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auf dem Gebiet der Straßenbautechnik und für die Bereitstellung der experimentellen

Daten danken.
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Abstract

Asphalt concrete is a multi-component material with spatially varying constituents,

typically consisting of a mineral filler (e.g. crushed rock), a bituminous binding agent,

pores and further additives. In contrast to many other compounds used in materials

science, the partial microscopic material bulk properties of the constituents of asphalt

concrete can be considered to be well investigated and known and are accessible by

physical testing. To predict apparent mechanical properties of such complex materi-

als on the macroscopic level, a detailed knowledge of the micro-scale behavior of the

particular constituents is required.

Within this thesis, asphalt concrete is investigated from different sides. Starting with

bitumen-filler mastics with regard to the general master-curve relation from William,

Landel and Ferry, an extension to this concept with regard to filler concentration

is presented. This extension is based on experimental data for thermo-rheologically

simple bitumen and bitumen-filler mastics and a mathematical procedure to define a

function which holds as a shift function for varying filler concentrations and varying

frequencies.

Furthermore, modeling aspects of the whole compound with regard to upscaling rou-

tines based on volume averaging are investigated. By using periodic microstructures,

possible boundary layer effects during computational homogenization are minimized

and in particular, the influence of the choice of micro-level boundary conditions on the

apparent stiffness of the macro-level are investigated. With regard to this aspect, the

apparent viscoelastic properties are as well discussed and analyzed in the frequency

domain.

Special attention in this thesis is paid to a methodological framework to investigate

the effective mechanical properties of asphalt concrete with consideration of realistic

microstructures. The creation of artificial Statistical Volume Elements (SVEs) with

a novel algorithm, which uses morphological informations from X-Ray Computed

Tomography (XRCT) data or given granulometric curves from asphalt concrete spec-

imens is presented. The algorithm combines a discrete particle simulation to generate

a densely packed sphere model with a pre-defined Particle Size Distribution (PSD)

for the mineral filler particles and in a second step a weighted Voronoi diagram, which

is also capable of applying a stochastic shrinkage process of the Voronoi cells. Us-

ing these artificial microstructures for numerical simulations, helps to gain a better

understanding of the prevalent physical phenomena and can help to trigger the real

behavior of asphalt concrete.





Kurzfassung

Asphalt ist ein Verbundwerkstoff aus mehreren Komponenten, mit unterschiedlichen

Konstituenten. Typischerweise besteht Asphalt jedoch aus einem mineralischen Füll-

stoff (z.B. gebrochenem Gestein), einem bituminösen Bindemittel, Porenraum und

verschiedenen weiteren Zuschlagsstoffen. Im Vergleich zu vielen anderen Verbundw-

erkstoffen in den Materialwissenschaften lassen sich die einzelnen Materialeigenschaf-

ten der Konstituenten von Asphalt sehr gut charakterisieren und experimentell bes-

timmen. Um die effektiven mechanischen Eigenschaften eines solch komplexen Mate-

rials auf makroskopischer Ebene zu bestimmen, ist ein detailliertes Wissen über die

mikroskopischen Verhaltensweisen der einzelnen Konstituenten unabdingbar.

Innerhalb dieser Arbeit wird Asphalt von verschiedenen Seiten untersucht. Zuallererst

werden Bitumen-Gestein Mischungen in Hinsicht auf das klassische Masterkurven-

Konzept von William, Landel und Ferry mit einer Erweiterung für Füllerkonzentratio-

nen untersucht. Diese Erweiterung basiert auf eigenen experimentellen Daten für

thermo-rheologisch einfache Bitumen und Bitumen-Gestein Mischungen und einem

mathematischen Ansatz zur Definition einer Funktion, welche die Abhängigkeit der

Masterkurven für verschiedene Füllerkonzentrationen und verschiedene Frequenzen

wiedergibt.

Des Weiteren werden Modellierungsaspekte des Asphalts in Hinsicht auf die Ho-

mogenisierung mithilfe der Volumenmittlung betrachtet. Bei dieser Betrachtung wer-

den durch die Verwendung von periodischen Mikrostrukturen, mögliche Randeffekte

während der Homogenisierung minimiert. Im speziellen wird dann auf den Einfluss

der Wahl der Randbedingungen in Bezug zu den effektiven Eigenschaften auf der

Makroebene eingegangen. In diesem Fall werden die effektiven viskoelastischen Eigen-

schaften auch im Frequenzraum analysiert und diskutiert.

Ein besonderes Augenmerk wird in dieser Arbeit auf den methodischen Rahmen für

die Untersuchung von effektiven mechanischen Eigenschaften von Asphalt mit re-

alitätsnahen Mikrostrukturen gelegt. Für die Erstellung der statistisch ähnlichen

künstlichen Mikrostrukturen dient ein neuer Algorithmus, welcher als Informationsba-

sis Daten von einem Röntgencomputertomographen oder granulometrische Vorgaben

verwerten kann. Die entwickelte Methode kombiniert eine Simulation diskreter Par-

tikel unter Vorgabe der Kornverteilungskurve für die mineralischen Partikel mit einem

gewichteten Voronoi Diagramm, welches als zusätzliche Funktion das stochastische

Schrumpfen der Voronoi Zellen ermöglicht. Die numerische Simulation dieser künst-

lichen Mikrostrukturen führt zu einem besseren Verständnis der vorherrschenden

physikalischen Phänomene, was dazu dient, die realen Eigenschaften von Asphalt

besser zu steuern.
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Chapter 1

Introduction

1.1 Background and motivation

Asphalt concrete is well known to the general public since almost everybody has

been in contact with asphalt concrete in some kind of way. What is not known

to the general public is the fact that asphalt concrete is a highly complex material

composite which can be constructed in a wide variety of shapes and sizes to fulfill

different requirements. Due to the fact that asphalt concrete is used all over the world,

the conditions under which the material needs to withstand different kinds of loads is

huge. Asphalt concrete is used for road surfaces, airport start- and landing runways,

parking lots and sidewalks, just to name a few. Considering the expected loads

for these different applications and taking into account the different environmental

influences all over the world will lead to a broad range of different asphalt concrete

types.

From a scientific point of view, asphalt concrete requires to investigate it from many

different sides, e.g. fatigue behavior, noise reduction, fluid absorption, to name only a

few. All these investigations have in common that the first step is always a thorough

understanding of the mechanical effects within the material, accompanied by the

constitutive description and morphology. In general, an asphalt compound consists of

three major constituents, namely stiff mineral aggregates, a soft viscoelastic binding

agent and air-voids. Furthermore, it is built up by different layers as presented in

Figure 1.1 [34, 89]. Many more additives can be used for the compound, but are

strongly dependent on the application. Waxes and rubber parts are two of the more

common additives which can be used for the overall compound [34].

As mentioned before, Figure 1.1 shows a schematic representation of the different

layers of an asphalt concrete, typically used for road construction. It is to say that the

construction again depends on the application and therefore the expected loads. The

differences between base, binder and surface course lies in the different combination

of mineral aggregates and bituminous binding agent. It usually ranges from large

mineral aggregate sizes with low bituminous binding agent amount in the base course,

– 1 –
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base course

binder course

surface course

Figure 1.1: Schematic representation of a pavement structure to introduce different

notions.

to small mineral aggregate sizes and high bituminous binding agent amount in the

surface course. This thesis mainly deals with the surface course of the complete

asphalt structure but its findings are also applicable to the other courses. As stated

before, asphalt concrete is well known to the general public, so everybody can think of

everyday problems like potholes or noise pollution. The investigation of the occurrence

and its prevention for both conditions is vitally important. Considering the second

point mentioned, noise reduction of roads in cities is highly interesting with an ever-

increasing traffic density. The acoustic properties of different asphalt concrete types

and their advantages and disadvantages needs to be investigated. Even though the

investigation of potholes or acoustic properties is not mainly discussed in this thesis,

it makes a contribution to the fundamental questions behind these phenomena. To

get to the analysis of the two aforementioned topics, and these are only a few in

the wide field of interest concerning asphalt concrete, a fundamental knowledge from

a mechanical point of view about asphalt concrete is required. This thesis deals

with some of these fundamental questions, like the transition from micro- to macro-

scale behavior of asphalt concrete and the morphology of the compound to help

understanding the inherent relations [72, 73]. The micro-scale is defined as the pore-

scale of the compound, whereas the macro-scale is the directly visible scale of the

whole component or in this case of the compound. Furthermore, this thesis deals with

the abstraction of asphalt concrete to artificial structures for a more efficient way of

numerical simulations [74,75]. The before mentioned multi-scale modeling is one point

that makes asphalt concrete so interesting. Unlike many other multi-scale materials,

the behavior of the constituents within asphalt concrete can be characterized and

modeled on the micro-scale level very accurately. Another very interesting point are

large deformations on the micro-scale level and their possible influence on the macro-

scale behavior. Large deformations in the bituminous binding agent occur due to the

high stiffness difference compared to the mineral aggregates, which lead to relative

distortions and dislocations of the mineral aggregates. In general it can be said that

asphalt concrete is a very interesting material which is worth investigating and which

gives room for potential development from a mechanical point of view. Especially with
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regard to material modeling, asphalt concrete builds a perfect basis for application-

oriented material design. The varying load conditions and requirements with respect

to environmental influences and applications build such a large variety of applications

that a suitable material design helps to fulfill the demands of the material.

1.2 Aims and outline

As partly touched in the previous section, the intention of this work is to get a deeper

insight in the complexity of modeling asphalt concrete from a constitutive point of

view, but also from a morphological point of view. Therefore, this work mainly fo-

cuses on two closely linked fields of interest. First, the constitutive modeling of the

constituents of asphalt concrete, with special focus on the bituminous binding agent.

Second, the morphological conditions within asphalt concrete and the numerical rep-

resentation of these conditions. To get these topics covered, the work is structured in

the following way:

• Required theoretical aspects for a better understanding of the topic are given in

Chapter 2 and 3. Topics which are introduced are part of continuum mechanics

and in detail kinematics, balance equations and constitutive modeling. The

different parts are introduced from a mathematical and mechanical point of

view.

• In Chapter 4, the rheology of bitumen-filler mastics with focus on general

master-curve relations and an extension of this concept with regard to filler con-

centrations is provided. Based on experimental data for thermo-rheologically

simple bitumen and bitumen-filler mastics a mathematical procedure is de-

scribed to define a function which serves as a shift function enriching the time-

temperature superposition principle by the content of filler particles.

• Chapter 5 is concerned with the requirements of an efficient multi-scale mod-

eling approach for elastic/viscoelastic compounds such as bituminous asphalt

concrete. Prediction of effective mechanical properties of such complex materials

on the macroscopic level requires a detailed knowledge of the micro-scale be-

havior of the particular constituents. In this chapter, the focus lies on modeling

aspects due to upscaling routines based on volume averaging and the influence

of micro-level boundary conditions.

• Chapter 6 provides a methodological framework to investigate effective mechan-

ical properties of asphalt concrete. Numerical tools based on morphological X-

Ray Computed Tomography (XRCT) data from asphalt concrete specimen are

used to create artificial Statistical Volume Elements (SVEs) for numerical sim-

ulations. A discrete particle simulation is applied to generate a densely packed

sphere model with a pre-defined Particle Size Distribution (PSD) as a first rep-

resentation of the mineral filler particles. This model serves as the starting point
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for a weighted Voronoi diagram. Finally, the volume fractions are adjusted by

a stochastic shrinkage process of the Voronoi cells. This chapter also focuses on

the constitutive description of the bituminous binding agent, which we interpret

as a viscoelastic fluid.

• Chapter 7 extends Chapter 6 with regard to artificial Statistical Volume El-

ements based on norms and standards instead of XRCT data. Based on one

mastic asphalt (MA8S) and one porous asphalt (PA8), this chapter gives details

about the calculations that are necessary to create microstructures for further

mechanical or other simulation and highlights the flexibility of the algorithm.

• Finally, the main results of this investigation are summarized in Chapter 8 and

an outlook is given for further possible research approaches.

To be noted is that parts of this work will be submitted for publication or are already

published in scientific peer-reviewed journals. Chapter 4 will be submitted for publi-

cation in Journal of Rheology. The results of Chapter 5 are published in Journal of

Applied Mathematics and Mechanics [72] and partly in Proceedings in Applied Math-

ematics and Mechanics [73]. Chapter 6 is the basis of a publication in Construction

and Building Materials [75], whereas preliminary results of this chapter are published

in Proceedings in Applied Mathematics and Mechanics [74].



Chapter 2

Theoretical aspects

In this and the following chapter all relevant mathematical and mechanical

aspects are presented, which are required to understand the basis of this

work. This includes the three parts of continuum mechanics, e.g. [22, 25]

• kinematics,

• balance equations,

• constitutive modeling,

and in addition to these parts, the initial boundary value problem. Since

this work deals in many ways with specific questions concerning material

modeling, Chapter 3 expands this theoretical chapter and deals in particu-

lar with constitutive modeling and all relevant material laws for this thesis

solely.

2.1 Kinematics

Kinematics deals with the geometrical basics which describes movement and defor-

mation of a body. Reasons for these movements and deformations are not yet scope

of the theory. Looking at a material body B, which simply acts as a collection of ma-

terial points P in a 2-dim R2 or 3-dim R3 Euclidean space. The outer border of the

body is defined as ∂B. Each material point is given an exact position in a Cartesian

coordinate system with basic vectors ei. First, the reference configuration is consid-

ered, which usually describes the undeformed state or the state at time t = t0. In this

case, the position of a specific material point out of the set of all points P is described

by the position vector X. Of further interest is the position and deformation of the

body B to a specific time t > t0. This state is called actual or current configuration

of body B. The position of all material points is again described via position vectors

referring to the already introduced origin. Defined are these position vectors as x.

– 5 –
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Figure 2.1: Reference and actual configuration of the body B.

The position vector for the actual configuration is defined as a function of the position

vector for the reference configuration

P −→ x = χ (X, t) = χt (X) . (2.1)

With the parameter time t, the motion function χt is introduced. This definition

assigns a specific location to every material point within the Euclidean space. Using

the Lagrangian description, at time t = t0 for the reference configuration, the motion

function needs to fulfill

x = χ (X, t0) . (2.2)

Under the assumption that neighboring points always stay as neighboring points and

a specific point can only be occupied by a single material point, the inversion of the

motion function is possible

X = χ−1t (x) . (2.3)

This formulation goes hand in hand with an Eulerian formulation. The motion or

differently called the change from reference to actual configuration, is nothing else

than a motion of all material points P , which can be described by the displacement

vector u. The displacement vector is the difference of the position vectors for the

actual configuration x at time t and the reference configuration X at time t0,

u = x−X, (2.4)

u (X, t) = x (X, t)−X. (2.5)
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Another important quantity for further investigations and definitions is the deforma-

tion gradient F

dx = F · dX ⇔ F =
dx

dX
= Grad x, (2.6)

which transforms the line elements of the reference configuration dX to line elements

of the actual configuration dx. The inverse of the deformation gradient is defined as

F−1 =
dX

dx
= grad X. (2.7)

Based on the deformation gradient, transformations for infinitesimal surface and vol-

ume elements from the reference to the actual configuration are defined as

da = J F−T · dA, (2.8)

for surface elements and as

dv = J dV with J = det F > 0 (2.9)

for volume elements. The limitation for positive determinants of the deformation

gradient guarantees the inverse map of the volume elements and prevents a self-

penetration by only positive volume elements.

Based on the above introduced motion function, a velocity v = ẋ (x, t) and an ac-

celeration a = ẍ (x, t) in an Eulerian description are introduced. A corresponding

Lagrangian description is also possible and reads

v = ẋ (X, t = 0) =
∂χ (X, t0)

∂t
and a = ẍ (X, t = 0) =

∂2χ (X, t0)

∂t2
. (2.10)

The material time derivative of an arbitrary field quantity [Ψ] is defined by

Ψ̇ =
∂Ψ

∂t
+ grad Ψ · ẋ, (2.11)

which describes the temporal change of a material point of the field quantity [Ψ],

observed from a spatial position, meaning X is fixed. The first part of the equation

defines the intrinsic variation of the field quantity, whereas the second part defines the

convective derivative, which describes the change due to transport of the field quantity.

With regard to a linear description, the convective derivative is not considered and

therefore neglected.

The velocity of the body B is further defined by introducing a velocity gradient in a

material description

L = Grad v = Ḟ (2.12)

and a spatial description

l = grad v = Ḟ · F−1, (2.13)
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using a Push-Forward transformation. The additive decomposition, here only shown

for the spatial description, leads to a symmetric part d and skew-symmetric part w

l = d + w =
1

2

(
l + lT

)
+

1

2

(
l− lT

)
. (2.14)

With regard to deformation tensors, the right Cauchy-Green deformation tensor

C = FT · F (2.15)

of the reference configuration and the left Cauchy-Green deformation tensor

B = F · FT (2.16)

of the actual configuration is introduced. In a further step, the Green-Lagrange strain

tensor

E =
1

2
(C− I) (2.17)

with

I = δij ei × ej , (2.18)

δij = 1 ∀ i = j and δij = 0 ∀ i 6= j (2.19)

and the Euler-Almansi tensor

A =
1

2

(
I−B−1

)
(2.20)

can be introduced as strain tensors of the reference or actual configuration, respec-

tively. Any further theoretical background concerning kinematics can be found in

many relevant literature, for example in [22,25].

2.2 Balance equations

In this section the basic balance equations are introduced and the most important

parts for this work are discussed. In classic continuum mechanics five balance relations

are of importance, mass, momentum, moment of momentum, energy and entropy.

2.2.1 Balance of mass

Within this thesis the mass of the material body is assumed to be constant. No

gain or loss of mass is assumed. With spatial density ρ = ρ (x, t) related to volume

elements of the actual configuration dv and material density ρ0 = ρ0 (X, t) related

to volume elements of the reference configuration dV , the balance of mass reads

m =

∫
B
ρdv =

∫
B0

ρ0 dV = const. (2.21)
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The change in density can be derived via ρ0 = Jρ. Using the material time derivative

ṁ of the complete mass and with J̇ = J div ẋ the local form of the balance of mass

reads

ρ̇+ ρdiv ẋ = 0. (2.22)

2.2.2 Balance of momentum

The balance of momentum is an important balance equation. The underlying idea

is Newton’s Axiom which is equivalent to the formulation that the sum of all acting

forces on a body B is equal to the change in momentum

d

dt

∫
B
ρ ẋ dv =

∫
∂B

t da+

∫
B
ρb dv. (2.23)

Here ρb are body forces. The before mentioned momentum is the product of the

density ρ and the velocity ẋ of the body B. The relation between the Cauchy stress

tensor T and the normal vector n is called Cauchy Theorem and reads

t = T · n. (2.24)

Using the divergence theorem, the balance of mass and the consideration of individual

areas of the body B leads to the local form of the balance of momentum

ρ ẍ = div T + ρb. (2.25)

2.2.3 Balance of moment of momentum

Next to the balance of momentum, the balance of moment of momentum is also based

on Newton’s Axiom and balances the change of the moment of momentum with the

moment of external forces, it reads

d

dt

∫
B
ρx× ẋ dv =

∫
B
ρx× b dv +

∫
∂B

x× t da. (2.26)

The local form of the balance of moment of momentum leads to symmetry of Cauchys

stress tensor

T = TT. (2.27)

2.2.4 Balance of energy

The balance of energy states in accordance to the first law of thermodynamics that

the energy of a material body changes with external power, which can be either

mechanical or thermal. The global energy balance reads

d

dt

∫
B
ρ

(
e+

1

2
ẋ · ẋ

)
dv =

∫
B
ρ (b · ẋ + r) dv +

∫
∂B

(t · ẋ− q) da, (2.28)
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with the heat flux q defined by the theorem

q = q · n, (2.29)

including the heat flux vector q. The sign of the heat flux q in Eq. (2.28) is determined

based on the direction of the unit vector n. With n pointing outwards, q is defined

as heat outflux. The right side of Eq. (2.28) shows the before mentioned mechanical

P =

∫
B
ρb · ẋ dv +

∫
∂B

t · ẋ da (2.30)

and thermal

Q =

∫
B
ρ r dv +

∫
∂B
−q da (2.31)

parts of the power, with r being the energy source. On the left side, e reflects the

mass-specific inner part of the energy. The local form derived by using the divergence

theorem reads

ρ ė = T : d + ρ r − div q. (2.32)

2.2.5 Balance of entropy

The balance of entropy can be described using the basic principle of an inequality,

which formulates that the entropy production η̂ of a material body may not be neg-

ative,

ρ η̇ + div
(q

θ

)
− ρ r

θ
= η̂ ≥ 0. (2.33)

Within this inequality, η̇ is introduced as the change of entropy and θ is introduced

as the temperature. By using the Helmholtz free energy

Ψ = e− θ η (2.34)

and its formulation in dependency of Ψ and θ, the Clausius-Duhem inequality is

introduced based on Eq. (2.33) as

−ρ Ψ̇− ρ η θ̇ − q

θ
· grad θ + T : d ≥ 0, (2.35)

for the actual configuration. With regard to this thesis and only isothermal processes

with θ = constant, the Clausius-Planck inequality is derived from the Clausius-Duhem

inequality and reads

T : d− ρ Ψ̇ ≥ 0. (2.36)

This last equation is used for the constitutive modeling of the viscoelastic material,

which is introduced in the next chapter.



Chapter 3

Constitutive theory and material

modeling

This chapter is concerned with theoretical aspects of constitutive theory

and material modeling. Within the constitutive theory the connection be-

tween deformations of a body and the body forces inside and outside of the

body are established. In the previous sections 2.1 and 2.2, the kinematic

relationships and the balance equations are introduced, which are univer-

sal for the defined body. The constitutive theory enables to define different

material behavior by using different constitutive equations, which leads at

the same time to material modeling. In addition to the already mentioned

literature, the contributions [30,80,91], serve as a good background for this

chapter.

3.1 Introduction

The scientific field of material modeling deals with the development of a phenomeno-

logical model, which describes the mechanical properties of a material. In many

numerical applications the quality of the results strongly depend on the correctness

of the theoretical model. The overall goal of all developed material models is the

preferably exact description of the complex mechanical behavior of the material. In

this work, two materials are of main focus, the bituminous binder and the solid ag-

gregates. The solid aggregates are interpreted as linear elastic isotropic solids, whose

modeling is rather simple compared to modeling the bituminous binder. The bitumi-

nous binder is interpreted as a viscoelastic fluid, whose modeling will be a main focus

in this thesis. Both material models have in common that the starting points are

material data taken from reliable, but different sources. Namely these are literature

and own experimental data.

Another important term which needs a short introduction is the term rheology. Rhe-

– 11 –
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ology is the study of the deformation and flow of matter in response to applied forces.

For the general modeling of material behavior, rheology is based on three different

elements, the elastic element (Hooke’s body), the viscous element (Newton’s body)

and the plastic element. The plastic element is not considered in this thesis and is

therefore not scope for this theoretical background chapter. Therefore, the next sec-

tions deal with the elastic and viscous element in more detail. The chapter closes

with the numerical realization of the introduced material models.

3.2 Linear elastic solid

When looking at solid bodies at the state of small deformations, the theory of linear

elasticity is applied. In this theory, Robert Hooke described the relationship between

stress and strain. For a linear elastic solid and under the assumption of small defor-

mation and isotropy,

σ = 2G ε+ λ (tr ε) I (3.1)

defines the 3-dim dependency between stresses and strains. Here, ε is the linearized

strain tensor, G the shear modulus, λ the Lamé parameter and I the unity tensor.

tr ε is the trace of the strain tensor which is defined by

tr ε = εii. (3.2)

The linearized strain tensor reads

ε =
1

2

[
grad u + (grad u)

T
]
. (3.3)

The elastic modulus E and the Poisson’s ratio ν can be calculated based on the shear

modulus G and the Lamé parameter λ as

E =
G (3λ+ 2G)

λ+G
(3.4)

and

ν =
λ

2 (λ+G)
. (3.5)

The inverse calculation is possible as well, but not further mentioned here. In addition,

the bulk modulus is defined as

K = λ+
2G

3
. (3.6)

For a simple load case, such as uniaxial tension, Eq. (3.1) simplifies to

σ = E ε. (3.7)
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This equation is independent of time and based on the observations from linear springs

F = c x. (3.8)

In this equation c is a constant factor, characteristic of the spring which is comparable

to the elastic modulus E, so its stiffness. F is the force that is needed to extend or

compress the spring by some distance x, where x is small compared to the possible

complete deformation of the spring. Especially in section 3.3 this relationship becomes

even more important when modeling linear viscoelastic solids and fluids. Similar to

the uniaxial tension case a proportionality for a simple shear load case can be described

as well. With shear stress τ proportional to shearing angle γ, the equation reads

τ = Gγ. (3.9)

3.3 Rheology of a viscoelastic solid/fluid

As described in the previous section, the constitutive behavior of an elastic solid is

characterized by the elasticity constants. With regard to viscoelastic materials, this

behavior is enriched by a viscous behavior which needs to be considered when de-

scribing the more complex overall behavior in material models. For a simple linear

E0

E1 η

σeq

σneq

σ

ε

εe εv

Figure 3.1: Maxwell-Zener model.

viscoelastic solid, the material model is known as Maxwell-Zener model [80]. This

model is shown in Figure 3.1 and visualizes that the model consists of a Maxwell-

element and a single spring in parallel. The mentioned Maxwell-Element is a series

connection of a spring and a dashpot, which will be introduced as the viscous ele-

ment or Newton’s body. For the exact description of most viscoelastic materials, the

Maxwell-Zener model is not sufficient and the model needs to be extended, but for

the purpose of a theoretical background, this simple model is considered first and

extended later in this section.
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Referring to Figure 3.1 the overall stress σ consists of an equilibrium part σeq and a

non-equilibrium part σneq

σ = σeq + σneq. (3.10)

The equilibrium part σeq is triggered by the spring with stress

σeq = E0 ε (3.11)

and the non-equilibrium part by the Maxwell-element (spring and dashpot)

σneq = E1 εe = η ε̇v. (3.12)

The overall strain of the model is made up of the elastic strain from the spring and

the inelastic strain of the dashpot

ε = εe + εv. (3.13)

The time derivative of σ reads

σ̇ = E0 ε̇+ E1 (ε̇− ε̇v), (3.14)

with

ε̇v =
1

η
σneq (3.15)

=
σ − σeq

η
(3.16)

=
1

η
(σ − E0 ε) (3.17)

=
1

η
(E0 ε+ E1 (ε− εv)− E0 ε) (3.18)

=
E1

η
(ε− εv) . (3.19)

The last equation shows the evolution equation of the Maxwell-Zener model. Going

back to the time derivative of σ in Eq. (3.14), the evolution equation in the form

ε̇v = 1
η (σ−E0 ε), helps to derive a differential equation by inserting the same, which

leads to

σ̇ = E0 ε̇+ E1 (ε̇− 1

η
(σ − E0 ε) (3.20)

σ̇ = (E0 + E1) ε̇− E1
1

η
(σ − E0 ε) (3.21)

σ̇ +
E1

η
σ = (E0 + E1) ε̇+

E0E1

η
ε. (3.22)

This is the first order differential equation of the Maxwell-Zener model with the

relaxation time

T1 =
η

E1
. (3.23)
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Considering the evolution equation in Eq. (3.19) for the given differential equation

of the Maxwell-Zener model, cf. Eq. (3.22), the concept of internal variables needs

to be used [50]. Internal variables in form of ordinary differential equations help to

derive the stress answer of the system. The concept of internal variables can also

be used for more complex material behavior, where more than one Maxwell-Chain is

implemented, and for 3-dim material models. To solve the initial value problem for

the differential equation, The Backward Euler method can be used. This leads to an

implicit description of Eq. (3.19),which reads

(εv)n+1 − (εv)n
∆t

=
1

T1

(
(ε)n+1 − (εv)n+1

)
. (3.24)

The different time steps are described as tn+1 for the time step following the current

step tn. To solve this equation and to get the information of the viscous part for the

next time integration, the equation needs to be reformulated to

(εv)n+1 =
∆t

T1 + ∆t
(ε)n+1 −

T1
T1 + ∆t

(εv)n . (3.25)

This equation shows, how the viscous strain is implemented in the material model-

ing approach. The Backward Euler method can be used as well for more than one

Maxwell-Chain and for the 3-dim extension of the model.

The differential equation depicted in Eq. (3.22) describes the development of the stress

with applied strain and a known stress at t = 0, or the development of strain with

applied stress and known strain at t = 0. Using the harmonic Ansatz

σ(t) = σ̂ exp (i ω t) ⇒ σ̇(t) = i ω σ̂ exp (i ω t) , (3.26)

ε(t) = ε̂ exp (i ω t) ⇒ ε̇(t) = i ω ε̂ exp (i ω t) , (3.27)



16 CHAPTER 3 Constitutive theory and material modeling

for the differential equation, it results in

i ω σ̂ exp (i ω t) +
E1

η
σ̂ exp (i ω t) = (E0 + E1) i ω ε̂ exp (i ω t) +

E0E1

η
ε̂ exp (i ω t)

i ω σ̂ +
E1

η
σ̂ = (E0 + E1) i ω ε̂+

E0E1

η
ε̂

σ̂ (i ω η + E1) = ε̂ ((E0 + E1) i ω η + E0E1)

σ̂ (i ω T1 + 1) = ε̂ ((E0 + E1) i ω T1 + E0)

σ̂

ε̂
=

(E0 + E1) i ω T1 + E0

i ω T1 + 1

σ̂

ε̂
=
E0 (i ω T1 + 1) + E1 i ω T1

i ω T1 + 1
σ̂

ε̂
= E0 +

E1 i ω T1
i ω T1 + 1

σ̂

ε̂
= E0 +

E1 i ω T1
(i ω T1 + 1)

· (i ω T1 − 1)

(i ω T1 − 1)

σ̂

ε̂
= E0 +

−E1 ω
2 T 2

1 − E1 i ω T1
(−ω2 T 2

1 − 12)

σ̂

ε̂
= E0 +

E1 ω
2 T 2

1 + E1 i ω T1
ω2 T 2

1 + 1

σ̂

ε̂
= E0 +

E1 ω
2 T 2

1

ω2 T 2
1 + 1

+ i
E1 ω T1
ω2 T 2

1 + 1

σ̂

ε̂
= E′(ω) + i E′′(ω),

with E′ as tensile storage modulus and E′′ as tensile loss modulus. These descriptions

and their physical meanings are introduced a little later in this section.

Using the characteristic frequency ωm = 1
T1
⇐⇒ T1 = 1

ωm
will lead to a different kind

of formulation which is sometimes used in literature like [68],

C(ω)0−dim =
σ̂

ε̂
= E0 +

E1 ω
2 T 2

1

ω2 T 2
1 + 1

+ i
E1 ω T1
ω2 T 2

1 + 1
(3.28)

σ̂

ε̂
= E0 +

E1 ω
2 1
ω2
m

ω2 1
ω2
m

+ 1
+
E1 i ω

1
ωm

ω2 1
ω2
m

+ 1
(3.29)

σ̂

ε̂
= E0 +

E1 ω
2

ω2 + ω2
m

+
E1 i ω

ω2 1
ωm

+ ωm
(3.30)

σ̂

ε̂
= E0 +

E1 ω
2

ω2 + ω2
m

+
E1 i ω ωm
ω2 + ω2

m

(3.31)

σ̂

ε̂
= E0 +

E1 ω
2 + E1 i ω ωm
ω2 + ω2

m

. (3.32)

The proof that the given equation is the same as presented in [68], is given in Chapter

A.
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Considering a viscoelastic fluid, the difference to the before presented model is mainly

to omit the parallel single spring in the model since a viscoelastic fluid does not have a

basic stiffness. This assumption can also be applied on the forthcoming introduction

of the next models. Within the different chapters of this thesis it is again stated if a

viscoelastic solid or fluid is modeled.

(2n+1)-parameter model

For more complex material behavior the basic Maxwell-Zener model is usually not suf-

ficient. The reason lies in the number of Maxwell elements, the Maxwell-Zener model

only has one. To describe a more complex material behavior, the fitting procedure of

the material values shows a lack of flexibility, when only using one Maxwell element

representing a single characteristic relaxation time. For a more detailed description,

see section 3.3.2. With an extension in numbers of the Maxwell elements and with

E1

E2

ε

E0

η1

η2

ηi

εie εiv

Ei

σ σ

Figure 3.2: Extension of the Maxwell-Zener model, the (2n+1)-parameter model.

different properties for each Maxwell element, a more complex material behavior can

be described. With each added Maxwell element, two more material parameters Ei
und ηi are required. By summing up the non-equilibrium stresses in Figure 3.2 and by

adding the single equilibrium stress, the overall stress of the extended Maxwell-Zener
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model reads

σ = σeq +

n∑
i=1

σineq ∀ i = {1, . . . , n} . (3.33)

Requirement for this equation is of course the description of the equilibrium stress

and non-equilibrium stress as already introduced in the preceding part of this section.

The equilibrium stress is defined by

σeq = E0 ε (3.34)

and the each single non-equilibrium stress σineq is defined by

σineq = Ei
(
ε− εiv

)
. (3.35)

Since the before mentioned models are introduced in a 0-dim sense, the next section

deals with an extension to 3-dim.

3-dim extension of the Maxwell-Zener model

The 3-dim extension of the Maxwell-Zener model is shown in Figure 3.3. As for the

σeq

σneq

σ

ε

εe εv

G, λ

Ge, λe ηe

σ

σ

σ

ε ε

ε

σ

σ

σ

ε ε

ε

Figure 3.3: 3-dim extension of the Maxwell-Zener model.

0-dim case, the overall stress of the shown 0-dim model consists of an equilibrium part

σeq and a non-equilibrium part σneq. Considering all the scalar factors in Figure 3.1,

the 3-dim consideration leads to second-order tensors. Besides that, the properties of

the spring element are now described by two material parameters, the shear modulus

G and the Lamé parameter λ. Therefore, the equation for stress can be written as

σ = σeq + σneq (3.36)

σ = 2G ε+ λ (tr ε) I + 2Ge εe + λe (tr εe) I. (3.37)
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The function of free energy for the 3-dim model reads

ρ0 Ψ = ρ0 Ψ (ε, εe) = G ε : ε+
1

2
λ (ε : I)

2
+Ge εe : εe +

1

2
λe (εe : I)

2
. (3.38)

Furthermore, the Clausius-Duhem inequality is given as

σ : ε̇− ρ0 Ψ̇ ≥ 0 (3.39)

for isothermal processes. The material derivative of the function of free energy (3.38)

reads

ρ0 Ψ̇ = [2G ε+ λ (tr ε) I] : ε̇+ [2Ge εe + λe (tr εe) I] : ε̇e. (3.40)

Due to the connection of εe = ε− εv, it is also possible to replace the time derivative

ε̇e = ε̇− ε̇v. With this assumptions, the before mentioned equation leads to

ρ0 Ψ̇ = [2G ε+ λ (tr ε) I] : ε̇+ [2Ge εe + λe (tr εe) I] : ε̇− [2Ge εe + λe (tr εe) I] : ε̇v,

(3.41)

where

σeq =
∂ρ0 Ψ

∂ε
= 2G ε+ λ (tr ε) I (3.42)

and

σneq =
∂ρ0 Ψ

∂εv
= 2Ge εe + λe (tr εe) I. (3.43)

This gives the opportunity to write Eq. (3.41) in the form of

ρ0 Ψ̇ = σ : ε̇− σneq : ε̇v. (3.44)

By taking this equation and inserting it into the Clausius-Duhem inequality, the

outcome is an equation in the form of

σ : ε̇− σ : ε̇+ σneq : ε̇v ≥ 0 ⇐⇒ σneq : ε̇v ≥ 0. (3.45)

This requirement needs to be fulfilled at any time and it is, if the tensors are coaxial.

As previously stated for the 0-dim case,

σneq = ηe ε̇v (3.46)

and therefore

ε̇v =
1

ηe
[2Ge εe + λe (tr εe) I] . (3.47)

It is important to remark that the given material can be incompressible by nature.

This means under the assumption of small deformations that detF = 1. An assump-

tion of incompressibility means as well that tr ε = 0 and tr εe = tr εv = 0. Starting
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with incompressibility, a volumetric-deviatoric split is introduced, exemplary shown

for the equilibrium stress

σeq = 2G ε+ λ (tr ε) I

= 2G ε+K (tr ε) I− 2

3
G (tr ε) I

= 2G ε+K (tr ε) I− 2

3
Gn εvol (3.48)

= 2G ε+K (tr ε) I− 2

3
Gn

(
ε− εdev

)
= K (tr ε) I + 2G εdev.

It is to mention that the value n is a parameter depending on the dimension of the

problem, which is here n = 3. For a better understanding of the deviation it is to add

that the strain tensor ε can be split in a volumetric and a deviatoric part

ε = εvol + εdev. (3.49)

The volumetric part is calculated via

εvol =
1

n
(tr ε) I. (3.50)

Time derivative of σ reads

σ̇ = 2G ε̇dev + 2Ge ε̇
dev
e (3.51)

= 2G ε̇dev + 2Ge (ε̇dev − ε̇devv ). (3.52)

The evolution equation for the 3-dim case can be derived based on Eq. (3.46) as

ε̇v =
1

ηe
σdev
neq (3.53)

=
1

ηe
(σneq − σvol

neq) (3.54)

=
1

ηe
2Ge [(ε− εv)−

1

3
tr (ε− εv) I] (3.55)

=
1

ηe
2Ge (ε− εv) (3.56)

=
1

ηe
σneq (3.57)

=
1

ηe
(σ − 2G ε). (3.58)

For incompressible material behavior the bulk moduli K and Ke, of the single spring

and the attached Maxwell-Chain, can be set to very high values (>> G).

The definition of the relaxation time reads

T =
ηe
Ge

. (3.59)
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On condition that tr εe = 0, the evolution equation can be written in the following

way

ε̇v =
2

T

(
εdev − εdevv

)
=

2

T
(ε− εv) . (3.60)

Eq. (3.60) comprises the assumption that bulk viscosity in neglected. In combination

with the stress-strain relationship, shown for the equilibrium stress σeq in Eq. (3.48),

the evolution equation builds the basis for the evaluation of viscoelastic material. As

already introduced in one of the previous sections, the concept of internal variables

needs to be used [50] and the evolution equation for the 3-dim case can be solved

using the Backward Euler method.

Going back to the time derivative of σ we use ε̇v = 1
ηe

(σ − 2G ε) for further steps

and it follows

σ̇ = 2G ε̇dev + 2Ge (ε̇dev − ε̇devv ) (3.61)

σ̇ = 2G ε̇dev + 2Ge ε̇
dev − 2Ge

σ

ηe
+

4GGe
ηe

εdev (3.62)

σ̇ + 2Ge
σ

ηe
= 2 (G+Ge) ε̇

dev +
4GGe
ηe

εdev. (3.63)

As already done before in the 0-dim case, the harmonic Ansatz

σ(t) = σ̂ exp (i ω t) ⇒ σ̇(t) = i ω σ̂ exp (i ω t) , (3.64)

ε(t) = ε̂ exp (i ω t) ⇒ ε̇(t) = i ω ε̂ exp (i ω t) , (3.65)
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is used for the differential equation as for the 0-dim case before. This leads in the

3-dim case to

i ω σ̂ exp (i ω t) +
2Ge
ηe

σ̂ exp (i ω t) = 2 (G+Ge) i ω ε̂ exp (i ω t) + 4
GGe
ηe

ε̂ exp (i ω t)

(3.66)

i ω σ̂ +
2Ge
ηe

σ̂ = 2 (G+Ge) i ω ε̂+ 4
GGe
ηe

ε̂ (3.67)

σ̂ (i ω ηe + 2Ge) = ε̂ (2 (G+Ge) i ω ηe + 4GGe) (3.68)

σ̂ (i ω T1 + 2) = ε̂ (2 (G+Ge) i ω T1 + 4G) (3.69)

σ̂ : ε̂−1 =
2 (G+Ge) i ω T1 + 4G

iω T1 + 2
(3.70)

σ̂ : ε̂−1 =
2G (i ω T1 + 2) + 2Ge i ω T1

i ω T1 + 2
(3.71)

σ̂ : ε̂−1 = 2G+
2Ge i ω T1
i ω T1 + 2

(3.72)

σ̂ : ε̂−1 = 2G+
2Ge i ω T1
(i ω T1 + 2)

· (i ω T1 − 2)

(i ω T1 − 2)
(3.73)

σ̂ : ε̂−1 = 2G+
−2Ge ω

2 T 2
1 − 4Ge i ω T1

(−ω2 T 2
1 − 22)

(3.74)

σ̂ : ε̂−1 = 2G+
2Ge ω

2 T 2
1 + 4Ge i ω T1

ω2 T 2
1 + 4

(3.75)

σ̂ : ε̂−1 = 2G+
2Ge ω

2 T 2
1

ω2 T 2
1 + 4

+ i
4Ge ω T1
ω2 T 2

1 + 4
(3.76)

σ̂ : ε̂−1 = G′(ω) + iG′′(ω), (3.77)

with G′ as shear storage modulus and G′′ as shear loss modulus. The translation with

dependency of ωm = 1
T1
⇐⇒ T1 = 1

ωm
, which will again result in a different kind of

formulation, is given as

σ̂ : ε̂−1 = 2G+
2Ge ω

2 T 2
1

ω2 T 2
1 + 4

+ i
4Ge ω T1
ω2 T 2

1 + 4
(3.78)

σ̂ : ε̂−1 = 2G+
2Ge ω

2 1
ω2
m

ω2 1
ω2
m

+ 4
+ i

4Ge ω
1
ωm

ω2 1
ω2
m

+ 4
(3.79)

σ̂ : ε̂−1 = 2G+
2Ge ω

2

ω2 + 4ω2
m

+
4Ge i ω

ω2 1
ωm

+ 4ωm
(3.80)

σ̂ : ε̂−1 = 2G+
2Ge ω

2

ω2 + 4ω2
m

+
4Ge i ω ωm
ω2 + 4ω2

m

(3.81)

C(ω)3−dim = σ̂ : ε̂−1 = 2G+
2Ge ω

2 + 4Ge i ω ωm
ω2 + 4ω2

m

. (3.82)
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3-dim nonlinear viscoelastic modeling approach

This thesis also deals with a 3-dim formulation of nonlinear viscoelasticity, which is

required when the theory is extended to moderate geometrical nonlinearities. The

theoretical background for this specific part is described in section 6.3.2 where it is

applied to experimental data and numerically investigated.

For the purpose of the nonlinear description at this point, we introduce, for each

added Maxwell-Chain i = 1, 2, . . . , n to the above presented 3-dim Maxwell-Zener

model, the multiplicative split of the deformation gradient into an elastic part Fie and

an inelastic or viscous part Fiv, see [45,47,48], and write

F = Fie · Fiv. (3.83)

With the already introduced right Cauchy-Green deformation tensor C and the left

Cauchy-Green deformation tensor B, the viscous part of the right Cauchy-Green

deformation tensor

Ci
v =

(
Fiv
)T · Fiv (3.84)

and the elastic part of the left Cauchy-Green deformation tensor

Bi
e = Fie ·

(
Fie
)T
. (3.85)

For more details please consider e.g. [25, 30]. The tensors Ci
v ,i = 1, 2, . . . , n, are

interpreted as internal variables of the viscoelastic model described by an evolution

equation, as already introduced for the linear modeling approach. Given an appro-

priate strain energy density function W , the Cauchy stress tensor is computed as

T = 2
1

J
B · ∂W

∂B
. (3.86)

For the scope of this work, the nonlinear approach which is described at this point is

introduced to take the fact into account that within asphalt concrete locally large, i.e.

finite strains, are expected. Therefore, the springs in the generalized Maxwell-Zener

model can be modeled in terms of a Neo-Hookean strain energy density function with

a volumetric-deviatoric split

W = Weq (B) +

8∑
i=1

Wneq

(
Bi
e

)
(3.87)

= W vol
eq (B) +W dev

eq (B) +

8∑
i=1

W dev,i
neq

(
Bi
e

)
(3.88)

=
K

2
(J − 1)2 +

G0

2
(I1 − 3) +

n∑
i=1

Gie
2

(I1 − 3). (3.89)

Hereby, G0 andGie are the shear moduli of the springs andK is the bulk modulus. The

volumetric contribution W vol
eq (B) is introduced in the sense of a weak compressible
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material, mainly for numerical reasons [30]. Moreover, I1 = λ1 + λ2 + λ3 is the first

strain invariant and J2 = λ1 λ2 λ3. With the Cauchy stress defined as

T = Tvol
eq + Tdev

eq +

8∑
i=1

Tdev,i
neq (3.90)

= 2
1

J

(
B · ∂W

vol
eq

∂B
+ B · ∂W

dev
eq

∂B
+

8∑
i=1

Bi
e ·
∂W dev,i

neq

∂Bi
e

)
(3.91)

and the given strain energy density function, the constitutive equation reads

T = K (J − 1) I +
1

J
G0 B0 +

n∑
i=1

1

J
Gie Bi

e. (3.92)

Knowing that the Dynamic Shear Rheometer (DSR) experiments for the bituminous

binding agent result in a viscoelastic fluid, the equilibrium part of the stress tensor

(Teq) has no deviatoric contribution (G0 ≈ 0 MPa), and the constitutive equation in

its final version states

T = K (J − 1) I +

n∑
i=1

1

J
Gie Bi

e. (3.93)

Given this constitutive relation, it remains to define the viscoelastic equation system

to be solved for the micro-scale. The evolution of the before mentioned internal

variables is described in terms of an evolution equation of the form

d

dt

(
Ci
v

)
= Ċi

v =
2

J Ti

[
C− 1

3
tr
(
C ·
(
Ci
v

)−1)
Ci
v

]
. (3.94)

The solution of the evolution equation is geometrically nonlinear and can be solved

using the already introduced Backward Euler method in time with(
Ċi
v

)
n+1

=

(
Ci
v

)
n+1
−
(
Ci
v

)
n

∆t
. (3.95)

3.3.1 Measurement methods

The behavior of viscoelastic materials can be determined by different methods. This

includes the creep- or relaxation test and tests with dynamic loads on the material.

During creep tests, the viscoelastic specimen is loaded with a predefined stress which

is kept constant and the strain answer is measured over time. The resulting function

is called creep function, which describes the delayed strain answer of the material.

The relaxation- or stress relaxation test is the counterpart of the creep test. The

specimen is stretched by a predefined value an kept in this position. The stretch is

usually applied under simple tension- or shear conditions. The applied stretch results

in a stress answer which relaxes over time, this result is called the relaxation function.

In contrast to these two measurement methods, the stimulation in a dynamic test can
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be applied with a sinusoidal strain or stress load. Using a time dependent strain with

such a sinusoidal form

τ (t) = τ0 sin (ωt) , (3.96)

for an ideal elastic solid

τ (t) = Gγ (t) , (3.97)

results in a stress answer

τ (t) = τ0 sin (ωt) , (3.98)

which is sinusoidal as well. This means that under the condition of an ideal elastic

solid, strain load and stress answer happen without a fraction of delay. This means

the phase angle δ between stain and stress is equal to 0. It should be mentioned that

isotropic material behavior in 0-dim is provided. For more dimensional considerations

this behavior applies correspondingly. In contrast to the ideal elastic solid, the stress

for an ideal viscous fluid reads

τ (t) = η γ̇ (t) , (3.99)

with the corresponding stress answer

τ (t) = ω τ0 cos (ωt) . (3.100)

Therefore, the stress answer is towards the time dependent strain shifted by δ = π
2 .

The two previously shown examples for the ideal elastic solid and the ideal viscous

fluid are extreme examples with regard to the phase angle δ. For any other arbi-

trary viscoelastic behavior, the phase angle is placed somewhere in between these two

extreme values. The general stress answer reads

τ (t) = τ0 sin (ωt+ δ) (3.101)

and this results in

τ (t) = τ0 [sin (ωt) cosδ + cos (ωt) sinδ] . (3.102)

With another change in this formulation, it is immediately displayed that the stress

answer consists of an elastic part, which oscillates in phase with the stimulation and

a viscous part, which oscillates shifted in phase by δ = π
2 ,

τ (t) = τ0 sin (ωt) cosδ + τ0 cos (ωt) sinδ. (3.103)

This fact enables to introduce two moduli. One modulus for the part which oscillates

in phase and another modulus for the part which oscillates phase shifted. The stress-

strain relation results in

τ (t) = γ0G
′
sin (ωt) + γ0G

′′
cos (ωt) , (3.104)
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with shear storage modulus

G
′

=
τ0
γ0

cosδ (3.105)

and shear loss modulus

G
′′

=
τ0
γ0

sinδ. (3.106)

If the stress-strain relation is in phase, the supplied energy is stored as potential energy

and remains available. The viscous part is described by the loss modulus, where the

supplied energy is dissipated as heat. Therefore, the loss factor tanδ describes the

ratio between stored and dissipated energy and is calculated by the quotient of loss-

and storage modulus

tanδ =
G

′′

G′ . (3.107)

The here presented method is especially important when it comes to the experimental

determination of viscoelastic material behavior and the creation of a rheological model

based on the gained data. Corresponding to the shear storage- and loss modulus, the

tensile moduli, E
′

and E
′′

can be derived in a similar manner.

3.3.2 Fitting

The development of a rheological model for the bituminous binding agent is based

on experimental data and later implemented in a Finite Element formulation. As

already mentioned in Chapter 3.1, throughout this thesis the used rheological model

for the bituminous binding agent is the 3-dim extension of the Maxwell-Zener model.

With DSR testing an identification of the complex modulus G∗ and the phase angle δ

is possible. The formulation for the shear storage- and loss modulus is derived a few

pages ago and read

G
′

= 2G0 +

n∑
i=1

2Gi ω
2 T 2

i

ω2 T 2
i + 4

, (3.108)

G
′′

=

n∑
i=1

4Gi ω Ti
ω2 T 2

i + 4
. (3.109)

In these equations ω is the frequency, Ti the different relaxation times and Gi the

different elasticities or more specific the different shear moduli. The dynamic shear

modulus reads

|G∗| =
√
G′2 +G′′2 (3.110)

and enables a fitting procedure for the experimental data. Figure 3.4 a) illustrates

the result for one Maxwell-Chain without separate elasticity G0 which are in value

characterized as

G1 = 170 MPa (3.111)
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and

T1 = 0.001 s⇒ fm =
1

T1
= 1000 Hz. (3.112)

With this pinpointing procedure, the problem with the fitting process is visualized
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Figure 3.4: Pure 20/30 penetration grade bituminous binding agent. a) Master-curve

pinpointed with one Maxwell-Chain. b) Master-curve with three Maxwell-Chains to

underline the fitting aspects.

very well. Since the relaxation itself follows exponential behavior ⇒ e−
t
T there is no

possibility to fit a single Maxwell-Chain to another slope than the one that follows

e−
t
T . In the following, a short list of characteristic values of percentages for the

relaxation of a specific elasticity G in the time domain:

• t = 0.69T ⇒ 0.500G

• t = 1.00T ⇒ 1
e ⇒ 0.368G

• t = 2.00T ⇒ 0.135G

• t = 3.00T ⇒ 0.050G

By using more than one Maxwell-Chain it is possible to fit the model to another slope.

Figure 3.4 b) shows an example for three different Maxwell-Chains with different

characteristic frequencies. It is clear that with increasing amount of Maxwell-Chains

the quality of the fit becomes more and more exact. The downside of an increasing

number of Maxwell-Chains is simply the computational effort when it comes to solving

all the equations that come with each additional Maxwell-Chain.

3.4 Numerical realization

In this section, the focus lies on the numerical realization of the introduced differential

equations within the material modeling part of this thesis. Because of the strong
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formulation of these equations the use of numerical methods for an approximated

solution of the governing field equations is inevitable, since most of the equations can

not be solved analytically. Within this thesis the Finite Element Method (FEM) is

used. The weak form of the balance equation is described here. The initial boundary

value problem, which is discussed later in this section, is present in the strong form.

This means that the balance equation has to be fulfilled in each material point of the

body B. Within the weak formulation, this fulfillment is only required in an integral

sense. First, bearing in mind the local form of the balance of momentum

ρ ẍ = div T + ρb ∀ x ∈ B, (3.113)

as already introduced in section 2.2.

Initial boundary value problem

The quasi-static form of the balance of momentum reads

−div T = ρb (3.114)

and can be supplemented with two different kinds of boundary conditions. On the one

hand side these are stress driven boundary conditions (BCs), also called Neumann BCs

and on the other side displacement driven boundary conditions, also called Dirichlet

BCs. Figure 3.5 depicts the different kind of boundary conditions on a body B. All

boundary conditions are located on the outer surface ∂B of the body. Thus, the

relations

t̄ = T · n on ΓN (3.115)

and

ū = u on ΓD, (3.116)

are valid, whereby both shown areas form the whole outer surface of the body.

∂B = ΓN ∪ ΓD with ΓN ∩ ΓD = { } . (3.117)

Weak form of the balance equation

For the derivation of the weak form of the balance equation, see Eq. (3.113), the

strong form is multiplied with a test function δu in a scalar way and integrated over

the whole body B. It is to mention that within this thesis, body forces and inertial

forces are neglected. This reduces the balance of momentum to

div T = 0. (3.118)



3.4. Numerical realization 29

Figure 3.5: Possible boundary conditions of body B.

With multiplication of the before mentioned test function δu the integral over the

balance of momentum reads ∫
B

δu · div T dv = 0. (3.119)

For further steps and conversions of this integral the following relations are introduced

div (a ·A) = (aiAij),j (ei · ej) = (ai,j Aij + aiAij,j) (ei · ej) , (3.120)

div (a ·A) = grada : A + a · div A. (3.121)

With these relations and with special regard to the underlined part, Eq. (3.119) now

reads ∫
B

div (δu ·T) dv −
∫
B

gradδu : T dv = 0. (3.122)

With the divergence theorem or Gauss’s theorem∫
B

div (A) dv =

∫
∂B

A · n da, (3.123)

the equation is converted to∫
B

gradδu : T dv =

∫
∂B

δu ·T · n︸ ︷︷ ︸
t

da. (3.124)

Eq. (3.124) shows the weak formulation of the local balance of momentum. The left

side of the equation needs to be fulfilled within the considered body B in a weakly

manner. The right side of the equation describes the Neumann boundary condition

on the surface ∂B of the body B. The right side of the equation is not considered if the

boundary conditions are applied using a Finite Element software. This leads to the

final statement that with the presented constitutive material models in the previous

sections and a discretization in space, the weak form of the balance of momentum,

can be solved using for example a local Newton-Raphson algorithm.





Chapter 4

Extended master-curve concept for

bitumen-filler mastics

This chapter focuses on bitumen-filler mastics with regard to general master-

curve relations from William, Landel, and Ferry [14] and an extension of

this concept with regard to filler concentration. Based on experimental

data for thermo-rheologically simple bitumen and bitumen-filler mastics

a mathematical procedure is described to define a function which serves

as a shift function enriching the time-temperature superposition princi-

ple by the content of filler particles. The viscoelastic experimental data

is gathered with a Dynamic Shear Rheometer (DSR) for a wide frequency

and temperature range. Further analyses such as He/Ne-Laser-Diffraction

and Rigdens voids test support the description of the used limestone dust

filler. The derived relation is tested to describe the rheological behavior

of the viscoelastic material for the elastic and viscous limit, which means

for very high and low frequencies. Furthermore, we compare the rheolog-

ical behavior with classical formulas taken from literature. With all made

assumptions and considering the experimental basis, the created function

shows a good agreement even for the limit cases at high and low frequen-

cies.

4.1 Introduction

Mastics are used in almost all asphalt concretes and their effective properties highly

influence the mechanical behavior of the whole composite structure. In literature,

many different approaches to analyze mastics can be found, for example, with respect

to the long-time response such as damage [13] and aging [64] or with respect to the

rheology such as effective viscosity [26]. The main purpose for the admixed filler is the

stiffening effect for the bitumen-filler mastic [42,77]. In literature, many investigations

– 31 –
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show a dependency between physical properties and chemical composition of the filler

with the effective mechanical properties and rheological behavior of the bitumen-filler

mastic [27, 33, 35, 86]. In detail, investigations show the effect of filler type, grain

size distribution and shape of the particles on the effective properties of bitumen-

filler mastics [41]. Mastics are generally considered to be suspensions, where the

mineral aggregates are suspended in the bituminous binding agent [12]. From a

rheological point of view, suspensions can be divided into dilute suspensions and

concentrated suspensions, depending on the volume fractions of the filler and the

bituminous binding agent [10]. Comparing the two limit types for suspension, we can

state that the mechanical behavior on the small scale is strongly diverging [78, 88].

Considering a dilute suspension, where the the mineral filler content is rather low, the

interaction forces between mineral particles are practically not existent, because the

distance between two neighboring particles is too large. The interaction forces can be

formulated as soft-hard-soft, which corresponds to an interaction only between the soft

bitumen and the hard particle phase. Considering a concentrated suspension, where

the distance between neighboring particles gets closer or even vanishes, a permanent

interaction between particles can occur. This phenomena can lead to permanent hard-

hard interaction and finalize in a jammed state. In this chapter all investigations are

carried out for dilute suspension, as the applied Rigden voids test [65] shows. Further

investigations such as the characterization of the linear thermo-viscoelastic behavior

of different bituminous mixtures and analyzing stiffness and amount of dissipated

energy [63] are fields of ongoing research. Furthermore, experimental testing and

characterization of different bituminous binders, also polymer-modified bituminous

binders, are investigated in literature with regard to the influence of mineral fillers on

the effective rheological response [5].

In this chapter, the well-established master-curve concept, see for example [14], is

enriched by an additional degree, namely the filler concentration for the special case

of bitumen-filler mastics. To the authors’ best knowledge, such an extension is not

available in literature so far. The proposed concept is applied to a broad basis of

experimental Dynamic Shear Rheometer (DSR) data and the extension is conducted

on the one hand in terms of the filler concentration inside the mastic and on the

other hand in dependency of frequency. The motivation for this procedure is based

on the observation that the experimental data shows self similar master-curves. For

a certain concentration range we evaluate that dependency and extend the master-

curve concept with respect to filler concentrations. The chapter itself is organized as

follows: In section 4.2, the classical WLF relation (William, Landel, and Ferry) [14]

is applied at six different temperatures and to five different filler concentrations. In

section 4.3, the proposed approach for the master-curve concept with respect to the

filler concentrations is presented.
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Figure 4.1: a) Storage modulus G′ and b) loss modulus G′′ for pure 20/30 penetration

grade bituminous binder for six different temperatures in a frequency range 0.1 Hz≤
f ≤ 10 Hz.

4.2 Material and methods

The bituminous binder under investigation in this chapter is a 20/30 penetration

grade bituminous binder. The rheological behavior of the bituminous binder is de-

termined by a DSR testing device (Anton Paar Physica MCR 101) at various fre-

quencies and temperatures. A plate-plate configuration with plate radius r=8 mm

is used. Rheological investigations take place for six different temperatures θ un-

der iso-thermal conditions. Shear oscillations in a predefined frequency range from

0.1 Hz≤ f = ω/(2π) ≤ 10 Hz are performed. The temperature range is set to -

20◦C ≤ θ ≤ 30◦C in intervals of 10◦C. The DSR experiments enable us to determine

the viscoelastic properties in form of the complex shear modulus G∗(ω) and its phase

angle δ(ω), cf. [51]. The definition of the complex modulus reads G∗ = G′+ iG′′ with

loss factor tan δ = G′′/G′. Hereby G′ represents the storage modulus and G′′ the loss

modulus, respectively. The storage modulus G′ = (τ0/γ0) cos δ is an indicator for

the stored energy which means it corresponds to the elastic part of the deformation.

The loss modulus G′′ = (τ0/γ0) sin δ on the other hand is an indicator for the viscous

energy contribution which is dissipated as heat. In both definitions, τ0 is the shear

stress amplitude, γ0 the corresponding shear strain amplitude. The phase angle δ rep-

resents the phase lag between the occurring stress and strain and defines the nature

of the investigated material, namely elastic (δ = π/2), purely viscous (δ = 0) or vis-

coelastic (0 < δ < π/2). At this point we also want to introduce the complex viscosity

η∗ = G∗/(2π f) with its magnitude |η∗| as the dynamic viscosity and the viscosity for

the viscous fluid limit as η′ = G′′/(2π f) for f → 0. Furthermore, we introduce the dy-

namic shear modulus |G∗|. The DSR measurements are shown in Figure 4.1 in terms

of the storage G′ and the loss G′′ modulus. In various investigations, pure bituminous
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Figure 4.2: a) Dynamic modulus |G∗| for pure 20/30 penetration grade bituminous

binder and b) the resulting master-curve.

binders have been identified as thermo-rheologically simple materials, see [8, 94] and

references therein. Based on these findings we apply the time-temperature superpo-

sition principle. For the generation of the master-curve in the frequency domain we

evaluated the experimental results in form of the dynamic shear modulus |G∗|, cf. Fig-

ure 4.2, to consider the influences of both moduli G′ and G′′. In a second step, the

pure 20/30 penetration grade bituminous binder is now investigated with a varying

amount of mineral aggregates. Figure 4.3 shows the granulometric curve of the filler in

the unit of the mass fraction, here abbreviated as M.-%, which is typical for the road

building industry. The investigated filler is a limestone dust. The granulometric curve

is based on a He/Ne-Laser-Diffraction (HELOS (H3020) equipped with a SUCELL

wet disperser). We introduce the individual phases ϕb as the bituminous binding

agent and ϕp as the mineral filler and define the volume fractions as nα = dvα/dv

with α = {b, p} and nb + np = 1, the volume element of the mixture dv and the vol-

ume element dvα occupied by phase ϕα. Accordingly, we introduce the mass fraction

wα = dmα/dm with the composite density ρ = ρb+ρp = dm/dv = dmb/dv+dmp/dv

and the partial density ρα = nα ραR = dmα/dv. Compare [75] for more information.

For the investigated bitumen-filler mastic, the effective true densities are given as

ρbR = dmb/dvb = 1.02 [g/cm3] and ρpR = dmp/dvp = 2.67 [g/cm3], respectively.

Since the composition of the mixture is controlled during the production process in

terms of the mass fraction wα, we derive the volume fractions np of the filler

1

np
=

(
1 +

ρpR

wp
wb

ρbR

)
. (4.1)

This equation leads to Table 4.1, where the pure bituminous binder and four different

mass fractions wp and the corresponding volume fractions np are listed. Experimental

data from DSR testing for wp > 0.0 are gathered in the same temperature and
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Figure 4.3: Granulometric curve of the filler.

Table 4.1: Mass fraction wp and volume fraction np of the admixed filler.

wp 0.00 0.20 0.36 0.50 0.65

np 0.00 0.09 0.18 0.28 0.41

frequency ranges as for the pure bituminous binder. The mastics (pure bituminous

binder plus filler) are considered to be thermo-rheologically simple materials as well [2]

and the master-curve concept is applied in the same manner as before. Figure 4.4 a)

and b) shows the five different master-curves with respect to the dynamic modulus

|G∗|, one for each filler content wp and the respective dynamic viscosity |η∗|. To

analyze the shift factors αθ for each master-curve, the WLF relation [14]

log [αθ] = − c1 (θ − θref )

c2 + θ − θref
(4.2)

is applied to the data and illustrated in Figure 4.5.

4.3 Results and Discussion

To extend the approach of a shift factor in terms of temperature (WLF), the next step

includes the dependency of the master-curves from the actual filler mass fraction wp.

To analyze the dependency of the master-curves with respect to the pure 20/30 pene-

tration grade bituminous binder, we apply a linear interpolation to the master-curves

from the dynamic shear modulus in a frequency range from f = 10−2 to f = 106 Hz.

This step is necessary to provide equidistant sampling points for each master-curve.
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Figure 4.4: a) Master-curves of the dynamic modulus |G∗| and b) of the dynamic

viscosity |η∗| for five different filler mass fractions wp.
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Figure 4.6: Shift factors βp in a double-logarithmic representation for the five different

filler mass fractions wp with fitted linear regression functions for data set.

Considering the pure bituminous binder as the basis for this shift procedure, the shift

of the self similar curves leads to the results, which are presented in Figure 4.6 in a

double-logarithmic representation. We consider wp = 0.65 as the upper limit for this

approach, since this already corresponds to a volume fraction of np = 0.41, see Table

4.1. Since the mixture tends to loose its properties as a suspension, the DSR testing

is limited to a specific amount of mineral filler particles. A volume fraction np = 0.41

is already close to that limit and, therefore, no higher volume fractions are consid-

ered. To underline this assumption by considering a maximum filler volume fraction

in terms of dense packing, the present limestone dust is analyzed by performing the

Rigden voids test [65]. The closest packing for the analyzed limestone dust within

the Rigden voids test results in nPmax = 0.69. Comparing our determined maximum

np = 0.41 with the Rigden maximum nPmax = 0.69, we can state that our experimental

data is far enough away from a possible jamming point and the derived data is not

influenced by possible limitations of the experimental setup. Figure 4.6 shows the

shift factor βp with respect to frequency f and filler mass fractions wp. The shift

factor decreases with increasing frequency. This is due to the influence of the solid-

like state at high frequencies or low temperatures, respectively. The influence of the

filler particles decreases if the mastic tends to be solid-like. Since the shift factors in

Figure 4.6 can be considered as linear functions, we use the linkage of a function F (x)

in the logarithmic space logF (x) = m logx + n, with the non-logarithmic equivalent

F (x) = xm 10n. The linear function is defined with the slope m and the intercept n in

the double-logarithmic representation. Using the alteration of m and n in dependency

of wp, an overall shift function can be generated. For this reason, Figure 4.7 a) and

b) shows the fitted functions for m and n. Allowing for 0 ≤ wp ≤ 0.65, we identify by

polynomial fitting a linear function for m reads m = q1 w
p with q1 = −0.06591 and a
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Figure 4.7: a) Linear function for slope m and quadratic function for intercept n.

quadratic function for n with n = q2 (wp)
2

+ q3 w
p with q2 = 1.452 and q3 = 0.3453.

These two functions are part of the overall function for the shift factor βp = fm 10n,

which is dependent on wp and f and reads

βp = f (q1 w
p) 10(q2 (wp)2+q3 w

p). (4.3)

The determined function for βp and the experimental data is shown in Figure 4.8.

Despite the fact that the shift factor βp is based on a function with only three fitting

parameters, it is possible to match the complex behavior of the experimental data in

a very good accordance. With the function for βp at hand, further investigations are

possible. Considering f = 106 Hz as the upper frequency limit of the master-curve

and therefore an approximation for the elastic limit (at f → ∞) of our viscoelas-

tic composite, an interesting field is the comparison of the underlying stiffness with

classical bounds and mixing laws for effective elastic media. Figure 4.9 shows the

storage modulus G′ for the elastic limit (f = 106 Hz) in comparison with the classical

Hashin-Shtrikman (HS) bounds [24] for a maximum volume fraction np = 0.41. The

HS bounds for the shear moduli take the form

GHS± = Gb +
np

1
(Gp−Gb) + 2nb(Kb+2Gb)

5Gb (Kb+ 4
3 G

b)

, (4.4)

where the bulk modulus Kp = 56.2 GPa and the shear modulus Gp = 32.0 GPa of

the particles are taken from literature [23]. Gb = 0.4 GPa as a starting point for the

bituminous binder is taken from the experimental data and Kb = 20.0 GPa is given

due to the incompressibility of the bituminous binder. Upper and lower bounds are

defined by interchanging the specific material parameters. Considering the displayed

style, the formula defines the lower bound. Even though the function leads to a lower

storage modulus for low volume fractions np of the particles as the lower HS bound,

the defined function leads to a steady solution for the elastic limit. The tendency
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Figure 4.8: 3-dim view of the function for βp and the corresponding experimental

data.
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Figure 4.10: Effective viscosity ηR for the viscous fluid limit (f = 10−2 Hz) in com-

parison with different formulas taken from relevant literature.

to the lower HS bound is due to the fact that the supporting phase is of soft nature

and not surprising. Furthermore, a strong assumption is the elastic limit for f = 106

Hz, since the plateau region for this frequency is not yet reached, cf. Figure 4.4 a).

Further remarks for the error at low volume fractions np are experimental deviation

and the according fitting procedure of βp functions parameters. Nevertheless, going

one step further and analyzing the viscous fluid limit (f → 0) with η′ for f = 10−2

Hz, we are able to compare some classical formulas for the effective viscosity ηR with

our derived function βp. As a first comparison, Einstein’s equation [11] yields a linear

relationship in dependency of the volume fraction of the filler np and reads

ηR = ηb
(

1 +
5

2
np
)
, (4.5)

with ηb describing the viscosity of the pure bituminous binding agent for f = 10−2.

Another relation for the effective viscosity is given by Thomas [85] which takes the

form

ηR = ηb
[
1 +

5

2
np + g(np)

]
(4.6)

with a nonlinear function g(np) proposed as

g(np) = 10.05 (np)2 + 0.00273 exp (16.6np) . (4.7)

If g(np) = 0, ηR is linear in np as proposed by Einstein [11]. Considering a maximum

filler volume fraction in terms of dense packing, which we already introduced in the

beginning of this section as nPmax = 0.69, further formulas from literature can be

considered for a comparison. As an example, the effective viscosity formula by Chong
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et al. [6]

ηR = ηb
[
1 + 0.75

(
np/npmax

1− np/npmax

)]2
(4.8)

makes use of this information. In Figure 4.10, we compare the three introduced

approaches with the new function βp for the viscous fluid limit (f = 10−2 Hz). By

definition, all models converge towards ηb for np → 0. Based on the experimental

data, the new model predicts higher viscosities. This tendency is most likely owed to

the facts which are already described for the elastic limit.

At this point we want to recall that our extension of the master-curve concept is

only based on the given experimental data and the fact that we have self similar

curves. This puts us in position to use only mathematical conditions to generate a

function which can be used to create a master-curve for any given 20/30 bitumen-filler

mastic for different reference temperatures. This enables us to create a master-curve

for a not given filler concentration for further investigations or as data for material

modeling in terms of rheological models, such as fractional models [81], nonlinear

viscoelastic rheological models [31, 70], generalized Maxwell-Zener models or even

fractional derivatives and recurrent neural networks [57].

4.4 Conclusions

In this chapter, the workflow from experimental data to an extended master-curve con-

cept is described. In dependency of filler concentration and frequency, the extension

is conducted on the basis of broad experimental DSR data. Our workflow is moti-

vated by the observation that the experimental data shows self similar master-curves.

With the classical WLF function and its shift factor αθ, the described approach is an

extension with a second shift factor βp. Combination of both shift procedures allow

to define a generalized master-curve with respect to temperature θ and filler mass

fraction wp on the basis of a single set of experimental data for a bituminous bind-

ing agent, in this case 20/30 penetration grade bituminous binder. The agreement

between the defined function for βp and the experimental data is very good and the

presented workflow can easily be applied to any other thermo-rheologically simple

bitumen-filler mastic.

Appendix

To complete the master-curve concept and to underline the quality of the data, Figure

4.11 a) and b) show the corresponding master-curves for the storage modulus G′ and

loss modulus G′′ as post-processed quantities from the dynamic modulus master-curve

in Figure 4.2 b). Figure 4.12 shows the corresponding master-curves for the storage

modulus G′ and loss modulus G′′. Again, these master-curves are post-processed

from the master-curves of the dynamic modulus |G∗| in Figure 4.4 a). Another point
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to mention is an interesting finding in the experimental data post-processed from the

quantities from the dynamic modulus master-curves in Figure 4.4 a) for the different

filler mass fractions wp. In particular, in Figure 4.12 b). It occurs that the peak

for each master-curve is shifted in frequency direction. Depending of the amount

of admixed filler, the bituminous binding agent shows a varying frequency for the

maximum dissipation and, by implication, for the maximum attenuation too. The

higher the mass fraction wp the lower the peak frequency. This is of high interest

in road construction, where the attenuation plays an important role for the choice of

an appropriate bitumen-filler mastic. Figure 4.12 a) shows the corresponding master-

curves of storage modulus G′.
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Figure 4.11: a) Master-curve for storage modulus G′ and loss modulus G′′ for pure

20/30 penetration grade bituminous binder.
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Figure 4.12: a) Master-curves of storage modulus G′ and loss modulus G′′ for five

different filler mass fractions wp.





Chapter 5

Multi-scale modeling of

elastic/viscoelastic compounds
1

This chapter is concerned with the requirements of an efficient multi-scale

modeling approach for elastic/viscoelastic compounds such as bituminous

asphalt concrete. Typically, this heterogeneous composite material con-

sist of a mineral filler (e.g. crushed rock), a bituminous binding agent,

pores and further additives. The contrast in stiffness between the dif-

ferent constituents is extremely high and accounts for several orders of

magnitude. Prediction of effective mechanical properties of such complex

materials on the macroscopic level requires a detailed knowledge of the

micro-scale behavior of the particular constituents. In this chapter, the

focus lies on modeling aspects due to upscaling routines based on volume

averaging. Particularly, we will show that the choice of micro-level bound-

ary conditions not only influences the effective stiffness of the viscoelastic

substitute material (upper/lower limit), but also the viscous contribution to

the macro-model (shift of maximal attenuation in frequency space). In or-

der to study these fundamental homogenization properties, we introduce a

simplified compound consisting of homogeneous viscoelastic binder phase

and spherical filler particles with a volume fraction low compared to re-

alistic asphalt concrete. Depending on the chosen boundary condition,

stress-relaxation and creep tests are considered. After transformation of

the effective stress-strain-relations from time- to frequency space, the vis-

coelastic properties of the compound will be discussed in frequency domain.

1This chapter is published in Journal of Applied Mathematics and Mechanics [72]

and a preliminary study in Proceedings in Applied Mathematics and Mechanics. [73]
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5.1 Introduction

Highly heterogeneous viscoelastic compounds such as bituminous asphalt concrete

are widely used materials e.g. in road constructions. Their alterable properties make

them suitable for the most diverse fields of application under complex environmental

influences. The effective properties of the compound material are strongly dominated

by the underlying micro-morphology. Therefore, these materials are still a challenging

matter of research.

First, asphalt concrete as a typical representative for viscoelastic compounds is a

multi-phase material, which typically consists of a mineral filler, a bituminous bind-

ing agent and pores cf. [34, 87], to name only a few. However, further constituents

such as polymers or waxes are admixed in various applications. The constituents

are chosen with respect to the application requirements and in order to guarantee a

durable usage. This means that the choice of the asphalt type and its constituents ba-

sically depends on the expected mechanical loading and the environmental influences

(changing temperature, chemical modifications, abrasion etc.). For that reason it is

necessary to carry out an extensive survey of the case of application for the particular

asphalt composition.

Second, bituminous asphalt is also a multi-scale material accounting for a highly het-

erogeneous micro-level due to the particular constituents and their micro-morphology.

However, for engineering applications we are interested in external loadings and ex-

posures which take place on the effective level (macro-scale). Hence, we would like

to interpret bituminous asphalt as an homogeneous substitute medium whose macro-

scale material properties are controlled by the underlying micro-morphology.

In literature, a wide range of research activities are to be found concerning the

continuum-mechanical characterization of bituminous asphalt concrete and further

viscoelastic compounds. Various contributions base on the so-called Huet- or Huet-

Sayegh model [31,44,70] introducing a nonlinear dashpot element on the effective level.

These approaches basically focus on a phenomenological macro-scale modeling and do

not take into account microscopic processes in an explicit manner. However, by means

of modern visualization and image segmentation techniques (X-Ray Computed To-

mography - XRCT), detailed information about micro-scale properties such as volume

fractions and morphology of the constituents is available. Moreover, also the mechan-

ical properties of the particular microscopic constituents are known. Therefore, it

appears to be reasonable choosing alternatively scale-bridging approaches in order to

determine the effective material properties making use of the available micro-scale

data. Basically, two different upscaling methodologies are to be found in literature:

The mathematical (asymptotic) homogenization scheme [16, 69, 84] on the one hand,

homogenization by volume averaging [28,56] on the other. In the present chapter we

apply the latter homogenization technique.2

2The following study will be restricted to the regime of small deformations. Nevertheless, large

(local and/or effective) deformations of asphalt concrete can be expected to be relevant in realistic
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The derivation of an effective material model based on realistic micro-scale data re-

quires an enhanced modeling concept:

– The microscopic information has to be sampled. Basically, this step can be

split into two parts. On the one hand, the local morphology of the compound

has to be included. This can be achieved by modern imaging techniques such

as XRCT, respectively. After image segmentation, the resulting 3-dim infor-

mation can be included in the modeling routine one-by-one. Alternatively, the

data may be used to generate artificial representatives accounting for particu-

larly desired properties, i.e. periodicity for example. On the other hand, the

mechanical properties of the micro-constituents have to be evaluated. In case

of the bituminous binder this can be achieved by rheological investigations on

the bulk material.

– The upscaling routine of the viscoelastic properties from the micro- to the

macro-level requires a numerical implementation, for example in terms of FE2

methodology. Usually, the underlying Finite Element computations take place

in the time domain. In particular, having regard to 3-dim simulations with

detailed resolution, numerical efficiency is crucial in this point. Besides paral-

lelization techniques [76], also more enhanced algorithmic approaches are to be

taken into account [19].

– The effective viscoelastic properties gathered in the time domain are to be inter-

preted in the frequency domain. Accounting for complex frequency-dependent

material parameters, for example.

In the present study, we do not intend to cover the entire modeling path for realistic

microstructures of asphalt concrete. Nevertheless, we would like to concentrate on

three particular points. First, the focus will be on the characterization of the micro-

scale material properties. Based on experimental studies on the bituminous binder,

its viscoelastic properties as well as the linear-elastic properties of the mineral filler

will be determined. The material data on the micro-level will be used to generate

artificial, simplified microstructures in order to, second, discuss the homogenization

concept itself. We will show that the choice of the loading setup, that is the choice

of boundary conditions (Dirichlet or Neumann type) as well as the particular imple-

mentation (uniform displacements/tractions or accounting for certain disturbances

such as periodic ones), is crucial for the reliability of the observed effective viscoelas-

tic properties. Besides the well-known impact of boundary conditions on effective

stiffness we will highlight the influence of chosen boundary setting on the effective

load settings.

For this purpose, we replace the heterogeneous elastic (mineral filler)/viscoelastic (bituminous phase)

mixture on the micro-scale by a homogeneous viscoelastic medium on the effective macro-scale with

special regards to the upscaling rules relating the scales. Basically, our approach is comparable to

the so-called FE2 schemes referred in [15, 43, 55], to name only a few. That is, the constitutive

relation on the effective level is replaced by a micro-scale computation on a control volume which is

considered to be representative for the entire microstructure.
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viscosity to be observed in a time- (and frequency-) shift of the effective viscous pro-

cesses. The third focal point of our study is concerned with the frequency domain

evaluation of time domain experiments, in our case carried out as stress-relaxation

or creep tests, respectively. Since most of these questions touch fundamental points

of the proposed homogenization approach, we do not use realistic asphalt concrete

samples for our study but restrict ourselves to 2-dim problems in the context of small

deformations (geometric linearity). Our computations are based on artificially pro-

duced micro-morphologies of a two-phase compound on the micro-level consisting of

circularly shaped filler particles in a homogeneous binder matrix. We use filler volume

fractions of about 45% in contrast to 95% for realistic asphalt concrete. Moreover,

neither pores nor further additives are taken into account.

The mineral filler particles are handled as linear-elastic solids. Since typical loading

frequencies of bituminous asphalt concrete take place in the dynamic loading range

of 1 Hz≤ f ≤ 10 Hz, we further make use of linear viscoelastic modeling approaches

for both, the bituminous binder on the micro-level and the effective medium on the

macro-level, respectively. Mass inertia effects are assumed to play a subordinate role

for low frequencies and are therefore neglected.

Our study is organized as follows: In section 5.2, the micro-scale properties of the

compound are investigated. On the one hand, the material properties of the mineral

filler are discussed based on data available in literature [23]. On the other hand, the

viscoelastic behavior of the bituminous phase is characterized by appropriate rheo-

logical shear experiments using a Dynamic Shear Rheometer (DSR) in plate-plate

geometry. Applying the master-curve concept [14] the micro-scale behavior will be

determined for a given reference temperature.

In section 5.3, the aspects of the homogenization approach are pointed out, in par-

ticular the various available boundary conditions on the micro-level. Afterwards, we

study the effective viscoelastic properties of the compound in section 5.4 with special

regard to the influence of local boundary conditions. Finally, the achieved results will

be discussed and an outlook on future activities will be given.

Throughout this study, quantities of the micro- and the macro-scale are referred to

as � and (�̄), respectively.

5.2 Micro-scale modeling

As indicated above we assume the compound to consist of two phases, namely the

bituminous binding agent and the mineral filler particles. The effective mechanical

properties of this multi-phase material will be determined by an appropriate homoge-

nization approach. Therefore we start to analyze the properties of the inherent phases.

First, we presume linear-elastic behavior for the mineral filler. The quantification of

the mechanical properties of the mineral filler is based on relevant literature [23]. The

tests have been carried out on the rock type Diabas, which is a common mineral filler

for asphalt concrete. Since the mineral filler is several orders of magnitude stiffer
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than the surrounding bituminous binder, varying stiffness properties of the mineral

filler have only a minor influence on the effective properties of the composite. For

our computations, we use the bulk modulus Ks = 56.2 GPa and the shear modulus

Gs = 32.0 GPa.

By contrast, we characterize the bituminous binder as a linear viscoelastic material.

The rheological behavior of the bituminous binder is determined by the Dynamic

Shear Rheometer (DSR) Anton Paar Physica MCR 101. A plate-plate configuration

(plate radius r=8 mm) has been chosen. Investigations take place for different tem-

peratures θ under iso-thermal conditions. Shear oscillations in a predefined frequency

range from 0.1 Hz≤ f = ω/(2π) ≤ 10 Hz are performed. The temperature range is

chosen -20◦C ≤ θ ≤ 30◦C in intervals of 10◦C. All experiments are carried out for

the pure 20/30 penetration grade bituminous binder. Based on the purely deviatoric

DSR experiments we are able to characterize the viscoelastic behavior of the bitumi-

nous binder in the mentioned temperature range. However, no clear statement can

be made in view of the bituminous compressibility. That implies that we assume the

binder to be incompressible. Hence, the DSR experiments enable us to determine the

viscoelastic properties in form of the complex shear modulus G∗m(ω) and its phase

angle δm(ω), cf. [51]. The definition of the complex modulus reads

G∗ = G′ + iG′′ with tan δ =
G′′

G′
. (5.1)

G′(ω) represents the storage modulus and G′′(ω) the loss modulus, respectively. The

storage modulus

G′ =
τ0
γ0

cos δ (5.2)

is an index for the stored energy which means it corresponds to the elastic partof

deformation. The loss modulus

G′′ =
τ0
γ0

sin δ (5.3)

quantifies the viscous energy contribution which is dissipated as heat. δ(ω) is an in-

dicator for the phase lag between the occurring stress and strain. In case the phase

angle δ(ω) equals π/2, it can be stated that the investigated material is purely vis-

cous. For δ(ω) = 0, the investigated material is of elastic nature. Values in between

these extrema correspond to viscoelastic material behavior.

Furthermore, we introduce the dynamic shear modulus |G∗|. The loss factor is defined

as tan δ(ω). The DSR measurements are shown in Figure 5.1 in terms of the storage

and the loss modulus. For the identification of the appropriate viscoelastic model in

the frequency domain we have used the experimental results in form of the dynamic

shear modulus |G∗|, cf. Figure 5.2. In various investigations, pure bituminous binders

have been identified as thermo-rheologically simple materials [8, 94] and references



50 CHAPTER 5 Multi-scale modeling of elastic/viscoelastic compounds

10
−2

10
−1

10
0

10
1

10
2

0

50

100

150

200

250

300

350

400

Frequency log[f ] [Hz]

S
to
ra
g
e
m
o
d
u
lu
s
G

′
[M

P
a
]

physical range

Θ1 = 30◦C

Θ2
ref

= 20◦C

Θ3 = 10◦C

Θ4 = 0◦C

Θ5 = -10◦C

Θ6 = -20◦C

a)
10

−2

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

Frequency log[f ] [Hz]
L
o
ss

m
o
d
u
lu
s
G

′′
[M

P
a
]

physical range

Θ1 = 30◦C

Θ2
ref = 20◦C

Θ3 = 10◦C

Θ4 = 0◦C

Θ5 = -10◦C

Θ6 = -20◦C

b)

Figure 5.1: a Storage modulus G′ and b loss modulus G′′ gained by DSR experi-

ments for non-modified 20/30 binder. The results for six different temperatures in

a frequency range from 10−1 Hz to 101 Hz are shown. Θ = 20◦C is chosen as the

reference temperature for the master-curve.

therein. Therefore, we apply the time-temperature superposition principle.

It is evident that the investigated pure bituminous binder has a dominating fluid like

character at low frequencies. That is δ(ω → 0) ≈ π/2 for the chosen reference temper-

ature θref = 20 ◦C. Although we have performed experiments in a wide temperature

range and large frequency variety, we are not able to fully describe the solid-like rheo-

logical behavior at low temperatures, high frequencies, respectively. Please note that

the temperature and frequency testing domain is restricted by the used DSR. The

obtained master curve already covers a large frequency range. However, we are not

able to describe the high-frequency domain for the dynamic modulus.

In general, various rheological models are suitable to adapt the experimentally ob-

tained dynamic modulus of bituminous binder. In literature, fractional models [81],

nonlinear viscoelastic rheological models [31,70] and generalized Maxwell-Zener mod-

els are to be found. In the present study we refer to the generalized Maxwell-Zener

model for several reasons: First, the Maxwell-Zener model can be easily extended

to a 3-dim formulation based on the concept of internal variables [80]. This allows

a robust and efficient numerical implementation in Finite Element codes. Second,

only a subset of the observed frequency range is used for engineering applications al-

though the master curves cover a huge frequency domain. Doing so, Maxwell-Chains

out of the frequency range of interest can be neglected. Third, the characteristic

frequencies of the bituminous binder related to discrete Maxwell-Chains can be di-

rectly compared with the related frequencies of the homogenized medium. Using

the generalized Maxwell-Zener model, cf. Figure 5.3, it has been found that 7 linear

spring-dashpot chains are required in order to describe the viscoelastic behavior of
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Figure 5.2: Experimental DSR results for the dynamic modulus |G∗| with master-

curve (non-modified 20/30 binder). The characteristic frequencies for the generalized

Maxwell-Zener model are indicated by the thin gray lines.

G0

G1 G2 Gi
K0

K1 K iK2

σ

η1 η2 ηi

ε

(ε)v

(ε)e

(σ0)eq (σ1)neq (σ2)neq (σi)neq

Figure 5.3: 3-dim generalized Maxwell-Zener model. The incompressibility of the

binder is considered due to the fact, that Ki � Gi.
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the bituminous binder, cf. Figure 5.2. According to the characteristic frequencies of

the Maxwell-Chains f i, i = 1, . . . , 7, cf. Table 6.1, it has to be noted that we are

physically not interested in modeling the high-frequency plateau region.

Next, we would like to recall the theory of linear viscoelasticity based on the gen-

Table 5.1: Experimentally determined parameters of the generalized Maxwell-Zener

model.
i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

Gi [MPa] 1.00E+0 4.13E+0 1.06E+1 1.63E+1 2.90E+1 3.56E+1 4.37E+1 4.65E+1

Ti =
ηi

Gi
[s] – 2.51E+0 2.80E-1 4.50E-2 8.20E-3 1.40E-3 2.50E-4 4.50E-5

fi =
Gi

ηi
[Hz] – 4.00E-1 3.57E+0 2.22E+1 1.22E+2 7.14E+2 4.00E+3 2.22E+4

eralized Maxwell-Zener model and its extension to the 3-dim case [80]. The whole

procedure is based on the rheology depicted in Figure 5.3. The starting point is pro-

vided by the stress coherence that the total stress σ is the sum of the equilibrium

part σeq and the non-equilibrium part σneq,

σ = σeq + σneq. (5.4)

In addition to the stress coherence, the strain tensor ε is split into an elastic part εe

and a viscous part εv

ε = εe + εv = (εe)vol + (εe)dev + (εv)vol + (εv)dev

and

εvol =
1

3
(tr ε) I

(5.5)

with the second order unity tensor I. The resulting constitutive equation for the total

stress of the bituminous binder reads

σ = K (ε)vol + 2G0 (ε)dev +
∑
i

K (εe, i)vol + 2Gi (εe, i)dev. (5.6)

The constitutive framework is closed by the evolution equations for the viscous devi-

atoric strain of the particular Maxwell-Chains(
ε̇v, i

)dev
=

2

τ i

[(
εi
)dev − (εv, i)dev] . (5.7)

The earlier mentioned incompressibility of the bituminous binder is satisfied by a

choice for the bulk modulus K which is chosen five orders of magnitude larger than

the particular shear modulus G. This assumption holds for the equilibrium part as

well as for the elastic parts of the Maxwell-Chains,

K0 � G0 and Ki � Gi. (5.8)
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Figure 5.4: Each material point of the effective medium at position x̄ is identified

with an attached micro-volume V2 at the local position ∆x� x̄.

Therefore, the incompressibility constraint is modeled by one single bulk modulus

K = K0 = Ki = 1E+6 MPa in our model. In the context of a Finite Element

setting, the bulk modulus K acts as a penalty parameter and we are still able to work

with a pure displacement formulation.

5.3 Macro-scale modeling by homogenization

The strongly heterogeneous properties of our compound require an enhanced mod-

eling technique. In particular, it is useful to introduce a scale separation between

the heterogeneous micro-scale (fillers and wetting bituminous phase) and the homo-

geneous macro-scale (effective level, viscoelastic medium). This can be achieved, for

example, by standard homogenization algorithms [28, 56] in the context of a mean-

field approach. Based on appropriate scale-transition rules, the effective deformation

and stress quantities are to be derived from a representative part of the micro-scale

by volume-averaging procedures. As stated earlier, (�̄) and (�) refer to physical quan-

tities of the macro- and the micro-scale, respectively.

The basic idea of homogenization by volume-averaging is to replace the micro-

heterogeneous medium by a homogeneous substitute medium on the effective level

accounting for identical mechanical properties. For this purpose, let us consider an

arbitrary-shaped micro-volume V which we consider to be representative for the en-

tire microstructure. It is nested to the effective material point in its volume centroid

x̄, cf. Figure 5.4. Any local position can be pointed on by the overall position vector

x = x̄ + ∆x. For the upcoming considerations, let us introduce the definition of

averaging over the micro-volume V2 =
∫
V2

dv

�̄ = 〈�〉2 =
1

V2

∫
V2

� dv (5.9)

In general, two different choices can be met:

– First, we may prescribe a Dirichlet boundary value problem on the micro-level.

The local displacement field ∆u then depends on the macroscopic deformation
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state ε̄. Solving the microscopic boundary value problem, the stress response

σ(∆x, t) of the microstructure can be transferred back to the effective level

σ̄(x̄, t).

– Second, we may assume a microscopic Neumann boundary value problem de-

pending on the macro-scale stress state σ̄(x̄, t). After solution, the effective

micro-scale deformation response ε̄(x̄, t) has to be interpreted in terms of the

effective deformation state.

These two possibilities are commonly stated as Voigt- and Reuss-boundaries, respec-

tively, because they represent upper and lower bounds for the estimated effective

material properties of the underlying microstructure [28, 56]. However, the signifi-

cance of Dirichlet- or Neumann-boundary conditions on the micro-level becomes even

more peculiar if viscous material properties come into play: Besides their role as

upper and lower bounds, the choice of micro-scale Dirichlet or Neumann boundary

conditions moreover dictates the character of the experiment, that is stress-relaxation

versus creeping. By consequence, the transient character of both choices cannot be

compared any more one by one. In the sequel, we will discuss both cases in detail.

5.3.1 Microscopic Dirichlet boundary value problem – local stress relaxation

test

The definition of microscopic Dirichlet boundary conditions requires a relation be-

tween the local displacement field ∆u(∆x, t) and the overall deformation state at

the corresponding macroscopic material point ε̄(x̄, t). Please note that all deforma-

tions and stresses in the context of homogenization are considered to equal the total

deformations and total stresses, that is viscous deformations and stresses are not con-

sidered separately. Looking for the effective displacement field ū(x̄, t) that best fits

the underlying micro-scale displacement field 〈u〉2 in the volume average over V2 [36],

the kinematic averaging rules can be derived as

ū = 〈u〉2 ⇔ 〈∆u〉2 = 0 and ε̄ = ¯grad
sym

ū

= 〈gradsym ∆u〉2 =
1

V2

∫
∂V2

(∆u⊗ n)sym da (5.10)

with the surface ∂V2 of the micro-volume and its outer normal vector n. In or-

der to satisfy the averaging rule Eq. (5.10), the straight-forward choice of the local

displacement field on the boundary ∂V2 takes a linear form and reads

∆u(∆x) = ε̄ ·∆x + ∆ũ. (5.11)

The perturbation ∆ũ has to be chosen in a way that the averaging rule Eq. (5.10) is

valid. Since the present study is restricted to geometrically periodic micro-volumina,

the perturbation ∆ũ is chosen periodic at homologous points of the micro-volume sur-

face ∂V2 [56]. For non-periodic micro-volumina, additional integral constraints could
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be introduced in order to determine an appropriate perturbation field, cf. concept of

minimal loading conditions [38,53].

After the kinematical quantities of micro- and macro-scale have been related to each

other, similar relations for the stresses require an additional axiomatic equivalence,

namely the Hill-condition [28,29,56]

σ̄ : ˙̄ε = 〈σ : ε̇〉2 =
1

V2

∫
∂V2

∆u̇ · (σ · n) da. (5.12)

The Hill-condition requires the macroscopic strain energy rate at the material point x̄

to equal its microscopic counterpart in an averaged sense. Inserting the displacement

field Eq. (5.11) in Eq. (5.12) we end up with the relation

σ̄ =
1

V2

∫
∂V2

(t⊗∆x)sym da, (5.13)

where t = σ · n represents the microscopic surface traction vector on ∂V2. Whereas

the periodicity condition requires periodic perturbations at homologous points of the

boundary, the related surface tractions must be anti-periodic. We write

∆ũ+ = ∆ũ− and t+ = −t− (5.14)

at homologous points of the boundary ∂V2.

5.3.2 Microscopic Neumann boundary value problem – local creep test

Vice versa, also the relation between micro- and macro-scale stresses can be used as

a starting point for the homogenization algorithm. For this purpose, we assume the

total stress on the macro-level to equal the volume average of the microscopic stress

state σ̄ = 〈σ〉2. In order to ensure this condition to be satisfied, one may choose

constant tractions t on the micro-boundary ∂V2

t = σ̄ · n. (5.15)

The constant tractions tm on the micro-boundary ∂V2 depending on the macroscopic

stress field σ̄, cf. Eq. (5.15), are to be inserted into the Hill-condition Eq. (5.12). We

find

˙̄ε = 〈ε̇〉2 = 〈gradsym ∆u̇〉2 ⇒ ε̄ = 〈ε〉2 = 〈gradsym ∆u〉2 . (5.16)

After integration in time, the resulting integration constant has to be evaluated by

the initial conditions. Reasonably, one assumes a stress-free state at the initial time.

For geometrically periodic micro-volumina, anti-periodic tractions and periodic per-

turbations of the displacement field are again possible.
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5.3.3 Effective viscoelastic properties on the macro-scale

It is the aim of the homogenization scheme to numerically calculate effective lin-

ear viscoelastic properties of the composite comparable to those obtained by DSR

measurements for the bituminous binder. Therefore, we formulate boundary value

problems which we solve numerically. We obtain a time dependent response of the

material expressed in σ̄(t) and ε̄(t). As stated earlier, the present study is up to

2-dim problems in the e1 − e2−plane. Moreover, the simplifying assumption is met

that the bituminous binder is incompressible and can be mechanically described by

application of the generalized Maxwell-Zener model. The mineral filler phase is as-

sumed to be linear-elastic and accounts for a shear stiffness five times larger than the

particular counterparts of the bituminous binder. Due to the high bulk modulus of

the mineral filler, cf. section 5.2, the compound behaves nearly-incompressible. The

only remaining material parameter to be identified by the upscaling methodology is

the effective shear modulus Ḡ. Hence, only the symmetric shear mode depending on

the shear component ε̄12(t) in Eq. (5.11), on σ̄12(t) in Eq. (5.15), respectively, will be

examined in the upcoming considerations. As it has been stated before, the choice

of the local boundary conditions influences the character of the experiment. In the

present study, basically three different formulations of local boundary conditions are

compared: Dirichlet boundary conditions (linear displacements field without periodic

perturbation), periodic boundary conditions (Dirichlet boundary conditions with pe-

riodic perturbations) and Neumann boundary conditions (constant surface traction

without periodic perturbation). They take the form of stress relaxation or creep tests,

respectively, depending on the choice of the discussed boundary conditions. The time-

dependent stress and strain values are transferred to frequency space with a discrete

Fourier transform. Thus, we obtain σ̄(ω) and ε̄(ω). From the frequency-dependent

stress-strain quantities of a shear test, we are finally able to determine the effective

complex shear modulus Ḡ(ω),

Ḡ(ω) =
˙̄σ12(ω)

2 ˙̄ε12(ω)
. (5.17)

Further technical details related to the determination of Ḡ(ω) can be found for ex-

ample in [62].

5.4 Viscoelastic properties on the effective scale

In the subsequent investigations we would like to go first steps towards a unified multi-

scale modeling framework for viscoelastic composites. We focus on the influence of

the transient character of stress-relaxation and creep test, respectively. In the present

study, we consider a viscoelastic compound under the following assumptions:

– The problem is reduced to 2-dim plain strain in the e1 − e2−plane.

– The volume elements underlying our micro-scale computations account for min-

eral filler volume fractions of about 45%. The random distribution of the filler
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particles has a uniform character, overlapping of neighboring particles is ex-

cluded. Moreover, the filler particles are arranged in a periodic manner. That

is, the resulting volume element can be continued periodically, depending on

the size of the unit cell.

– The viscous bituminous binder is assumed to be incompressible. As explained

earlier this leads to a nearly-incompressible mixture.

The high complexity of the micro-morphology of realistic bituminous asphalt con-

crete is out of the scope of the following considerations and remains a challenging

issue. Being aware of these limiting assumptions we will derive several qualitative

conclusions in the following. For the numerical simulations, the generalized Maxwell-

Zener model has been implemented in the numerical Finite-Element system COMSOL

Multiphysics R©. The micro-level displacement field has been discretized using trian-

gular elements and quartic shape functions of Lagrange type. Mesh convergence has

been ensured introducing an error norm e(t∞) based on the error of the effective shear

stress 〈σ12(t∞)〉 at time t→∞

e(t∞) =
〈σ12(t∞)〉2 −

〈
σref
12 (t∞)

〉
2〈

σref
12 (t∞)

〉
2

. (5.18)

5.4.1 Influence of the micro-scale boundary conditions

Let us first study the boundary conditions on the level of the unit-cell and their impact

on the effective material behavior. For this purpose, we perform numerical simulations

making use of the previously discussed loading conditions, namely linear displacement

boundary conditions with (PBC) and without (Dirichlet) periodic perturbations as

well as constant traction (Neumann) boundary conditions. For the computations in

this section we use the microstructure given in Figure 5.5. In order to highlight the

influence of boundary conditions the volume element is constructed in such a way that

one particle is located at the corner. The stress and strain response in time domain

for the resulting stress-relaxation and creep tests, respectively, are given in Figure

5.6. Please note the Neumann boundary conditions to represent a creep test while

linear displacement boundary (Dirichlet) conditions as well as periodic boundary con-

ditions (PBC) perform a stress-relaxation test. From the numerical result in the time

domain it is obvious that the effective stress response of the pure Dirichlet boundary

conditions is much higher than its counterpart resulting from periodic boundary con-

ditions. Furthermore, the difference between both stress responses strongly depends

on time. It seems, the relaxation process in case of periodic boundary conditions to

be much more pronounced than for pure Dirichlet boundary conditions. However, we

are not able to compare stress-relaxation (Dirichlet, PBC) and creep tests (Neumann)

in the time domain. To circumvent this restriction we apply the discrete Fourier

transform to obtain the effective complex shear modulus Ḡ∗ in frequency domain for

strain- as well as for stress-driven experiments. In Figures 5.7 and 5.8 the real part
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a) b) c)

Figure 5.5: Effective shear strain state ε12 for the different boundary conditions on

the micro-level at state of equilibrium (t → ∞). a Linear displacement (Dirichlet)

boundary conditions, b periodic boundary conditions (PBC) and c constant traction

(Neumann) boundary conditions for identical effective shear deformation states 〈ε12〉.
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Figure 5.6: Functions of a effective shear strain and b effective shear stress over the

time t. For linear displacement (Dirichlet) boundary conditions as well as for peri-

odic boundary conditions (PBC), the shear test takes the form of a stress relaxation

experiment. If constant traction (Neumann) boundary conditions are considered, the

experiment is represented by a creep test.
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Figure 5.7: a Effective storage modulus Ḡ′ and b effective loss modulus Ḡ′′ by the

different types of boundary conditions on the micro-level and the homogeneous pure

binder.

Ḡ′(ω) (storage modulus), the imaginary part Ḡ′′(ω) (loss modulus) and the loss factor

tan δ̄(ω) are depicted in the frequency range 10−2 Hz< f < 103 Hz in comparison to

the pure bituminous binder characterized in the previous section. The typical loading

of bituminous asphalt concrete takes place in the range 1 Hz≤ f ≤ 10 Hz. This cor-

responds to vehicle velocities of about 60 km/h on asphalt concrete pavements [32].

Having regard to Figure 5.7 it is obvious the mixture to be characterized by a higher

effective storage modulus in comparison to the pure bituminous binder. However, the

large difference between the results of the effective quantities obtained by the differ-

ent boundary conditions on the unit-cell level is remarkable. Let us discuss two main

observations: First, the basic elasticity seems to be dominating for the pure Dirichlet

boundary conditions. This can be observed in time dependent stress response Fig-

ure 5.6 b) for large relaxation times as well as for the storage modulus Ḡ′(ω) at low

frequencies, cf. Figure 5.7 a). The over-estimated basic elasticity can be explained

regarding Figure 5.5 a). The corner particles have to strictly follow the prescribed

linear displacements of the pure Dirichlet boundary conditions. This results in an

unphysical deformation of the corner particles. As it can be observed in Figure 5.5 b)

and c) the deformation is concentrated in the much weaker bituminous binder phase

for periodic and Neumann boundary conditions. As a consequence, the basic elasticity

is dramatically overestimated for the pure Dirichlet boundary conditions. Second, a

qualitative difference in the results obtained by the different boundary conditions for

the rate dependent response is to be observed compared to the frequency dependency

of the pure bituminous binder. Regarding Figure 5.7 b), the loss modulus obtained

by pure Dirichlet boundary conditions differs more than 400 % by its counterpart ob-

tained by Neumann boundary conditions. It is notable this effect to be independent

of frequency or relaxation time. The intrinsic damping of the material is depicted
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Figure 5.8: Loss factor tan δ̄ for the different boundary conditions and the homoge-

neous pure binder.

in form of the loss factor tan δ̄(ω) in Figure 5.8. Related to the overestimated basic

elasticity, results derived by pure Dirichlet boundary conditions underestimate the

intrinsic damping of the mixture. Moreover, the intrinsic attenuation for Dirichlet

boundary conditions does not reach any pronounced maximum in the depicted fre-

quency range. This is in contrast to periodic and Neumann boundary conditions, we

observe a shift of the critical frequency depending on the formulation of boundary

conditions.

It has to be noted that the intrinsic attenuation observed for Neumann and peri-

odic boundary conditions coincide well with the data for homogeneous bituminous

binder. In particular the frequency of maximum damping seems to equal f1 = 0.4 Hz,

namely the slowest characteristic frequency of the pure bituminous binder, cf. Table

6.1. Thus, the first characteristic frequency f1 of the bituminous binder does not loose

its predominant prominence for the effective viscoelastic response of the composite.

Moreover, it has to be pointed out that this example is not stochastically represen-

tative and it is a quite extremal case due to the positioning of one particle in the

corner of the volume element. The dramatic differences between the predicted ef-

fective properties are induced by boundary effects and can therefore be expected to

reduce with increasing size of the volume element. Independent from the cell size, the

results for periodic conditions are, as known from literature, generally bounded by

the results for pure Dirichlet (upper bound) and Neumann conditions (lower bound).

In the following investigations we use periodic boundary conditions to analyze the

effective viscoelastic properties of our compound.
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5.4.2 Size of Representative Volume Element and effective properties of the

compound

In order to determine the effective properties of the viscoelastic compound we first

have to carry out the size of a Representative Volume Element. Keeping the filler

volume fraction constant, we have therefore varied the size of the volume element

between an amount of 4 and 14 filler particles. The results for the loss factor tan δ̄ are

given in Figure 5.9 a). Obviously, the influence of the unit cell size in the investigated

range is minor, the deviation of the different settings is very small. In the following,

we consider a set of 7 particles to be representative for this primitive microstructure.

Moreover, we further reduce the influence of random morphology by superimposing

stress-relaxation curves in time domain for 6 different random arrangements of the

7 particles at constant cell size. The resulting stress-relaxation measurement has

been used to identify the effective material parameters of a generalized Maxwell-

Zener model on the macro-level. Using the relaxation times given in Table 5.1, the

effective parameters of the first four Maxwell-Chains of the model are given in Table

5.2. Under the assumption of material incompressibility, these results comprises the

complete information of effective mechanical behavior of the given compound.

In Figure 5.9 b) the master curve for the dynamic modulus |Ḡ∗| resulting from the

Table 5.2: Determined parameters of the generalized Maxwell-Zener model for four

characteristic frequencies under periodic boundary conditions on the effective scale.

i = 0 i = 1 i = 2 i = 3 i = 4

Gi = Ḡi [MPa] 4.09E+0 1.26E+1 3.87E+1 5.41E+1 1.12E+2

T i = T̄ i =
η̄i

Ḡi
[s] – 2.51E+0 2.80E-1 4.50E-2 8.20E-3

f i = f̄ i =
Ḡi

η̄i
[Hz] – 4.00E-1 3.57E+0 2.22E+1 1.22E+2

micro-scale computation is given as well as the fitted curve applying the parameters

given in Table 5.2.

Comparing the particular shear moduli in Tables 6.1 and 5.2 we find that the effective

shear moduli of the compound are about four times stiffer than their micro-scale

counterparts, even for the considered low filler concentration.

5.5 Conclusions

In the present study, we have discussed the derivation of effective material properties

of viscoelastic compounds by homogenization. In the sense of a mean-field theory we

have replaced the heterogeneous elastic/viscoelastic compound on the micro-level by

an overall homogeneous viscoelastic medium on the macro-level applying volume av-
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Figure 5.9: a Loss factor tan δ̄ for four different numbers of particles under periodic

boundary conditions. b Numerical results and master curve for the dynamic modulus

|Ḡ∗| with 7 particles. The first four characteristic frequencies for the generalized

Maxwell-Zener model are indicated by the thin gray lines.

eraging techniques. Based on data acquired for the constituents of asphalt concrete,

we have carried out material studies in order to measure the viscoelastic material

properties of the bituminous binder applying the master-curve concept. By knowing

the linear-elastic properties of the mineral filler, we were able to set up an artificially

simplified heterogeneous elastic/viscoelastic compound. This has allowed us to quali-

tatively study different aspects of classical homogenization techniques for viscoelastic

material properties on both, macro- and micro-scale, within easily manageable com-

putational efforts.

The key findings of our numerical investigations are that,

– first, the micro-scale boundary conditions strongly dominate the effective fre-

quency dependent properties of the compound. On the one hand, the character

of pure Dirichlet and Neumann boundary conditions as upper and lower bounds

for the resulting effective stiffness in the equilibrium state have been approved.

On the other hand, the impact on the viscous, frequency dependent properties

have turned out to be even more dramatic. Constant traction (Neumann) and

periodic boundary conditions have been found to result in material responses

in the frequency domain similar to the pure bituminous binder. By contrast,

the effective characteristic frequency of the compound under locally pure linear

displacement (Dirichlet) boundary conditions could not be observed within the

investigated frequency range.

– Second, for the simplified compound consisting of spherical filler particles ac-

counting for about 45% volume fraction we have determined the effective vis-
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coelastic properties over several decades in frequency space. Doing so, the size

of the Representative Volume Element for periodic boundary conditions has

been identified. Compared to the properties of the pure bituminous binder, the

compound has been found about four times stiffer, even for the low filler fraction

we have assumed.

At the end of this qualitative study, we would like to point the choice of boundary

conditions on the micro-level to be crucial. It influences the effective properties in

two ways: Depending on the boundary formulation, the equilibrium processes are

predicted stiffer or softer, which is well-known as the upper and lower limit on the

effective stiffness (Voigt and Reuss bounds). But, moreover, also the non-equilibrium

processes are affected dramatically by the observed effective shift of the critical fre-

quency depending on the chosen boundary condition. For this purpose, a thorough

discussion of boundary formulations is necessary. This is particularly the case if more

complex microstructures, e. g. from CT-scans of asphalt concrete, are considered,

which generally do not show any periodic properties.





Chapter 6

Nonlinear modeling and

computational homogenization of

asphalt concrete on the basis of

XRCT scans
1

This chapter provides a methodological framework to investigate the effec-

tive mechanical properties of asphalt concrete. We, therefore, use numer-

ical tools based on morphological X-Ray Computed Tomography (XRCT)

data from asphalt concrete specimens. Asphalt concrete is a multi-compo-

nent material with spatially varying constituents, but in contrast to many

other microstructures used in materials science, the partial microscopic

material bulk properties of the constituents of asphalt concrete are accessi-

ble by physical testing and, therefore, can be considered as well investigated

and known. The information gained by the XRCT is used to create artifi-

cial Statistical Volume Elements (SVEs) for our numerical investigations.

We apply a discrete particle simulation to generate a densely packed sphere

model with a pre-defined Particle Size Distribution (PSD) as a first repre-

sentation of the mineral filler particles. This model serves as the starting

point for a weighted Voronoi diagram. Finally, the volume fractions are

adjusted by a stochastic shrinkage process of the Voronoi cells. The arti-

ficial microstructures are, a priori, generated in a periodic manner and,

therefore, possible boundary layer effects during computational homoge-

nization are minimized. The SVEs are considered to be statistically similar

to the real structure and serve as its best possible representation. Besides

1This chapter is published in Construction and Building Materials [75]

and a preliminary study in Proceedings in Applied Mathematics and Mechanics [74].

– 65 –
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the SVE generation, this chapter focuses on the constitutive description

of the bituminous binding agent, which we interpret as a viscoelastic fluid.

In our analysis of the results we concentrate on the upscaling properties

of morphological and material nonlinearities.

6.1 Introduction

Asphalt concrete is a complex multi-component material widely used for road con-

struction purposes. Its overall mechanical behavior strongly depends on the particular

constituents, their individual behavior and their spatial distribution. The typical as-

phalt compound consists of three major constituents, namely stiff mineral aggregates,

a soft viscoelastic binding agent and air-voids [34,89]. Depending on the volume frac-

tions of the constituents, the type of particular constituents and the binding agent,

material properties for a wide range of applications can be adjusted in a heuristic

manner. Moreover, asphalt concrete represents a multi-scale material, see Figure 6.1.

From the observer’s point of view (length scale L), asphalt concrete can be described

as a homogeneous medium with effective material properties. Zooming in, we arrive at

the heterogeneous micro-scale (length-scale l) consisting of mineral aggregates, mastic

and, possibly, pores. The mastic itself may represent a mixture of the Bitumen phase

and very small aggregates deq ≤ 63µm. Typically, morphologies with particle sizes

1 mm ≤ deq ≤ 8 mm can be reliably resolved by the X-Ray Computed Tomography

(XRCT) technique with resolution on the micrometer-level. Hereby, the Particle Size

Distribution (PSD) is expressed in terms of the diameter of volume equivalent spheres

deq =
3

√
6V3D
π

, (6.1)

with the particle volume V3D extracted from the XRCT data.

l

Figure 6.1: Different scales for asphalt concrete.

It is an ongoing research field to understand the highly complex interactions between

the microscopic processes and the prevalent material properties of asphalt concrete on
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the large scale for these strongly heterogeneous materials. Hence, numerical modeling

approaches are valuable tools for this analysis.

In order to describe the microscopic processes under external loading, detailed infor-

mation about two things is required. First, the material properties of the microscopic

constituents and second, the morphology of the composite that represents the spatial

arrangement of the constituents. Hereby, the morphology of the mineral aggregates

that is, amongst others, their volume fraction, the grading curve as well as their PSD,

is of particular interest. Thus, it is necessary to gain knowledge about these prop-

erties to create the best possible data basis for numerical simulations. In our study,

this morphological knowledge is gained by a physical specimen which is scanned by

XRCT. The 3-dim analysis software Avizo Fire (FEI Visualization Sciences Group,

Version 9) gives us the opportunity to extract the morphological properties from the

reconstructed volume, since some of them are not known from the production process

itself. In the upcoming sections, we propose a workflow from the raw XRCT data

towards statistically similar unit cells used for the computational homogenization pro-

cess of the overall material properties of the compound. For this purpose, this chapter

combines scientific approaches from different disciplines. We, therefore, want to give

an overview on the current research in these fields and to review the findings shortly.

Finite Element (FE) simulations on data gained from XRCT is a research field in-

vestigated by various groups in different areas, such as material sciences and engi-

neering with particular regard to the image acquisition of asphalt concrete and the

quantitative analysis of the microstructure to determine phase volumetric relation-

ships and aggregate characteristics. Onifade et al. [59] studied the micro-mechanical

results and displayed the load transfer chains and stress localizations between neigh-

boring particles. You et al. [93] investigated a large biphasic example by ignoring

air-voids. They introduced the mastic as a thermo-viscoelastic, thermo-viscoplastic

and thermo-viscodamage material. The mineral aggregates are modeled as a linear

elastic material. Coleri and coworkers carried out a prediction of the asphalt con-

crete shear modulus [7]. They developed 2- and 3-dim micromechanical FE models

with elastic and viscoelastic constitutive behavior for the constituents. Two different

asphalt mixtures were investigated with a shear frequency sweep at constant height.

They found a very good accuracy for the 3-dim example. Further, they showed an

interesting comparison between the virtual image of the mineral aggregates and the

real structure.

Since, however, numerical simulations based on XRCT scans using triangulated sur-

faces are highly expensive in terms of CPU-time and the flexibility for the creation of

several different microstructures is not given [93], we now want to focus on literature

which is concerned with the creation of artificial microstructures. These artificial

microstructures have the advantage that a large amount of microstructures can be

created and investigated in a short time frame. Tehrani and coworkers introduced a

custom numerical toolbox [83] that is a random object modeler, to generate random

inclusions of various sizes and shapes to derive the aggregate skeleton. The asphalt

concrete is modeled as a biphasic medium with linear viscoelastic behavior for the
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bituminous binding agent. Results in terms of complex moduli and phase angles and

also localized stress and strain distributions are studied. The calculations are carried

out in 2-dim but cut out from 3-dim microstructures. In another work of Tehrani et

al. [82], the results for linear viscoelastic simulations in 3-dim with only spherical in-

clusions are shown. However, geometrical as well as material linearity is a very strong

assumption for such heterogeneous media with strongly diverging material properties

as the asphalt constituents. The Discrete Particle Method plays a role in the simula-

tion of asphalt concrete as well, as can be seen in the work of Ormel et al. [60] and

Magnanimo et al. [52].

The generation of artificial microstructures using Voronoi tessellations or Voronoi

diagrams is a well-established technique for modeling of crystalline structures and

reinforced composites [17,18,90] as well as for concrete models using a random struc-

ture of spherical aggregates [21, 92]. However, it is not possible to control a PSD by

the standard Voronoi tessellation. To remedy this deficiency, Lavergne and cowork-

ers [46] proposed to generate microstructures with pre-defined PSD and grain shapes

using dense sphere packing and power diagrams [3, 4] for polycrystals. They, there-

fore, combine the weighted Voronoi tessellations with the simulation of a Particle

Dynamics approach. The used algorithm for the polydisperse sphere packing is the

Lubachevsky-Stillinger algorithm [49]. In the present chapter, we extend this ap-

proach towards asphalt concrete, where the volume fraction of solid mineral aggre-

gates is significantly smaller than 1, as it is the case for polycrystals. As the basis for

our PSD we make use of a XRCT data set.

Besides the morphology on the micro-level it is important to investigate the material

properties of the particular constituents with special regard to the bituminous binding

agent, generally understood as a viscoelastic material. Concerning the rheological

models for the bituminous binding agent, a wide range of research activities are to

be found in literature. We would like to refer to the extensive literature review

for the mechanical modeling of the linear viscoelastic rheological properties of the

bituminous binding agent by Yusoff and coworkers [94] including the master curve

procedure and the time-temperature superposition principle [14] that we apply in

section 6.3. Furthermore, fractional models [81] and nonlinear viscoelastic rheological

models [31, 70], to name only a few, are to be found in literature. In the present

chapter we refer to the generalized Maxwell-Zener approach extended to a 3-dim

continuum formulation with consideration of geometrical nonlinearities [30,80].

Having all material properties of the viscoelastic compound on the micro-scale at

hand, we derive the macroscopic response of the mixture to an external loading by a

computational homogenization approach based on volume averaging techniques. As-

suming separation of scales l� L, we apply Hill’s [28] averaging framework based on

a two-scale energy balance, the so-called Hill-Mandel principle of macro-homogeneity,

to compute the effective material properties in terms of volume averages of their micro-

scopic counterparts. For this purpose, we have to define a microscopic volume element

being representative for the entire structure (Representative Volume Element, RVE).

For practical applications, the size of the implemented microscopic volume elements
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is limited by the computational power and, therefore, is generally smaller than the

true RVE size. These practically used volume elements are called Statistical Volume

Elements (SVEs), see [61]. We, therefore, call the SVE-based overall properties ap-

parent instead of effective (RVE-based). The volume averaging concept allows for the

formulation of various boundary conditions on the SVE level. For a comprehensive

overview, see [56,95]. The interaction between SVE size and apparent material prop-

erties has been studied, for example, by Kanit and coworkers, see [40]. It has been

found that the usage of periodic boundary conditions minimizes boundary layer effects

close to the SVE surface due to the external loading conditions. During the last years,

the volume averaging framework was successfully interpreted as a numerical upscaling

method, see [54,55], and is widely used in so-called FE2 approaches, see [15,43,72,76],

to name only a few. Whilst microstructural periodicity is hard to apply on real struc-

tures, artificially generated microstructures can be designed a priori in a repetitive

fashion. The chosen SVE, therefore, represents a periodic unit cell with a stochastic

distribution of material properties, see, for example, Schröder and coworkers [71], who

proposed to generate statistically similar unit cells by a minimization process.

The chapter itself is organized as follows: In section 6.2, we describe the different

steps of our algorithm to generate artificial SVEs. The XRCT data processing is

presented, where we start with filtering and phase segmentation of the raw XRCT

data and continue with the PSD. Finally, we describe the workflow for the generation

of SVEs on the basis of the gained PSD. Therefore, we introduce the tools of dense

sphere packing and the weighted Voronoi tessellation. In section 6.3 we introduce

the material properties for the mineral aggregates and the viscoelastic behavior of

the bituminous binding agent. Most of the attention goes to the bituminous binding

agent, whose properties are characterized by rheological shear experiments using a

Dynamic Shear Rheometer (DSR). In addition, section 6.3 describes the computa-

tional homogenization process and the results of the numerical studies on the micro-

and macro-scale. Finally, the results are analyzed, discussed and we give an outlook

on future investigations.

6.2 Material and methods

This section provides informations on two main aspects of our work: First, the XRCT

data handling and how we reach the goal of a proper phase segmentation. Second,

the generation of artificial microstructures is discussed in detail. Particular attention

is paid to the algorithmic steps which lead from the identification of the relevant

microstructural parameters towards the resulting set of artificial SVEs.

6.2.1 XRCT data processing

The specimen under investigation is a German standard open porous asphalt (PA8)

with 8 mm maximum diameter for the mineral aggregates. The initial XRCT raw

data is plotted in Figure 6.2 representing a cylindrical asphalt concrete specimen.
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Figure 6.2: Raw data from the XRCT. Illustration in 3-dim in terms of orthogonal

slices. Each voxel has a resolution of 24.5µm. The white cubic frame (10003 voxels

=̂ (24.5 mm)3) indicates the control volume for further analysis.

The grayscale values in the figure reflect the X-Ray absorption of the constituents

in the specimen. Three different phases are present in the sample reconstruction.

Taking a closer look at Figure 6.2 one could observe that the light phase which is

the particle/aggregate phase, includes white spots. These spots are mineral deposits

incorporated into the aggregate phase. For simplicity reasons, however, we consider

the mineral aggregates to be homogeneous throughout our study.

The typical workflow for XRCT data processing is filtering of the data, setting thresh-

olds for each phase and an analysis with respect to the desired structural properties.

This allows us to segment the data into the individual constituents.

The XRCT data used in this chapter is provided by the Bundesanstalt für Material-

forschung und -prüfung (BAM) and was produced by a microfocus X-Ray source, with

maximum 225 kV, maximum 200 W and a focal spot size of 6 µm. The scintillator

material is sodium iodide (NaI). The measurement parameters for the present scan

were 140 kV and 160 µA. 2400 angles (slides/radiographs) on 360◦ were carried out

with an integration time of 10 × 2 seconds per angle.

To divide the raw image into the phases of interest, filtering of the raw images is

inevitable. Three different materials can be defined in the specimen, mineral aggre-

gates, bituminous binding agent with its filler and air voids. The main goal of the
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a) b)

Figure 6.3: 2-dim slices before a) and after b) applying the non-local means filter.
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Figure 6.4: Visualisation of a) large intra-class variance, b) small inter-class variance

and c) small intra-class variance in combination with a large inter-class variance.

filtering process is to facilitate the phase segmentation. Since the available XRCT

reconstruction has, per se, a very good quality and the phases are clearly visible, the

only filtering step that we apply is the non-local means filter, cf. 6.3.

This filter mainly denoises the image and clears the gray scale histogram for the

segmentation process. The threshold value for each phase is set on the basis of this

cleared histogram. Figure 6.4 shows the different variances for the interpretation

of a histogram. The schematic example in c) shows the desired conditions for phase

segmentation. It shows two phases with small intra-class variance and large inter-class

variance.

Even though we are only interested in the PSD of the mineral aggregates and their

volume fraction, we want to show, that a phase segmentation for all three phases is

possible. Figure 6.5 shows the normalized histogram of the present asphalt concrete

specimen a) before and b) after applying the non-local means filter. The number of

voxels are normalized with regard to the occurring maximum. A low grayscale value,

which means low absorption, represents a dark color, a high value represents a bright

color.

Figure 6.6 shows the segmented data and visualizes the different constituents. In

Figure 6.6 b) and c) it can be seen that the bituminous phase ϕf covers the surface
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Figure 6.5: Normalized histogram for a three phase asphalt concrete with phases ϕg,

ϕf and ϕs a) before and b) after applying the non-local means filter.
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Figure 6.6: 2-dim illustration of the a) mineral aggregates ϕs, b) the bituminous

binding agent ϕf and c) a biphasic coloration of both. The black phase indicates air

ϕg.

of the solid aggregates and forms bridges between neighboring aggregates. Figure 6.7

shows the same sub-figures in a 3-dim rendering of the 10003 voxel control volume.

Once the segmentation is executed, the XRCT scan can be analyzed with respect

to the individual phases. For our purposes, the volume fractions of the constituents

and the PSD are of major interest. For a better understanding we introduce the

volume fractions of the individual phases ϕα, α = {s, f, g}, as nα = dvα/dv with

the volume element of the mixture dv and the volume element dvα occupied by

phase ϕα, Figure 6.6 and 6.7. We define the porosity as φ = ng = 1 − ns − nf .

Accordingly, we introduce the mass fraction wα = dmα/dm with the mass element

dm = ρdv and dmα = nα ραR dv, the density of the mixture ρ and the effective

(true) density ραR = dmα/dvα of the individual constituents ϕα. Inside the control

volume highlighted in Figure 6.2, the volume fraction of the bituminous binding agent

accounts for nf = 0.124, air ng = 0.271 and mineral aggregates ns = 0.605. The

cumulative PSD for ϕs derived from the XRCT dataset is shown in Figure 6.9 b) and
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a) b) c)

Figure 6.7: 3-dim illustration of the 10003 voxel cube showing the a) mineral aggre-

gates ϕs, b) the bituminous binding agent ϕf and c) a biphasic coloration of both

constituents.

undergoes further analysis in the following sections.

6.2.2 Generation of artificial microstructures

After the identification of the relevant microstructural parameters, namely the dif-

ferent volume fractions and the PSD of the mineral aggregates, we now describe the

generation of artificial microstructures on the basis of dense sphere packings and

Voronoi tessellations. Our aim is to focus on the workflow and the advantages of this

procedure compared to a numerical investigation based on XRCT data. In particu-

lar the unessential richness of detail of the segmented dataset leads to unacceptably

small SVE sizes which are accessible to numerical simulations at reasonable costs.

The following arguments underline the advantages of artificial microstructures: First,

artificial microstructure generation involves simplified geometries of the mineral ag-

gregates and, therefore, allows for a suitable triangulation of the resulting structure.

Second, the artificial generation makes it possible to create manifold microstructures

with almost identical statistical properties (PSD, volume fractions nα) and stochas-

tical spatial distributions of the constituents. This gives rise to proper statistical

analyses of the overall material properties. Third, the artificial microstructures can,

a priori, be created in a spatially periodic manner. Hence, periodic boundary condi-

tions may be applied in the computational homogenization framework. This makes it

possible to study reasonably small SVE sizes. Altogether, the usage of artificial, yet

statistically similar, microstructures leads to a significant numerical speed-up.

In the sequel, we aim to establish a novel technique for the efficient generation of

artificial substitutes for asphalt concrete. For simplicity reasons, we restrict ourselves,

so far, on the description of a biphasic asphalt concrete. Hence, the pore space is

ignored and is assumed to be filled with the bituminous binding agent phase. Being

aware that the proper consideration of the true porosity will influence the effective

properties of asphalt concrete significantly, this important problem remains subject

to ongoing research. The statistical generation of the biphasic asphalt requires the

following workflow which will be discussed in more detail below: First, the PSD

is adjusted using the Lubachevsky-Stillinger algorithm. Second, the geometry of the
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artificial mineral aggregates is generated by a weighted Voronoi tessellation. Third, we

trigger the volume fraction of the mineral aggregates (ns) by an appropriate shrinking

process.
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Figure 6.8: Graphical visualization of the Lubachevsky-Stillinger algorithm. The

spherical particles Pi and Pj , i, j = 1, 2, . . . , N , move within a unit cube C. Their

radius is computed as ri(t) = gi t with the individual but constant growth rate gi.

The Lubachevsky-Stillinger algorithm [9,49] represents a discrete particle simulation

technique to generate dense sphere packings. To this end, the motion of growing

particles and the interaction between the growing particles in terms of elastic collisions

is computed. In the initial state (t = 0), we generate a set of N infinitesimal spherical

seed points with radius ri(t = 0) = 0 in an unit cube C. We assign a random initial

velocity vi(t = 0), and an individual growth rate gi, i = 1, 2, . . . , N , to each particle.

The particle growth is controlled by the relation ri(t) = gi t. The growth rate gi
is chosen in accordance to the PSD of the available XRCT data. Once in motion,

the spheres might touch or overlap with each other. The time t at which a collision

between the particles i and j occurs is calculated as

|xi − xj + (vi − vj) t| = (ri + rj) + (gi + gj) t, (6.2)

where xi defines the position vector pointing on the volume centroid of the particle i,

i = 1, 2, . . . , N , cf. Figure 6.8. Hereby, we have used the vector norm | � | = √� · �, �
representing any member of the particular Euclidean vector space E3. Eq. (6.2) leads

to the quadratic equation

a t2 + 2 b t+ c = 0 (6.3)
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with

a = |vi − vj |2 − (gi + gj)
2
, (6.4)

b = (xi + xj) · (vi − vj)− (ri + rj) (gi + gj) , (6.5)

c = |xi − xj |2 − (ri + rj)
2
. (6.6)

The quadratic equation leads to three different cases [46]. First, it has no solution,

the two spheres never collide. Second, it has one single solution, the two spheres get

in contact but do not experience an overlap. Third, it has two solutions, the two

spheres collide as rigid bodies. The first of these two solutions identifies the first

contact of the two spheres. Knowing the velocities and the current masses of the

colliding spheres allows for a computation of the updated velocities after the collision

and an updated overall scenario until the next collision occurs. It is important to

remark that the described algorithm does not aim to satisfy the conservation laws

for mass, momentum and energy of the system rather than to perform a sufficiently

random distribution of the polydisperse spheres. The growth process stops if the

kinetic pressure of the particle system exceeds or if the time step between the collision

events falls below a predefined value. The resulting particle system is considered as a

dense packing. An example for a polydisperse particle distribution generated by the
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Figure 6.9: a) Final dense sphere packing structure and b) cumulative volume fraction

of the dense sphere packing structure (Input model) and the Voronoi tessellation

(Voronoi). The results are normalized to the maximum of the volume fraction ns.

Lubachevsky-Stillinger algorithm and based on the above mentioned XRCT data is

visualized in Figure 6.9 a). Hereby, small particles with deq ≤ 1 mm are, for simplicity

reasons, ignored. Figure 6.9 b) shows the cumulative PSD function, where the result of

the Lubachevsky-Stillinger algorithm is assigned as the input model. It is important

to recall that the resulting PSD is in accordance to the distribution measured in

the XRCT data. We classify the mineral aggregate particles with increasing size
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deq(n
s
i ) := 2 ri such that

nsi = {ns1;ns2; . . . ;nsN} with deq(n
s
1) < deq(n

s
2) < . . . < deq(n

s
N ). (6.7)

The normalized cumulative volume fraction nsc is then defined as

nsc =
1

ns

N∑
i=1

nsi . (6.8)

We want to mention that even though we apply periodicity in the beginning, it is

also possible to create the complete microstructure with consideration of a hard wall

cube. This would lead to a non-periodic microstructure.

In the next step, the final state of the Lubachevsky-Stillinger algorithm is used to

extract the positions and the radii of the N spheres serving now as the input data for

the weighted Voronoi tessellation of the corresponding N Voronoi cells. Hereby, the

basic idea of the Voronoi tessellation is to determine if an arbitrary chosen point with

position vector y inside the unit cube C belongs to the Voronoi cell Vi. Defining the

Euclidian distance between the point with position vector y and the position xi of the

Voronoi cell Vi as d(y,xi) = |y−xi|, we use the radical Voronoi tessellation [67], also

known as Power Diagram [3,4] which weights each cell according to the corresponding

radius r resulting from the dense sphere packing,

Vi = {y ∈ C | d(y,xi)
2 − r2i ≤ d(y,xj)

2 − r2j ∀ i 6= j}, (6.9)

i, j = 1, 2, . . . , N . Since we are using a dense sphere model to determine the seed

points for the Voronoi tessellation, it is guaranteed that the number of particles before

and after the tessellation is identical. By nature, the resulting Voronoi tessellation

fills the unit cube completely. Hence, the volume fraction of the mineral aggregates

after Voronoi tessellation accounts for ns = 1. In the next step, we shrink the Voronoi

particles to adjust the required volume fraction ns < 1 of the mineral aggregates as

well as of the volume fraction nf = 1− ns of the bituminous binding agent.

The shrinking process is established in a random fashion. Hence, neighboring particles

in the shrunk configuration possess generally non-planar and, therefore, non-parallel

surfaces. The shrinking procedure is executed in due consideration of the periodicity

of the SVE. This means, each periodic twin is shrunk in the same manner. To this

end, we consider the Voronoi cell Vi and the position vectors ck, k = 1, 2, . . . , Nc,

pointing from the local origin Oi towards the corner points of the Voronoi cell, see

Figure 6.10. We define a shrinking displacement sk of the corner position ck as

sk = γk (u− v) + v with {γk ∈ R | 0 ≤ γk ≤ 1}. (6.10)

Hereby, the parameter γk is randomly chosen and, therefore, the shrinking displace-

ment sk is bounded by v < sk < u. The new local coordinate is then calculated

as

csk = ck sk. (6.11)
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a) b)

Figure 6.10: a) Illustration of the stochastic shrinking of a corner point k. The local

coordinate ck before and csk after the shrinking process is evaluated with respect to

the origin Oi of the Voronoi cell Vi, i = 1, 2, . . . , N , k = 1, 2, . . . Nc. The randomly

chosen parameter sk represents the displacement of the corner position ck towards

Oi. b) Comparison of a 2-dim slice taken from a 3-dim dense sphere packing and the

corresponding shrunk Voronoi cells. For some particles, the spheres are outside of the

slice and only the shrunk cells are visible.

This means that each corner of the Voronoi cell is shifted within this aforementioned

range towards the center of the Voronoi cell. Due to its random character, the shrink-

ing procedure is a priori not self-similar. The choice of the bounding parameters u

and v is also the leverage point for the control of the volume fraction nf of the bitu-

minous binding agent. By setting the range to a higher or lower level, or by reducing

the range itself, one is able to stimulate the desired volume fraction of the second

phase. Moreover, u and v may be chosen in dependence of the equivalent cell size

deq. It is possible to define the shrinking range in such a way that the desired volume

fraction nf is reached, if the values u = 0.99 and v = 0.7 are considered. This leads

to a minimum shrinking of 1 % and a maximum shrinking of 40 % and guarantees

that no Voronoi cell stays in contact with another cell. By doing so, a minimum

amount of bituminous binding agent is always located between two particles, just as

in a physical specimen. Figure 6.10 b) illustrates a 2-dim cut through the unit cube

with the densely packed spheres and the Voronoi cells (polygons). The periodicity of

the Voronoi cells is clearly visible. Voronoi cells without a complementary circle are

either periodic counterparts or are extensions of a cell where the corresponding sphere

does not intersect the displayed plane. Once the size and the location of each particle

is defined, cutting the particle volumes outside the unit cube, see Figure 6.11, yields

the perfectly periodic unit cell required for our further investigations.

In order to validate our microstructure generation scheme we now compare the PSD

of the periodic unit cell to that one of the initial XRCT data. It is important to recall
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Figure 6.11: Unit cube (right-hand side) with periodic continuation (left-hand side).

first that the PSD of the Lubachevsky-Stillinger algorithm is by definition equivalent

to that one observed in the highlighted control volume of the analyzed XRCT data,

and, second, that small particles deq ≤ 1 mm are ignored. Hence, the XRCT control

volume contains 180 particles. The cumulative volume fraction of the XRCT data

and of the Voronoi tessellation is displayed in Figure 6.9 b). Both cumulative curves

a) b)

Figure 6.12: a) 10003 voxel cube from the XRCT scan and b) one random artificial

counterpart from the Voronoi tessellation.

show a very good self-similar slope. In Figure 6.12 the artificial microstructure used

for the evaluations in Figures 6.9 b) is visualized in comparison to the XRCT control

volume.
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6.3 Nonlinear viscoelastic properties on the effective scale

In this section we aim to apply the previously introduced algorithm to derive the ef-

fective viscoelastic material response of asphalt concrete in terms of a computational

homogenization concept. Hence, we adapt a viscoelastic material model for the bi-

tuminous binding phase in a geometrically nonlinear setting. The overall properties

of the compound are computed as volume averages of their microstructural counter-

parts. Hereby, microscopic quantities are assigned as �, the macroscopic versions of

� are denoted as �̄.

6.3.1 Micro-scale modeling and homogenization

Due to the complex morphology of open porous asphalt concrete we introduce the

following assumptions: First, we assume the voids of the open porous asphalt to be

filled with the bituminous binding agent. Hence, we have to investigate a two-phase

compound consisting of mineral aggregates ϕs and the bituminous binding agent ϕf

(nf +ns = 1). Second, only mineral aggregates with deq ≥ 1 mm enter the mechanical

model in a discrete fashion. The spatial distribution is carried out with the algorithm

presented in section 6.2. By contrast, filler particles with deq ≤ 63µm are considered

to be part of the bituminous binding agent, see Figure 6.1. Thus, the viscoelastic

bituminous binding agent itself ϕf is interpreted as a mixture of the pure bitumen

ϕb and the smallest filler particles ϕp. Hereby, we use mp/mf = 0.65. In other

words, the small filler particles account for 65 % of the effective bituminous binding

agent’s mass. Finally, particle sizes 63µm < deq < 1 mm are ignored in accordance

with the XRCT data. The mineral aggregates are known to be much stiffer than

the bituminous binding agent and the characteristic strains observed in the particles

are small. Therefore, the aggregates are modeled using a linear-elastic description

(Hooke’s law) with the bulk modulus Ks = 56.2 GPa and the shear modulus Gs =

32.0 GPa which are typical values for the rock type Diabas [23], commonly used in

road construction.

The viscoelastic properties of the material incompressible bituminous binding agent,

namely the complex shear modulus G∗ and the loss factor tan δ with phase angle δ

with

G∗ = G′ + iG′′ and tan δ =
G′′

G′
(6.12)

are determined with a DSR in predefined temperature ranges -20◦C ≤ θ ≤ 30◦C in

intervals of 10◦C and frequency ranges 0.1 Hz≤ f = ω/(2π) ≤ 10 Hz. G′ represents

the storage modulus and G′′ the loss modulus, respectively. The storage modulus

G′ =
τ0
γ0

cos δ (6.13)

is an index for the recoverable energy contribution which means it describes the elastic
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part of the deformation. The loss modulus

G′′ =
τ0
γ0

sin δ (6.14)

quantifies the viscous energy contribution which is dissipated as heat. τ0 and γ0 are

the constant initial load and the constant initial deformation, respectively. δ is an

indicator for the phase shift between the occurring shear stress and shear strain. The

bituminous binding agent is considered as a thermo-rheologically simple material [8,

94] and, therefore, we apply the time-temperature superposition principle. By using

the time-temperature superposition principle, a master-curve for the DSR results is

created. The reference temperature for the master-curve is chosen as θref = 20◦C.
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Figure 6.13: a) Experimental DSR results in a logarithmic plot for the dynamic

modulus |G∗| with master-curve (first, non-modified 20/30 bituminous binding agent

with mp/mf = 0.65 and, second, mp/mf = 0.0). The characteristic frequencies f i

for the generalized Maxwell-Zener model are indicated by the vertical lines. b) Phase

angle.

The viscoelastic behavior of the bituminous binding agent is modeled with a gener-

alized Maxwell-Zener approach. To account for the behavior of the loss and storage

modulus, we used the equation for the dynamic modulus |G∗| to fit the parameters.

The results of the model-fit are listed in Table 6.1. We found eight Maxwell-chains,

i = 1, 2, . . . , 8, to be sufficient to describe the material behavior in the desired fre-

quency range. This is in accordance to approximately one Maxwell-chain per decade.

The dynamic viscosity for the single Maxwell-Chains is introduced as ηi, T
i is the

characteristic relaxation time of a single chain and f i = ωi/(2π) its characteristic

frequency. The dependency is ωi = Gi/ηi = 1/T i. Figure 6.13 a) compares the

master-curves of the mastic (bituminous binding agent including the small filler par-

ticles) and of the pure 20/30 penetration grade bituminous binding agent. Their

slope in the double logarithmic scale at low frequencies is an indicator for a fluid like
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behavior [14]. Figure 6.13 b) strengthens this assumption since the phase angle tends

towards π/2 = 90◦ at low frequencies, limω→0 δ = 90◦. Based on these findings, we

model the behavior of the bituminous binding agent in the generalized Maxwell-Zener

model, where the purely elastic chain is ignored.

6.3.2 3-dim nonlinear viscoelastic modeling approach

In this section we want to give a brief overview of the modeling approach for non-

linear viscoelasticity in 3-dim in the context of microscopic simulations. Using the

experimental data we are able to prescribe the scale transition rules for replacing

the heterogeneous viscoelastic micro-scale by a homogeneous macroscopic substitute.

We, therefore, impose that macroscopic quantities are computed as volume averages

of their microscopic counterparts. We write �̄ = 〈�〉2 = 1
V2

∫
V2
� dv, with V2 =

∫
V2

dv

being the volume of the chosen microscopic SVE. All details concerning the computa-

tional homogenization concept using periodic boundary conditions can be found, for

example, in [43].

For the purpose of the nonlinear description at this point, we introduce the tangent

map F = ∂x/∂X = Grad x = Grad u+ I. Here, X is the position vector of a material

point of the mixture in the undeformed (reference) configuration, x the position vector

in the deformed (current) configuration and u the displacement vector. We execute,

for each chain i = 1, 2, . . . , 8, of the above identified generalized Maxwell-Zener

model, the multiplicative split of the deformation gradient into an elastic part Fie and

an inelastic or viscous part Fiv, see [45, 47, 48], and write F = Fie · Fiv. Moreover, we

introduce in the usual way the right Cauchy-Green deformation tensor C = FT ·F as

a measure of the reference configuration B0 and the left Cauchy-Green deformation

tensor B = F·FT as a quantity of the current configuration B. This allows to introduce

the viscous part of the right Cauchy-Green deformation tensor Ci
v =

(
Fiv
)T · Fiv

and the elastic part of the left Cauchy-Green deformation tensor Bi
e = Fie ·

(
Fie
)T

.

For more details we refer exemplary to standard textbooks [25, 30]. The tensors

Ci
v ,i = 1, 2, . . . , 8, are interpreted as internal variables of the viscoelastic model

described by an evolution equation. For further use we introduce the displacement

gradient with respect to the reference configuration H = Grad u and the Green-

Lagrange strain tensor E = 1
2 (C− I). Given an appropriate strain energy density

function W , the Cauchy stress tensor is computed as

T = 2
1

J
B · ∂W

∂B
, (6.15)

with the Jacobian J = det F. Even though the applied macroscopic strains are

small, we expect that the microscopic strain field may localize, in particular between

neighboring particles. In other words, we expect locally large, i.e. finite strains. To

take this fact into account, the springs in the generalized Maxwell-Zener model are

modeled in terms of a Neo-Hookean strain energy density function with a volumetric-



82 CHAPTER 6 Asphalt concrete on the basis of XRCT scans

deviatoric split

W = Weq (B) +

8∑
i=1

Wneq

(
Bi
e

)
(6.16)

= W vol
eq (B) +W dev

eq (B) +

8∑
i=1

W dev,i
neq

(
Bi
e

)
(6.17)

=
K0

2
(J − 1)2 +

G0

2
(I1 − 3) +

8∑
i=1

Gi

2
(I1 − 3). (6.18)

Hereby, G0 and Gi are the shear moduli of the springs and K0 is the bulk modulus.

The volumetric contribution W vol
eq (B) is introduced in the sense of a weak compress-

ible material, mainly for numerical reasons [30]. Moreover, I1 = λ1 + λ2 + λ3 is the

first strain invariant and J2 = λ1 λ2 λ3. With the Cauchy stress defined as

T = Tvol
eq + Tdev

eq +

8∑
i=1

Tdev,i
neq (6.19)

= 2
1

J

(
B · ∂W

vol
eq

∂B
+ B · ∂W

dev
eq

∂B
+

8∑
i=1

Bi
e ·
∂W dev,i

neq

∂Bi
e

)
(6.20)

and the given strain energy density function, the constitutive equation reads

T = K0 (J − 1) I +
1

J
G0 B0 +

8∑
i=1

1

J
Gi Bi

e. (6.21)

It is important to remark that the DSR experiments for the bituminous binding agent

resulted in a viscoelastic fluid. Hence, the equilibrium part of the stress tensor (Teq)

has no deviatoric contribution (G0 ≈ 0 MPa), and the constitutive equation in its

final version states

T = K0 (J − 1) I +

8∑
i=1

1

J
Gi Bi

e. (6.22)

Given this constitutive relation, it remains to define the viscoelastic equation system

to be solved for the micro-scale. The evolution of the before mentioned internal

variables is described in terms of an evolution equation of the form

d

dt

(
Ci
v

)
= Ċi

v =
2

J Ti

[
C− 1

3
tr
(
C ·
(
Ci
v

)−1)
Ci
v

]
, (6.23)

cf. [25]. Here, Ċi
v = dCi

v/dt is the material time derivative. As shown in [79],

this evolution equation can be solved in a fully implicit manner without any Newton-

Raphson iteration and is, therefore, accessible to the classical Euler-backward method.

The viscoelastic equation system is completed by the quasi-static balance of linear

momentum div T = 0 accounting for periodic boundary conditions [[u]] = H̄ · [[x]] and
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t++t− = 0. Hereby, we follow [37] and split the boundary ∂V into an image part ∂V +
2

and a mirror part ∂V −2 . The jump operator is defined as [[�]] (x) = � (x+)− � (x−).

For the numerical implementation, we transform the balance of linear momentum

into its weak representation, accounting for the above mentioned kinematic boundary

conditions. Hence, we seek solutions in the trial space U2 of admissible displacements

that are sufficiently regular in V2. We, furthermore, introduce the corresponding trial

space of self-equilibrated fluxes T2 that are sufficiently regular on the image boundary

∂V +
2 . We write the equations for finding u, t ∈ U2 × T2 in an updated Lagrange

approach as

〈T : grad δu〉2 −
1

V2

∫
∂V +

2

t · [[δu]] da = 0, (6.24)

− 1

V2

∫
∂V +

2

δt · [[u]] da = −

 1

V2

∫
∂V +

2

δt ⊗ [[x]] da

 : H̄, (6.25)

with t = T · n which hold for any admissible test functions δu, δt ∈ U2 × T2.

Hereby, the differential operators div (�) and grad (�) refer to spatial derivatives with

respect to the current position vector x. It is important to remark that Eq. (6.24)

represents Hill’s macro-homogeneity condition for the computational homogenization

of a heterogeneous Cauchy continuum towards a homogeneous substitute model. The

macroscopic stress response is computed as

T̄ = 〈T〉2 =
1

V 2

∫
∂V2

(t⊗ x)sym da. (6.26)

Although the experimental results which are the basis for the parameter fitting are

carried out in a geometrically linear regime, we extrapolate the extracted linear model

towards a viscoelastic model at moderate geometrical nonlinearities. Hence, the pa-

rameters listed in Table 6.1 are assumed to remain valid for the nonlinear material

model. To satisfy the earlier mentioned incompressibility of the bituminous binding

agent, the global bulk modulus K0 is chosen much larger than the sum of all shear

moduli Gi. This leads to a weak compressibility corresponding to a Poisson’s ratio of

ν ≈ 0.48 at small deformations.

6.3.3 Influence of the macroscopic loading velocity, and fluid-like properties

of the mastic

In this subsection we want to address the effect that the prescribed macroscopic

strain velocity strongly influences the apparent macroscopic properties of the material

under investigation. To this end, we study a homogeneous viscoelastic medium (no

solid aggregates, nf = 1) which is modeled in accordance to the above identified

material properties of the bituminous binding agent, see Table 6.1. Figure 6.14 shows
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Table 6.1: Experimentally determined parameters of the generalized Maxwell-Zener

model with consideration of G0 ≈ 0 MPa.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

Gi [MPa] 3.15E+0 1.32E+1 4.42E+1 1.05E+2 2.09E+2 2.54E+2 2.65E+2 2.28E+2

T i [s] 3.98E+1 3.98E+0 3.98E-1 3.98E-2 3.20E-3 3.16E-4 3.16E-5 3.16E-6

f i [Hz] 2.51E-2 2.51E-1 2.51E+0 2.51E+1 3.16E+2 3.16E+3 3.16E+4 3.16E+5
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Figure 6.14: Three different states for the stress relaxations. The loading times range

from t∗ = 1E-4 s over t∗ = 1E-1 s to t∗ = 1E+1 s. The applied stretch is always

λ̄1 = 2.0.

stress relaxation curves for three different loading velocities in an uniaxial tension

test. The applied maximum stretch λ̄1 = L
L0

is chosen as λ̄1 = 2.0 and is reached

after a) t∗ = 1E-4 s, b) t∗ = 1E-1 s and c) t∗ = 1E+1 s. Since we have included

a large variety of individual relaxation times T i, i = 1, 2, . . . , 8, in our underlying

generalized Maxwell-Zener model, we get strongly deviating results for the different

loading velocities. For a), the peak stress accounts for 2.25 GPa, whereas the peak

stress in c) reaches 28 MPa. Moreover, the varying slope during the loading process

brings to the fore that, in particular for the slow loading process in c), the 7 fastest

dashpots become active already during the loading process. Hence, they can not

contribute to the overall stress relaxation which is, consequently, driven by the slow

relaxation time T 1, only, see Table 6.1.

Besides the loading velocity effects, it is important to remark again the fluid-like prop-

erties of the mastic (bituminous binding agent including the smallest filler particles).

To this end, Figure 6.15 shows stress relaxation curves for the nonlinear model in

comparison to the linear model at different maximum stretches and, therewith, the

deviation between the nonlinear and the linear model. The normalized value of T̄11

is defined as T̄11/(T̄11)Neo−Hooke for each applied stretch λ̄1, λ̄2 and λ̄3 . Comparing

the curves, we observe that, first, the geometrically linear description underestimates
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Figure 6.15: Normalized deviation of the stress relaxation curves for three different

stretches with respect to the geometrically nonlinear Neo-Hookean result.

the apparent stresses tremendously. Second, the apparent stress tends towards zero

at t→∞ which shows the fluid-like behavior of the mastic.

6.3.4 Nonlinear effects on the small scale and apparent macroscopic behav-

ior

Finally, we want to apply the above introduced workflow by executing numerical

experiments on SVEs with microstructures. The microstructural boundary value

problem is solved using the mesh generator Trelis and the Finite-Element package

Abaqus. We investigate five different periodic SVE representations, each consisting

of 23 statistically generated aggregates according to the proposed algorithm. The

volume fraction of the mineral aggregates ns ≈ 0.6 corresponds to that one observed

in the XRCT scan. Ignoring voids (ng = 0), the pore space is saturated by the nearly

incompressible bituminous binding agent with nf ≈ 0.4. Typically, the resulting

meshes consist of approximately 4 Mio. linear tetrahedral elements with approximately

2 Mio. degrees of freedom. A meshed example of an asphalt concrete unit cube is

illustrated in Figure 6.16. This rather high number of degrees of freedom results

from the slender bitumen interfaces between neighboring aggregates. All numerical

experiments are carried out as stress relaxation tests, where we apply the kinematic

loading in terms of the smooth step function, see Figure 6.17 a), with t∗ = 1E-3 s.

Hence, all identified relaxation times are active during the stress relaxation test, see

Table 6.1.

The results for uniaxial kinematic boundary conditions applied on the selected five

SVEs are shown in Figure 6.17 b). We observe that the individual stress relaxation

curves scatter significantly from peak stress perspective. Hence, the apparent behav-

ior of the asphalt concrete on the effective scale varies strongly, even though the SVEs
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Figure 6.16: Example mesh with approximately 2 Mio. degrees of freedom.

are generated by identical input parameters. This scattering brings to the fore the

importance of the individual location and orientation of the mineral aggregates. In

Figure 6.18, the strain localization inside the asphalt concrete cube is highlighted.

Hereby, we observe moderately nonlinear local deformations even though the overall

deformation accounts for H̄11 = −0.02, only. Hence, the geometrically linear descrip-

tion used for the macroscopic loading is inappropriate for the description of the local

deformation processes. Similar effects are to be observed under shear or further tensile

kinematic loading conditions, see Figure 6.19.

Figure 6.19 shows the von Mises stress results T̄v for further kinematic boundary

conditions applied on the stochastically generated five SVEs. Again, the effective

strain is applied in terms of a smooth step function, cf. Figure 6.17 a). Hereby, we

observe that some stress relaxation curves are crossing each others. From a physical

view-point this underlines the strong coupling of the local and the global relaxation

processes. It is, moreover, important to remark that the apparent properties are

slightly anisotropic. The source of this anisotropy lies in the stochastic generation

process of the still rather small SVEs. This indicates that, as expected, the chosen

SVEs can not be considered as RVEs.

Figure 6.20 shows the von Mises stress T̄v for an example SVE under simple shear

boundary conditions. The smooth step strain is set to t∗ = 1E-3 s and t∗ = 1E-6 s.

The von Mises stress T̄v is normalized to its relaxed value at t = 4E+2 s. Figure 6.20

illustrates two interesting findings. First, the effect of the loading velocity condition

as already illustrated and described in Figure 6.14 for the homogeneous bituminous

binding agent. The before mentioned difference in the peak stress at t = t∗ is sig-

nificant and not negligible when discussing effective or apparent behavior of asphalt

concrete. The second point we want to discuss are the underlying three different

kinematic loading amplitudes for both curves shown in Figure 6.20. The macroscopic

strain for the example SVE is set to H̄12 = 0.01, H̄12 = 0.001 and H̄12 = 0.0001.
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Figure 6.17: a) Strain boundary condition for the uniaxial pressure with a smooth

step function. The maximum displacement of H̄11 = −0.02 is reached after t∗ = 1E-

3 s, whilst all further components H̄ij = 0, i, j = 1, 2, 3. b) Relaxation of the von

Mises stress T̄v for five different examples on the effective scale.

In their normalized version presented in Figure 6.20, all resulting relaxation curves

coincide regardless of the loading amplitude. Even though we have a nonlinear be-

havior on the micro-scale for the larger macroscopic strain boundary conditions, the

volume fraction of the highly effected areas are too small to give these heterogeneities

enough weight to have an influence on the volume averaged apparent behavior of the

compound.

As an outlook we want to refer to Figure 6.21. The Figure shows in a) the difference

between the applied macroscopic strain (simple shear) and the observed strain at

a manually chosen microscopic integration point from a strongly deformed zone in

Figure 6.18. The figure underlines our assumption that the microscopic behavior does

not necessarily follow the predefined strain rate on the macro-scale. After t∗ = 1E-3 s

the macroscopic loading is kept constant, but we still observe an increase in strain

on the micro-scale. Hence, the local kinematic reorganization process remain active

throughout the entire relaxation of the compound.

6.4 Conclusions

In this chapter, the workflow from XRCT scans towards numerical investigations of

SVEs for asphalt concrete is described. Hereby, we introduce a novel algorithm to

create artificial and simplified microstructures which allow for efficient 3-dim numeri-

cal simulations. To this end, we extract essential microstructural parameters from the

acquired XRCT data, namely the volume fractions of the particular constituents and

the particle size distribution of the mineral aggregate phase. First, we apply a discrete

particle dynamics technique to generate dense sphere packings. Second, we use the
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Figure 6.18: Maximum principal strain Emax. = max(E1,E2,E3) inside an example

SVE under uniaxial pressure H̄11 = −0.02.

center coordinates of the spheres as seed points and define a growth rate proportional

to the individual radii of the dense sphere packing. Hence, we have all ingredients

at hand to accomplish a weighted Voronoi tessellation. The resulting Voronoi cells

are considered as precursor cells for the mineral aggregates. Due to the nature of

the Voronoi technique, however, the volume fraction of the cells has to be adapted.

Third, we shrink the individual Voronoi cells in a stochastic manner to trigger the

correct volume fraction of the mineral aggregates. The volume between the mineral

aggregates is filled by the bituminous binding agent. With this generation technique,

even nonstandard particle size distributions can be reproduced reliably. Hereby, the

predefined particle size distributions may also base on given granulometric curves as

used in road construction, cf. Chapter 7. In this case, a XRCT scan is not required.

Thus, the presented tool is highly flexible and the resulting artificial and simplified

microstructures are accessible to realistic 3-dim simulation scenarios with reasonable

numerical efforts. This allows to compare arbitrary combinations of material prop-

erties for the bituminous binding agent and the mineral aggregates in a short time

range at considerably lower costs compared to physical experiments.

After the generation of appropriate artificial microstructures we assign material prop-

erties to the mineral aggregates and to the bituminous binding agent. Whereas we use

linear elasticity for the mineral aggregates with material parameters known from liter-

ature, we assume moderate but finite deformations for the bituminous phase. Hence,

the binding agent is described by a nonlinear generalized Maxwell-Zener model. The

required material parameters are gained from physical testings on a Dynamic Shear

Rheometer. We successfully execute 3-dim numerical simulations under usage of sev-

eral artificial microstructures with almost identical volume fractions and particle size

distribution but with statistically generated and arranged mineral aggregates. All

microstructures undergo stress relaxation tests. We observe that the microstructure’s

morphology significantly influences the individual relaxation behavior. This effect can

be explained by the distinct localization of the viscous activity in the narrow regions
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Figure 6.19: a) Stress relaxation for five different examples on the effective scale

for simple shear boundary conditions with a smooth step function. The maximum

displacement of H̄12 = 0.01 is reached after t∗ = 1E-3 s. b) Stress relaxation under

uniaxial tension H̄33 = 0.02.

between neighboring mineral aggregates which is different for each microstructural

representation. However, the nonlinear description is only required at very small vol-

ume fractions. Considering the effective material properties as volume averages of

their microscopic counterparts over the considered SVE we show that both formula-

tions, linear and nonlinear viscoelasticity, result in identical relaxation curves. Thus,

a geometrically linear description on the micro-level seems to be sufficient for small

deformations applied on the large scale. Rearrangements of the mineral aggregates

during the deformation process are not observed. In other words, the aggregates do

not switch their positions. However, such a behavior has to be expected if finite

deformations are applied on the macro-level.

After all, it is important to remark that the proposed generation tool is restricted

to the description of mastic asphalt concrete. In other words, air voids as presented

in Figure 6.6 are, until now, not included and are subject to forthcoming research

activities.
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Figure 6.20: Normalized stress relaxation curve for different smooth step loads with

t∗ = 1E-3 s and t∗ = 1E-6 s for one exemplary SVE. Both curves have an underlying

set of three different strain boundary conditions: H̄12 = 0.01, H̄12 = 0.001 and

H̄12 = 0.0001.
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Figure 6.21: a) Difference of strain and b) difference of stress between the effective

scale and a single integration point in the bituminous binding agent for the simple

shear boundary condition.



Chapter 7

Artificial microstructures on the basis

of granulometric data

This chapter deals with an extension of the algorithm for artificial mi-

crostructures introduced in Chapter 6. The generation of artificial mi-

crostructures in almost all fields of interest is bound to requirements or

even norms and standards. To satisfy these requirements, this chapter

shows in detail the capabilities of the introduced algorithm. Based on one

mastic asphalt (MA8S) and one porous asphalt (PA8), this chapter gives

details about the calculations that are necessary to create microstructures

that serve as statistically similar representations and can be used for fur-

ther mechanical or other simulation. In comparison to a workflow with

X-Ray Computed Tomography (XRCT) scans, this procedure is highly flex-

ible and allows the possibility of applying a wide range of statistics to the

generated microstructures.

7.1 Introduction

Asphalt concrete in road construction is often defined by granulometric definitions

from norms or standards, such as in [1] for the German industry. For a valid sim-

ulation of these granulometric microstructures, the previously introduced algorithm

(Chapter 6) is used to create the spatial arrangement of mineral aggregates based

on granulometric curves without additional X-Ray Computed Tomography (XRCT)

data. As basis for these investigations, the phases for solid aggregates ϕs, filler ϕp,

bituminous binding agent ϕb and air ϕg are defined with corresponding effective den-

sities ρbR = 1.02 g/cm
3

and ρsR = ρpR = 2.67 g/cm
3
. The filler phase ϕp is defined

as the phase of the solids, which is not represented in a discrete manner in the con-

structed artificial microstructure. In this chapter we focus on the discrete distribution

of ϕs, which comes from the residue of the sieve. To underline the capabilities of the

– 91 –
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invented algorithm, we focus on the discrete generation of microstructures for two

completely different asphalt concrete types. First, a mastic asphalt (MA8S) and sec-

ond, a porous asphalt (PA8) [1]. On condition that the given norm in [1] serves as

a guideline, we consider the mesh sizes 0.063 mm and 0.71 mm to be filler for the

MA8S and mesh sizes between 0.063 mm and 0.25 mm for the PA8, see Table 7.1.

This assumption is necessary to guarantee the best possible boundary conditions for

the creation of the artificial microstructures. For a better understanding of the given

Table 7.1: Mesh sizes and sieve values for MA8S and PA8 [1].

mesh MA8S PA8

i [mm] passing residue ui passing residue ui

1 11.2 1 0.05 1 0.05

2 8.0 0.95 0.125 0.95 0.85

3 5.6 0.825 0.275 0.1 0.025

4 2.0 0.55 0.085 0.075 0.015

5 0.71 0.465 0.145 0.06 0.01

6 0.125 0.32 0.08 0.05 0.01

7 0.063 0.24 0.24 0.04 0.04

and needed numbers for the calculation of all relevant information for the creation

of the artificial microstructures, an index �a used in this chapter means a value with

regard to the complete asphalt concrete and an index �m with regard to all mineral

aggregates, which are all solids ϕs and filler particles ϕp. Index �c belongs to the

required cube of the algorithm, which is defined in more detail later in this chapter.

As a first start, we again define the sphere volume

Vi =
4

3
π

(
di
2

)3

, (7.1)

with di being the diameter of the corresponding sphere, for the used Lubachevsky-

Stillinger algorithm [49], cf. Chapter 6. Since a lot of parameters in this Chapter

are taken from [1], the author highly encourages the reader to compare the numbers

used in this Chapter with the numbers given as standard in the literature. Compared

to XRCT data, the use of granulometric data requires a lot more precalculations to

guarantee a good statistical equivalence to the prescribed norms of the microstructure,

but in comparison to real XRCT data, the additional effort is reasonable. The next
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section explains in detail the required numbers and defines the necessary formulas for

the artificial microstructure.

7.2 Parameters for the discrete microstructure

Since some of the values which are necessary for the detailed definition of the algorithm

are not given from norms explicitly, calculation of these values from the given ones

is necessary. The first required values are the mass fractions with respect to the

complete asphalt concrete �a for the different phases, which are defined as

wpa = ws+pa wpm, (7.2)

wsa = ws+pa − wpa, (7.3)

wfa = wb+pa = wba + wpa. (7.4)

The upper index �f defines, as in some chapters before, the compound of the pure

bituminous binder ϕb and the fine filler particles ϕp. To identify the real volume

for the algorithm, consideration of a fictive volume for the asphalt concrete has to

take place. This means, calculation of the exact volume fraction for each constituent,

whereas the volume fraction of the gaseous phase in the asphalt concrete compound nga
is given from the type of asphalt concrete that we consider. For all other constituents,

the volume fraction is derived via

nsa =
wsa/ρ

sR

wsa/ρ
sR + wpa/ρpR + wba/ρ

bR
(1− nga) , (7.5)

npa =
wpa/ρ

pR

wsa/ρ
sR + wpa/ρpR + wba/ρ

bR
(1− nga) , (7.6)

nba =
wba/ρ

bR

wsa/ρ
sR + wpa/ρpR + wba/ρ

bR
(1− nga) . (7.7)

On the basis of the different volume fraction we now focus on the number of discrete

particles Ni that need to be modeled, where i defines the sieve number and N =
∑
Ni

the total number of all particles. Considering N1 to be the largest particle size and

setting the number to Ni = 1 for i = 1, all further numbers are calculated as

Ni =
Ni−1 Vi−1
ui−1

ui
Vi
, for i = 2, 3, 4 with (7.8)

d1 > d2 > . . . , > di, i = 1, 2, . . . 4. (7.9)

In the given formula, ui defines the residue in the specific sieve size, which is defined

by the type of asphalt concrete (here MA8S or PA8), see Table 7.1. Although the

residue ui in the before presented formula is related to the specific volume and number

of each sphere, the residue can be interpreted as a mass fraction as well. In the end, ui
is a percentage and considering only one material makes it independent of the density,

which is the same for all particle sizes. For the next step we need to consider a cubic
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domain which we refer to with index �c and we define the volume of the discrete

mineral aggregates within this cubic domain as

vsc =
∑

ViNi. (7.10)

For all three other constituents ϕb, ϕp and ϕg we derive the volume of the sum of all

with

vb+p+gc =
vsc
vsa

(
vba + vpa + vga

)
, (7.11)

which leads to the complete volume of the cubic domain

vc = vsc + vb+p+gc . (7.12)

At this point, the actual volume of the cubic domain vc is known and the calculation

of relative numbers like volume fractions for the different phases nαc = dvαc /dvc with

α = {b, g, p, s}, for the cubic domain, is possible.

Another important value that is triggered with the artificial microstructure algorithm,

is the volume of the filler in the newly calculated cubic domain

vpc = npa vc. (7.13)

With these informations at hand, the absolute volume of solids and filler reads

vs+pc = vsc + vpc (7.14)

and the length of a side of the cube is

lc = v1/3c . (7.15)

With all these formulas, the artificial creation of different asphalt concrete types is

possible. As already mentioned before, this chapter focuses on the a mastic asphalt

(MA8S) and a porous asphalt (PA8). The next section shows the explicit calculation

results for these two asphalt concrete types and furthermore, compares the artificial

results with the given standard.

7.3 Results and Discussion

As an overview of the calculated and given values, Table 7.2 lists the values for the two

considered asphalt concretes. For a better understanding, the given values from [1]

are marked as bold symbols. The calculated values are printed in normal style.

Considering our two specific asphalt concrete types (MA8S and PA8) and presuming

only one large particle N1 = 1 due to the restricted size of the modeling domain for

both presented asphalt concrete types, the number of all discretely modeled particles

are listed in Table 7.3. As a last summary for all calculated values, we derive the in-

formation listed in Table 7.4, which contains the specific values for our SVE or cube �c
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Table 7.2: Given values are marked with blue color, all other values are derived.

ws+p
a wb

a wp
m ng

a wp
a ws

a wb+p
a ns

a np
a nb

a

MA8S 0.930 0.070 0.465 0.000 0.432 0.498 0.502 0.446 0.166 0.388

PA8 0.935 0.065 0.060 0.242 0.056 0.879 0.121 0.602 0.117 0.038

Table 7.3: Discretely modeled particles.

MA8S PA8

i di [mm] Vi [mm3] Ni ViNi [mm3] Ni ViNi [mm3]

1 9.6 463.25 1 463.25 1 463.25

2 6.8 164.64 7 1158.12 48 7878.19

3 3.8 28.73 89 2547.86 8 231.62

4 1.355 1.30 605 787.52 107 138.97

in SI units. For a better understanding and to visualize the steps of the algorithm,

Figure 7.1 presents the dense sphere packing in terms of the Lubachevsky-Stillinger

algorithm [49, 58] and the shrunk Voronoi cells. The spheres have a single represen-

tation under periodic conditions, whereas the Voronoi cells visualize the periodicity

of the SVE as status quo. Figure 7.2 shows the upper and lower bounds for the

granulometric curve of the MA8S and PA8 asphalt concrete [1] and the granulometric

curve of the discretely modeled particles from the invented algorithm. As typically

used for granulometric curves in the road building community, the unit of the mass

fraction is here abbreviated as M.-%. The modeled particles stay within the bounds

and reflect and good similarity with a potential real specimen. Referring to the step-

wise character of the MA8S curve in Figure 7.2 a), this comes from the nature of the

implemented algorithm and the requirement of different classes of particles sizes, com-

parable to the mesh sizes for the real specimen. If needed, the number of classes can

easily be adjusted within the code, but this accompanies a computational expense.

In a further step, these microstructures can be used e.g. for numerical simulations or

geometrical analysis.
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Table 7.4: Absolute values for MA8S and PA8 depending on the number of mineral

aggregates.

MA8S PA8

N 702 164

vsc [mm]3 4956.74 8709.04

vb+p+g
c [mm]3 6145.38 5752.40

vc [mm]3 11102.12 14461.44

vpc [mm]3 4308.19 555.90

vs+p
c [mm]3 9264.93 9264.93

lc [mm] 22.30 24.36

a) b)

Figure 7.1: a) The densely packed spheres after the Lubachevsky-Stillinger algorithm

and their representation after the shrinking procedure of the weighted Voronoi dia-

gram. b) The final microstructure for the mastic asphalt concrete MA8S withN = 605

discretely modeled particles.
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Figure 7.2: Discretely modeled particles and requirements for a) the MA8S and b)

the PA8 asphalt concrete.





Chapter 8

Conclusions and outlook

The scope of this work was to model and numerically investigate asphalt concrete

from a micro- and macro-scale point of view and to investigate the morphological

conditions within the compound. Some background information and motivation con-

cerning asphalt concrete was given in Chapter 1. After that, Chapter 2 and 3 were

focused on the theoretical framework, in particular kinematics, balance equations and

constitutive modeling.

The core part of this thesis starts with Chapter 4, which was concerned with the

micro-scale behavior of bitumen-filler mastics and the workflow from experimental

data to an extended master-curve concept. In dependency of filler concentration and

frequency, the extension was conducted on the basis of broad experimental Dynamic

Shear Rheometer (DSR) data for one specific bitumen-filler combination. The pre-

sented workflow was motivated by the observation that the experimental data showed

self similar master-curves for the different filler concentrations. With the classical

WLF function (William, Landel, and Ferry) and its shift factor αθ, the described

approach was introduced as an extension with a second shift factor βp. With this

second shift factor the presented procedure allowed to define a generalized master-

curve with respect to temperature θ and filler mass fraction wp. This was conducted

on the basis of a single set of experimental data for a bituminous binding agent, in

this case 20/30 penetration grade bituminous binder. The defined function for βp
and the experimental data showed a very good agreement and it is to be noted that

the presented workflow can easily be applied to any other thermo-rheologically simple

bitumen-filler mastic.

The study presented in Chapter 5 dealt with the derivation of effective material

properties of viscoelastic compounds by homogenization. In the sense of a mean-

field theory a heterogeneous elastic/viscoelastic compound on the micro-level was

replaced by an overall homogeneous viscoelastic medium on the macro-level using

volume averaging techniques. Based on data acquired for the constituents of as-

phalt concrete, material studies were carried out to measure the viscoelastic material

properties of the bituminous binder, applying the master-curve concept. Knowing

– 99 –
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the linear-elastic properties of the mineral filler, an artificially simplified heteroge-

neous elastic/viscoelastic compound was set up. Following this, a qualitative study

with regard of different aspects of classical homogenization techniques for viscoelastic

material properties on both, micro- and macro-scale, was carried out with easily man-

ageable computational effort. One key finding of these numerical investigations was

that the micro-scale boundary conditions strongly dominate the effective frequency

dependent properties of the investigated compound. On the one hand, the character

of pure Dirichlet and Neumann boundary conditions as upper and lower bounds for

the resulting effective stiffness in the equilibrium state have been confirmed. On the

other hand, the impact on the viscous, frequency dependent properties has turned

out to be even more dramatic. Constant traction (Neumann) and periodic boundary

conditions have been found to result in material responses in the frequency domain

similar to the pure bituminous binder. By contrast, the effective characteristic fre-

quency of the compound under locally pure linear displacement (Dirichlet) boundary

conditions could not be observed within the investigated frequency range. Another

key finding was the determination of the effective viscoelastic properties over several

decades in frequency space for the simplified compound consisting of spherical filler

particles accounting for about 45% volume fraction.

A final statement concerning the choice of boundary conditions on the micro-level

and its high importance was also made. First, it was shown that the choice influences

the effective properties in a way that the equilibrium processes are predicted stiffer

or softer, which is also known as the upper and lower limit on the effective stiffness

(Voigt and Reuss bounds). Second, it was shown that the non-equilibrium processes

are as well affected by an effective shift of the critical frequency. For this purpose, it

was stated that a thorough discussion of boundary formulations is necessary, in par-

ticular for more complex microstructures, which generally do not show any periodic

properties e. g. from X-Ray Computed Tomography (XRCT) data.

In connection with this, Chapter 6 presented a workflow, which described the way from

XRCT data towards numerical investigations of Statistical Volume Elements (SVEs)

for asphalt concrete. This approach circumvents the difficulty on non-periodic mi-

crostructures mentioned before. The described workflow includes a novel algorithm

to create artificial and simplified microstructures which allow for efficient 3-dim nu-

merical simulations. Starting point was the extraction of essential microstructural

parameters from XRCT data, namely the volume fractions of the particular con-

stituents and the particle size distribution of the mineral aggregate phase. In a first

step, a discrete particle dynamics technique to generate dense sphere packings was

applied. In a second step, the center coordinates of the spheres were used as seed

points and the individual radii of the dense sphere packing were used as growth rate

to accomplish a weighted Voronoi tessellation. The resulting Voronoi cells were con-

sidered as precursor cells for the mineral aggregates. However, due to the nature of

the Voronoi technique, the volume fraction of the cells was adapted. The last step in

the algorithm was presented as a stochastic shrinking of the individual Voronoi cells

to trigger the correct volume fraction of the mineral aggregates. It was stated that the
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volume between the mineral aggregates is filled by the bituminous binding agent and

by using this generation technique, even nonstandard particle size distributions can

be reproduced reliably. Furthermore, the basic data for this algorithm not necessarily

needs to be XRCT data, as Chapter 7 showed. In general, this tool is highly flexible

and the resulting artificial and simplified microstructures are accessible for realistic

3-dim simulation scenarios with reasonable numerical efforts.

Chapter 6 also discussed the 3-dim numerical simulations. Material properties to the

mineral aggregates and to the bituminous binding agent were assigned and constitu-

tive behavior discussed. Linear elasticity was used for the mineral aggregates with

material parameters known from literature, whereas moderate but finite deformations

for the bituminous phase were assumed. The binding agent was therefore described

by a nonlinear generalized Maxwell-Zener model. The required material parameters

were, as in the chapters before, gained from physical testing on a Dynamic Shear

Rheometer. 3-dim numerical simulations were carried out successfully with almost

identical volume fractions and particle size distributions but with statistically gen-

erated and arranged mineral aggregates. Stress relaxation tests were the focus of

this study. Within this study it was found that the microstructure’s morphology sig-

nificantly influences the individual relaxation behavior, which was explained by the

distinct localization of the viscous activity in the narrow regions between neighboring

mineral aggregates varying from microstructure to microstructure. Another conclu-

sion drawn was that the nonlinear description is only required at very small volume

fractions. The study compared the linear and nonlinear viscoelasticity formulations

over identical SVEs and it was found that the effective material properties as volume

averages of their microscopic counterparts result in identical relaxation curves. In

other words it was stated that a geometrically linear description on the micro-level

is sufficient for small deformations applied on the large scale. Any kind of rearrange-

ments of the mineral aggregates during the deformation process were not observed,

but need to be considered when finite deformations are applied on the macro-level.

Finally an extension to the algorithm introduced in Chapter 6 was presented in Chap-

ter 7. Based on the fact that the generation of artificial microstructures in almost

all fields of interest is bound to requirements or even norms and standards, the ca-

pabilities of the algorithm with regard to these boundary conditions were shown in

detail. The capabilities were shown exemplary for one mastic asphalt (MA8S) and

one porous asphalt (PA8). Details about the necessary calculations to create these

microstructures were given and in comparison to a workflow with XRCT scans, it was

shown that this procedure is highly flexible and allows the application of statistics to

the generated microstructures.

As an outlook it is to note that some important aspects were not covered within this

thesis. For example, the fact that the proposed generation tool is restricted to the

description of mastic asphalt concrete or only the mineral aggregate part of a porous

asphalt. In future investigations it would be of high interest to cover air voids within

the compound to extend the range of possible applications for this tool and the sub-

sequent numerical simulations to even more asphalt concrete types. Another field of
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interest building on this thesis is the possibility to include other methods to investi-

gate the overall mechanical properties of the compound, for example order reduction

methods to create substitute models [20,39,66].

Concluding this thesis, the presented interpretation of experimental data, the ex-

tension of the master curve concept, the study concerning boundary conditions and

constitutive modeling in combination with the novel algorithm to create artificial and

simplified microstructures, lead to a deeper physical understanding of the behavior of

asphalt concrete. The thesis showed a thorough examination of asphalt concrete from

the experimental determination of single constituents right up to 3-dim simulations

of the compound.



Chapter A

APPENDIX

A.1 Linear-viscoelasticity

This part of the appendix is concerned with the different formulation for the angu-

lar frequency-dependent elastic moduli C(ω) within the Finite Difference method as

presented in [68] and the shown approach in this thesis according to the Finite Ele-

ment method. To recall the presented formulation in this thesis, see Eq. (3.32) and

Eq. (3.82) for the 0-dim and the 3-dim case respectively.
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One-dimensional

To check if both expressions are the same, the reference formulation for the Finite

Difference method is taken from [68]. The angular frequency-dependent elastic moduli

C(ω) in the Finite Difference scheme are given as

C(ω)FDM0−dim = E0 + E1 − E1
ωm

i ω + ωm
. (A.1)

Proof that both expressions are the same in a 0-dim formulation with C(ω)FEM0−dim as

in Eq. (3.32):

C(ω)FDM0−dim = C(ω)FEM0−dim

E0 + E1 − E1
ωm

i ω + ωm
= E0 +

ω2E1 + i ω ωmE1

ω2 + ω2
m

E1 − E1
ωm

i ω + ωm
=

ω2E1 + i ω ωmE1

ω2 + ω2
m

E1
i ω + ωm
i ω + ωm

− E1
ωm

i ω + ωm
=

ω2E1 + i ω ωmE1

ω2 + ω2
m

E1
i ω

i ω + ωm
=

ω2E1 + i ω ωmE1

ω2 + ω2
m

E1 i ω (i ω − ωm)

(i ω + ωm) (i ω − ωm)
=

ω2E1 + i ω ωmE1

ω2 + ω2
m

−E1 ω
2 − E1 i ω ωm
−ω2 − ω2

m

=
ω2E1 + i ω ωmE1

ω2 + ω2
m

ω2E1 + i ω ωmE1

ω2 + ω2
m

=
ω2E1 + i ω ωmE1

ω2 + ω2
m

X
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Three-dimensional

The procedure for the 3-dim formulation is similar and presented here with the angular

frequency-dependent elastic moduli C(ω) in the Finite Difference scheme given as

C(ω)FDM3−dim = 2E0 + 2E1 − 2E1
2ωm

i ω + 2ωm
. (A.2)

Proof that both expressions are the same in a 3-dim formulation with C(ω)FEM3−dim as

in Eq. (3.82)::

C(ω)FDM3−dim = C(ω)FEM3−dim

2E0 + 2E1 − 2E1
2ωm

i ω + 2ωm
= 2E0 +

ω2 2E1 + i ω ωm 4E1

ω2 + 4ω2
m

2E1 − 2E1
2ωm

i ω + 2ωm
=

ω2 2E1 + i ω ωm 4E1

ω2 + 4ω2
m

2E1
i ω + 2ωm
i ω + 2ωm

− 2E1
2ωm

i ω + 2ωm
=

ω2 2E1 + i ω ωm 4E1

ω2 + 4ω2
m

2E1
i ω

i ω + 2ωm
=

ω2 2E1 + i ω ωm 4E1

ω2 + 4ω2
m

2E1 i ω (i ω − 2ωm)

(i ω + 2ωm) (i ω − 2ωm)
=
ω2 2E1 + i ω ωm 4E1

ω2 + 4ω2
m

−2E1 ω
2 − 4E1 i ω ωm

−ω2 − 4ω2
m

=
ω2 2E1 + i ω ωm 4E1

ω2 + 4ω2
m

ω2 2E1 + i ω ωm 4E1

ω2 + 4ω2
m

=
ω2 2E1 + i ω ωm 4E1

ω2 + 4ω2
m

X
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