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Abstract

Within continuum dislocation theory one-dimensional energy functional of a bent beam,

made of a single crystal, is derived. By relaxing the continuously differentiable minimizer

of this energy functional, we construct a sequence of piecewise smooth deflections and

piecewise constant plastic distortions reducing the energy and exhibiting polygonization in

the annealed state. In addition, the theory of plastic bending of single crystal beam taking

into account continuously distributed dislocations is proposed. Applying the variational

asymptotic method we reduce the energy functional of the beam to the one-dimensional

energy functional which admits analytical solutions. The threshold value at the onset of

plastic yielding as well as the dislocation density are found in terms of the applied bending

moment. We consider also the polygonization of the bent beam after unloading and

annealing and show that such state is energetically preferable. The number of polygons is

estimated by comparing the surface energy of small angle tilt boundaries and the gradient

terms in the bulk energy.

Moreover, the theory of formation of grain boundaries in ductile single crystals is pro-

posed within the nonlinear continuum dislocation theory (CDT), where grain boundaries

are interpreted as surfaces of weak discontinuity in placement but strong discontinuity

in plastic slip. The set of governing equations and jump conditions are derived for the

energy minimizers admitting such surfaces of discontinuity from the variational principle.

By constructing energy minimizing sequences having piecewise constant plastic and elas-

tic deformation in an example of ductile single crystals deforming in plane strain uniaxial

compression, it is shown that the formation of lamellae structure with grain boundaries is

energetically preferable. The number of lamellae is estimated by minimizing the energy

of grain boundaries plus the energy of boundary layers.
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1 Introduction

During processes of forming materials like cold working, hot working and annealing, met-

als and alloys undergo significant microstructural changes. Among such changes one

should mention the formation and evolution of grain and subgrain boundaries (Hughes

and Hansen [51], Kuhlmann-Wilsdorf and Hansen [58]), deformation twinning in low

stacking fault metals and alloys (Christian and Mahajan [43], Tome et al. [73]), formation

of macroscopic shear bands in polycrystals (Jia et al. [52]) and single crystals (Harren

et al. [50], Uchic et al. [74]), polygonization (Cahn [15],Gilman [16]), texturing, recrys-

talization, deformation twinning, et cetera. The structural changes of metals and alloys

at microlevel may influence the macroscopic properties of these materials directly, as the

Taylor and Hall-Petch relations show (see, for instance, Hansen [49], Jiang and Weng

[53]). As a consequence, new materials with exceptionally high strength could be cre-

ated in this way. Therefore, the following question, interesting from the theoretical and

important from the practical point of view, arises: what kind of theory can we develop

to explain and predict such microstructural changes as well as the accompanying macro-

scopic responses of the materials? Unfortunately, so far there is no comprehensive answer

to this question except for some particular cases. However, one thing is for sure: since

the plastic slip as the product of collective movement of a huge number of dislocations

and grain boundaries are the active participants in this structural rearrangement, any

physically meaningful theory of formation and evolution of microstructure should capture

their behavior in a proper way.

One of the main guiding principles in seeking an appropriate theory of formation of

microstructure in metals and alloys has first been proposed by Hansen and Kuhlmann-

Wilsdorf [48] in form of the so-called LEDS-hypothesis: the dislocation structures in the

final state of deformation minimize the energy of crystals (see also Kuhlmann-Wilsdorf

[57], Laird et al. [60]). However, it is still difficult to develop the theory of formation

of dislocation structures based on this principle alone. The crucial step in this direction

has been done by Ortiz and Repetto [67], and Ortiz et al. [68], who introduced a new

ingredient to the energy minimization, namely the non-convexity of the energy. In their

1



1 Introduction

papers the problem of non-convex energy minimization has been formulated and studied

for ductile crystals within the finite crystal plasticity. By observing that the pseudoelastic

energy densities of crystals undergoing geometrical softening or latent hardening are in

fact non-convex, they showed that the laminate structures in which the piecewise constant

plastic deformation caused by a single slip system and the piecewise constant elastic

deformation in form of pure rotation serve as the energy minimizing sequences. Later

on, Carstensen et al. [42] discovered the non-convexity of the energy densities even for

crystals deforming in single slip without geometrical softening or latent hardening and

thus, extended the non-convex energy minimization to the whole finite crystal plasticity.

But crystal plasticity, as a phenomenological theory, operates with plastic slips while

ignoring their source: dislocations. To achieve an agreement with experiments it has

to introduce several phenomenological concepts like back stress or hardening as internal

variables obeying additional constitutive equations which would otherwise be derivable

as natural consequences of a more general continuum dislocation theory (see the series of

recently papers Berdichevsky and Le [4], Le and Nguyen [8, 9], Le and Kaluza [20], Le

and Kochmann [21, 22, 23], Le and Sembiring [26, 27, 28], Le and Nguyen [29], as well

as the alternative approaches in Engels et al. [44], Lee et al. [63], Lim et al. [64], Mayeur

and McDowell [65], Öztop et al. [66], which the framework of this theory has been laid

down by Kondo [54], Nye [31], Bilby et al. [40], Kröner [56], Berdichevsky and Sedov

[5], Le and Stumpf [11, 12], and Gurtin [39]. Let us mention also an approach proposed

recently by Zhu et al. [79], Zhu and Xiang [80] in which continuum models of dislocation

densities on low angle grain boundaries and the grain boundary energy (including also

the long-range elastic energy when the grain boundary is not in equilibrium) are derived

from the discrete dislocation dynamics. Such approach has the advantage of capturing

details of the formation process of grain boundaries in which the grain boundaries are in

general non-equilibrium. Ortiz and Repetto [67], at the end of their paper, did include the

dislocations and their energy into the crystal plasticity to justify some heuristic estimates

for the spacing of the dislocation walls and pointed out the way of generalization to the

continuum dislocation theory. However, to the best of our knowledge, the whole set of

governing equations as well as the boundary and jump conditions that must be satisfied

at the grain boundaries have not yet been derived and studied thoughtfully from the

continuum dislocation theory.

In this thesis, we will apply this CDT in two cases. Firstly, we use the linear version

of the CDT for the problems of polygonization and bending (Chapter 4). Secondly, we

use the nonlinear CDT for the shear banding problem (Chapter 5). After this short

introduction we will explain some basic notions in dislocation theory in Chapter 2, and

the continuum dislocation theory will be discussed details in Chapter 3.

2



In Chapter 4, the first part we will extend the qualitative modelling of polygonization

based on the CDT Berdichevsky [2, 3] which was proposed only recently in Le and Nguyen

[29] to the case of single crystal having one active slip system inclined at some angle to

the beam axis and comparing with the experimental results reported in Gilman [16]. To

match Gilman’s experimental setup, we specify the displacements of one face of the beam

rather than applying the bending moment to the ends of the beam. We then consider the

exact two-dimensional variational problem of minimizing energy of the bent beam within

the continuum dislocation theory. Applying the variational asymptotic procedure, we

reduce the energy functional to the one-dimensional functional, whose smooth minimizer

is found in closed analytical form. Based on this smooth solution we then construct a

sequence of piecewise smooth deflections and piecewise constant plastic distortions having

the same bending moment as that of the smooth minimizer. By including also energy

contributions at jumps of the plastic distortion, proposed in accordance with the Read-

Shockley formula for the low angle tilt boundaries Read and Shockley [32], we show that

these discontinuous functions do reduce the total energy of the bent beam. We give also

the estimation of the number of polygons and the average polygon distance.

The second part aims at constructing the asymptotically exact one-dimensional

theory of bending of single crystal beams having one active slip system within CDT. We

consider two cases: i) the dissipation due to the dislocation motion is assumed to be neg-

ligibly small so that the displacements as well as the plastic distortion can be determined

from the energy minimization, ii) rate-independent dissipation is taken into account lead-

ing to the minimization of “relaxed” energies. In both cases the variational problems

contain a small parameter and, consequently, they can be reduced to one-dimensional

variational problems by applying the variational-asymptotic method Berdichevsky [1], Le

[25]. The obtained one-dimensional variational problems admit analytical solutions rep-

resenting the smooth minimizers. It is established that there exists a threshold value for

the dislocation nucleation which depends on the thickness of the beam. This exhibits the

typical size effect of the gradient theory. Based on this analytical solution the deflection

of the beam, the dislocation density, and the moment-curvature curve are analyzed in

terms of the bending moment for different loading/unloading processes. We then con-

sider the polygonization of bent beam after unloading and annealing and prove that such

state possessing non-smooth plastic distortion is energetically preferable (Le and Nguyen,

2011; Le and Nguyen, 2012).

In Chapter 5, we apply the developed theory to plane strain problem for single

crystal deforming in single slip under the condition of uniaxial compression. Due to the

non-convexity of the energy in certain ranges of the overall stretch, the construction of

3



1 Introduction

the lamellae with piecewise constant plastic and elastic deformation leads to the energy

minimizing sequences as the solutions of these non-convex variational problems. In case

of plate under uniaxial compression the uniform states are not rank-one connected, so

dislocations and grain boundaries should adapt to the elastic strains chosen from the

homogeneous states in a smart way to satisfy the compatibility condition and, at the

same time, to minimize the energy. It turns out that the whole set of jump conditions is

needed to determine the orientation of grains (which are misoriented with respect to the

slip direction), the plastic slips, and the elastic rotations.

4



2 Basic in dislocation theory

2.1 Physical background

It is well-known that metals, alloys and a great deal of non-metallic solids are crystalline,

because the crystal structure of them is constructed by the periodically repeatable ar-

rangement of the atoms in three dimensions (Hull and Bacon [61]). To describe the

lattice structure, it is convenience to take one unit cell (parallelepiped), which is formed

by sets of parallel lines as shown in Figure 2.1. It is characterized by three lattice vec-

tors v1,v2,v3 which are orthogonal and have an equal magnitude in cubic crystals. The

lattice structure will be formed periodically for all integers a1, a2, a3 if it is translated by

the combination a1v1 + a2v2 + a3v3. In nature, there are around fourteen different types

Figure 2.1: Unit cell in whole structure.

of crystal unit cell structures, however the primary crystal unit cell structures of metals

are described as the body-centered cubic (bcc), face-centered cubic (fcc) and close-packed

hexagonal (hcp). In body-centered cubic structure, its unit cell contains one atom at

5



2 Basic in dislocation theory

each of the eight corners and one atom in the center (Fig.2.2a). The cornered atoms is

also atoms of the remaining seven unit cells, thus they are shared among eight unit cell

and in each unit cell there is just one per eight of a atom at each corner. The atoms

are not allowed to pack together closely in bcc as in another structure. With a similar

arrangement of atoms at eight corner, instead of having one atom at the center beside

the cornered atoms, face-centered cubic structure has atoms at centered of all cubic faces

(six faces)(Fig.2.2b). Each of these six atoms belong also to adjacent cells. Not like in

bcc structure, the atoms here can pack closest together. There is also true of hcp crystal.

Figure 2.2c displays the unit cell of hcp structure which consists twelve atoms at corner,

two atoms in the center of the upper and lower faces and three atoms are arrange totally

inside the cell as a triangle.

(a) Body-centered cubic. (b) Face-centered cubic. (c) Close-packed hexago-
nal.

Figure 2.2: Crystal structure.

In material science, the motion of dislocations is divided into two basic notions:

glide and climb. The movement of dislocations in the planes which contain dislocation

line and Burgers’ vector is called ”glide”, and the movement of dislocations normal to

the Burgers’ vector and out of the glide plane is called ”climb”. Slip planes is the planes

which contains a lot of glide-dislocations, and normally it is the planes which one can

observed experimentally the atomic density is the highest. In order to observe clearly the

gliding ability of crystals, let us consider a single crystal bar being in a tensile test (shown

in Figure 2.3). Its slip planes are inclined at some angle to the bar axis. In the test, a load

(F ) is applied in the vertical direction and it is measured together with the respective

elongation ∆l of the specimen. These two values are then converted into stress(σ) and

strain(ε) by the relation,

σ =
F

A0

,

ε =
∆l

l0
,

(2.1)

6



2.1 Physical background

Figure 2.3: Tensile test.

where A0, l0 is the original cross-sectional area and length of the specimen. The curve

displays the relationship between stress and strain is now can be seen by plotting all the

values of them (shown in Figure 2.4). When stress is applied under such a critical value

Figure 2.4: The stress-strain curve for metals.

which is called yield stress (σy), the deformation of the bar is perfectly elastic because

if it is unloaded then it recovers the original state with the initial length. The values of

stress in this region is always proportional to strain with a proportionality factor which

is well-known as the modulus of elasticity or Young’s modulus (E) and can be seen as

the slope of the linear part of the stress-strain curve. Starting from the yield point, the

bar begins to deform plastically if the stress is increased further. If looking closer to this

7



2 Basic in dislocation theory

deformed bar, one can see continuously steps at the surface of it. These steps are the

witnesses of the plastic slips on the active slip systems in which contains slip planes and

slip directions correspondingly (shown in Figure 2.5).

Figure 2.5: Schematic view of plastic slips.

In order to recognize and distinguish the planes and directions of these slip systems,

Miller indices are used for this purpose because it show exactly where are these positions

in crystallographic planes and directions. The Miller indices are defined by a set of three

integers a1, a2, a3 which are written in square brackets to indicate all directions parallel

to the vector a1v1 + a2v2 + a3v3. The smallest multiples of a1, a2, a3 are chosen for the

Miller indices. For instance, Miller indices for the directions s1, s2, s3 in Figure 2.6 are

[1̄01], [011̄] and [11̄0] respectively, where the bar over the index indicates the negative sign

of the corresponding components. Consequently, in order to present the crystallograpic

planes, the similar sets of integer are used and they are enclosed in parenthesis. For

example, the Miller indices for the plane which is shown in Figure 2.6 is (111).

2.2 Critical resolved shear stress

In mechanical fields, in order to produce plastic deformation with polycrystalline metal

specimens, the yield stress point must be exceeded. It is also true with single crystal

metals to initiate the plastic deformation, which is known as slip of the atomic planes,

the shear stress resolved on the slip plane and in the slip direction has to achieved the

8



2.2 Critical resolved shear stress

Figure 2.6: An example of slip directions (s1, s2, s3) and slip plane in an unit cell of fcc
crystals.

threshold value (or critical value). It is defined as critical resolved shear stress and how

large this value is depends on the applied tensile stress and the orientation of the slip

system. The equation of this relation can be derived as follow. Let consider a pillar with

area of cross section (A) is applied tensile force (F) at upper and lower boundary (Figure

2.7).The tensile stress is calculated as, σ = F
A

. φ is the angle between the normal of the

slip plane and the stress axis and θ is the angle between the slip direction and the stress

axis. The resolved shear stress is therefore given as

τ =
Fs
As
, (2.2)

where Fs = F cos θ is the resolved force acting on the slip plane and As = A
cosφ

is the area

of the slip plane. The equation is now can be written as,

τ =
F cos θ

A
cosφ

= σ cos θ cosφ, (2.3)

with cos θ cosφ being the so-called Schmid factor (Schmid [1924]). The slip system which

have the largest Schmid Factor is the active one. When θ = φ = 450 is occurred, the

resolved shear stress can be seen as equals to one half of the tensile stress which is the

maximum value that this shear stress can achieve, and when θ = φ = 450 the resolved

shear stress equals to zero which means that there is no slip.

9



2 Basic in dislocation theory

Figure 2.7: The determination of critical resolved shear stress equation.

2.3 Dislocation

Dislocation is an imperfection in crystals. Each dislocation is characterized by its line

and Burgers’ vector. A single dislocation can be created by cutting the crystal along any

smooth surfaces. Then the atoms on one side of the cut are shifted in a direction parallel

to the cut in one atom spacing. Finally, the atoms on both sides of the cut are rejoined

again, and the crystal is elastically relaxed. Thus, with an exception near the dislocation

line(line AB in the figures), the structure of the crystal is almost perfect. With different

orientation of the shifting, we get different type of dislocations.

An edge dislocation shown in Fig. 3.2b is created when the atoms below the cut is

shifted perpendicular to the dislocation line.

The migration of an edge dislocation through the crystal from left to right under an

applied shear stress τ is illustrated in Fig. 2.9. This migration, from one position to the

next, involves only a small rearrangement of the atomic bonds near the dislocation line.

10



2.3 Dislocation

Figure 2.8: Edge dislocation.

Figure 2.9: Migration of the edge dislocation.

A screw dislocation (Fig. 2.10) is created when the atoms below the cut is shifted

parallel to the dislocation line.

A mixed dislocation (Fig. 2.11) is created when the atoms below the cut is shifted

in a direction which is neither parallel nor perpendicular to the dislocation line.

2.3.1 Burgers’ vector

The most important characteristic of a dislocation is given in terms of Burgers circuit.

In Figure 2.12, the Burgers circuit is established around an edge dislocation. The left

Figure 2.10: Screw dislocation.

11



2 Basic in dislocation theory

Figure 2.11: Mixed dislocation.

(a) Burgers circuit
in dislocation-free
crystal.

(b) Burgers circuit and
Burgers vector in edge
dislocation.

Figure 2.12: Burgers circuit around edge dislocation.

close circuit is drawn in the reference dislocation-free crystal, while the right one is drawn

around an edge dislocation in the real crystal. The starting point and the end point

correspond to the same atom in the left circuit. However in the right circuit, the starting

point and the end point do not correspond to the same atom. There is a closure failure in

this circuit, which defines Burgers vector. The sense of this vector depend on the sense of

the dislocation line. We define the sense of the dislocation line by assigning a unit vector

τ tangent to the dislocation line and taking the positive sense in the positive direction

of τ . One can see that the Burgers vector of an edge dislocation is perpendicular to the

dislocation line.

Figure 2.13: Burgers circuit and Burgers vector in screw dislocation.

12



2.3 Dislocation

On the contrary, in a screw dislocation, the Burgers vector is parallel to the dislo-

cation line as shown in Figure 2.13.

2.3.2 Screw dislocation

It is true that stresses occur in the crystal containing dislocations although there are no

external forces and tractions acting on it. By using the framework of linear elasticity

as a foundation, we can determine these self-stresses through out the process of creating

a single dislocation in crystal. As derived fully details in Le [6], there are only two

independent non-zero components in the stress tensor, σ31 and σ32, which are computed

from stress function (Ψ) as,

σ31 = Ψ,2, σ32 = Ψ,1, (2.4)

where Ψ = −µb
2π

ln |x| is found by solving the differential equation,

1

µ
∇2Ψ = −bδ(x), (2.5)

with b is the magnitude of the Burger’s vector, δ(x) is the Dirac delta function and µ is

the material constant. By differentiating the stress function we obtain,

σ31 = −µb
2π

x2

r2
, σ32 =

µb

2π

x1

r2
. (2.6)

Applying the Hooke’s law given us the elastic strains as,

εe31 = − b

4π

x2

r2
, εe32 =

b

4π

x1

r2
. (2.7)

The total elastic energy per unit length of the dislocation line is obtained by taking the

integral of the energy density of the crystal over the whole plane,

E =

∫
φdx, (2.8)

where φ = 1
2
λ(εeii)

2 + µεeijε
e
ij = 2µ[(εe31)2 + (εe32)2]. The result come out as the total of the

energy surrounding lattice and the dislocation core energy, respectively as,

E =
µb2

4π
ln

a

πε
+ µb2ẽ, (2.9)
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2 Basic in dislocation theory

where ẽ = 0.0327386, a is the size of the square which is used to take the integral, ε is the

effective size of the core.

2.3.3 Edge dislocation

The stresses in edge dislocations are more complicated than in screw dislocations, the non-

zero components of the stress tensor are σ11, σ22, σ33, σ12 = σ21 which are also calculated

from the stress function Ψ,

σ11 = Ψ,22, σ22 = Ψ,11, σ33 = ν∇2Ψ, σ12 = σ21 = −Ψ,12, (2.10)

so that they can satisfied the equilibrium equations of the plane strain state due to the

dislocation line along x3-axis,

σ11,1 + σ12,2 = 0, σ21,1 + σ22,2 = 0. (2.11)

From Le [6], Ψ = µb
2π(1−ν)

r sin υ ln r = µb
4π(1−ν)

x2 ln(x2
1 + x2

2) is found from the fourth order

differential equation,

1− ν
2µ
∇2∇2Ψ = −bδ,2(x). (2.12)

From 2.11 we obtain,

σ11 = − µb

2π(1− ν)

x2(3x2
1 + x2

2)

(x2
1 + x2

2)2
,

σ22 =
µb

2π(1− ν)

x2(x2
1 − x2

2)

(x2
1 + x2

2)2
,

σ12 = σ21 =
µb

2π(1− ν)

x1(x2
1 − x2

2)

(x2
1 + x2

2)2
,

σ33 = − µbν

π(1− ν)

x2

(x2
1 + x2

2)
.

(2.13)

The elastic strains are then calculated by applying Hooke’s law yield,

εe11 = − b

4π(1− ν)

x2[(3− 2ν)x2
1 + (1− 2ν)x2

2]

(x2
1 + x2

2)2
,

εe22 =
b

4π(1− ν)

x2[(1 + 2ν)x2
1 − (1− 2ν)x2

2]

(x2
1 + x2

2)2
,

εe12 = εe21 =
b

4π(1− ν)

x1(x2
1 − x2

2)

(x2
1 + x2

2)2
.

(2.14)
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2.4 Formation of microstructure

The total elastic energy per unit length of the dislocation line becomes,

E =
µb2

4π(1− ν)
ln
r

r0

, (2.15)

where r is the distance from the dislocation line to the boundary of the crystal and r0 = b
α

is the effective radius of the dislocation core (α = 4).

2.4 Formation of microstructure

2.4.1 Cold working process

Cold working which is also called strength hardening or work hardening is a process of

strengthening materials through the plastic deformation below the crystallization tem-

perature, usually in room temperature. Because of the movement and generation of

dislocations during this process, it make themselves get stuck and tangled, thus it is diffi-

cult for them to move then it makes the material become harder and stronger. However,

it reduces the material ductility and induces residual stresses inside material. Some of

the common cold working process are rolling (2.14 a), bending (2.14 b), drawing (2.14 c),

etc....

Figure 2.14: Cold working process.
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2 Basic in dislocation theory

2.4.2 Polygonization

2.4.2.1 Experiments

The experiments on polygonization of zinc monocrystals done by Gilmann can be pre-

sented in the following scheme.

Figure 2.15: The stages of experiment.

In the following we describe each step in more details.

2.4.2.1.1 Preparation of the specimens

A single crystal must first be obtained by the crystal growth. Bridgman method was

used for growing the crystals which was in round (5/32 in. I. D.) and square (6× 6mm)

precision Pyrex tubes. The crystals orientation was obtained by seeding method which

control most of crystals having χ0 = 350, where χ0 is the angle between the slip planes

and the beam axis. The raw material was chosen from New Jersey Zinc Company with

99.999 percent of zinc.

In order to determine the orientation of the crystal, Greninger chart and back-

reflection X-ray method, which is called Laue method, were used. The former, which

is shown on Fig. 2.16 greatly facilitated the interpretation of the back reflection Laue

pattern. The latter, which is shown on Fig. 2.17 is used for specifying the orientation

of the crystal by meridian (longitude) and parallel coordinates (latitude). The angle of

the longitude is varied by the rotation about the vertical axis(V-V), and the angle of the

latitude is varied by the motion of the line along vertical circle.
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2.4 Formation of microstructure

Figure 2.16: Greninger Chart (Hybler [19]). Reprinted by permission.

Figure 2.17: Laue back-reflection X-ray method.

After determining the orientation, the crystal was cut into small specimens whose

size is about one and a quarter inch. Subsequently, on each specimen, for creating a sharp

wedge to be flat on one side, one end was cleaved at a temperature negative 196 degrees

of Celsius.

The next step in preparation process of the specimens is bending the crystal. A

generating circle, which is called bending jig, is used for aligning the flat side of the

crystal in order to fix the bending axis relative to the crystal axes. Afterward, at the

ends of the crystal, a reverse bending moment was applied at low temperature, which is

similiar to the temperature when creating sharp wedge (negative 196 degrees of Celsius),

to cleaved along crystal bent cleavage surfaces.
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2 Basic in dislocation theory

The specimen was then polished due to macroscopic smoothness. Before immersing

the crystal into chemical polish, it was cleaned in HCl. There were two solutions for

choosing the chemincal polish for zinc, the first one yield fast action but difficult to

control, therefore, the second solution was chosen. It was composed of 160g CrO3, 20g

Na2SO4.10H2O and 500cc H2O. In order to get the highest result, the process in which

the crystal was immersed and washed in chemical for 10 seconds, was repeated several

times.

2.4.2.1.2 Annealing and observing polygonization

When the preparation process had finished, this polished bent crystal was annealed in

furnaces at a temperature about 350 degree of Celsius. The furnace atmosphere is only

air without any special chemical. At that temperature, the surfaces which were cleaved

were not affected by appreciable oxide. In order to get the net annealing times for data

table, the total time of the specimen in furnace was reduced due to the experience from

the test with a typical specimen which required about three minutes to approach within

10 degrees of the annealing temperature.

There were two methods for observing results from the specimen: optical method

and back reflection Laue technique. Both of them are used for determining the polygon

angles when the polygonized state appeared. According to optical method, the polygon

angles are calculated by taking the average spacings of the boundaries divided by the ra-

dius of curvature. This method used a fixed aperture of the lighting system to illuminated

on a narrow band of the cleavage surfaces then measuring the widths of the illuminated

bands on polished drill-rods to establish the calibration curve. Hence, the radius of cur-

vature of the cleavage planes was found by using the graph of bandwidth versus drill-rod

radius. The polygon angles were dectected through this method as small as 10−3 radian

consistently. It was also dectected the similar results about 10−3 radian when using X-ray

method (see Fig. 2.18).

2.4.3 Formation of grain and subgrain boundaries

In physical metallurgy, materials are composed not just only single crystal, on the other

hand they are constructed by many crystallites (or grains) which have a variety of sizes and

orientations (shown in Figure 2.19). The interface between grains is called grain bound-

aries. The grain boundary is commonly defined as the boundary between misoriented
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2.4 Formation of microstructure

Figure 2.18: View along intersections of slip planes with polygon boundaries in a polygo-
nized zinc crystal (Gilman [16]). Reprinted by permission.

Figure 2.19: Transmission electron micrographs of polycrystalline pure aluminum (Hansen
[17]). Reprinted by permission.

(and/or) misfitted crystallites as shown in Fig. 2.20. For single crystals such boundary

can occur only due to the jump in the elastic deformation because the plastic deformation

leaves the crystal lattice unchanged. However, as the multiplicative resolution of the de-

formation gradient applies, the logical possibility of jumps in the deformation gradient as

well as in the plastic slip at such boundary should be admitted. At low temperature the

grain boundaries are, as a rule, quite strong and do not weaken metals, therefore we may

exclude the crack formation in these materials by assuming that the placement field exists

and is continuous everywhere. In this case the grain boundary must be regarded as the

surface of weak discontinuity in placement but strong discontinuity in plastic slip. These

grain boundaries can be modeled as an arrays of dislocations. This idea was first proposed

by Bragg and Burger in 1940. If the mis-orientation between two grains are less than 15

degree, so called low angle grain boundaries or sub-grain boundaries or low misorientation
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2 Basic in dislocation theory

Figure 2.20: HREM micrograph of a typical grain boundary (Valiev [77]). Reprinted by
permission.

Figure 2.21: Dislocation model of low angle grain boundary.

tilt grain boundaries, it can be easily illustrated as in Figure 2.21. The relation between

the misorientation angle (the angle of the tilt) θ and the distance between dislocation d

can be express as,

sin
θ

2
=

b

2d
, (2.16)

where b is the Burgers vector of a dislocation in the boundary. If the misorientation angle

is small, it leads to sin θ
2

= θ
2
, thus this relation becomes,

θ =
b

d
. (2.17)
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2.4 Formation of microstructure

2.4.4 Severe plastic deformation

Severe plastic deformation (SPD) is a general name for representing a group of methods

which is applied for working with metals and alloys. It increases the strains state of

materials dramatically by using high imposed pressure for making the materials deform

plastic. Thus, the microstuctures are transformed into fine (with grains size < 10µm)

and even extremely fine-grained structures (with grains size < 1µm). The most popular

approaches of SPD are equal channel angular extrusion (ECAE) or equal channel angular

pressing (ECAP), cyclic extrusion-compression, torsion-compression, multi-axis forging

and accumulated roll bonding. All of these methods have the common characteristics

that the materials are deformed under high pressure, therefore they are able to perform

very large deformations while pressure prevents them from damage or cracks. We would

like to discuss further in ECAP methods due to its significant advantages that does not

reduce the cross sectional area during the processed operations, and with a pressure and

load not so high it can produce such a large and uniform deformations.

ECAP is a process of pressing a billet (a piece of metal or alloy) which is lubricated

through out two channel in a die as shown in Fig 2.22. This two channels cross-section

Figure 2.22: The ECAP process.

intersect at an angle θ and the the rounded corner with angle ϕ. Usually θ is chosen to

be between 900 and 1200 to prevent the billet from damages and cracks during repeated

process and to maximize the results of each pass. In contrast with the significant effect of

θ, the chosen of ϕ is less important, it is often chosen to be equal 0. Exceptionally in finite

element modeling, it is chosen from 200 to 600 so that the material go smoothly through
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2 Basic in dislocation theory

out the channels to avoid the sharp corner problems in creating the FEM model. Because

the cross section of the billet still remains the same after going through the channels,

thus the process can be repeated until the billet strengthening gradually disappear. As a

results a large amounts of plastic strains are imposed on the billet. The equivalent strain

per each pass of the process, depends on the angles ϕ and θ, is given by Iwahashi, et al.

[82] as,

εeq =
1√
3

[2 cot(
ϕ

2
+
θ

2
) + ϕcosec(

ϕ

2
+
θ

2
)]. (2.18)
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3 Continuum dislocation theory

3.1 Linearized continuum dislocation theory

3.1.1 Nye’s dislocation density

The first attempt of taking into account the dislocations in the plastically bent beam was

made by Nye [31] who expressed the curvature of a beam caused by dislocations in terms

of the dislocation density tensor. The geometry for bending by single slip, which is used

for the experiments, was first determined by West [18]. It is illustrated in Fig. 3.1, where

the variety of symbols may be used to represent the parameters relations. According to

West, the slip planes are defined through equations:{
x = a(cosψ + ψ sinψ)

y = a(sinψ − ψ cosψ)
(3.1)

where a is the radius of generating circle and equal to R sinχ0.

The radius of curvature are calculated as

c =
√

(L2 − a2) (3.2)

with L =
√

(x2 + y2).

The local dislocation density (ρ) has been found by Nye which can be used for small

strains. The local dislocation density is proportional to the Burgers’ vector (b) with an

assumption that D << c, where D is slip plane spacing, and reads,

ρ =
1

bc
(3.3)

The average radius of curvature, which is used for obtaining the average dislocation den-
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3 Continuum dislocation theory

Figure 3.1: Geometry of slip planes in bent specimen (Gilman [16]). Reprinted by per-
mission.

sity, is given by

c̄ =
1

t

r1∫
r2

√
(L2 − a2)dL (3.4)

and can be roughly calculated from the value of R if L ≈ R, thus,

c = (R2 −R2 sin2 χ0)
1
2 = R cosχ0 ≈ c̄. (3.5)

Since the average radius of curvature (c) decreases for R < L and increases for

R > L, it can be seen that this approximation is fairly good provided (r1 − r2) is small

compared with R and χ0 is not large.

Consideration of Fig. 3.1 will show that the slip planes become perpendicular to the

surface of r2 = a. According to discussion of West and Nye, this imposes a limitation on

the minimum value that R can have for the deformation of a single slip system . However,

this minimum is limited by another factor due to twinning. Hence, the factors, such as

temperature and impurities, that affect the ratio of the twinning stress to the slip stress

also cause the change of minimum of R.

For calculating the minimum value of R with a given crystal thickness t and orien-

tation χ0, Nye ignores the change in thickness of the crystal during bending. Because the
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3.1 Linearized continuum dislocation theory

volume of the crystal do not change during bending process,

a2 = R(R− t) (3.6)

with a = R sinχ0, so the minimum of R is obtained as,

Rmin =
t

cos2 χ0

(3.7)

From the equation, the crystal cannot be bent when χ0 = 900 and it is possible to

bend the crystals when χ0 = 00 until R = t. It was found that crystals could be bent

to small radius without tensile or compressive twinning when the orientation χ0 is about

350.

According to Nye theory, in polygonization experiments on single hexagonal metal

crystals, the polygon walls are planes while the glide planes are deformed into cylinders

whose sections are the involutes of a single curve. In the general three dimensional case,

by taking a Burgers circuit of a unit area normal to the unit vector n has Burgers vector

B yields,

Bi = αijnj. (3.8)

Nye had introduced here the coefficients αij as the dislocation density tensor for specifying

the state of dislocations. With the assumption that the distribution of dislocations is

continuous, there are several sets of dislocations in a deformed crystal with its local

density ρ, dislocation line direction l and Burgers vector b. The dislocation density

tensor is calculated as,

αij = ρbilj. (3.9)

Read [33] and Bilby et al [13] have extended this result to the case when the stress

due to dislocations does not vanish. The macroscopic stress (average stress in a volume

containing many dislocations) in a uniformly bent crystal is related to the dislocation

density by a simple differential equation analogous to Poisson’s equation. Differences

between bending and tension tests give information about the dislocation mechanism of

deformation. A material that has a flat stress-strain curve in tension may show a yield

point in bending if the stress required to move dislocations is substantially less than

the stress required to generate dislocations. Read has later derived for the special case
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3 Continuum dislocation theory

of simple bending a relation between the lattice curvature and stress gradient in a solid

containing dislocations. It is shown that this relation follows at once from the fundamental

relation in the theory of continuous distributions of dislocations. As a further example the

relations between the stress gradient, dislocation density and lattice curvature in twisted

cylindrical bars are given. It is also shown that the properties of linear dislocation arrays

used by Read follow from the general expression for the dislocation tensor of a surface

dislocation.

There is no doubt that these theories are not able to predict the distance between

polygons. So, this is the motivation for us to consider the polygonization within continuum

dislocation theory.

3.1.2 Linearized continuum dislocation theory

It is well-known that dislocations cause plastic deformation of single or polycrystals. The

dislocation pile-up near obstacles increases the hardening of material (Fig. 3.2). When

dislocations move to the grain or phase boundaries, the energy disspation of the crystal

appears through the resistance against this motion. The understanding of the nucleation

(a) Dislocation pile up at obstacle.

(b) An array of dislocations pile up under
stress.

Figure 3.2: Dislocation pile-up.

and motion of dislocations is therefore crucial for explaining the plastic material prop-

erties. Continuum dislocation theory can be used to describe and simulate the complex

dislocation network which contains an aggregate of a huge amount of dislocations. In

what follows we present in some details this continuum dislocation theory.

Considering a crystal with one slip system. The total strains of the crystal are
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3.1 Linearized continuum dislocation theory

the sum of the elastic strains and the plastic strains. The plastic strains are calculated

through plastic distortion as below

εpij =
1

2
(βij + βji). (3.10)

The elastic strains are then obtain by subtracting the plastic strains from the total strains,

εeij = εij − εpij =
1

2
(ui,j + uj,i)− εpij, (3.11)

with ui being the components of the displacement vector. For one slip system the plastic

distorsion is given by

βij = β(x)simj, (3.12)

with s being the unit vector characterizing the slip direction, and m the normal vector to

the slip plane.

In general, the continuous plastic distortion does not cause any volume change

because βii = 0.

It is obvious that the plastic distortion is exactly the gradients of the plastic dis-

placement fields as,

βij = upi,j, (3.13)

thus, we also have total distortion and elastic distortion,

βTij = uTi,j, βeij = uei,j, (3.14)

and

βTij = βeij + βij (3.15)

which is compatible. By rewriting the above formula, let us introduce the changes of

displacement over distances as,

duTj = βTijdxi, (3.16)

duej = βeijdxi, (3.17)

duj = βijdxi, (3.18)
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3 Continuum dislocation theory

where dx is the distance between two points. Integrating over an arbitrary loop c enclosing

a surface A, these changes can be written using Stokes’ theorem as,∮
c

duTj =

∮
c

βTijdxi =

∫
A

(curlβT )ijnidA = 0, (3.19)∮
c

duej =

∮
c

βeijdxi =

∫
A

(curlβe)ijnidA, (3.20)∮
c

duj =

∮
c

βijdxi =

∫
A

(curlβ)ijnidA. (3.21)

From 3.15 and 3.22, we have,

curlβT = 0, (3.22)

curlβe = −curlβ. (3.23)

According to Burgers [83], the resultant Burgers’ vector is calculated through elastic

displacement as,

Bi = −
∮
c

duej . (3.24)

By substituting the relation between elastic and plastic distortion together with using

3.22 into 3.24 we obtain,

Bi =

∫
A

(curlβ)ijnidA =

∫
A

εjklβil,knidA. (3.25)

In addition, from Nye theory, if one take an arbitrary infinitesimal surface da, αijnjda

give the resultant Burgers’ vector of all dislocations whose dislocation lines cut this area

Bi = αijnjda. (3.26)

Equations 3.25 and 3.26 give, the important characteristic of dislocations, introduced by

Nye [31], Bilby et al [13] and Kröner [14] , is the dislocation density tensor defined by

αij = εjklβil,k. (3.27)

Here εjkl is the permutation symbol,

εjkl =


1 when jkl are even permutations of 123,

−1 when jkl are odd permutations of 123,

0 when at least two of indices are equal.

(3.28)
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3.1 Linearized continuum dislocation theory

For a crystal deforming in single slip, the number of dislocations per unit area can

be computed as:

ρ =
|B|
bda

=
|αijnjda|
bda

=
|αijnj|
b

=
1

b
|εjklβ,kmlnj| (3.29)

where b is the magnitude of Burgers’ vector.

In continuum dislocation theory, the free energy density is the sum of the elastic

energy density, which depends on the elastic strain εeij, and the energy density of mi-

crostructure, which depends on the dislocation density αij

Φ =
1

2
λ(εeii)

2 + µεeijε
e
ij + φm(αij). (3.30)

Here φm(αij) corresponds to the energy density of the dislocation network, and for single

crystal have only one slip system, this energy density becomes

φm = µk ln
1

1− ρ
ρs

(3.31)

with k being a material constant, µ the shear modulus, ρs the saturated dislocation

density. The logarithmic energy stems from two facts: i) for small dislocation densities

the energy of the dislocation network must be proportional to the dislocation density, and

ii) there exists a saturated dislocation density which characterizes the closest packing of

dislocations of equal signs admissible in the discrete crystal lattice. The logarithmic term

ensures a linear increase of the energy for the small dislocation density ρ and tends to

infinity as ρ approaches the saturated dislocation density ρs hence providing an energetic

barrier against over-saturation.

Let V be a region occupied by the crystal in its initial state. The free energy of the

crystal confined in the region V reads

E =

∫
V

Φ(εeij, ρ) dx. (3.32)

Provided the energy dissipation can be neglected, the variational principle of the contin-

uum dislocation theory states that the true displacement field and the plastic distortion

in the final equilibrium state minimize this energy functional. As a consequence

δE = 0. (3.33)
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3.2 Nonlinear continuum dislocation theory

Nonlinear CDT starts from the basic kinematic resolution of the deformation gradient

F = ∂y/∂x into elastic and plastic parts [40]

F = Fe · Fp. (3.34)

We attribute an active role to the plastic deformation: Fp is the deformation creating

dislocations (either inside or at the boundary of the volume element) or changing their

positions in the crystal without distorting the lattice parallelism (see Fig. 3.3). In contrary,

the elastic deformation Fe deforms the crystal lattice having frozen dislocations [7]. Note

that the lattice vectors remain unchanged when the plastic deformation is applied, while

they change together with the shape vectors by the elastic deformation.

F

Fp

Fe

Figure 3.3: Multiplicative decomposition

For crystals deforming in single slip Ortiz and Repetto [67] introduced the resul-

tant Burgers vector of excess dislocations, whose lines cross the area A in the reference

configuration, in the following way

br =

∮
C
Fp · dx, (3.35)

where C is the close contour surrounding A. Le and Günther [7] have shown that, in

the continuum limit, when the atomic distance goes to zero at the fixed sizes of the

representative volume element and the fixed density of dislocations per area of unit cell,

integral (3.35) gives the total closure failure induced by Fp which must be equal to the
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3.2 Nonlinear continuum dislocation theory

resultant Burgers vector. It is natural to assume Fp continuously differentiable in this

continuum limit, so, applying Stoke’s theorem we get from (3.35)

br = −
∫
A

(Fp ×∇) · nda,

where × denotes the vector product, ∇ is the nabla operator with respect to the coor-

dinates x of the reference configuration, da the surface element, and n the unit vector

normal to A. This legitimates the introduction of the dislocation density tensor

T = −Fp ×∇. (3.36)

For an infinitesimal area da with the unit normal vector n, the resultant Burgers vector

of all excess dislocations, whose dislocation lines cross this area is given by

br = T · n da.

This is quite similar to the Cauchy formula relating the traction with the stress tensor.

There is still one important question related to (3.36): can the dislocation density

tensor defined in this way be experimentally measured in principle? Since this dislocation

density tensor is referred to the reference configuration, the use of equation (3.36) is diffi-

cult in practice because the original reference configuration of the real sample is typically

unknown or ambiguous. All that can be measured from the plastically deformed material,

for example through high resolution electron backscatter diffraction EBSD (see [59] and

the references therein), is the deformed lattice in the current configuration. To refer to

the current configuration let us use the multiplicative resolution (3.34) of the compatible

total deformation together with the relation dy = F · dx to present integral (3.35) in the

form

br =

∮
c

Fe−1 · dy, (3.37)

where c is the corresponding close contour in the current configuration. This formula

enables one to introduce the spatial dislocation density tensor

t = −Fe−1 ×∇y, (3.38)

where ∇y is the nabla operator with respect to the coordinates y of the current configura-

tion. Definitions (3.37) and (3.38) seem more preferable since they do not depend on the

reference configuration. Besides, formulas (3.37) and (3.38) remain also invariant with
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respect to any superimposed homogeneous plastic deformation which does not change the

dislocation content within the specimen. However, for crystals deforming in single slip

and with the known reference configuration the use of the referential dislocation density

tensor (3.36) in the constitutive equations is preferred.

According to Kröner [55], the elastic deformation Fe and the dislocation density

tensor T characterize the current state of the crystal, so these two tensors are the state

variables of the continuum dislocation theory. The reason why the plastic deformation

Fp cannot be qualified for the state variable is that it depends on the cut surfaces and

consequently on the whole history of creating dislocations (for instance, climb or glide

dislocations are created quite differently). Likewise, the gradient of plastic strain tensor

Cp cannot be used as the state variable by the same reason. In contrary, the dislocation

density tensor depends only on the characteristics of dislocations in the current state

(Burgers vector and positions of dislocation lines) and not on how they are created, so

T is the proper state variable. Thus, if we consider isothermal processes of deformation,

then the free energy per unit volume of crystal (assumed as macroscopically homogeneous)

must be a function of Fe and T

ψ = ψ(Fe,T).

Now, if we superimpose a rigid-body rotation R onto the actual deformation of the body,

then the total and elastic deformation change according to

F∗ = R · F, Fe∗ = R · Fe.

At the same time, the plastic deformation Fp, regarded as the linear map acting completely

in the reference configuration, remains unchanged. As such superimposed rigid-body

rotation does not change the elastic strain and the dislocation density, we expect that the

energy remains unchanged. The standard argument (see, e.g., [46]) leads then to

ψ = ψ(Ce,T),

where Ce is the elastic strain defined by

Ce = FeT · Fe.

For the single crystal having only one active slip system the plastic deformation has
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3.2 Nonlinear continuum dislocation theory

the form

Fp(x) = I + β(x)s⊗m,

where β(x) is called the plastic slip. Then it is easy to see that

T = −Fp ×∇ = s⊗ (∇β ×m).

If, in addition, all dislocation lines are straight lines parallel to the direction l, then, taking

the infinitesimal area da with the unit normal l, we obtain the resultant Burgers vector

of all excess dislocations whose dislocation lines cross da under right angle in the form

br = s[(∇β ×m) · l] da.

Thus, this vector is parallel to the slip direction s. The scalar dislocation density (or the

number of excess dislocations per unit area) can then be determined as

ρ =
1

b
|(∇β ×m) · l|. (3.39)

In this case we will assume the free energy density in the following form

ψ = ψ(Ce, ρ). (3.40)

Let the undeformed single crystal occupy some region V of the three-dimensional

euclidean space. The boundary of this region, ∂V , is assumed to be the closure of union of

two non-intersecting surfaces, ∂k and ∂τ . Let the displacement vector be a given smooth

function of coordinates, and, consequently, the plastic slip β vanishes

y(x) = x + u(x), β(x) = 0 at ∂k, (3.41)

where u(x) = y(x) − x is the given displacement vector. At the remaining part ∂τ the

“dead” load τ is specified. If no body force acts on this crystal, then its energy functional

is defined as

I[y(x), β(x)] =

∫
V
w(F, β,∇β) dx−

∫
∂τ

τ · y da, (3.42)

where

w(F, β,∇β) = ψ(Ce, ρ), (3.43)
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and dx = dx1dx2dx3 denotes the volume element. Provided the resistance to the disloca-

tion motion is negligibly small and no surfaces of discontinuity occur inside crystals, then

the following variational principle turns out to be valid for single crystals with one ac-

tive slip system: the true placement vector y̌(x) and the true plastic slip β̌(x) in the final

equilibrium state of deformation minimize energy functional (3.42) among all continuously

differentiable fields y(x) and β(x) satisfying constraints (3.41).

If the resistance to the dislocation motion cannot be neglected, the energy mini-

mization should be replaced by the following variational equation [70]

δI +

∫
V

∂D

∂β̇
δβ dx = 0. (3.44)

The last term in this equation describes the energy dissipation due to the dislocation

motion, where the dissipation function D(β̇) is assumed to depend only on the rate of the

plastic distortion. We shall consider the simplest rate-independent theory for which

D(β̇) = K|β̇|,

with K being the critical resolved shear stress. If the sign of β̇ does not change during

the evolution of β, the variational equation (3.44) reduces to minimizing the following

“relaxed energy” functional

Id[y(x), β(x)] =

∫
V
[w(F, β,∇β) +Ksign β̇ β] dx−

∫
∂τ

τ · y da. (3.45)

So, if no surfaces of discontinuity occur, the true placement and plastic slip fields in the

final equilibrium state of deformation minimize the “relaxed” energy functional among all

continuously differentiable admissible placements and plastic slips satisfying constraints

(3.41). Finally, if β̇ = 0, then the plastic slip is frozen, while the displacements should

be found by minimizing (3.42) with this frozen β. Note that this nonlinear CDT, in the

limit of small displacements and small plastic slips, reduces to the linear CDT developed

in [2] and in our numerous papers (see [4, 8, 9, 20, 21, 22, 23, 26, 27, 28, 29]).
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3.3 Equilibrium conditions for crystals with grain boundaries

3.3 Equilibrium conditions for crystals with grain

boundaries

As we know from chapter 2 about grain boundaries, in order to be able to model the

formation of the grain boundaries by CDT we must extend the variational principles

formulated in the previous section to include the energy of the grain boundaries and to

minimize the modified energy functional among functions y(x) and β(x) admitting weak

discontinuity in y(x) but strong discontinuity in β(x) across some surface. For simplicity

we analyze the case of single crystal having one active slip system and one grain boundary,

where we let F = ∂y/∂x and β(x) be continuous everywhere except at some surface S on

which these quantities suffer jumps. Denote by F± and β± the limiting values of F and β

on the two sides of S which divides the region V into V+ and V− shown in Fig. 3.4. We

assume that the boundary of S is a fixed curve lying at the boundary of the region V .

n
S

V+

V-

Figure 3.4: Region V with the discontinuity surface S

Since the placement is continuous everywhere, Hadamard’s compatibility condition must

be fulfilled

[[F]] = q⊗ n, (3.46)

where [[F]] = F+−F− denotes the jump, with q being the “polarization” vector measuring

the amplitude of the jump, and n the unit normal on S pointing in the + direction. Taking

into account also the energy of the grain boundary, we redefine the energy functional as

follows

I[y(x), β(x)] =

∫
V\S

w(F, β,∇β) dx+

∫
S
ζ da−

∫
∂τ

τ · y da, (3.47)

where ζ is the energy per unit area of the grain boundary. We assume ζ to be a constant

(which is a good approximation except for small misorientation angles less than 15 degree).

We formulate the following variational principle: among all admissible placements and

plastic slips admitting weak discontinuity in y(x) but strong discontinuity in β(x) across
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some surface, the true placement and plastic slip in equilibrium minimizes functional

(3.47) under constraints (3.41).

In order to derive the necessary conditions for the minimizer we must compare its

energy with the energies of crystal evaluated at neighboring placements and plastic slips.

Let us introduce a one-parameter family of neighboring placements y(x, ε) and plastic slips

β(x, ε) such that y(x, 0) = y̌(x) and β(x, 0) = β̌(x) (check denotes the energy minimizer

in equilibrium). Since the surface of discontinuity is unknown and must also be subject

to variation, we admit that these admissible fields have surfaces of discontinuity differing

from the true surface Š in equilibrium. We denote these surfaces by Sε. Then the energy

functional becomes

I[y(x, ε), β(x, ε)] =

∫
V+
ε

w(F, β,∇β) dx+

∫
V−
ε

w(F, β,∇β) dx

+

∫
Sε
ζ da−

∫
∂τ

τ · y da.
(3.48)

The variation of the energy functional for this family of admissible placements and plastic

slips can be defined as follows

δI =
d

dε
I[y(x, ε), β(x, ε)]

∣∣∣∣
ε=0

.

Since I[y(x, ε), β(x, ε)], as function of ε, has a minimum at ε = 0, its first variation must

vanish

δI = 0. (3.49)

To draw consequences from (3.49) we must be able to compute the variation δI

precisely. This is difficult, because the regions of integration V±ε and surfaces of dis-

continuity Sε themselves depend on ε. This difficulty can be overcome by introducing a

one-parameter family of smooth and one-to-one mappings z(x, ε) of V into itself such that

(see, e.g., [6])

V̌+ z7→ V+
ε , V̌− z7→ V−ε , Š z7→ Sε,

z(x, ε) = x, when ε = 0 or when x ∈ ∂V .

The purpose of such mappings is to transform the integrals in (3.48) to those taken over

the regions V̌± and surface Š which are independent of ε. Since the regions of integration

are independent of ε, the differentiation with respect to ε and the integration can be
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3.3 Equilibrium conditions for crystals with grain boundaries

interchanged. Employing now the index notation for clarity, we compute the variation of

the first integral in (3.48)

δ

∫
V+
ε

w(yi,a, β, β,a) dx = δ

∫
V̌+

w

(
∂yi
∂za

, β,
∂β

∂za

)
det za,b dx

=

∫
V̌+

[
δw

(
∂yi
∂za

, β,
∂β

∂za

)
+ wδ det za,b

]
dx

=

∫
V̌+

(
Piaδ

∂yi
∂za

+
∂w

∂β
δβ +

∂w

∂β,a
δ
∂β

∂za
+ wδza,a

)
dx,

where P = ∂w/∂F is the first Piola-Kirchhoff stress tensor. When deriving this formula

the obvious identity δ det za,b = δza,a is used. From now on δ under integral signs denotes

partial derivatives with respect to ε at fixed x, with the subsequent evaluation at ε = 0.

To compute the variations δ∂yi/∂za and δ∂β/∂za we recall the identities

∂yi
∂xb

=
∂yi
∂za

∂za
∂xb

,
∂β

∂xb
=
∂β

∂za

∂za
∂xb

,

which follow from the chain rule. Using the product rule we have

δ
∂yi
∂za

= δyi,a − yi,bδzb,a, δ
∂β

∂za
= δβ,a − β,bδzb,a.

Substitution of these formulas into the variation of the first integral yields

δ

∫
V+
ε

w(yi,a, β, β,a) dx =

∫
V̌+

(
Piaδyi,a +

∂w

∂β
δβ +

∂w

∂β,a
δβ,a + µabδza,b

)
dx.

Here

µab = −yi,aPib − β,a
∂w

∂β,b
+ wδab

is the generalized Eshelby tensor, with δab being the Kronecker delta. Similar formula

holds true for the variation of the second integral in (3.48). For the variation of the two

last surface integrals it is easy to show that

δ

∫
Sε
ζ da = −

∫
Š

2ζηnaδza da, δ

∫
∂τ

τiyi da =

∫
∂τ

τiδyi da,

where η is the mean curvature of the surface Š. Integrating by parts the variation of the

first two integrals with the help of Gauss’ theorem and the use of constraints (3.41) and
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combining the above formulas, we obtain finally

δI =

∫
V\Š
{−Pia,aδyi + [wβ − (wβ,a),a]δβ − µab,bδza} dx

−
∫
Š
{[[Pia]]naδyi + w+

β,a
naδβ

+ − w−β,anaδβ
− + ([[µab]]nb + 2ζηna)δza} da

+

∫
∂τ

[(Piana − τi)δyi + wβ,anaδβ] da = 0. (3.50)

Equation (3.50) implies that the minimizer must satisfy in V\Š the equilibrium

equations

P · ∇ = 0, wβ −∇ · w∇β = 0, µ · ∇ = 0, (3.51)

subjected to the kinematic boundary conditions (3.41) at ∂k and the following natural

boundary conditions at ∂τ

P · n = τ , w∇β · n = 0. (3.52)

We call P the first Piola-Kirchhoff stress tensor, τr = −wβ the resolved shear stress, and

ς = ∇·w∇β the back stress. The first equation of (3.51) is nothing else but the equilibrium

of macro-forces acting on the crystal, while the second equation of (3.51) represents the

equilibrium of micro-forces acting on dislocations. It turns out that the last equation of

(3.51) does not contain new information and is automatically satisfied owing to the first

two. Besides, since δy, δβ± and δz can be chosen arbitrarily on Š, the following jump

conditions

[[P]] · n = 0, w∇β · n = 0, [[µ]] · n + 2ζηn = 0 (3.53)

have also to be satisfied there. The second condition of (3.53) must be fulfilled on both

sides of Š which is the surface of strong discontinuity in β(x). Among three boundary

conditions (3.53)3 only one is independent. Indeed, since [[F]] = q ⊗ n, [[P]] · n = 0, and

w∇β · n = 0 on Š, we have

[[µ]] · n + 2ζηn = −[[FT ]] ·P · n + [[w]]n + 2ζηn = n(−q ·P · n + [[w]] + 2ζη),

where P can be taken on any side of Š. Multiplication of this vector equation with n
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3.3 Equilibrium conditions for crystals with grain boundaries

yields the independent scalar equation

f = −q ·P · n + [[w]] + 2ζη = 0. (3.54)

The last equation can be interpreted as the thermodynamic condition of equilibrium,

which states that the (thermodynamic) driving force acting on the grain boundary must

vanish. The violation of this condition leads immediately to the motion of grain boundary

through crystal under the action of nonzero driving force f .

The constitutive equations for P = wF, wβ, and −∇ · w∇β can easily be obtained

from the free energy density yielding the first Piola-Kirchhoff stress tensor

P = 2Fe · ψCe · Fp−T . (3.55)

For the resolved shear stress (Schmid stress) we get

τr = −wβ = −s · FeT ·P ·m. (3.56)

Finally, the back stress is equal to

ς = ∇ · w∇β =
1

b
sign [(∇β ×m) · l] l · ∇(ψρ)×m. (3.57)

Substituting the constitutive equations (3.55)-(3.57) into (3.51)-(3.53) we get the closed

system of equations and boundary conditions which, together with (3.46), enable one to

determine y̌(x) and β̌(x) as well as the surface of discontinuity Š.
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4 Problems of polygonization and

bending

In this chapter the linear continuum dislocation theory is applied into two problems of

polygonization and bending respectively.

4.1 Polygonization

4.1.1 Bending of a beam

Consider a beam made up of a single crystal with one slip system (Fig. 4.1) and bent

along a deformation jig whose radius (R) is much larger than the length (L) of the beam

(Fig. 4.2).

Figure 4.1: A beam with one slip system.

Under the assumption of plane-strain state, the displacements of this beam have

two components, one in x-direction, and the other in y-direction:

ux(x, y), uy(x, y) (4.1)
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Figure 4.2: A beam is bent along a deformation jig.

Let the cross-section of the beam be a rectangle of length L and height h. Since only one

slip system is active, the slip direction s and the normal vector to the slip plane m, drawn

in Figure 4.1, are given by:

s = (cosϕ, sinϕ), m = (− sinϕ, cosϕ). (4.2)

The components of plastic distorsion tensor βij = β(x, y)simj which depend on both x

and y are:

=⇒



βxx = −β cosϕ sinϕ,

βxy = β cos2 ϕ,

βyx = −β sin2 ϕ,

βyy = β cosϕ sinϕ.

(4.3)

One can easily see that there is no volume change, because βxx + βyy = 0.

The in-plane components of the strain tensor

εij =
1

2
(ui,j + uj,i) (4.4)
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are: 
εxx = ux,x,

εxy = uy,y,

εyx = εyy =
1

2
(ux,y + uy,x).

(4.5)

The components of the plastic strain tensor

εpij =
1

2
(βij + βji) (4.6)

are: 
εpxx = −β cosϕ sinϕ = −1

2
β sin(2ϕ),

εpyy = β cosϕ sinϕ =
1

2
β sin(2ϕ),

εpxy = εpyx =
1

2
β(cos2 ϕ− sin2 ϕ) =

1

2
β cos(2ϕ).

(4.7)

With (4.5) and (4.7) we can compute the components of the elastic strain tensor according

to

εeij = εij − εpij. (4.8)

Thus,
εexx = ux,x +

1

2
β sin(2ϕ),

εeyy = uy,y −
1

2
β sin(2ϕ),

εexy = εeyx =
1

2
(ux,y + uy,x)−

1

2
β cos(2ϕ).

(4.9)
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The two non-zero components of the dislocation density tensor are:

αxz = εzxyβxy,x + εzyxβxx,y

= βxy,x − βxx,y
= β,x cos2 ϕ− β,y cosϕ sinϕ

= (β,x cosϕ− β,y sinϕ) cosϕ,

αyz = εzxyβyy,x + εzyxβyx,y

= βyy,x − βyx,y
= β,x cosϕ sinϕ+ β,y sin2 ϕ

= (β,x cosϕ+ β,y sinϕ) sinϕ.

(4.10)

As seen from (3.26) the resultant Burgers vector of all dislocations whose dislocation lines

cut da in our problem will be as below:
Bx = (αxxnx + αxyny + αxznz)da = αxznzda,

By = (αyxnx + αyyny + αyznz)da = αyznzda,

Bz = (αzxnx + αzyny + αzznz)da = 0.

(4.11)

With that Burgers’ vector, we can now calculate the number of dislocations per unit area:

ρ =
|B|
bda

=
1

b
(
√
α2
xz + α2

yz) =
|β,x cosϕ+ β,y sinϕ|

b
. (4.12)

Then, the energy density of the crystal reads

Φ =
1

2
λ(εeii)

2 + µεeijε
e
ij + µk ln

1

1− ρ
ρs

=
1

2
λ(εexx + εeyy)

2 + µ
(

(εexx)
2 + (εeyy)

2 + (εexy)
2 + (εeyx)

2
)

+ µk ln
1

1− ρ
ρs

. (4.13)

For small up to moderate dislocation densities the following asymptotic formula can be

used

ln
1

1− ρ
ρs

=
ρ

ρs
+

1

2
(
ρ

ρs
)2. (4.14)

By substituting the above quantities into (4.13) we get the final formula for the energy
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density

Φ =
1

2
λ(ux,x + uy,y)

2 + µ(ux,x +
1

2
β sin 2ϕ)2

+ µ(uy,y −
1

2
β sin 2ϕ)2 +

1

2
µ(ux,y + uy,x − β cos 2ϕ)2

+ µk
1

bρs
|β,x cosϕ+ β,y sinϕ|+ 1

2

µk

b2ρ2
s

(β,x cosϕ+ β,y sinϕ)2. (4.15)

Therefore, the energy functional which need to be minimized becomes

I[ui, β] = a

L∫
0

h∫
0

Φ(εeij, ρ) dydx

= a

L∫
0

h∫
0

[
1

2
λ(ux,x + uy,y)

2 + µ(ux,x +
1

2
β sin 2ϕ)2

+ µ(uy,y −
1

2
β sin 2ϕ)2 +

1

2
µ(ux,y + uy,x − β cos 2ϕ)2

+ µk
1

bρs
|β,x cosϕ+ β,y sinϕ|+ 1

2

µk

b2ρ2
s

(β,x cosϕ+ β,y sinϕ)2

]
dydx. (4.16)

4.1.2 Bending: Variational asymptotic method

4.1.2.1 Variational problem

For the method of bending described in Gilmann’s experiment the displacements on one

face of the beam are prescribed. Let an arbitrary point A on the lower face of the initial

beam have the coordinate x = Rθ and y = 0. After bending, the coordinates of this point

are {
x′ = R sin θ,

y′ = −(R−R cos θ).
(4.17)

The displacements of points at the lower boundary are given by{
ux(x, 0) = x′ − x,

uy(x, 0) = y′ − y,
(4.18)
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Figure 4.3: The displacements of the bent beam.

yieldingux(x, 0) = R sin
x

R
− x,

uy(x, 0) = R cos
x

R
−R.

(4.19)

where R is the radius of the generating circle. The upper and side boundaries of the beam

are free from traction. The problem is to minimize the energy functional (4.16) under

these constraints (4.19).

Functional (4.16) contains a small parameter h and can therefore be reduced in

the limit h → 0 to 1-D energy functional. The reduction is based on the variational

asymptotic method Berdichevsky [1], Le [25]. For this purpose it is convenient to non-

dimensionalize our variational problem. Let us introduce the following dimensionless

variables and quantities

ūx = uxbρs, ūy = uybρs, x̄ = xbρs, ȳ = ybρs, R̄ = Rbρs, L̄ = Lbρs, h̄ = hbρs. (4.20)

Because the variable y changes on the interval (0, h), the dimensionless coordinate ȳ

changes on the interval (0, h̄). In terms of these variables the energy functional is expressed
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as

I[ūx, ūy, β] =
µa

b2ρ2
s

L̄∫
0

h̄∫
0

[
1

2

λ

µ
(ūx,x̄ + ūy,ȳ)

2 + (ūx,x̄ +
1

2
β sin 2ϕ)2

+ (ūy,ȳ −
1

2
β sin 2ϕ)2 +

1

2
µ(ūx,ȳ + ūy,x̄ − β cos 2ϕ)2

+ k|β,x̄ cosϕ+ β,ȳ sinϕ|+ 1

2
k(β,x̄ cosϕ+ β,ȳ sinϕ)2

]
dȳdx̄. (4.21)

With:

Ī =
b2ρ2

s

µa
I, (4.22)

the functional becomes

I[ūx, ūy, β] =

L̄∫
0

h̄∫
0

[
1

2

λ

µ
(ūx,x̄ + ūy,ȳ)

2 + (ūx,x̄ +
1

2
β sin 2ϕ)2

+ (ūy,ȳ −
1

2
β sin 2ϕ)2 +

1

2
µ(ūx,ȳ + ūy,x̄ − β cos 2ϕ)2

+ k|β,x̄ cosϕ+ β,ȳ sinϕ|+ 1

2
k(β,x̄ cosϕ+ β,ȳ sinϕ)2

]
dȳdx̄. (4.23)

As we shall deal further only with the dimensionless quantities, the bars over them are

dropped for short, and the energy functional reduces to

I =

L∫
0

h∫
0

[
1

2
γ(ux,x + uy,y)

2 + (ux,x +
1

2
β sin 2ϕ)2

+ (uy,y −
1

2
β sin 2ϕ)2 +

1

2
(ux,y + uy,x − β cos 2ϕ)2

+ k|β,x cosϕ+ β,y sinϕ|+ 1

2
k(β,x cosϕ+ β,y sinϕ)2

]
dydx, (4.24)

where γ = λ
µ
.

4.1.2.2 Variational asymptotic method

Because the height of the beam is small in comparison with the length h << L, one can

use the variational-asymptotic method to analyze this variational problem. To make the
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small parameter h enter the functional explicitly we introduce a new variable ξ = y
h
; ξ ∈

(0, 1)⇒ y = hξ.

With
ux,y =

1

h
ux,ξ,

uy,y =
1

h
uy,ξ,

(4.25)

the energy functional becomes

I =

L∫
0

1∫
0

[
1

2
γ
(
ux,x +

1

h
uy,ξ

)2

+ (ux,x +
1

2
β sin 2ϕ)2

+
(1

h
uy,ξ −

1

2
β sin 2ϕ

)2

+
1

2

(1

h
ux,ξ + uy,x − β cos 2ϕ

)2

+ k
∣∣∣β,x cosϕ+

1

h
β,ξ sinϕ

∣∣∣+
1

2
k
(
β,x cosϕ+

1

h
β,ξ sinϕ

)2
]
hdξdx. (4.26)

At the first step of the variational-asymptotic procedure, we keep only the asymptotically

principal terms to obtain the functional

I0 =

L∫
0

1∫
0

[
1

2
γ
(1

h
uy,ξ

)2

+ (
1

2
β sin 2ϕ)2 +

(1

h
uy,ξ

)2

+
1

2

(1

h
ux,ξ

)2

+ k
∣∣∣1
h
β,ξ sinϕ

∣∣∣+
1

2
k
(1

h
β,ξ sinϕ

)2
]
hdξdx ≥ 0. (4.27)

It is obvious that this functional is positive defenite, therefore its minimum is zero and is

achieved at

⇒ ux,ξ = 0; uy,ξ = 0; β,ξ = 0,

⇒ ux = u(x); uy = v(x); β = β(x). (4.28)

Taking the boundaries condition into account, we find
u = R sin

x

R
− x,

v = R cos
x

R
−R,

β = 0.

(4.29)

Thus, the displacements do not depend on ξ and the plastic distortion is identically zero
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at the first step.

In the second step, we look for the the minimizer of the energy functional in the

form 
ux = R sin

x

R
− x+ u′x,

uy = R cos
x

R
−R + u′y,

β = β′,

(4.30)

where u′x(x, ξ), u
′
y(x, ξ), and β′(x, ξ) are small in the asymptotic sense and besides, func-

tions u′x(x, ξ), u
′
y(x, ξ), and β′(x, ξ) must vanish at ξ = 0. We then substitute ux, uy and

β into (4.23) to obtain:

I =

L∫
0

1∫
0

[
1

2
γ
(

cos
x

R
− 1 + u′x,x +

1

h
u′y,ξ

)2

+
(

cos
x

R
− 1 + u′x,x +

1

2
β′ sin 2ϕ

)2

+
(1

h
u′y,ξ −

1

2
β′ sin 2ϕ

)2

+
1

2

(1

h
u′x,ξ − sin

x

R
+ u′y,x − β′ cos 2ϕ

)2

+ k
∣∣∣β′,x cosϕ+

1

h
β′,ξ sinϕ

∣∣∣+
1

2
k
(
β′,x cosϕ+

1

h
β′,ξ sinϕ

)2
]
hdξdx. (4.31)

By keeping the asymptotically leading terms which contain u′x, u
′
y, and β′, we obtain:

I1 =

L∫
0

1∫
0

[
1

2
γ
(

cos
x

R
− 1 +

1

h
u′y,ξ

)2

+
(1

h
u′y,ξ

)2

+
1

2

(1

h
u′x,ξ − sin

x

R

)2

+ k
∣∣∣1
h
β′,ξ sinϕ

∣∣∣+
1

2
k
(1

h
β′,ξ sinϕ

)2
]
hdξdx. (4.32)

This functional is again non-negative definite, hence, its minimizer is given by

⇒ u′x,ξ = h sin
x

R
; u′y,ξ =

γ

γ + 2
h(1− cos

x

R
); β′ = 0. (4.33)

By integrating over ξ using the boundary condition at ξ = 0 we obtain
u′x = hξ sin

x

R
,

u′y =
γ

γ + 2
hξ(1− cos

x

R
),

β′ = 0.

(4.34)

49



4 Problems of polygonization and bending

At the third step of variational-asymptotic procedure, we look for the minimizer in the

form:
ux = R sin

x

R
− x+ hξ sin

x

R
+ u′′x,

uy = R cos
x

R
−R +

γ

γ + 2
hξ(1− cos

x

R
) + u′′y,

β = β′′.

(4.35)

Substituting these into (4.23):

I =

L∫
0

1∫
0

[
1

2
γ
(

cos
x

R
− 1 +

h

R
ξ cos

x

R
+ u′′x,x +

γ

γ + 2
(1− cos

x

R
) +

1

h
u′′y,ξ

)2

+
(

cos
x

R
− 1 +

h

R
ξ cos

x

R
+ u′′x,x +

1

2
β′′ sin 2ϕ

)2

+
( γ

γ + 2
(1− cos

x

R
) +

1

h
u′′y,ξ −

1

2
β′′ sin 2ϕ

)2

+
1

2

(
sin

x

R
+

1

h
u′′x,ξ − sin

x

R
+

γ

γ + 2

h

R
ξ sin

x

R
+ u′′y,x − β′′ cos 2ϕ

)2

+ k
∣∣∣β′′,x cosϕ+

1

h
β′′,ξ sinϕ

∣∣∣+
1

2
k
(
β′′,x cosϕ+

1

h
β′′,ξ sinϕ

)2
]
hdξdx. (4.36)

Now we keep the asymptotically leading terms containing u′′x, u
′′
y, and β′′. Functional

(4.21) becomes

I2 =

L∫
0

1∫
0

[
1

2
γ
(

cos
x

R
− 1 +

h

R
ξ cos

x

R
+

γ

γ + 2
(1− cos

x

R
) +

1

h
u′′y,ξ

)2

+
(

cos
x

R
− 1 +

h

R
ξ cos

x

R
+

1

2
β′′ sin 2ϕ

)2

+
( γ

γ + 2
(1− cos

x

R
) +

1

h
u′′y,ξ −

1

2
β′′ sin 2ϕ

)2

+
1

2

(1

h
u′′x,ξ +

γ

γ + 2

h

R
ξ sin

x

R
− β′′ cos 2ϕ

)2

+ k
∣∣∣1
h
β′′,ξ sinϕ

∣∣∣+
1

2
k
(1

h
β′′,ξ sinϕ

)2
]
hdξdx, (4.37)
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or

I2 =

L∫
0

1∫
0

[
1

2
γ
(

(1− γ

γ + 2
)(cos

x

R
− 1) +

h

R
ξ cos

x

R
+

1

h
u′′y,ξ

)2

+
(

cos
x

R
− 1 +

h

R
ξ cos

x

R
+

1

2
β′′ sin 2ϕ

)2

+
( γ

γ + 2
(1− cos

x

R
) +

1

h
u′′y,ξ −

1

2
β′′ sin 2ϕ

)2

+
1

2

(1

h
u′′x,ξ +

γ

γ + 2

h

R
ξ sin

x

R
− β′′ cos 2ϕ

)2

+ k
∣∣∣1
h
β′′,ξ sinϕ

∣∣∣+
1

2
k
(1

h
β′′,ξ sinϕ

)2
]
hdξdx. (4.38)

In order to find the minimum of this functional, we now fix β′′ and take the variation of

the functional with respect to u′′x and u′′y:

δI2 =

L∫
0

1∫
0

[
γ
(

(1− γ

γ + 2
)(cos

x

R
− 1) +

h

R
ξ cos

x

R
+

1

h
u′′y,ξ

)1

h
δu′′y,ξ

+ 2
( γ

γ + 2
(1− cos

x

R
) +

1

h
u′′y,ξ −

1

2
β′′ sin 2ϕ

)1

h
δu′′y,ξ

+
(1

h
u′′x,ξ +

γ

γ + 2

h

R
ξ sin

x

R
− β′′ cos 2ϕ

)1

h
δu′′x,ξ

]
hdξdx = 0. (4.39)

After intergration by parts, taking into account that δu′′x and δu′′y are arbitrary for ξ in

(0, 1) we obtain the differential equation

[
γ
(

(1− γ

γ + 2
)(cos

x

R
− 1) +

h

R
ξ cos

x

R
+

1

h
u′′y,ξ

)
+2
( γ

γ + 2
(1− cos

x

R
) +

1

h
u′′y,ξ −

1

2
β′′ sin 2ϕ

)]
,ξ

= 0,(
1

h
u′′x,ξ +

γ

γ + 2

h

R
ξ sin

x

R
− β′′ cos 2ϕ

)
,ξ

= 0.

(4.40)

Since δu′′x and δu′′y are arbitrary at the upper face of the beam we also get the boundary
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condition at ξ = 1

γ
(

(1− γ

γ + 2
)(cos

x

R
− 1) +

h

R
ξ cos

x

R
+

1

h
u′′y,ξ

)
+2
( γ

γ + 2
(1− cos

x

R
) +

1

h
u′′y,ξ −

1

2
β′′ sin 2ϕ

)
= 0,

1

h
u′′x,ξ +

γ

γ + 2

h

R
ξ sin

x

R
− β′′ cos 2ϕ = 0.

(4.41)

It follows from these system of equations and boundary conditions that

γ
(

(1− γ

γ + 2
)(cos

x

R
− 1) +

h

R
ξ cos

x

R
+

1

h
u′′y,ξ

)
+2
( γ

γ + 2
(1− cos

x

R
) +

1

h
u′′y,ξ −

1

2
β′′ sin 2ϕ

)
= 0,

1

h
u′′x,ξ +

γ

γ + 2

h

R
ξ sin

x

R
− β′′ cos 2ϕ = 0.

(4.42)

Solving the above two equation we get for u′′x,ξ and u′′y,ξ
1

h
u′′y,ξ =

1

γ + 2
β′′ sin 2ϕ− γ

γ + 2

h

R
ξ cos

x

R
,

1

h
u′′x,ξ = − γ

γ + 2

h

R
ξ sin

x

R
+ β′′ cos 2ϕ.

(4.43)

These equations can be used to find u′′x and u′′y once β′′ is known. Substituting into (4.38)

we have now the functional depend only on β′′ as below

I2 =

L∫
0

1∫
0

[
1

2
γ
(

(1− γ

γ + 2
)(cos

x

R
− 1) +

h

R
ξ cos

x

R
+

1

γ + 2
β′′ sin 2ϕ

− γ

γ + 2

h

R
ξ cos

x

R

)2

+
(

cos
x

R
− 1 +

h

R
ξ cos

x

R
+

1

2
β′′ sin 2ϕ

)2

+
( γ

γ + 2
(1− cos

x

R
) +

1

γ + 2
β′′ sin 2ϕ− γ

γ + 2

h

R
ξ cos

x

R
− 1

2
β′′ sin 2ϕ

)2

+
1

2

(
− γ

γ + 2

h

R
ξ sin

x

R
+ β′′ cos 2ϕ+

γ

γ + 2

h

R
ξ sin

x

R
− β′′ cos 2ϕ

)2

+ k
∣∣∣1
h
β′′,ξ sinϕ

∣∣∣+
1

2
k
(1

h
β′′,ξ sinϕ

)2
]
hdξdx. (4.44)
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Rearranging terms, we can simplify this functional

I2 =

L∫
0

1∫
0

[
1

2
γ

(
(1− γ

γ + 2
)
(

(1 +
h

R
ξ) cos

x

R
− 1
)

+
1

γ + 2
β′′ sin 2ϕ

)2

+

(
(1 +

h

R
ξ) cos

x

R
− 1 +

1

2
β′′ sin 2ϕ

)2

+

(
γ

γ + 2

(
(1 +

h

R
ξ) cos

x

R
− 1
)

+
(1

2
− 1

γ + 2

)
β′′ sin 2ϕ

)2

+ k

∣∣∣∣∣1hβ′′,ξ sinϕ

∣∣∣∣∣+
1

2
k

(
1

h
β′′,ξ sinϕ

)2]
hdξdx. (4.45)

We then change the variable ξ which is use as a temporary variable in variational asymp-

totic method back to the original variable y to get the functional as below:

I2[β] =

L∫
0

h∫
0

[
1

2
γ

(
(1− γ

γ + 2
)
(

(1 +
y

R
) cos

x

R
− 1
)

+
1

γ + 2
β sin 2ϕ

)2

+

(
(1 +

y

R
) cos

x

R
− 1 +

1

2
β sin 2ϕ

)2

+

(
γ

γ + 2

(
(1 +

y

R
) cos

x

R
− 1
)

+
(1

2
− 1

γ + 2

)
β sin 2ϕ

)2

+ k

∣∣∣∣∣β,y sinϕ

∣∣∣∣∣+
1

2
k

(
β,y sinϕ

)2]
dydx. (4.46)

Since the upper boundary of the beam is traction-free and attract dislocations, the

equilibrium is possible only if there is some dislocation free zone near this boundary.

Therefore, at point x we assume that the dislocation free zone is (l(x), h).

Now we seek the plastic distortion minimizing the energy functional in the form:

β(x, y) =

{
β1(x, y), for y ∈ (0, l(x)),

β0(x), for y ∈ (l(x), h)
(4.47)

where β0(x) is a constant in y direction, l(x) is an unknown length (0 < l < h), and

β1(x, l) = β0(x). We have to find β1(x, y), β0(x) and l(x).
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With β from (4.47), the total energy functional becomes:

I2[β] =

l∫
0

[
1

2
γ

(
(1− γ

γ + 2
)
(

(1 +
y

R
) cos

x

R
− 1
)

+
1

γ + 2
β1 sin 2ϕ

)2

+

(
(1 +

y

R
) cos

x

R
− 1 +

1

2
β1 sin 2ϕ

)2

+

(
γ

γ + 2

(
(1 +

y

R
) cos

x

R
− 1
)

+
(1

2
− 1

γ + 2

)
β1 sin 2ϕ

)2

+ k

∣∣∣∣∣β1,y sinϕ

∣∣∣∣∣+
1

2
k

(
β1,y sinϕ

)2]
dy

+

h∫
l

[
1

2
γ

(
(1− γ

γ + 2
)
(

(1 +
y

R
) cos

x

R
− 1
)

+
1

γ + 2
β0 sin 2ϕ

)2

+

(
(1 +

y

R
) cos

x

R
− 1 +

1

2
β0 sin 2ϕ

)2

+

(
γ

γ + 2

(
(1 +

y

R
) cos

x

R
− 1
)

+
(1

2
− 1

γ + 2

)
β0 sin 2ϕ

)2]
dy. (4.48)

With
(
.
)

=
(

(1 + y
R

) cos x
R
− 1
)

, we simplify this functional:

I2[β] =

l∫
0

[
1

2
γ

(
(1− γ

γ + 2
)
(
.
)

+
1

γ + 2
β1 sin 2ϕ

)2

+

((
.
)

+
1

2
β1 sin 2ϕ

)2

+

(
γ

γ + 2

(
.
)

+
(1

2
− 1

γ + 2

)
β1 sin 2ϕ

)2

+ k

∣∣∣∣∣β1,y sinϕ

∣∣∣∣∣+
1

2
k

(
β1,y sinϕ

)2]
dy

+

h∫
l

[
1

2
γ

(
(1− γ

γ + 2
)
(
.
)

+
1

γ + 2
β0 sin 2ϕ

)2

+

((
.
)

+
1

2
β0 sin 2ϕ

)2

+

(
γ

γ + 2

(
.
)

+
(1

2
− 1

γ + 2

)
β0 sin 2ϕ

)2]
dy. (4.49)
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Let the second integral be A

A =

h∫
l

[
1

2
γ

(
(1− γ

γ + 2
)
(
.
)

+
1

γ + 2
β0 sin 2ϕ

)2

+

((
.
)

+
1

2
β0 sin 2ϕ

)2

+

(
γ

γ + 2

(
.
)

+
(1

2
− 1

γ + 2

)
β0 sin 2ϕ

)2]
dy. (4.50)

Simple calculations show that

⇒ A =

h∫
l

[
1

2
γ

(
(1− γ

γ + 2
)2
(
.
)2

+
2

γ + 2
(1− γ

γ + 2
)
(
.
)
β0 sin 2ϕ+ (

1

γ + 2
)2β2

0 sin2 2ϕ

)2

+

((
.
)2

+
(
.
)
β0 sin 2ϕ+

1

4
β2

0 sin2 2ϕ

)2

+

(
(

γ

γ + 2
)2
(
.
)2

+ (
2γ

γ + 2
)
(1

2
− 1

γ + 2

)(
.
)
β0 sin 2ϕ+

(1

2
− 1

γ + 2

)2

β2
0 sin2 2ϕ

)2]
dy

(4.51)

⇒ A =

h∫
l

[[1

2
γ
(

1− γ

γ + 2

)2

+ 1 +
( γ

γ + 2

)2](
.
)2

+
[( γ

γ + 2

)(
1− γ

γ + 2

)
+ 1 + (

2γ

γ + 2
)
(1

2
− 1

γ + 2

)](
.
)
β0 sin 2ϕ

+
1

2

[( γ

(γ + 2)2

)
+

1

2
+ 2
(1

2
− 1

γ + 2

)2]
β2

0 sin2 2ϕ

]
dy. (4.52)

Taking into account the identities

1

2
γ
(

1− γ

γ + 2

)2

+ 1 +
( γ

γ + 2

)2

= 2
(1 + γ

2 + γ

)
( γ

γ + 2

)(
1− γ

γ + 2

)
+ 1 + (

2γ

γ + 2
)
(1

2
− 1

γ + 2

)
= 2
(1 + γ

2 + γ

)
( γ

(γ + 2)2

)
+

1

2
+ 2
(1

2
− 1

γ + 2

)2

=
(1 + γ

2 + γ

) (4.53)

we obtain

A =

h∫
l

[
2
(1 + γ

2 + γ

)(
.
)2

+ 2
(1 + γ

2 + γ

)(
.
)
β0 sin 2ϕ+

1

2

(1 + γ

2 + γ

)
β2

0 sin2 2ϕ

]
dy. (4.54)
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Thus,

A = 2
(1 + γ

2 + γ

) h∫
l

(
.
)2

dy + 2
(1 + γ

2 + γ

)
β0(sin 2ϕ)

h∫
l

(
.
)
dy +

1

2

(1 + γ

2 + γ

)
β2

0(sin2 2ϕ)

h∫
l

dy.

(4.55)

Substituting A into (4.49) and taking variation with respect to β1, β0 and l:

δI =

l∫
0

[
γ

(
(1− γ

γ + 2
)
(
.
)

+
1

γ + 2
β1 sin 2ϕ

)
1

γ + 2
δβ1 sin 2ϕ

+ 2

((
.
)

+
1

2
β1 sin 2ϕ

)
1

2
δβ1 sin 2ϕ

+ 2

(
γ

γ + 2

(
.
)

+
(1

2
− 1

γ + 2

)
β1 sin 2ϕ

)(1

2
− 1

γ + 2

)
δβ1 sin 2ϕ

+ ksign(β1,y)δβ1,y

∣∣∣∣∣ sinϕ
∣∣∣∣∣+ k

(
β1,y sinϕ

)
δβ1,y sinϕ

]
dy

+

[
γ

(
(1− γ

γ + 2
)
(
.
)

+
1

γ + 2
β1 sin 2ϕ

)
1

γ + 2
δβ1 sin 2ϕ

+ 2

((
.
)

+
1

2
β1 sin 2ϕ

)
1

2
δβ1 sin 2ϕ

+ 2

(
γ

γ + 2

(
.
)

+
(1

2
− 1

γ + 2

)
β1 sin 2ϕ

)(1

2
− 1

γ + 2

)
δβ1 sin 2ϕ

+ ksign(β1,y)δβ1,y

∣∣∣∣∣ sinϕ
∣∣∣∣∣+ k

(
β1,y sinϕ

)
δβ1,y sinϕ

]∣∣∣
y=l
δl

−

[
γ

(
(1− γ

γ + 2
)
(
.
)

+
1

γ + 2
β1 sin 2ϕ

)
1

γ + 2
δβ1 sin 2ϕ

+ 2

((
.
)

+
1

2
β1 sin 2ϕ

)
1

2
δβ1 sin 2ϕ

+ 2

(
γ

γ + 2

(
.
)

+
(1

2
− 1

γ + 2

)
β1 sin 2ϕ

)(1

2
− 1

γ + 2

)
δβ1 sin 2ϕ

]∣∣∣
y=l
δl

+ 2
(1 + γ

2 + γ

)
δβ0(sin 2ϕ)

h∫
l

(
.
)
dy +

(1 + γ

2 + γ

)
β0δβ0(sin2 2ϕ)(h− l) = 0. (4.56)

Integrating by parts and using the arbitrariness of δβ1 inside the interval (0, l) we obtain

56



4.1 Polygonization

the differential equation

−kβ1,yy sin2 ϕ+
[( γ

(γ + 2)2

)
+

1

2
+ 2
(1

2
− 1

γ + 2

)2]
β1 sin2 2ϕ

+
[( γ

γ + 2

)(
1− γ

γ + 2

)
+ 1 + (

2γ

γ + 2
)
(1

2
− 1

γ + 2

)]
(sin 2ϕ)

(
.
)

= 0,

(4.57)

where β1(x, y) is subjected to the boundary conditions:

β1(x, l) = β0(x), β1(x, 0) = 0. (4.58)

The variation with respect to l(x) gives an additional boundary condition at y = l

β′1(x, l) = 0, (4.59)

which means that the dislocation density must be continuous. Varying the energy func-

tional with respect to β0(x) we obtain the transcendental equation which serves as the

equation for determining l(x):

k sign(β1,y) sinϕ+ 2
(1 + γ

2 + γ

)
(sin 2ϕ)

h∫
l

(
.
)
dy +

(1 + γ

2 + γ

)
β0(sin2 2ϕ)(h− l) = 0,

(4.60)

where sign(β1,y) is the limiting value as y approaches l(x) from below.

We rewrite the governing equation

kβ1,yy sin2 ϕ− 1 + γ

2 + γ
β1 sin2 2ϕ = 2

1 + γ

2 + γ

(
(1 +

y

R
) cos

x

R
− 1
)

. (4.61)

By neglecting the term y
R

which is small compared with 1,

⇒ kβ1,yy sin2 ϕ− 1 + γ

2 + γ
β1 sin2 2ϕ = 2

1 + γ

2 + γ

(
(1 +

y

R︸︷︷︸
neglect

) cos
x

R
− 1
)

, (4.62)

the above equation becomes

kβ1,yy sin2 ϕ− 1 + γ

2 + γ
β1 sin2 2ϕ = 2

1 + γ

2 + γ

(
cos

x

R
− 1
)

. (4.63)
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By assigning some symbols,
C1 = k sin2 ϕ,

C2 =
1 + γ

2 + γ
sin2 2ϕ,

C3 = 2
1 + γ

2 + γ

(
cos

x

R
− 1
)

(sin 2ϕ),

(4.64)

the differential equation can be rewritten as below:

C1β1,yy − C2β1 = C3. (4.65)

First of all, note that the characteristic equation

C1r
2 − C2 = 0 (4.66)

yields the solution

r = ±
√
C2

C1

= ±
√

2κ

k
cosϕ = ±η. (4.67)

Therefore, the general solution of the homogeneous equation reads

βCF1 = A cosh ηy +B sinh ηy. (4.68)

Next, we look for the particular solution of the inhomogeneous equation in the form

β1p = Cy +D. (4.69)

Substituting this solution Ansatz into the differential equation, we get the formula

−C2Cy − C2D = C3 (4.70)

This implies
C = 0,

D = −C3

C2

.
(4.71)

Thus, substituting these into (4.67), the particular solution becomes

β1p = −C3

C2

= − 2

sin 2ϕ

(
cos

x

R
− 1
)

. (4.72)
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The solution of the differential equation (4.61) is the sum of these two

β1 = βCF1 + β1p = A cosh ηy +B sinh ηy + β1p. (4.73)

The constant factors (A and B) from this formula should be found from the boundary

conditions. With the first condition β1(0) = 0, the coefficient A is computed as,

A+ β1p = 0⇒ A = −β1p. (4.74)

With condition β′1(l) = 0, the remaining coefficient is obtained

ηA sinh ηl + ηB cosh ηl = 0⇒ B = −A tanh ηl⇒ B = β1p tanh ηl. (4.75)

With these constants found, the final solution is given by

β1(x, y) = β1p − β1p(cosh ηy − tanh ηl(x) sinh ηy)

= β1p

(
1− cosh ηy + tanh ηl(x) sinh ηy

)
, (4.76)

for 0 < y < l. The continuity for the plastic distortion implies that

β0 = β1p

(
1− 1

cosh ηl

)
= − 2

sin 2ϕ

(
cos

x

R
− 1
)(

1− cosh ηl +
sinh2 ηl

cosh ηl

)
. (4.77)

Now, the transcedental equation for determining l(x) becomes:

k sinϕ+ κ

[(
cos

x

R
− 1
)

+
1

2
β1p

(
1− 1

cosh ηl

)
sin 2ϕ

]
sin 2ϕ(h− l(x)) = 0, (4.78)

where κ = 1
1−ν with ν being Poisson ratio. For simpicity, we consider the case where

sign(β1,y) = 1.

It is easy to show that the real root l(x) ∈ (0, h) of equation (4.75) exists only for

x > x∗, where

x∗ = R arccos(1− k

2κh cosϕ
).

For x < x∗ we must put l(x) = 0, i.e. in the interval (0, x∗) there is no dislocation at all.

Setting x∗ = L, we get the critical threshold value of R for the dislocation nucleation in
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the bent beam

Rcr =
L

arccos(1− k
2κhcosϕ

)
.

Thus, if the radius of the jig R > Rcr, then l(x) = 0 and β = 0 everywhere yielding

the purely elastic deformation without dislocations. For R < Rcr the dislocations are

nucleated and pile-up against the lower boundary y = 0 with x > x∗ forming there the

boundary layer.

To simulate the minimizer numerically, we choose h = 1, L = 10, R = 5, ν = 0.25,

k = 10−4, and the angle ϕ = π/5. The plots of l(x) and of β0(x) are shown in Figs. 4.11

and 4.12, respectively.
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Figure 4.4: Function l(x).

4.1.3 Polygonized state and comparison with Gilman’s experiments

4.1.3.1 Polygonized state

As we know from the experiments, dislocations may climb in the transversal direction

during annealing (see Fig. 4.6), and then glide along the direction parallel to the slip

lines and be rearranged as shown in Fig. 5.1. In the final polygonized relaxed state the

dislocations form low angle tilt boundaries between polygons which are perpendicular to

the slip direction, while inside the polygons there are no dislocations. We want to show
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Figure 4.5: Function β0(x).

Figure 4.6: Dislocatons climbing and sliding: In the polygonized state dislocations form
low angle tilt boundaries.

that this rearrangement of dislocations correspond to a sequence of piecewise constant

β̌(x, y) reducing energy of the beam compared with (4.41). Here and below check is

used to denote the polygonized relaxed state after annealing. The jump of β̌ means the

dislocations concentrated at the surface, therefore we ascribe to each jump point the

61



4 Problems of polygonization and bending

normalized Read-Shockley surface energy Read and Shockley [32]

γ([[β̌]]) = γ∗|[[β̌]]| ln eβ∗

|[[β̌]]|
, (4.79)

with [[β̌]](xi) = β̌(xi + 0)− β̌(xi − 0) denoting the jump of β̌(x), γ∗ = b
4π(1−ν)

, and β∗ the

saturated misorientation angle.
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Figure 4.7: Piecewise constant function β̌0(x).

For this purpose we divide the interval (x∗, a) into N equal subintervals. We replace

the smooth function β0(x) from formula (4.69) by a piecewise constant function β̌0(x)

shown in Fig. 4.13 for N = 5 and define β̌(x, y) as piecewise constant function which is

equal to β̌i in the i-th polygon. Concerning the displacements ǔx(x, y) and ǔy(x, y) we

define them according to

ǔx(x, y) = R sin(x/R)− x+ hξ sin
x

R
+ ǔ′′x(x, y), (4.80)

ǔy(x, y) = R cos(x/R)−R +
γ

γ + 2
hξ(1− cos

x

R
) + ǔ′′y(x, y),

where ǔ′′x(x, y) and ǔ′′y(x, y) should be found by integrating equations (4.35), with β′′

being replaced by β̌(x, y). Since β̌(x) is piecewise constant, the displacements ǔ′′x(x, y)

and ǔ′′y(x, y) are continuous and piecewise linear functions. However, their gradients

describing the lattice rotation suffers jumps across the boundaries of the polygons. Thus,

this sequence of deflections and plastic distortions exhibits polygonization of the bent

beam.
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Due to our choice of the plastic distortion and displacements, it is easy to show

that the asymptotically main contributions to the energy of crystal in the final relaxed

polygonized state are given by

E =

∫ L

0

∫ h

0

κ(cos
x

R
− 1 +

1

2
β̌ sin 2ϕ)2 dxdy +

N∑
i=1

γ([[β̌]](xi))
h

cosϕ
. (4.81)

As compared with the similar formula (4.46) we see that the gradient terms disappear due

to the piecewise constant β̌, and instead of them, the surface energy of the low angle tilt

boundaries are added. As N becomes large, the contribution of the first term in (4.81)

approaches the corresponding contribution of the smooth minimizer in the state before

polygonization apart from the small contributions in the elastic zone near x = 0 and in

the boundary layer near the lower face. If the surface energy of the tilt boundaries is less

than the contribution of the gradient terms from the smooth minimizer, the constructed

plastic distortion β̌(x, y) and displacements ǔ′x(x, y) and ǔ′y(x, y) do reduce energy of the

relaxed state. The number of polygons can be estimated from above by requiring that

the increase of the surface energy is less than the reduction in gradient terms giving

N∑
i=1

γ([[β̌]](xi))
h

cosϕ
<

∫ L

0

∫ l(x)

0

[k|β′,y sinϕ|+ 1

2
k(β′,y sinϕ)2] dxdy. (4.82)

For the rough estimation at large N we may substitute

[[β̌]] =
β0m

N
, β0m = β0(L) = − 2

sin 2ϕ

(
cos

L

R
− 1
)(

1− 1

cosh ηl(L)

)
(4.83)

on the left hand side of (4.82). The calculation of the integral on the right hand side of

(4.82) can be done by Gauss’ numerical integration according to

∫ L

0

∫ l(x)

0

[f(x, y)] dxdy =
L

2

4∑
i=1

l(x)

2

4∑
j=1

wiwjf
(L

2
ξi +

L

2
,
l(x)

2
ξj +

l(x)

2

)
(4.84)

where f(x, y) = k|β′,y sinϕ|+ 1
2
k(β′,y sinϕ)2, wi and wj are weighting factors, ξi and ξj are

coordinate of Gauss’ points.

4.1.3.2 Comparison with Gilman’s experiments

For zinc the known material constants are given in the Table 5.1.
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Figure 4.8: Plot of lnN as function of R.

Material µ ν b
Zinc 43GPa 0.25 2.68× 10−10m

Table 4.1: The material constants of zinc

Actually the theory develop in this paper and our solution correspond to the case

where we assume that the thickness is much smaller than the radius of the circle. The

formula we found cannot actually be applied to the case of Gilman experiment where the

radius is small but in many problem, the asymptotic formula have the range of applica-

bility even in case the assumption is not quite true, therefore we have tried to compare

although we know that the condition is not quite satisfied and the comparison still show

good agreement. We take the sizes of the specimen and of the deformation jig as in his

paper: L = 10mm, h = 1.3mm, R = 1.17mm.

Thus, there are only two material constants ρs and k which have to be identified.

If we take ρs = 1.454 × 1014m−2 , k = 1.56 × 10−4, then the estimated average polygon

distance (taken as the number of polygons divided by the length of the beam) is equal

to around 2.7× 10−7m which is in good agreement with the experimental result obtained

in Gilman [16]. Note that the orders of ρs and k agree also with those proposed in [3]

which is based on some thermodynamic reasoning. The plot of lnN as a function of R

presented in Fig. 4.14 show the decrease of the estimated number of polygons with the

increasing radius of the generating circle as expected.
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4.2 Bending

4.2.1 Energy of single crystal beam containing dislocations

x

y
M

�

sm

Figure 4.9: Single crystal beam bent by a moment M .

Consider a single crystal beam bent by a moment M . In the undeformed state the

beam occupies the domain V of the three-dimensional euclidean space, with the cartesian

coordinates (x, y, z) ∈ (0, L) × (−h
2
, h

2
) × (0, a) where L, h, and a are the length, height,

and width of the beam, respectively. We will assume that h� a� L and that the beam

is deformed under the plane strain condition. For definiteness, let the beam be clamped at

x = 0 and subjected to a linearly distributed traction −τy having the resultant moment

M at x = L. Besides, the upper and lower boundaries of the beam at y = h
2

and y = −h
2

are traction free. If the applied moment is small, it is natural to expect that the beam

deforms elastically and the stress distribution is linear over the thickness according to the

elementary beam theory. However, if the applied moment exceeds some critical value,

edge dislocations may appear to reduce energy of the bent beam. We assume that, at the

onset of yielding and during the plastic deformations, the crystal admits only one active

slip system whose slip planes are inclined at an angle ϕ to the plane y = 0 as shown in

Fig. 4.9.

Under the plane strain state condition there are only two non-zero components of

the displacements that do not depend on z, ux(x, y) and uy(x, y). Consequently, the

non-zero components of the total strain tensor are

εxx = ux,x, εyy = uy,y, εxy = εyx =
1

2
(ux,y + uy,x).

Throughout the paper the comma before an index is used to denote the partial derivative

with respect to the corresponding coordinate. Since only one slip system is active, the

plastic distortion tensor is given by βij = β(x, y)simj, with s = (cosϕ, sinϕ, 0) denoting

the slip direction and m = (− sinϕ, cosϕ, 0) being the unit vector normal to the slip
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plane. Thus, the non-zero components of the plastic strain tensor, εpij = 1
2
(βij +βji), read

εpxx = −1

2
β sin 2ϕ, εpyy =

1

2
β sin 2ϕ, εpxy = εpyx =

1

2
β cos 2ϕ.

Accordingly, the non-zero components of the elastic strain tensor, εeij = εij − εpij, are

εexx = ux,x +
1

2
β sin 2ϕ, εeyy = uy,y −

1

2
β sin 2ϕ,

εexy = εeyx =
1

2
(ux,y + uy,x − β cos 2ϕ).

The distribution of geometrically necessary edge dislocations associated with this

active slip system is described by the dislocation density tensor (Nye, 1953), αij = εjklβil,k,

whose non-zero components read

αxz = β,x cos2 ϕ+ β,y cosϕ sinϕ, αyz = β,x cosϕ sinϕ+ β,y sin2 ϕ.

These are the components of the resultant Burgers’ vector of all excess edge dislocations

whose dislocation lines cut the unit area perpendicular to the z-axis. Thus, the scalar

dislocation density equals

ρ =
1

b

√
(αxz)2 + (αyz)2 =

1

b
|β,x cosϕ+ β,y sinϕ|, (4.85)

where b is the magnitude of the Burgers vector.

Under the assumptions made the bulk energy density per unit volume of the crystal

with continuously distributed dislocations takes a simple form (Berdichevsky, 2006b)

U(εeij, αij) =
1

2
λ(ux,x + uy,y)

2 + µ(ux,x +
1

2
β sin 2ϕ)2 + µ(uy,y −

1

2
β sin 2ϕ)2

+
1

2
µ(ux,y + uy,x − β cos 2ϕ)2 + µk ln

1

1− ρ
ρs

, (4.86)

with λ and µ the Lamé constants, ρs the saturated dislocation density, and k the material

constant. The first four terms in (4.86) represents the elastic energy of the crystal lattice,

while the last term corresponds to the energy of the dislocation network. The logarithmic

nature of the energy of the dislocation network was extensively discussed in (Berdichevsky,

2006b). For small up to moderate dislocation densities this logarithmic term may be
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approximated by the formula

ln
1

1− ρ
ρs

∼=
ρ

ρs
+

1

2

ρ2

ρ2
s

.

We shall use further only this approximation.

With (4.85) and (4.86) the total energy functional of the bent beam becomes

I = a

∫ L

0

∫ h
2

−h
2

[
1

2
λ(ux,x + uy,y)

2 + µ(ux,x +
1

2
β sin 2ϕ)2 + µ(uy,y −

1

2
β sin 2ϕ)2

+
1

2
µ(ux,y + uy,x − β cos 2ϕ)2 + µk

|β,x cosϕ+ β,y sinϕ|
bρs

+
1

2
µk

(β,x cosϕ+ β,y sinϕ)2

b2ρ2
s

] dxdy + a

∫ h
2

−h
2

τyux|x=L dy. (4.87)

The last term in (4.87) is the work done by the linearly distributed traction −τy acting

at the boundary x = L. If the dissipation caused by the dislocation motion is negligible,

then the true displacements ux, uy and plastic distortion β minimize energy functional

(4.87) among all admissible displacements and plastic distortions satisfying the kinematic

boundary condition. The bending moment M = τah3/12 is regarded as a control param-

eter, so one can study the evolution of the dislocation network in terms of M .

If the dissipation due to the dislocation motion cannot be neglected, the energy

minimization should be replaced by the variational equation (Sedov, 1966)

δI + a

∫ L

0

∫ h
2

−h
2

∂D

∂β̇
δβ dxdy = 0. (4.88)

The last term in this equation describes the energy dissipation due to the dislocation

motion, where the dissipation function D(β̇) is assumed to depend only on the rate of the

plastic distortion. We shall consider the simplest rate-independent theory for which

D(β̇) = K|β̇|,

with K the critical resolved shear stress. Then, provided the sign of β̇ does not change

during the evolution of β, the variational equation (4.88) reduces to minimizing the fol-
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lowing “relaxed energy” functionals

Id = a

∫ L

0

∫ h
2

−h
2

[
1

2
λ(ux,x + uy,y)

2 + µ(ux,x +
1

2
β sin 2ϕ)2 + µ(uy,y −

1

2
β sin 2ϕ)2

+
1

2
µ(ux,y + uy,x − β cos 2ϕ)2 + µk

|β,x cosϕ+ β,y sinϕ|
bρs

+
1

2
µk

(β,x cosϕ+ β,y sinϕ)2

b2ρ2
s

+Ksign(β̇)β] dxdy + a

∫ h
2

−h
2

τyux|x=L dy. (4.89)

Finally, if β̇ = 0, then the plastic distortion is frozen, while the displacements should be

found by minimizing (4.87).

4.2.2 Energy minimization

We first analyze the minimization problem (4.87). It is convenient to introduce the fol-

lowing dimensionless variables and quantities

x̄ = bρsx, ȳ = bρsy, h̄ = bρsh, L̄ = bρsL, τ̄ =
τ

µbρs
,

ūx = bρsux, ūy = bρsuy, E =
I(bρs)

2

µa
, γ =

λ

µ
,

(4.90)

which simplify the minimization problem considerably. Now the energy functional can be

rewritten in the dimensionless form as follows

E =

∫ L

0

∫ h
2

−h
2

[
1

2
γ(ux,x + uy,y)

2 + (ux,x +
1

2
β sin 2ϕ)2 + (uy,y −

1

2
β sin 2ϕ)2

+
1

2
(ux,y + uy,x − β cos 2ϕ)2 + k|β,x cosϕ+ β,y sinϕ|

+
1

2
k(β,x cosϕ + β,y sinϕ)2] dxdy +

∫ h
2

−h
2

τyux|x=L dy. (4.91)

The bar over the dimensionless quantities is dropped for short because we shall deal only

with them.

As the energy functional (4.91) contains a small parameter h, it can be reduced to

1-D energy functional by the variational asymptotic method (see Berdichevsky, 1983; Le,

1999). For this purpose let us introduce the rescaled coordinate ζ = y/h, ζ ∈ (−1/2, 1/2)

so that the domain of ζ can be fixed in the passage to the limit h → 0. Simultaneously,
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the small parameter h enters the functional explicitly through the formulas

ui,y =
1

h
ui,ζ , β,y =

1

h
β,ζ .

Since the boundary condition at x = L does not influence the inner asymptotic distribu-

tions of the displacements and plastic distortion over the thickness, we first set τ = 0 in

(4.91) in order to apply the variational-asymptotic procedure. At its first step we keep

the asymptotically principal terms in (4.91) to obtain

E0 = h

∫ L

0

∫ 1/2

−1/2

[
1

2h2
γ(uy,ζ)

2 +
1

h2
(uy,ζ)

2 +
1

2h2
(ux,ζ)

2

+
k

h
|β,ζ sinϕ|+ 1

2h2
k(β,ζ sinϕ)2] dxdζ.

Functional E0 is positive definite, so its minimum must be zero and is achieved at

ux,ζ = uy,ζ = β,ζ = 0.

For the bending states which we are interested in let us set at this step ux = 0 and β = 0

to get

ux = 0, uy = v(x), β = 0.

At the second step, we fix v(x) and seek the minimizer in the form

ux = u′x(x, ζ), uy = v(x) + u′y(x, ζ), β = β′(x, ζ).

Substituting these formulas into (4.91) and then keeping the asymptotically leading terms,

we obtain

E1 = h

∫ L

0

∫ 1/2

−1/2

[
1

2h2
γ(u′y,ζ)

2 +
1

h2
(u′y,ζ)

2 +
1

2
(
1

h
u′x,ζ + v,x)

2

+
k

h
|β′,ζ sinϕ|+ 1

2h2
k(β′,ζ sinϕ)2] dxdζ.

Since functional E1 is positive definite, its minimum is again zero and is achieved at

u′x,ζ = −hv,x; u′y,ζ = 0, β′,ζ = 0.

Thus, at this step

u′x = −hζv,x; u′y = 0, β′ = 0.
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At the third step of the variational-asymptotic procedure, we look for the minimizer in

the form

ux = −hζv,x + u′′x(x, ζ), uy = v(x) + u′′y(x, ζ), β = β′′(x, ζ). (4.92)

Without restricting generality we may put the following constraints on the unknown

functions

〈u′′y〉 = 0, 〈β′′〉 = 0, where 〈.〉 =

∫ 1/2

−1/2

. dζ. (4.93)

Constraint 〈u′′y〉 = 0 means that v(x) is the mean deflection of the beam. Substituting

(4.92) into (4.91), then keeping the leading terms to get

E2 =

∫ L

0

∫ 1/2

−1/2

[
1

2
γ(−hζv,xx +

1

h
u′′y,ζ)

2 + (−hζv,xx +
1

2
β′′ sin 2ϕ)2

+ (
1

h
u′′y,ζ −

1

2
β′′ sin 2ϕ)2 +

1

2
(
1

h
u′′x,ζ − β′′ cos 2ϕ)2

+
k

h
|β′′,ζ sinϕ|+ 1

2h2
k(β′′,ζ sinϕ)2] dxdζ. (4.94)

Functional (4.94) can be reduced to a functional depending only on β′′. Indeed, fixing

first β′′ and varying this functional with respect to u′′x and u′′y, then using the natural

boundary conditions at ζ = ±1/2, we obtain, 1
h
(γ + 2)u′′y,ζ = γhζv,xx + β′′ sin 2ϕ,

1
h
u′′x,ζ = β′′ cos 2ϕ,

(4.95)

After finding u′′x and u′′y according to these equations, we substitute (4.95) into (4.94) and

change ζ back to y. Since the functional does not contain β′′,x, the thickness problem

reduces to minimizing the following functional with respect to β′′(x, y)

E3 =

∫ h
2

−h
2

[
κ

2
(−2v,xxy + β′′ sin 2ϕ)2 + k|β′′,y sinϕ|+ 1

2
k(β′′,y sinϕ)2] dy, (4.96)

where κ = 1
2(1−ν)

. In this variational problem variable x serves as a parameter.

From the elementary theory of elastic bending we know that the maximal and mini-

mal resolved shear stresses are achieved at the free faces of the beam and hence dislocations

should be nucleated from there. However, dislocations cannot stay very near to the free

faces due to the image forces attracting them to the boundaries. Thus, two dislocation-
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free zones near the free faces exist in equilibrium. Besides, due to the symmetry reasoning

function β(x, y) must be odd with respect to y: β′′(x, y) = −β′′(x,−y). This leads to the

following Ansatz for the minimizer of (4.96)

β′′(x, y) =


β0(x) for y ∈ (−h

2
,− l(x)

2
),

β1(x, y) for y ∈ (− l(x)
2
, 0),

−β′′(x,−y) for y ∈ (0, h
2
),

(4.97)

where β0(x) and l(x) are unknown functions, 0 ≤ l(x) ≤ h, β1(x,− l(x)
2

) = β0, and

β1(x, 0) = 0. We have to find β1(x, y), β0(x), and l(x). Functional (4.96) becomes

E3 = 2

∫ 0

− l
2

[
κ

2
(−2v,xxy + β1 sin 2ϕ)2 + k|β1,y sinϕ|+ 1

2
k(β1,y sinϕ)2] dy

+ 2

∫ − l
2

−h
2

κ

2
(−2v,xxy + β0 sin 2ϕ)2 dy. (4.98)

Varying this functional with respect to β1, we obtain the following equation

−kβ1,yy sin2 ϕ+ κβ1 sin2 2ϕ = 2κyv,xx sin 2ϕ. (4.99)

The variation of (4.98) with respect to l leads to the boundary condition

β1,y(x,−
l(x)

2
) = 0, (4.100)

guaranteeing the continuity of the dislocation density. Besides, the continuity of plastic

distortion

β1(x, 0) = 0, β1(x,− l(x)

2
) = β0 (4.101)

must also be fulfilled. Finally, the variation of (4.98) with respect to β0 yields the bound-

ary condition at y = −l/2

κv,xx
1

4
(h2 − l2) sin 2ϕ+ κβ0

1

2
(h− l) sin2 2ϕ− k sign(β1,y) sinϕ = 0. (4.102)

The solution to (4.99), (4.100), and (4.101)1 reads

β1(x, y) =
v,xx

sin 2ϕ

1

η
(2ηy − 2

cosh ηl
2

sinh ηy), (4.103)
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where

η = 2

√
κ

k
cosϕ.

Using the boundary condition (4.101)2 we find β0(x)

β0(x) =
v,xx

sin 2ϕ

1

η
(−ηl + 2 tanh

ηl

2
).

Substituting this formula into the last boundary condition (4.102) we obtain

κv,xx
1

4
(h2 − l2) sin 2ϕ+ κv,xx

1

η
(−ηl + 2 tanh

ηl

2
)
1

2
(h− l) sin 2ϕ

− k sign(β1,y) sinϕ = 0. (4.104)

The first consequence of this equation can already be obtained. Let us restrict ourselves to

the case ϕ ∈ (0, π/2). If the length l is small, then the sign of v,xx coincides with the sign

of β1,y evaluated right from the point y = −l/2. For definiteness let β1,y(−l/2 + 0) > 0

so that v,xx > 0. Note that, if the curvature of the beam is constant, then l(x) does not

depend on x and remains constant over the whole length of the beam. In this case (4.104)

can be regarded as the equation for v,xx once l is known. By integrating (4.95) and taking

the above constraints into account, we obtain the solution for u′′x and u′′y in the formu′′x =
∫ y

0
β(x, ξ) dξ cos 2ϕ,

u′′y = γ
γ+2

1
2
(y2 − h2

12
)v,xx + 1

γ+2
(
∫ y

0
β(x, ξ) dξ − χ) sin 2ϕ,

(4.105)

where χ = 〈
∫ y

0
β(x, ξ) dξ〉.

Having found the solution of the thickness problem, let us now substituteux = −v,xy +
∫ y

0
β(x, ξ) dξ cos 2ϕ,

uy = v(x) + γ
γ+2

1
2
(y2 − h2

12
)v,xx + 1

γ+2
(
∫ y

0
β(x, ξ) dξ − χ) sin 2ϕ,

(4.106)

together with β from (4.97) and (4.103) into the energy functional (4.91). Keeping the

asymptotically principal terms and integrating over the thickness we obtain the functional

I[v(x)] =

∫ L

0

Φ(v,xx) dx−Mv,x|x=L, (4.107)
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where the bending energy density reads

Φ(ω) = c1ω
2 + c2ω. (4.108)

In these formulas we use ω to denote the curvature v,xx, M = τh3/12 is the resultant

moment, and

c1 = 2

∫ − l
2

−h
2

κ

2
(q0 − 2y)2 dy + 2

∫ 0

− l
2

[
κ

2
(q − 2y)2 +

k

8 cos2 ϕ
(q,y)

2] dy,

c2 = 2

∫ 0

− l
2

kq,y
sinϕ

sin 2ϕ
dy = − k

cosϕ
q0 = − k

η cosϕ
(−ηl + 2 tanh

ηl

2
),

(4.109)

with

q(y) =
1

η
(2ηy − 2

cosh ηl
2

sinh ηy),

and q0 = q(−l/2). Note that, as the coefficients c1 and c2 depends on the curvature ω

through l, the energy density is not quadratic with respect to ω. Besides, if q(y) = 0, then

c1 = κh3/6 and c2 = 0, so the obtained functional reduces to the classical 1-D functional

of the elastic beam as expected (Le, 1999).

Varying the functional (4.107) with respect to the deflection v, we obtain the differ-

ential equation of bending

m,xx = 0, m =
∂Φ

∂ω
, (4.110)

subject to the boundary conditionsv(0) = 0, v,x(0) = 0,

m(L)−M = 0, m,x(L) = 0.
(4.111)

Equation (4.110), together with the conditions (4.111)2, implies that

m(ω) = 2c1ω +
dc1

dω
ω2 + c2 +

dc2

dω
ω = M. (4.112)

Since the bending moment m is independent of x, the curvature must also be constant

over the length of the beam. Together with (4.104), this equation determines the moment-

curvature curve during the plastic deformations. To plot this curve let us compute the
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derivatives of c1 and c2 with respect to ω

dc1

dω
=
dc1

dl

dl

dω
,

dc2

dω
=
dc2

dl

dl

dω
.

From (4.104) we find that

dω

dl
=

4kη tanh lη
2

(
η(h− l) tanh lη

2
+ 2
)

κ cosϕ(h− l)2
(
η(h− l) + 4 tanh lη

2

)2 .

This formula, together with (4.109), enables one to determine dc1/dω and dc2/dω, required

for plotting the moment-curvature curve.

The threshold value of curvature at which dislocations begin to nucleate is calculated

by letting l go to zero in (4.104) which yields

ωen =
2k

κh2 cosϕ
.

The threshold value of moment can be computed from (4.112). Taking into account that,

at l = 0, c1 = κh3/6, c2 = 0, while dc1/dω = dc2/dω = 0, we find

Men =
2kh

3 cosϕ
.

Thus, if M < Men, then β = 0, so no dislocation are nucleated and we have purely elastic

solution. The plastic yielding begins at M = Men.

Combining the purely elastic solution with the solution containing dislocations, we

present the moment-curvature relation in the following form

M =

κh3

3
ω when M < Men,

2c1ω + c2 + dc1
dω
ω2 + dc2

dω
ω when M > Men.

(4.113)

Knowing the curvature ω from M , we integrate the equation v,xx = ω and use the

boundary conditions (4.111)1 to obtain the deflection of the beam

v(x) =
1

2
ωx2. (4.114)
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4.2.3 Numerical simulations

In order to simulate the minimizer numerically, we choose h = 0.1, L = 10, ν = 0.25,

k = 10−4. Fig. 4.10 shows the plot of energetic threshold of the bending moment Men as

function of the angle ϕ. It can be seen that the threshold moment becomes infinite as ϕ

goes to π/2 and has a local minimum at ϕ = 0.

0.5 1.0 1.5 2.0 2.5 3.0
j

0.00001

0.00002

0.00003

0.00004

0.00005

Men

Figure 4.10: Function Men(ϕ).

For M > Men the plastic distortion becomes non-zero. Fig. 4.11 show the plots

of plastic distortion β(y) for M = 0.00015 at two different orientations of slip systems.

The plastic strain vanishes on the middle line of the beam as expected and reaches its

maximum and minimum at the free faces.

a

b

-0.04 -0.02 0.02 0.04
y

-2

-1

1

2
Β

Figure 4.11: Function β(y) for M = 0.00015 and a) ϕ = π
3
, b) ϕ = π

6
.

On Fig. 4.12, where the dislocation density ρ(y) is plotted for M = 0.00015 and for

two different angles it is seen that the excess dislocations of the same sign are concentrated

in the middle of the beam thickness, with maximum dislocation density achieved at y = 0.

Although no obstacle exists on the middle line, the repulsive forces between dislocations

of the same sign prevent them from colliding. Thus, the high concentration of dislocations
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Figure 4.12: Dislocation density for M = 0.00015 and a) ϕ = π
3
, b) ϕ = π

6
.

can be regarded as the dislocation pile-up against the middle line. The dislocation free

zones are y ∈ (−h/2,−l/2) and y ∈ (l/2, h/2).

a

b
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Figure 4.13: Deflection of the beam.

The deflection of the beam, v(x), is shown in Fig. 4.13 for M = 0.00015 and a)

ϕ = π
3
, b) ϕ = π

6
. Since the curvature of the beam is constant, the thickness of the

dislocation zone l does not depend on x.

On Fig. 4.14 we show the moment-curvature curve for ϕ = π/3 and ϕ = π
6
. Up to the

threshold moment Men (corresponding to point A on this figure) the moment-curvature

curve is a straight line corresponding to the linear elastic beam theory. Then the curve

becomes non-linear and increasing as M increases and l increases from zero to h/2. This

nonlinear portion describes the work hardening due to the dislocation pile-up against the

middle line of the beam. If the bending moment is increased from zero up to the moment

MB corresponding to B (the loading case) we follow the moment-curvature curve from O

through A to B. Now, if we unload the beam by decreasing the bending moment from

MB to zero, we come back by the same path BAO, and at the end of the unloading path

no residual curvature of the beam is observed.
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Figure 4.14: Moment-curvature curve for: a) ϕ = π
3
, b) ϕ = π

6
.

4.2.4 Non-zero dissipation

If the dissipation cannot be neglected, the problems reduce to minimizing the relaxed

energy functionals (4.89). The sign of its last term in the energy density depends on

whether β̇ > 0 or β̇ < 0. However, for the beam bending it is easy to see that both cases

occur simultaneously during the plastic deformations. Indeed, from the elementary beam

theory (and also from the previous simulations) we know that, as the bending moment

is increased (loading), β̇ > 0 for y > 0 and β̇ < 0 for y < 0. In contrary, if the bending

moment is decreased (unloading or loading in the opposite direction), β is either frozen

or β̇ > 0 for y < 0 and β̇ < 0 for y > 0. Since these functionals differs from each other in

the loading and unloading case, the case study must be done separately.

Consider first the loading case for which the term sign(β̇)Kβ in (4.89) must be

replaced by sign y Kβ. It is convenient to introduce the dimensionless quantities (4.90)

as in Section 3 and rewrite the energy functionals (4.89) in the dimensionless form

Ed =

∫ L

0

∫ h
2

−h
2

[
1

2
γ(ux,x + uy,y)

2 + (ux,x +
1

2
β sin 2ϕ)2 + (uy,y −

1

2
β sin 2ϕ)2

+
1

2
(ux,y + uy,x − β cos 2ϕ)2 + k|β,x cosϕ+ β,y sinϕ|

+
1

2
k(β,x cosϕ + β,y sinϕ)2 + ε sign y β] dxdy +

∫ h
2

−h
2

τyux|x=L dy, (4.115)

where ε = K/µ. As compared to the previous functional (4.91) the additional term

ε sign y β does not belong to the asymptotically principal terms. Therefore, up to the
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second step of the variational-asymptotic procedure this term does not have any influence

on the inner asymptotic expansion. At the third step we look for the minimizer in the

form (4.92) such that the constraints (4.93) are obeyed. Fixing β′′ and minimizing the

relaxed energy with respect to u′′x and u′′y, we find them in the form (4.95). Then, the

functional reduces to

Ed =

∫ h
2

−h
2

[
κ

2
(−2v,xxy + β′′ sin 2ϕ)2 + ε sign yβ′′ + k|β′′,y sinϕ|+ 1

2
k(β′′,y sinϕ)2] dy.

Now, the term ε sign yβ′′ should be kept because it is of the same order as the cross term

−κ2v,xxyβ
′′ sin 2ϕ. Up to an unessential constant we may rewrite this functional as

Ed =

∫ h
2

−h
2

[
κ

2
(−2v,xxy+

ε sign y

κ sin 2ϕ
+β′′ sin 2ϕ)2 +k|β′′,y sinϕ|+ 1

2
k(β′′,y sinϕ)2] dy. (4.116)

Similar to the case of energy minimization we use the Ansatz (4.97) for the mini-

mizer. Then the functional (4.116) becomes

Ed = 2

∫ 0

− l
2

[
κ

2
(−2v,xxy −

ε

κ sin 2ϕ
+ β1 sin 2ϕ)2 + k|β1,y sinϕ|

+
1

2
k(β1,y sinϕ)2] dy + 2

∫ − l
2

−h
2

κ

2
(−2v,xxy −

ε

κ sin 2ϕ
+ β0 sin 2ϕ)2 dy. (4.117)

Here the oddness of β′′ is used. Varying this functional with respect to β1, we obtain the

following equation

−kβ1,yy sin2 ϕ+ κβ1 sin2 2ϕ = 2κyv,xx sin 2ϕ+ ε. (4.118)

The variation of (4.117) with respect to l leads to the boundary condition

β1,y(x,−
l(x)

2
) = 0, (4.119)

which should be posed together with the continuity of β

β1(x, 0) = 0, β1(x,− l(x)

2
) = β0 (4.120)

Finally, the variation of (4.117) with respect to β0 yields the boundary condition at

78



4.2 Bending

y = −l/2

κv,xx
1

4
(h2 − l2) sin 2ϕ+ (

κβ0

2
sin2 2ϕ− ε

2
)(h− l)− k sign(β1,y) sinϕ = 0. (4.121)

The solution to (4.118), (4.119) and (4.120)1 reads

β1(y) =
v,xx

η sin 2ϕ
(2ηy− 2 sinh ηy

cosh ηl
2

) +
ε

κ sin2 2ϕ
(1− cosh ηy− tanh

ηl

2
sinh ηy). (4.122)

Computing β1(y) at y = −l/2 we get

β0 =
v,xx

η sin 2ϕ
(−ηl + 2 tanh

ηl

2
) +

ε

κ sin2 2ϕ
(1− 1

cosh ηl
2

).

Substitution of this formula into (4.121) yields

κv,xx
1

4
(h2 − l2) sin 2ϕ+ κv,xx

1

η
(−ηl + 2 tanh

ηl

2
)
1

2
(h− l) sin 2ϕ

− ε

2

1

cosh ηl
2

(h − l) − k sign(β1,y) sinϕ = 0. (4.123)

Knowing β, we can now determine the displacement field in accordance with (4.105).

Then, substituting this field together with β(y) from (4.97) and (4.122) into the energy

functional (4.116), keeping the asymptotically principal terms and integrating over the

thickness we obtain the 1-D functional given by

I =

∫ L

0

Φ(v,xx)
2 dx−Mv,x|x=L. (4.124)

where

Φ(ω) = c1ω
2 + c2ω. (4.125)

The coefficient c1 and c2 are given by
c1 = 2

∫ 0

− l
2
[κ

2
(q(y)− 2y)2 + k

8 cos2 ϕ
(q,y)

2] dy + 2
∫ − l

2

−h
2

κ
2
(q0 − 2y)2 dy,

c2 = 2
∫ 0

− l
2
[ k
2 cosϕ

q,y + ε
κ sin 2ϕ

( k
4 cos2 ϕ

q,yp,y + κ(p(y)− 1)(q(y)− 2y))] dy

+2
∫ − l

2

−h
2

[ ε
sin 2ϕ

(p0 − 1)(q0 − 2y)] dy,
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with

q(y) =
1

η
(2ηy − 2

sinh ηy

cosh ηl
2

), p(y) = 1− cosh ηy − tanh
ηl

2
sinh ηy,

and q0 = q(−l/2), p0 = p(−l/2). Note that the coefficients c1 and c2 depends on the

curvature ω, so the energy density is not quadratic with respect to ω.

Varying the functional (4.124) with respect to the deflection v, we obtain the dif-

ferential equation of bending (4.110) subject to the boundary conditions (4.111). This

implies the moment-curvature relation (4.112) as in Section 4. Consequently, the moment-

curvature relation remains valid if c1 and c2 from above are substituted. It turns out that

the straight line M = κh3 ω
3

corresponding to the purely elastic solution does not intersect

the moment-curvature curve corresponding to the solution with dislocations at l = 0 for

the case with non-zero dissipation. The threshold value for the curvature must therefore

be calculated by solving the system of equations

ω(ld) = ωd, m(ld) = κh3ωd
3
, (4.126)

where ld and ωd are regarded as unknowns. Using (4.112) we can find also the threshold

value for the bending moment Md. Computing the curvature from the given moment, we

can find the deflection in accordance with equation (4.114).

Let the beam be bent slowly and successively by the increasing moment reaching the

maximal value M∗ > Md such that at the end of the loading process the plastic distortion

becomes β∗. Consider now the unloading process in which we reduce the bending moment

back to zero. Assuming that dislocations are frozen during this unloading process with

β = β∗ and β̇ = 0, we find the displacements of the beam by minimizing the energy

functional

E =

∫ L

0

∫ h
2

−h
2

[
1

2
γ(ux,x + uy,y)

2 + (ux,x +
1

2
β∗ sin 2ϕ)2 + (uy,y −

1

2
β∗ sin 2ϕ)2

+
1

2
(ux,y + uy,x − β∗ cos 2ϕ)2 + k|β∗,x cosϕ+ β∗,y sinϕ|

+
1

2
k(β∗,x cosϕ + β∗,y sinϕ)2] dxdy +

∫ h
2

−h
2

τyux|x=L dy. (4.127)

where, now, β∗ is fixed and does not subject to the variation. Doing the variational-

asymptotic analysis similar to the case presented in Sections 3 and 5, we obtain on the
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third step the following displacement fieldux = −v,xy +
∫ y

0
β∗(x, ξ) dξ cos 2ϕ,

uy = v(x) + γ
γ+2

1
2
(y2 − h2

12
)v,xx + 1

γ+2
(
∫ y

0
β∗(x, ξ) dξ − χ∗) sin 2ϕ,

(4.128)

where χ∗ = 〈
∫ y

0
β∗(x, ξ) dξ〉. Substituting this displacement field into functional (4.127)

and keeping the asymptotically principal terms, we obtain

E3 =

∫ L

0

∫ h
2

−h
2

[
κ

2
(−2v,xxy + β∗ sin 2ϕ)2 + k|β∗,y sinϕ|+ 1

2
k(β∗,y sinϕ)2] dxdy

−
∫ h

2

−h
2

τy2v,x
∣∣
x=L

dy, (4.129)

Integrating over the thickness and neglecting the terms containing known function β∗, we

obtain 1-D functional (4.124) with the bending energy density (4.125), but now

c1 = κh3/6, c2 = 2

∫ 0

− l
2

κω∗q∗(y)(−2y) dy + 2

∫ − l
2

−h
2

κω∗q0∗(−2y) dy, (4.130)

where ω∗ is the curvature corresponding to M∗ and

q∗(y) =
1

η
(2ηy − 2

cosh ηl∗
2

sinh ηy), q0∗ = q∗(−l/2).

Thus, during this unloading process the moment-curvature relation takes the form

m = 2c1ω + c2 = M,

so that, at the end of the unloading when M = 0, the residual curvature is

ωr = −c2

c1

Note that, although the bending moment after unloading is zero, the elastic strain is not,

so there is still some eigenstress in the beam at the end of this process. The energy of the

beam after unloading is given by the asymptotic formula

Eu =

∫ L

0

∫ h
2

−h
2

[
κ

2
(−2ωry + β∗ sin 2ϕ)2 + k|β∗,y sinϕ|+ 1

2
k(β∗,y sinϕ)2] dxdy. (4.131)

Here the first term describes the elastic energy due to the eigenstress, while the remaining

terms correspond to the energy of the frozen dislocations. Mention also that this unloading
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process can also be combined with the energy minimization.

The case of loading in the opposite direction with β̇ > 0 for y < 0 and β̇ < 0

for y > 0 reduces to the minimization of functional (4.115), in which the term ε sign y β

should be changed to −ε sign y β. This case can be studied in a similar manner.

4.2.5 Numerical simulation

In order to simulate the minimizer numerically, we choose h = 0.1, L = 10, ν = 0.25,

k = 10−4, K = 5× 106Pa and µ = 26× 109Pa. In order to find the dissipative threshold

for the bending moment we need to solve equations 4.126 with respect to ωd and ld. Then

Md = κh3 ωd
3

. Numerical simulations give for instance ωd = 0.07226, ld = 0.0221 ⇒
Md = 0.0000160588 for ϕ = π

3
and ωd = 0.04489, ld = 0.0213⇒ Md = 0.997654× 10−5

for ϕ = π
6
. Thus, if we increase M steadily, then at the onset of plastic yielding the plastic

slip and the total number of dislocations turn out to be finite. This could be explained

physically in the following way: in the presence of nonzero dissipation dislocations should

accumulate enough to give the crystal

a

b
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y

-2

-1

1

2
Β

Figure 4.15: Function β(y) for M = 0.00015 and a) ϕ = π
3
, b) ϕ = π

6
.

For M > Md the plastic distortion becomes non-zero. Fig. 4.15 show the plots

of plastic distortion β(y) for M = 0.00015 at two different orientations of slip systems.

The plastic strain is zero on the middle line of the beam and reaches its maximum and

minimum at the free faces. On Fig. 4.16, where the dislocation density ρ(y) is plotted for

M = 0.00015 and for two different angles, we see that the excess dislocations of the same

sign are concentrated in the middle of the beam thickness, with maximum dislocation

density achieved at y = 0. Although no obstacle exists on the middle line, the repulsive

force between dislocations of the same sign prevent them from colliding. Thus, the high
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4.2 Bending
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Figure 4.16: Dislocation density for M = 0.00015 and a) ϕ = π
3
, b) ϕ = π

6
.
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Figure 4.17: Deflection of the beam.

concentration of dislocations can be regarded as the dislocation pile-up against the middle

line. The dislocation free zones are y ∈ (−h/2,−l/2) and y ∈ (l/2, h/2).

The deflection of the beam, v(x), is shown in Fig. 4.17 for M = 0.00015 and a)

ϕ = π
3
, b) ϕ = π

6
. Since the curvature of the beam is constant, the thickness of the

dislocation zone l does not depend on x.

On Fig. 4.18 we show the moment-curvature curve for ϕ = π/3 and ϕ = π
6
. Up to

the threshold moment Md (corresponding to point A on this figure) the moment-curvature

curve is a straight line corresponding to the linear elastic beam theory. Then the curve

becomes non-linear and increasing as M increases and l increases from zero to h/2. This

nonlinear portion describes the work hardening due to the dislocation pile-up against the

middle line of the beam. If the bending moment is increased from zero up to the moment

MB corresponding to B (the loading case) we follow the moment-curvature curve from O

through A to B. If the beam is then unloaded, the moment-curvature curve becomes a

straight line BC with the same slope like that of OA as shown in Fig. 4.19.
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Figure 4.18: Moment-curvature curve for: a) ϕ = π
3
, b) ϕ = π

6
.

Figure 4.19: Moment-curvature curve during loading and unloading for: a) ϕ = π
3
, b)

ϕ = π
6
.

4.2.6 Energy reducing sequence for polygonized state

Assume that the beam is bent by the increasing moment up to the value M∗ > Md and

then unloaded by decreasing the moment to zero. At the end of these processes the

dislocations produced at loading are frozen such that energy of the beam is given by

formula (4.131). Then the beam is subject to annealing which means that it is placed in a

thermal bad with fixed but rather high temperature (ca. 400-500◦ Celsius) for sufficiently

long time. Under this condition the mobility of vacancies become high enough to make

dislocations climb and then glide so that at the end of annealing the polygonized state of

the beam is realized as shown schematically on Fig. 4.20. Each polygon is a single crystal
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4.2 Bending

oriented slightly differently with respect to its neighbors and the boundaries between

them are low angle tilt boundaries. The dislocations align themselves into ordered arrays

at these boundaries, and there are practically no dislocations inside the polygons. As

compared to the unloaded state the rearrangement in displacements is quite small: the

polygons undergo rigid-body rotation so that the elastic strain inside them vanishes. The

deflection of the beam is nearly the same as that after unloading.

Figure 4.20: A polygonized bent beam.

We want to show that the rearrangement of dislocations and displacements leading

to the polygonized relaxed state correspond to a sequence of piecewise constant β̌(x, y) and

the piecewise linear displacement field ǔx(x, y) and ǔy(x, y) reducing energy of the beam

compared with (??). For simplicity let us consider the case ϕ = 0 Let the interval (0, L) be

divided into N equal subintervals so that the domain (0, L)× (−h/2, h/2) is decomposed

into N polygons. The boundaries between polygons are perpendicular to the beam axis.

Consider first the rotation angle of the beam, ϑ(x) = v,x, which, after unloading, was

a linear function ϑr = ωrx. Let us replace this rotation angle by a piecewise constant

function ϑ̌(x) such that ϑ̌(x) = ωr
L
N
i in the i-th interval. The deflection v̌ is then defined

as a piecewise linear function whose slope is constant and equal to ϑ̌(x) = ωr
L
N
i in each

polygon. It is easy to see that, as N goes to infinity, this function goes to 1
2
ωrx

2 which

was the deflection of the beam after unloading. The plastic distortion β̌(x) is defined to

be a piecewise constant function which is equal to δ L
N
i in the i-th polygon. Concerning

the displacements ǔx(x, y) and ǔy(x, y) we take them as piecewise linear according toǔx = −ϑ̌(x)y + β̌(x)y,

ǔy = v̌(x)
(4.132)

Note that the plastic distortion as well as the rotation angle of the beam are discontinuous

across the boundaries of the polygons. To guarantee the continuity of displacement across

the boundaries of polygons, we must choose δ such that

δ = ωr.

With this choice the component of displacement ǔx vanishes. It is then easy to check that

the elastic strain is identically zero. Likewise, the bulk dislocation density must be zero
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4 Problems of polygonization and bending

because β̌ is constant inside each polygon.

The jump of β̌ means the dislocations concentrated at the surface, therefore we as-

cribe to each jump point the normalized Read-Shockley surface energy (Read and Shock-

ley, 1950)

γ(δ
L

N
) = γ∗|δL/N | ln

e∆α∗
δL/N

, (4.133)

with γ∗ = b
4π(1−ν)

, and α∗ the saturated misorientation angle.

Substitute the displacements and plastic distortion into the energy functional to-

gether with the surface energy term and taking into account that the elastic strain as well

as the bulk dislocation density vanish, we obtain the following expression for the energy

after dislocation and displacement rearrangement

Ep =
N∑
i=1

γ(δ
L

N
)h. (4.134)

Since the first term in (4.131) is positive, the energy (4.134) is less than that of

(4.131) if the increase of the surface energy is less than the reduction in gradient terms.

Thus, the number of polygons can be estimated by requiring that

N∑
i=1

γ(δ
L

N
)h < 2

∫ L

0

∫ 0

−l
2

[k|β∗,y sinϕ|+ 1

2
k(β∗,y sinϕ)2] dxdy. (4.135)
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Figure 4.21: Plot of lnN as function of M .

The plot of the upper bound of lnN as a function ofM is presented in Fig. 4.21 where

we took L = 10m, h = 0.1m, b = 2.68× 10−10m, ρs = 1.454× 1014m−2, k = 1.56× 10−4,
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4.2 Bending

ν = 0.25. One can see the increase of the estimated number of polygons with the increasing

moment.

87





5 Formation of dislocation

microstructure

In this Chapter the nonlinear continuum dislocation theory is applied into the two-

dimensional problems of uniaxial compression. From this, shear bands can be observed

through out the process of constructing lamellaers.

5.1 Plane strain deformation

The purpose of this Section is to further specify the general theory developed in Sections

2 and 3 of Chapter 3 for the plane strain deformation for the later applications in two-

dimensional problems of uniaxial compression. Consider a single crystal which is initially

dislocation-free. Assume that this crystal occupies in its undeformed state a cuboid of

width L, height H, and depth D so that in the chosen rectangular coordinate system

0 ≤ x1 ≤ L, 0 ≤ x2 ≤ H, and 0 ≤ x3 ≤ D. We realize the plane-strain deformation by

placing this crystal in a “hard” device with the prescribed displacements at some part of

its boundaries that do not depend on the x3-coordinate. We assume that the depth of

the crystal D is large enough compared with L and H to guarantee the plane strain state

for which y3 = x3 everywhere. Due to this reason we may drop the third component of

vectors and tensors for convenience and regard the equation

y = y(x)

as two-dimensional. Likewise, all vectors and tensors obtained from it (as the deformation

gradient, the strain tensor et cetera) are two-dimensional. If the parameter characterizing

the given position of the boundary is such that the resulting displacements there are

sufficiently small, then it is natural to expect that the crystal deforms elastically and the

plastic slip must be zero everywhere. If this parameter exceeds some critical threshold,
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5 Formation of dislocation microstructure

then edge dislocations may appear. We admit only the slip directions (or the directions

of the Burgers vectors) inclined at an angle ϕ to the x1-axis and the dislocation lines

parallel to the x3-axis. Thus, the only active slip system is characterized by the pair of

unit (2-D) vectors

sT = (cosϕ, sinϕ), mT = (− sinϕ, cosϕ),

where s indicates the slip direction and m is the normal to the slip plane. Besides,

the plastic slip β, under the plane strain state condition, may depend only on x1 and

x2. Then, taking the infinitesimal area da in the (x1, x2)-plane, we obtain the resultant

Burgers vector of all excess dislocations whose dislocation lines cross da at right angle in

the form

br = s(β,1 cosϕ+ β,2 sinϕ)da.

Thus, this vector is parallel to the slip direction s indicating that we are dealing with the

edge dislocations only. The scalar dislocation density (or the number of excess dislocations

per unit area) can then be determined as

ρ =
1

b
|β,1 cosϕ+ β,2 sinϕ|.

Let us propose the free energy per unit volume of the undeformed crystal in the

form

ψ(Ee, ρ) =
1

2
λ(trEe)2 + µ tr(Ee · Ee)− µχ(ln J)3 + µcb2ρ. (5.1)

Here Ee = 1
2
(Ce− I) is the elastic strain tensor, J = detFe = detF (because detFp = 1),

λ and µ are the Lamé constants, χ and c are positive constants (c is of order 0.3 while

χ is a small parameter). The first three terms in (5.1) represent the elastic energy of the

crystal due to the macroscopic elastic deformation that assumes the standard quadratic

form of the elastic strain if the latter becomes small. Without the third term the energy

required to compress the whole material into the single point is finite, so the material

behavior would not be adequately reflected in this limit. The adding of this correction

term into the energy is the simplest way to remove this deficiency, maintaining at the

same time the correct material behavior at small strains for metals. One can show that

this term is small for principal stretches close to 1 if χ is small. The alternative way

is to propose the free energy as a quadratic form in terms of the Hencky strain measure

although the model is computationally more elaborate (see, for instance, Brünig [41], Xiao
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5.2 Uniaxial compression

et al. [81]). The last term in (5.1) corresponds to the energy of the dislocation network

for small dislocation densities Berdichevsky [2], Ortiz and Repetto [67].

With this free energy density we can now compute the first Piola-Kichhoff stress

tensor

P = 2Fe · ψCe · Fp−T = Fe · [λ(trEe)I + 2µEe − 3µχ(ln J)2Ce−1] · Fp−T . (5.2)

The Schmid stress becomes

τr = −wβ = −s ·Ce · [λ(trEe)I + 2µEe − 3µχ(ln J)2Ce−1] · Fp−T ·m. (5.3)

Finally, the back stress in this model is given by

ς = ∇ · w∇β = µcb∇ · [sign(∇β · s)s], (5.4)

so it is identically zero unless the dislocation density is zero. In the latter case the back

stress must be understood in terms of the sub-derivative of the non-differentiable function

(see Section 5.2).

5.2 Uniaxial compression

Consider a single crystal plate having an original height L, a depth D, and a thickness

H (see the cross section of the plate in the (x1, x2)-plane in Fig. 5.1). Let this plate be

placed in a hard device such that the lower boundary at x1 = 0 is clamped, while the

upper boundary at x1 = L experiences the vertical displacement −(1 − γ)L. We will

assume L large enough compared with H to neglect the influence of the plate edges on

the far fields (but not too large to avoid the buckling). The problem is to find placement

y(x) and plastic slip β(x) for a given overall stretch γ ∈ (0, 1). The latter is regarded as

a control parameter in this plane strain problem.

Let us consider the case with zero dissipation and study the energy of the plate at

the uniform total deformations such that

F =

(
γ 0

0 κ

)
,

with γ and κ being the principal stretches in vertical and transversal directions, respec-
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x1
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(1-γ)L
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m

ϕ

Figure 5.1: Cross section of a single crystal plate under plane strain compression.

tively. Thus, J = detF = γκ. Obviously, these uniform total deformations do not satisfy

the boundary conditions at the upper and lower edges of the plate exactly. However, since

H � L, the regions where the deformation deviates from being uniform near the edges

of the plate are small and can be neglected. We also assume that, when the plastic slip

occurs, the plastic deformation is uniform

Fp = I + βs⊗m,

with β being also a constant (again, far from the plate edges). In this case the elastic

deformation turns out to be uniform as well and is given by

Fe = FFp−1 =

(
γ(1 + β cosϕ sinϕ) −βγ cos2 ϕ

βκ sin2 ϕ κ(1− β cosϕ sinϕ)

)
. (5.5)

Since the plastic deformation is uniform, the dislocation density inside the plate vanishes.

Substituting these uniform elastic and plastic deformations into the energy functional,

we see that the energy of dislocations vanishes. Thus, we obtain the energy of crystal

evaluated at uniform deformations in the form

Iu = |V|[1
2
λ(trEe)2 + µ tr(Ee · Ee)− µχ(ln J)3]. (5.6)

It is convenient to deal with the energy normalized by µ|V|. The latter is a function of

92



5.2 Uniaxial compression

three variables γ, κ, and β which, for λ = 0, reads

E(γ, κ, β) =
1

4
[(β2γ2 cos4 ϕ+ κ2(β sinϕ cosϕ− 1)2 − 1)2

+2(βκ2 sin2 ϕ(1− β sinϕ cosϕ)− βγ2 cos2 ϕ(β sinϕ cosϕ+ 1))2

+(β2κ2 sin4 ϕ+ (βγ sinϕ cosϕ+ γ)2 − 1)2 − 4χ ln3(γκ)].

(5.7)

We want first to minimize the above energy with respect to κ and β. Theoretically,

this can be done by equating the derivatives of E with respect to κ and β to zero, then

solving the resulting transcendental equations to determine κ and β in terms of γ, and

finally, substituting back into E and evaluating it to get the condensed energy e(γ). Since

the obtained transcendental equations are difficult to solve, the more effective way of

computing e(γ) is to minimize the energy (5.7) with respect to κ and β numerically. The

result of this numerical minimization (provided for ϕ = π
2.5

(72◦) and χ = 0.007) is shown

in Fig. 5.2, where it is seen that e(γ) is non-convex in the interval between γA and γB.

The convex hull is obtained if the curve e(γ) between A and B is replaced by the straight

line connecting the points A and B and serving as the common tangent to the curve at

A and B.

γ

A

B
γ

e(γ)

γA γB

Figure 5.2: Non-convex condensed energy e(γ) with ϕ = π
2.5

.

The finding of the interval (γA, γB) where the condensed energy is non-convex can

easily be done in terms of the derivative e′(γ) using Maxwell rule of equal area (see the plot

of e′(γ) in Fig. 5.3). However, since e(γ) is obtained from the numerical minimization,

a certain extrapolation and smoothing of e(γ) is required for the numerical evaluation

of e′(γ). The numerical algorithm, presented below, leads to the numerical values of

γA = 0.0617 and γB = 0.7285 for the chosen angle and other parameters.

Numerical algorithm:
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5 Formation of dislocation microstructure

1. Set up an initial value for γ0, an increment step for each loop, and a tolerance tol.

2. Compute e′(γ0). Find γ1 and γ2 such that γ2 > γ1 > γ0 and e′(γ1) = e′(γ2) = e′(γ0).

3. Compute the areas A1 and A2 between the curve e′(γ) and the horizontal straight

line connecting three points A, C, and B as shown in Fig. 5.3.

4. Compare the values of A1 and A2. If the absolute value of A1 − A2 is less than tol

then go to 5. Otherwise, assign γ0 = γ0 + step, go to 2.

5. Assign γA = γ0 and γB = γ2. Exit.

γ
e´(γ)

A B
C

Figure 5.3: The derivative e′(γ) and Maxwell’s construction.

Although the uniform total and plastic deformations found above satisfy the equilib-

rium equations, they do not correspond to the energy minimizer in the range γ ∈ (γA, γB)

due to the non-convexity of the energy in this range. To achieve the lowest possible en-

ergy, let us construct the energy minimizing sequence of placements and plastic slips such

that the energy evaluated on them approaches the convex hull for the condensed energy

ec(γ) =

e(γ) for 0 < γ < γA and γB < γ < 1,

e(γA) + γ−γA
γB−γA

[e(γB)− e(γA)] for γA ≤ γ ≤ γB,
(5.8)

which is lower than the energy of the uniform deformation in the range γ ∈ (γA, γB) (see

Fig. 5.2). For this purpose let us divide the plate into a sequence of bands of two types

which we denote by + and − (see Fig. 5.4). The volume fraction of bands + is s, while

that of − is 1 − s. We choose the elastic stretch tensor to be piecewise constant in the

bands + and − according to

Ue+ =
√
FeT
A · Fe

A, Ue− =
√

FeT
B · Fe

B,
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s

m

n
F-

F+

Figure 5.4: Shear bands in the plate.

where Fe
A and Fe

B are the elastic deformations obtained from (5.5) when (γA, κA, βA)

and (γB, κB, βB) found at the states A and B are substituted, respectively. This choice

guarantees that the energy in those bands coincides with the energy in the state A and

B, respectively. The elastic rotation is also piecewise constant such that

Re+ =

(
cos θ+ − sin θ+

sin θ+ cos θ+

)
, Re− =

(
cos θ− − sin θ−

sin θ− cos θ−

)
,

but the rotation angles θ+ and θ− are left undetermined. We will find them from the

jump conditions at the grain boundary. The elastic deformation, computed from the

polar decomposition, becomes then also piecewise constant: Fe± = Re± · Ue±. The

plastic deformation is chosen to be piecewise constant too

Fp± = I + β±s⊗m

with β± being still unknowns. With the multiplicative resolution we then find the total

deformations F± = Fe± ·Fp± that contains four unknowns θ+, θ−, β+, β−. To guarantee

the existence of the placement field, the Hadarmard’s compatibility condition

[[F]] = q⊗ n, (5.9)

have to be fulfilled, where q and n are unknown vectors. Besides, the condition of force

equilibrium,

[[P]] · n = 0, (5.10)
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thermodynamic equilibrium (for the plane grain boundary with η = 0)

−q ·P · n + [[w]] = 0, (5.11)

as well as the identity

n · n = 1 (5.12)

must also be satisfied. Thus, there are altogether eight equations to determine eight

unknowns θ+, θ−, β+, β−, nT = (n1, n2), and qT = (q1, q2).

The system (5.9)-(5.12) can be solved as follows. We first eliminate one unknown

by taking nT = (− sinα, cosα) that satisfies the identity (5.12). Then we solve four

equations of compatibility (5.9) as linear equations with respect to β+, β−, q1, q2 to find

them as functions of three angles α, θ+, θ−. Substituting these functions into (5.10) and

(5.11) we get three scalar equations containing three unknowns angles that can be written

as

fi(r) = 0, i = 1, 2, 3, (5.13)

with r the three-dimensional unknown vector. The robust numerical algorithm to find

the solution of (5.13) is to minimize the function

g(r) =
3∑
i=1

f 2
i (r).

The result of this numerical minimization done in Matlab is

α = 1.242, β+ = 67.402, β− = 67.755, θ+ = −1.526, θ− = −0.705.

From this result we see that the misorientation angle between the shear band boundary

and the slip direction is ϑ = −0.84◦ which is really small as observed in Uchic et al. [74].1

Computing the change in heights of the bands in the vertical direction due to F±, we find

the volume fraction of bands +

s =
γ − γA
γB − γA

.

1Dimiduk informed the authors in his private communication about this small misorientation between
the shear bands and the slip direction.
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5.2 Uniaxial compression

The resolved shear stresses in these bands, normalized by the shear modulus µ, are

τ+
r = 7.252× 10−8, τ−r = 1.620× 10−6,

so they are small but not equal to zero. The equilibrium of micro forces, in case of

zero dislocation density inside the layers, must be understood in the following sense (see

Berdichevsky and Le [4])

|τr| ≤
2cb sinϑ

h

where h is the thickness of the bands. The right-hand side can be interpreted as the back

stress in this case. This puts some constraints on the thickness of the bands.

It is not difficult to extend these results to the case with non-zero dissipation. To be

able to compare with experiments conducted in Uchic et al. [74] the proposed theory must

be extended to three dimensions which is still in progress and will be reported elsewhere.
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In this thesis the continuum dislocation theory has been used and developed for modeling

of microstructures. Both linear and nonlinear theory are applied into specific approaches.

In the first approach we have shown that there exists a sequence of piecewise constant

plastic distortions reducing the energy of the relaxed state of the bent beam and exhibit-

ing the polygonization. We mention that the theory developed above does not provide

any information about the kinetics of polygonization, which may be quite complicated

due to the temperature-dependent dislocation climb and due to the interaction between

dislocations and vacancies. Thus, for the kinetics of polygonization the knowledge about

dissipation due to the dislocation climb becomes unavoidable.

Moreover, the one-dimensional theory of bending of a single crystal beam taking into

account continuously distributed dislocations has been developed. The threshold bending

moment exhibiting the size effect has been found for the case without and with dissipation.

We have found also the dislocation density and the moment-curvature curves at loading

and unloading. Furthermore, we have shown that there exists a sequence of piecewise

constant plastic distortions and piecewise linear displacements reducing the energy of the

annealed and relaxed state of the bent beam and exhibiting the polygonization. We men-

tion that the theory developed above does not provide any information about the kinetics

of polygonization, which may be quite complicated due to the temperature-dependent

dislocation climb and due to the interaction between dislocations and vacancies.

The second approach have we developed the nonlinear CDT for crystals with dis-

locations and with grain boundaries regarded as the surfaces of weak discontinuity in

placement but strong discontinuity in plastic slip. The whole set of equilibrium equations,

boundary conditions and jump conditions are derived from the energy minimization prob-

lem. We have shown on the examples of crystals deforming in simple shear or in uniaxial

compression that the formation of grains with piecewise constant plastic slip and elastic

deformation satisfies all equilibrium conditions and provides the energy minimizing se-

quences to these non-convex variational problems. In case the homogeneous states are
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not rank-one connected, the whole set of jump conditions is needed to find the elastic

rotation and the plastic slip leading to the energy minimizing sequences. Let us mention

that the modification of the surface energy density depending on the misorientation angle

in accordance with Read-Schockley’s energy would make the theory more suitable for low

angle tilt boundaries.

In future works, we would like to applied these theories into more general cases

which can explain and understand clearly the formation of microstructures.
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