with a Centered Hole

Figure 6.17: Model I [REL]: Structured/unstructured (left/right) elements of stated number.

Figure 6.18: Model II [ERVE]: Structured/unstructured (left/right) elements of stated number.

Figure 6.19: Model III [LAP]: Structured/unstructured (left/right) elements of stated number.
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6.1.7 Damage Distributions for the Cracked Plate (Stru. Mesh)

Figure 6.20: Model I [REL]: Distribution of f(d) for the cracked plate with 1024, 4970, and
10000 structured elements (left to right) at the last loading step with u̇ = 50.00 ×
10−9 mm/s, r1 = 1 MPa and β = 1.4 (rate-independent).

Figure 6.21: Model II [ERVE]: Distribution of f(d) for the cracked plate with 1024, 4970,
and 10000 structured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 1 MPa, n = 1 and α = 5000000 1/(N mm).

Figure 6.22: Model III [LAP]: Distribution of f(d) for the cracked plate with 1024, 4970, and
10000 structured elements (left to right) at the last loading step with u̇ = 15.00 ×
10−6 mm/s, r1 = 1 MPa and β = 0.000 MPa mm2.
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6.1.8 Damage Distributions for the Cracked Plate (Unstru. Mesh)

Figure 6.23: Model I [REL]: Distribution of f(d) for the cracked plate with 1007, 5001, and
10040 unstructured elements (left to right) at the last loading step with u̇ = 50.00×
10−9 mm/s, r1 = 1 MPa and β = 1.4 (rate-independent).

Figure 6.24: Model II [ERVE]: Distribution of f(d) for the cracked plate with 1007, 5001,
and 10040 unstructured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 1 MPa, n = 1 and α = 5000000 1/(N mm).

Figure 6.25: Model III [LAP]: Distribution of f(d) for the cracked plate with 1007, 5001, and
10040 unstructured elements (left to right) at the last loading step with u̇ = 15.00×
10−6 mm/s, r1 = 1 MPa and β = 0.000 MPa mm2.
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6.1.9 Force-Displacement Diagrams for the Cracked Plate

Figure 6.26: Model I [REL]: Structured/unstructured (left/right) elements of stated number.

Figure 6.27: Model II [ERVE]: Structured/unstructured (left/right) elements of stated number.

Figure 6.28: Model III [LAP]: Structured/unstructured (left/right) elements of stated number.
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6.2 Localized Damage Characteristics

At this point, the finite element results are presented for the localized damage characteristics
corresponding to a brittle-like behavior. More information about damage characteristics are
given in Chapter 3 including the distinction between localized and diffusive damage. The latter
is described in Section 6.3. In the present case of localized damage, only a slight regularization
is applied in order to keep the damage distribution local. This allows for a thin and more crack-
like characteristic. Hereby, it is desired to ensure an internal length scale corresponding to a
crack width which is not much larger than the coarsest considered element. Usually, brittle
damage is accompanied by abruptly decreasing global structural responses due to a sudden
crack initiation and propagation. This is also part of the investigation.

Initially, the double-notched plate is examined of which the damage distribution is given in
Subsections 6.2.1 and 6.2.2 and the global structural response in Subsection 6.2.3. The main
characteristic of the damage models is similar: two relatively thin cracks initiate at the notches
of the beam and independently propagate through the material to the opposite edges. Due to
influences of the boundary conditions, the cracks slightly tend towards the opposite notches.

All damage models apparently provide mesh-independent damage distributions. There are
two small particularities in the contour plots. The first one is that the damage distribution in
the structured coarse mesh in case of Model I [REL] slightly appears thicker than in the other
respective meshes. The second one is that the structured coarse mesh reveals a numerical fluctu-
ation leading to a different damage distribution. This fluctuation should not be given too much
attention here, because a slight modification of the mesh discretization or the regularization pa-
rameter might solve this issue. However, the mesh discretization as well as the regularization
parameters were unchanged due to comparison aspects. Of course, due to the specific model for-
mulation, the characteristics of the damage zones are different. Model I [REL] provides slightly
thicker cracks with very sharp transitions zones between the undamaged and damaged material.
Model II [ERVE] also has these sharp transition zones but the cracks are slightly thinner and
have a more regular width. In contrast to that, Model III [LAP] has very smooth transition zones
and hereby the cracks additionally appear even thinner which reinforces towards the crack tips.

Taking into account the global structural responses underlines that the results are mesh-
independent for all models. However, some differences are noticed. Model II [ERVE] and
Model III [LAP] have a perfect agreement in terms of the force-displacement curves, whereas
Model I [REL] shows minimal differences. Nevertheless, the agreement is still good for ap-
plication. It should be mentioned that the curves of Model III [LAP] start to split up when
approaching the lower end of the drop. However, since the material is assumed to be destroyed
already, this part of the global structural response is not of interest. Further differences between
the models can be found in the characteristic of the drops of the forces. Model I [REL] shows
the steepest drop in the force-displacement curve. The less steepest drop is observed for Model
III [LAP]. Model II [ERVE] is positioned in between. The curves of the last mentioned two
models approach zero forces with increasing displacements. The first model approaches some
non-zero value instead. From a physical point of view, the curves should directly drop to zero.

Considering the plate with a centered hole in Subsections 6.2.4 to 6.2.6 basically provides
similar observations. In this case, the cracks initiate at the centered hole and propagate inde-
pendently and in opposite directions to the edges of the plate.
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The damage distributions for this case again show mesh-independent results for all models.
The only exception is the structured coarse mesh of Model III [LAP], in which the crack appears
thicker compared to the very thin cracks in the other meshes. Obviously, the developing crack
in the structured coarse mesh is actually thinner than the mesh is able to illustrate. Therefore,
this is a problem of a too coarse mesh or a too small internal length scale. Both drawbacks
could easily be solved. However, the assumed conditions are further on applied in order to
call attention to these kinds of problems. The characteristics are basically the same as for the
double-notched plate. Whereas Model I [REL] and Model II [ERVE] have very sharp transitions
zones, Model III [LAP] provides smooth transitions instead. Moreover, the cracks of the last
mentioned two models are significantly thinner than the cracks of the first model. The widths
of the cracks increase towards the edges resulting in a slight triangular shape. Although this
behavior is strengthened by the shape of the elements, the finer meshes demonstrate that this
triangular is rather a result of the model’s sensitivity regarding the boundary’s impact. These
effects can also be seen in case of Model II [ERVE] but less pronounced. In case of Model III
[LAP], these effects are negligibly small.

The mesh-independence is emphasized by interpreting the force-displacement curves of the
calculations. These curves coincide for all three model results. Obviously, the plate with a
centered hole is less problematic in regard to mesh-independence. The general characteristics
are the same as before, also in regard to the drops of forces.

The last boundary value problem in context of localized damage is the cracked plate discussed
in Subsections 6.2.7 to 6.2.9. Especially the relaxation-based damage models, Model I [REL]
and Model II [ERVE], are strongly influenced by the boundary conditions. This influence can
basically be reduced by assuming larger modeling domains or different boundary conditions.
However, the modeling domains as well as the boundary conditions are uniformly set once.
The cracks, which are forming at the boundaries due to the aforementioned boundary effects,
are only side effects and thus are not considered in what follows.

At first glance, the distribution of damage apparently provides mesh-independent results, al-
though the crack tips of the coarse meshes already seem to be problematic because the elements
are quite big. Moreover, the general characteristics for all damage models are basically the
same as before. Model I [ERVE] has thicker cracks than the other models and Model III [LAP]
has much smoother transition zones. What certainly can be noticed is that the triangular shape
of damage is almost vanished and substituted by a more straight pronounced damage zone.
The exceptional case is Model I [REL] with a bumb-like area in the middle, and that again the
structured coarse mesh of Model III [LAP] is hardly able to illustrate the thin crack.

The largest difference to the previous boundary value problems becomes obvious when con-
sidering the global structural response. The force-displacement curves have significant discrep-
ancies for the coarse meshes for all damage models. Obviously, this is not a problem of the
respective regularization strategy but rather a general problem of describing the sharp crack tip
of the geometry. The coarse mesh apparently has too large elements in this area which was
already assumed to be problematic. A refinement could be a possible solution. Alternatively, a
strong increase of the regularization resulting in a much bigger internal length scale might also
solve this problem or improve the mesh convergence. However, these large elements constitute
an example for illustrating the limits of the regularization. Nevertheless, the medium and fine
mesh have good agreements as expected.

Further discussions are following in Chapter 7.
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6.2.1 Damage Distributions for the Double-Notched Plate (Stru. Mesh)

Figure 6.29: Model I [REL]: Distribution of f(d) for the double-notched plate with 994, 4992,
and 10074 structured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 200 MPa, β = 2.0 and r2 = 0.20× 108 MPa s.

Figure 6.30: Model II [ERVE]: Distribution of f(d) for the double-notched plate with 994,
4992, and 10074 structured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa, n = 20 and α = 5000 1/(N mm).

Figure 6.31: Model III [LAP]: Distribution of f(d) for the double-notched plate with 994, 4992,
and 10074 structured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 1 MPa and β = 0.002 MPa mm2.
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6.2.2 Damage Distributions for the Double-Notched Plate (Unstru. Mesh)

Figure 6.32: Model I [REL]: Distribution of f(d) for the double-notched plate with 986, 5064,
and 10161 unstructured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 200 MPa, β = 2.0 and r2 = 0.20× 108 MPa s.

Figure 6.33: Model II [ERVE]: Distribution of f(d) for the double-notched plate with 986,
5064, and 10161 unstructured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa, n = 20 and α = 5000 1/(N mm).

Figure 6.34: Model III [LAP]: Distribution of f(d) for the double-notched plate with 986, 5064,
and 10161 unstructured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 1 MPa and β = 0.002 MPa mm2.
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6.2.3 Force-Displacement Diagrams for the Double-Notched Plate

Figure 6.35: Model I [REL]: Structured/unstructured (left/right) elements of stated number.

Figure 6.36: Model II [ERVE]: Structured/unstructured (left/right) elements of stated number.

Figure 6.37: Model III [LAP]: Structured/unstructured (left/right) elements of stated number.
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6.2.4 Damage Distributions for the Plate with a Centered Hole (Stru. Mesh)

Figure 6.38: Model I [REL]: Distribution of f(d) for the plate with a centered hole with 1024,
5032, and 10000 structured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 200 MPa, β = 2.0 and r2 = 0.20× 108 MPa s.

Figure 6.39: Model II [ERVE]: Distribution of f(d) for the plate with a centered hole with
1024, 5032, and 10000 structured elements (left to right) at the last loading step
with u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa, n = 20 and α = 5000 1/(N mm).

Figure 6.40: Model III [LAP]: Distribution of f(d) for the plate with a centered hole with 1024,
5032, and 10000 structured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa and β = 0.002 MPa mm2.
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6.2.5 Damage Distributions for the Plate with a Centered Hole (Unstru. Mesh)

Figure 6.41: Model I [REL]: Distribution of f(d) for the plate with a centered hole with 996,
5090, and 10140 unstructured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 200 MPa, β = 2.0 and r2 = 0.20× 108 MPa s.

Figure 6.42: Model II [ERVE]: Distribution of f(d) for the plate with a centered hole with 996,
5090, and 10140 unstructured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa, n = 20 and α = 5000 1/(N mm).

Figure 6.43: Model III [LAP]: Distribution of f(d) for the plate with a centered hole with 996,
5090, and 10140 unstructured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa and β = 0.002 MPa mm2.
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6.2.6 Force-Displacement Diagrams for the Plate with a Centered Hole

Figure 6.44: Model I [REL]: Structured/unstructured (left/right) elements of stated number.

Figure 6.45: Model II [ERVE]: Structured/unstructured (left/right) elements of stated number.

Figure 6.46: Model III [LAP]: Structured/unstructured (left/right) elements of stated number.
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6.2.7 Damage Distributions for the Cracked Plate (Stru. Mesh)

Figure 6.47: Model I [REL]: Distribution of f(d) for the cracked plate with 1024, 4970, and
10000 structured elements (left to right) at the last loading step with u̇ = 15.00 ×
10−6 mm/s, r1 = 200 MPa, β = 2.0 and r2 = 0.20× 108 MPa s.

Figure 6.48: Model II [ERVE]: Distribution of f(d) for the cracked plate with 1024, 4970,
and 10000 structured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 1 MPa, n = 20 and α = 5000 1/(N mm).

Figure 6.49: Model III [LAP]: Distribution of f(d) for the cracked plate with 1024, 4900, and
10000 structured elements (left to right) at the last loading step with u̇ = 15.00 ×
10−6 mm/s, r1 = 1 MPa and β = 0.002 MPa mm2.
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6.2.8 Damage Distributions for the Cracked Plate (Unstru. Mesh)

Figure 6.50: Model I [REL]: Distribution of f(d) for the cracked plate with 1007, 5001, and
10040 unstructured elements (left to right) at the last loading step with u̇ = 15.00×
10−6 mm/s, r1 = 200 MPa, β = 2.0 and r2 = 0.20× 108 MPa s.

Figure 6.51: Model II [ERVE]: Distribution of f(d) for the cracked plate with 1007, 5001,
and 10040 unstructured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 1 MPa, n = 20 and α = 5000 1/(N mm).

Figure 6.52: Model III [LAP]: Distribution of f(d) for the cracked plate with 1007, 5001, and
10040 unstructured elements (left to right) at the last loading step with u̇ = 15.00×
10−6 mm/s, r1 = 1 MPa and β = 0.002 MPa mm2.
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6.2.9 Force-Displacement Diagrams for the Cracked Plate

Figure 6.53: Model I [REL]: Structured/unstructured (left/right) elements of stated number.

Figure 6.54: Model II [ERVE]: Structured/unstructured (left/right) elements of stated number.

Figure 6.55: Model III [LAP]: Structured/unstructured (left/right) elements of stated number.



126 6 Model Comparison with Finite Element Results

6.3 Diffusive Damage Characteristics

This section is dedicated to diffusive damage characteristics for a ductile-like behavior and fi-
nite element results are presented, in what follows. Again, Chapter 3 provides more information
about damage characteristics such as the distinction between the previously considered local-
ized damage, see Section 6.2, and the diffusive damage to be discussed below. For this diffusive
damage a stronger regularization is applied in order to expand the damage distribution to a cer-
tain level. This corresponds to a plastic zone that usually evolves in case of ductile damage but
is not considered here. This stronger regularization also results in an increase of the area of
influence. Based on that, the present parameters are fitted such that the cracks in regard to the
double-notched plate are propagating towards each other and consequently connect.

The first boundary value problem investigated is the double-notched plate. The related dam-
age distribution is given in Subsections 6.3.1 and 6.3.2 and the related global structural response
in Subsection 6.3.3. As already mentioned, the propagating cracks connect to one single crack.
The characteristic of this single crack is depending on the respective damage model and the
specific choice of parameters, merging between an I-shape and S-shape.

Taking into account the damage distributions obviously exhibits that the results are mesh-
independent. Only the unstructured coarse mesh provides thicker cracks than the other respec-
tive meshes in case of all damage models. The centered elements, through which the cracks
propagate, are probably too large. However, this is an interesting point to be investigated.
Moreover, the characteristic of the damage distribution corresponds to the I-shape in case of
Model I [REL], to the S-shape for Model III [LAP], and something inbetween for Model II
[ERVE]. The overall transitions zones are now slightly smoother than for the localized case.
However, Model III [LAP] still provides significantly smoother results than the other models.
In accordance with previous observations, the crack of the first model is thicker in turn. On the
contrary, the other models have a comparable thickness compared to the localized results.

The corresponding force-displacement curves confirm the mesh-independence which is rep-
resented by very good agreements. The latter are even better than for the localized case which
actually is expected due to the stronger regularization. This leads to almost identical global
structural responses in terms of Model I [REL] even for the coarse mesh and Model III [LAP]
provides very similar results after approaching the lower end of the drop. However, more in-
teresting is the general characteristic of the curves when comparing the present diffusive case
with the previous localized case. As expected, the peak in the curves of Model I [REL] and
Model II [ERVE] which represents the beginning drop, is now smoother and has a more distinct
range of decreasing forces. Model III [LAP] in turn does not show any differences. Only the
remaining forces after the drop are now faster approaching zero, which also applies for Model II
[ERVE]. In general, the steepness of the dropping curves are hardly influenced by the stronger
regularization in case of all damage models.

Next, the plate with a centered hole is considered for further investigations by Subsections
6.3.4 to 6.3.6. The cracks propagate from the hole to the edges as expected. However, the
boundary conditions obviously have a significant impact on the relaxation based models, Model
I [REL] and Model II [ERVE], with respect to the width and shape of the cracks.

In principle, the distribution of damage appears to be mesh-independent for all models and
the stronger regularization also improves the previous problems regarding the structured coarse
mesh in context of Model III [LAP]. However, even though the cracks are assumed to be thicker
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due to the stronger regularization, the damage distribution for the mentioned relaxation-based
models is questionable from the physical point of view. Large triangular damage zones evolve.
In case of Model I [REL] these zones are even thicker. Obviously and as already observed for the
localized results, the relaxation-based models are sensitive with respect to boundary conditions
especially for the diffusive damage characteristic. Either, applications of these models should
be limited to cases of localized damage or the influence of boundary effects be decreased by
exemplarily considering a larger domain.

The aforementioned problem does not have any effect on the structural response. Perfectly
mesh-independent force-displacement curves are given for all models, since the plate with a
centered hole is less problematic, as already figured out for the localized results. Analogously to
the double-notched plate, the drops are smoother and have a more distinct range. Furthermore,
the curves partially approach zero forces quicker than for the localized case.

The cracked plate is the last boundary value problem considered in this context as presented
in Subsections 6.3.7 to 6.3.9. Again, the influences of the boundary conditions are strong.

Initially, despite the mentioned influences and besides some small fluctuations, the damage
distributions are in good agreement for all damage models. Only a detailed view on the crack
tips of the coarse meshes reveals accuracy problems analogously to the localized case. However,
the characteristic of the distributed damage is completely different for each model. Model I
[REL] provides a splitting crack inducing a V-shape that tends to grow towards the opposite
corners. The crack in Model II [ERVE] is also strongly affected by the boundary conditions
and therefore damage zones are evolving in the corners, as well. However, in contrast to the
previous model, the crack is in turn not connected to these parts but developing to a triangular
shaped or almost drop shaped damage zone. A completely different characteristic is given by
Model III [LAP] that is still not affected by any boundary effects and provides thin and straight
on propagating cracks. Actually, these are the only physically reasonable results.

Nevertheless, a better agreement of the force-displacement curves is provided than for the
localized case due to the stronger regularization. From that point of view, the influences of
boundary effects do not have a negative effect on the mesh-independence. The results show that
the stronger regularization better captured the critical crack tip. Therefore, Model II [ERVE]
has a good agreement, Model III [LAP] has a still better agreement, and in turn the curves of
Model I [REL] are only slightly better and still are not agreeing for the coarse meshes.

Further discussions are following in Chapter 7.
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6.3.1 Damage Distributions for the Double-Notched Plate (Stru. Mesh)

Figure 6.56: Model I [REL]: Distribution of f(d) for the double-notched plate with 994, 4992,
and 10074 structured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 200 MPa, β = 2.0 and r2 = 1.00× 108 MPa s.

Figure 6.57: Model II [ERVE]: Distribution of f(d) for the double-notched plate with 994,
4992, and 10074 structured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa, n = 20 and α = 500 1/(N mm).

Figure 6.58: Model III [LAP]: Distribution of f(d) for the double-notched plate with 994, 4992,
and 10074 structured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 1 MPa and β = 0.015 MPa mm2.
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6.3.2 Damage Distributions for the Double-Notched Plate (Unstru. Mesh)

Figure 6.59: Model I [REL]: Distribution of f(d) for the double-notched plate with 986, 5064,
and 10161 unstructured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 200 MPa, β = 2.0 and r2 = 1.00× 108 MPa s.

Figure 6.60: Model II [ERVE]: Distribution of f(d) for the double-notched plate with 986,
5064, and 10161 unstructured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa, n = 20 and α = 500 1/(N mm).

Figure 6.61: Model III [LAP]: Distribution of f(d) for the double-notched plate with 986, 5064,
and 10161 unstructured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 1 MPa and β = 0.015 MPa mm2.
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6.3.3 Force-Displacement Diagrams for the Double-Notched Plate

Figure 6.62: Model I [REL]: Structured/unstructured (left/right) elements of stated number.

Figure 6.63: Model II [ERVE]: Structured/unstructured (left/right) elements of stated number.

Figure 6.64: Model III [LAP]: Structured/unstructured (left/right) elements of stated number.
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6.3.4 Damage Distributions for the Plate with a Centered Hole (Stru. Mesh)

Figure 6.65: Model I [REL]: Distribution of f(d) for the plate with a centered hole with 1024,
5032, and 10000 structured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 200 MPa, β = 2.0 and r2 = 1.00× 108 MPa s.

Figure 6.66: Model II [ERVE]: Distribution of f(d) for the plate with a centered hole with
1024, 5032, and 10000 structured elements (left to right) at the last loading step
with u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa, n = 20 and α = 500 1/(N mm).

Figure 6.67: Model III [LAP]: Distribution of f(d) for the plate with a centered hole with 1024,
5032, and 10000 structured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa and β = 0.015 MPa mm2.
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6.3.5 Damage Distributions for the Plate with a Centered Hole (Unstru. Mesh)

Figure 6.68: Model I [REL]: Distribution of f(d) for the plate with a centered hole with 996,
5090, and 10140 unstructured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 200 MPa, β = 2.0 and r2 = 1.00× 108 MPa s.

Figure 6.69: Model II [ERVE]: Distribution of f(d) for the plate with a centered hole with 996,
5090, and 10140 unstructured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa, n = 20 and α = 500 1/(N mm).

Figure 6.70: Model III [LAP]: Distribution of f(d) for the plate with a centered hole with 996,
5090, and 10140 unstructured elements (left to right) at the last loading step with
u̇ = 15.00× 10−6 mm/s, r1 = 1 MPa and β = 0.015 MPa mm2.



6.3 Diffusive Damage Characteristics 133

6.3.6 Force-Displacement Diagrams for the Plate with a Centered Hole

Figure 6.71: Model I [REL]: Structured/unstructured (left/right) elements of stated number.

Figure 6.72: Model II [ERVE]: Structured/unstructured (left/right) elements of stated number.

Figure 6.73: Model III [LAP]: Structured/unstructured (left/right) elements of stated number.
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6.3.7 Damage Distributions for the Cracked Plate (Stru. Mesh)

Figure 6.74: Model I [REL]: Distribution of f(d) for the cracked plate with 1024, 4970, and
10000 structured elements (left to right) at the last loading step with u̇ = 15.00 ×
10−6 mm/s, r1 = 200 MPa, β = 2.0 and r2 = 1.00× 108 MPa s.

Figure 6.75: Model II [ERVE]: Distribution of f(d) for the cracked plate with 1024, 4970,
and 10000 structured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 1 MPa, n = 20 and α = 500 1/(N mm).

Figure 6.76: Model III [LAP]: Distribution of f(d) for the cracked plate with 1024, 4900, and
10000 structured elements (left to right) at the last loading step with u̇ = 15.00 ×
10−6 mm/s, r1 = 1 MPa and β = 0.015 MPa mm2.
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6.3.8 Damage Distributions for the Cracked Plate (Unstru. Mesh)

Figure 6.77: Model I [REL]: Distribution of f(d) for the cracked plate with 1007, 5001, and
10040 unstructured elements (left to right) at the last loading step with u̇ = 15.00×
10−6 mm/s, r1 = 200 MPa, β = 2.0 and r2 = 1.00× 108 MPa s.

Figure 6.78: Model II [ERVE]: Distribution of f(d) for the cracked plate with 1007, 5001,
and 10040 unstructured elements (left to right) at the last loading step with u̇ =
15.00× 10−6 mm/s, r1 = 1 MPa, n = 20 and α = 500 1/(N mm).

Figure 6.79: Model III [LAP]: Distribution of f(d) for the cracked plate with 1007, 4896, and
10040 unstructured elements (left to right) at the last loading step with u̇ = 15.00×
10−6 mm/s, r1 = 1 MPa and β = 0.015 MPa mm2.
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6.3.9 Force-Displacement Diagrams for the Cracked Plate

Figure 6.80: Model I [REL]: Structured/unstructured (left/right) elements of stated number.

Figure 6.81: Model II [ERVE]: Structured/unstructured (left/right) elements of stated number.

Figure 6.82: Model III [LAP]: Structured/unstructured (left/right) elements of stated number.
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6.4 Investigation of Computation Times

This section is concerned with the computation times for the double-notched plate with unstruc-
tured elements. The three damage models introduced in Chapter 4 are compared including a
comparison to purely elastic calculations. Hereby, Table 6.1 provides the absolute values of the
measured computation times whereas Table 6.2 provides the values that are normalized with
respect to the elastic case. All calculations were performed individually under same conditions
on an overclocked Intel Core i7-2600K processor with 4430 MHz.

purely localized diffusive

elastic damage damage

Model I [REL]
986 elements 85 s 321 s 270 s

10161 elements 5621 s 41240 s 13296 s

Model II [ERVE]
986 elements 85 s 394 s 349 s

10161 elements 5621 s 23813 s 17793 s

Model III [LAP]
986 elements 85 s 85 s 87 s

10161 elements 5621 s 5658 s 5708 s

Table 6.1: Absolute computation times for the double-notched plate with unstructured elements.

First of all, it should be mentioned that Model I [REL] and Model II [ERVE] are formulated
at the material point level whereas Model III [LAP] is formulated at the element level without
evaluating the material points for the main calculations. This reduction to the element-level is
accordingly accompanied by numerical advantages at costs of a slightly decreasing accuracy.
Finally comparing the computation times yields to interesting observations.

purely localized diffusive

elastic damage damage

Model I [REL]
986 elements 1.0 3.8 3.2

10161 elements 1.0 7.6 2.5

Model II [ERVE]
986 elements 1.0 4.6 4.1

10161 elements 1.0 4.4 3.3

Model III [LAP]
986 elements 1.0 1.0 1.0

10161 elements 1.0 1.0 1.1

Table 6.2: Normalized computation times for the double-notched plate with unstructured ele-
ments.

Although Model III [LAP] is formulated at the element level only, the computation speed
is an remarkable advantage. This speed of computations is almost equal to the purely elastic
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calculations which is due to the fact that the main computational effort is done only once in
the beginning of the calculation. Afterwards, the effort is almost comparable to the elastic
case. In the context of the diffusive damage case, the computation times are slightly higher
which results from the larger regularization parameter β causing more iteration steps at the
element level. Since the material tangent is constant due to the operator split, the numbers
of iterations for the finite element calculation are always the same (2000 in the present case
of 1000 loading increments). Differences regarding the convergence can only be observed by
means of the iterations at the element level for calculating the updated damage function (without
displacements). In this regard, the following point was noticed: for the coarse mesh 3069 total
iteration steps were required for the localized case in contrast to 7912 for the diffusive case,
respectively 28317 to 143522 steps for the fine mesh. The increase from the coarse to the
fine mesh has the same reason like the increase from localized to brittle damage: the range of
the neighborhood consideration is limited to only one element around the considered central
element and the influence can only be passed by iteration steps. Therefore, the number of
iteration steps directly depends on the internal length scale defined by β and furthermore by the
number of elements included within this defined area around the central element which is of
course higher for finer meshes.

In comparison to that, Model I [REL] needs about 2.5 to 3.8 times more computation time
than for the elastic case. In case of the localized damage and the fine mesh, the longer com-
putation time with a factor of 7.6 should be considered separately, since a more robust and
expensive solver, which is able to handle asymmetrical tangents as well, has been used in order
to handle numerical instabilities. However, this is a further disadvantage of course. Generally,
the localized calculations takes more time than the diffusive ones since more iterations for the
finite element calculations were required: the coarse mesh needed 2828 total iteration steps for
the localized case in contrast to 2290 for the diffusive case, and for the fine mesh the relation
was 3390 to 2335. The increase of iteration steps with more localized results stems from a
higher numerical effort since the localization is more critical due to less viscous effects which
certainly are fundamental for the model.

The computation times for Model II [ERVE] are slightly higher than for the previous model
with a factor of about 3.3 to 4.6 compared to the elastic case. In regard to the number of
iteration steps basically the same observations can be made as before: the coarse mesh required
3517 total iteration steps for the localized case in contrast to 3026 for the diffusive case, the
relation for the fine mesh was 4223 to 3123. Therefore, again more iterations are needed for the
localized case than for the diffusive one due to the mentioned higher numerical effort.

Altogether, Model III [LAP] clearly is the fastest damage model and almost on the same
level as purely elastic calculations. Localized results are even in advantage to the diffusive
ones. Model I [REL] is slightly faster than Model II [ERVE]. However, both are about 4 times
slower than Model III [LAP], which actually is still very fast. In the work of Junker et al.
(2018), a comparison of Model III [LAP] to the well-established gradient-enhanced damage
model by Dimitrijevic and Hackl (2008) was done by means of a comparable double-notched
geometry with an equal number of loading increments of 1000. This investigation showed that
the comparative gradient-enhanced model required about ten times more computation time than
Model III [LAP]. Accordingly, Model I [REL] and Model II [ERVE] require less than half
the time of this established model. Besides that, Model I [REL] occasionally struggles with
numerical instabilities in context of the localized calculations. Therefore, it is partly necessary
to use a more robust solver, which increases the computation times.
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7 Discussion of Models and Comparison

In this chapter the finite element results and the model comparisons are discussed. Hereto, the
localized damage characteristics from Section 6.2 as well as the diffusive case from Section 6.3
are considered. Moreover, the computation times provided in Section 6.4 are taken into account.
Further information on the models based on Chapter 4 are provided as well.

7.1 Discussion of Model I

Model I [REL] is implemented at material point level and can thus easily be applied to conven-
tional/commercial finite element software. Furthermore, the implementation of the underlying
set of model equations as well as the material tangent is straightforward. The overall finite
element results are mesh-independent for most cases.

Unfortunately, the formulation of the damage model is rate-dependent which restricts the
model to specific materials or applications. Particularly, considering common materials such
as steels or concretes can be difficult. Additionally, this formulation is sensitive in terms of
boundary effects resulting in unexpected damage distributions for the diffusive damage char-
acteristics. In contrast to that, the model predicts cracks that are relatively thick and a further
decrease of the width of the cracks leads to numerical instabilities or less mesh-independent
results. As stated earlier, the model requires a minimum amount of viscosity that obviously
exceeds the possibility of illustrating thinner cracks for the present conditions. Besides, the
drops in the force-displacement curves are not very steep and non-zero forces are observed af-
ter failure. These non-zero forces actually contradict the assumption of failed material, for the
localized and diffusive case. The localized calculations are accompanied by numerical instabil-
ities in some cases that require a more robust solver. This leads in turn to increasing numerical
efforts, which is only moderate anyways. Altogether, this model seems to be more suitable for
calculations somewhere inbetween the localized and the diffusive case maybe.

7.2 Discussion of Model II

Originally, a rate-dependent formulation was utilized for Model II [ERVE]. On this basis, it was
extended to rate-independence. For this reason, this model is not restricted to specific materials
or applications. If needed, the rate-dependence can be considered at any time, which of course
also applies for Model III [LAP] by slightly modifying the dissipation function. Moreover, the
implementation of Model II [ERVE] is done at material point level which allows for a sim-
ple implementation to conventional/commercial finite element software. The model is mainly
suitable for localized damage characteristics due to its ability to provide very thin and also
sharp cracks without considerable transition zones between undamaged and damaged material.
Hereby, the global responses approach zero forces after the drops. This is in agreement with
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physical expectations. Furthermore, the results show a mesh-independent behavior which is
satisfactory also in extreme cases and the calculations are numerically stable.

However, the formulation of the model is quite sensitive with respect to boundary effects and
therefore numerical results in context of diffusive damage characteristics provide unexpectedly
shaped damage zones. This could be improved or prevented by assuming different boundary
conditions or larger distances between the damaged area and the boundaries. For the localized
damage characteristics, the drops of the force-displacement curves are not as steep as expected
from a physical point of view. Besides that, the implementation of the material tangent is
relatively complicated. Finally, the computation times are only moderate, but there is potential
for further improvements such as considering less subdomains.

7.3 Discussion of Model III

Model III [LAP] has a rate-independent formulation and is therefore not restricted to specific
materials or applications. The computation times are extremely fast and almost on the same
level as purely elastic calculations. Furthermore, the model can be customized to versatile ap-
plications due to its ability to provide localized as well as diffusive damage characteristics.
The model does not show any problems with respect to boundary effects or numerical insta-
bilities. The presented finite element results exhibit perfect mesh-independence. Even extreme
cases yield satisfactory results. Thereby, the damage distribution could be adjusted to very
thin cracks, which satisfies physical expectations for brittle damage, but also to more diffusive
damage distributions for ductile-like damage. For the latter case the smooth transition zones
between undamaged and damaged material can be interpreted as plastic zones evolving in front
or around the crack tip. This model provides an extremely steep force-displacement drop after
the peak as expected in context of brittle damage. Thereby, the curves approach zero forces,
which corresponds to a completely failed material. Moreover, the material tangent is very sim-
ple because it is constant.

On the contrary, the implementation is done at the element level and complex routines for the
neighborhood relations and the Laplace operator are required. Therefore, the implementation
into some finite element software could be complicated. However, this only has to be done once.
The physical interpretation of the smooth transition zones is problematic in context of assuming
brittle damage, for which the model is actually more suitable due to its steep displacement-
curves and also due to the ability of providing very thin cracks. However, these transition zones
are a typical property when involving gradient formulations and since they do not affect the
global responses in any negative way, they probably can just be accepted.

7.4 Comparative Discussion and Final Remarks

Important advantages of Model I [REL] can unfortunately neither be found for the localized
nor for the diffusive damage characteristics. The behavior of the model is always accompanied
by several restrictions and/or disadvantages. Actually, the formulation of the model itself is a
disadvantage compared to the other models due to its limitation to rate-dependence. Occasional
numerical instabilities in the context of localized damage and unexpected damage distributions
due to sensitivities with respect to the boundary effects further restrict the model. The simple
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implementation and moderate computation times do not justify the application of the model, at
least in its current form and compared to the other models investigated in this thesis. Several
modifications would be required to improve the model, which would be desirable, since the
simple implementation allows for an easy application and versatile enhancements, in general.
Incidentally, some improvements have already been implemented by Langenfeld et al. (2018).
Apart from that, the model might possibly be better suited to damage characteristics somewhere
inbetween the localized and diffusive considered cases. Then, the occurring cracks are not
expected to be very thin anymore and at the same time the boundary conditions do not have a
considerable impact on the results. However, the question is whether another of the subsequent
damage models would not be a better choice.

For the aforementioned reasons, the remaining interesting damage models in the present
consideration are Model II [ERVE] and Model III [LAP]. Originating from completely differ-
ent ideas and approaches, in the end both damage models are able to provide excellent mesh-
independent finite element results. Moreover, both formulations are rate-independent and there-
fore unrestricted. Furthermore, they are numerically stable which allows for very thin cracks.
The dropped force-displacement curves approach zero values as expected for failed material.
However, besides some minor points, there are some main differences between both models.
Due to unexpected damage zones in case of diffusive characteristics and also very sharp tran-
sition zones between undamaged and damaged material, Model II [ERVE] is basically limited
in the present consideration to localized behavior, which is certainly the more interesting case
for crack propagation. Furthermore, the model is characterized by moderate computation times
only. The implementation is very simple and universally applicable due to its formulation at
material point level. In contrast to that, Model III [LAP] requires a more demanding implemen-
tation due to its formulation at the element level and due to complex routines for the determina-
tion of the neighborhood relations and Laplacian. Furthermore, the smooth transition zones are
questionable depending on the respective application. On the other hand, the computation times
are paramount and the force-displacement drops are the steepest complying with expectations
in regard to brittle damage.

In the end, the most suitable choice depends in the particular application. In many cases
Model III [LAP] would be preferred particularly because of its enormous computation effi-
ciency advantage. Thereby, the implementation is more complicated. However, this disad-
vantage is not of high importance. In case of restrictions due to the finite element software or
when requesting sharp transitions between undamaged and damaged material, Model II [ERVE]
would probably be the better choice. It should thereby be underlined, that the moderate compu-
tation times of Model II [ERVE] but also of Model I [REL] are still very fast in comparison to
other established regularized damage models from the literature as explained in more detail in
Section 6.4 comparing the computation times.
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8 Conclusions

8.1 Summary

Throughout this thesis, three novel and efficient approaches for the regularization of thermody-
namically consistent damage models have been introduced. Having established the theoretical
and algorithmic framework, the characteristics of each damage model are explained in detail.
Hereto, finite element calculations have been performed and the results been discussed in order
to compare the different approaches.

First of all, a brief review over the applied models is provided. The first damage model,
denoted by Model I [REL], is based on an energy relaxed formulation and on two-phase dam-
age modeling. Viscous effects are required to obtain mesh-independence after introducing the
non-linear homogenization between the undamaged and damaged states. This allows for the
overall damage softening behavior. Moreover, the second damage model, denoted by Model II
[ERVE], is also based on energy relaxation. However, in contrast to Model I [REL], the main
idea is related to rate-limitation as well as describing the assumed microstructure by an emu-
lated representative volume element, which is called ERVE. Finally, the third damage model,
denoted by Model III [LAP], has a gradient-enhanced formulation, where the Laplace operator
is efficiently involved by means of an inverted Taylor series. All damage models were derived
based on the Hamilton’s principle or the principle of the minimum of the dissipation potential,
respectively. This ensures thermodynamical consistence. Furthermore, the related determina-
tions of stresses and material tangents are provided as well as algorithms for implementation.

Afterwards, parameter identifications have been performed for the respective damage mod-
els including several parameter studies. Here, the influence and effects of the regularization or
related parameters have been investigated as well as the behavior under varying loading rates.
The final parameter sets determined have then been applied for the main finite element cal-
culations. Hereby, the following three boundary value problems have been investigated: the
double-notched beam, the plate with a centered hole, and the cracked plate. Besides that, the
initial situation without any regularization as well as the localized and diffusive damage char-
acteristics have also been involved for the investigations.

The numerical simulations revealed interesting findings in regard to the behavior of the mod-
els but also to their respective advantages and disadvantages. In regard to Model I [REL] the
drawbacks obviously are paramount, since restrictions or disadvantages can be found for basi-
cally all intents and purposes. The formulation is rate-dependent and the model is consequently
restricted to specific materials or applications only. Occasional instabilities occur as well as
relatively thick damage distributions in context of localized damage characteristics. In contrast,
diffusive damage characteristics are accompanied by influences due to boundary effects leading
to unexpected damage distributions. Furthermore, the force-displacement curves do not drop to
zero as expected for failed material and the computation times are only moderate in compari-
son to the considered damage models in this thesis. Nevertheless, these times are still lower in
comparison to many existing regularized damage models which can be found in the literature.
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For the aforementioned reasons, the other two regularized damage models are preferred.
Interestingly, the initial concepts of Model II [ERVE] and Model III [LAP] completely differ.
However, both rate-independent and thus unrestricted models provide perfect mesh-independent
finite element results including force-displacement curves that drop to zero and very thin prop-
agating cracks can be observed. Besides that, Model II [ERVE] was strongly influenced by the
boundary conditions in case of diffusive damage characteristics leading to unexpected damage
distributions. Moreover, the model is characterized by moderate calculations times and is a
little less efficient than Model I [REL]. However, these moderate computation times are still
lower than the computation times of other well-established damage models. On the contrary,
the very sharp transitions zones between undamaged and damaged material complies with as-
sumptions related to brittle damage behavior for which this model’s application is obviously
better suited. Additionally, the implementation of this model is straightforward and its appli-
cation flexible due to the formulation at the material point level. In contrast to that, Model III
[LAP] is much more efficient in terms of computation times. The latter are almost comparable
to linear elastic finite element calculations. Furthermore, this model provides the steepest drops
of the global structural responses which is desirable in context of brittle damage. Of course,
the are drawbacks to be mentioned, as well: the implementation of the model is more difficult
due to the formulation at the element level and the complex routines for the neighborhood re-
lations and the Laplace operator. Moreover, the typical smooth transition zones in context of
gradient-enhanced formulations are questionable in context of brittle damage characteristics.

Three novel damage models with different regularization strategies have been presented. Sat-
isfactory mesh-independent behavior has been demonstrated and advantages compared to other
existing models been emphasized. The relaxation based two-phase Model I [REL] is accom-
panied by several restrictions and disadvantages in comparison to the other presented models.
Thus, Model I [REL] is not preferred. The microstructure-emulating Model II [ERVE] was
especially suitable for localized damage characteristics corresponding to brittle damage behav-
ior due to sharp transitions zones between undamaged and damaged material. Furthermore, it
is easy to implement within the finite element framework. Model III [LAP], which very effi-
ciently evaluates the Laplace operator by a more complex implementation, provides paramount
computation times almost approaching the speed of purely elastic calculations.

8.2 Additional and Future Research

In this thesis different novel aspects related to regularized damage modeling in the context of
localized and diffusive damage characteristics have been addressed. Based on the findings de-
scribed in Chapters 6 and 7, several extensions might be done in future work. First, a parameter
fitting to experimental data is crucial to examine the applicability and accuracy of the respective
models. Furthermore, the extension to elasto-plasticity improves the capability to describe the
evolving zones in front/around the crack tip, consequently the diffusive damage characteristics
are superfluous. Recently, plasticity-enhanced versions have been published by Schwarz et al.
(2018b) and Hoormazdi et al. (2019). Moreover, taking into account adaptivity of the mesh as
well as the loading rates significantly improves the behavior of the model in terms of steep force-
displacement drops and allow for an extremely sharp crack propagation. This has already been
implemented for Model III [LAP] in cooperation with the working group High Performance
Computing in the Engineering Sciences at the Ruhr-Universität Bochum providing promising
first results, see work of Vogel and Junker (2019).
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In regard to Model I [REL], further modifications are desirable in order to facilitate zero
forces of the global responses describing completely failed material. Also, a decrease of the in-
fluences of the boundary conditions is an objective of future work. Furthermore, finding a pos-
sibility to come up with a rate-independent formulation while maintaining mesh-independence
would be preferable. Incidentally, zero driving forces have already been achieved by a model
enhancement in the work of Langenfeld et al. (2018). Moreover, also Model II [ERVE] could
further be improved by faster computation times, for example. Hereto, more investigations
might be dedicated to the number of subdomains providing a compromise between mesh-
independence and speed. Improvements are also conceivable for Model III [LAP], for example
the number of iterations at the element level could significantly be reduced accompanied by
even faster computation times by considering more neighbored element at the same time. This
is inspired by meshless methods and first investigations are currently in progress.
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A Appendix - Additional Derivations to Model I

Material Tangent for Rate-Independent Case

The determination of the material tangent for the rate-independent case of Model I [REL],
related to Subsections 4.2.1 and 4.2.2, is based on preceded derivations in Subsection 4.2.4.
Thereby, Equation (4.53) provides the following general formulation for the material tangent

dσ̃

dε̃

∣∣∣∣m+1

=
∂σ̃

∂ε̃

∣∣∣∣m +
∂σ̃

∂d

∣∣∣∣m ⊗ ∂d

∂ε̃

∣∣∣∣m+1

, (A.1)

in which the derivative of the damage variable (∂d/∂ε̃) |m+1 has to be determined depending
on the respective case. For the present rate-independent case the evolution equation is given by

dm+1 = dm + ∆ρ p(ε̃m+1, dm) , (A.2)

including the consistency parameter ∆ρ that is depending on the current strains

∆ρ = ∆ρ(ε̃m+1) . (A.3)

The derivative of the evolution equation is provided by

∂d

∂ε̃

∣∣∣∣m+1

= ∆ρ
∂p(ε̃m+1, dm)

∂ε̃m+1 +
∂∆ρ

∂ε̃m+1 p(ε̃
m+1, dm) , (A.4)

with

∂p(ε̃m+1, dm)

∂ε̃m+1 = −f ′(dm)Ẽ0 · ε̃m+1 . (A.5)

The derivative of ∆ρ can not directly be calculated but by taking into account the yield function

Φ = Φ(ε̃m+1, dm+1) (A.6)

=
∣∣p(ε̃m+1, dm+1)

∣∣− r1
!

= 0 (A.7)

=
∣∣p(ε̃m+1, dm + ∆ρ p(ε̃m+1, dm))

∣∣− r1
!

= 0 , (A.8)

and taking the derivative of the yield function leads to

dΦ

dε̃m+1 =
∂Φ

∂ε̃m+1 +
∂Φ

∂∆ρ

∂∆ρ

∂ε̃m+1

!
= 0 . (A.9)

Now, solving for the wanted derivative of ∆ρ yields

∂∆ρ

∂ε̃m+1 = −
(
∂Φ

∂∆ρ

)−1
∂Φ

∂ε̃m+1 , (A.10)
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including the straightforwardly determinable terms

∂Φ

∂∆ρ
=

p(ε̃m+1, dm+1)∣∣p(ε̃m+1, dm+1)
∣∣ ∂p(ε̃m+1, dm+1)

∂dm+1

∂dm+1

∂∆ρ
(A.11)

= − p(ε̃m+1, dm+1)∣∣p(ε̃m+1, dm+1)
∣∣ 1

2
f ′′(dm+1) ε̃m+1 · Ẽ0 · ε̃m+1 p(ε̃m+1, dm) , (A.12)

and
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=
p(ε̃m+1, dm+1)∣∣p(ε̃m+1, dm+1)

∣∣Ẽ0 · ε̃m+1

(
− f ′(dm+1)

+
1

2
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)
. (A.14)

These two terms are inserted back into the derivative of ∆ρ as follows

∂∆ρ

∂ε̃m+1 = Ẽ0 · ε̃m+1
−f ′(dm+1) +

1

2
f ′′(dm+1)ε̃m+1 · Ẽ0 · ε̃m+1∆ρ f ′(dm)

1

2
f ′′(dm+1)ε̃m+1 · Ẽ0 · ε̃m+1 p(ε̃m+1, dm)

, (A.15)

so that the derivative of the damage variable can be calculated by
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(A.16)

and therewith finally the material tangent based on Equation (4.53)

dσ̃
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In case of no evolving damage, the material tangent corresponds to

dσ̃

dε̃

∣∣∣∣m+1

= f(dm) Ẽ0 . (A.18)
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Algorithm on Finite Element Level

The subsequent Algorithm 5 gives an overview of the finite element implementation of the
rate-independent variants of Model I [REL] presented in the Subsections 4.2.1 and 4.2.2. The
algorithm can be related to both rate-independent model variants, the two-phase model as well
as the non-linearly homogenized model, since the algorithm is generally formulated and the
equations can respectively be assigned for each case.

Algorithm 5: Model I [REL]: Algorithm for the rate-independent approaches.

input: ε̃m, ε̃m+1, dm

calc: pm+1 = p(ε̃m+1, dm)

calc: Φm+1 = Φ(p(ε̃m+1, dm))

set: ∆ρ = 0

while Φm+1 > 0 do
dm+1 = dm + ∆ρ pm+1

dm+1
tol = dm + (∆ρ+ tol) pm+1

calc: pm+1 = p(ε̃m+1, dm+1)

calc: pm+1
tol = ptol(ε̃

m+1, dm+1
tol )

calc: Φm+1 = Φ(p(ε̃m+1, dm+1))

calc: Φm+1
tol = Φtol(ptol(ε̃

m+1, dm+1
tol ))

∂Φ

∂∆ρ
=

Φm+1
tol − Φm+1

tol

∆ρ = ∆ρ− Φm+1

(
∂Φ

∂∆ρ

)−1

if ∆ρ < 0 then
abort

calc: σ̃m+1 = σ̃(ε̃m, ε̃m+1, dm, dm+1)

calc:
dσ̃m+1

dε̃m+1 =
dσ̃

dε̃
(ε̃m, ε̃m+1, dm, dm+1)
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[Demtröder 2017] DEMTRÖDER, Wolfgang: Mechanics and thermodynamics. 1. Cham :
Springer-Verlag, 2017

[Dimitrijevic et al. 2012] DIMITRIJEVIC, Bojan J. ; AIFANTIS, Katerina E. ; HACKL, Klaus:
The influence of particle size and spacing on the fragmentation of nanocomposite anodes for
Li batteries. In: Journal of Power Sources 206 (2012), S. 343–348

[Dimitrijevic and Hackl 2008] DIMITRIJEVIC, Bojan J. ; HACKL, Klaus: A method for gradient
enhancement of continuum damage models. In: Technische Mechanik 28 (2008), 09, Nr. 1,
S. 43–52

[Dimitrijevic and Hackl 2011] DIMITRIJEVIC, Bojan J. ; HACKL, Klaus: A regularization
framework for damage–plasticity models via gradient enhancement of the free energy. In:
International Journal for Numerical Methods in Biomedical Engineering 27 (2011), Nr. 8, S.
1199–1210

[Dube et al. 1996] DUBE, Jean-Francois ; PIJAUDIER-CABOT, G. ; BORDERIE, Christian L.:
Rate dependent damage model for concrete in dynamics. In: Journal of Engineering Me-
chanics 122 (1996), 10, Nr. 10, S. 939–947

[Elsgolc 1961] ELSGOLC, Lev E.: Calculus of variations. 19. London : Pergamon Press, 1961

[Faria et al. 1998] FARIA, R. ; OLIVER, J. ; CERVERA, M.: A strain-based plastic viscous-
damage model for massive concrete structures. In: International journal of solids and struc-
tures 35 (1998), Nr. 14, S. 1533–1558

[Fish and Belytschko 2007] FISH, Jacob ; BELYTSCHKO, Ted: A first course in finite elements.
1. Chichester : John Wiley & Sons, 2007

[Forest and Lorentz 2004] FOREST, Samuel ; LORENTZ, Eric: Local approach to fracture. 1.
Presse des Mines, 2004

[Francfort and Garroni 2006] FRANCFORT, Gilles A. ; GARRONI, Adriana: A variational view
of partial brittle damage evolution. In: Archive for Rational Mechanics and Analysis 182
(2006), 09, Nr. 1, S. 125–152



154 Bibliography

[Francfort and Marigo 1993] FRANCFORT, Gilles A. ; MARIGO, Jean-Jacques: Stable damage
evolution in a brittle continuous medium. In: European Journal of Mechanics - A/Solids 12
(1993), 01, Nr. 2, S. 149–189

[Francfort and Mielke 2006] FRANCFORT, Gilles A. ; MIELKE, Alexander: Existence results
for a class of rate-independent material models with nonconvex elastic energies. In: Journal
für die reine und angewandte Mathematik 2006 (2006), 06, Nr. 595, S. 55–91

[Gelfand and Fomin 2000] GELFAND, Izrail’ M. ; FOMIN, Sergei V.: Calculus of variations. 1.
New York : Dover Publications, 2000

[Geuzaine and Remacle 2009] GEUZAINE, Christophe ; REMACLE, Jean-François: Gmsh:
a 3-D finite element mesh generator with built-in pre- and post-processing facilities. In:
International Journal for Numerical Methods in Engineering 79 (2009), 09, Nr. 11, S. 1309–
1331

[Gross and Seelig 2011] GROSS, Dietmar ; SEELIG, Thomas: Bruchmechanik, Mit einer
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Mazen: Comparison of various models for strain-softening. In: Engineering Computations
5 (1988), 12, Nr. 2, S. 141–150

[Prax et al. 1996] PRAX, Christian ; SADAT, Hamou ; SALAGNAC, Patrick: Diffuse approxima-
tion method for solving natural convection in porous media. In: Transport in Porous Media
22 (1996), Nr. 2, S. 215–223

[Rabotnov 1959] RABOTNOV, Yu. N.: On the mechanism of delayed fracture. In: Strength of
Materials and Structures (Izd. Akad. Nauk SSSR, Moscow, in Russian) 1 (1959), Nr. 1, S. 5–7

[Rankine 1857] RANKINE, William John M.: On the stability of loose earth. In: Philosophical
Transactions of the Royal Society of London 147 (1857), 01, Nr. 1, S. 9–27

[Riley et al. 2006] RILEY, Ken F. ; HOBSON, Michael P. ; BENCE, Stephen J.: Mathematical
methods for physics and engineering. 3. New York : Cambridge University Press, 2006

[Rockafellar and Wets 1998] ROCKAFELLAR, R. T. ; WETS, Roger J-B.: Variational analysis.
317. Berlin Heidelberg : Springer-Verlag, 1998
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