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Abstract

We study high velocity single-phase as well as immiscible two-phase fluid flow in
porous media using pore-scale resolved direct numerical simulations. The effects
of inertia and capillarity generally render microscopic flow conditions non-laminar
and, as a result, the effective constitutive behavior on the macroscale non-linear.
High velocity and two-phase flow conditions are thus subsumed under the term
non-Darcian. Despite of their practical relevance, for instance during carbon
dioxide sequestration, groundwater contamination remediation or reservoir well
testing, the role that microscopic heterogeneities have on the macroscopic non-
Darcian behavior remains to a large extent unknown.

To this end, we use the meshfree Lagrangian Smoothed Particle Hydrodynam-
ics (SPH) method to study these effects in numerically fully-resolved heteroge-
neous porous media of particulate microstructure. On the pore-scale, bulk fluid
flow is governed by the incompressible Navier-Stokes equations whereas interfa-
cial balance equations are taken into account for multiphase flow problems. While
its meshfree interpolation stencils render spatial discretization of complex pore-
spaces comparatively cheap, its Lagrangian nature gives rise to intrinsic stability
against the apparent hyperbolicity of convective flows and the fragmentation and
coalescence dynamics of interfaces during multiphase flow. We thereby argue
that SPH constitutes an attractive simulation tool for the present study. In an
attempt to support this statement, the presented SPH model is first subject to
an extensive validation procedure.

We subsequently study the transition from low to high Reynolds number
flow in porous media with particular focus on the complex array of the emerging
microscopic processes. These include streamline rectification, flow tube narrowing
and formation and growth of wake eddies, all of which are found sensitive to
microstructure and to have decisive influence on the effective hydraulic properties
of porous media.

Finally, we study the saturation-controlled displacement of a wetting pore-
fluid by non-wetting fluid, i.e. primary drainage. The interplay of viscous and
capillary forces is known to result in macroscopic displacement patterns as diverse
as viscous fingering, capillary fingering or stable displacement. In this work,
we elucidate microscopic flow patterns associated with different displacement
mechanisms with particular focus on the evolution of specific interfacial areas.
The formation of lubrication layers during viscous fingering on the one hand and
the localization of saturation fronts during stable displacement on the other hand
evidence the important role of interfacial areas.



Zusammenfassung

Die vorliegende Arbeit befasst sich mit trägheitsdominanten Einphasen- sowie
Zweiphasenströmungen nicht-mischbarer Fluide in porösen Medien. Trägheits-
und Kapillareffekte haben im Allgemeinen nicht-laminare Strömungsprofile auf
der Mikroskala zur Folge. Die daraus folgenden effektiven makroskopischen
Eigenschaften bedürfen einer nicht-linearen Konstitutivmodellierung, d.h. solche,
die wir als nicht-Darcysche Modelle klassifizieren. Obgleich Prozessen dieser Art
eine große praktische Bedeutung zuzusprechen ist, wie bspw. im Rahmen der
CO2-Sequestrierung oder Grundwassersanierung, bleibt der Einfluss mikroskopi-
scher Heterogenitäten auf nicht-Darcysche Strömungsvorgänge weitestgehend un-
erforscht. Auf Basis der Smoothed-Particle-Hydrodynamics-Methode (SPH) wer-
den Strömungen dieser Art in numerisch vollaufgelösten heterogenen porösen
Medien simuliert. Auf der Porenskala sind die zugrunde liegenden Erhaltungs-
gleichungen die Navier-Stokes-Gleichungen. Darüber hinaus werden Grenzflächen-
Bilanzgleichungen im Rahmen der Mehrphasenströmung berücksichtigt. Während
der netzfreie Interpolationsansatz der SPH-Methode die räumliche Diskretisierung
heterogener Mikrostrukturen vereinfacht, bietet der Lagrange-Lösungsansatz eine
besondere Stabilität bei konvektiven Strömungen bzw. bei komplexer Gren-
zflächendynamik. Darin ist die Attraktivität der SPH-Methode für die vor-
liegende Studie begründet, die durch eine umfangreiche numerische Validierungs-
studie untermauert wird. Es wird der Übergang von laminaren zu trägheitsdo-
minierten Strömungen in porösen Medien studiert. Dies geschieht mit beson-
derem Augenmerk auf mikroskopische Prozesse, wie bspw. die Ausrichtung der
Stromlinien und die Entstehung stationärer Wirbel. Einerseits erweisen sich diese
Prozesse als stark mikrostrukurabhängig, andererseits sind sie von entscheiden-
der Bedeutung für das effektive hydraulische Materialverhalten. Anschließend
wird die ratenkontrollierte Verdrängung einer benetzenden Porenflüssigkeit durch
eine nicht-benetzende Flüssigkeit, d.h. primäre Entwässerungsprozesse, studiert.
Durch das Zusammenspiel von Kapillarität und Viskosität können verschiedenste
makroskopische Sättigungsmuster entstehen, wie bspw. das viskose Ausfingern,
das kapillare Ausfingern oder die sog. stabile Verdrängung. Die vorliegende Ar-
beit thematisiert die mikroskopischen Strömungsprofile und die Evolution fluider
Grenzflächen, die mit eben jenen makroskopischen Sättigungsmustern einherge-
hen. Während im Rahmen des viskosen Ausfingerns benetzende Schmierungsfilme
entstehen, lokalisieren sich fluide Grenzflächen bei stabiler Verdrängung. Auf Ba-
sis dieser Beobachtungen wird die besondere Rolle, die spezifischen Grenzflächen
im Rahmen der Zweiphasenströmung in porösen Medien zukommt, diskutiert.
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Notation

Symbols and abbreviations that are repetitively used throughout this thesis are
listed below. We make use of the convention that second or higher-order tensors,
and only those, are denoted by bold characters. The subscripts (·)i and (·)j are
exclusively used to denote discrete values at numerical collocation points xi and
xj , respectively, and not to be confused with Einstein’s summation convention.
Throughout this text, the term macroscopic is associated with the length scale
where coarse-grained models such as Darcy’s law are deemed applicable whereas
the term microscopic is associated with the characteristic length scale of pores
where direct numerical simulations methods are applied herein.

Abbreviations

(I)BVP (Initial) boundary value problem
BCC Body-centered cubic
CSF Continuum surface force method
CSS Continuum surface stress method
CUC Computational unit cell
DLA Diffusion-limited aggregation
EOS Enhanced oil recovery
FCC Face-centered cubic
FEM Finite element method
LB Lattice Boltzmann method
LHS Left-hand side
RHS Right-hand side
RVE Representative volume element
SC Simple cubic
SPH Smoothed Particle Hydrodynamics



VI NOTATION

Domains, boundaries and surfaces

Γ Boundary of computation domain Ω
ΓD Dirichlet boundary
ΓP Periodic boundary
Γαβ Interface that separates bulk phase domains Ωα and Ωβ
Γs,Γf Outer boundaries to solid and fluid phase domains
Γfs Solid surface or solid-fluid interface
Ω Current configuration of a material body in R3 (Computation domain)
Ω0 Reference configuration of a material body in R3

Ωs,Ωf Solid and fluid phase domains
ΩG Total ghost domain formed by union ΩGo ∪ ΩGi
Ωi Compact support domain of kernel centered at particle position xi
Ωx Compact support domain of kernel centered at x
ΩGi Inner ghost domain adjacent to solid surface Γfs

ΩGo Outer ghost domain adjacent to computation domain boundary Γ
ΩDG Ghost domain adjacent to a Dirichlet boundary
Σ Current configuration of surface embedded in R3

Σ0 Reference configuration of surface embedded in R3

Υ Contact line domain in current configuration
U Current configuration of a surface in R2

U0 Reference configuration of a surface in R2

Sub- and superscripts

(·)f, (·)f Bulk fluid phase property
(·)n, (·)n Bulk non-wetting fluid phase property
(·)s, (·)s Bulk solid phase property
(·)w, (·)w Bulk wetting fluid phase property
(·)ASn Number density weighted antisymmetric reproducing approximation
(·)AS Antisymmetric discrete reproducing approximation
(·)Cm m-th order complete discrete reproducing approximation
(·)T Transpose
(·)−1 Inverse
(·)αβ Interface-excess quantity or surface-bound operator of interface Γαβ

(·)∗ Prescribed property of a boundary ghost particle
(·)0 Reference value or initial condition



NOTATION VII

(·)Γ Prescribed value on Dirichlet boundary ΓD

(·)eq Equilibrium part
(·)neq Non-equilibrium part
(·)ref Characteristic value
(·)g Property of Gaussian kernel function
(·)h Reproducing kernel approximation
(·)i Property of focal particle i at position xi
(·)j Property of neighboring particle j at position xj
(·)q Property of fifth-order quintic B-spline function
(·)S General interface-excess quantity or surface-bound operator
(·)w Property of Wendland kernel
(·)h,dx Discrete reproducing kernel approximation

Miscellaneous

[[·]] Interfacial jump or Hadamard operator
αn Kernel normalization constant in n-dimensional space
‖ · ‖ Euclidean norm
(̄·) Non-dimensional variable
· Scalar (Inner) product
χ Motion function
δ Dirac delta distribution
δS , (δαβ) Interface Dirac delta distribution (of interface Γαβ)
dev(·) Deviatoric part
divS , (divαβ) Surface divergence (of interface Γαβ)
εD Discretization error
εI Interpolation error
εD,I Combined discretization and interpolation error
M Total mass of a material body
gradS , (gradαβ) Surface gradient (of interface Γαβ)
κ, (καβ) Twice the mean curvature (of interface Γαβ)
λ Dilatational viscosity
〈·〉, (〈·〉α) Total (phase-specific) volumetric averaging operator
F [·] (s) Fourier transform
Ca Capillary number
d/dt(·), ˙(·) Material time derivative for fixed material point X



VIII NOTATION

dS/dt(·) Material surface time derivative for surface-fixed material point XS

M Viscosity ratio
Re Reynolds number
µ Dynamic viscosity
⊗ Dyadic (Outer) product
∂/∂t(·) Partial time derivative
σ, (σαβ) Interfacial tension (of interface Γαβ)
F Supply of linear momentum to a material body
J Total linear momentum of a material body
Θ Contact angle
(̃·) Diffuse-interface approximation of a field
W̃ Non-dimensional smoothing kernel function
× Cross (Vector) product
% Mass density
vol(·) Volumetric part
Aαβ Total interfacial area of interface Γαβ

c Speed of sound
C, (Cαβ) Phase indicator field (of phase domains Ωα and Ωβ)
d Number of spatial dimensions
F Helmholtz free energy
h Smoothing length
J Jacobian
K Bulk modulus
k Kernel compactness factor
N Total number of SPH particles
Nα Total number of particles of phase α
Nn Number of nearest neighbors
p Local pressure
pC , (PC) Microscopic (Coarse-grained macroscopic) capillary pressure
q Non-dimensional radius
S1, S2 Curvilinear surface coordinates that parameterize U0

s1, s2 Curvilinear surface coordinates that parameterize U
t Time
V, (Vα) Total volume (of phase α)
W Smoothing kernel function
Π Interfacial Cauchy stress tensor



NOTATION IX

a Acceleration
b Volumetric force density
bS , (bαβ) Unit vector tangent to boundary curve ∂Σ (or ∂Γαβ)
D Strain-rate tensor, Symmetric part of spatial velocity gradient
ea Standard basis vectors
F Deformation gradient
FGi Volumetric force acting on lumped mass of particle i
FPij Pressure interaction forces acting between particles i and j
FSi Immersed interfacial force acting of particle i
FVij Viscous interaction forces acting between particles i and j
G1,G1 Covariant basis vectors tangent to Σ0

g1,g1 Covariant basis vectors tangent to Σ
I Identity tensor
IS Surface identity tensor
L Spatial velocity gradient
n Unit outward normal to a boundary
O Point of origin
T, (TE) Cauchy (extra) stress tensor
tb Boundary curve traction
ts Surface traction vector
u Velocity
W Spin tensor, Skew-symmetric part of spatial velocity gradient
X, Xa Position vector and material coordinates in reference configuration
x, xa Position vector and spatial coordinates in current configuration

Notation specific to coarse-grained models of porous flow

γ Blending coefficient in Churchill-Usagi asymptotic correlation [45]
p̂f Momentum interaction between pore-fluid and solid skeleton
φ Porosity
ζ Coefficient to cubic term in cubic filtration model
aαβ Specific interfacial area of Γαβ (normalized by total volume V )
cF Forchheimer coefficient
kI , (kA) Intrinsic (Apparent) permeability
LC Width of capillary dispersion zone
mF Average grain-size diameter



X NOTATION

mN Mean pore-throat size
Sα Pore-space saturation by phase α
T, (TM ) Hydraulic tortuosity (estimate based on Duda et al. [60])
vF Standard deviation of grain-size diameter distribution
vN Standard deviation of pore-throat size distribution
FD Total drag force
FDP Total form drag
FDV Total viscous skin friction
J Driving force due to pressure head and volumetric acceleration
q Darcy or filter velocity
vf Macroscopic fluid velocity, i.e. volume-average fluid velocity in ΩRVE

vs Macroscopic solid velocity, i.e. volume-average solid velocity in ΩRVE

wf Relative or seepage velocity



CHAPTER 1

Introduction

1.1 Motivation

Transport processes in porous media and, in particular, fluid flow in porous me-
dia are ubiquitous in many fields of engineering, biomechanics and subsurface
sciences. Examples of ongoing relevance include flow in porous catalysts, blood
flow through a network of capillaries, groundwater flow or enhanced oil recovery.
Effective hydraulic properties of porous materials as defined on the length and
time scale of a macroscopic observer are decisively influenced by microscopic het-
erogeneities that appear on the characteristic length scale of the pore space, e.g.
the average pore diameter. Despite of the apparent multiphase and multiscale
nature of fluid flow in porous media, numerical modeling of these processes by
means of resolving the microstructure, generally comprised of a complex distri-
bution of bulk phases and interfaces, is computationally restricted to the length
scale of several pores only. It is for that reason effective transport models, the
continuum Mixture Theory and the Theory of Porous Media (see [28, 29, 64, 84–
86] and references therein) remain subjects of ongoing research.

A concept that is fundamental to the formulation of macroscopic continuum
balance equations is that of the Representative Volume Element (RVE). The RVE
serves as averaging volume to bridge the gap between the microscopic and macro-
scopic scale. The microscopically discontinuous distribution of phases is averaged
over the volume of the RVE to form a coarse-grained macroscopic space in which
constituent phases form superimposed continua. Microscopic physical processes
that give rise to mass, momentum or energy exchange between the various discon-
tinuous phases are subsequently taken into account using constitutive models for
the interaction of macroscopically superimposed continua. The most anticipated
constitutive model for fluid flow in porous media is Darcy’s law which was pro-
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posed in 1856 by Henry Darcy. For incompressible phases, Darcy’s law postulates
that the relative velocity between pore-fluid and solid skeleton as averaged over
the volume of an RVE, i.e. the so-called seepage velocity, is proportional to the
driving hydraulic gradient. The coefficient of proportionality, which is a second-
order tensor for anisotropic porous media, is referred to as permeability tensor
and represents an effective material parameter. In continuum Mixture Theory,
Darcy’s law can be shown equivalent to the assumption that the non-equilibrium
momentum exchange between coarse-grained fluid phase and solid skeleton is pro-
portional to seepage velocity. The linearity as postulated by Darcy, however, has
been semi-empirically found to only hold provided that the microscopic flow field
is reminiscent of laminar flow through undeformable conduits, i.e. the creeping
flow of a viscous fluid with parabolic flow profiles in the absence of inertia. On
the contrary, appropriate modifications to the constitutive models that represent
the interaction of constituent phases are necessary to account for non-Darcian
flow.

In this thesis, we study two situations of practical relevance where the condi-
tion of laminar flow on the microscale is generally not met: high-velocity single-
phase and two-phase immiscible flow in porous media. During high-velocity flow,
non-Darcian effects occur due to the dominant role of inertia that cause the mi-
croscopic flow fields to deviate from parabolic flow profiles. The transition from
low to high velocity flow is accommodated by the gradual microscopic processes
of streamline rectification, flow tube narrowing, formation and growth of wake
eddies and the increasing relevance of secondary flow [4, 40, 71, 133, 147, 175, 186,
189]. Such effects have been reported relevant for inertial flow in narrow frac-
tures, e.g. during well-testing of hydrocarbon reservoirs when production rates
are high or if flow path obstacles in narrow conduits exert a considerable amount
of form drag on the pore-fluid [41, 109, 172, 182]. For two-phase immiscible flow,
on the other hand, microscopic effects at interfaces that separate bulk phases, in
particular capillary and wettability effects, constitute the main reasons causing
the effective behavior to deviate from the classical Darcian solutions. When, for
instance, a non-wetting fluid displaces a wetting fluid that initially saturates the
entire void-space of a porous medium, i.e. primary drainage as observed during
sequestration of carbon dioxide in sedimentary formations [150], relative domi-
nance of capillary forces over viscous forces implies a microscopic mean curva-
ture flow. The characteristic feature of mean curvature flows is that microscopic
fluid-fluid interfaces are of constant mean curvature and fluid percolation only
occurs through preferential flow paths that exhibit the lowest interfacial energy
barriers [3, 68, 69, 122, 154, 160, 161, 165, 210, 214]. Preferential flow of the
non-wetting fluid ultimately implies hydraulic isolation of wetting phase clusters
that remain trapped in inaccessible void-space [49, 112, 165, 214]. These effects
strongly affect sweeping efficiency reduction during hydrocarbon production or
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groundwater contamination by non-aqueous phase liquids.
Despite of the fact that microscopic flow patterns that emerge during high

velocity and two-phase immiscible flow considerably deviate from laminar flow
conditions, phenomenological, heuristic or semi-empirical extensions of Darcy’s
law remain the tools engineers rely on to model such processes. The most promi-
nent model to account for the effects of inertia during high velocity flow in porous
media is a quadratic extension of Darcy’s law due to Forchheimer [72]. While vol-
umetric homogenization and dimensional analysis support that the upper limit
to the non-equilibrium momentum interaction between coarse-grained pore-fluid
and solid skeleton is quadratic in seepage velocity [164, 188], the transition from
linear to quadratic flow remains unknown. Indeed, the hydraulic gradient has
been observed to vary with the cube of the flow rate when inertia forces are
weak [4, 44, 71, 116, 130, 133, 147, 175, 188]. Such inconsistencies occur since
inertial transition is decisively influenced by the morphology of flow conduits,
e.g. the laminar to turbulent transition is known rather discrete in straight
conduits while more gradual in tortuous flow paths. For two-phase immiscible
flow, on the other hand, Darcy’s law is assumed applicable to each constituent
phase separately. Apart from the implicit assumption of microscopically lami-
nar flow, constituent pore-fluids are thereby thought to occupy and flow through
distinct conduits and their microscopic distribution is assumed continuous, i.e.
path-connected, throughout the entire pore-space at all times. In an attempt
to account for varying saturation states and fluid immiscibility, the permeability
tensors and the pore-fluid pressure difference, i.e. macroscopic capillary pressure,
are considered functions of constituent saturations [14]. Non-Darcian effects re-
lated, for instance, to hydraulic isolation of wetting fluid, formation of lubrication
layers on solid surfaces or interfacial energy driven spontaneous events (Haines
jumps [6, 54, 81, 135], Melrose events [97, 142]), are thus lumped into perme-
ability and capillary pressure functions. As a result, these constitutive functions
are typically rendered non-linear, hysteretic and sensitive to boundary conditions
[75, 80, 103, 144]. While contemporary macroscopic models for two-phase flow
explicitly acknowledge the role of interfacial areas [78, 87–89] or take into account
path-disconnection due to trapping [91, 93], the lack of constitutive calibration
of these models hampers their use in practice.

1.2 Scope
In an attempt to further elucidate the underlying pore-scale mechanisms dur-
ing high-velocity and two-phase flow, to assess effective hydraulic properties of
porous materials and to calibrate constitutive models for flow processes beyond
the limits of Darcy’s law, this work promotes the use of pore-scale resolved sim-
ulations as a numerical tool complementary to physical experiments. In particu-
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lar, we perform pore-scale resolved numerical simulations using direct numerical
methods, i.e. solving the Navier-Stokes equations for bulk pore-fluid phases and
interfacial balance equations on interfaces between immiscible bulk phases. Use
of direct numerical simulations (DNS) implies that the resulting nodal equations
represent a discretization of the governing microscopic conservation equations
and thus inherit a reduced set of modeling assumptions. This is in contrast to
traditional pore-scale simulation approaches, such as percolation theory [18] or
pore-network models [20, 105, 171], that require a larger set of modeling assump-
tions since the pore space is represented by an idealized network of pore-bodies
and pore-throats. DNS methods, however, imply increased computational costs
which restricts numerical analysis to length scales considerably smaller than the
macroscale. Despite of the latter, access to the pore-scale hydrodynamics enables
the identification of microscopic processes that affect the effective macroscopic
behavior.

Our approach to pore-scale resolved simulations of non-Darcian flow is a
weakly-compressible Smoothed Particle Hydrodynamics (SPH) method. Follow-
ing its first use to simulate astrophysical fluid dynamics [77, 128], SPH is attract-
ing an ever increasing interest as a simulation tool in engineering and applied
sciences (see reviews [126, 136, 204] and textbook [203]). This is largely due
to the fact that SPH constitutes a mesh-free Lagrangian particle method. Using
SPH, discretization of the governing partial differential equations (PDE) gives rise
to a set of interacting collocation points (particles) with lumped masses that are
advected in space according to the local advection velocity (updated-Lagrangian
method). Upon discretization, internal forces and fluxes take the form of parti-
cles that exchange mass, momentum or energy with neighboring particles. Nodal
motion equations are thus formally reminiscent of a system of colloidal particles
interacting with each other. Due to its Lagrangian nature, problems that in-
volve large deformations, contact discontinuities, free surfaces or a pronounced
hyperbolic character of the governing PDEs can be approached without the need
of stability treatments, such as the upwind scheme, or adaptivity, e.g. mesh re-
finement in Finite Element methods (FEM). Nonetheless, the freedom of SPH
regarding spatial discretization has its disadvantages. First and foremost, SPH
methods generally lack a consistent way to account for Dirichlet and Neumann
boundary conditions. This is due to the fact that the reproducing kernel approx-
imation of SPH naturally regularizes nodal constraints and boundary conditions.
Moreover, nodal integration in SPH implies that field variables and their spatial
derivatives are evaluated on the same set of collocation points which, in particular
situations, gives rise to spurious zero energy modes. Moreover, only rarely does
the use of time-implicit methods constitute a feasible approach on an unstruc-
tured set of collocation points. Due to explicit time integration, rather restrictive
stability constraints with respect to time-stepping have to be taken into account.
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It is for that reason, numerical validation and the assessment of SPH regarding
pore-scale simulations is considered an additional scope of this thesis.

Having the advantages and limitations of SPH methods in mind, we con-
sider pore-scale resolved simulation of non-Darcian flow a problem where we
can exploit both, the mesh-free and the Lagrangian nature of SPH. Due to its
mesh-free nature, spatial discretization of complex pore spaces is less computa-
tionally expensive as compared to traditional grid or mesh-based methods. Fur-
thermore, its Lagrangian nature, due to which non-linear convective terms are not
required to be modeled, enhances stability for locally large Reynolds numbers.
The Lagrangian nature of SPH reveals to be particularly useful for two-phase
flow simulations since the phase indicator field - a binary field that indicates the
phase membership of a particle - is intrinsically advected through particle mo-
tion. Hence, no additional advection equation for the phase indicator field that is
potentially prone to numerical diffusion, as used in the Eulerian Volume-of-Fluid
(VOF) method [68, 69, 178, 201], is required. It is moreover possible to derive
SPH equations that are compliant to Galilean invariance and conserve total mass
and linear momentum.

1.3 Outline
The present thesis is organized as follows.

In Chapter 2 we first concisely introduce the relevant kinematics and balance
equations for bulk volumes with and without internal discontinuities, i.e. inter-
faces. In formulating interfacial balance equations, we make use of the well-known
Gibbs convention by which interfaces are regarded as singular diving surfaces. In
this context, constitutive equations are introduced for quasi-incompressible, non-
polar Newtonian fluids as well as for interfaces with negligible interfacial excess
mass-density. We further discuss the immersed boundary method by means of
which interfacial balance equations are reformulated into singular sources for mass
and momentum density of adjacent bulk phases. Subsequently, we formulate the
initial boundary value problems (IBVP) that govern the analyzed pore-scale fluid
flow problems.

Chapter 3 constitutes a general introduction to the SPH method. Special
attention is paid to the discussion of interpolation and discretization errors as well
as basic corrective approaches that recover a certain order of completeness of the
discrete interpolation stencils in spite of boundary truncation or irregular particle
distributions. We complete this chapter by presenting the discrete particle motion
equations and a schematic discussion of simulation algorithms.

In Chapter 4, the numerical model is subject to an extensive validation
study. Not only do we discuss suitable numerical parameterizations, but also the
predictive capability of SPH regarding the particular flow problems that are of
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interest in this work. Numerical computations are benchmarked against reference
data or closed form solutions for creeping flow, inertial flow and capillary flow
problems.

Chapter 5 and 6 constitute self-contained parts discussing high velocity and
two-phase flow in porous media, respectively. In particular, we study the appar-
ent non-linearity between macroscopic hydraulic gradient and seepage velocity
in chapter 5. The critical question of interest in this chapter is: How does
the micro-morphology of the porous medium influence the laminar-turbulent in-
ertial transition on the effective scale ? Based on our numerical results, we are
able to correlate the effective macroscopic non-linearity to the microscopic causes
in terms of eddy-formation, streamline rectification and microscopic dragforces.
Closing this chapter, we present a phenomenological estimate of the Forchheimer
coefficient based on the morphological properties porosity and tortuosity.

In Chapter 6, we present pore-scale resolved DNS of primary drainage in
porous media of particulate microstructure for various capillary numbers and
viscosity ratios. The capillary number describes the relative dominance of capil-
lary forces over viscous forces and macroscopic displacement patterns are known
sensitive to these non-dimensional numbers. In an attempt to meet the ques-
tion, whether or not pore-scale flow topologies associated with different displace-
ment patterns are equivalent, we characterize the entrapment of wetting phase.
We report pronounced differences in pore-scale flow patterns and wetting phase
trapping mechanisms that are shown to affect the effective macroscopic behavior
significantly.

It is noted that parts of this thesis have been published or submitted for pub-
lication in scientific peer-reviewed journals. The results of chapter 5 have been
published in Geophysical Research Letters by Sivanesapillai et al. [186]. The con-
tent of section 3.5 and chapter 4 has been accepted for publication in Advances
in Water Resources and available online in Sivanesapillai et al. [187]. Chapter 6
has been submitted for publication in Water Resources Research. Pre-release of
the above publications was approved in accordance with §7(1) of the “Promo-
tionsordnung der Fakultät für Maschinenbau der Ruhr-Universität Bochum” as
of 6 December 2002.



CHAPTER 2

Continuum fluid mechanics

The following chapter constitutes a concise introduction to the classical contin-
uum description of fluid transport. In addition to the model equations that govern
the flow of Newtonian fluids (section 2.1), this chapter covers the introduction
to interfacial balance equations that are required in the presence of multiple fluid
phases (section 2.2). The employed computational approach to simulate interfa-
cial fluid dynamics is the immersed boundary method (section 2.3). All of the
above furthermore serve as input to model two-phase flow in porous media (sec-
tion 2.4). The chapter title “continuum fluid mechanics” shall imply that we
restrict ourselves to formulations where the primary variable in the governing
momentum balance equation is velocity, rather than displacement, and the local
stress state is considered to exclusively depend on the kinematics of the fluid in
its current configuration.

2.1 Fundamentals of single-phase flow

In the following section, we introduce the kinematic, balance and constitutive
equations that govern isothermal, single-phase fluid flow through a porous medium
comprised of a rigid solid phase and a fluid-saturated pore-space. Throughout
the text, we restrict ourselves to the well-established group of non-polar, quasi-
incompressible Newtonian fluids. The textbooks Batchelor [13] and Aris [5] have
served as valuable references.
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Figure 2.1: Schematic representation of motion of a material body, its reference
and current configurations as well as the concept of mapping.

2.1.1 Kinematics
The material body is a compact set of material points and its reference con-
figuration Ω0 at time t = 0 in a 3-dimensional Cartesian coordinate system
with unit vectors ea and time-invariant origin O is parametrized by the posi-
tion vector X. We write X =

∑3
a=1Xaea using the material coordinates Xa.

We follow the motion of a material point in terms of the continuous mapping
χ : Ω0 ⊂ R3 → Ω ⊂ R3 which maps points X of the reference configuration onto
points x =

∑3
a=1 xaea of the current configuration Ω (Fig. 2.1), such that

x = χ (X, t) , X ∈ Ω0 ⊂ R3 and x ∈ Ω ⊂ R3.

We refer to xa as spatial coordinates. The mapping χ is assumed continuous,
differentiable and invertible such that its inverse χ−1 exists. The referential po-
sition may hence be written X = χ−1 (x, t). The latter implies that the Jacobian

J = det ∂x
∂X

is non-zero. The square Jacobian matrix

F = ∂x
∂X
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is referred to as deformation gradient and is observed to map an infinitesimal
line element dX of the referential configuration to an infinitesimal line element
dx of the current configuration, since

dx = ∂x
∂X · dX = F · dX. (2.1)

The volume element dV of the referential configuration in R3 is given as the
volume of the parallelepiped dV = dX1 ·dX2×dX3, where the three line elements
dX1, dX2 and dX3 form a right-handed system in the reference configuration.
Using Eq. (2.1) we find

dv = F · dX1 · (F · dX2 × F · dX3) = det FdV = JdV, (2.2)

which implies that the Jacobian J maps volume elements from reference to
current configurations and thus subject to the physical constraint J > 0.

Partial derivatives with respect to time for fixed material coordinates X, or,
also referred to as material time derivatives, are denoted d/dt := (∂/∂t)X. Ve-
locity and acceleration at time t for a fixed material point that is initially located
at X are thus defined

u := d
dtx = d

dtχ (X, t) , and a := d2

dt2 x = d2

dt2χ (X, t) ,

respectively. Using the short-hand notation ˙(•) := d/dt(•), we equivalently
write u = ẋ and a = u̇.

Introducing a generic field Φ of arbitrary rank, the expression Φ = Φ (x, t) is
referred to as spatial description or Eulerian description, whereas the expression
Φ = Φ̂ (X, t) is denoted material description or Lagrangian description. Applying
the chain rule, the material time derivative of Φ (x, t) for a fixed parameter X
reads

d
dtΦ (x, t) = Φ̇ = ∂

∂t
Φ (x, t) + grad Φ (x, t) · u, (2.3)

where the gradient of a vector is given as grad Φ :=
∑3
a=1 ea(∂/∂xa) ⊗ Φ

in Cartesian coordinates. The first term on the RHS of Eq. (2.3) is referred
to as local time derivative whereas the second term accounts for material point
advection and referred to as convective term.

The spatial velocity gradient

L := grad u

can be additively split into the symmetric and skew-symmetric parts
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D := 1
2
(
L + LT

)
, and W := 1

2
(
L− LT

)
, (2.4)

respectively, and we refer to D as strain-rate tensor. Moreover, the additive
split of the strain-rate tensor D = dev(D) + vol(D) into the traceless deviatoric
part dev(D) and the volumetric part vol(D) is useful in light of the constitutive
modeling of fluids. The volumetric part is given as

vol(D) := 1
3 tr(D) I = div u I,

where the divergence of a vector is given as div Φ :=
∑3
a=1 ∂Φa/∂xa in

Cartesian coordinates. Cartesian components of Φ are denoted Φa such that
Φ =

∑3
a=1 Φaea. The identity tensor is denoted I.

2.1.2 Transport theorem

The Reynolds transport theorem is an essential calculus operation to formulate
local balance equations in continuum mechanics. We again consider a generic
density field Φ of arbitrary rank which is continuously defined over Ω. The
temporal rate of change of the total amount of Φ contained within the time-
dependent region Ω with boundary Γ = ∂Ω is written

d
dt

∫
Ω

Φ (x, t) dv =
∫

Ω0

d
dt

[
Φ̂ (X, t) J (X, t)

]
dV, (2.5)

where Eq. (2.2) has been used together with the fact that the reference con-
figuration Ω0 is time invariant. Using the product rule and Euler’s formula

d
dtJ (X, t) = div u (x, t) J (X, t) ,

we rewrite Eq. (2.5) to yield

d
dt

∫
Ω

Φ dv =
∫

Ω
Φ̇ + Φ div u dv. (2.6)

Invoking the definition (2.3) of the material time derivative yields

d
dt

∫
Ω

Φ dv =
∫

Ω

∂Φ
∂t

+ div(Φ⊗ u) dv, (2.7)

where the calculus identity
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div(Φ⊗ u) = Φ div u + grad Φ · u

has been used. Furthermore, using the divergence theorem∫
Ω

div (Φ⊗ u) dv =
∫

Γ
(Φ⊗ u)T n da =

∫
Γ

(Φ · n) u da, (2.8)

where n denotes the unit outward normal to the surface Γ with surface element
da, an alternative form of the transport theorem is given as

d
dt

∫
Ω

Φ dv =
∫

Ω

∂Φ
∂t

dv +
∫

Γ
(Φ · n) u da. (2.9)

The temporal rate of change of the total amount of a density Φ contained
within Ω is thus observed equal to the sum of the volume integral of the local
time derivative of Φ and the convective flux of Φ across the surface Γ.

2.1.3 General balance equations
We axiomatically require the total mass M of a material body to remain constant
during deformation and motion, i.e.

M :=
∫

Ω
dm =

∫
Ω
%dv = const. .

The mass density % = dm/dv is defined as the ratio of infinitesimal mass dm
to the volume element dv. Application of the transport theorem (2.6) yields

d
dt

∫
Ω
%dv =

∫
Ω
%̇+ %div u dv = 0. (2.10)

Since the integral statement (2.10) has to hold true for any arbitrary domain of
integration Ω, the localized balance of mass, hereinafter referred to as continuity
equation, reads

%̇+ %div u = 0. (2.11)

Assuming an incompressible flow, i.e. %̇ = 0, implies that the corresponding
velocity field has to be divergence free, i.e. div u = 0, such that vol(D) = 0.

The rate of change dJ/dt of total linear momentum

J :=
∫

Ω
%u dv

is axiomatically required equal to the sum FΩ + FΓ of total volume force
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FΩ :=
∫

Ω
%b dv, (2.12)

where b denotes volumetric force density, and total contact force

FΓ :=
∫

Γ
ts da =

∫
Γ

n ·T da. (2.13)

The contact force FΓ arises due to surface tractions ts acting on the surface
Γ = ∂Ω. Surface tractions are related to the Cauchy stress tensor T by means
of the Cauchy theorem ts := n ·T. The particular structure of the second-order
Cauchy stress tensor T remains to be introduced using a constitutive material
model.

Applying the divergence theorem (2.8) to Eq. (2.13) and taking into account
the transport theorem as well as the continuity equation yields the local balance
of linear momentum

%u̇ = div T + %b. (2.14)

In accordance with the classical fluid dynamics of non-polar fluids, the stress
tensor is assumed symmetric, such that

T = TT . (2.15)

While a formal proof is omitted here for the sake of brevity, the symme-
try (2.15) is equivalent to the localized balance of moment of momentum pro-
vided that couple stresses are absent and the balances (2.11) and (2.14) hold as
well.

The forthcoming analysis of transport processes in porous media assumes
thermal effects to be negligible. In particular, sources of specific heat supply or
heat flux across the surface Γ are considered absent and the temperature field
to be uniform. As a consequence, the mechanical problem can be formulated by
the set of balance equations (2.11), (2.14) and (2.15) together with initial and
boundary conditions with respect to the primary variables % and u as well as
closing constitutive equations. Therefore, the balance of energy is not considered
within this thesis.

2.1.4 Constitutive equations
In order to close the system of equations that the mechanical problem is com-
prised of, constitutive relations are required for the six unique components of
the symmetric Cauchy stress tensor T. While the kinematic relationships and
balance equations that were introduced in the preceding sections apply to gen-
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eral classical continua, in the following, we restrict ourselves to the constitutive
modeling of quasi-incompressible, Newtonian fluid phases.

In particular, the Cauchy stress tensor is physically required to satisfy the
invariance under superposed rigid body motion T = QTQT , where Q denotes
a generic proper orthogonal tensor. In other words, the local stress states may
not change when the material body is subject to a rigid body motion. A further
physical requirement is that the stress state is isotropic when the fluid is at rest.
The latter implies that the equilibrium part of T must be of general form

Teq = −pI, (2.16)

where p, with unit of force per unit area, is referred to as pressure. While a
formal thermodynamic discussion of pressure is considered out of scope of this
text, for a thermodynamically closed system, pressure is defined as the negative
rate of change of free energy with volume at constant temperature. A closure
relation for pressure p is denoted equation of state and a fluid is referred to as
barotropic if the equation of state has the form p = p(%). Since we consider
isothermal processes for which the dependency of pressure on temperature is
neglected, only barotropic fluids are modeled hereinafter. In order to introduce
a specific form of the equation of state, we follow Murnaghan [146] and consider
the bulk modulus

K = %
∂p

∂%
(2.17)

to be a linear function of pressure by truncating the Taylor series expansion
of K about p = 0 after the first order term, i.e.

K = K(0) +
(
∂K

∂p

) ∣∣∣∣
p=0

p+O(p2) = K0 + γp+O(p2), (2.18)

where the parameter γ := (∂K/∂p)
∣∣
p=0. Truncation of the Taylor series is

reasonable in light of the fact that we restrict ourselves to quasi-incompressible
fluids. Rearranging Eq. (2.18) and using Eq. (2.17) we obtain

1
K0 + γp

dp = 1
%

d%. (2.19)

Since pressure must vanish for a reference density %0, the boundary condition
p(%0) = 0 is taken into account. The latter yields a closed-form solution of
Eq. (2.19) which reads

p(%) = %0c
2

γ

[(
%

%0

)γ
− 1
]
, (2.20)
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where the speed of sound

c :=

√
K0

%0
.

We may refer to p as thermodynamic pressure if it is a dependent variable that
is given in terms of an equation of state. For a truly incompressible fluid on the
other hand, where p can be identified as a Lagrange multiplier which accounts for
the incompressibility constraint div u = 0, p is referred to as non-thermodynamic
pressure. Hereinafter we compute pressure as function of density according to
an equation of state. The parameters c and γ are calibrated such that density
fluctuations relative to initial fluid density can be neglected (see section 3.6).
With respect to the equation of state (2.20), the assumption γ = 7 is common
for quasi-incompressible fluids [see 13, § 1.8]. A further very commonly used
equation of state is the linearization of Eq. (2.20) about % = %0 with γ = 1, i.e.

p(%) = c2 (%− %0) . (2.21)

While Eq. (2.16) together with a suitable equation of state determines the
equilibrium stress state, a constitutive equation for the non-equilibrium stress
Tneq remains to be introduced. As a result of the entropy inequality, the total
stress can be additively decomposed to read

T = Teq + Tneq. (2.22)

While omitting a formal derivation, we reconstruct the chain of reasoning
leading towards the constitutive equation that determines the non-equilibrium
stress state of a Newtonian fluid. We begin from the initial assumption that the
non-equilibrium stress state of a homogeneous fluid may only depend on density,
velocity and velocity gradient of the current configuration - the so-called non-
equilibrium process variables. For reasons of isotropy, Tneq can be reduced to
a continuous function of density and the symmetric strain-rate tensor only, i.e.
Tneq = Tneq(%,D). The simplest constitutive form for the non-equilibrium stress
compliant with the dissipation inequality is the linear relationship Tneq = MD,
where M is a forth-order tensor function of density. The latter assumption of
linearity is the defining property of Newtonian fluids. In the linear theory of
elasticity for isotropic and homogeneous materials, the forth order stiffness tensor
relating stresses and strains can be reduced to two material parameters, the so-
called Lamé coefficients. In equivalence to the latter, the tensor M for isotropic
and homogeneous Newtonian fluids can be reduced to two material parameters
λ and µ as well to yield

Tneq = λ(tr D)I + 2µD. (2.23)
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Figure 2.2: Schematic representation of domains, boundaries and relations among
them for single phase flow in porous media.

The coefficient µ is referred to as dynamic viscosity, whereas λ is the dilata-
tional viscosity. Since tr D = 3 div u, the first term on the RHS of Eq. (2.23)
is typically neglected for quasi-incompressible fluids. Using Eq. (2.4), the non-
equilibrium stress tensor of quasi-incompressible fluids, or, hereafter referred to
as viscous extra stress, is given by

Tincom.
neq = µ

(
grad u + gradT u

)
. (2.24)

2.1.5 Initial boundary value problems
In order to formulate the mechanical problem of isothermal, single phase fluid
transport through a porous medium within a bounded domain Ω ⊂ Rd, d = 2, 3,
and a time interval (0, T ), we subdivide Ω = Ωs ∪Ωf into a domain Ωs occupied
by material points of the solid phase and a domain Ωf occupied by material
points of the fluid phase (Fig. 2.2). The subscripts (·)f and (·)s are introduced
to differentiate the properties of the fluid phase from those of the solid phase.
We take into account the physical constraint Ωs ∩ Ωf = ∅. The interface Γfs :=
∂Ωs ∩ ∂Ωf is referred to as solid-fluid interface. We introduce uf (x, t) , ∀x ∈ Ωf

as fluid velocity, whereas us (x, t) , ∀x ∈ Ωs is referred to as solid velocity. For
all flow processes analyzed herein we consider the solid phase to be static and
rigid such that us = 0, which implies that the governing balance equations for
the solid phase reduce to

u̇s = 0, and %̇s = 0, ∀x ∈ Ωs.

Consequently, we omit the explicit physical modeling of the deformation of the
bulk solid phase. However, the model needs to account for momentum exchange
between solid and fluid phases at the interface Γfs. The latter is achieved by
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introducing inner boundary conditions on Γfs. We incorporate a kinematic con-
dition, denoted no-penetration boundary condition, by which the fluid velocity
component normal to the solid-fluid interface is required to be zero, i.e.

uf · nfs = 0, ∀ (t,x) ∈ (0, T )× Γfs, (2.25)

where nfs is the unit outward normal of the interface Γfs. As shown in sec-
tion 2.2.3, the latter results from the interfacial balance of mass at points of the
interface Γfs. Additionally, we assume fluid velocities at points of the solid-fluid
interface in directions tangent to the interface to be zero. The latter implies the
well-known no-slip boundary condition

uf −
(
uf · nfs

)
nfs = 0, ∀ (t,x) ∈ (0, T )× Γfs. (2.26)

While the no-penetration condition is required for mass conservation, the no-
slip condition constitutes a physical assumption. Together, the no-slip and no-
penetration boundary conditions result in the inner Dirichlet boundary condition

uf (x, t) = 0, ∀ (t,x) ∈ (0, T )× Γfs.

The more general case that the solid phase is subject to a rigid body transla-
tion or rotation, i.e. us 6= 0, requires the relative motion between solid and fluid
phases at points of the interface to be zero, hence

uf (x, t) = us (x, t) , ∀ (t,x) ∈ (0, T )× Γfs.

The set of governing balance equations for the fluid phase is comprised of

%̇f+%f div uf = 0, %fu̇f = div Tf+%fb, and Tf = TfT , ∀x ∈ Ωf, (2.27)

where the body forces b have to be specified for all (t,x) ∈ (0, T )×Ωf. Using
Eqs. (2.22), (2.16),(2.24) as well as the relation

div
(

gradT u
)

= grad (div u) ,

the general balance of linear momentum (2.14) for a homogeneous, quasi-
incompressible fluid (div u ≈ 0) with constant dynamic viscosity µf is reformu-
lated to give

%fu̇f = µf div (grad uf)− grad p+ %fb, ∀x ∈ Ωf. (2.28)

Eq. (2.28) is denoted incompressible Navier-Stokes equation. We complete
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the formulation of the mechanical problem by specifying initial conditions for
t = 0 with respect to the primary variables, i.e.

uf (x, t) = u0 (x) , %f (x, t) = %f0, ∀x ∈ Ωf, t = 0.

Furthermore, since the fluid phase Ωf is not entirely contained in Ω, there
exists an outer boundary to the fluid phase Γf := ∂Ωf ∩ ∂Ω = ∂Ωf \ Γfs on which
boundary conditions with respect to velocity are required. Throughout this work,
outer boundaries to the fluid domain are either subject to the Dirichlet boundary
condition

uf (x, t) = uΓ (x, t) ∀ (t,x) ∈ (0, T )× ΓDf

or periodic boundary conditions on ΓPf that are introduced in section 3.5.1.

2.2 Fundamentals of two-phase flow

We proceed by introducing the kinematic, balance and constitutive equations
that govern the mechanical problem of multi-phase flow of immiscible bulk fluid
phases. The distinctive property of multi-phase flow is the presence of interfaces
that separate bulk fluid phases. From a geometrical point of view, the interface
is represented by a surface embedded in Euclidean space. Hence, referring to its
geometric properties, an interface is also referred to as surface. The textbooks
Aris [5], Edwards et al. [63] and the overview Dziubek [62] have served as valu-
able references. In contrast to Dziubek [62], however, the following introduction
is simplified since we consider interfaces to be impermeable due to bulk fluid
phases being mutually immiscible; such interfaces being referred to as material
interfaces. The latter assumption is invalid when, for instance, evaporation or
condensation phenomena appear at interfaces that separate a bulk liquid and its
vapor phase. Furthermore, mass density of the interface, i.e. interface-excess
mass density, is considered negligible compared to the mass density of the bulk
fluid phases. The latter assumption is invalid when, for instance, studying foam
films that separate gas phases. On the other hand, the application of the Gibbs
convention by which interfaces are regarded singular boundaries to the adjacent
bulk phases is common to the majority of continuum approaches to modeling
multi-phase transport processes. In the following section, discussion of the differ-
ential geometry and kinematics of surfaces embedded in Euclidean space are kept
to a minimum; the interested reader with focus on the mechanics of interfaces is
referred to the above references.
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Figure 2.3: Schematic representation of motion of a surface through three-
dimensional space, its reference and current configurations as well as the con-
cept of mapping. The oriented differential surface area element of the refer-
ence configuration dAS = NS · [dG1 × dG2], whereas in the current configu-
ration daS = nS · [dg1 × dg2]. Moreover, dAS = ‖dG1 × dG2‖dS1dS2 and
daS = ‖dg1 × dg2‖ds1ds2

2.2.1 Geometry and kinematics

We consider a set of material points that represent an interface. Since we con-
sider material interfaces such that there is no mass exchange between interfaces
and bulk phases, the interface shall always be comprised of the same set of
surface-fixed material points. The referential position of material points fixed
to the two-dimensional smooth interface U0 can be intrinsically given in terms
of the curvilinear surface coordinates S1 and S2. In the context of coupling
bulk phases and interfaces, however, we are interested in an extrinsic description
considering the surface to be embedded in a 3-dimensional Euclidean space with
Cartesian coordinates, unit vectors ea and time-invariant origin O. The extrin-
sic description of the position of a material point fixed to a smooth interface
Σ0 in referential configuration at time t = 0 is given by the parameterization
XS : U0 ⊂ R2 → Σ0 ⊂ R3 as XS =

∑3
a=1Xa(S1, S2) ea (Fig. 2.3, left). The

covariant basis vectors that are tangent to the curvilinear S1 and S2 coordinate
curves and local to a referential position XS are
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G1 = ∂XS

∂S1 =
3∑
a=1

∂Xa

∂S1 ea and G2 = ∂XS

∂S2 =
3∑
a=1

∂Xa

∂S2 ea,

such that the local surface unit normal vector at XS is expressed

NS = G1 ×G2

‖G1 ×G2‖
.

In equivalence to the description of motion of bulk phase material points, we
follow the motion of a surface-fixed material point in terms of the continuous
mapping χS : Σ0 ⊂ R3 → Σ ⊂ R3 which maps points XS of the reference
configuration Σ0 onto points xS =

∑3
a=1 xa(s1, s2)ea of the current configuration

Σ (Fig. 2.3, right), such that

xS = χS (XS , t) , XS ∈ Σ0 ⊂ R3 and xS ∈ Σ ⊂ R3.

The spatial coordinates xa represent a parameterization xS : U ⊂ R2 → Σ ⊂
R3 of the surface Σ in its current configuration. The covariant basis vectors at
spatial position xS with respect to the curvilinear surface coordinates s1 and s2

of U are

g1 = ∂xS
∂s1 =

3∑
a=1

∂xa
∂s1 ea and g2 = ∂xS

∂s2 =
3∑
a=1

∂xa
∂s2 ea,

such that the surface unit normal vector

nS = g1 × g2

‖g1 × g2‖
.

Introducing the surface identity tensor

IS := I− nS ⊗ nS , (2.29)

the surface gradient1 is defined by removing components of the spatial gradi-
ent field that act in direction of the surface normal [62, see Eq. (10)], i.e.

gradS(•) := grad(•) ·
[
I− nS ⊗ nS

]
= grad(•) · IS . (2.30)

Consequently, the surface divergence

divS(•) := gradS(•) : IS .
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The local curvature tensor for the surface is defined

K := − gradS nS ,

where the minus sign invokes the convention that curvatures are measured
positive when at point xS the surface is curved concave in direction of nS(xS).
Due to reasons of symmetry, K can be decomposed to K = κ1k1⊗k1 +κ2k2⊗k2.
The vectors k1 and k2 are eigenvectors of K with eigenvalues, or, also referred
to as principal curvatures, κ1 and κ2, respectively. For reasons apparent later,
the total curvature κ, which we define twice the mean curvature 1

2 (κ1 + κ2), i.e.

κ := κ1 + κ2 = −divS nS , (2.31)

is a useful scalar measure of curvature. The term total curvature often refers to
the Gaussian curvature κ1κ2, however, the definition of total curvature in terms
of Eq. (2.31) is common in engineering literature [114, 193]. We furthermore
introduce the general identity

divS IS = κnS . (2.32)

For the purpose of this treatise, the characterization of surfaces embedded in
R3 in terms of their extrinsic geometric properties as given above suffices for the
description of interfacial effects.

Partial derivatives with respect to time for fixed material surface coordinates
XS , or, also referred to as material surface time derivatives, are denoted dS/dt :=
(∂/∂t)XS

= (∂/∂t)S1,S2 . For a surface-fixed material point initially located at
XS , velocity at time t is thus defined

1Introducing the contravariant basis vectors

g1 =
3∑
a=1

∂s1

∂xa
ea and g2 =

3∑
a=1

∂s2

∂xa
ea,

the surface identity tensor can be written

IS = g1 ⊗ g1 + g2 ⊗ g2,

whereas the surface gradient and surface divergence may be expressed as

gradS(•) =
2∑
a=1

∂

∂sa
ga ⊗ (•) and divS(•) =

2∑
a=1

∂(•)a
∂sa

.

In the above expressions, the intrinsic, surface-bound nature of gradS and divS becomes more
apparent.
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Figure 2.4: Schematic representation of a material domain Ω comprised of two
bulk phases Ω+ and Ω− with outer unit normal n and a surface Σ representing
an internal interface. The surface Σ is bounded by the boundary curve ∂Σ with
unit tangent vector tS and unit vector bS = nS × tS perpendicular to ∂Σ.

uS := dS
dt xS = dS

dt χS (XS , t) .

Introducing a generic surface field ΦS of arbitrary rank, the material sur-
face time derivative of ΦS (xS , t) in spatial description for a fixed parameter XS

reads [see 63, § 3.4]

dS
dtΦS (xS , t) = ∂

∂t
ΦS (xS , t) + gradS ΦS (xS , t) · uS . (2.33)

We denote the bounded domains occupied by material points of the bulk
phases that are adjacent to the interface as Ω+ and Ω−, where the interface unit
normal nS points from Ω− to Ω+ (Fig. 2.4). Considering material interfaces, i.e.
impermeable interfaces separating immiscible bulk phases, a kinematic constraint
is incorporated by which we consider the areal domains

ΓS,+ := ∂Ω+ ∩ Σ != Σ, and

ΓS,− := ∂Ω− ∩ Σ != Σ, (2.34)

where ΓS,+ and ΓS,− are referred to as internal interfaces whereas Γ+ :=
∂Ω+ \ΓS,+ and Γ− := ∂Ω− \ΓS,− are referred to as outer boundaries to Ω+ and
Ω−, respectively.

We use the notation
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(•)+ := (•)|x=xS , ∀x ∈ Ω+,xS ∈ Σ and
(•)− := (•)|x=xS , ∀x ∈ Ω−,xS ∈ Σ,

to indicate the values of bulk field variables evaluated at points of the internal
interface. The surface unit normals to the internal interfaces are thus denoted

n+ := −nS (xS) , and
n− := +nS (xS) . (2.35)

2.2.2 Transport theorem

We consider a generic density field Φmicro of arbitrary rank which is, from a
microscopic point of view, continuously defined over the entire domain Ω. In
contrast to section 2.1.2, hereinafter, Ω shall be comprised of two immiscible
bulk phases. If Φmicro is for instance taken to be mass density, the microscopic
density field may exhibit large gradients in interfacial transition zones, e.g. a
zone separating a gas and a liquid phase. In this section, the length scale we
associate with the microscopic description shall be in the order of the length
scale of the interfacial transition zone. In the context of applying the continuum
approach to model multiphase phenomena at considerably larger length scales on
the other hand, it is most common to substitute the microscopic density field with
a macroscopic density field Φ = Φmacro that exhibits a discontinuity at points
of a singular interface - the so-called Gibbs convention. The residual difference∫

Σ ΦSdaS :=
∫

Ω Φmicrodv −
∫

Ω Φmacrodv, which has non-zero contributions only
within the interfacial transition region, is subsequently assigned to a singular
interface (Fig. 2.5) and we refer to ΦS as interface-excess density1. While the
macroscopic density field Φ is defined with respect a unit of volume of the bulk
phases, the interface-excess density field is defined with respect to a unit of area
of the singular interface.

Consequently, we consider a material volume comprised of two bulk phases
and an internal, singular interface such that Ω = Ω+∪Ω−∪Σ, or, using the short-
hand notation Ω± := Ω+ ∪ Ω−, we equivalently write Ω = Ω± ∪ Σ (Fig. 2.4). In
an attempt to derive a transport theorem for a material volume with an internal
interface, we use the additive decomposition

1A singular interface with interface-excess density is often referred to as Gibbs dividing
plane or Gibbs model following the pioneering work of J.W.Gibbs. For a rigorous definition of
interface-excess density, the interested reader is referred to Edwards et al. [63, § 15].
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Figure 2.5: Schematic of a microscopic,
continuous density field Φmicro and a
macroscopic, discontinuous representa-
tion Φmacro in the vicinity of an inter-
face plotted in direction of the normal
nS according to Edwards et al. [63, see
Fig. (3.6-3)]. In continuum models, the
integral of the shaded region, termed
interface-excess density ΦS , is assigned
to a singular interface.

d
dt

[∫
Ω

Φmicrodv
]

= d
dt

[∫
Ω±

Φ dv +
∫

Σ
ΦS daS

]

= d
dt

∫
Ω±

Φ dv + dS
dt

∫
Σ

ΦS daS , (2.36)

where it has been taken into account that the material time derivative d/dt is
equivalent to the material surface time derivative dS/dt when the operator acts
on surface-fixed material points. For the sake of clarity, in the following, each
term on the RHS of Eq. (2.36) is reformulated individually. To start with, the
rate of change in Ω± is further decomposed into

d
dt

∫
Ω±

Φ dv = d
dt

∫
Ω+

Φ dv + d
dt

∫
Ω−

Φ dv. (2.37)

Application of the single-phase transport theorem (2.9) to each of the terms
on the RHS of Eq. (2.37) yields

d
dt

∫
Ω±

Φdv =
∫

Ω+

∂Φ
∂t

dv +
∫

Γ+

(Φ · n) u da+
∫

ΓS,+
(Φ · n) u da

+
∫

Ω−

∂Φ
∂t

dv +
∫

Γ−

(Φ · n) u da+
∫

ΓS,−
(Φ · n) u da, (2.38)

where surface fluxes across ∂Ω+ and ∂Ω− have been decomposed into fluxes
across the outer boundaries Γ+ and Γ− as well as fluxes across the internal inter-
faces ΓS,+ and ΓS,−. Considering the relations (2.34)-(2.35) and incorporating
the interface velocity uS , Eq. (2.38) is alternatively written
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d
dt

∫
Ω±

Φdv =
∫

Ω+

∂Φ
∂t

dv +
∫

Γ+

(Φ · n) u da−
∫

Σ

(
Φ+ · nS

)
uS daS

+
∫

Ω−

∂Φ
∂t

dv +
∫

Γ−

(Φ · n) u da+
∫

Σ

(
Φ− · nS

)
uS daS ,

To adopt a concise notation, we may introduce the Hadamard jump operator

[[Φ(xS , t)]] := lim
ε→0

[
Φ(xS + εnS , t)−Φ(xS − εnS , t)

]
= Φ+ −Φ−. (2.39)

Using the jump operator, we finally write

d
dt

∫
Ω±

Φdv =
∫

Ω±

∂Φ
∂t

dv +
∫

Γ±

(Φ · n) u da−
∫

Σ
[[(Φ · nS) uS ]] daS , (2.40)

where the short-hand notation Γ± = Γ+ ∪ Γ−.
Comparing Eq. (2.40) to its single-phase equivalent (2.9), an additional term is

observed that accounts for the motion of the interfacial discontinuity within Ω±.
In particular, it can be shown that Eq. (2.40) can be derived from the transport
equation (2.7), when, instead of using the divergence theorem (2.8), the modified
divergence theorem for material bodies with internal interfacial discontinuity∫

Ω±

div (•) dv =
∫

Γ±

(•)T n da−
∫

Σ
[[(•)T nS ]] daS (2.41)

is used. The validity of Eq. (2.41) can be shown by applying a procedure
analogous to what was used in Eqs. (2.38)-(2.40), i.e. additively decomposing
surface integrals into integrals over outer surfaces and internal interface.

The second term on the RHS of Eq. (2.36) denotes the temporal rate of
change of the total amount of interface-excess density ΦS contained within an
interface Σ. The derivation of the surface transport theorem is conceptually
analogous to the approach outlined in section 2.1.2. Introducing the non-zero
surface Jacobian1 JS that maps areal elements of the referential configuration to
areal elements of the current configuration, i.e. daS = JSdAS , the total amount
of interface-excess density can be expressed with respect to the time-invariant
reference configuration such that

dS
dt

∫
Σ

ΦS (xS , t) daS =
∫

Σ0

dS
dt

[
Φ̂S (XS) JS (XS , t)

]
dAS , (2.42)



2.2. FUNDAMENTALS OF TWO-PHASE FLOW 25

where Φ̂S (XS , t) = ΦS (χS (XS , t) , t) = ΦS (xS , t) is referred to as material
description of interface-excess density.

Using the product rule and the material surface time derivative of the surface
Jacobian [see 63, Eq. (3.4-14)]

dS
dt JS (XS , t) = divS uS (xS , t) JS (XS , t) ,

we rewrite Eq. (2.42) to yield

dS
dt

∫
Σ

ΦS daS =
∫

Σ

dS
dtΦS + ΦS divS uS daS . (2.43)

Reformulating the material surface time derivative on the RHS of Eq. (2.43)
according to Eq. (2.33), using the calculus identity

divS (ΦS ⊗ uS) = ΦS divS uS + gradS ΦS · uS

as well as the divergence theorem for surfaces [see 62, § 3.4]

∫
Σ

divS (ΦS ⊗ uS) daS =
∫
∂Σ

(ΦS · bS) uS dcS +
∫

Σ
divS nS (ΦS · nS) uS daS

=
∫
∂Σ

(ΦS · bS) uS dcS −
∫

Σ
κ (ΦS · nS) uS daS , (2.44)

where the definition of the total curvature (2.31) has been used, an alternative
form of the transport theorem is given as

1The surface Jacobian is defined JS := detS FS , where

detSFS :=
‖FS ·G1 × FS ·G2‖

‖G1 ×G2‖
,

and the surface Jacobian matrix

FS =
∂xS
∂XS

= GradS xS

using

GradS(•) := Grad(•) ·
[

I−NS ⊗NS

]
=

3∑
a=1

ea
∂

∂Xa
·
[

I−NS ⊗NS

]
⊗ (•).

For proofs of the above stated definitions, which are omitted herein for the sake of brevity, the
reader is referred to Steinmann [193, § 3.1].
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Figure 2.6: Interpretation of flux terms occurring in the transport theorem for
surfaces. For the deformation mode depicted on the LHS, the boundary curve
integral in Eq. (2.45) vanishes. For the deformation mode depicted on the RHS,
the second surface integral in Eq. (2.45) vanishes.

dS
dt

∫
Σ

ΦS daS =
∫

Σ

∂ΦS

∂t
daS −

∫
Σ
κ (ΦS · nS) uS daS +

∫
∂Σ

(ΦS · bS) uS dcS .

(2.45)
For a surface Σ bounded by the boundary curve ∂Σ, dcS denotes the differ-

ential line element of the contour ∂Σ and bS denotes an outwardly directed, unit
vector that is tangent to Σ and perpendicular to ∂Σ (Fig. 2.4).

The convective flux terms occurring on the RHS of Eq. (2.45) can be geomet-
rically interpreted. Indeed, the second term on the RHS of Eq. (2.45) is related
to fluxes that appear normal to the interface Σ while the third term is related to
fluxes that appear normal to the boundary curve ∂Σ (Fig. 2.6). The temporal
rate of change of the total amount of a density ΦS contained within Σ is thus
observed equal to the sum of the surface integral of the local time derivative of
ΦS and the convective fluxes in direction normal to the interface and tangent to
the boundary curve ∂Σ.

2.2.3 General balance equations
As indicated earlier, for all multi-phase transport processes studied within this
treatise, thermal effects are neglected and bulk liquid phases are considered non-
polar. The set of balance equations is thus reduced to a balance of mass and
a balance of linear momentum, i.e. we explicitly take into account transport of
mass density % and density of linear momentum %u. A crucial assumption which
shall be applied hereinafter is that interface-excess mass density %S , i.e. the
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Figure 2.7: Schematic mass density concentration profiles plotted in direction
of the normal nS for a multi-phase system with non-negligible concentration
of surfactants (left) and a system with negligible interface-excess mass density
(right).

surface-specific residual difference between total microscopic mass density and
discontinuous mass density representation

∫
Ω %microdv −

∫
Ω %macrodv, is consid-

ered negligible. Absence of interface-excess mass density is motivated by assum-
ing negligible concentration of any type of surface active material (surfactants)
that might segregate to or be absorbed by internal interfaces (Fig. 2.7). Indepen-
dent of the surfactant concentration, the latter assumption is expected to hold
valid for transport processes that might be characterized as being quasi-static,
i.e. negligible inertial effects as well as negligible dynamic perturbations from
thermodynamic equilibrium.

The axiomatic requirement of conservation of total mass within an arbitrary
material volume comprised of two bulk phases and an internal interface implies

d
dt

∫
Ω±

%dv + dS
dt

∫
Σ
%S daS = 0.

Using Eq. (2.40) and taking into account negligible interface-excess mass den-
sity, i.e. %S = 0, subsequently yields∫

Ω±

∂%

∂t
dv +

∫
Γ±

(%u) · n da−
∫

Σ
[[(%uS) · nS ]] daS = 0.

Reformulating the integral over the outer surface Γ± using the divergence
theorem (2.41) for material volumes with internal interface yields∫

Ω±

∂%

∂t
+ div (%u) dv −

∫
Σ

[[% (u− uS) · nS ]] daS = 0. (2.46)

Since Eq. (2.46) must be satisfied for any arbitrary surface Σ and volume Ω±,
it may be localized, provided that mass density % and velocity u are continuously
defined in Ω± and on Σ, respectively, such that
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[[% (u− uS) · nS ]] = 0, ∀xS ∈ Σ, (2.47)

and

∂%

∂t
+ div (%u) = %̇+ % div u = 0, ∀x ∈ Ω±. (2.48)

Equation (2.47) can be interpreted as the interface condition of vanishing
mass transfer across the internal interface, or, in other words, the impermeable,
material interface is neither a source nor a sink for mass density with respect to
either of the adjacent bulk phases. We may reduce equation (2.47) to

uS · nS = u+ · nS = u− · nS , ∀xS ∈ Σ (2.49)

which implies interfacial coupling of bulk fluid velocities in direction normal
to the interface. Clearly, the latter leads to a no-penetration condition at static
solid-fluid interfaces as introduced in section 2.1.5. Moreover, the local balance
of mass (2.48) that applies to points of both adjacent bulk phases is equivalent
to the single-phase continuity equation (2.11).

For the temporal rate of change of total linear momentum contained within
a material volume with internal interface we axiomatically require

d
dt

∫
Ω±

%u dv + d
dt

∫
Σ
%SuS daS = FΩ± + FΓ± + FΣ + F∂Σ. (2.50)

In equivalence to Eq. (2.12), FΩ± represents the total volume force acting on
material points of the bulk phases. In equivalence to Eq. (2.13), FΓ± represents
the total contact force due to surface tractions acting on the outer surface Γ±.
Due to the presence of an internal interface, we additionally take into account
the total contact force

F∂Σ :=
∫
∂Σ

tb dcS =
∫
∂Σ

bS ·Π dcS . (2.51)

The contact force F∂Σ represents the flux of linear momentum across the
boundary curve ∂Σ of the internal interface, or, in other words, the effect of
boundary curve tractions tb acting on ∂Σ (Fig. 2.4). Boundary curve tractions
are related to the interfacial Cauchy stress tensor Π by means of the interfacial
Cauchy theorem tb := bS · Π. The particular structure of the second-order
interfacial Cauchy stress tensor Π remains to be introduced using a constitutive
material model. Equation (2.51) is the interface analog of the total bulk contact
force (2.13).

Due to assuming negligible interface-excess mass density, total far field, or,
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volume forces FΣ that take effect at points of the interface are considered absent,
i.e. FΣ = 0. In the presence of surfactants and a resulting high mass concentra-
tion at points of the interface for instance, interfacial volume forces due to gravity
have to be taken into account. In the presence of electrically charged surfactants,
a far field magnetic field might render interfacial volume forces non-negligible as
well. For negligible interface-excess mass density, the temporal rate of change
of total interface-excess linear momentum, i.e. the second term on the LHS of
Eq. (2.50), vanishes as well.

We reformulate the LHS of Eq. (2.50) to a form in which it is accessible to
material point localization, i.e.

d
dt

∫
Ω±

%u dv (2.40)=
∫

Ω±

∂(%u)
∂t

dv +
∫

Γ±

(%u⊗ u)T n da−
∫

Σ
[[(%u · nS) uS ]] daS

(2.41)=
∫

Ω±

∂(%u)
∂t

+ div (%u⊗ u) dv +
∫

Σ
[[(%u · nS) u]]− [[(%u · nS) uS ]] daS

=
∫

Ω±

∂(%u)
∂t

+ div (%u⊗ u) dv +
∫

Σ
[[%u (u− uS) · nS ]] daS

(2.47)=
∫

Ω±

∂(%u)
∂t

+ div (%u⊗ u) dv

(2.3)=
∫

Ω±

d(%u)
dt + %u div u dv

(2.48)=
∫

Ω±

%u̇ dv.

Reformulating the surface integral FΓ± using the divergence theorem (2.41)
and the boundary curve integral F∂Σ using the divergence theorem for sur-
faces (2.44), the temporal rate of change of total linear momentum reads

∫
Ω±

%u̇ dv =
∫

Ω±

%b dv +
∫

Ω±

div T dv

+
∫

Σ
[[T · nS ]] daS +

∫
Σ

divS Π daS +
∫

Σ
κΠ · nS daS . (2.52)

Since Eq. (2.52) must be satisfied for any arbitrary choice of Σ and Ω±, it
may be localized, provided that mass density %, velocity u and volumetric force
density b are continuously defined in Ω± and on Σ, respectively, such that

−[[T · nS ]] = divS Π + κΠ · nS , ∀xS ∈ Σ, (2.53)
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and

%u̇ = div T + %b, ∀x ∈ Ω±. (2.54)

As expected, the local balance of linear momentum (2.54) applicable to all
points of both bulk fluid phases is equivalent to the single-phase balance of linear
momentum. On the other hand, in the presence of internal interfacial stresses,
the interfacial balance of linear momentum (2.53) constitutes an interfacial jump
in surface tractions exerted by bulk fluid phases onto each other that is balanced
by internal interfacial forces.

The set of unknown scalar values at the interface is comprised of the unique
components of the bulk Cauchy stress tensors (T+,T−), interfacial Cauchy stress
tensor Π and velocities (u+,u−). Equating the number of unknowns at the inter-
face to the number of available interfacial balance equations, it is realized that,
on the one hand, a constitutive equation is required for the unknown interfacial
Cauchy stress tensor Π, and, on the other hand, two additional scalar boundary
conditions are required [see 185, § 2.4.2]. The missing two scalar equations relate
components of bulk fluid velocities tangent to the interface to each other. We
recall that the coupling (2.49) of components of bulk fluid velocities normal to the
interface results from local mass balance at material interfaces. On the contrary,
the interfacial jump condition

[[u · IS ]] = 0, ∀xS ∈ Σ, (2.55)

which requires tangential components of bulk velocities to be continuous
across the interface, represents a kinematic assumption. For justification of the
assumption (2.55), the reader is referred to Shikhmurzaev [see 185, § 4.3] and
Barenblatt & Chernyi [11] where Eq. (2.55) is shown equivalent to the assump-
tion that the interface is neither a source nor a sink for moment of momentum
density of bulk fluid phases.

2.2.4 Constitutive equations

We introduce the constitutive equation that determines the interfacial Cauchy
stress tensor Π. We first consider the interface to be in a state in which there is
no intrinsic motion of surface-fixed material points, i.e. we consider the relative
motion uS(xS,1) − uS(xS,2) = 0 for all arbitrary points xS,1 and xS,2 of Σ.
For such a state of intrinsic hydrodynamic equilibrium, the stress tensor Π is
physically required homogeneous, isotropic with respect to all directions tangent
to the interface and invariant under rigid body motion of the interface. Hence,
in equivalence to Eq. (2.16), the equilibrium part of Π must be of general form



2.2. FUNDAMENTALS OF TWO-PHASE FLOW 31

Πeq = σIS , (2.56)

where σ, with unit of force per unit length, is referred to as interfacial tension.
Recalling the definition (2.29) of the surface identity tensor IS , the equilibrium
part Πeq is observed to induce a tension of magnitude σ at all points of the
interface Σ acting in every direction tangent to it. In other words, if gt is a
normalized, but otherwise arbitrary linear combination of the covariant basis
vectors g1 and g2, i.e. a unit vector tangent to the interface, the stress gt ·Πeq · gt
is equal to σ. For the isothermal processes considered herein, a dependency of σ
on temperature is not considered. Moreover, in the absence of surfactants, which
tend to accumulate at interfaces and decrease the effective interfacial tension, σ
is considered constant in time and of equal magnitude for all points of a common
interface.

While pressure can be interpreted a force per unit area that opposes local
volumetric compression, interfacial tension can be interpreted a force per unit
length that opposes local increase of interfacial area. In contrast to molecules
of bulk phases that experience a vanishing net cohesive force due to isotropic
interaction with neighboring molecules of the same phase only, molecules in the
vicinity of material interfaces experience an asymmetric action of cohesive forces
due to interaction with bulk molecules of different phases. The latter forms the
molecular origin of interfacial tension.

In analogy to the additive split of the Cauchy stress tensor into an equilib-
rium and non-equilibrium part, we may additively split the interfacial Cauchy
stress tensor Π = Πeq + Πneq. However, for negligible interface-excess mass
density, the non-equilibrium interfacial stress tensor Πneq is generally considered
negligible. Setting Π = Πeq, we reformulate the interfacial balance of linear mo-
mentum (2.53). In particular, taking into account that, by definition, Πeq ·nS = 0
and using the identity (2.32), Eq. (2.53) reads

−[[T · nS ]] = divS Π = gradS σ + σκnS , ∀xS ∈ Σ, (2.57)

The interfacial jump in tractions is thus observed to be comprised of two
parts: The first term on the RHS of Eq. (2.57), the so-called Marangoni force,
represents a force that, by definition (2.30) of gradS , acts entirely in a direction
tangent to the interface and vanishes for spatially constant values of σ. On the
other hand, the second term on the RHS of Eq. (2.57), the so-called Young-
Laplace force, represents a force that acts entirely in direction of the unit normal
to the interface. Assuming interfacial tension constant in space and substituting
the definitions (2.22), (2.16) and (2.39) into Eq. (2.57) finally yields



32 CHAPTER 2. CONTINUUM FLUID MECHANICS

(
T+

neq −T−neq
)
· nS +

(
p− − p+ + σκ

)
nS = 0, ∀xS ∈ Σ. (2.58)

The first term in Eq. (2.58) implies continuity of tangential viscous stresses
across the interface. The second term in Eq. (2.58) introduces a pressure jump
condition across the interface due to the concentrated interfacial force per unit
area σκnS acting normal to the interface. In equilibrium, viscous stresses are
absent and Eq. (2.58) reduces to the Young-Laplace equation

p+
eq − p−eq = σκ, ∀xS ∈ Σ, (2.59)

which relates the equilibrium pressure discontinuity at interfaces between two
bulk fluid phases to total curvature κ of the interface. The pressure jump in
Eq. (2.59) is referred to as microscopic capillary pressure pC := p+ − p−. Since
in hydrostatic equilibrium pressure fields must be homogeneous within each bulk
phase, Eq. (2.59) implies that geometric properties of interfaces in equilibrium are
such that total curvatures are equal for all points of the interface, i.e. κ = 1/R =
const., where R is referred to as radius of curvature. Considering a droplet fully
immersed in another fluid, the latter gives rise to the spherical shape of droplets
in equilibrium.

2.3 Immersed boundary formulation

The Gibbs convention of singular interfaces leads to interfacial balance equations
that may be regarded boundary conditions with respect to the primary variables
of the bulk phase balance equations. Hereafter, interfacial balance equations
are also referred to as interfacial jump conditions to indicate that the interface
resembles a singular source or sink for the considered density field. As apparent
later, from a numerical point of view, it is convenient to immerse interfacial
jump conditions into the bulk balance equations in terms of a singular source
term that is localized to points of the interface. The resulting balance equations
with immersed singular sources are referred to as whole-domain balance equations
and apply to points of the entire domain Ω = Ω± ∪ Σ. For all points x ∈ Ω we
define their normal distance to the interface

nS (x) := (x− xS) · nS (xS) ,

such that x = xS + nSnS . Immersion of singular sources is subsequently
achieved using a Dirac delta distribution that is supported on points of the in-
terface only, i.e.
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δS (x) := δ (nS) =
{

1 if x ∈ Σ
0 if x ∈ Ω±

. (2.60)

The key property of the interface Dirac delta distribution (2.60) for its use
regarding jump condition immersion is that we may relate surface integrals over
Σ to volume integrals over the entire domain Ω [178], such that∫

Ω
Φ (x) δS (x) dv =

∫
Σ

Φ (x) daS , (2.61)

where Φ denotes a generic field of arbitrary rank. The method of immersing
boundary conditions in fluid mechanics using a Dirac delta distribution is called
immersed boundary method following the pioneering work Peskin [158]. For the
volume integral on the LHS of Eq. (2.61) to be accessible to numerical quadra-
ture, the Dirac distribution δS is typically replaced with a regularized, smooth
distribution as defined in section 2.3.5.

2.3.1 Whole-domain balance of mass
The whole-domain balance of mass is formulated by immersion of the interfacial
mass density jump condition (2.47) such that∫

Ω±

∂%

∂t
+ div (%u) dv = −

∫
Ω

[[% (u− uS) · nS ]]δS dv = 0. (2.62)

Since the material interface is neither a source nor a sink for mass density
localization of Eq. (2.62) yields

%̇+ %div u = 0, ∀x ∈ Ω, (2.63)

which implies that, for material interfaces, the general continuity equation (2.11)
applies to all points of the whole-domain.

2.3.2 Whole-domain balance of linear momentum
The whole-domain balance of linear momentum is formulated by immersion of
the interfacial linear momentum density jump condition (2.53) such that

∫
Ω±

%u̇− %b− div T dv =−
∫

Ω
[[T · nS ]]δS dv

=
∫

Ω
(divS Π + κΠ · nS) δS dv.
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Incorporating the constitutive relation (2.56) and localizing to a material point
yields

%u̇ = div T + %b + div (ΠδS) , ∀x ∈ Ω, (2.64)

or, for an interfacial tension σ constant in space and time,

%u̇ = div T + %b + σκnSδS , ∀x ∈ Ω. (2.65)

In the above, the surface divergence of the interfacial stress tensor has been
rewritten

divS (Π) δS = div (ΠδS) , (2.66)

which holds since the normal projection of the interfacial Cauchy stress tensor
(σIS) ·nS vanishes and, furthermore, the distribution δS is only supported on Σ.

Hence, the interfacial jump in tractions takes the form of the volumetric force
density

fS := div (ΠδS) , (2.67)

or, alternatively,

fS := σκnSδS . (2.68)

The action of the force density fS is restricted to the interface Σ by virtue of
the distribution δS .

The use of Eq. (2.67) rather than Eq. (2.68) avoids the computation of the
total curvature κ, which otherwise would require the evaluation of higher order
spatial derivatives potentially prone to numerical noise [30, 141]. Moreover, er-
rors that arise in the numerical estimation of total curvature lead to violation of
local linear momentum conservation. In particular, for erroneous curvature com-
putations, the microscopic capillary pressure pC is locally not equilibrated by
interfacial tension. Unbalanced pressure gradients subsequently cause unphysical
fluid motion, also referred to as spurious or parasitic currents [83, 212].

On the other hand, the interfacial stress tensor Π can be conveniently em-
bedded into the conservation form

∂ (%u)
∂t

+ div (%u⊗ u−T + ΠδS) = 0, (2.69)

where the volumetric force density b has been omitted. Using Eq. (2.69), the
computation of curvature is avoided. Furthermore, using the above conservation
form, it is possible to construct numerical quadrature schemes that are compliant
with linear momentum conservation.
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2.3.3 Whole-domain balance of moment of momentum
We consider the interface to be neither a source nor a sink for moment of momen-
tum density of bulk fluid phases. As a result, for which a rigorous derivation is
omitted herein, the whole-domain balance of moment of momentum requires bulk
Cauchy stress tensors to be symmetric, i.e. T = TT . Furthermore, if the evolu-
tion of fluid flow governed by the above whole-domain balance equations (2.63)
and (2.64) is free of shear stress singularities, the kinematic assumption (2.55) is
intrinsically satisfied [see 185, § 4.3].

2.3.4 Governing dimensionless numbers
Introducing the set of dimensionless variables

ū = u
Uref

, x̄ = x
Lref

, t̄ = t

Lref/Uref
, µ̄ = µ

µref
, %̄ = %

%ref
, p̄ = p

%refU2
ref
,

where characteristic velocity Uref , characteristic length scale Lref , reference
viscosity µref and reference mass density %ref must be suitably chosen regarding
the boundary value problem at hand, the non-dimensional whole-domain balance
of linear momentum (2.65) with volume forces omitted is written [83]

∂ (%̄ū)
∂t

+ div (%̄ū⊗ ū) = 1
Re div

(
µ̄ grad ū + µ̄ gradT ū

)
+ 1

ReCaκnSδS − grad p̄.

It is emphasized that the pressure field has been non-dimensionalized with the
characteristic pressure %refU

2
ref , whereas for creeping flow absent of inertia forces

a more suitable choice for the characteristic pressure is Lref/(µrefUref). For non-
vanishing effects of inertia, however, dimensionless numbers governing capillary
flow are the Reynolds number

Re := %refUrefLref

µref
(2.70)

and the capillary number

Ca := µrefUref

σ
.

While the Reynolds number represents the ratio of inertia to viscous forces,
the capillary number represents the ratio of viscous to interfacial tension forces.
In the limit of Re → 0 and Ca → 0, interfacial effects dominate resulting in a
so-called mean curvature flow, i.e. the flow field evolves such that the curva-
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ture κ of an interface is constant and always compliant with the Young-Laplace
equation (2.77). The evolution of mean curvature flows can be described as a
surface minimization problem if the homogeneous bulk pressures are known and
boundary conditions can be specified with respect to the boundary curve ∂Σ.
In the limit of Re → ∞, inertia effects dominate resulting in an inviscid flow
governed by the conservative Euler equations %u̇ = − grad p + b. In the limit
of Re → 0 and Ca → ∞, viscous momentum diffusion dominates resulting in a
laminar, creeping flow governed by the Stokes equations which are obtained by
omitting the non-linear convective term div(%u⊗ u) from Eq. (2.28).

2.3.5 Continuum surface force method
The continuum surface force method (CSF) as introduced by Brackbill et al. [30]
and the continuum surface stress method (CSS) as introduced by Lafaurie et al.
[115] are computational methods to incorporate the interfacial force density fS
into the discrete, numerical quadrature scheme. While the CSF method rep-
resents fS by the non-conservation form (2.68), the CSS method represents fS
by the conservation form (2.67). Despite the latter distinction, the underlying
concept of introducing a smooth distribution δ̃S to replace the singular surface
Dirac distribution δS is common to both methods. In particular, the modified
surface Dirac distribution δ̃S is constructed such that it is compactly supported
on a bounded domain Σ̃ that encloses the interface, i.e. Σ ⊂ Σ̃ . Applications of
the CSF and CSS method can be found in the context of various numerical meth-
ods including Finite Differences [30, 115], Finite Volumes [68, 69, 167, 168, 178],
Finite Elements [157] and Smoothed Particle Hydrodynamics [1, 31, 99, 141].

We define a Heaviside step function C(x), or, hereafter referred to as phase
indicator field, that exhibits a unit jump across the interface Σ following

C (x) =


0, if x ∈ Ω−,
1, if x ∈ Ω+,

0.5, if x ∈ Σ.

For the purpose of regularization, the phase indicator field is typically smoothed
by means of a convolution interpolation [30, 115, 178] or linearly interpolated [68,
69] between collocation points of the numerical method. In particular, the
convolution-based, smooth approximation C̃(x) is given as

C̃ (x) =
∫

Ω
C (x′)W (x− x′, h) dv, ∀x ∈ Ω, (2.71)

where the smooth kernel functionW is required to have compact support with
h representing a characteristic finite width of the compact support. Furthermore,
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Figure 2.8: Schematic representation
of the phase indicator field C (x), its
smooth approximation C̃(x) and mod-
ified surface Dirac distribution δ̃S (x).

the kernel function shall satisfy the Dirac delta property

lim
h→0

W (x, h) = δ (x) ,

such that the sharp interface limit is recovered for increasing numerical reso-
lution. For a finite length h, on the other hand, the kernel function shall more-
over satisfy the normalization condition

∫
ΩW (x, h) dv = 1 as to reproduce the

step function. For computational purposes, the length scale h is in the order of
the length scale of numerical resolution. Due to the equivalence of the above
convolution-based approximation to the reproducing kernel approximation of the
Smoothed Particle Hydrodynamics method, the reader is referred to chapter 3
for further discussion on the properties of Eq. (2.71).

By virtue of Eq. (2.71), the unit jump is extended to the length scale of nu-
merical resolution, turning the sharp interface into a numerically diffuse interface
(Fig. 2.8). The modified surface Dirac distribution is then defined

δ̃S := ‖ grad C̃(x)‖,

and the unit normal to the interface is approximated as

nS ≈
grad C̃(x)
‖ grad C̃(x)‖

.

An approximation of the interfacial force density f̃S ≈ fS that is suitable for
numerical quadrature is subsequently given as

f̃S := div
(

σ

‖ grad C̃(x)‖

[
I‖ grad C̃(x)‖2 − grad C̃(x)⊗ grad C̃(x)

])
,

where the definition (2.29) of the surface identity tensor IS has been substi-
tuted. The sharp interface limit is reached in the limit of increasing numerical
resolution, i.e. limh→0 ˜(•) = (•) for all approximations ˜(•) ∈ {f̃S , C̃, δ̃S}. Hence,
in an attempt to simplify notation, the tilde symbol that highlights smooth ap-
proximations is omitted hereafter.



38 CHAPTER 2. CONTINUUM FLUID MECHANICS

2.4 Fundamentals of wetting and two-phase flow
in porous media

In the following section, we introduce the balance equations that govern the
isothermal flow of two immiscible Newtonian fluid phases through the pore space
of a porous material. To this end, we make use of bulk balance equations as
introduced in section 2.1, interfacial balance equations as introduced in section 2.2
and the immersed boundary formulation as introduced in section 2.3. For the
purpose of introducing the specific notation for two-phase flow in porous media
as used throughout the remainder of this thesis, however, the complete set of
balance equations is shortly summarized hereafter. In the preceding sections 2.2
and 2.3, interface-excess quantities and interface-bound operators for a general
surface Σ were highlighted by the subscript (·)S . In the following, on the other
hand, the subscript (·)αβ is instead used to highlight interfacial quantities for a
specific interface Γαβ .

2.4.1 Introduction

The total domain of the porous material Ω ⊆ Rd, where d denotes the number
of spatial dimensions, can be expressed as the union of the total fluid domain Ωf

and solid matrix domain Ωs, i.e. Ω := Ωf ∪Ωs. The total fluid domain is further
expressed as the union of both fluid phase domains, i.e Ωf := Ωn ∪Ωw, where Ωw

and Ωn denote domains of wetting and non-wetting fluid phase, respectively. The
internal boundary Γfs between solid matrix and fluid domain is defined as the
intersection Γfs := ∂Ωf ∩ ∂Ωs. The distinctive property of two-phase flow is the
presence of the interface Γwn := ∂Ωn ∩ ∂Ωw that separates both fluid phases (see
Fig. 2.9). We hereafter refer to Γwn as fluid-fluid interface or meniscus, whereas
Γfs is referred to as solid surface. The solid surface is furthermore expressed as
the union Γfs := Γws ∪ Γns, where the interfaces that are formed between each
of the fluid phases and solid matrix Γws := ∂Ωw ∩ ∂Ωs and Γns := ∂Ωn ∩ ∂Ωs

are differentiated from each other as to account for interfacial balance equations
separately. Due to mutual immiscibility of bulk phases, all of the above interfaces
represent impermeable material interfaces. We finally introduce the intersection
of interfaces

Υ := ∂Γws ∩ ∂Γns ∩ ∂Γwn

that defines the domain of three-phase contact lines. In analogy to the as-
sumptions that were incorporated in section 2.2, for all material interfaces, we
consider impermeability, interface-excess mass density negligible, interfacial far-
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Figure 2.9: Schematic dia-
gram introducing the nota-
tion for bulk phases, inter-
faces Γαβ and interfacial unit
normals nαβ with respect to
a three-phase system as en-
countered during multi-phase
flow in porous media. The
indicator αβ ∈ {nw, ns,ws},
whereas s denotes the bulk
solid phase and n and w denote
bulk fluid phases.

field forces absent, boundary curve tractions to be given by Eq. (2.51) and inter-
facial Cauchy stress tensors equivalent to Eq. (2.56).

2.4.2 Overview of governing balance equations
Following Eqs. (2.27), mass and linear momentum balances that apply to points
of both fluid phase domains Ωα ∈ {Ωn,Ωw} read

%̇α = −%α divuα, ∀x ∈ Ωα, (2.72)

and

%α u̇α = divTα = divTα
E − grad pα ∀x ∈ Ωα, (2.73)

respectively, where %α denotes mass density, pα denotes local pressure, Tα
E de-

notes the viscous extra stress tensor, Tα := −pαI + Tα
E denotes the fluid Cauchy

stress tensor and uα denotes local velocity. In the present work, simulations
of two-phase flow in porous media are performed for negligible volumetric force
densities b. The latter is therefor omitted in the above balance of linear momen-
tum (2.73). We model barotropic, quasi-incompressible fluid phases by taking
into account the numerically stiff equation of state (2.20) that is parameterized
in such a way that density fluctuations relative to initial fluid density %α0 can be
neglected (less than 5 %). Furthermore, both fluid phases are considered New-
tonian fluids such that Tα

E = µα(graduα + gradT uα) according to Eq. (2.24),
where µα denotes dynamic viscosity.

Following the Gibbs convention introduced in section 2.2, interfaces are con-
sidered surfaces of vanishing thickness that divide bulk phases. The assumption
of negligible interface-excess mass density is hereafter applied to the complete
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set of interfaces Γαβ ∈ {Γwn,Γns,Γws}. Following Eq. (2.39), we use the jump
operator

[[•]] := (•)β − (•)α, ∀xS ∈ Γαβ

for a concise notation of the interfacial balance equations, where (•)α and
(•)β represent bulk properties at intersecting surfaces ∂Ωα ∈ {∂Ωn, ∂Ωw} and
∂Ωβ ∈ {∂Ωn, ∂Ωs}, respectively, with β 6= α. The spatial position xS is occupied
by a material point that is bound to the interface Γαβ and the velocity of a fixed
interfacial material point uS := ẋS . Following Eq. (2.47), the interfacial balances
of mass read

[[% (u− uS) · nαβ ]] = 0, ∀xS ∈ Γαβ , (2.74)

where the unit normal nαβ to the interface Γαβ points from bulk phase Ωα
to bulk phase Ωβ (see Fig. 2.9). As discussed in section 2.2.3, Eq. (2.74) implies
kinematic coupling of fluid velocities normal to the fluid-fluid interface such that
un · nwn = uw · nwn,∀xS ∈ Γwn.

Following Eq. (2.57), interfacial balances of linear momentum

−[[T · nαβ ]] = divαβΠαβ , ∀xS ∈ Γαβ (2.75)

constitute discontinuities in surface tractions exerted by adjacent bulk phases
onto each other that are balanced by internal interfacial forces. Internal interfacial
forces are expressed by the divergence of the interfacial Cauchy stress tensor
Παβ . As introduced in section 2.2.1, the surface divergence divαβ is defined as
the trace of the gradient matrix with the component normal to the interface
being removed, i.e. divαβ (•) := grad (•) : Iαβ , where the surface identity tensor
Iαβ := I − nαβ ⊗ nαβ . Far field forces that take effect at points of the interface
are considered absent. For negligible interface-excess mass density, the usual
constitutive assumption is Παβ := σαβIαβ , which induces an interfacial tension
of magnitude σαβ at any point of the interface Γαβ acting in every direction
tangent to it (see section 2.2.4). Due to the absence of surfactants and thermal
effects, interfacial tensions σαβ(xS) = σαβ are considered constant in time and
of equal magnitude for all points of a common interface. According to Eq. (2.31),
the curvature measure καβ := −divαβ nαβ , i.e. twice the mean curvature.

In equivalence to Eq. (2.58), an alternative expression of the interfacial bal-
ance of linear momentum (2.75) that is applicable to points of the fluid-fluid
interface reads

(Tn
E −Tw

E) · nαβ + (pw − pn + σwnκwn) nwn = 0, ∀xS ∈ Γwn. (2.76)
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The first term in Eq. (2.76) implies continuity of tangential viscous extra
stresses across the interface, hereafter referred to as interfacial viscous coupling.
The second term in Eq. (2.76) introduces a pressure jump condition across the
interface. In equilibrium, viscous stresses are absent and Eq. (2.76) reduces to
the Young-Laplace equation

pneq − pweq = σwnκwn, ∀xS ∈ Γwn. (2.77)

The pressure jump in Eq. (2.77) is referred to as microscopic capillary pressure
peq
C := pneq− pweq. All interfaces are assumed sufficiently smooth and differentiable

such that curvatures καβ are well-defined.
Following section 2.1.5, we consider the solid matrix static and rigid such that

us = 0, u̇s = 0, and %̇s = 0, ∀ (t,x) ∈ (0, tmax)× Ωs. (2.78)

As a result, shape and velocity of the solid surface are known and, together
with interfacial balance equations, serve to prescribe boundary conditions with
respect to fluid velocity. For a static solid surface, the interfacial balances of
linear momentum (2.75) with respect to Γws and Γns can be used to determine
the solid surface traction Ts · nfs that constitutes a reaction force per unit of
surface due to momentum exchange with fluid phase and solid-fluid interface.
Despite the latter being irrelevant when solving for the unknown velocities of the
fluid phase, our computational procedure indeed takes into account all interfacial
balances (2.75) as to model the effects at points of contact lines xC ∈ Υ where
all interfaces meet.

2.4.3 Initial and boundary conditions
Formulating an initial boundary value problem (IBVP) for the unknown fluid
densities, fluid velocities and fluid-fluid interface velocities, we use the initial
conditions

uα(x, t) = 0, %α(x, t) = %α0 ∀x ∈ Ωα, t = 0, (2.79)

as well as

uS(xS , t) = 0 ∀xS ∈ Γwn, t = 0. (2.80)

Boundary conditions with respect to fluid velocity on ∂Ωf are specified ac-
cording to section 2.1.5. In particular, inner boundary conditions on solid surface
Γfs are comprised of no-penetration (2.25) and no-slip condition (2.26). Together,
we require zero velocity magnitudes

uf = 0, ∀ (t,xS) ∈ (0, tmax)× Γfs. (2.81)
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Following Eq. (2.55), we assume tangential components of bulk fluid velocities
continuous across the fluid-fluid interface such that

[[u · Iwn]] = 0, ∀xS ∈ Γwn. (2.82)

Boundary conditions with respect to velocity at points of the contact line Υ
have to be modified since the no-slip assumption at points of a moving contact
line results in diverging tangential stresses and unphysical energy dissipation as
first shown by Huh & Scriven [101]. The latter singularity represents a limit
to the continuum assumptions. Many continuum models have been proposed
to resolve Huh and Scriven’s paradox (see Bonn et al. [26, § 1]). In this work,
we allow for a certain degree of tangential slip, as discussed in section 3.5 and
Sivanesapillai et al. [187, § 2.9].

2.4.4 Unconstrained contact lines
The local balance of linear momentum at points of an unconstrained contact
line implies that boundary curve tractions (2.51) of all adjacent interfaces are in
mutual balance. The set of boundary curve tractions acting on a common point
of the contact line form a concurrent force system. The balance of concurrent
forces acting on an unconstrained contact line reads Kurzeja & Steeb [cf. 114,
§ 4]

bnw · [σnwInw] + bns · [σnsIns] + bws · [σwsIws] = 0, ∀x ∈ Υ, (2.83)

where bαβ denote outwardly directed, unit vectors, tangent to Γαβ and per-
pendicular to ∂Γαβ such that bαβ ·nαβ = 0 for all Γαβ . The identity bαβ · Iαβ =
bαβ holds since the unit normal bαβ to the boundary curve is tangent to the
interface Γαβ . Hence, Eq. (2.83) reduces to the intuitive balance of interfacial
tensions

σnwbnw + σnsbns + σwsbws = 0, ∀x ∈ Υ (2.84)

for an unconstrained contact line. For a formal derivation of the above, one
may consider a control volume ΩC ⊂ Ω that encloses a subset of the contact line
Υ such that ΩC ∩Υ 6= ∅ (as depicted in Fig. 2.9). Omitting volumetric sources,
the rate of change of total linear momentum contained within ΩC is equal to
the flux of momentum density across the surface of the control volume ∂ΩC and
boundary curves ∂Γαβ . Localizing the latter to a point xC of the contact line,
whereby all surface fluxes vanish due to being distributed on area elements, yields
the above balance (2.83) of boundary curve tractions.
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2.4.5 Constrained contact lines
It is emphasized that Eqs. (2.83) and (2.84) apply to unconstrained contact lines
only. For a static solid surface on the other hand, the motion of the contact
line is restricted to planes tangent to the solid surface. The latter gives rise to a
constraining force1 FCnfs understood as being exerted on the contact line by the
solid phase [see 185, § 2.4.4]. The resulting balance of concurrent forces acting
on a contact line that is constrained to a rigid solid surface thus reads (Fig. 2.10)

σwnbwn − σnsbws + σwsbws = FCnfs, ∀xC ∈ Υ, (2.85)

where σαβIαβ · bαβ = σαβbαβ has been taken into account as well as the
geometric relations

nns = nws and bns = −bws, ∀xC ∈ Υ,

applicable to points of a smooth and rigid solid surface. The contact angle
Θ is defined as the angle formed between the local tangent to interface Γwn and
solid surface such that

cos Θ = bwn · bws, ∀xC ∈ Υ.

Multiplying Eq. (2.85) with −bws, i.e. considering the projection onto a plane
tangent to the solid surface, and accounting for nfs · bws = 0 yields

σwn cos Θ = σns − σws, ∀xC ∈ Υ. (2.86)

Equation (2.86) is referred to as Young’s equation. In equilibrium and assum-
ing solid phase rigidity, the geometric shape of the interface Γnw in the vicinity of
a contact line can thus be determined by Young-Laplace Eq. (2.77) and Young’s
Eq. (2.86) if microscopic capillary pressure pC and the 2-tuple of material pa-
rameters (σnw, σws − σns) are known. Hence, only the difference in interfacial
tensions σws−σns, rather than their separate values, is required. In the following,
we restrict ourselves to partially wetting cases where the magnitude ‖ cos Θ‖ < 1
and, to be consistent with our notation for wetting (w) and non-wetting phase
(n), Θ < 90◦. The special cases Θ = 0◦ and Θ = 180◦, which imply complete
wetting by either of the bulk fluid phases, are not considered within this treatise.

1The kinematic constraint that gives rise to the constraining force FC is given as uC ·nfs =
0 ∀xC ∈ Υ, where contact line velocity uC := ẋC . The equality constraint restricts the
instantaneous velocity uC of the contact line to the local tangent plane of the solid surface.
The constraining force may be formally derived by defining the Lagrange function for the
contact line and using the method of Lagrange multipliers to incorporate the above equality
constraint.
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Figure 2.10: Schematic repre-
sentation of concurrent forces
comprised of boundary curve
tractions σαβbαβ and contact
line constraining force FCnfs

acting on common point of
contact line that is constrained
to the solid-fluid interface.

In the case of complete wetting, the wetting fluid spreads over the solid-fluid
interface to eventually form thin wetting films and contact lines are absent in
equilibrium.

Multiplying Eq. (2.85) with nfs yields the balance of contact line forces pro-
jected onto the direction normal to the solid surface as

σwn sin Θ = FC , ∀xC ∈ Υ, (2.87)

which implies that the contact line constraining force FCnfs is non-zero for
the case of partial wetting, i.e. 0◦ < Θ < 180◦. The assumption of negligible
contact line energy and contact line tension is inherent in the above.

The above balance equations are only applicable to ideal solid surfaces absent
of chemical imperfections, surface roughness or dust particles. In the presence
of inhomogeneous solid surfaces on the other hand, a phenomenon referred to as
contact line hysteresis has to be taken into account. In particular, as a result of
surface inhomogeneities, a contact line may be pinned and resist motion unless
a threshold force acting on the contact line is overcome. The apparent contact
angle of a pinned contact line may thus differ from Young’s contact angle Θ and
fall into an interval bounded by static receding and advancing contact angles
Θr,st and Θa,st, respectively, which constitute material parameters. Once the
threshold force is overcome, dynamic receding and advancing contact angles may
further differ from respective static values. Typical effective continuum models
that account for this behavior are reminiscent of static and kinetic friction models
as encountered in mechanics of solid materials (see Kurzeja & Steeb [114, § 4]
and references therein). It is emphasized that the given approach, however, does
not account for inhomogeneous solid surfaces and assumes the validity of Young’s
Eq. (2.86), i.e. we restrict ourselves to ideal solid surfaces.
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2.4.6 Whole-domain formulation

For the numerical solution of the IBVP comprised of bulk balance equations (2.72)-
(2.73), interfacial balance equations (2.74)-(2.75), initial conditions (2.79)-(2.80)
and boundary conditions (2.81)-(2.82), we adopt the formalism of immersed
boundaries (section 2.3) as well as the continuum surface stress method (sec-
tion 2.3.5). Due to solid phase rigidity, balance equations for material points of
Ωs are given by Eqs. (2.78) and the explicit modeling of the bulk solid phase is
omitted. Immersion of interfacial balance equations using the immersed bound-
ary method gives rise to whole-domain balance equations applicable to the entire
fluid domain Ωf with primary variables being fluid density %f and fluid velocity
uf. The latter is achieved using interface Dirac delta distributions. Hence, we
introduce the phase indicator fields

Cαβ (x) =


0, if x ∈ Ωα,
1, if x ∈ Ωβ ,
0.5, if x ∈ Γαβ .

The modified surface Dirac distributions and surface unit normals are subse-
quently given as

δ̃αβ := ‖ grad C̃αβ(x)‖, and ñαβ := grad C̃αβ(x)
‖ grad C̃αβ(x)‖

. (2.88)

We further introduce a solid-fluid phase indicator field

Cfs (x) =


0, if x ∈ Ωf,

1, if x ∈ Ωs,

0.5, if x ∈ Γfs,

such that ñfs ≈ grad C̃fs(x)
‖ grad C̃fs(x)‖

.

As in section 2.3.5, the superimposed tilde symbol ˜(•) highlights smooth,
convolution-based approximations (2.71) of fields that are otherwise singular or
discontinuous at the interface.

The rate of change of total mass density contained within Ωf with interfacial
balances being immersed reads∫

Ωf

%̇f + %f divuf dv = −
∫
Ωf

∑
αβ

[[% (u− uS) · nαβ ]]δαβ dv,

which, substituting Eqs. (2.74), can be trivially localized to yield the whole-
domain balance of mass
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%̇f = −%f divuf, ∀x ∈ Ωf.

In other words, since material interfaces of negligible interface-excess mass
density are neither sources nor sinks for bulk mass density, the continuity equation
is applicable to the entire fluid domain.

The assumption (2.82) of fluid velocity continuity tangent to the fluid-fluid
interface is satisfied by considering Γwn neither a source nor a sink for moment
of momentum density, i.e. the whole-domain balance of moment of momentum
requires the symmetry Tf = (Tf)T .

The current approach to incorporating Young’s equation (2.86) is the immer-
sion of interfacial balances (2.75) of all three interfaces into a whole-domain bal-
ance of linear momentum. Since explicit modeling of the solid phase is omitted,
the constraining force FC as required by Eq. (2.87) is not accounted for. Interface
balances of linear momentum are thus modified in such a way that the action of
interfacial forces at points of the solid surface is restricted to planes tangent to
the solid surface only. As implied by Eqs. (2.85) and (2.86), the latter reproduces
Young’s equation. Components of interfacial forces normal to the solid surface
are removed using the solid surface identity tensor Ifs := I− nfs ⊗ nfs. As nfs is
only defined for points x ∈ Γfs, the latter modification only takes effect at points
of the solid surface since Ifs = I for all x ∈ Ωf \Γfs. As shown further below, the
latter modification, which constitutes the main difference of our model to what
was proposed earlier in Hu & Adams [99], reduces spurious currents associated
with the otherwise unbalanced contact line stress σwn sin Θ normal to the solid
surface.

The rate of change of total linear momentum density contained within Ωf

with interfacial balances being immersed hence reads∫
Ωf

%fu̇f − divTf dv =
∫
Ωf

∑
αβ

[
divαβΠαβ

]
δαβ · Ifs dv, (2.89)

where Eqs. (2.75) have been substituted and the above discussed modification
incorporated. In equivalence to Eq. (2.66), the surface divergence [divαβΠαβ ]δαβ =
div(Παβδαβ). Localization of Eq. (2.89) thus yields the whole-domain balance of
linear momentum

%fu̇f = divTf +
∑
αβ

div
(
Παβδαβ

)
· Ifs, ∀x ∈ Ωf. (2.90)

Use of the whole-domain formulation (2.90) is considered computationally
more attractive as compared to formulating a moving boundary problem. We
emphasize that away from the solid surface, Eq. (2.90) reduces to the previously
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introduced whole-domain balance (2.64), i.e.

%fu̇f = divTf
E − grad pf + div (Πwnδwn) ∀x ∈ Ωf \ Γfs, (2.91)

or, considering σwn a constant,

%fu̇f = divTf
E − grad pf + σwnκwnnwnδwn ∀x ∈ Ωf \ Γfs. (2.92)

While Eq. (2.91) constitutes a conservation form, Eq. (2.92) constitutes a
non-conservation form. In the presence of discontinuities, conservation forms are
typically preferred with the purpose to minimize numerical errors that may give
rise to spurious currents.

We discuss the consequences of removing interfacial forces normal to the solid
surface by means of studying equilibrium SPH solutions of a wetting fluid droplet
on a planar solid substrate (Fig. 2.11). The interfacial tensions are chosen such
that the equilibrium contact angle Θ = 60◦. We denote the reduced interfacial
force density, i.e. the second term on the RHS of Eq. (2.90),

f̃ =
∑
αβ

div
(
Παβδαβ

)
· Ifs, (2.93)

whereas the total interfacial force density is denoted

f =
∑
αβ

div
(
Παβδαβ

)
. (2.94)

Both interfacial force densities yield comparable phase distributions and re-
produce the prescribed contact angle in equilibrium. However, while the reduced
interfacial force density f̃ only yields interfacial forces normal to the meniscus
Γnw, which are balanced by the pressure jump at the interface, the total interfa-
cial force density f induces an unbalanced interfacial force of magnitude σwn sin Θ
in the vicinity of the contact line acting normal to the solid-fluid interfaces. We
emphasize that the latter is an artifact due to inappropriate immersion of the
volumetric force density in light of the solid rigidity assumption. The evolution
of the total kinetic energy Ekin over time iterations (Fig. 2.11, right) shows that
the equilibrium states differ by one order of magnitude. We conclude that unbal-
anced interfacial forces lead to spurious velocities which are drastically reduced
by means of using f̃ .

Rather than incorporating interfacial balance equations of all three inter-
faces, alternative approaches to account for Young’s equation exist. In the con-
text of SPH, Breinlinger et al. [31] considered the non-conservation form (2.92)
and prescribed the contact angle on Υ by means of the boundary condition



48 CHAPTER 2. CONTINUUM FLUID MECHANICS

Figure 2.11: Close-up of equilibrium SPH solutions of a wetting fluid droplet on
a planar solid substrate. Open circle, filled circle and filled diamond markers
represent the SPH particle positions of the non-wetting phase, wetting phase
and solid phase, respectively. Lengths and directions of the arrows represent the
magnitude and direction of the interfacial force density field, respectively. (left)
Solution using the total interfacial force density f following Eq. (2.94). (middle)
Solution using the reduced interfacial force density f̃ following Eq. (2.93). (right)
Evolution of total kinetic energy over the number of time steps.

nwn · nfs = − cos Θ for the normal vector field nwn; an approach which is also
commonly used in the context of mesh and grid-based methods. However, as to
be indicated in section 3.2, kernel shape functions in SPH do not satisfy the Kro-
necker delta property by virtue of which the application of boundary conditions
is regarded cumbersome. On the other hand, Huber et al. [100], Kunz et al. [113]
and Hirschler et al. [95] used the non-conservation form (2.92) together with a
contact line force

fC := [σns − σws − σwn cos Θapp] bnsδwns, ∀xC ∈ Υ,

that acts in direction bns tangent to the solid surface. They localize the con-
tact line force to points of the contact line Υ by virtue of the contact line Dirac
delta distribution δwns. Recalling Young’s equation (2.86), the latter contact line
force takes effect if the cosine of the apparent contact angle cos Θapp := bwn ·bws

differs from cos Θ. While the contact line force approach is regarded computation-
ally efficient, whether use of the non-conservation form compromises long-term
stability remains to be shown. Moreover, the non-conservation form requires
computation of curvature κwn and hence computation of higher order spatial
derivatives potentially prone to numerical noise [30, 141]. Rather than incor-
porating governing interfacial mass and momentum balances, further notable
approaches to modeling the effects of capillarity in SPH include the use of atom-
istically motivated interaction forces between SPH particles [151, 195–197].



CHAPTER 3

Smoothed particle
hydrodynamics

We implement a Smoothed Particle Hydrodynamics (SPH) model to perform di-
rect numerical simulations of pore-scale resolved, incompressible flow of single
or multiple fluid phases through porous media. The governing linear momentum
balance equations are the Navier-Stokes equations with interfacial balance equa-
tions taken into account when modeling immiscible multiphase flows. It is our
interest to assess effective transport properties of porous materials and to evaluate
the potential application of SPH methods in digital rock physics. In the following
chapter, the numerical principles of SPH and algorithmic computation approaches
are covered to the extend to which it is considered necessary for the derivation
and solution of the nodal motion equations. For a more extensive study on the
subject, the reader is referred to the pioneering works Lucy [128] and Gingold &
Monaghan [77], the reviews [126, 136], the textbook [203] and further surveys on
fundamental numerical properties of SPH [15, 24, 139, 194].

3.1 Numerical principles
The spatial convolution product of an arbitrary scalar tensor field Φ with the
Dirac delta distribution δ reads

Φ (x) =
∫

Ω
Φ (x′) δ (x− x′) dv, (3.1)
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where Φ is continuously defined in the computation domain Ω and x denotes
the position vector of a focal point. We refer to Eq. (3.1) as integral representation
of Φ with the Dirac delta distribution representing the identity with respect to
convolution. During the course of this section, the temporal variability of the
field Φ = Φ (x, t) will be omitted for brevity of notation.

The basis of SPH is the convolution product

Φh (x) =
∫

Ω
Φ (x′)W (x− x′, h) dv, (3.2)

where the Dirac delta distribution in Eq. (3.1) has been replaced with a contin-
uously differentiable kernel functionW . In the context of numerical computations
the kernel function W is required to have compact support with h representing a
characteristic finite width of the compact support. Following common practice,
we refer to W as smoothing kernel and h is referred to as smoothing length. The
integral representation Φh is considered to be a reproducing kernel approximation
of Φ if W satisfies the Dirac delta condition

lim
h→0

W (x, h) = δ (x) , (3.3)

by virtue of which

lim
h→0

Φh = Φ.

In order to quantify the order of completeness of the reproducing kernel ap-
proximation, that is the ability of Φh to exactly reproduce a given polynomial Φ
of degree m for finite width h, we introduce the Taylor expansion of Φ (x′) about
point x given as

Φ (x′) = Φ (x) + ∂Φ
∂x · (x

′ − x) + 1
2 (x′ − x)T ∂

2Φ
∂x2 (x′ − x) +O

(
h3) , (3.4)

noting that O
(
h3) = O

(
‖x′ − x‖3

)
, where ‖ • ‖ denotes the Euclidean norm

and Φ (x′) is assumed smooth over the finite interval (x′,x). Substituting the
expression in Eq. (3.4) into Eq. (3.2) leads to



3.1. NUMERICAL PRINCIPLES 51

Φh (x′) = Φ (x)
∫

Ω
W (x− x′, h) dv + ∂Φ

∂x ·
∫

Ω
(x′ − x)W (x− x′, h) dv

+ 1
2
∂2Φ
∂x2 :

∫
Ω

(x′ − x) (x′ − x)T W (x− x′, h) dv +O
(
h3) . (3.5)

It is evident from Eq. (3.5) that for Φh to be complete to zeroth order, W
has to satisfy the zeroth order completeness condition, hereafter referred to as
normalization condition, ∫

Ω
W (x, h) dv = 1. (3.6)

The second term on the RHS of Eq. (3.5) implies that first order complete-
ness requires the first-order moment condition, hereafter referred to as symmetry
condition, ∫

Ω
xW (x, h) dv = 0 (3.7)

to be satisfied. Both, Eqs. (3.6) and (3.7) are satisfied by employing radially
symmetric kernel functions that have the general form

W (x, h) radial symmetry= W (r, h) normalization= αn
hn
W̃ (r, h) , (3.8)

where the scalar normalization constant αn is chosen such that W satisfies
the normalization condition (3.6) and r := ‖x‖. Due to kernel radial symmetry,
i.e. W is an even function, all terms in Eq. (3.5) of odd powers of the argument
(x′ − x) vanish. Thus, radially symmetric kernel functions intrinsically satisfy the
symmetry condition (3.7). Moreover, radial symmetry of a kernel with compact
support implies

W (r, h) = 0, ∀ r > kh,

introducing the compactness factor k. The compactness factor k is a constant
positive real number that depends on the particular form of the kernel function.
We conclude that the approximation (3.2) is subject to an interpolation error

εI(Φh) = ‖Φ− Φh‖ = O
(
h2) ,
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if W has compact support and exhibits radial symmetry as well as normal-
ization.

Higher order completeness conditions are typically not taken into account
arguing that the algorithmically achievable order of completeness is upper limited
by the accuracy of the discrete nodal integration [166]. Furthermore, the second-
order moment condition ∫

Ω
xTxW (x, h) dv = 0

requires the kernel to be negative in a subset of its compact support which
potentially leads to unphysical interpolations [see 136, § 2.4]. The symmetry con-
dition (3.7) is also satisfied when using anisotropic kernel functions that merely
exhibit the symmetry W (x, h) = W (−x, h), rather than the more restrictive
isotropic radial symmetry (3.8). However, the latter is not considered in this
text although anisotropic kernel functions may be useful to account for local
adaptivity [183].

It is our interest to approximate spatial differential operators that are inherent
in balance equations on the basis of the reproducing kernel approximation. We
evaluate the approximation of the gradient of a scalar field Φ by means of applying
Eq. (3.2) to grad Φ, which leads to

gradh Φ (x) =
∫

Ω

∂Φ (x′)
∂x′ W (x− x′, h) dv. (3.9)

We reformulate using integration by parts, such that

gradh Φ (x) =
∫

Ω

∂

∂x′
[
Φ (x′)W (x− x′, h)

]
dv

−
∫

Ω
Φ (x′) ∂W (x− x′, h)

∂x′ dv. (3.10)

Application of Gauss theorem to the first term on the RHS of Eq. (3.10) gives

gradh Φ (x) =
∫

Γ

[
Φ (x′)W (x− x′, h)

]
n (x′) da

−
∫

Ω
Φ (x′) ∂W (x− x′, h)

∂x′ dv, (3.11)

where n denotes the unit normal vector to the boundary of the computation
domain Γ = ∂Ω. Since the kernel W has a compact support, the boundary
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integral in Eq. (3.11) evaluates to zero if the focal point x lies at some distance
‖xB − x‖ > kh, ∀xB ∈ Γ from the boundary Γ. If the bulk volume of Ω is
sufficiently large, the latter condition applies to the majority of focal points.
Neglecting the boundary integral and taking into account kernel radial symmetry,
which implies the antisymmetry

∂W (x− x′, h)
∂x′ = −∂W (x− x′, h)

∂x , (3.12)

yields the approximative expression for the gradient of a scalar field

gradh Φ (x) =
∫

Ω
Φ (x′) ∂W (x− x′, h)

∂x dv

=
∫

Ω
Φ (x′) gradW (x− x′, h) dv, (3.13)

where the spatial gradient operator is now observed to act on the continu-
ously differentiable kernel function. The approach outlined in Eqs. (3.9)-(3.13)
is fundamental to the approximation of spatial differential operators using SPH.

The approach to quantify the order of completeness of the approximation
gradh Φ is equivalent to Eq. (3.5) in that the Taylor series expansion (3.4) is
substituted into Eq. (3.13) to give

gradh Φ (x) = Φ (x)
∫

Ω
gradW (x− x′, h) dv

+ ∂Φ
∂x

∫
Ω

gradW (x− x′, h)⊗ (x′ − x) dv

+ 1
2
∂2Φ
∂x2 :

∫
Ω

gradW (x− x′, h)⊗ (x′ − x) (x′ − x)T dv

+O
(
h3) · O (gradWdv) . (3.14)

All terms in Eq. (3.14) containing integrands of even powers of the argument
(x′ − x), i.e. the first and third term on the RHS, evaluate to zero since gradW
is an odd function according to Eq. (3.12). The integral in the second term of
the RHS is reformulated using integration by parts to give
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∫
Ω

∂W (x− x′, h)
∂x ⊗ (x′ − x) dv =

∫
Ω

∂

∂x

[
W (x− x′, h) (x′ − x)

]
dv

−
∫

Ω
W (x− x′, h) ∂ (x′ − x)

∂x dv. (3.15)

The first integral on the RHS of Eq. (3.15) can be neglected since W has
compact support (see Eqs. (3.10) and (3.11)). Moreover, the second integral on
the RHS of Eq. (3.15) is equal to the n-dimensional identity tensor I since W
satisfies the normalization condition (3.6) and −∂x/∂x = −I. As a result

gradh Φ (x) = ∂Φ
∂x · I +O

(
h3) · O (gradWdv) .

Since O (gradWdv) = O (1/h), the resulting interpolation error is written

εI(gradh Φ) = ‖ grad Φ− gradh Φ‖ = O
(
h2) ,

indicating that for compactly supported, normalized and symmetric kernels
first-order completeness applies to both, Φh and gradh Φ.

The reproducing approximation of spatial differential operators acting on ten-
sor fields of arbitrary order can be derived in equivalence to Eqs. (3.9) to (3.13).
Within the course of this text, we will make particular use of the reproducing
approximation of the divergence of a first-order tensor field Φ, which reads

divh Φ (x) =
∫

Ω
Φ (x′) · gradW (x− x′, h) dv. (3.16)

Although in principle the approximation ansatz (3.2) can be readily extended
to approximate second-order spatial operators, such as the Laplacian div[grad (•)],
numerical quadrature of convolution integrals involving the second-order derivate
of W exhibits an undesirable amount of sensitivity with respect to the arrange-
ment of nodal integration points [33, 136]. An alternative approach to approxi-
mate higher-order derivatives is discussed in section 3.5.3.

It is furthermore possible to account for spatial and temporal variability of
the smoothing length, i.e. h = h(x, t), which implies that the partial derivative
∂h/∂x′ needs to be taken into account in Eqs. (3.9) to (3.13). However, as it
will be apparent later, we apply the SPH method to model incompressible flow
resulting in near-equispaced configurations of nodal integration points for which
spatial adaptivity of the smoothing length is omitted. In the course of this text,
we thus consider h to be constant in space and time.
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Figure 3.1: Schematic of the nodal
integration scheme covering the
compact support domain Ωx of fo-
cal point x.

3.2 Nodal integration

Reproducing kernel approximations (3.2), (3.13) and (3.16) are numerically inte-
grated using a quadrature rule over N integration points. The quadrature rule
that comes to use in the overwhelming majority of SPH methods is a nodal in-
tegration equivalent to a middle Riemann sum which, in the case of Eq. (3.2),
reads

Φh,dx (x) =
N∑

j:xj∈Ω
Φ (xj)W (x− xj , h)Vj . (3.17)

The subscript (•)h,dx is introduced to indicate that the smoothing length h
as well as the characteristic discretization length scale dx are involved in the
approximation Φh,dx. Equation (3.17) further introduces the volume Vj of a
point centered at position xj ; the volume Vj being interpreted as the discrete
equivalent of the volume element dv. For two-dimensional simulations, i.e. for
n = 2, Vj shall denote a volume per unit of length. Using the density %j = % (xj),
a focal point at xj is carrying matter of lumped mass mj such that Vj = mj/%j .
Given that W has a compact support, the summation operator in Eq. (3.17)
can be algorithmically restricted to the nearest neighbors Nn(x) of focal point x
which satisfy ‖x−xj‖ < kh. We thus introduce the compact support domain Ωx
of the kernel function centered at x (Fig. 3.1) and write

Φh,dx (x) =
Nn(x)∑
j:xj∈Ωx

Φ (xj)W (x− xj , h)Vj . (3.18)

Nodal integration of the approximated spatial differential operators (3.13) and
(3.16) implies
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gradh,dx Φ (x) =
Nn(x)∑
j:xj∈Ωx

Φ (xj) gradW (x− xj , h)Vj , (3.19)

and

divh,dx Φ (x) =
Nn(x)∑
j:xj∈Ωx

Φ (xj) · gradW (x− xj , h)Vj . (3.20)

For simplicity, the set of focal points where we evaluate the above approxi-
mations coincides with the set of points where the field functions are sampled.
Hereafter, the subscript i = 1, . . . , N is used to denote the focal points whereas
the index of summation j = 1, . . . , Nn(xi) applies to the sampling points. We
introduce the shorthand notations

Wij = W (xi − xj , h) and rij = ‖xi − xj‖.

Due to radial symmetry, the spatial gradient of the kernel may be evaluated
as

gradW (xi − xj , h) = ∂Wij

∂rij

xi − xj
rij

, where ∂Wij

∂rij
:= ∂W (r, h)

∂r

∣∣∣∣
r=rij

.

Let us further define

Φi := Φh,dx
∣∣∣∣
x=xi

, gradi Φ := gradh,dx Φ
∣∣∣∣
x=xi

and divi Φ := divh,dx Φ
∣∣∣∣
x=xi

.

The shorthand notations of Eqs. (3.18), (3.19) and (3.20), which are broadly
used in literature, are subsequently introduced to read

Φi =
∑

j:xj∈Ωi

ΦjWijVj , (3.21)

gradi Φ =
∑

j:xj∈Ωi

Φj
∂Wij

∂rij

xi − xj
rij

, (3.22)

divi Φ =
∑

j:xj∈Ωi

Φj ·
∂Wij

∂rij

xi − xj
rij

. (3.23)

The compact support domain of the kernel function centered at point xi is
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denoted Ωi. Closing this section on nodal integration, we discuss two distinct
interpretations of the presented discretization scheme:

SPH: A mesoscopic particle method

In a physical interpretation, the sampling points xj can be considered
mesoscopic entities of a continuum, or, hereafter particles. A particle
j with discrete volume Vj is carrying matter of lumped mass mj and
density %j = % (xj), which implies that xj represents the position of
its center of mass. There is a length scale O(V 1/n

j ) associated with
the size of particle j. In the context of solving continuum balance
equations subject to boundary conditions, the resulting nodal SPH
balance equations take the form of a focal particle i exchanging mass,
momentum and energy with neighboring particles that are elements of
the influence domain Ωi. It is for that reason the unstructured set of
SPH collocation points is reminiscent of a system of colloidal particles
interacting with each other.

SPH: A point collocation method

Introducing the shape functions WV (xi) = W (xi − xj , h)Vj we may
write Eq. (3.17) as Φh,dx (xi) =

∑
j ΦjWV (xi), which has the form of

a classical finite element ansatz. We may consider SPH a point collo-
cation method considering that WV (xi) span a functional sub-space
of finite dimensions N ∗

∑
iNn(i) (Total number of interactions), in

which we seek a solution to an initial boundary value problem requir-
ing that the balance equations may be satisfied at the focal points only.
However, in contrast to finite element shape functions,WV (xi) are not
piecewise polynomials that interpolate between nodal points. Further-
more, they are not required to satisfy the Kronecker delta property
WV (xi) 6= δij , where δij = {1 if i = j and 0 if i 6= j}. Since the
latter implies Φh,dx (xi) 6= ΦiWV (xi), the application of boundary
conditions is non-trivial in SPH methods [25].

3.3 Kernel functions
One may construct an infinite number of kernel functions that satisfy the Dirac
delta condition (3.3), normalization (3.6) and symmetry (3.7) [see 126, § 3.2]. In
addition, all kernel functions that come to use hereafter exhibit radial symme-
try (3.8) as well. Introducing the non-dimensional distance q := r/h, the kernel
function and its gradient are written
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Figure 3.2: One-dimensional kernel functions W (q) with smoothing lengths set
to unity h = 1 (left, Solid lines), their derivatives ∂/∂rW (q) (left, Dashed lines)
and respective one-dimensional Fourier transforms F1 [W (r, h)] (s) (right).

W (x− x′, h) = αn
hn
W̃ (q) and

gradW (x− x′, h) = αn
hn+1

∂W̃ (q)
∂q

x− x′

r
,

respectively. Hence, a kernel function can be uniquely defined by the dimension-
dependent scalar normalization constant αn and the dimensionless scalar function
W̃ (q). With qij := rij/h, we write

Wij = αn
hn
W̃ (qij) and ∂Wij

∂rij
= αn
hn+1

∂W̃ (q)
∂q

∣∣∣∣
q=qij

in light of the notation that has been introduced in Eqs. (3.21)-(3.23).
The Gaussian kernel

W̃g (q) = exp
(
−q2) ,
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with αg,n = π−n/2, was among the first kernels to be used in SPH methods,
including the pioneering work Gingold & Monaghan [77]. Despite its attractive
property of being infinitely differentiable, computational costs associated with
using the Gaussian are excessively large given that it is not compactly supported.
In the context of nodal integration, the latter implies that the computational
costs associated with the Gaussian kernel scale with O(N2). On the other hand,
for compactly supported kernel functions, computational costs can be drastically
reduced to O(N · N̄n), where N̄n is the average number of sampling particles
neighboring the set of focal particles. Both kernel functions that are introduced in
the following are piecewise polynomial, compactly supported and radial functions.

Among the most commonly used alternatives to the Gaussian kernel are the
Schoenberg [181] B-splines, in particular the fifth-order quintic B-spline, hereafter
referred to as quintic kernel,

W̃q (q) = (3− q)5
+ − 6 (2− q)5

+ + 15 (1− q)5
+ ,

where the operator (•)+ = max {0, •} is used for abbreviation and the normal-
ization constants αq,1 = 1/120, αq,2 = 7/(478π) and αq,3 = 1/(120π) in one, two
and three-dimensional space, respectively. Since Wq = 0, ∀q > 3, the compact-
ness factor kq = 3. Following common practice and the validation computations
presented in section 4 we choose the smoothing length of the quintic kernel to
be hq = 1.45 dx0, where dx0 denotes the initial particle spacing. The Gaussian
kernel and the quintic kernel exhibit profound similarities to each other in real
space (Fig. 3.2, left), and the same holds true for derivatives ∂/∂rW (q).

We furthermore use the Wendland [207] C4 kernel

W̃w (q) =
(

1− 1
2q
)6

+

(
3 + 9q + 35

4 q
2
)
,

which has a compactness factor kw = 2 and normalization constants αw,1 =
9/32, αw,2 = 3/(4π) and αw,3 = 165/(256π) in one, two and three-dimensional
space, respectively. The smoothing length of the Wendland kernel is chosen to
be hw = 1.7 dx0. Since kw < kq, the number of neighbors Nn for a given
integration point number density and smoothing length h is smaller in the case
of Ww as compared to Wq, leading to further reduction in computation costs.
The magnitude of Ww is comparatively high at q = 0, which implies that more
weight is put to the close vicinity of the focal point as compared to Wq and Wg.

While the above kernel functions exhibit qualitative similarities in real space,
i.e. a smooth bell-shaped character, pronounced differences are observed in
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Figure 3.3: Typical
equilibrium particle dis-
tributions as observed
for the quintic kernel
(left), which exhibits
the pairing instability,
and Wendland-C4 ker-
nel (right).

Fourier space. We resort ourselves to the one-dimensional Fourier transform
of W (r, h), which, since the kernel is an even function, is equal to the real-valued
cosine transform

F [W (r, h)] (s) = 2
∫ ∞

0
W (r, h) cos(sr) dr. (3.24)

Introducing the dimensionless frequency s̄ = sh, F [W (r, h)] (s) can be rewrit-
ten as the Fourier transform of the dimensionless kernel W̃ (q) to yield

F [W (r, h)] (s) = 2α1

∫ ∞
0

W̃ (q) cos(s̄q) dq,

where α1 denotes the normalization constant in one-dimensional space. The
one-dimensional Fourier transforms of the above kernel functions read

F [Wg(r, h)] (s) = exp
(
− s̄

2

4

)
, (3.25)

F [Wq(r, h)] (s) = 1
120

[
2
s̄

sin
(
s̄

2

)]6

and

F [Ww(r, h)] (s) = 945
32s̄9

[
16s̄

(
9− 2s̄2)+ 3

(
4s̄2 − 35

)
sin (2s̄)

+ 66s̄ cos (2s̄)
]
. (3.26)

We observe that the Fourier transforms of the Gaussian and Wendland-C4
kernels are positive for all frequencies (Fig. 3.2, right). In contrast to F [Ww],
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which exhibits comparatively large power at high frequencies due to its high
weight in the vicinity of the focal point, F [Wg] and F [Wq] quickly loose power
with increasing frequency. Despite their similarities in real space, the Fourier
transform of the quintic kernel, in contrast to the Fourier transform of the Gaus-
sian, has roots at integer multiples of 2π. The latter reveals to be important since,
according to Dehnen & Aly [51], non-negativity of the multidimensional kernel
Fourier transform is a necessary requirement to avoid the pairing instability. In
the context of using SPH to solve fluid dynamical equations, pairing instabilities
lead to particles experiencing a spurious force driving the formation of particle
pairs (Fig. 3.3, left). Particles form pairs in an attempt to decrease total internal
energy. In summary, despite its often asserted interpolation accuracy [98], the
quintic kernel, in contrast to the Wendland-C4 and Gaussian kernels, is prone to
the pairing instability. In the context of multiphase simulations, where we study
localized effects at interfaces, non-uniform particle distributions that result from
the pairing instability are undesirable.

3.4 Numerical errors

As shown in section 3.1, interpolation errors inherent in the reproducing kernel
approximations Φh and gradh Φ are of second-order in the smoothing length h.
Considering nodal integration, the average distance O(dx) between neighboring
particles introduces an additional numerical length scale. Errors that arise due
to nodal integration of the reproducing kernel approximations are referred to
as discretization errors and expected to be dependent on dx. In the following
section, we analytically study discretization errors on regular grids following the
approach of Monaghan [136] and empirically study the effect of particle disorder
on numerical errors. Apart from discretization errors, boundary inconsistencies
that arise if the computation domain Ω is bounded motivate the use of corrective
discretization schemes.

3.4.1 Discretization errors
Quantifying the discretization errors εD(Φ) = ‖Φh − Φh,dx‖ and εD(gradh Φ) =
‖ gradh− gradh,dx ‖ is non-trivial since they are expected to depend on the dis-
tribution of particles in Ω, for which assumptions have to be made since mesh-
or grid-related constraints, such as in finite element or finite difference methods,
are absent. A natural approach to quantify εD is to assume particles to be dis-
tributed on a structured grid for which accurate closed-form error expressions
can be derived [136, 166, 203]. On the other hand, statistical error estimates
equivalent to Monte Carlo error estimates are suitable for a random distribution.
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In the context of modeling fluid transport, particles are typically advected ac-
cording to the local advection velocity, i.e. in the sense of an updated Lagrangian
method. As a result, the distribution of particles depends on the governing bal-
ance equations. As indicated earlier, when considering near-incompressible flow,
particles are typically distributed in a close-packing, glass-like arrangement that
exhibits a global regularity (Fig. 3.3, right). We therefor consider discretization
error estimates based on regular grids more representative of the applications
that are considered in the following. While an extensive study of discretization
errors is beyond the scope of this text, we shall however concisely discuss the
main findings of Monaghan [136] and Quinlan et al. [166] in this section.

In his illustrative approach to quantify discretization errors, Monaghan [136]
considered the discrete representation (3.21) of a linear scalar function Φ1(X) =
a+ bX in one dimensional space with spatial coordinate X using an equidistant
distribution of sampling points. Since Φ1 is a linear function, the second-order
interpolation error εI(Φ1

h) vanishes. We denote the regular grid spacing ∆X and
evaluate Eq. (3.21) at an arbitrary point Xi = i∆X which reads

Φ1
h,dx (Xi) =

∞∑
j=−∞

[a+ bXj ]W (Xi −Xj , h) ∆X, (3.27)

where i and j are elements of the set of integers Z such that Xi = i∆X and
Xj = j∆X. If we shift the origin of the coordinate system to the focal point Xi

by applying the translation operator TXif(X) = f(Xi − X), Eq. (3.27) can be
rewritten to

TXi
(
Φ1
h,dx

)
(0) =

∞∑
j=−∞

[a+ bXi − bXj ]W (Xj , h) ∆X

= [a+ bi∆X]
∞∑

j=−∞
W (Xj , h) ∆X − b

∞∑
j=−∞

j∆XW (Xj , h) ∆X.

(3.28)

By shifting the origin, we can exploit radial symmetry of the kernel function,
i.e. W (Xj , h) = W (−Xj , h), which implies that the second term on the RHS of
Eq. (3.28) vanishes. As a result

TXi
(
Φ1
h,dx

)
(0) = [a+ bi∆X]

∞∑
j=−∞

W (Xj , h) ∆X.

We observe that Φ1 (Xi) = a + bi∆X is only equal to the discrete approxi-
mation Φ1

h,dx (Xi) if the discrete equivalent of the normalization condition (3.6),
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which reads

∞∑
j=−∞

W (Xj , h) ∆X != 1, (3.29)

is satisfied.
The summation (3.29) in real space can be converted to a summation in

Fourier space using the Poisson summation formula [192]∑
j∈Z

W (j∆X,h) ∆X =
∑
l∈Z
F
[
W
]

(lŝ) , (3.30)

where the wavenumber ŝ = 2π/∆X. Using the one-dimensional Fourier trans-
form (3.24) of even functions, Eq. (3.30) can be rewritten to

∑
j∈Z

W (j∆X,h) ∆X =
∫ ∞
−∞

W (X,h)dX + 2
∞∑
l=1

∫ ∞
0

W (X,h) cos(lŝX) dX,

where the first term on the RHS is equal to unity due to normalization (3.6).
Since the proposed compactly supported and bell-shaped kernel functions quickly
lose power with increasing frequency (Fig. 3.2, right), the summation in Fourier
space is expected to converge quickly. We thus truncate the Poisson summation
for l > 2, such that

∞∑
j=−∞

W (j∆X,h) ∆X ≈ 1 + 2
∫ ∞

0
W (X,h) cos(ŝX) dX.

In other words, the discretization error is inherently related to the kernel
Fourier transform.

Substituting the normalized frequency s̄ = 2πh/∆X into the Fourier trans-
forms (3.25)-(3.26) finally gives

Φ1
h,dx,g (Xi) ≈ Φ1(Xi) ·

[
1 + exp

(
− π2h2

(∆X)2

)]
for the Gaussian and

Φ1
h,dx,q (Xi) ≈ Φ1(Xi) ·

[
1 + 1

120

(
∆X
πh

sin
(
πh

∆

))]
(3.31)

for the quintic kernel. The error expression for the Wendland-C4 kernel is
omitted for brevity but can be easily constructed using Eq. (3.26). The imme-
diately apparent result from the above is that, while the continuous approxima-



64 CHAPTER 3. SMOOTHED PARTICLE HYDRODYNAMICS

tion (3.2) satisfies first-order completeness, the discrete equivalent (3.17) does
generally not satisfy zeroth-order completeness. The latter can be directly re-
lated to the fact that the discrete normalization condition (3.29) is generally
not satisfied. Applying the Gaussian kernel on one-dimensional regular grids,
discretization errors are observed to be non-zero for all ratios h/∆X, however,
negligibly small for h > ∆X. Using the quintic kernel, on the other hand, dis-
cretization errors evaluate to zero if h is an integer multiple of ∆X and small for
h > ∆X.

Within the course of this text, the following statements have only been shown
to hold true for regular grids in one-dimensional space, however, they apply to
regular grids in multidimensional space as well, as shown in Quinlan et al. [166]
and Violeau [203]. While interpolation errors εI = O(h2) increase with increas-
ing smoothing length, discretization errors decrease with increasing smoothing
length. However, at fixed smoothing length, decreasing the grid spacing ∆X
will invoke a convergence behavior. Following Quinlan et al. [166] and Violeau
[203], discretization errors satisfy the general form εD = O(∆X/h)ζ , where the
real-valued scalar ζ is expected to depend on the kernel function and the nodal
integration stencil. The latter implies that h > ∆X is a condition that should
preferably be met for all simulation parameterizations.

We proceed to discuss discretization errors that arise due to nodal integration
of the gradient approximation. Applying the discrete approximation (3.22) to
the derivative ∂Φ1/∂X in analogy to the approach outlined in Eqs. (3.27)-(3.28),
i.e. shifting the origin and taking into account the antisymmetry (3.12), results
in

TXi
(

∂

∂X
Φ1
h,dx(X)

)
(0) = −b

∞∑
j=−∞

Xj
∂

∂X
W (Xj , h) ∆X.

Using the Poisson summation formula, one may show that the Fourier trans-
form of the derivative of the kernel is related to discretization errors in Eq. (3.22).
Moreover, we observe that discretization errors arise if the discrete first-order mo-
ment of the derivative of the kernel is not equal to −1, i.e.

∞∑
j=−∞

Xj
∂

∂X
W (Xj , h) ∆X != −1. (3.32)

Upon taking the derivative of the symmetry condition (3.7) and reformulating
it using integration by parts, i.e.
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∂

∂x

∫ ∞
−∞

xW (x, h) dv =
∫ ∞
−∞

x∂W (x, h)
∂x dv +

∫ ∞
−∞

I : W (x, h) dv

=
∫ ∞
−∞

x∂W (x, h)
∂x dv + 1 != 0,

the condition (3.32) is found a discrete analogue of the symmetry condition.
We conclude that total numerical errors εD,I in SPH methods that employ

normalized and symmetric kernel functions can be decomposed into interpolation
errors and discretization errors having the form [110]

εD,I (Φh,dx) := ‖Φ− Φh,dx‖ ≤ ‖Φ− Φh‖+ ‖Φh − Φh,dx‖

= O
(
h2)+O

(
dx

h

)ζ
,

where dx denotes the grid spacing between equidistant particles. Discretiza-
tion errors arise due to the numerical violation of the discrete equivalents of the
normalization and symmetry condition

∑
j:xj∈Ωi

W (xj , h) Vj = 1, and (3.33)

∑
j:xj∈Ωi

xjW (xj , h) Vj = 0, (3.34)

respectively.
Since the preceding analysis of numerical errors was restricted to equidistant

particles in one-dimensional space only, an empirical study of the L2 error norms

[
εL2
D,I (Φh,dx)

]2 := 1
N

N∑
i:xi∈Ω

‖Φi − Φ (xi) ‖2 and

[
εL2
D,I

(
gradh,dx Φ

)]2 := 1
N

N∑
i:xi∈Ω

∥∥∥(gradi Φ− grad Φ
∣∣
x=xi

)∥∥∥2
(3.35)

was performed in two-dimensional space using the harmonic function Φ =
sin(2πX1λ

−1
h ) cos(2πX2λ

−1
h ) with λh = 1 as input (Fig. 3.4). In an attempt to

quantify total numerical errors that arise due to non-uniform particle distribu-
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Figure 3.4: Empirical study of L2 error convergence of the discrete reproducing
approximations Φh,dx and gradh,dx Φ in two dimensional space as a function of
non-dimensional smoothing length h/λh, numerical length scale ratio dx/h, grid
point perturbation factor Idx and kernel functions Ww and Wq.
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tions, an initially uniform grid with spacing dx was perturbed by adding a random
scalar drawn from a uniform distribution on the open interval (−Idxdx, Idxdx) to
each of the coordinates X1,i and X2,i for all focal points xi ∈ Ω. The scalar Idx
is referred to as grid point perturbation factor. In an attempt to avoid boundary
inconsistencies (section 3.4.2), periodic boundary conditions were applied with
respect to the direction of e1 and e2. Particle volumes Vi = dx2 in all cases.

For the unperturbed grid (Fig. 3.4, left column), results are in qualitative
agreement with the preceding analysis in that interpolation errors (O

(
h2)) are

dominant at large h, whereas a lower limit interrupting h-convergence is observed
due to the discretization error (O (dx/h)ζ). Since convergence was studied for
constant ratios dx/h, the latter yields lower asymptotes independent of h. For
special values of h/λh, local minima that correspond to roots of the corresponding
error expression, in analogy to the properties of Eq. (3.31), are observed. As
expected, errors are considerably larger for the cases dx > h as compared to
h > dx.

Increasing the perturbation factor results in larger numerical errors as com-
pared to the unperturbed reference results. While numerical errors with respect
to Φh,dx qualitatively behave equivalent to those of the unperturbed grid, i.e.
lower asymptotes at small h and O

(
h2)-scaling at large h, below a threshold

value for h, numerical errors for perturbed grids with respect to gradh,dx Φ are
observed to linearly increase for decreasing values of h. In other words, SPH
lacks error convergence for increasing resolution if the distribution of collocation
points is non-uniform. The latter O (1/h)-scaling for non-uniform grids at low
h was theoretically confirmed in Quinlan et al. [166]. Clearly, the latter consti-
tutes a critical constraint that must be tackled using corrective approaches as
discussed in section 3.4.3. Numerical errors produced by both kernel functions
exhibit equivalent qualitative characteristics, however, discretization errors for
small values of h are consistently larger using the Wendland C4 kernel as com-
pared to the quintic kernel which results from the smaller support radius of Ww,
i.e. kw < kq.

3.4.2 Boundary inconsistency
In the preceding sections 3.1-3.4.1, we have consistently neglected effects related
to spatial boundedness of general computation domains. For instance, let us
recall that we have neglected the boundary integral in Eq. (3.11) arguing that
the compact support domain Ωx of a kernel that is centered at point x is typically
contained in the computational domain, i.e. Ωx ⊂ Ω (Fig. 3.5). Furthermore,
quantifying discretization errors in section 3.4.1, all summation operators in real
and Fourier space have been applied to unbounded domains. As a consequence,
the validity of the interpolation and discretization error estimates (3.34) is only
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Figure 3.5: Schematic of truncation of
the compact kernel support domain Ωx
by the computation domain boundary
Γ leading to boundary inconsistency er-
rors.

Figure 3.6: Schematic of the ghost parti-
cle approach whereby the set of sampling
points is extended by spatially fixed
ghost particles (closed markers) that are
elements of the ghost domain ΩG.

granted for bulk particles that are located at a distance kh from the boundary Γ.
On the other hand, continuous completeness conditions (3.6)-(3.7) as well as their
discrete counterparts in Eqs. (3.34) are violated if the compact support domain
Ωx of the kernel is truncated by the computation domain boundary Γ = ∂Ω, i.e.
Ωx 6⊂ Ω. The latter applies to boundary particles. Due to lack of completeness
in the vicinity of Γ, boundary particles are prone to boundary inconsistency
errors (Fig. 3.7). Since boundary particles lack sampling points that populate
their compact support domains, boundary inconsistency errors are commonly
also referred to as particle deficiency errors.

The condition of unbounded domains is typically not met by the initial bound-
ary value problems that are considered in this work and suitable corrective ap-
proaches are thus required to account for boundary inconsistency errors. The
most common approach to reduce boundary inconsistencies involves the use of
so-called ghost particles that are elements of an artificial ghost domain ΩG. The
ghost domain extends the physical computation domain Ω (Fig. 3.6) and can be
thought of as a layer of constant thickness kh that coats Ω at all points of its
boundary Γ. The purpose of ΩG is to recover completeness of the reproducing
approximations at points of Γ. Upon discretization, ghost particles that are dis-
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Figure 3.7: Analytic evaluation of the gradient field grad Φ (left) and discrete re-
producing approximation gradh,dx Φ (right) for Φ = sin(2πX1) cos(2πX2) within
the bounded domain Ω = {x ∈ R2 | −0.5 ≤ X2, X1 ≤ 0.5}. Red arrows highlight
boundary particles that are prone to boundary inconsistency errors.

crete nodal elements of ΩG serve as sampling points for focal points in Ω. The
properties of ghost particles are assigned at the beginning of a time step in such a
way that the flux of a field variable across the boundary ΓN takes a desired value
(Neumann boundary condition) or such that the value of a field variable takes a
desired value at ΓD (Dirichlet boundary condition). The latter approach is con-
ceptually equivalent to the ghost-cell approach in finite volume methods [see 123,
§ 7] and the ghost-point approach in finite difference methods [see 200, § 1.4]. The
application of boundary conditions using ghost particles, in particular Dirichlet
boundary conditions with respect to fluid velocity, is discussed in section 3.5.1.

However, the application of the ghost particle approach is cumbersome for
deforming boundaries, e.g. free surfaces in fluid dynamics, due to their spatial
and temporal variability. Furthermore, when taking the assumptions into account
that boundary particles at free surfaces do not exchange mass, momentum or
energy with the surrounding gas atmosphere, the use of ghost particles at free
surfaces must be considered overly computationally expensive. The alternative
approach to reduce boundary inconsistency errors at free surfaces involves the
use of corrective reproducing approximations (section 3.4.3) that satisfy a given
degree of completeness even when subject to truncated kernel supports.

Following section 2.1.5 and in the context of studying transport processes
through porous media comprised of a rigid solid phase, the computation domain
is restricted to the fluid phase Ωf only and additional boundary conditions are
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specified on the solid surface Γfs. As a result, kernel truncation at the inner
boundary Γfs has to be prevented as well. Hence, not only do we take into account
ghost particles at the system boundary ∂Ω, but also at the solid surface Γfs. The
latter are differentiated from each other by denoting the outer ghost domain
adjacent to the system boundary ΩGo and the inner ghost domain adjacent to
the solid surface ΩGi. Despite the formal distinction, ghost particle properties of
both ghost domains are assigned in similar manner.

3.4.3 Corrective approaches
The fundamental discrete reproducing approximations (3.21)-(3.23) are rarely
used. This is due to the circumstance that even if the continuous completeness
conditions (3.6) and (3.7) are satisfied in the absence of boundary inconsistency
errors, the discrete equivalents in Eq. (3.33) and (3.34) may not. As shown in
preceding sections, errors with respect to the discrete completeness conditions are
large if particle distributions are highly non-uniform. Particle disorder even leads
to error divergence as discretization errors increase with O(1/h) for decreasing
smoothing lengths (Fig. 3.4). Corrective discrete reproducing approximations
have been proposed in Liu et al. [127], Belytschko et al. [15], Bonet [24] and
Bonet & Kulasegaram [25], among others, and a concise overview of corrective
approaches is given in the following.

The most intuitive example of corrective approaches involves the correction of
the discrete reproducing approximation Φh,dx to satisfy zeroth order completeness
even if subject to nodal integration and boundary inconsistency. For that reason,
we introduce the zeroth order complete kernel

WC0 (xj , h) := W (xj , h)K0 (xi) ,

where K0 (xi) is a correction coefficient that is specific to a focal point xi and
chosen such that the normalization constraint∑

j:xj∈Ωi

WC0 (xj , h)Vj =
∑

j:xj∈Ωi

W (xj , h)K0 (xi)Vj
!= 1,

is enforced. The resulting renormalized reproducing approximation [184]

ΦC0
i :=

∑
j:xj∈Ωi

ΦjWC0
ij Vj =

∑
j:xj∈Ωi

ΦjWijVj∑
j:xj∈Ωi

WijVj
, (3.36)

is commonly used as an alternative to Eq. (3.21). For constant scalar fields,
Eq. (3.36) is exactly reproducing even if the completeness condition (3.33) is
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not satisfied and thus referred to as strictly zeroth order complete reproducing
approximation. The preceding approach to enforce zeroth order completeness
can be generalized to enforce an arbitrary number of completeness constraints.
In particular, the m’th-order complete kernel [15, 127] is given as

WCm (xj , h) := P (xi − xj) ·KN (xi)W (xj , h) ,

where P (xi − xj) = {1,xi−xj , (xi − xj)⊗ (xi − xj) , . . . } represents a poly-
nomial basis and Km is a vector of m free coefficients chosen such that a number
m of completeness constraints are enforced. For m = 0, the latter can be reduced
to the zeroth order complete kernel WC0.

While the latter approach can be equivalently applied to derive corrective
versions of the discrete gradient operator gradh,dx as well, the computationally
least expensive approach to enforce zeroth order completeness of the discrete
gradient operator involves the trivial identity [137]

grad Φ = grad Φ− Φ grad 1.

Application of the reproducing approximation (3.22) to the above identity
yields

gradC0
i Φ =

∑
j:xj∈Ωi

[Φj − Φi]
∂Wij

∂rij

xi − xj
rij

Vj . (3.37)

The discrete gradient operator (3.37) is strictly zeroth order complete since
the gradient of constant fields Φ, for which the bracket term Φj − Φi is zero, is
exactly reproduced. Reproducing approximations of type Eq. (3.37) are therefor
often used for boundary value problems involving free surfaces to reduce boundary
inconsistency errors.

We empirically study the effect of using the discrete, zeroth order complete
gradient operator (3.37) on convergence of the L2 error norm (3.35). The pa-
rameters of the error analysis, in particular the input function as well as the grid
point distribution, are chosen in equivalence to the error analysis discussed in
section 3.4.1. For regular grids, i.e. Idx = 0, and within the range of analyzed
smoothing lengths, numerical errors that arise using the fundamental operator
gradh,dx are identical to those that arise using the zeroth order complete operator
gradC0

h,dx (Fig. 3.8, left column). On the other hand, for perturbed grids, the di-
vergent behavior of gradh,dx, by which numerical errors increase with O(1/h) for
decreasing smoothing lengths, is absent for all values of the ratio dx/h and grid
point perturbation factor Idx (Fig. 3.8, center and right column). Specifically,
the resulting convergence behavior is in line with the preceding analytical error
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Figure 3.8: Empirical study of L2 error convergence of the discrete, zeroth order
complete gradient operator gradC0

h,dx Φ in two dimensional space as a function of
non-dimensional smoothing length h/λh, numerical length scale ratio dx/h, grid
point perturbation factor Idx and kernel functions Ww and Wq.

analysis for regular grids in that numerical errors scale with O(h2) for large h
and with O(dx/h)ζ for small h. Consequently, we assert that the use of the com-
putationally inexpensive gradient operator (3.37) yields dramatic improvement
of error convergence with respect to non-uniform particle distributions.

In contrast to the above corrective approaches where we enforce a certain
degree of completeness, a conceptually different corrective approach is introduced
using the calculus identity

grad Φ = % grad
(

Φ
%

)
+ Φ
%

grad (%) , (3.38)

where % = %(x, t) denotes the local mass density. Application of the re-
producing approximation (3.22) to the above identity and taking into account
Vj = mj/%j yields

gradAS
i Φ = %i

∑
j:xj∈Ωi

[
Φi
%2
i

+ Φj
%2
j

]
∂Wij

∂rij

xi − xj
rij

mj . (3.39)
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Given that xi − xj = −(xj − xi) and the particle indices in the bracket term
can be exchanged, the discrete gradient operator (3.39) is referred to as antisym-
metric gradient operator gradAS

i . Using antisymmetric operators, it is possible to
construct discrete nodal motion equations which are globally conservative. Fol-
lowing Bonet [24], a simple illustration is provided considering the rate of change
of total linear momentum in a closed system comprised of N particles in the
absence of volumetric sources. The latter is given as

J̇N =
N∑

i:xi∈Ω
miu̇i =

N∑
i:xi∈Ω

Fi =
N∑

i:xi∈Ω

Nn(xi)∑
j:xj∈Ωi

FIij
!= 0,

where Fi denotes the total force acting on a particle i resulting from forces
FIij due to interaction with neighboring particles j. Total linear momentum is
conserved if FIij = −FIji which can be achieved using antisymmetric operators.
In conclusion, rather than enforcing completeness, antisymmetric operators can
be used to enforce conservation. Hereafter, we employ antisymmetric operators
to derive nodal motion equations. We argue that conservative operators are more
appropriate for the present simulations since, on the one hand, free surfaces which
would otherwise motivate the use of zeroth-order complete stencils are absent such
that particle deficiency errors are less critical, and, on the other hand, particle
distributions exhibit uniformity due to quasi-incompressibility of the considered
fluid phases.

Due to lack of completeness, however, antisymmetric operators are sensitive
to truncation at domain boundaries and non-uniform particle distributions. Cor-
responding discretization errors are amplified in the case of discontinuous density
fields %(x, t) which are considered as weights in the identity (3.38). Considering
multiphase problems where the density field might exhibit discontinuities, e.g. at
a liquid-gas interface, the particle number density SPH variant, which was origi-
nally proposed in Ott & Schnetter [153] and further developed in [99, 195, 196],
is often preferred.

The particle number density ni of particle i is defined as

ni :=
∑

j:xj∈Ωi

Wij (3.40)

and is a measure of local particle concentration within the compact support
domain Ωi. Using Eq. (3.21), ni can be interpreted as the reproducing kernel
approximation of specific volume n(x, t) := 1/V (x, t) and, therefor, ni ≈ 1/Vi.
While the density field %(x, t) may be discontinuous at the interface between im-
miscible fluids, the particle number density is approximately constant for quasi-
incompressible bulk phases by virtue of repulsive pressure forces acting between
particles which tend to keep particle concentrations homogeneous. Hence, anti-
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symmetric operators are derived on the basis of the identity

grad Φ = n grad
(

Φ
n

)
+ Φ
n

grad (n) ,

which yields

gradASn
i Φ = ni

∑
j:xj∈Ωi

[
Φi
n2
i

+ Φj
n2
j

]
∂Wij

∂rij

xi − xj
rij

, (3.41)

The antisymmetric operator (3.41) is independent of particle masses and den-
sities, which leads to improved stability in the presence of high density contrast
interfaces. However, if the density field is constant throughout the computation
domain, Eq. (3.41) and Eq. (3.39) are equivalent to each other.

The above corrective approaches can be equivalently applied to the divergence
operator (3.23). In particular, the discrete, zeroth order complete divergence
operator is given as

divC0
i Φ =

∑
j:xj∈Ωi

[Φj −Φi] ·
∂Wij

∂rij

xi − xj
rij

,

whereas density and number density weighted antisymmetric divergence op-
erators are given as

divAS
i Φ = %i

∑
j:xj∈Ωi

[
Φi

%2
i

+ Φj

%2
j

]
· ∂Wij

∂rij

xi − xj
rij

mj , and

divASn
i Φ = ni

∑
j:xj∈Ωi

[
Φi

n2
i

+ Φj

n2
j

]
· ∂Wij

∂rij

xi − xj
rij

, (3.42)

respectively.

3.5 Discrete nodal motion equations
For the derivation of the motion equations of SPH particles, we discretize spatial
differential operators that are inherent in the governing balance equations using
the discrete stencils introduced in the preceding sections. As a result, we compute
discrete forces that act on lumped particle masses.

We model incompressible, single-phase flow with constant viscosity µf using
the balance of linear momentum introduced in section 2.1, i.e.
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%fu̇f = µf div (grad uf) − grad p + %fb , ∀x ∈ Ωf. (3.43)

For two-phase flow, on the other hand, we take into account immersed in-
terfacial force densities as introduced in section 2.4, such that the whole-domain
balance of linear momentum reads

%fu̇f = div
[
µf (grad uf) + µf (grad uf)T

]
− grad p + %fb +∑

αβ

div
(
Παβδαβ

)
· Ifs , ∀x ∈ Ωf, (3.44)

where non-constant fluid viscosities µf have been taken into account. Dis-
cretization of the two-phase balance equation (3.44) using the SPH method yields
the intuitive motion equation

miu̇i =
∑

j:xj∈Ωi
FVij −

∑
j:xj∈Ωi

FPij + FGi + F̃Si , ∀xi ∈ Ωf. (3.45)

For single-phase flow, i.e. Eq. (3.43), the discrete immersed interfacial forces
F̃Si can be omitted. Upon discretization, we hence find local balances of momen-
tum transformed into a system of ordinary differential equations for the unknown
particle velocities ui. A particle i is subject to force interaction with neighbor-
ing particles j that are located within its kernel compact support domain Ωi.
The total force acting on a fluid particle i is the sum of the volumetric force
FGi = mib, the pressure interaction forces FPij (see section 3.5.2), the viscous
interaction forces FVij (see section 3.5.3) and the reduced interfacial force F̃Si (see
section 3.5.4).

We recall that the kernel compact support domain of boundary particles not
only covers neighboring fluid particles j : xj ∈ Ωf, but also neighboring ghost
particles j : xj ∈ ΩG. Hence, force interactions FPij and FVij may occur between
two fluid particles or between a fluid particle and a ghost particle. In deriving
the force interactions, we thus have to consider a case differentiation. As to be
introduced in section 3.5.1, interaction forces that act between fluid particles and
ghost particles are designed in such a way that boundary conditions are enforced.

3.5.1 Boundary conditions
Following section 2.1.5, boundary conditions are required on the inner solid-
fluid interface Γfs as well as on the outer boundary Γ. Incorporating boundary



76 CHAPTER 3. SMOOTHED PARTICLE HYDRODYNAMICS

conditions into SPH, two crucial aspects have to be taken into account:
1. The compact support domain of boundary particles must be populated

with sampling particles as to minimize particle deficiency errors, i.e. boundary
inconsistency errors. In this work, the latter is achieved by introducing ghost
particles with prescribed properties as elements of a ghost domain ΩG that coats
the physical boundaries Γ and Γfs (see section 3.4.2). Alternative methods to
incorporate boundary conditions in SPH other than using ghost particles exist
(see review Violeau & Rogers [204] and references therein). However, the use of
spatiotemporally fixed ghost particles as proposed by Adami et al. [2] constitutes
a computationally efficient and conceptually simple approach in light of complex
boundaries in porous media. We highlight prescribed properties of ghost particles
with an asterisk character in the superscript, i.e. (•)∗.

2. The interpolants WV (xi) = W (xi − xj , h)Vj do not satisfy the Kronecker
delta property due to which Φh,dx (xi) 6= ΦiWV (xi) (see section 3.2). The latter
implies that trivially setting the ghost particle properties Φ∗(x, t) = ΦΓ(x, t)
for a generic field Φ fails to reproduce the Dirichlet boundary condition Φ =
ΦΓ(x, t), ∀x ∈ ΓD.

In the context of simulating flow through porous media, we commonly ap-
ply periodic boundary conditions at system boundaries as to avoid effects that
otherwise arise due to spatial boundedness and, furthermore, no-slip and no-
penetration boundary conditions at solid surfaces. The prescription of ghost
particle properties at periodic and Dirichlet boundaries is discussed in the fol-
lowing.

Periodic boundary conditions on ΓP

In the predominant number of simulations that are presented in this treatise,
periodic boundary conditions are applied with respect to the outer boundary,
i.e. ΓP = Γ. The aim is to reduce computational efforts in studying effective
transport properties of porous materials that can be described in terms of a repre-
sentative volume element (RVE). Although not unambiguous, the most common
definition of RVEs is that of the smallest unit of microstructure periodicity. Im-
plementing periodic boundary conditions using the well-known minimum image
convention [134], the domain of computation can be reduced to the size of a sin-
gle RVE only while computation results remain representative of an unbounded
domain. Boundary effects that would otherwise result in the context of using
bounded domains are hence absent.

From a schematic point of view, the unit of computation Ω is replicated mul-
tiple times and each copy is subsequently translated with respect to all Carte-
sian directions along which periodicity is prescribed. As a result, a periodic
unbounded domain tiled with copies of Ω is generated. Taking into account the
compact support of the smoothing kernel, the periodic unbounded domain can
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Figure 3.9: Schematic representation of periodic boundary conditions applied to
a rectangular domain in two dimensions using the minimum image convention.
The outer ghost domain ΩGo, the width of which is equal to the compact support
radius kh, is populated with replicating ghost particles (open markers) that are
replications of fluid points located in Ω (closed markers).

be computationally reduced to the domain of computation Ω and the outer ghost
domain ΩGo only. The outer ghost domain ΩGo is populated with replicating
ghost particles as a result of replicating and translating fluid particles that are
elements of Ω (Fig. 3.9). Considering a ghost particle j : x∗j ∈ ΩGo to be a
replication of a fluid particle i : xi ∈ Ω implies that for all field variables Φ we
prescribe Φ∗j = Φi. The latter includes mass, momentum, energy, stress state as
well as material properties.

If a fluid particle i is located in the vicinity of the periodic boundary, it
may exchange mass, momentum or energy with neighboring replicating ghost
particles that are elements of its compact support domain Ωi. The latter is
illustrated in Fig. 3.9, where particles labeled 1 and 2 interact with each others
replicating ghost particles. Furthermore, a fluid particle that leaves the unit of
computation Ω reappears through the opposite face (e.g. Fig. 3.9, particle labeled
3 ). From a computational point of view, an efficient implementation of periodic
boundary conditions does not require allocation of additional memory space since
the properties of a replicating ghost particle are identical to those of a fluid
particle. Instead, a replicating particle is typically implemented as pointer to the
original fluid particle with its position being shifted by the size of the computation
domain in direction of periodicity. The latter reduces computational costs since
the generation of replicating particles must be performed for each time iteration.
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Figure 3.10: Schematic of fictitious
velocity field (blue line) that is pre-
scribed to ghost particles plotted in
direction n normal to the Dirich-
let boundary. Fictitious velocities
exhibit antisymmetry with respect
to the fluid velocity field (red line)
about the plane of symmetry ΓD.
Accounting for viscous momentum
exchange between ghost particles
and fluid particles subsequently re-
produces the no-slip condition.

No-slip and no-penetration boundary conditions on ΓD

No-slip and no-penetration at points of the Dirichlet boundary ΓD implies the
kinematic constraint

uf (x, t) = uΓ (x, t) , ∀ (t,x) ∈ (0, T )× ΓD, (3.46)

where uΓ denotes the prescribed boundary velocity. Following Adami et al. [2],
we proceed to introduce a computational approach to account for such Dirichlet
boundary conditions. For flow in porous media, Dirichlet boundary conditions
are prescribed on the solid surface Γfs whereas periodic boundary conditions are
applied on the outer domain boundaries Γ. For most of the validation simulations
presented in section 4, however, Dirichlet boundary conditions are prescribed on
Γ as well.

We model no-slip and no-penetration boundary conditions by prescribing ve-
locities and pressures of ghost particles such that mutual force interactions FPij
and FVij between ghost particles and fluid particles constraints the dynamics of
fluid particles close to Dirichlet boundaries. In particular, ghost particle pres-
sures p? are prescribed such that the boundary exerts a repulsive pressure force
onto fluid particles. Moreover, ghost particle velocities u? are prescribed such
that the viscous momentum exchange between fluid particles and ghost particles
prevents relative movement of Dirichlet boundaries and adjacent fluid particles.
Since it is important to differentiate ghost particle velocities u? from the pre-
scribed advection velocity uΓ of the boundary, the former are hereafter referred
to as fictitious velocities.

In the course of this treatise, Dirichlet boundaries are most commonly con-
sidered static and impermeable such that we first discuss the special case of zero
velocities uf = uΓ = 0 for all (t,x) ∈ (0, T ) × ΓD. A computationally efficient
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method to satisfy the zero velocity boundary condition is to extrapolate fluid ve-
locities onto particles of the ghost domain. The extrapolation is performed such
that fictitious particle velocities are antisymmetric with respect to the fluid ve-
locity field about the plane of symmetry ΓD in direction n normal to the Dirichlet
boundary (Fig. 3.10). The latter is achieved by prescribing

u?i = −

∑
j:xj∈Ωi∩Ωf

ujWijVj∑
j:xj∈Ωi∩Ωf

WijVj
, ∀xi ∈ ΩDG , (3.47)

where ΩDG denotes the ghost domain adjacent to the static boundary (Fig. 3.11).
Note that the interpolation (3.47) is supported on the truncated kernel domain
Ωi ∩ Ωf only (see Fig. 3.11). For that reason, use of the zeroth order complete
approximation (3.36) rather than the fundamental interpolation (3.17) is crucial
as to reduce particle deficiency errors. Due to zeroth order consistency, Eq. (3.47)
is indeed observed to yield u?i = −uj irrespective of particle distribution when
fluid velocities uj = const..

Equation (3.47) constitutes a simple approach to account for no-slip when
boundaries are static. On the other hand, for the more general case of moving
boundaries uΓ 6= 0 fictitious velocities are prescribed according to

u?i = 2uΓ −

∑
j:xj∈Ωi∩Ωf

ujWijVj∑
j:xj∈Ωi∩Ωf

WijVj
, ∀xi ∈ ΩDG . (3.48)

Equation (3.48) was originally proposed in Pozorski & Wawrenczuk [162] and
later revisited in Adami et al. [2].

It is crucial to note that upon domain discretization an uncertainty naturally
exists in the exact position of the interface ΓD (see Fig. 3.11). The magnitude
of spatial uncertainty is in the order of the domain discretization length scale
O(dx0), which subsequently takes the role of a slip length. Hence, application
of the fictitious velocity approach will yield an apparent slip boundary condition
with a slip length dx0, rather than a no-slip boundary condition. If, however,
the discretization length scale dx0 is smaller than the viscous boundary layer
thickness, the viscous force interaction FVij between the fluid and ghost particles
accurately reproduces the effect of no-slip boundary conditions. In chapter 4, the
latter is demonstrated using numerical validation computations. On the other
hand, the apparent slip is desired to account for moving contact lines, where the
no-slip boundary condition would otherwise result in singular tangential stresses
at the contact line [101, 185]. An undesired effect of the apparent numerical
slip is, however, the discretization dependency of the slip length. As a result,
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Figure 3.11: Schematic representation of fixed ghost particles (open markers)
that populate the ghost domain (shaded region) adjacent to a solid surface (red
line). Ghost particles serve as sampling points for fluid particles xi ∈ Ωf (closed
markers). Fictitious ghost particle properties p?j and u?j enforce essential bound-
ary conditions. Upon discretization, the spatial uncertainty with respect to the
exact position of the boundary Γfs is of order O(dx0).

local non-equilibrium processes in the vicinity of a moving contact line must be
considered artificial.

Fictitious pressures p? of ghost particles are prescribed as to prevent pene-
tration of impermeable Dirichlet boundaries. We first discuss the special case of
static boundaries. Evaluating the balance of linear momentum (2.28) at points
of the Dirichlet boundary in direction normal to the surface while considering
volumetric forces absent and accounting for zero boundary velocities yields

− grad p · n = 0, ∀ (t,x) ∈ (0, T )× ΓD,

where n denotes the normal vector to ΓD. In other words, pressure gradients
normal to static and impermeable boundaries vanish, or, introducing a coordinate
n⊥ that is aligned along n, we introduce the well-known notation

∂p

∂n⊥
= 0, ∀ (t,x) ∈ (0, T )× ΓD. (3.49)

Besides Eq. (3.46), Eq. (3.49) must thus be satisfied for consistent implemen-
tation of the no-penetration boundary condition. To account for Eq. (3.49) in the
numerical scheme, we follow Adami et al. [2] and compute p? by means of inter-
polating fluid pressures using the normalized reproducing approximation (3.36),
i.e.
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p?i =

∑
j:xj∈Ωi∩Ωf

pjWijVj∑
j:xj∈Ωi∩Ωf

WijVj
, ∀xi ∈ ΩDG . (3.50)

Assuming a homogeneous fluid pressure field pj = const. for all xj ∈ Ωf , e.g.
in thermal equilibrium, yields p?i = pj for all xi ∈ ΩDG irrespective of particle
distribution which is consistent with Eq. (3.49). While Eq. (3.50) suffices when
boundaries are static and volumetric force densities b absent, modified fictitious
pressures are necessary when the latter conditions do not apply. In particular, the
more general case of accelerating boundaries (u̇Γ 6= 0) as well as non-negligible
volumetric force densities (b 6= 0) renders momentum balances normal to imper-
meable boundaries to read

grad p · n = ∂p

∂n⊥
= %f (b− u̇Γ) · n, ∀ (t,x) ∈ (0, T )× ΓD. (3.51)

To account for Eq. (3.51) in the numerical scheme, we consider the first-order
truncated Taylor series expansion of the pressure field about a point x ∈ ΓD such
that

p(x′) = p(x) + grad p · (x′ − x) +O(h2).

Evaluating the series along the direction of the normal n such that (x′ −
x)/‖x′ − x‖ = n yields

p(x′)− p(x)
‖x′ − x‖ ≈ grad p · n. (3.52)

Substituting Eq. (3.52) into Eq. (3.51) we find

p(x′) ≈ p(x) + %f (b− u̇Γ) · (x′ − x) , ∀ (t,x) ∈ (0, T )× ΓD. (3.53)

We prescribe fictitious pressures p? of ghost particles adjacent to a moving
boundary by means of interpolating the RHS of Eq. (3.53) using the zeroth order
complete reproducing approximation (3.36), such that
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p?i =

∑
j:xj∈Ωi∩Ωf

pjWijVj∑
j:xj∈Ωi∩Ωf

WijVj
+ (b− u̇Γ) ·

∑
j:xj∈Ωi∩Ωf

mj(xi − xj)Wij∑
j:xj∈Ωi∩Ωf

WijVj
, ∀xi ∈ ΩDG ,

(3.54)
where %jVj = mj has been accounted for. Clearly, for vanishing volumetric

force densities and static boundaries Eq. (3.54) reduces to Eq. (3.50). In partic-
ular, the first term on the RHS of Eq. (3.54) is the kernel interpolation of fluid
pressures pj , evaluated at the point of the ghost particle xi. In the presence of a
gravity force density b = g = const., the balancing hydrostatic equilibrium pres-
sure field is linear along the direction of g, which is accounted for by the second
term on the RHS of Eq. (3.54). Hence, unbalanced pressure gradients and related
spurious volumetric fluxes across the impermeable Dirichlet boundary are absent.
Equation (3.54) constitutes the main result of Adami et al. [2]. As fluid velocities
and pressures evolve in time, fictitious properties of ghost particles according to
Eqs. (3.48) and (3.54) have to be recomputed for every time iteration.

3.5.2 Interparticle pressure forces
Introducing the pressure interaction force FPij we differentiate whether the fluid
particle i interacts with a neighboring fluid particle j : xj ∈ Ωf or with a neigh-
boring ghost particle j : xj ∈ ΩG. In the case of the latter, the fictitious pressure
p? is either given by Eq. (3.54) adjacent to an impermeable Dirichlet bound-
ary ΓD or p? is equal to the pressure of a replicated fluid particle adjacent to a
periodic boundary ΓP (see section 3.5.1).

Application of the number-density weighted antisymmetric gradient sten-
cil (3.41) to {grad p} will yield the pressure interaction forces

FPij =



[
pi
n2
i

+ pj
n2
j

]
∂Wij

∂rij

xi − xj
rij

, if xj ∈ Ωf and ∀xi ∈ Ωf,[
pi
n2
i

+
p?j
n2
j

]
∂Wij

∂rij

xi − xj
rij

, if xj ∈ ΩG and ∀xi ∈ Ωf.
(3.55)

Since particle indices i and j can be exchanged in the bracket term and taking
into account the antisymmetry (3.12) the pressure interaction forces satisfy the
conservation criterion FPij = −FPji. However, as the stencil (3.55) does not satisfy
any order of completeness, the truncation of kernel compact support domains
must be avoided. Hence, for flow problems involving free surfaces the strictly
zeroth order complete stencil (3.37) constitutes the more favorable choice to dis-
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cretize pressure gradients. As free surfaces are absent herein, the momentum
conserving stencil (3.55) is exclusively used for all simulations presented in this
thesis.

3.5.3 Interparticle viscous forces

As discussed in Monaghan [136], the computation of Laplacian operators using
an integral SPH approximation that involves the second-order derivative of W
is sensitive to particle disorder. Moreover, such formulations may violate the
dissipation inequality when modeling viscous flow or thermal conduction if the
discrete stencil lacks antisymmetry with respect to particle indices [66, 203]. An
alternative formulation is thus derived by applying the number-density weighted
antisymmetric divergence stencil (3.42) to the Laplacian term {µf div (grad uf)},
i.e.

µf divASn
i (grad uf) = ni µ

f
∑

j:xj∈Ωi

[
(grad uf)i

n2
i

+
(grad uf)j

n2
j

]
· ∂Wij

∂rij

xi − xj
rij

.

(3.56)
Even though discretization of the gradient operators appearing in Eq. (3.56)

using the gradient stencils (3.37), (3.39) or (3.41) would yield an expression of
the Laplacian which is free of second-order kernel derivatives, such an approach
would imply a computationally expensive two-fold summation over neighboring
particles j : xj ∈ Ωi. For that reason, the gradient operators are typically
approximated using a truncated Taylor series expansion of the field variable as
initially proposed in Brookshaw [33] and later revised in Morris [139], Cleary [46]
and Tartakovsky et al. [198] among others. The Taylor series expansion of u
about point x reads

u(x′) = u(x) + grad u · (x′ − x) +O(h2),

or, upon discretization, we find

ui − uj = (grad u)i · (xi − xj) +O(h2),
ui − uj = (grad u)j · (xi − xj) +O(h2). (3.57)

Substituting Eqs. (3.57) into Eq. (3.56) yields
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µf divASn
i (grad uf) ≈ ni µf

∑
j:xj∈Ωi

[
1
n2
i

+ 1
n2
j

]
ui − uj
rij

∂Wij

∂rij
, ∀xi ∈ Ωf (3.58)

for constant viscosity µf. Equation (3.58) exhibits antisymmetry with respect
to the particle indices i and j. Moreover, when Eq. (3.58) is applied to model vis-
cous flow, Galilean invariance is inherently satisfied since the viscous interaction
forces only depend on relative velocities ui − uj rather than absolute velocities.
The latter further ensures that viscous extra stresses vanish in static equilibrium,
i.e. for ui = uj . For two-phase flow, spatial variability of fluid viscosity has to
be taken into account. Following Hu & Adams [99], viscous particle interaction
forces for non-constant viscosities are approximated as

FVij =



[
1
n2
i

+ 1
n2
j

]
2µiµj
µi + µj

ui − uj
rij

∂Wij

∂rij
, if xj ∈ Ωf and ∀xi ∈ Ωf,[

1
n2
i

+ 1
n2
j

]
2µiµ?j
µi + µ?j

ui − u?j
rij

∂Wij

∂rij
, if xj ∈ ΩPG and ∀xi ∈ Ωf,[

1
n2
i

+ 1
n2
j

]
µi

ui − u?j
rij

∂Wij

∂rij
, if xj ∈ ΩDG and ∀xi ∈ Ωf.

(3.59)

In Eq. (3.59), the effective viscosity for two interacting fluid particles i and
j is the harmonic mean of particle viscosities µi and µj . As illustrated in Hu
& Adams [99], for locally linear velocity fields the latter ensures continuity of
viscous extra stresses across material interfaces. For a ghost particle j : xj ∈ ΩPG
adjacent to a periodic boundary, the replicated viscosity µ?j is used. In order
to ensure continuity of fluid velocity across Dirichlet boundaries, on the other
hand, the effective viscosity for the mutual interaction of a fluid particle i and a
ghost particle j : xj ∈ ΩDG is the viscosity of the focal particle µi. The fictitious
velocity u?j of a ghost particle j is either given by Eq. (3.48) adjacent to a Dirichlet
boundary, i.e. xj ∈ ΩDG , or u?j is equal to the velocity of a replicated fluid particle
at a periodic boundary, i.e. i.e. xj ∈ ΩPG.

3.5.4 Immersed interfacial particle forces

We proceed to introduce the reduced interfacial force F̃Si . Following Eq. (2.88)1,
we evaluate the interface Dirac distribution of the interface Γαβ at point xi as
norm of the spatial gradient of the respective phase indicator field Cαβ , i.e.
δαβi = ‖gradi Cαβ‖. Care has to be taken in the computation since the phase
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indicator field Cαβ is undefined for all xi /∈ {Ωα,Ωβ}. The latter renders a case
differentiation necessary. Evaluating the gradient of the phase indicator field
using

gradASn
i Cαβ =



∑
j:xj∈Ωi∩(Ωα∪Ωβ)

ni

[
Cαβi
n2
i

+
Cαβj

n2
j

]
∂Wij

∂rij

xi − xj
rij

+
∑

j:xj∈Ωi\(Ωα∪Ωβ)
ni

[
Cαβi
n2
i

+
Cαβi
n2
j

]
∂Wij

∂rij

xi − xj
rij

, ∀xi ∈
{

Ωα, Ωβ
}

,

0, ∀xi /∈
{

Ωα, Ωβ
}

,

(3.60)

yields interface Dirac distributions δαβi that are indeed compactly supported
in the vicinity of the interface Γαβ . As in section 2.4, the interfaces Γαβ ∈
{Γwn,Γns,Γws} separate the bulk phases Ωα ∈ {Ωn,Ωw} and Ωβ ∈ {Ωn,Ωs}.
In evaluating (3.60), we take into account that ghost particles adjacent to the
fluid-solid interface are elements of the solid domain Ωs.

The interfacial stress tensor defined in Eq. (2.56) is subsequently computed
as

Παβ
i =

{
σαβ

(
I− nαβi ⊗ nαβi

)
δαβi if ‖gradi Cαβ‖ > 0,

0, otherwise,
∀xi ∈ Ωf ∪ ΩG,

(3.61)
where the unit normal nαβi := gradi Cαβ/‖gradi Cαβ‖ according to Eq. (2.88)2.

Note that the interfacial stress tensors Παβ
i are computed for all particles includ-

ing ghost particles that are elements of ΩG. The latter avoids particle deficiency
errors close to solid-fluid interfaces when computing divergences of the immersed
interfacial stress tensors. In particular, the discrete equivalent of the interfacial
force density (2.67) is the interfacial force FS,αβi acting on a fluid particle i, which
reads

FS,αβi =
∑

j:xj∈Ωi

[
Παβ
i

n2
i

+
Παβ
j

n2
j

]
· ∂Wij

∂rij

xi − xj
rij

, ∀xi ∈ Ωf, (3.62)

where the divergence of the interfacial stress tensor is evaluated using the
stencil (3.42). As mentioned above, the stencil (3.62) is not prone to particle
deficiency errors since the domains Ωi are fully supported close to solid-fluid
interfaces as well. The total interfacial force is the sum of all immersed interfacial
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forces FSi =
∑
αβ FS,αβi according to Eq. (2.94). Following what was proposed

in section 2.4.6, components of FSi that act in direction normal to the solid-fluid
interfaces Γns and Γws are removed such that the action of the total interfacial
force at points of the three-phase contact line is reduced to planes tangent to the
solid surface only. The latter is achieved using the reduced interfacial force

F̃Si :=
{

FSi −
(
FSi · nns

i

)
nns
i if δnsi > 0, δnsi > δws

i ,
FSi −

(
FSi · nws

i

)
nws
i if δws

i > 0, δws
i > δnsi ,

∀xi ∈ Ωf, (3.63)

according to the modification proposed in Eq. (2.93).

3.6 Simulation parameterization

Initialization

The total computation domain Ω is initially discretized by placing particles on
the lattice sites of a uniform Cartesian grid with initial isotropic particle spacing
dx0 and setting initial particle volumes to V0,i = dxd0 in d-dimensional space.
Subsequently, we assign initial conditions for the velocities u0,i = u(x, t = 0)
and densities %0,i := % (xi, t = 0) for all particles. Once initialized, the parti-
cles properties Cαβi and µi = µ (xi) remain constant during time integration.
While the phase fields Cαβi are assigned to all particles, viscosities are defined
for fluid particles i : xi ∈ Ωf only. Particle masses mi := %0,iV0,i remain un-
changed during simulation as well such that mass conservation is trivially satis-
fied. Note that in two-dimensional space the unit of V0,i is that of volume per
unit of length, which implies that respective particle masses mi have unit of mass
per unit of length. The subscript 0 indicates an initial condition - being a quasi-
incompressible method, the evolution of particle densities %i and particle volumes
Vi in time has to be considered. However, the equation of state is calibrated such
that relative fluctuations ∆% of particle densities with respect to initial densities
are negligible.

Rather than using uniform initial grids more sophisticated approaches to dis-
cretize the computation domain exist [47, 56]. These methods avoid numerical
noise at short time scales about the initial time t = 0, where the set of fluid par-
ticles typically rearranges into an energetically relaxed glass-like close-packing
configuration (see Fig. 3.3). We omit the use of more sophisticated discretization
schemes, since in this thesis, we analyze effects at times scales at which the effects
of particle rearrangement are negligible.
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Time integration

Explicit time integration of the particle motion equation (3.45) and position
update ẋi = ui for all xi ∈ Ωf is performed using a modified predictor-corrector
scheme of second order accuracy in time due to its often asserted stability [19, 163]
when using adaptive time step widths ∆t. The predictor step reads

ũ1/2
i = u0

i + ∆t
2 u̇0

i and x̃1/2
i = x0

i + ∆t
2 ũ1/2

i , (3.64)

where the superscripts 0 and 1/2 denote a system at current time t and
half-step time t+ (∆t/2), respectively, and ˜(•) indicates predicted half-step time
values. The corrector step reads

u1/2
i = u0

i + ∆t
2 u̇1/2

i and x1/2
i = x0

i + ∆t
2 u1/2

i , (3.65)

where the velocity rates u̇1/2
i = u̇i(x̃1/2

i , ũ1/2
i ) are computed for a system at

predicted half-step. A time step is finally completed with

u1
i = 2u1/2

i − u0
i and x1

i = 2x1/2
i − x0

i , (3.66)

where the superscript 1 denotes a system at time t + ∆t. The presented
explicit time integration scheme is only conditionally stable. Following Morris
[141], the time step size ∆t is adaptively limited by the stability conditions

∆t ≤ min
{

0.25h
maxi ci

,
h2 mini %0,i

8 maxi µi
,

√
h

16‖b‖ ,
√
h3 mini %0,i

32πσnw

}
, (3.67)

which ensures stable time integration in the presence of propagating pressure
waves, viscous diffusion fronts, gravity waves and capillary waves, respectively.
For single-phase flow, the capillary wave condition in Eq. (3.67) can be disre-
garded. The operators maxi and mini apply to the total set of fluid particles
xi ∈ Ωf. In modeling quasi-incompressible bulk fluid phases, the first condition
in Eq. (3.67), the well known CFL-condition [48], is typically the dominant one.

Quasi-incompressibility

According to the first condition in Eq. (3.67), the use of physical speed of sounds
would yield prohibitively small time steps. It is therefor common practice to use
a numerical speed of sound ci with a magnitude large enough such that relative,
dimensionless density fluctuations ∆% about the initial density %0,i are small, and,
on the other hand, with a magnitude small enough such that time step widths are
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large enough to make numerical computations feasible. Such an approximation
is reasonable in the absence of strong shock waves or if acoustic effects play a
minor role for the transport problem at hand. We choose ∆% = 1% = 0.01 and
set

c2i = max
{
U2

ref
∆% ,

µiUref

%0,iLref∆%
‖b‖Lref

∆% ,
σnw

%0,iLref∆%
,

}
, (3.68)

as suggested in Morris [141]. As introduced in section 2.3.4, Uref and Lref
denote characteristic velocity and characteristic length scale, respectively, which
depend on the particular boundary value problem.

Application of the linear state equation (2.21) will yield the local fluid pres-
sures

pi = c2i (mini − %0,i) + p0, ∀xi ∈ Ωf. (3.69)

where the local fluid density %i is evaluated using the particle number density
ni, which satisfies ni = 1/Vi in the absence of truncation errors [99, 153, 195, 196].
The background pressure p0 is introduced to avoid instabilities due to negative
pressures [194]. Hence, the magnitude of p0 should be large enough such that
pi > 0 ∀ xi ∈ Ωf. However, the background pressure should be small enough
such that numerical dispersion effects, which, according to Morris [139], occur
for excessively large values of p0, are negligible. In all our simulations, we set
p0 = 0.1 maxi

(
c2i %0,i

)
.

Computational implementation

The main simulation procedure is summarized in algorithm 1. Even though the
computational implementation is not discussed in this thesis, we shall note that
time-explicit SPH algorithms can be optimized by performing the particle for-
loops, i.e. computations for all xi ∈ Ωf, in parallel. Implementing the parallel
algorithm on distributed memory machines can be achieved by exploiting the fact
that a particle i only interacts with neighboring particles j : xj ∈ Ωi. Hence,
domain decomposition is possible. However, as particles are advected in space,
domain decomposition has to be performed dynamically and frequent commu-
nication between parallel processes occurs. For an efficient implementation of
neighbor for-loops that frequently occur in the force computation function 2, a
neighbor searching algorithm is crucial. In the software that was implemented
for the purpose of this thesis, we use a cell-linked list method as outlined in
Griebel et al. [79]. The cell-linked list is particularly efficient if the kernel radius
kh, which determines the edge length of the cells, remains constant in time and
space and, furthermore, if the computation domain is homogeneously populated
with particles such that load balancing is not required.
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Algorithm 1 Pseudocode representing the general structure of two-phase SPH
simulations, including initialization and time stepping. For single-phase flow,
lines which are highlighted blue can be omitted.
1: procedure SPH simulation(IBVP)

2: const Ω,Ωf,Ωs,Ωα,0 . Define simulation domain
3: const Uref , Lref ,∆%,b, h, p0, dx0, Tmax, d, . . . . Set simulation parameters
4: const µα, %α, σαβ ,Θeq . Set material parameters

5: for all xi ∈ Ω do
6: xi ← x0,i(dx0) . Discretize Ω and initialize particle positions
7: ui ← u0,i . Initialize particle velocities
8: const Cfs

i ← 1 if xi ∈ ΩG else 0 . Set ghost particle indicator
9: const Cαβi ← 1 if xi ∈ Ωβ , 0 if xi ∈ Ωα . Set phase indicator fields
10: end for

11: for all xi ∈ Ωf do
12: %i ← %0,i . Initialize particle densities
13: const mi ← %0,idx

d
0 . Set particle masses

14: const µi ← µα if xi ∈ Ωα . Set particle viscosities
15: const ci ← Eq. (3.68) . Set numerical sound speeds
16: end for

17: const ∆t← Eq. (3.67) . Set time step width
18: t← t0 . Initialize time

19: while t ≤ Tmax do . Start time stepping loop

20: x0
i ← xi,u0

i ← ui . Store current particle positions and velocities
21: u̇0

i ← Compute particle accelerations(t)
22: ui ← ũ1/2

i ,xi ← x̃1/2
i . Predictor step to t+ ∆t/2 with Eqs. (3.64)

23: u̇1/2
i ← Compute particle accelerations(t+ ∆t/2)

24: ui ← u1/2
i ,xi ← x1/2

i . Corrector step to t+ ∆t/2 with Eqs. (3.65)
25: ui ← u1

i ,xi ← x1
i . Complete step to t+ ∆t with Eqs. (3.66)

26: File output

27: end while

28: end procedure
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Algorithm 2 Pseudocode representing the computation of fluid particle accel-
erations u̇ti at a given time step t. This function is called twice within the time
stepping loop outlined in Algorithm 1. For single-phase flow, lines which are
highlighted blue can be omitted.
1: function Compute particle accelerations(t)

2: Generate replicating ghost particles in ΩGo for periodicity adjacent to ΓP

3: for all xi ∈ Ωf do
4: ni ← Eq. (3.40) . Update particle number densities
5: pi ← Eq. (3.69) . Update particle pressures
6: end for

7: for all xi ∈ ΩDG do
8: p?i ← Eq. (3.54) . Update fictitious pressures adjacent to ΓD
9: u?i ← Eq. (3.48) . Update fictitious velocities adjacent to ΓD
10: end for

11: for all xi ∈ Ωf do
12: u̇ti ← 0 . Set particle accelerations to zero
13: u̇ti += FGi /mi . Volumetric forces
14: for all neighbors j : xj ∈ Ωi do
15: u̇ti += FPij/mi . Pressure interaction forces (Eq. (3.55))
16: u̇ti += FVij/mi . Viscous interaction forces (Eq. (3.59))
17: end for
18: for all interfaces Γαβ ∈ {Γwn,Γns,Γws} do
19: δαβi ← ‖gradi Cαβ‖ . Interface Dirac distributions (Eq. (3.60))
20: Παβ

i ← Eq. (3.61) . Interfacial stress tensors
21: FS,αβi ← Eq. (3.62) . Immersed interfacial forces
22: end for
23: FSi ←

∑
αβ FS,αβi . Total interfacial forces

24: F̃Si ← Eq. (3.63) . Reduced interfacial forces
25: u̇ti += F̃Si /mi

26: end for

27: Shift particles that cross periodic boundaries to opposite edge

28: return u̇ti

29: end function



CHAPTER 4

Simulation model validation

In the following chapter, we discuss validation simulations and identify appro-
priate choices of the discretization parameter dx0 and kernel W . Seven different
simulation setups, each of which represent different aspects of single and multi-
phase flow, are considered. In section 4.1, we discuss the transient evolution
of Poiseuille flow until, eventually, the quasi-static parabolic velocity profile is
recovered. In section 4.2, we consider the well-known lid-driven cavity problem
for large Reynolds numbers. We proceed to discuss single-phase flow simulations
through three-dimensional porous microstructures comprised of regular sphere-
packings in section 4.3. In section 4.4, we analyze the capability of the model to
reproduce the equilibrium capillary pressure for a system where a droplet is fully
immersed in another fluid. In section 4.5, we discuss laminar flow of multiple
fluids arranged in layers between parallel plates and focus on modeling accuracy
with respect to interfacial viscous coupling. In section 4.6, the capillary rise of
a wetting fluid between parallel plates is simulated and we focus on numerical
accuracy in predicting equilibrium contact angles, meniscus shapes and menis-
cus heights. Dynamic and non-equilibrium processes are discussed in section 4.7,
where the free oscillation of fully-immersed fluid droplets is discussed. For all
validation cases, we have either access to benchmark results or to closed-form
solutions.

4.1 Poiseuille flow between parallel plates
The creeping flow of a Newtonian fluid between parallel plates of infinite extension
is driven by a volumetric acceleration b = ge1. The plates are separated by a
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Figure 4.1: Simulation configuration (2-dimensional) for
Poiseuille flow. Black area corresponds to fictitious solid
phase domain Ωs and white area corresponds to fluid
phase domain Ωf. The dotted line represents a line of sym-
metry and the point of origin is indicated by the red cross
marker. Cartesian coordinates with respect to the unit
vectors e1 and e2 read X1 and X2, respectively. In order
to reduce truncation errors, the thickness of the fictitious
solid phase domain is chosen to be equal to the compact
support radius kh and subsequently populated with ghost
particle to account for no-slip and no-penetration at the
fluid-solid interface according to section 3.5.1.

distance L = 1 m. The computation domain is periodic in direction of e1 and
bounded by ghost particles that represent the static and impermeable plates in
direction of e2. No-slip is modeled for X2 = 0 and X2 = L. Initial particle
velocities are set to u0,i = 0. Simulations are based on the quintic kernel Wq.
We compute the transient evolution of the velocity profile U1(X2, t) in direction
of e1 until steady-state is detected in the evolution of total kinetic energy. The
driving volumetric acceleration g = 0.1 m/s2 is chosen small enough such that
the Reynolds number Re as defined in Eq. (2.70) is of order Re = O(1). Viscosity
and initial density are chosen µ = 0.01 Pa s and % = 1 kg/m3, respectively. For
the resulting creeping flow, steady-state implies the well-known parabolic velocity
profile. A series solution for the transient evolution is given in Morris & Fox [140]
as

U1(X2, t) = g%

2µX2 (X2 − L)

+
∞∑
n=0

4g%L2

µπ3(2n+ 1)3 sin
(
πX2

L
(2n+ 1)

)
exp

(
− (2n+ 1)2π2µ

%L2 t

)
,

where the second term on the RHS vanishes in steady-state. In the following,
the series solution is truncated for n > 100. The plate separation L is chosen
to be the characteristic length scale Lref = L in Eq. (3.68), whereas Uref is
chosen to be the maximum velocity at steady-state, i.e. Uref = limt→∞ U1(X2 =
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Figure 4.3: Simulation configura-
tion for lid-driven square cavity
flow. Flow within the fluid region,
represented by the white area, is
driven by the prescribed velocity
uΓ = Ulide1 of the upper boundary
Γtop, which is referred to as lid. The
remaining boundaries Γ \ Γtop re-
main impermeable and static. No-
slip conditions apply to all bound-
aries of the fluid region. For further
details on notation, see caption to
Fig 4.1.

0.5L, t) = (g%L2)/(8µ). Numerical results for the transient evolution are in close
agreement to the series solution for numerical resolutions dx/L ≥ 10, i.e. when at
least ten particles populate the computation domain along the height of the fluid
region (Fig. 4.2). The latter indicates the accuracy of the time stepping stencil
and compliance of the numerical method with the no-slip boundary condition.
Moreover, we find the relative difference between U1(X2 = 0.5L, t =∞) and the
numerically predicted maximum steady-state velocity to be 2.91% for dx/L = 10
and 0.16% for dx/L = 100. Hence, the interparticle viscous forces accurately
represent viscous momentum diffusion and convergence is detected for increasing
resolution.

4.2 Lid-driven square cavity flow
We simulate the recirculating flow of a Newtonian fluid within a square-shaped
cavity that is driven by the prescribed velocity Ulid of the upper lid of the cavity
(Fig. 4.3). The lid-driven square cavity flow constitutes a challenging numerical
problem that is widely used for benchmark purposes. In particular, the latter is
due to singularities that occur at the upper corners, the increasing number of flow
vortices for increasing Reynolds numbers and the non-zero Dirichlet boundary
condition with respect to fluid velocity at the upper lid. Natural choices for
characteristic scales as used in Eq. (3.68) are Lref = L and Uref = Ulid. We
choose % = 1 kg/m3, Ulid = 1 m/s and L = 1 m and vary the Reynolds number
Re by setting fluid viscosity µ = (%UlidL)/Re according to Eq. (2.70). Initial



4.2. LID-DRIVEN SQUARE CAVITY FLOW 95

Figure 4.4: Normalized velocity magnitudes during lid-driven square cavity flow
for Re = 1, 100, 400, 1000 (from top-left to bottom-right). Plot was generated
by linearly interpolating unstructured SPH particle data of particle velocities
to points of a regular grid using matplotlib.mlab.griddata and subsequently
plotting the scalar field of normalized fluid velocity magnitudes.

particle velocities are set to u0,i = 0 and steady-state is detected in the evolution
of total kinetic energy. The Dirichlet boundary condition uΓ = Ulide1 for all
points x ∈ Γlid of the upper lid is applied by taking into account the prescribed
velocity in Eq. (3.48). For all points x ∈ Γ \ Γlid of the remaining boundaries,
the boundary condition uΓ = 0 applies. We measure the numerical resolution in
terms of the ratio L/dx0 and use the quintic kernel Wq.

Steady-state velocity fields (Fig. 4.4) as well as vertical and horizontal veloc-
ity profiles (Fig. 4.5) are in general agreement with the well-anticipated bench-
mark results of Ghia et al. [76]. For Re = 1, a reference computation has been
performed using OpenFOAM [206]. The symmetric flow field is reproduced for
Re = 1 and velocity profiles are in excellent agreement with reference results even
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Figure 4.5: Normalized velocity profiles U1(X1/L = 0.5, X2/L) (Red markers
and blue lines) and U2(X1/L,X2/L = 0.5) (Green markers and black lines)
along vertical and horizontal symmetry lines of the square cavity, respectively, for
Re = 1, 100, 400, 1000 (from top-left to bottom-right). Cross markers represent
velocity components of SPH particles that are located within the narrow region
±dx0 from the central symmetry lines. Numerical reference results have been
adopted from Ghia et al. [76] (Re = 100, 400, 1000, square markers) or computed
using OpenFOAM [206] (Re = 1, solid lines). Numerical resolutions for SPH
computations are given in terms of the ratio L/dx0.
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for the lowest considered resolution L/dx0 = 50. For Re = 100, inertial forces
move the center of the primary vortex away from the central symmetry line and
related velocity profiles are reproduced using SPH simulations for all tested res-
olutions L/dx0. For Re = 400 and Re = 1000, the computed velocity profiles
deviate from the reference results for the lowest resolution L/dx0 = 50; although
profiles of the primary vortex are reproduced with satisfactory accuracy even for
the lowest tested resolution. Deviations are attributed to large velocity gradients
that appear in close vicinity to the boundaries and the second-order accuracy of
the interpolating stencil. For finer numerical resolution, however, a convergence
behavior is observed. For L/dx0 = 300 and L/dx0 = 400, velocity profiles for
Re = 400 and Re = 1000, respectively, are in excellent agreement with reference
results.

4.3 Permeability of sphere packings
We compute the creeping flow of an incompressible, Newtonian fluid through the
pore-space of a periodic sphere packing driven by a volumetric acceleration b. We
consider sphere packings comprised of equal-sized spheres arranged on the lattice
sites of simple (SC), body-centered (BCC) or face-centered (FCC) cubic lattices.
Packings are referred to as consolidated (C) if the diameter D of the spheres is
large enough to cause overlap or contact of spheres and non-consolidated (NC)
if spheres are not in contact with each other. We further introduce the so-called
close-touching limit (CTL), which refers to the value of D where initial contact
occurs such that a close packing is formed. All spheres are considered static
and impermeable and thus represented by ghost particles that account for no-
slip and no-penetration on sphere surfaces (Fig. 4.6, top row). Due to periodicity
and isotropy of lattice and steady-state flow field, the computation domain can be
reduced to a cubic unit-cell of side-length L with periodic boundary conditions
applied to all faces of the computation domain. Initial particle velocities are
set to u0,i = 0 and fluid viscosity and density are chosen µ = 0.001 Pa s and
% = 1000 kg/m3, respectively. The unit-cell side-length is chosen L = 1 mm.
Simulations are based on the quintic kernel Wq and steady-state is detected in
the evolution of total kinetic energy. The initial particle spacing is chosen such
that the ratio L/dx0 = 60 for all simulations. Particle spacing is kept constant
for all simulations for reasons of simplicity. As discussed in Holmes et al. [96],
however, adapting the numerical resolution to an effective pore-throat length
scale is more sensible. In contrast to the previous simulation cases, the current
benchmark case is simulated in three-dimensional space.

Porosity φ is defined as the ratio of pore volume Vf to total volume V = L3, i.e.
φ := Vf/V . We perform simulation sweeps for various porosities φ = 0.1, . . . , 0.9
and various microstructures (SC, BCC, FCC). For a given porosity and unit-cell



98 CHAPTER 4. MODEL VALIDATION

Non-consolidated Close-touching Consolidated
φNC DCTL φC

SC 1− 1
16π

(
D
L

)3
DCTL = L 1 + π

[
1
3
(
D
L

)3 − 3
4
(
D
L

)2 + 1
4

]
BCC 1− 1

8π
(
D
L

)3 2
√

3
3 DCTL = L 1 + π

[(
D
L

)3 −√3
(
D
L

)2 +
√

3
4

]
FCC 1− 1

4π
(
D
L

)3 √
2DCTL = L 1 + π

[
8
3
(
D
L

)3 − 10
√

2
4
(
D
L

)2 + 5
√

2
12

]
Table 4.1: Porosity of sphere packings in cubic unit-cells as a function of sphere
diameter D and unit-cell side length L. The porosity φNC of non-consolidated
packings is applicable when sphere diameters are smaller than or equal to the
close-touching limits. If spheres overlap, the porosity of consolidated packings,
as given in Hwang [102], is denoted φC.

side length L, the unknown sphere diameter D remains to be defined. For non-
consolidated microstructures, porosity is given as φNC = 1 − Ns(Vs/V ), where
Vs = πD3/16 denotes the volume of a single sphere and Ns denotes the total
number of spheres a unit cell is comprised of. The unit cell of simple cubic
lattices is comprised of one sphere in total, i.e. NSC

s = 1. For body-centered and
face-centered lattices, NBCC

s = 2 and NFCC
s = 4, respectively. For consolidated

packings, on the other hand, the overlapping volume has to be taken into account
in deriving the porosities φC of consolidated packings. Omitting the derivation
of φC herein, we adopt the expressions from Hwang [102] and summarize φNC,
φC as well as the close-touching limit diameters DCTL in Table 4.3. For given
φ and L, these expressions give rise to a root-finding problem for the unknown
sphere diameters.

For the present benchmark problem, it is our interest to compare SPH esti-
mates of intrinsic permeabilities kI [m2] to the benchmark results of Larson &
Higdon [119] and to the empirical expression due to Kozeny [111] and Carman
[38]. Intrinsic permeability is a crucial hydraulic material parameter of porous
materials and defined by Darcy’s law. Darcy’s law constitutes a coarse-grained
model for the flow problem defined above, i.e. the creeping flow of an incompress-
ible, viscous pore fluid through the pore-space of a rigid solid skeleton entirely
driven by a hydraulic gradient under isothermal conditions. For the formulation
of coarse-grained balance equations, the continuum-mixture theory, where such
processes are described at the length scale of Representative Volume Elements
(RVE), provides a suitable framework. While omitting a detailed introduction
to continuum-mixture theory, for which the reader is referred to Hassanizadeh
& Gray [84, 85], Ehlers & Bluhm [64], Renner & Steeb [172], Steeb [191] and
references therein, we shall concisely summarize the assumptions that underly
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Darcy’s law.
To this end, we introduce the relative velocity wf := vf − vs, or seepage ve-

locity, which is defined as the difference between phase-specific volume averages
of microscopic (local) fluid velocity vf := 〈u〉f and local solid velocity vs := 〈u〉s.
The phase-specific volume-averaging operator is defined 〈•〉α := V −1

α

∫
ΩRVE

• dV ,
where Vα denotes the total volume of phase α contained within the domain
ΩRVE of a Representative Volume Element. Furthermore, the filter velocity
or Darcy velocity is defined q = 〈u〉, where the volume-averaging operator
〈•〉 = V −1 ∫

ΩRVE
• dV applies to the total volume V of ΩRVE. A static solid

skeleton implies u = 0, ∀x ∈ Ωs such that q = φwf = φvf, where φ := Vf/V has
been taken into account.

In the context of continuum-mixture theory, Darcy’s law can be derived based
on the coarse-grained balance of linear momentum of the pore-fluid which, assum-
ing 1. incompressible phases, 2. quasi-static processes absent of inertia forces and
3. viscous shear stresses in the fluid much smaller than the viscous momentum
exchange between pore fluid and solid skeleton [55, 90], reduces to

φ grad p = φ%b + p̂f
neq. (4.1)

The non-equilibrium momentum interaction p̂f
neq between pore-fluid and solid

skeleton accounts for viscous skin friction forces that arise due to relative move-
ment of fluid and solid phase. A suitable constitutive equation remains to be
introduced for p̂f

neq. The defining assumption underlying Darcy’s law is that
p̂f

neq ∝ wf and, as a result, p̂f
neq ∝ q. As demonstrated in the above references,

close to thermodynamic equilibrium, the latter assumption can be written

p̂f
neq = −φµ

kI
q, (4.2)

where the intrinsic permeability kI is introduced as a proportionality factor
that solely depends on properties of the solid skeleton. Substituting Eq. (4.2)
into Eq. (4.1), Darcy’s law is obtained in the well-anticipated form

q = −kI
µ

(grad p− %b) = kI
µ

J, (4.3)

where J := − (grad p− %b) is referred to as external driving force. Assuming
kI a scalar-valued material property, Eq. (4.3) implies that the filter velocity is
aligned in a direction parallel to the external driving force J. For porous materials
with an anisotropic pore-space, on the other hand, Darcy’s law is written q =
− 1
µkI ·J, where kI denotes the second-order intrinsic permeability tensor. Since

cubic lattice-based microstructures exhibit isotropy, the assumption kI = kII is
considered reasonable. For the present benchmark problem, flow of the pore-
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fluid is driven entirely by a volumetric acceleration b = −ge1 which implies that
q = q1e1 = φ〈u〉f = φ〈u1〉fe1. Substituting these expressions into Eq. (4.3) yields

kI = µφ

%g
〈u1〉f (4.4)

for the unknown intrinsic permeability. The phase-specific volume average
〈u1〉f is evaluated using a nodal integration over the set of SPH particles xi ∈ Ωf.
Exploiting the fact that particle volumes Vi ≈ const. for quasi-incompressible
computations implies that the operator 〈•〉α turns into the arithmetic average

〈•〉α ≈ 1
Nα

∑
i:xi∈Ωα

(•)i, (4.5)

where Nα =
∑
i:xi∈Ωα 1 is the total number of particles of phase α. Hence,

we evaluate intrinsic permeabilities using

kI = µφ

%g

1
Nf

∑
i:xi∈Ωf

ui,1

as soon as we detect steady-state in the evolution of total kinetic energy. The
non-zero component of volumetric acceleration was chosen g = 0.01m/s2, which
ensured low Reynolds number flow with negligible inertia forces compliant with
Darcy’s law.

It is evident from Eq. (4.4) that only when a closed-form expression for the
steady-state velocity field is available, one may derive a closed-form expression
for kI . These expressions are only available for simple flow problems such as for
creeping flow in cylindrical tubes or between parallel plates (see section 4.1). It
is for that reasons, pore-scale resolved numerical computations are required to
compute kI for general microstructures. However, approximative, empirical or
heuristic expressions are available for certain microstructures, most notably the
Carman-Kozeny equation [38, 111]

kCK
I = D2

180
φ3

(1− φ)2 ,

which is the most widely used heuristic expression for the intrinsic perme-
ability of dense granular media comprised of near-uniform grain sizes with grain
diameter D (see Kaviany [108, § 2.4.2] and Steeb [191, Appendix A]). Numeri-
cal reference results for the present benchmark problem are available in Larson
& Higdon [119], where the governing Stokes flow equation for creeping flow has
been solved using a collocation method and Lamb’s general solution in spherical
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Figure 4.7: Simulation configu-
ration for fully immersed liquid
droplet. Black, white and gray
areas correspond to fictitious solid
phase Ωs, wetting phase Ωw and
non-wetting phase Ωn, respectively.
For further details on notation, see
caption to Fig 4.1.

coordinates [118].
We find SPH results for normalized intrinsic permeabilities kI/D2 to be in

close agreement to the numerical reference results for φ < 0.6 irrespective of
the lattice structure (Fig. 4.6). Increasing deviations are observed for porosi-
ties φ > 0.6, where SPH results consistently overestimate permeabilities. We
recall that the numerical resolution (L/dx0 = 60) is kept constant for all simula-
tions. We therefor argue that deviations occur due to the fact that solid surfaces
are represented by a prohibitively small of amount of ghost particles for large
porosities. As an example, for the simple cubic structure (SC) and a porosity of
φ = 0.8, solid spheres are discretized by six particles over the length of the sphere
diameter. For the given numerical resolution, however, permeabilities below the
close-touching limits are reproduced with satisfactory accuracy. Given the fact
that computations below the close-touching limits are more challenging due to
the singularities that exist at the sphere contacts, we conclude that these results
motivate the use of SPH with respect to flow in complex geometries. We further
note that the Carman-Kozeny equation constitutes an excellent approximation
for FCC structures below and close to the close-touching limit.

4.4 Fully immersed liquid droplet

A single, square-shaped fluid droplet of side length L is initially suspended in
the center of a surrounding fluid, with the total fluid domain being bounded
by fictitious ghost particles (Fig. 4.7). During simulation, the system is free to
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equilibrate in the absence of volumetric acceleration b = 0. The simulation is
terminated as soon as fluctuations in total kinetic energy are small enough to
assume steady state. In equilibrium, pressure levels within both fluid phases are
constant, hence, the equilibrium capillary pressure will be equal at any point
of the interface Γwn. Following Eq. (2.77), equilibrium will consequently yield
a circular meniscus of constant curvature κwn = 1/R, where R is the radius of
the circle which parametrizes the equilibrium meniscus, and equilibrium capillary
pressure peq

C .
The capillary pressure peq

C := pneq − pweq = σwnκwn is independent of fluid
density and dynamic viscosity, which are chosen to be %n0 = %w0 = 1000 kg/m3

and µn = µw = 0.001 Pa s for the sake of computational efficiency. The interfacial
tension is set to σwn = 0.01 N/m in all simulations. Due to the absence of contact
lines, the results are independent of the values of σws and σns, which are set to
zero. Both fluid phases are modeled to be quasi-incompressible such that the
volume of the suspended fluid droplet is required to be conserved, which implies
that the equilibrium meniscus radius R = L/

√
π. The characteristic length scale

is chosen to be Lref = R in Eq. (3.68), whereas Uref is chosen to be zero stating
that advection is not predominant. Initial particle velocities are set to u0,i = 0.

We study the capability of the numerical model to reproduce equilibrium pres-
sure profiles and meniscus shapes for two choices of the kernel W ∈ {Wq,Ww},
and various values of the initial particle spacing dx0, which we measure in terms
of the ratio R/dx0. Irrespective of the choice of W , equilibrium pressure pro-
files are accurately reproduced for R/dx0 = 16, except in close vicinity to the
interface where a smooth transition of particle pressures, rather than a localized
pressure jump, is observed (Fig. 4.8). As indicated in section 2.3, the latter is a
natural consequence of using numerically diffuse interfaces. The numerical width
of interfaces scales with the size of the smoothing kernel compact support kh and,
consequently, with dx0. Pronounced differences in particle distributions can be
observed between simulation results based on the quintic kernel Wq, where the
well known pairing instability [51, 174] (see section 3.3) can be observed, and the
Wendland kernel Ww, where homogeneous, glass-like distributions are observed.

The pairing instability is observed to induce local errors in the direction of
the immersed interfacial forces F̃Si ∝ nwn, which seem negligible when using the
Wendland kernel Ww. The latter motivates a quantitative analysis of numerical
errors with respect to the numerical estimates of equilibrium capillary pressure.
We employ two different approaches for computing capillary pressure, the first
of which is based on the difference in volume averaged fluid phase pressures such
that

P va
C ≡

1
Vn

∫
Ωn

pndv − 1
Vw

∫
Ωw

pwdv ≈ 〈pi〉n − 〈pi〉w, (4.6)
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Figure 4.9: Relative errors in numerical estimates P va
C and P sa

C of equilibrium cap-
illary pressure P eq

C plotted as a function of numerical resolution R/dx0. L = 1mm
in all cases. The relative error is defined to be ε(•) = 1 − (•)exact/(•)est., where
(•)exact and (•)est. represent exact solution and numerical estimate, respectively.

where the operator 〈•〉α denotes the phase-specific arithmetic particle aver-
aging operator as defined in Eq. (4.5). Furthermore, Vα =

∫
Ωα dv is the total

volume occupied by fluid phase α. We denote the volume-averaged capillary
pressure with a capital letter PC . In equilibrium, however, the pressure fields are
homogeneous and thus P eq

C = peq
C .

The second approach for computing capillary pressure is based on the inter-
facial average of the interfacial force density and reads

P sa
C := 1

Awn

∫
Γwn

σwnκwnda (2.61)= 1
Awn

∫
Ω
σwnκwnδwndv

(2.68)= 1
Awn

∫
Ω
‖fwn‖dv

(3.62)
≈ 1

Awn

∑
i:xi∈Ω

‖F̃S,wn
i ‖,

where the total interfacial area

Aαβ =
∫

Γαβ
da (2.61)=

∫
Ω
δαβdv

(3.62)
≈

∑
i:xi∈Ω

‖gradi Cαβ‖Vi
(3.40)
≈

∑
i:xi∈Ω

‖gradi Cαβ‖
1
ni

(4.7)
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Figure 4.10: Equilibrium capillary pressure estimates P av
C and P sa

C as a function
of equilibrium droplet radius R. The exact solution is represented by the solid
line. R/dx0 = 16 in all cases. Largest relative error with respect to P av

C is 9.1%,
whereas the largest relative error with respect to P sa

C is 2.3%.

of the interface Γαβ is computed by exploiting the property (2.61) of the
surface Dirac distribution. The measures P va

C = P sa
C = P eq

C only in equilibrium
and in the absence of numerical errors. Non-equilibrium pressure fields affect the
magnitude of P va

C , whereas non-equilibrium meniscus shapes affect the magnitude
of P sa

C .
Relative errors in P va

C linearly decrease with increasing numerical resolution
for both, Wq andWw (Fig. 4.9), which is predominantly because the width of the
diffuse interface decreases with increasing resolution: For small values of R/dx0,
the number of interfacial particles located within the diffuse interface is large
enough to render the volumetric averaging of bulk phase pressures error-prone.
A simple remedy would be to exclude interfacial particles in the computation of
the arithmetic means in Eq. (4.6). However, in practical applications the number
of bulk phase particles will be orders of magnitudes larger as compared to the
number of interfacial particles. Errors in P va

C are consistently smaller using Ww

because of the size of kernel compact support kh = 3.4 dx0. Consequently, the
width of the diffuse interface is smaller for Ww as compared to Wq, for which
kh = 4.35 dx0 (see section 3.3).

Relative errors in capillary pressure estimates based on the interfacial aver-
age P sa

C are well-below 1% for the tested set of simulation parameters, despite
the pairing instability of Wq. The latter implies that errors in P va

C are solely
due to the underlying averaging procedure rather than a lack of numerical accu-
racy. The interfacial average based capillary pressure P sa

C is considered to be the



4.5. LAYERED CO-CURRENT FLOW BETWEEN PARALLEL PLATES107

Figure 4.11: Initial simulation configuration (2-
dimensional) for layered co-current flow. Black, white
and gray areas correspond to fictitious solid phase Ωs,
non-wetting phase Ωn and wetting phase Ωw, respectively.
For further details on notation, see caption to Fig 4.1.

preferable method to estimate equilibrium capillary pressure in cases where the
total computational domain is small enough such that the number of interfacial
particles and bulk phase particles are in the same order of magnitude. Other-
wise, the volumetric average based capillary pressure P va

C is preferred for reasons
of computationally efficiency.

In order to ensure modeling accuracy with respect to equilibrium pressure
profiles across all microscopic length scales of relevance in this contribution
(10 µm− cm), simulations are performed for various values of the equilibrium
droplet radius R while keeping the resolution R/dx0 = 16 unchanged. Numeri-
cal results indicate acceptable margins of numerical error across relevant length
scales (Fig. 4.10).

4.5 Layered co-current flow between parallel plates

The flow of two immiscible fluids in layered arrangement between parallel plates
is driven by a volumetric acceleration b = ge1. The plates are separated by a
distance 2L = 1 mm. The computation domain is periodic in direction of e1 and
bounded by ghost particles that represent the static and impermeable plates in
direction of e2. No-slip is modeled for X2 = ±L. The wetting phase, occupying
the region A ≤ |X2| ≤ L, is attached to the upper and lower plates, while the
non-wetting phase occupies the central region 0 ≤ |X2| ≤ A (Fig. 4.11). Hence,
the saturations
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Sα := Vα
Vw + Vn

≈ Nα
Nw +Nn

for α ∈ {n,w} reduce to Sw = A/L and Sn = (L−A)/L. We study equilibrium
velocity profiles in direction of e2 and relative permeabilities of each phase as a
function of saturations and dynamic viscosity ratio M := µn/µw. In the case of
laminar flow, closed-form solutions for equilibrium velocity profiles and relative
permeabilities are available [210]. The closed-form solution for the velocity profile
reads

U1(X2) =


g%n0
2µn

[
A2 − (X2)2]+ g%w0

2µw

[
L2 −A2] , if 0 ≤ |X2| ≤ A

g%w0
2µw

[
L2 − (X2)2] , if A ≤ |X2| ≤ L.

If the total fluid domain between the plates is considered to be saturated by a
single fluid phase α, the closed-form mean velocity in direction of e1 for laminar
flow driven by volumetric acceleration of magnitude g reads UαM,1 = L2%αg/(3µα).
We subsequently set the characteristic velocity Uref = max

{
Uw
M,1, U

n
M,1
}
and the

characteristic length scale Lref = 2L in evaluating Eq. (3.68). The effects of
viscous coupling at the interfaces, with respect to which we intend to validate
the numerical model, are most pronounced in the case of viscosity-dominated flow
and we set g = 0.1 m/s2, which drives creeping flow with a maximum Reynolds
number Remax < 1, where

Remax := max {%n0 , %w0 }UrefLref

min {µn, µw}
.

Since the equilibrium solutions are independent of capillary effects, we set
σwn = σws = σns = 0. Initial densities are given as %n0 = %w0 = 1000 kg/m3.
Simulations are performed for a set of viscosity ratiosM = {0.01, 0.1, 10.0, 100.0}
by appropriate choices of the dynamic viscosities µn and µw, which are chosen in
a range 10−4 Pa s < µα < 10−1 Pa s. Initial particle velocities are set to u0,i = 0
and steady-state is detected in the evolution of total kinetic energy. The initial
particle spacing dx0 is chosen such that the ratio 2L/dx0 = 45.

The relative permeability with respect to flow of fluid phase α in direction
of e1 is introduced as the ratio kr,α(Sα) = Qα1,S(Sα)/Qα1 , where Qα1,S is the
volumetric flow rate of fluid phase α through the region it occupies at a given
saturation Sα, whereas Qα1 is the volumetric flow rate of fluid phase α if it was
to saturate the total fluid domain, i.e. for single phase flow. For the given two-
dimensional simulation setup, relative permeabilities can be reduced to ratios of
volumetric flow rates per unit of length and are subsequently computed as
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Figure
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kr,n = A〈Ui,1〉n

LUn
M,1

, kr,w = (L−A)〈Ui,1〉w

LUw
M,1

. (4.8)

Note that in Eq. (4.8), volumetric flow rates per unit of length are replaced by
products of mean velocities and layer thicknesses and the phase-specific averaging
operators are defined in Eq. (4.5). Following Yiotis et al. [210], closed-form
expressions for relative permeabilities as a function of non-wetting saturation are
given by

kr,n = Sn

[
3
2M + S2

n

(
1− 3

2M
)]

,

and

kr,w = 1
2 (1− Sn)2 (2 + Sn) .

The numerical model accurately accounts for viscous coupling at interfaces
for both, Ww and Wq, such that equilibrium velocity profiles and relative perme-
abilities are reproduced within acceptable margins of numerical error (Figs. 4.12
- 4.13). The largest encountered relative errors with respect to relative perme-
abilities are in the order of 40% and appear for very low and very high values of
Sn. The latter is a natural consequence of the fact that velocity profiles exhibit
locally large spatial gradients for extremal values of Sn. As the numerical resolu-
tion is kept unchanged throughout all simulations, a higher number of particles is
expected to increase accuracy in these cases. On the other hand, relative errors
with respect to relative permeabilities are below 7% in the range 0.2 < Sn < 0.8
for the given numerical resolution and for all tested values of M . Numerical
results further reveal the well-known lubrication effect [152], by which kr,n is
rendered greater than 1 in a certain range of Sn for M > 1. Accurate modeling
of co-current laminar flow is crucial with respect to flow in porous media when
lubricating wetting films are present as encountered in chapter 6.

4.6 Capillary rise between parallel plates
Two parallel solid plates, vertically aligned along the direction of e2 and with
the inner perimeters being separated by a narrow gap width D = 10 mm, are
brought in contact with a wetting liquid reservoir (Fig. 4.14). The parallel plates
are represented by fictitious ghost particles and the plate thickness is chosen to
be twice the compact support radius such that fluid particles on either side of
the plates do not spuriously interact with each other. The height of the wetting
fluid reservoir is 25 mm, while the remainder of the total fluid domain is occupied
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Figure 4.14: Initial
simulation configu-
ration for capillary
rise between parallel
plates. For further
details on color coding
of bulk phases in
schematic, see caption
to Fig 4.11.

by particles of the non-wetting phase. The computation domain is bounded by
fictitious ghost particles in e2 direction and periodic in e1 direction. The gap
width D is chosen to be the characteristic length scale Lref = D in Eq. (3.68),
whereas Uref is chosen to be zero following the argument given in section 4.4. A
gravitational acceleration b = −g e2 acts and the system is free to equilibrate
during simulation until steady-state is detected in the evolution of total kinetic
energy.

For the sake of clarity, we differentiate between the portion of the menis-
cus which is located in the gap region and the portion of the meniscus of the
reservoir region in referring to them as gap meniscus and reservoir meniscus,
respectively. Along the direction of e2, the equilibrium pressure profile in the
gap region between the parallel plates is piecewise linear (hydrostatic pressure),
exhibiting a jump at points of the gap meniscus. The total curvature of the
gap meniscus depends, unlike the total curvature of fully immersed droplets, on
the equilibrium contact angle Θeq, as the presence of contact lines influences the
shape of the meniscus. The equilibrium gap meniscus is assumed to be of con-
stant total curvature given that the variation of hydrostatic fluid pressure due
to gravity along the curved meniscus is small, rendering the equilibrium pressure
difference pn− pw approximately equal at all points of the gap meniscus. Hence,
the gap meniscus is of circular shape and parameterized by a circle of radius
R = 1/κwn = D/(2 cos Θeq) (Fig. 4.15), which leads to
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Figure 4.15: Schematic diagram of a
meniscus located between two parallel
plates that are separated by a narrow
gap width D, introducing minimum
and maximum capillary rise heights
Hmin and Hmax, respectively. Hmin
andHmax are measured with respect to
the reference height Href of the reser-
voir.

peq
C = 2σwn cos Θeq

D
. (4.9)

The width of the reservoir is chosen to be an order of magnitude larger as
compared to the gap width, which, together with periodicity in e1 direction,
results in near zero mean curvature of the reservoir meniscus. The equilibrium
pressure jump at points of the reservoir meniscus is consequently assumed zero
and the mean reference height Href of the wetting liquid reservoir is introduced.

The interfacial pressure jump across the gap meniscus is the driving force
for the wetting liquid to penetrate the gap region. The spontaneous process of
wetting liquid penetration is referred to as capillary rise and ends as soon as
the difference in mean hydrostatic pressures between points of the gap meniscus
and points of the reservoir meniscus counterbalances the interfacial pressure jump
peq
C . Hence, the equilibrium mean capillary rise height, often referred to as Jurin’s

height, reads

Heq = 2σwn cos Θeq

(%w0 − %n0) gD .

We emphasize that Heq is a measure of the mean height [35] of the equilib-
rium gap meniscus with respect to the reference level Href of the wetting liquid
reservoir. In the context of analyzing fully resolved simulation results it is con-
venient to introduce the lowest point Heq

min of the equilibrium gap meniscus. A
geometric analysis of the circle segment (see Fig. 4.15) yields

Heq
min = Heq − 1

2∆Heq = Heq − 1
2

(
R−

√
R2 − D2

4

)
.

The numerical prediction of the lowest point Heq
min is subsequently measured

as the difference between the smallestX2 coordinate among the set of non-wetting
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particles located in the gap region and the reference heightHref . We study the ca-
pability of the numerical model to reproduce Heq

min and equilibrium gap meniscus
shape for two choices of the kernel W ∈ {Wq,Ww}, and for various values of the
initial particle spacing dx0, which we measure in terms of the ratio D/dx0. In all
capillary rise simulations, the fluid parameters are chosen to be %n0 = 10 kg/m3,
%w0 = 100 kg/m3 and σnw = 0.01 N/m; while g = 0.5 m/s2. Since the equilib-
rium solution is independent of dynamic viscosity, we set µn = µw = 0.001 Pa s
for simplicity. Simulations are performed for a set of equilibrium contact an-
gles Θeq ∈ {15◦, 30◦, 45◦, 60◦, 75◦}. It is σnw as well as the difference between
the interfacial tensions σws and σns which scales the magnitude of Θeq. Hence,
we choose σws = 0 for the sake of computational efficiency and subsequently
σns = σnw cos Θeq following Young’s equation (2.86). Initial particle velocities
are set to u0,i = 0.

Temporal evolutions of Hmin exhibit equilibrium states for t > 2 s (Fig. 4.16).
Inertial effects in the dynamic evolution of Hmin are less pronounced as compared
to typical laboratory experiments [215], where air constitutes the non-wetting
phase, because the non-wetting phase viscosity introduces a considerable amount
of damping.

Irrespective of the choice of the kernel W , equilibrium meniscus shapes are
accurately reproduced for all tested values of Θeq. The numerically predicted gap
meniscus is observed to exhibit a mere vertical shift with respect to the curve,
that parametrizes the exact gap meniscus for both, Θeq = 15◦ and Θeq = 75◦
(Fig. 4.16). The latter indicates that the numerical model adequately accounts
for equilibrium effects at contact lines. Consequently, the analysis of numerical
errors can be restricted to the analysis of errors in the numerical estimates of
Heq

min. Relative errors with respect to Heq
min decrease with increasing resolution

D/dx0 for all tested values of Θeq. Errors are consistently smaller using the
quintic kernel Wq as compared to Ww (Fig. 4.17), which underlines the often
asserted interpolation accuracy of the quintic kernel [98]. For Θeq < 45◦ and the
highest considered numerical resolution, relative errors are below 5% using Wq

and below 10% using Ww (Fig. 4.17, top). However, relative errors are observed
to be increasingly sensitive to the magnitude of Θeq for D/dx0 > 25, yielding
upper bounds of ε(Heq

min) as large as 18% for Θeq = 75◦ (Fig. 4.17, bottom).
In an attempt to interpret the latter effect we analyze absolute errors with

respect to Heq
min. Absolute errors are observed to be comparatively insensitive to

the magnitude of Θeq for D/dx0 > 25, and respective magnitudes are close to
the compact support size kh (Fig. 4.18). We conclude that numerical diffusivity
of the solid-fluid interfaces yields an uncertainty with respect to the gap width
D in the order of the compact support size and subsequently an uncertainty in
capillary rise heights. Relative errors are rendered large for Θeq > 60◦ since,
for the chosen simulation setup, equilibrium rise heights Heq

min and the length
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Figure 4.17: Absolute values of relative errors in numerical estimates of Heq
min as

a function of resolution D/dx0.
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Figure 4.18: Absolute values of the absolute errors in numerical estimates of
Heq

min as a function of resolution D/dx0, where results for W = Ww are omitted
for the sake of clarity. Solid blue line represents the compact support size of
the quintic kernel kh = 4.35 dx0. The absolute error is defined to be ∆(•) =
(•)exact− (•)est., where (•)exact and (•)est. represent exact solution and numerical
estimate, respectively.

scale of numerical uncertainty kh happen to be in the same order of magnitude.
Relative errors with respect to Heq

min are expected to be less pronounced for higher
resolutions and smaller gap widths D, since vertical shifts of the meniscus will
be less significant given that absolute values of Heq

min are larger for smaller values
of D.

4.7 Oscillating fluid droplet

A circular fluid droplet of the non-wetting phase Ωn with radius R = 0.2 m
is initially suspended in the center of a surrounding fluid of the wetting phase
Ωw. The total fluid domain with side lengths 6R is bounded by fictitious ghost
particles and exhibits a double symmetry in analogy to the simulation setup used
in section 4.4 and Hu & Adams [99], Morris [141]. The point of symmetry, which
is also the center of the suspended fluid droplet, is chosen to be the point of
origin. We study the small-amplitude oscillation of the centered fluid droplet in
the absence of gravitational acceleration b = 0 upon excitation due to application
of the divergence-free initial velocity field [99, 141]
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Figure 4.19: Numerical estimates of the period of oscillation as a function of
interfacial tension σwn. Solid line represents theoretical prediction according to
Eq. (4.11).

U0,1 = U0
X1

R0

[
1− X2

2
R0R

]
exp

(
− R

R0

)
,

U0,2 = −U0
X2

R0

[
1− X2

1
R0R

]
exp

(
− R

R0

)
, (4.10)

to all fluid particles, where u0,f = U0,1e1 + U0,2e2 and R =
√
X2

1 +X2
2

denotes the radial distance with respect to the point of origin. Following Hu &
Adams [99], Nugent & Posch [151], the period of small-amplitude oscillation of an
inviscid, incompressible and circular fluid of infinite extension in the out-of-plane
direction, which is embedded in a vapor phase of negligible density, reads

τ = 2π
√
R3%n0
6 σwn

, (4.11)

as predicted by Lord Rayleigh [170]. In all simulations, the initial density
of the droplet %n0 = 1.0 kg/m3 and the initial density of the surrounding fluid
%w0 = 0.001 kg/m3, which results in a density ratio %n0/%w0 = 1000 and negligible
inertial coupling effects between the fluid phases. Furthermore, the dynamic
viscosities µn = 10.0−2 Pa s and µw = 10.0−4 Pa s such that viscous coupling
effects are expected to be negligible as well. Due to the absence of contact lines,
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Figure 4.20: Close-up plots of particle positions indicating the mode of oscillation
in the upper right-hand quarter X1 > 0, X2 > 0 at times t = 0.0, t = τ/3 and
t = 2τ/3 for σwn = 0.5 N/m and W = Ww. Filled and open markers represent
particles of the droplet and surrounding medium, respectively, while the red
markers indicate the center-of-mass position of the upper right-hand quarter of
the droplet. Plot in bottom-right corner shows corresponding center-of-mass
coordinates (XC,1, XC,2) as a function of time, where the vertical dashed line
indicates the predicted value of τ according to Eq. (4.11).
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σws = σns = 0. The parameters in Eq. (4.10) are chosen as characteristic length
scale Lref = R0 = 0.05 m and characteristic velocity Uref = U0 = 10 m/s in
scaling the numerical speed of sound according to Eq. (2.20). The initial particle
spacing dx0 is chosen such that the ratio R/dx0 = 20. The numerical estimate
of the period of oscillation τ is based on the motion of the center-of-mass of the
upper right-hand quarter X1 > 0, X2 > 0 of the fluid droplet (see Fig. 4.20).

Simulations are performed for various values of the interfacial tension σwn and
results (Fig. 4.19) indicate acceptable margins of errors with respect to Eq. (4.11),
despite the fact that fluid viscosity introduces damping and amplitude decay. The
largest absolute value of the relative error |ε(τ)| is 5.3 % and 8.8 % for Ww and
Wq, respectively. We conclude that the numerical model adequately accounts for
inertial and dynamic effects.



CHAPTER 5

Transition from low to high
Reynolds number flow in

porous media

We numerically analyse fluid flow through porous media up to a limiting Reynolds
number of O(103). Due to inertial effects, such processes exhibit a gradual tran-
sition from laminar to turbulent flow for increasing magnitudes of Re. On the
macroscopic scale, inertial transition implies non-linearities in the relationship
between the effective macroscopic pressure gradient and the filter velocity, typ-
ically accounted for in terms of the quadratic Forchheimer equation. However,
various inertia-based extensions to the linear Darcy equation have been discussed
in the literature - most prominently cubic polynomials in velocity. The numerical
results presented in this contribution indicate that inertial transition, as observed
in the apparent permeability, hydraulic tortuosity and interfacial drag, is inher-
ently of sigmoidal shape. Based on this observation we derive a novel filtration law
which is consistent with Darcy’s law at small Re, reproduces Forchheimer’s law
at large Re and exhibits higher order leading terms in the weak-inertia regime.

5.1 Motivation
In the creeping flow or Stokes regime, the linearity

−Jd1 := ∂

∂X1
p− %g = − µ

kI
q1 (5.1)
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between the driving force J and the filter velocity q, i.e. Darcy’s law [14], is
well established. The constant of proportionality kI

[
m2] is the intrinsic perme-

ability and a scalar-valued material property for homogeneous isotropic porous
media. As apparent in Eq.(5.1), we restrict ourselves to macroscopically unidi-
rectional flow, where components of J = J1e1 and q = q1e1 are non-zero only in
direction e1. The total driving force J1 is comprised of the macroscopic pressure
gradient as well as an additional volumetric force to account for gravitational
acceleration b = ge1. The usual notation for density % and dynamic viscosity µ
is adopted.

The most prominent extension to Darcy’s law in order to account for effects
of inertia dates back to Forchheimer [72] and considers a quadratic polynomial
in q, which, in its modern form due to Ward [205], reads

−Jq1 := ∂

∂X1
p− %g = − µ

kI
q1 −

%cF√
kI
q2
1 . (5.2)

The non-dimensional coefficient cF to the quadratic term is referred to as
Forchheimer coefficient. The range of validity of Eq.(5.2) remains however an
issue of ongoing discussion. It is commonly being reported that the Forch-
heimer equation consistently overestimates pressure gradients in the so-called
weak-inertia regime O(10−1) < Re < O(101), where Re is based on the aver-
age velocity and a microscopic length scale depending e.g. on the grain size.
In particular, various numerical, [e.g., 4, 71, 133, 147, 175], as well as experi-
mental studies, [e.g., 116, 188], articulate the use of a leading cubic term in the
weak-inertia regime in the form of

−Jc1 := ∂

∂X1
p− %g = − µ

kI
q1 −

%2ζ

µ
q3
1 , (5.3)

with ζ being a material dependent fitting coefficient. Others have used non-
constant Forchheimer coefficients cF = cF (q) to account for higher-order contri-
butions, [e.g., 44, 130]. Clearly, the mismatch of the leading terms in Eqs. (5.2)
and (5.3) underline a controversy. Using the method of homogenization Balhoff
et al. [8] showed that the extension to Darcy’s law in the weak-inertia regime
has to be considered an infinite series polynomial in filter velocity, which, in the
case of microstructures exhibiting isotropy and symmetry in their periodic units,
reduces to a cubic polynomial. Considering the fact that flow processes involving
effects of weak-inertia are of relevance in many natural, e.g. transitional flow at
interfaces between a free flow domain and a porous domain or double-porosity
flows in fractured reservoirs, and various technical applications, e.g. flow in cat-
alytic converters, it is of decisive scientific interest to find a general solution for
this hydraulic problem.

We state the motivation for this chapter as threefold. We numerically ana-
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lyze flow phenomena on the scale of the pore network throughout six decades
of Reynolds numbers covering the coarse-grained Darcy flow regime, the weak-
inertia regime and the strong-inertia regime up to the limit where we observe
the onset on non-steady solutions. We thereby characterize effective macroscopic
flow properties based on various well established transport coefficients such as the
filter velocity, apparent permeability, hydraulic tortuosity and total drag force.
We discuss a strong correlation between the latter variables which is, to the best
of our knowledge, yet unreported.

A further aspect of this contribution is the use of the mesh-free Lagrangian
method Smoothed-Particle Hydrodynamics (SPH) [136] to assess effective trans-
port properties of porous materials with focus on its potential application in
digital rock physics. In this context, we compare the predictive capabilities of
SPH with respect to established numerical methods. For the latter benchmark
purpose, we base our study on a fibrous porous material which is well examined
in the literature, e.g. in Narváez et al. [147].

5.2 Methods

We implement a Smoothed Particle Hydrodynamics (SPH) [136] model to sim-
ulate pore-scale resolved flow through fibrous porous media as outlined in chap-
ter 3. For validation purposes, the computational domain is chosen in analogy
with Narváez et al. [147] (see Fig. 5.1). The fibers have a circular cross section
with radius r and are aligned in parallel, such that our computation can be re-
duced to two dimensions and to flow in a transverse direction only. Furthermore,
the fibers are randomly distributed with a constraining minimum pore throat size
of r/2. The porosity, defined as the ratio of total pore space volume VF to total
volume V , is φ = 0.6373.

The saturand is considered to be a Newtonian fluid and its governing conser-
vation equations for mass and momentum are Eq. (2.11) and Eq. (2.28), respec-
tively. As outlined in section 2.1.4, we consider a barotropic fluid and thus model
the local microscopic pressure p as a function of density in terms of a stiff equation
of state. The numerical speed of sound chosen large enough such that density
fluctuations relative to the initial fluid density %0 can be neglected. ote that the
macroscopic filter velocity q is related to the local fluid velocity u = u1e1 +u2e2
in terms of an average of u with respect to the total volume V . We introduce
the volume average operator 〈•〉 = V −1 ∫

V
• dV and state concisely q = 〈u〉.

Flow is driven by a volume force applied in direction of the unit vector e1, i.e.
b = ge1, which, for the isotropic material at hand, implies that q is unidirectional,
i.e. q = q1e1. Fixing the local fluid properties %0 and µ in all simulations, the
microscopic length scale based Reynolds number Re = %0‖q‖r/µ is varied by the
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Figure 5.1: Computational domain proposed by Narváez et al. [147]. The domain
is periodic in both e1 and e2 direction and the domain dimensions satisfy S2 =
0.4 S1. The external force is applied in e1 direction. The fiber count equals 266.
The centered dark gray area corresponds to the subdomain for which streamlines
are shown in Fig. 5.4. Integration points are initially set up on a Cartesian lattice
with 1280 and 512 points in e1 and e2 direction, respectively.

choice of g. The characteristic velocity ‖q‖ is the magnitude of the filter velocity
and ‖ • ‖ indicates the L2 norm. Periodic boundary conditions are applied in e1
and e2 direction with respect to facing edges. Additionally, the crucial no-slip
and no-penetration boundary condition (2.26) is applied on the solid surfaces.
Thus defined boundary value problem is completed by the initial conditions for
velocity u(t = 0) = 0 and density %(t = 0) = %0.

A detailed description of the numerical scheme is available in chapter 3. How-
ever, we recall relevant key properties of SPH herein. SPH is a Lagrangian method
which implies that the integration positions xi, also referred to as particles, follow
the trajectories of Newton’s equation of motion ẋi = ui. This comes with the
advantage that, in contrast to Eulerian methods, the non-linear convective term
gradu · u is not required to be modeled, which makes SPH comparatively stable
at high Re. As outlined in section 3.5, the discrete nodal motion equation for
single-phase flow reads

miu̇i =
∑

j:xj∈Ωi

FVij −
∑

j:xj∈Ωi

FPij + FGi

Note how the pressure and viscosity terms in Eq. (2.28) are turned into a
summation of inter-particle forces due to local pressure variations FPij and local
velocity gradients FVij acting between a particle i and its short-range neighboring
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particles j : xj ∈ Ωi that are located within the compact support domain Ωi of
the smoothing kernelW centered at point xj . The derivation of the inter-particle
accelerations is documented in section 3.5. We may evaluate the total resultant
force exerted by the pore fluid on the solid-skeleton surfaces in terms of

FD =
∑

i:xi∈Ωs

∑
j:xj∈Ωf

FPij︸ ︷︷ ︸
FD
P

+
∑

i:xi∈Ωs

∑
j:xj∈Ωf

FVij︸ ︷︷ ︸
FD
V

(5.4)

which stems from the summation of inter-particle forces acting on stationary
particles i of the solid domain Ωs. Following common terminology, the component
FD1 of the total resultant force acting in direction of the filter velocity is called
drag force. In analogy to Eq. (5.4), we additively split the total drag force into
the inertia force induced form drag FDP,1 and the viscous shear force induced skin
friction FDV,1. The component FD2 acting perpendicular to the unidirectional filter
velocity fluctuates around zero.

5.3 Results
For the purpose of data validation, we compare our results of the apparent per-
meability kA := µq1/%0g to results previously published in Narváez et al. [147].
The expression for kA is derived using the linear Darcy Eq. (5.1) for volume force
driven unidirectional filtration, which implies that kA = kI only in a limited
range of small Re. The data presented in Fig. 5.2 shows that the predictive ca-
pability of the SPH model is comparable to the lattice Boltzmann model (LB)
and the finite-element model (FEM) used in Narváez et al. [147]. The peak rel-
ative difference in kA between all methods is of the order of 3 %, which is due
to numerical discretization. Even though Narváez et al. [147] restrict their anal-
ysis to a maximum Re of order 50, we do not question the validity of our data in
regimes of larger Re arguing that a careful choice of the numerical speed of sound
c will ensure Mach numbers Ma = q1/c well below 0.1 as shown in the inset to
Fig. 5.2. Artificial compressibility effects are thus considered negligible. In fact,
the largest encountered density variation ∆% relative to the reference density %0
is of the order of 5 %, which ensures compliance to the quasi-incompressibility
constraint.

The onset of non-Darcy flow at Re ≈ 1 is observed in terms of an increasing
deviation of kA from the upper asymptote kI as shown in Fig. 5.2. Furthermore,
the dependence of kA on Re is observed to possess a sigmoidal character with
a lower asymptote being reached at Re ≈ O(103). The latter observation is
supported by the numerical work of Chaudhary et al. [40], who document an
asymptotic behavior of kA for Re > 450, and the experimental study of Barree
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Figure 5.2: Dependence of the non-dimensional apparent permeability on Re
as predicted by our SPH calculations compared to reference results for the same
pore-space morphology published in Narváez et al. [147]. Non-dimensionalization
was performed with respect to the cross-sectional fibre radius r. The inset shows
the filter velocity based Mach number.

& Conway [12].
Despite the fact that kA does highlight the nonlinearity of the effective hy-

draulic conductivity, it is typically the relationship between the macroscopic ex-
ternal driving force J1 and the filter velocity q1 which is of interest in light of
effective filtration models. Hence we focus on Fig. 5.3 and observe the well docu-
mented gradual transition of J1 from a linear dependence on q1 for Re < O(100)
to a purely quadratic dependence on q1 for Re > O(103). While the latter ob-
servation is confirmed in various experimental studies [e.g., 27, 61], the use of
pore-scale resolved simulations enables the analysis of the correlation between
macroscopic effects in terms of J1 (filled circles) and microscopic mechanisms in
terms of the total drag force FD1 (open circles).

The fact that both data sets superimpose in Fig. 5.3 implies that macroscopic
nonlinearities are solely caused by the apparent nonlinearity in the drag forces,
which confirms results of the dimensional analysis conducted by Hassanizadeh &
Gray [90]. J1 is proportional to F1 over the entire range of Re with a constant
proportionality factor having a unit of volume. We therefore interpret each term
on the right-hand side of the filtration Eqs. (5.1)-(5.3) as averaged microscopic
drag per unit of volume.
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Figure 5.3: Dependence of the total microscopic drag force FD1 [N], skin friction
component FDV,1 [N] and macroscopic external driving force J1

[
N/m3] on Re and

the filter velocity q1 [m/s]. A set of curves scaling either with Re or Re2 are
plotted to indicate scaling properties of FD1 and J1.

We further analyze the nonlinearity of FD1 in terms of its additive decom-
position introduced in Eq. (5.4). The skin friction due to viscous shearing, i.e.
the component FDV,1, scales approximately linearly in q1 throughout the analyzed
range of Re. While FDV,1 considerably contributes to the total drag FD1 in the
linear regime, we can practically neglect its contribution in the pure quadratic
regime where the magnitudes of FDV,1 and FD1 differ by more than one order.
Clearly, the effects of inertia that we measure in terms of the form drag com-
ponent FDP,1 lead to the nonlinearity of FD1 and therefore cause the apparent
nonlinearity of J1. The latter observation agrees well with the common under-
standing of non-Darcy flow at high filter velocities, in which the nonlinearities
are attributed to the effects of inertia [e.g., 106].

In an attempt to characterize inertial transition in terms of the microscopic
flow field, we analyze the streamlines to the steady-state velocity fields as shown
in Fig. 5.4. The subdomain depicted in Fig. 5.4, which corresponds to the dark
gray area in Fig. 5.1, is considered large enough to be representative of the entire
computation domain. We can clearly highlight that from the onset of inertial
transition at Re ≈ 1, the simultaneous and strongly interrelated processes of
streamline rectification in direction of the applied external force, flow tube nar-
rowing, flow separation and the formation and augmentation of wake eddies take
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place [see 9, 40]. In the Darcy regime, the irrotational flow is fully attached and
viscous dissipation can be attributed to the presence of shear boundary layers
adhering to solid surfaces Γfs. From the onset of flow separation, the flow can
no longer be considered irrotational since wake eddies are present. Due to the
increase of the local velocity gradient, recirculation in eddies causes further vis-
cous dissipation in free shear layers, which separate irrotational flow from the
rotational flow [189].

We quantify the observation of streamline rectification with use of the so-
called hydraulic tortuosity T . We note that the definition of T is rather ambigu-
ous in literature [c.f., 60]; however, we adopt the most common definition of T in
terms of the ratio of the mean streamline arc length 〈La〉 to the mean length of
streamlines projected onto the direction of filtration 〈L1〉. It can be readily de-
duced that T ≥ 1. We stress the fact that streamlines living in recirculation zones
do not contribute to the effective hydraulic conductivity and are thus considered
dead space as seen from the perspective of a macroscopic observer. We therefore
exclude rotational streamlines in the computation of the hydraulic tortuosity T
based on the simple argument that no segment of the streamline should point
in negative e1 direction. Despite the fact that the latter argument successfully
allows the differentiation between conductive irrotational streamlines (red) and
eddy streamlines (black) as shown in Fig. 5.4, it is not of general validity, e.g.
in cases of microscopic non-uniformity. In order to confirm the validity of our
data for 〈La〉/〈L1〉 presented in Fig. 5.5, we further compute the upper-bound
estimate TM ≥ T which is due to Duda et al. [60]. TM is defined as the ratio
of the mean velocity magnitude 〈‖u‖〉 to the mean velocity in filtration direction
〈u1〉.

The dependence of T on Re is sigmoidal, having two asymptotes in the regimes
Re < O(100) and Re > O(103) as shown in Fig. 5.5. The upper asymptote is
referred to as the diffusional tortuosity Tmax and solely depends on the pore-
space morphology, since it is an intrinsic property of the porous skeleton for any
fully attached Stokes flow. Bo-Ming & Jian-Hua [23] comprehensively show that
Tmax can be estimated by means of geometric considerations only. Duda et al.
[60] document that TM = T = Tmax in the limit of low Re where the absence
of eddies is expected, which otherwise have a positive contribution to TM . Our
data confirms the latter assumption within the margins of numerical uncertainty.
Focusing on the lower asymptote Tmin, Fig. 5.5 indicates that the magnitudes
of TM and T can be considered fairly independent of Re. We argue that the
existence of a lower asymptote to T must hold for steady flow, since the process of
streamline rectification will be truncated by the imposed no-penetration condition
on the interface Γfs. We stress the fact that the latter argument will only hold
for steady flow, since we expect an increase of local streamline curvature in non-
steady flow, e.g. due to vortex shedding. We conclude that Tmin, subsequently
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Figure 5.4: Subset streamline figures for various Re. Streamlines are colored
black if they live in domains of rotational eddy motion and red otherwise. Only
red streamlines contribute to the computation of the mean hydraulic tortuos-
ity. Hence, we evaluate T in the irrotational flow domain only. The depicted
subdomain corresponds to the dark gray area in Fig. 5.1.
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Figure 5.5: Dependence of the hydraulic tortuosity T on Re and the filter velocity
q1. Upper bound estimate of the hydraulic tortuosity following Duda et al. [60]
are marked red.

referred to as inertial tortuosity, is the global minimum for T and also an intrinsic
property of the porous medium.

5.4 Discussion
The most striking result to emerge from the data discussed so far is that we
observe a strong and yet unreported positive correlation between kA, J1 and T .
Not only do we observe that kA and T possess sigmoidal characteristics, but we
also see that the points of saturation, i.e. where the upper and lower asymptotes
are reached, match. Moreover, the very same saturation points Re ≈ O(100)
and Re ≈ O(103) are observed to be the bounds within which inertial transition
as apparent in J1 occurs. As previously discussed, the Darcy linearity holds for
Re < O(100) while the pure quadratic dependence holds for Re > O(103). The
latter observation implies a correlation of kA and T with the rate of J1. In an
attempt to meaningfully analyze our observation, we introduce the normalization
operator

n[0,1] (f) := f −min (f)
max (f)−min (f) , (5.5)
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Figure 5.6: Various macroscopic variables normalized according to n[0,1] show a
strong correlation with the logistic sigmoid function. The best fitting values with
respect to Eq. (5.4) are γ = 1.1475 and qi1 = 2.39 · 10−3m/s.

which rescales f to be bounded between 0 and 1. The results for n[0,1] applied
to kA, T and the logarithmic derivative, or apparent exponent, −d log10 J1/d log10 q1
are shown in Fig. 5.7. The logarithmic derivative is inverted in sign for compara-
tive purposes (see Fig. 5.7 for clarity). The analyzed normalizations are confirmed
to be equal with high certainty. Hence, we put forward the idea that inertial tran-
sition, as measured by means of the discussed macroscopic variables, qualitatively
follows the logistic sigmoid curve

n[0,1] (f) =
[
1 +

(
q1

qi1

)γ]−1

,

with fixed inflection point velocity qi1 and slope factor γ. Since qi1 and γ are
fixed, Eq. (5.5) implies that the quantitative form of a macroscopic variable of
interest can be derived by the knowledge of the corresponding upper and lower
asymptotic values only.

Consequently, our intention is to find a macroscopic filtration model J1(q1)
which satisfies Eq. (5.5) for f being the apparent exponent −d log10 J1/d log10 q1.
For this purpose, we make use of the experimentally and herein numerically
validated properties that the upper and lower asymptotes min (f) and max (f)
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to −d log10 J1/d log10 q1 are −2 and −1, respectively. Reformulation of Eq. (5.5)
thus leads to

dJ1

dq1
= J1

q1

d log10 J1

d log10 q1
= J1

q1

(
2− n[0,1]

)
. (5.6)

Direct integration of Eq. (5.6) yields the closed form solution

J1 = Cq1

[
1 +

(
q1

qi1

)γ] 1
γ

, (5.7)

where C is the constant of integration. The linearization of Eq. (5.7) for
small q1 reads J1 = Cq1 such that we can identify C to be the coefficient µ/kI
for consistency with Eq. (5.1). We finally propose the filtration law

−JS1 := ∂

∂X1
p− %g = −µ

κ
q1

[
1 +

(
q1

qi1

)γ] 1
γ

(5.8)

for macroscopically steady, fully saturated single-phase flow through porous
media based on the empirical observation that inertial transition is inherently
sigmoidal in shape.

We find that JS1 has certain intriguing properties which we discuss subse-
quently. As already pointed out, the linearization of JS1 for small q1 reduces to
the Darcy Eq. (5.1). Focusing on the bracket term [1 + (q1/q

i
1)γ ] in Eq. (5.8),

we see that Darcy linearity holds for filter velocities small enough to satisfy
(q1/q

i
1)γ � 1. Similarly, the pure quadratic dependence JS1 = µq2

1/kIq
i
1 is re-

covered if (q1/q
i
1)γ � 1. We stress the fact that both properties, which in fact

result from the presumed asymptotes in Eq. (5.6), hold for any value of γ > 0.
The proposed filtration law depends on γ only in the limited range of Re where
inertial transition takes place, the effective width of which increases for smaller
values of γ. We conclude that γ dictates the effective width of inertial transition
while qi1 shifts the onset of nonlinearity with respect to q1 and Re.
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Figure 5.7: The dependence of the apparent exponent d log10 J1/d log10 q1 on Re
and the filter velocity q1. The red curve is derived using the best fitting Forch-
heimer Eq. (5.2). The green curve is derived using the best fitting cubic transition
Eq. (5.3), with the fitting target being restricted to a maximum Re = 10. The
black curve is our postulated phenomenological logistic filtration law. Inset shows
the dependence of the logistic curve on γ with the derived Forchheimer function
(red) added for reference. Inset axes correlate exactly to the outer axes.

JS1 reduces to a quadratic polynomial function for γ = 1, which clearly im-
plies that the Forchheimer Eq. (5.2) is a special case of the proposed filtration
Eq. (5.8). The non-dimensional Forchheimer coefficient cF therefore satisfies
cF := µ/%qi1

√
kI , which passes dimensional consistency. Hence we can addition-

ally reformulate Forchheimer’s law into a form in which the coefficient qi1 to the
quadratic term allows a more accessible interpretation in terms of an inflection
point velocity, than cF .

The structural form of the proposed Eq. (5.8) is not considered a novelty, but
rather an application of the Churchill-Usagi asymptotic correlation method. Fol-
lowing Churchill & Usagi [45], if Y (X) is a physical entity describing a transport
phenomena and Y0(X), Y1(X) are known asymptotes to Y (X) for small and large
values of the independent variable X, the expression Y γ = Y γ0 + Y γ1 describes a
uniform transition between the asymptotes, with γ being a blending coefficient.
The latter expression can be reformulated to read Y = Y0[1+(Y1/Y0)γ ]1/γ which
matches our model Eq. (5.8). The Churchill-Usagi method is successfully used
in describing various transport phenomena in fluid mechanics, heat transfer and
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chemical engineering. In fact, Prieur Du Plessis [164] made use of the correla-
tion method to model inertial flow through granular porous media. By means of
volumetrically averaging the Navier-Stokes equations over a cubic periodic cell of
closely-packed spheres, Prieur Du Plessis [164] derives expressions for the total
drag force in the limit of Re → 0 and Re → ∞ assuming macroscopically lam-
inar flow. The homogenization procedure revealed that drag scales ∝ q in the
lower limit and ∝ q2 in the upper limit, which matches our numerical results.
Prieur Du Plessis [164] applies the Churchill-Usagi method to correlate the latter
asymptotes and derives an expression to cover the complete range of Re and sets
γ = 1 arguing that the experimental results of Ergun [65] indicate so.

We believe that the general validity of the condition γ = 1 for different porous
media is rather questionable in light of phenomenology, e.g. the laminar to turbu-
lent transition in straight tubes is known to be quite discrete while more gradual
in less streamlined pore-channels. The latter argument is supported by Chaud-
hary et al. [40] who emphasize that the specifics of Forchheimer flow, i.e. flow tube
narrowing and growth of wake eddies, are dependent on pore geometry. As shown
in the following, we find that it is in fact this restrictive property of the Forch-
heimer law, that several researchers observe the cubic transition Eq. (5.3) to yield
better fitting results in the so-called weak-inertia regime 100 < Re < 101 [e.g.,
4, 147, 148, 175, 188].

We evaluate the Taylor series expansion of Eq. (5.8) about q1 = 0 to analyse
the polynomial order in the weak-inertia regime. Application of the binomial
theorem yields the infinite series polynomial

−TJS1 (q1, 0) = −µ
κ
q1

∞∑
n=0

( 1
γ

n

)(
q1

qi1

)nγ
≈ −µ

κ
q1

[
1 + 1

γ

(
q1

qi1

)γ]
+ (γ − 1)O

(
q2γ+1
1

)
which shows that the extension to Darcy’s law to account for weak-inertia

increases in its polynomial order for larger values of γ. The magnitude of the
coefficients given by the binomial coefficient however diminish greatly with order
for γ > 1 which is consistent with Balhoff et al. [8].

We further fit the non-linear filtration Eqs. (5.2),(5.3) and (5.8) to our data
for J1(q1). Regarding the proposed Eq. (5.8), a further optimization is redundant
since the free parameters γ = 1.1475 and qi1 = 2.39·10−3m/s are adopted from the
logistic function shown in Fig. 5.7 and the permeability kI can be readily deduced
from kA. We keep the value of kI fixed, such that the single free parameters cF
and ζ remain to be optimized with respect to Eq. (5.2) and Eq. (5.3), respectively.
In the case of the cubic Eq. (5.3), the fitting target is restricted to a maximum
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Re = 101, since Eq. (5.3) fails in regimes of larger Re as pointed out by Narváez
et al. [147]. We find that the results can be conveniently discussed in terms of
the logarithmic derivative d log10 J1/d log10 q1 as shown in Fig. 5.7. We stress
the fact that the discrete data points are derived using a midpoint rule, which
causes a numerical scattering since the data points are not equispaced in log10 q1.
Despite the numerical uncertainty, we clearly observe that the fit to Forchheimer
Eq. (5.2) overestimates the apparent exponent of J1 in the weak-inertia regime.
The cause of which can be attributed to the fact that γ > 1 for the analyzed
porous medium as shown in the inset to Fig. 5.7. We can confirm that the fit
to the cubic transition Eq. (5.3) yields a smaller residual in the weak-inertia
regime compared to Eq. (5.2), but fails for larger values of Re. Concerning
the analyzed model material, we thus document the superiority of the proposed
logistic filtration Eq. (5.8).

5.5 Summary
We have discussed numerical results for macroscopically steady and unidirectional
flow through a rigid fully-saturated fibrous porous medium for Re up to O(103).
A strong positive correlation between apparent permeability kA, hydraulic tor-
tuosity T , total drag force FD1 and the macroscopic external force J1 is found.
Inertial transition, as apparent in the analyzed macroscopic transport coefficients,
can be conveniently modeled in terms of a logistic sigmoid function with the two
free parameters qi1 and γ. The parameter qi1 dictates the onset of inertial transi-
tion, while γ dictates the effective width of inertial transition. We derive a new
macroscopic filtration law JS1 (q1) consistent with the phenomenological observa-
tion of sigmoidal transition. It is found that JS1 (q1) can be alternatively derived
by application of the Churchill-Usagi asymptotic correlation method with the
lower and upper asymptotes to J1(q1) inherited from volumetric homogenization
or dimensional analysis, [e.g., 164, 189]. The lower asymptote for Re → 0 to
the proposed filtration law is the Darcy equation, while the upper asymptote for
Re→ O(103) is the highest order term of the Forchheimer equation. Setting the
blending coefficient γ = 1, the Forchheimer equation is found to be a special case
of JS1 (q1). The necessity of using a cubic transition equation in the weak-inertia
regime, where the Forchheimer equation is often observed to fail, is quite possibly
due to the fact that γ > 1 for certain pore-space morphologies. It is left open for
future work, to find how γ correlates to geometric properties of the pore-space
and how JS1 (q1) should be extended to account for material anisotropy.
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CHAPTER 6

Wetting phase entrapment
during primary drainage

We perform pore-scale resolved direct numerical simulations of two-phase flow of
immiscible fluids to analyze the mechanisms of wetting phase entrapment during
saturation-controlled primary drainage in heterogeneous, partially wettable porous
media. At the length scale of pore networks, flow regimes that emerge due to the
interplay of viscous and capillary forces have been characterized as viscous finger-
ing, stable displacement and capillary fingering. At the length scales of individual
pores, however, the corresponding flow fields and dynamics of fluid-fluid interfaces
remain largely unknown. To this end, we study the effect of capillary number (Ca)
and viscosity ratio (M) on the formation and entrapment of discrete ganglia of
the wetting fluid. During viscous fingering, pore-scale flow fields are reminiscent
of Bretherton’s coating flow which implies the formation of wetting films. Wetting
films render the evolution of fluid-fluid interfacial area non-linear and give rise
to non-negligible interfacial viscous momentum coupling. Although macroscopi-
cally appearing flat, saturation fronts during stable displacement extend over the
length of the capillary dispersion zone. While far from the capillary dispersion
zone fluid permeation obeys Darcy’s law, frequent fragmentation and coalescence
of discrete ganglia renders fluid flow within the capillary dispersion zone complex.
Capillary trapping mechanisms are observed dominant for small Ca. Using these
insights, we map out a tentative phase diagram on the log Ca − log M plane by
classifying the morphologies of discrete wetting phase ganglia. We consider the
latter a useful complementary extension to the well-anticipated phase diagram of
drainage displacement patterns.
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6.1 Introduction

Assessing the stability and evolution of saturation fronts, or, from a pore-scale
point of view, interfaces between immiscible bulk fluid phases, is key with respect
to understanding, designing and controlling a multitude of subsurface processes
such as sequestration of carbon dioxide in geological media, groundwater con-
tamination remediation, or enhanced oil recovery. Depending on the governing
capillary number (Ca), viscosity ratio (M), morphological properties of the porous
microstructure and boundary conditions, the displacement of an immiscible wet-
ting fluid from a porous medium by a non-wetting fluid, i.e. primary drainage,
results in flow regimes as diverse as viscous fingering, stable displacement or cap-
illary finger branching [122]. Yet, traditional coarse-grained continuum models
for two-phase flow in porous media assume the same set of balance equations
and constitutive relations applicable to all displacement patterns. In particular,
a phenomenological extension of Darcy’s law is assumed to govern macroscopic
momentum balance with relative permeability and capillary pressure functions
representing constitutive model inputs [14]. These constitutive relations are con-
sidered functions of saturations only and their calibration in light of a particular
flow regime typically renders them non-linear and hysteretic [75, 103, 144]. In
an attempt to face the latter, contemporary models acknowledge the role of in-
terfacial areas in hysteresis [78, 87–89] or explicitly account for mass-exchange
between percolating and non-percolating subphases [91, 93]. Considerable ef-
fort has been devoted to studying two-phase flow at the length scale of pore-
networks, both experimentally [e.g. 16, 67, 74, 120, 199, 214] and numerically
[e.g. 21, 39, 52, 68, 70, 125], providing a reliable set of data for the Ca-M phase
diagram of drainage displacement patterns as introduced by Lenormand et al.
[122]. However, the pore-scale dynamics of fluid-fluid interfaces and the mecha-
nisms by means of which discrete ganglia form and become trapped remain poorly
understood which hampers the development of accurate coarse-grained models.

To this end, recent advances in pore-scale imaging-based characterization
methods (see review Bultreys et al. [37]) that enable the fast visualization of
two-phase flow at pore-scale resolution, most notably microscopy imaging of thin
micro-models [e.g. 6, 107, 135, 214], X-ray computed tomography [e.g. 17, 22, 36,
208] and confocal microscopy [e.g. 49, 112], have provided valuable insights into
the interplay of viscous, capillary, gravitational and inertial forces that constitutes
the complexity of interface dynamics at the pore-scale. For instance, free-energy
driven Haines jumps have been confirmed as dominant displacement mechanism
for flow at small capillary numbers [6, 17] and to give rise to inertial oscillations
of moving interfaces [135]. Clearly, these observations deviate from the assump-
tions underlying generalized Darcy flow. Besides experimental approaches, we
consider direct numerical simulations to be an important complementary tool for
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quantitative characterization of multiphase flow in porous media [37, 132].
In this chapter, we present pore-scale resolved direct numerical simulations of

two-phase flow in partially wettable porous media of particulate microstructure.
Our method of choice is a quasi-incompressible Smoothed-Particle Hydrodynam-
ics model (SPH) [99, 136, 187] which incorporates the Navier-Stokes equations
together with the continuum surface force method [30, 115] to account for the
interfacial balance equations. Since SPH is a mesh-free particle method, it consti-
tutes an attractive approach to model the formation and fragmentation of moving
boundaries, i.e. fluid-fluid interfaces, in complex pore spaces. Disregarding grav-
ity effects, we perform numerical experiments of saturation-controlled primary
drainage for various magnitudes of capillary number and viscosity ratio. Rather
than studying the emerging displacement patterns at the length scale of pore-
networks, we discuss pore-scale flow fields associated with different flow regimes
and characterize the mechanisms by means of which wetting phase becomes hy-
draulically reservoir-disconnected and, ultimately, trapped.

Our results show that for viscous fingering, i.e. when viscous forces dominate
and the viscosity of the invading fluid is considerably lower than that of the de-
fending fluid, fluid displacement at the pore-scale is reminiscent of Bretherton’s
problem [32], i.e. flow of gas bubbles in liquid-filled capillary tubes. The cor-
responding flow field is such that the less viscous fluid drains through the core
of a pore-throat causing the formation of wetting films on solid surfaces. Wet-
ting films are observed to render the evolution of specific fluid-fluid interfacial
area non-linear and, as a result, non-equilibrium viscous momentum exchange be-
tween both fluid phases, i.e. the Yuster effect [7, 211], non-negligible. For stable
displacement, i.e. when viscous forces dominate and the viscosity of the defend-
ing fluid is considerably lower than that of the invading fluid, saturation profiles
evolve by what might be referred to as travelling shock wave - a well-known so-
lution of the Buckley-Leverett equation [34]. However, rather than being sharp
as predicted by the Buckley-Leverett equation, the effects of capillarity render
the saturation front diffuse. Pore-scale flow within the diffuse transition zone,
or, also referred to as capillary dispersion zone [104, 173, 176], is observed to
exhibit a complex array of events including frequent fragmentation and coales-
cence of discrete ganglia. We measure the width of the capillary dispersion zone
and observe that it increases with microstructural heterogeneity. For capillary
fingering, i.e. when viscous forces are negligible, fluid displacement is reminiscent
of invasion percolation with frequent occurrence of Haines jumps and associated
velocity bursts [6, 17, 81, 129, 135]. Trapping of wetting phase is primarily
observed in high-curvature domains that are inaccessible to percolation when
capillary forces dominate. Motivated by these observations and complementary
to the phase diagram of drainage displacement patterns[122], we propose a ten-
tative phase diagram of hydraulically reservoir-disconnected wetting phase based
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on the morphological properties of discrete ganglia.

6.2 Methods

Governing balance equations, inherent physical assumptions and numerical com-
putation procedures that are relevant for this chapter have been discussed in
sections 2.4 and 3.5. In this section, we first discuss methodological benefits and
limitations of the SPH method regarding the pore-scale resolved simulation of
two-phase flow of immiscible fluids in porous media. Furthermore, we introduce
our simulation setup for numerical experiments of saturation-controlled primary
drainage and the macroscopic quantities that are relevent for the formulation of
coarse-grained models on the Darcy scale.

6.2.1 Methodological benefits and limitations
Advantages of SPH in the context of two-phase flow in porous media include
its mesh-free nature since the reproducing kernel approximation (3.17) does not
require collocation points to be distributed on grids or meshes. The latter ren-
ders spatial discretization of complex pore spaces less computationally expensive
as compared to traditional grid or mesh-based methods. The majority of SPH
methods use an updated Lagrangian approach. The latter implies that phase
indicator fields Cαβ are advected through particle motion simplifying implemen-
tation of the CSS method since no interface-tracking method is required. More-
over, the updated Lagrangian formulation simplifies modeling of locally large
Reynolds numbers [186] and the formation and fragmentation of interfaces is
intrinsically accounted for. The implemented SPH method is additionally com-
pliant to Galilean invariance and total mass and linear momentum conservation
in the absence of volumetric sources (see chapter 3).

Disadvantages of SPH include its high computational costs associated with
iterative use of neighbor searching algorithms that scale with O(N logN) and,
in the context of using explicit time integration schemes, time stepping criteria
such as the CFL-condition (3.67)1 being rather restrictive. Total number of time
iterations for the primary drainage simulations presented hereafter is in the order
of O(106). Hence, feasibility of three-dimensional computational domains neces-
sitates highly optimized software and hardware. Furthermore, the application
of essential boundary conditions is non-trivial in SPH methods [25] since SPH
interpolants generally do not satisfy the Kronecker delta property as discussed
in section 3.2.

Difficulties associated with the application of boundary conditions in SPH
have minor impact on modeling the no-slip and no-penetration condition (3.46)
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provided that the discretization length scale dx is smaller that the viscous bound-
ary layer thickness. In particular, implementation of Eq. (3.46) follows what was
in Adami et al. [2] and has proven to accurately reproduce parabolic velocity
profiles of Poiseuille flow (see section 4.1). However, since the Kronecker delta
property is not satisfied, there exists a spatial uncertainty regarding velocity
profiles in the order of dx.

The spatial uncertainty dx may be regarded a numerical slip length and gives
rise to the movement of contact lines. Since the slip length does not represent a
physical parameter, local dynamics of moving contact lines far from equilibrium
must be considered artificial. More sophisticated approaches to apply slip bound-
ary conditions in SPH exist [155], however, the physical slip length associated with
moving contact lines remains an issue of ongoing research. Moreover, resolutions
to Huh and Scirven’s paradox other than slip models have been proposed, e.g.
molecularly thin precursor films that serve as lubricants for contact lines (see
review Popescu et al. [159] and references therein), but not taken into account
herein. However, for flow in porous media, energy dissipation due to moving
contact lines is assumed negligible as compared to contributions due to interfa-
cial viscous coupling at solid surfaces and menisci. Furthermore, wetting effects
near equilibrium can be accurately reproduced using the present SPH model, as
shown in Sivanesapillai et al. [187] and section 4.6 where numerical capillary rise
heights were shown to converge to analytical solutions for decreasing dx. As to
be indicated in section 6.2.2, we herein restrict ourselves to transport processes
at macroscopically small Reynolds numbers.

The present model is only applicable to ideal solid surfaces absent of chemical
imperfections, surface roughness or dust particles. In the presence of inhomoge-
neous solid surfaces on the other hand, a phenomenon referred to as contact line
hysteresis has to be taken into account. In particular, as a result of surface inho-
mogeneities, a contact line may be pinned and resist motion unless a threshold
force acting on the contact line is overcome. The apparent contact angle of a
pinned contact line may thus differ from Young’s contact angle Θ and fall into
an interval bounded by static receding and advancing contact angles Θr,st and
Θa,st, respectively, which constitute material parameters. Once the threshold
force is overcome, dynamic receding and advancing contact angles may further
differ from respective static values. Typical effective continuum models that ac-
count for this behavior are reminiscent of static and kinetic friction models as
encountered in mechanics of solid materials (see Kurzeja & Steeb [114, § 4] and
references therein). It is emphasized that the given approach, however, does not
account for inhomogeneous solid surfaces and assumes the validity of Young’s
Eq. (2.86), i.e. we restrict ourselves to ideal solid surfaces.

Given the numerical costs associated with pore-scale resolved SPH simula-
tions, we restrict ourselves to two-dimensional (2D) IBVPs. The latter implies
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that curvature of menisci in the out-of-plane direction is not accounted for. How-
ever, as recently shown by Ferrari et al. [70] and Kunz et al. [113], simulation
results can be regarded representative of flow in thin Hele-Shaw micro-models if
one accounts for viscous momentum exchange between bulk fluids and confining
walls as well as a constant contribution to capillary pressure due to out-of-plane
curvature. In particular, Kunz et al. [113] performed micro-model experiments
and equivalent 2D SPH simulations of primary drainage in small microstructures
( about 20 grains ) and showed quantitative agreement between both regard-
ing the evolution of phase distribution and capillary pressure. On the other
hand, Ferrari et al. [70] performed micro-model experiments as well as equiva-
lent 2D and 3D Finite-Volume simulations using what might be referred to as
representative microstructures ( about 4000 grains ). Ferrari et al. [70] reported
quantitative agreement between simulations and experiments regarding macro-
scopic quantities such as interfacial areas, saturation profiles as well as fractal
dimensions of unstable fingers. However, they emphasized that sensitivity of un-
stable flow to initial conditions, boundary conditions and numerical uncertainties
yields discrepancies with respect to fluid distribution. Despite the use of different
modeling frameworks, physical assumptions that are incorporated in the above
references are equivalent to those of the present contribution. However, the above
mentioned depth-related modifications to account for Hele-Shaw confinement are
not taken into account herein.

Solid surfaces are assumed smooth such that singularities are absent. The
latter assumption is implicit to the definition of interfacial curvatures. Surface
singularities constitute domains of singular curvature; the drainage of which re-
quires excessively large capillary pressures. Wetting phase trapping due to sin-
gular curvatures, e.g. the formation of pendular rings where solid grains come in
contact with each other or the presence of wetting phase trapped in corners of
pore channels with polygonal cross sections [117], is not considered hereafter. As
a result, contributions to macroscopic capillary pressure as well as specific inter-
facial areas due to wetting phase entrapped in singular domains is not considered
herein.

When a gas bubble invades a capillary tube that is initially saturated with a
wetting liquid of non-negligible viscosity, a residual wetting film is formed between
gas bubble and channel wall resulting in a flow field commonly referred to as core-
annular flow. The latter was studied in Bretherton [32] and constitutes a special
case of the Landau-Levich-Derjaguin problem [50, § 5.3]. The thickness of the
wetting film is typically approximated in the context of the lubrication theory.
However, when the thickness of the wetting film is of order O(0.1µm) [190, § 1.2],
mutual interaction of meniscus and solid surface separated by the molecularly thin
wetting film gives rise to an additional contribution to pressure inside the film
referred to as disjoining pressure. Disjoining pressure has a crucial effect on the
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Figure 6.1: Schematic diagram of the simulation setup at initial time t = 0.
Black, white and gray areas correspond to solid phase Ωs, wetting phase Ωn and
non-wetting phase Ωw, respectively. The outer boundary Γf, which is subject
to periodic boundary conditions, is highlighted yellow. The point of origin, in-
dicated by the red cross marker, is located in the lower left-hand corner of the
microstructure. The position vector x := X1e1 +X2e2.

stability of molecularly thin wetting films. Despite of the fact that we observe the
formation of wetting films during viscous fingering, the present model does not
take into account the effect of disjoining pressure. We argue that for considered
capillary numbers and average pore-throat sizes of order O(0.1mm), the effect
of disjoining pressure is negligible as compared to capillary pressure. Whether
or not disjoining pressure effects are negligible for transport in reservoir rocks
remains an open question.

While the above discussion of methodological limitations is by no means ex-
haustive, we believe that it provides an overview of the most crucial restrictions
regarding the present direct numerical simulations of immiscible flow in porous
media with partial wettability. Indeed, Schmatz et al. [180] recently reported
the presence of pinned contact lines as well as molecularly thin wetting films
using nanometer-resolved images of mixed-wet reservoir rocks which questions
both the assumption of ideal surfaces and negligible disjoining pressure with re-
spect to complex subsurface systems. While the latter limits the applicability
of the present model to idealized porous media, we believe that the qualitative
significance of the here reported results may motivate further experimental effort.

6.2.2 Simulation Setup
Our simulation setup (Fig. 6.1) for numerical primary drainage experiments re-
sembles what was used earlier in Sivanesapillai et al. [187] and is motivated by
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laboratory setups as described, for instance, in Moura et al. [143]. The compu-
tation domain is comprised of wetting and non-wetting phase reservoirs denoted
Ωw,res and Ωn,res, respectively, as well as the porous sample domain Ωcuc. The
porous sample, also referred to as computational unit cell (CUC), has side lengths
LW = 20 mm and LH = 15 mm in direction of the unit vectors e1 and e2, respec-
tively. The microstructure exhibits LH -periodicity in direction of e2 such that
periodic boundary conditions are applied with respect to e2. The latter avoids
boundary effects that otherwise arise due to confinement in direction of e2. Ini-
tially, the sample is completely saturated by the wetting phase. The drainage
process is saturation-controlled in that saturation levels inside the porous sample
are controlled by imposing the uni-directional advection velocity UP = UP e1 of
reservoir pistons by means of which reservoir fluids are displaced into the pore
space of the sample. The component of the piston velocity UP is chosen positive
and constant and, as a result, non-wetting phase saturation rates are positive
and constant as well.

Three distinct microstructures comprised of disordered packings of polydis-
perse, non-overlapping hard fibers of circular cross section have been gener-
ated using an event-driven particle dynamics algorithm [57, 58]. Pore-throat
sizes can be considered normally distributed such that we introduce expecta-
tion value, or mean value, mN and standard deviation vN of pore-throat size
distributions. Our approach to compute pore-throat size and fiber diameter dis-
tributions (Table 6.1) of computational unit cells is summarized hereafter. In
analogy to what was done in Sivanesapillai et al. [187] and Moura et al. [143],
pore-throat size distributions are computed on the basis of a Delaunay trian-
gulation of the center points of the fibers (Fig. 6.2, left column). The pore-
throat size between two neighboring fibers is considered equal to the length of
the connecting Delaunay edge upon subtracting respective fiber radii. Delau-
nay edges that intersect the system boundaries are excluded during generation
of pore-throat size histograms. Resulting pore-throat size histograms (Fig. 6.2,
center column) and fiber diameter histograms (Fig. 6.2, right column) are subse-
quently fitted to the Gaussian functions GN (x) := AN exp

[
−(x−mN )2/(2v2

N )
]

and GF (x) := AF exp
[
−(x−mF )2/(2v2

F )
]
, respectively.

Mean pore-throat sizemN serves as characteristic length scale for the reference
capillary pressure

P ref
C := 2 cos Θσwn

mN
.

Following Eq. (4.9), P ref
C is the magnitude of the pressure jump across a menis-

cus that is pinned between two confining walls that a separated by a distancemN .
Fiber diameters are normally distributed as well with corresponding expectation
value and standard deviation denoted mF and vF , respectively. Averaging the
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Table 6.1: Overview of microstructure parameters. Intrinsic permeabilities kI
were calculated using single-phase flow simulations.

Microstructure A B C

Pore-throat size distribution
Expectation value mN [mm] 0.42 0.41 0.41
Standard deviation vN [mm] 0.14 0.15 0.21
Fiber diameter distribution
Expectation value mF [mm] 1.63 1.61 1.60
Standard deviation vF [mm] 0.20 0.34 0.44
Miscellaneous
Porosity φcuc [%] 45.5 46.0 44.3
Intrinsic Permeability kI,cuc

[
10−9m2] 4.41 4.55 4.55

Dimensions
[
mm2] 20× 15

Fiber count 88 85 86

means mN and mF among the set of microstructures yields the arithmetic means
m̄N = 0.413 mm and m̄F = 1.62 mm, respectively. While standard deviations vN
and vF are chosen different for each microstructure (Table 6.1), expectation val-
ues mN and mF differ by less than 2.5 % from m̄N and m̄F , respectively. In
other words, microstructures only differ by the degree of heterogeneity defined
by the width of pore-throat size and fiber diameter distributions.

The porous sample domain Ωcuc, comprised of approximately 85 fibers, is
referred to as computational unit cell given that no extensive study regarding the
question whether or not the domain size is representative is performed. However,
clipping the sample width LW by 50 % was observed to yield changes in above
expectation values and standard deviations of less than 10 %. In other words, we
consider the domain size large enough to study pore-scale effects related to the
length scale of microstructure heterogeneity.

The magnitude of piston velocity UP is chosen such that the mixed capillary
number

Ca := µnUP
σwn

(6.1)

takes the desired value. We refer to Ca as mixed capillary number since its
derivation incorporates a macroscopic characteristic velocity as well as a pore-
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scale characteristic length scale. Primary drainage processes are studied for the
set of mixed capillary numbers Ca = {10−2, 10−3, 10−4, 10−5}. The maximum
mixed Reynolds number

max (Re) := max {%n0 , %w0 } UP mN

min {µn, µw}
,

where, in analogy to Ca, the macroscopic characteristic velocity UP as well
as the pore-scale characteristic length scale mN have been incorporated. For all
simulation cases, the maximum mixed Reynolds number is within the range 0.6 <
max (Re) < 0.8. The latter is achieved by setting fluid densities %f0 = %n0 = %w0
and choosing initial fluid density %f0 such that time step widths are maximized
and max (Re) minimized. In other words, fluid densities were parameterized such
that computational resources could be minimized. However, since Re is of order
O(0.1), we conclude that inertial effects are negligible in a macroscopic sense
and, with gravity forces being absent, the parameterization of fluid densities is
expected to play a minor role with respect to saturation profiles. In spite of the
latter, the occurrence of Haines jumps and pressure bursts [17, 135] as well as
rapid meniscus reconfigurations [69] render spatially and temporally local inertial
effects non-negligible, in particular, regarding the dynamics of capillary fingering.
We therefor point out that the implemented SPH model was previously shown in
Sivanesapillai et al. [186] and chapter 5 to accurately reproduce effective hydraulic
properties for high velocity transport in porous media for Re up to order O(103).

Fluid viscosities are chosen such that the viscosity ratio

M := µn

µw

takes the desired value. The simulated set of viscosity ratios is M = 10−1, 100

and 101 by considering the viscosity 2-tuples log10(µn, µw) = (−4,−3), (−3,−3)
and (−3,−4) [Pa s], respectively. The fluid-fluid interfacial tension is chosen
σwn = 5 N/mm whereas Young’s contact angle Θ = 30◦, which is achieved by
means of setting the fluid-solid interfacial tensions σws = 0 and σns = σnw cos Θ
following Young’s equation (2.86). Since the contact angle is fixed for all sim-
ulations, effects related to variations in solid surface wettability are not studied
herein.

Following typical laboratory setups, a microporous barrier that separates the
porous sample and wetting phase reservoir is introduced. The microporous barrier
exhibits a regular pattern of narrow pore channels with size 8 dx < mN , such that
capillary forces prevent the non-wetting phase to enter the wetting phase reservoir
easily. Simulations are halted as soon as the non-wetting phase penetrates the
microporous barrier, i.e. at breakthrough. Choice of the numerical resolution
dx depends on mean pore-throat size mN as well as governing dimensionless
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numbers Ca and M. For Ca = 10−2 and M = 10−1, the pore-scale flow field
resembles a core-annular flow giving rise to thin wetting films which require a fine
numerical resolution to ensure numerical accuracy. Hence, for the latter case we
choose dx = m̄N/19 = 21.7µm which leads to wetting films being represented by
approximately 4 particles in direction of film thickness. For all remaining cases,
we choose dx = m̄N/14 = 29.5µm. It was previously shown in Sivanesapillai
et al. [187] and chapter 4 that the incorporated choices of dx can reproduce
local pressure, menisci and velocity profiles with reasonable accuracy. The total
number of SPH particles is approximately 6 · 105. Average computation time for
a single time step was 0.6 s using a moderately optimized code running 6 threads
in parallel on an Intel R© Xeon R© CPU E5-1650. The total number of time steps
varied between 1.1 · 106 for small and 1.6 · 105 for large capillary numbers.

6.2.3 Macroscopic Quantities
Using the shorthand notations Ωcuc

α := Ωα ∩ Ωcuc and Γcuc
αβ := Γαβ ∩ Ωcuc, we

introduce

V :=
∫

Ωcuc

dv, Vα :=
∫

Ωcuc
α

dv and Aαβ :=
∫

Γcuc
αβ

da =
∫

Ωcuc

δαβdv,

which denote total volume, total phase volume and total interfacial area con-
tained within the porous sample domain Ωcuc, respectively. Since the majority
of macroscopic quantities is defined with respect to the domain of the porous
sample, the subscript (•)cuc is dropped for the sake of simplifying notation when-
ever unambiguously possible. In the context of numerical computations, surface
integrals are evaluated by taking into account Eq. (2.61) and Eq. (4.7), i.e. total
interfacial area Aαβ is equal to the volume integral of δαβ . Total fluid volume
within Ωcuc is denoted Vf := Vw +Vn, such that sample porosity φ := Vf/V . Sam-
ple wetting phase saturation, non-wetting phase saturation and specific interfacial
areas are thus defined

Sw := Vw
Vf
, Sn := Vn

Vf
, awn := Awn

V
, ans := Ans

V

respectively. Saturation profiles Sw,∆X1 in direction of e1 are generated by
means of computing wetting phase saturations in vertical slices of the sample
domain. The width of a vertical slice is denoted ∆X1. Similarly, mean pressure
profiles p̄∆X1 in direction of e1 are generated by computing arithmetic means of
fluid pressures in vertical slices of the sample domain. Residual wetting phase
saturation SBw is computed at breakthrough, i.e. when the non-wetting phase
penetrates the microporous barrier.
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In analogy to microscopic capillary pressure pC , sample domain averaged
macroscopic capillary pressure is traditionally defined

P cuc
C := 1

Vn

∫
Ωcuc

n

pndv − 1
Vw

∫
Ωcuc

w

pwdv. (6.2)

However, the definition of macroscopic capillary pressure remains ambiguous.
In particular, typical laboratory setups define macroscopic capillary pressure as
the difference between inlet and outlet reservoir pressures. In the context of our
simulation setup, the latter is defined

P res
C := 1

Vn,res

∫
Ωn,res

pndv − 1
Vw,res

∫
Ωw,res

pwdv, (6.3)

where Vα,res :=
∫

Ωα,res
dv denotes total reservoir volumes. Rather than Eq. (6.3),

a more appropriate representation of laboratory measurements would be to con-
sider the difference in mean pressures as averaged over the exposed contact area
of pressure sensors.

It is intuitively understood that above measures of macroscopic capillary pres-
sure are equivalent to each other if and only if Ωcuc

n ∪ Ωn,res and Ωcuc
w ∪ Ωw,res

represent path-connected spaces and, additionally, if pressure fields within each
of the above domains are uniform as to make volume averages independent of
the averaging domain. The requirement of path-connection is clearly unmet in
the presence of hydraulically reservoir-disconnected trapped phases. As pointed
out by Hassanizadeh & Gray [88], P res

C is hence expected to lose significance with
respect to the definition of P cuc

C near residual saturations where path-connection
becomes increasingly questionable. The latter was indicated in pore-scale re-
solved numerical simulations of Sivanesapillai et al. [187]. On the other hand, the
requirement of pressure uniformity is unmet in the presence of non-equilibrium
conditions, i.e. due to inertial or viscous momentum exchange, as well as gravity,
i.e. due to a hydrostatic pressure field, in which case pressure fields are rendered
non-uniform. The latter was studied theoretically in Nordbotten et al. [149] and
observed in pore-scale resolved numerical simulations of Ferrari & Lunati [68].

Following Sivanesapillai et al. [186] and Eq. (5.4), we compute the total vis-
cous drag force, i.e. skin friction, acting between pore fluids and solid phase by
summing viscous particle interaction forces that act between the set of particles
that represent solid surface, i.e. fictitious ghost particles, and fluid phase such
that

FVfs :=
∑

i:xi ∈Ωcuc
s

∑
j:xj ∈Ωcuc

f

FVij .
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Furthermore, we compute the total viscous interaction force acting between
non-wetting and wetting phase as

FVwn :=
∑

i:xi ∈Ωcuc
w

∑
j:xj ∈Ωcuc

n

FVij .

Interfacial viscous coupling implies FVwn = −FVnw. It is well anticipated that
the viscous drag force FVfs gives rise to the Darcian term in coarse-grained models
of fluid flow in porous media. On the other hand, the effect of fluid-fluid viscous
coupling, i.e. the Yuster effect [7, 211], which we measure in terms of FVwn, is
typically not accounted for in classical coarse-grained models of two phase flow.

6.3 Results
The overarching goal of the present contribution is to report pronounced dispar-
ities in the mechanisms of wetting phase entrapment during primary drainage
as observed for different flow regimes (Fig. 6.3), i.e. capillary fingering, vis-
cous fingering and stable displacement [122]. In an attempt to elucidate the
underlying interface dynamics, in this section, we phenomenologically study pore-
scale resolved flow fields that we find representative of the observed entrapment
mechanisms. The relevance of accounting for the latter differences in coarse-
grained, percolation-based and pore-network-based models of two-phase flow is
indicated by quantifying their impact on macroscopic quantities as introduced in
section 6.2.3.

6.3.1 Capillary Fingering Regime:
On the Role of Microstructural Simplicity

At sufficiently small capillary numbers, the pressure drop across the porous sam-
ple due to viscous drag becomes negligible as compared to the magnitude of
pressure jump across menisci. As a result, pressure fields within path-connected
subsets of Ωw and Ωn are homogeneous and, recalling Eq. (2.77), menisci are of
constant mean curvature. The evolution of fluid phase distribution during pri-
mary drainage at small capillary numbers is greatly sensitive to microstructure
in that the non-wetting phase will percolate the pore-space through preferen-
tial flow paths. Preferential flow paths exhibit the lowest capillary resistance to
drainage. Since threshold capillary pressures (∼ σwn/mN ) scale with the inverse
of pore-throat sizes, heterogeneous microstructures yield ramified fluid-fluid in-
terfaces [122]. An individual branch of a ramification pattern, hereafter referred
to as capillary finger, may exhibit loops that enclose undrained high-curvature
domains. A capillary finger loop implies trapping of the enclosed wetting phase,
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Figure 6.3: Non-wetting phase distribution at breakthrough for microstructure
C. Domain Ωn is colored black whereas both Ωs and Ωw are colored white.
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i.e. hydraulic disconnection from the wetting phase reservoir Ωw,res . The latter
mechanism is referred to as capillary trapping. In accordance to laboratory ex-
periments of Zhang et al. [214], capillary fingering was observed for Ca ≤ 10−4

within the range of simulated viscosity ratios (Fig. 6.3).
While the pore-scale capillary statics associated with low capillary number

drainage is deemed understood, i.e. Eqs. (2.77) and (2.86), the formulation of
computationally efficient models applicable to reservoir-scale problems remains
a challenge. On the one hand, the latter is due to the fact that the algebraic
relation between P cuc

C and Sw, which serves as constitutive input to traditional
coarse-grained models [14], is generally nonlinear and hysteretic [75, 144]. In-
deed, the P cuc

C = P cuc
C (Sw) relation can depend on a broad array of factors, such

as contact angle hysteresis [94], heterogeneous wetting properties [43], solid ma-
trix deformation, and temperature dependency [82]. On the other hand, further
modeling challenges arise due to changes in fluid phase distribution being predom-
inantly discrete in time rather than gradual. In particular, discrete pore-filling
events, commonly referred to as Haines jumps [81], are spontaneous processes
since they imply a release of free energy as a meniscus transitions from a narrow
pore-throat to a comparatively wide pore-body. Haines jumps have been identi-
fied as dominant displacement mechanism at small Ca [17], to give rise to locally
non-negligible inertial effects despite small mixed Reynolds numbers [69, 135], to
give rise to measurable acoustic signals [54] and to be associated with an intrinsic
time scale independent of macroscopic flow rates [6, 135].

Though not focus of the present study, the above phenomena are reproduced
in our fully resolved simulations and affect their interpretation. In particular,
we frequently observe the occurrence of cooperative pore-filling events (Fig. 6.4)
during low capillary number drainage in accordance to what was reported in
Armstrong & Berg [6] and Berg et al. [17]. The attribute of a Haines jump as
being a cooperative event applies if the geometrically necessary mass flux for
the drainage of a pore exceeds the external mass flux from Ωn,res to Ωcuc

n . The
required mass flux is subsequently collectively supplied from partially saturated
pore-throats that may be as distant from the event location as multiple pore-body
sizes.

A pore-filling event is accompanied by a sudden decrease in macroscopic cap-
illary pressure as the energetically favorable pore-body is drained and subsequent
increase of the latter as the capillary finger proceeds to drain an adjacent pore-
throat. In accordance to Måløy et al. [129], the latter gives rise to high-frequency
content in the PC(Sw) signal (Fig. 6.5). While both the sample-averaged P cuc

C

and the reservoir-averaged P res
C exhibit qualitatively equivalent behavior, quan-

titative differences are attributed to transient effects during Haines jumps and,
most notably, the presence of trapped wetting phase that does not contribute to
P res
C . The latter is manifested by the fact that the difference P cuc

C − P res
C is ob-
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Figure 6.4: Evolution of Γwn during a
Haines jump as observed in a subdo-
main of microstructure B having size
4.5 mm × 4.5 mm for Ca = 10−5 and
M = 10−1. Arrows indicate direction of
interfacial velocity. Menisci are initially
located in pore-throats (Red contours)
whereas an additional pore-body is
observed to be drained post-event (Blue
contours). Retraction of menisci from
adjacent pore-throats suggests coop-
erative pore-filling. Despite it is not con-

nected to the advancing finger, a pore-throat meniscus located near the upper
edge of the plot retracts as well. Meanwhile, the trapped wetting cluster ob-
served in the upper left-hand corner remains static. Time increment between
superimposed contour plots amounts to 0.45 s. Plot was generated by linearly in-
terpolating unstructured SPH particle data of phase indicator field Cwn to points
of a regular grid using matplotlib.mlab.griddata and subsequently plotting
contour lines Cwn = 0.5.

served to increase as breakthrough is approached. Nonetheless, these differences
are observed negligible for practical purposes which supports the assumption that
macroscopic capillary pressure at low capillary number is mainly due to the dif-
ference in uniform pressure levels present throughout reservoir-connected regions.

We subdivide PC(Sw) curves into a pre-entry and post-entry regime (Fig. 6.5).
Initially, Γwn is a flat surface and awn(t0) = 50 m−1 is equal to the height of the
sample (15 mm) divided by sample area (200 mm2). During the pre-entry regime,
the meniscus comes in contact with the solid phase and enters the pore-space
through the largest pore-throat. The latter is evidenced by the fact that awn

decreases by the amount of wetted solid surface area whereas PC increases by the
amount of the required entry capillary pressure. In accordance to Moura et al.
[143], we interpret the pre-entry regime as a boundary effect that is sensitive to
initial conditions. During the post-entry regime on the other hand, percolation
of all analyzed microstructures is observed to occur at a constant mean value
of macroscopic capillary pressure when high-frequency fluctuations are filtered.
The normalized capillary pressure plateau is located at a level PC/P ref

C ≈ 0.3
which implies that capillary fingers percolate through a preferential network with
characteristic length scales nearly three times the mean pore-throat size mN .
Furthermore, awn is observed to scale linearly with Sw throughout the post-entry
regime which is consistent with earlier experimental and numerical investigations
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Figure 6.5: Normalized PC(Sw) and awn(Sw) for primary drainage in microstruc-
ture C at Ca = 10−5 and M = 100. Capillary pressures are normalized using the
reference capillary pressure P ref

C .

[42, 124, 179, 213, 214]. The boundary effect whereby PC increases near residual
saturation, referred to as clogging regime in Moura et al. [143], is not observed
as the penetration of the microporous barrier occurred prior to its clogging.

Percolation at constant PC and constant dawn/dSw motivates our notion
of microstructural simplicity with respect to drainage as defined hereafter. In
particular, contrary to Moura et al. [143] who hypothesize general validity of
percolation at statistically constant PC for sufficiently large sample domains,
we consider the latter to result from the property of simulated microstructures
of being poorly graded. Considering low capillary number drainage in closed
systems as isothermal process at constant chemical potentials, the differential
expression for the Helmholtz free energy reads

dF :=
∑
αβ

σαβdAαβ −
∑
α

pαdVα. (6.4)

Taking into account solid phase rigidity, i.e. dVn = −dVw and dAns = −dAws,
as well as Young’s equation (2.86), Eq. (6.4) is reformulated to read

pneq − pweq = σwn

(
dAnw

dVn
+ cos ΘdAns

dVn

)
(6.5)

at equilibrium (dF = 0). If phase pressures are uniform and trapped phases
absent, equilibrium macroscopic capillary pressure is expected equal to equilib-
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Figure 6.6: The shape of capillary fingers in the present, poorly graded mi-
crostructures resembles a chain of nearly-monodisperse spheres of mean radius
RP that are hydraulically connected to each other. In a reasonable approxi-
mation, specific area awn is proportional to the surface-area-to-volume ratio of
spheres (3D) or circles (2D) multiplied by the number of drained pores NP ∝ Sw.
As a result, awn increases linearly with non-wetting phase saturation. Since
RP ≈ const. due to microstructural simplicity, PC ≈ const..

rium microscopic capillary pressure, i.e. P eq
C = peq

C = pneq − pweq. As interfacial
material parameters remain constant, percolation at constant PC hence implies
that the bracket term on the RHS of Eq. (6.5) is constant or, as a special case,
both dAnw/dVn and dAns/dVn are constant. Both conditions are related to in-
trinsic morphological properties of preferential flow paths and, while the former
condition is considered rather restrictive, we may deduce two situations for which
the latter applies: During the drainage of a bundle of capillary tubes, Anw as
well as dAns/dVn are constant, since, on the one hand, total cross sectional area
(∼ Anw) of tubes remain constant, and, on the other hand, the wetted portion
of lateral surface area of tubes (∼ Ans) scales linearly with Vn. The second sit-
uation, which applies to our simulations, is when the shape of capillary fingers
resembles that of connected, nearly-monodisperse spheres (Fig. 6.6).

While microstructural simplicity enables intuitive interpretation of PC(Sw)
and awn(Sw) curves, the evolution of saturation profiles during capillary fingering
is less accessible to interpretation. The latter is asserted to the great sensitivity of
invasion percolation to local features of the microstructure. However, saturation
profiles do offer evidence that capillary fingers may propagate in a direction
opposite to macroscopic mass flux (Fig. 6.7) as previously observed in experiments
[112, 214]. The latter is attributed to the fact that not only the intrinsic velocity
magnitude of a Haines jump is independent of macroscopic mass flux [6, 135], but
also the direction in which a meniscus proceeds during an event is independent
of the direction of macroscopic mass flux.
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Figure 6.7: Evolution of saturation profiles in direction of e1 for microstructure
A at Ca = 10−5 and M = 100. Width of vertical slices ∆X1 = LW /20. Red
markers indicate residual saturation profile at breakthrough.

6.3.2 Viscous Fingering Regime:
On the Role of Wetting Film Formation

Viscous fingering occurs when a less viscous fluid displaces a more viscous fluid
(M < 1) at sufficiently large capillary numbers. While invasion percolation is
considered a suitable stochastic model for capillary fingering, viscous fingering is
stochastically reminiscent of diffusion-limited aggregation (DLA) [121, 131, 156].
In contrast to DLA models where fractal growth of particle aggregates is due to
Brownian particle motion [209], viscous fingers evolve in the presence of flow-
field perturbations. Any perturbation of fluid velocity normal to the meniscus
will open a flow path of reduced viscous resistance for the less viscous fluid result-
ing in the promotion of unstable finger growth, i.e. the Saffman-Taylor instability
[177]. Sensitivity of unstable flow to local perturbations challenges the accuracy
of numerical predictions [70]. However, statistical predictability of displacement
patterns is assumed possible if simulation domains are of representative size.
For instance, Ferrari et al. [70] recently reproduced fractal dimensions of vis-
cous fingers using direct numerical simulations. However, due to the limited
size of the present sample domain it is inferred that statistical characterization
of displacement patterns on the length scale of pore-networks is not insightful
herein. Instead, we study the impact of wetting films on macroscopic quantities
and entrapment mechanisms. As to be quantified in section 6.4, we consider the
formation of wetting films a major trapping mechanism during viscous fingering.
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The creeping motion of a long gas bubble through a narrow flow channel that
is initially saturated with a viscous liquid, i.e. Bretherton’s problem [32], implies
a core-annular flow and, as a result, the formation of a liquid film. Lubrica-
tion theory [50, § 5.3], in particular the balance between film depth-integrated
viscous force and meniscus-integrated interfacial force, predicts the thickness of
liquid films ∼ mNCa2/3

m , where the microscopic capillary number Cam incorpo-
rates a characteristic microscopic velocity rather than UP in Eq. (6.1). Liquid
films that arise due to core-annular flow must be differentiated from molecu-
larly thin precursor films that emerge in the presence of contact lines and, in
contrast to the former, depend on solid surface wettability properties [159]. De-
spite of the fact that lubrication theory has provided accurate predictions for
liquid film thickness in curved and narrow flow channels [145], the complexity of
pore-networks is expected to necessitate either laboratory experiments or direct
numerical simulations to study core-annular flow in porous media. Experiments
indeed confirm the presence of thin wetting films following primary drainage of
densely packed glass beads at M ≈ 0.2 [112].

If sufficient numerical resolution is provided, i.e. the discretization length scale
must be significantly smaller that the expected wetting film thickness, the present
direct numerical simulations reveal the underlying core-annular flow field. Menisci
are of spherical shape near finger tip regions whereas menisci curvatures of wet-
ting films are determined by the morphology of the wetted solid surface (Fig. 6.8).
While curvature matching between the latter limiting cases, a prerequisite for the
applicability of lubrication theory, is considered possible for as long the finger tip
is located within a pore-throat (Fig. 6.8, t0), transition from spherical tip to wet-
ting film is observed less obvious when the finger proceeds to percolate through a
pore-body (Fig. 6.8, t0 + 0.6 ms). Hence, even at the pore-scale, viscosity affects
meniscus shapes and we conclude that the assumptions of mean curvature flow
do not generally apply for viscous fingering. For viscosity-dominated, dynamic
flow conditions, the latter casts doubt on the use of pore-network models which
require menisci shapes as model input. In two-dimensional microstructures, the
formation of a viscous finger loop implies entrapment of wetting films. While
the latter is not expected to hold always true for three-dimensional microstruc-
tures where flow through hydraulically reservoir-connected wetting films might
constitute a relevant transport mechanism [169], the conclusions drawn below are
expected to apply independent of spatial dimensionality.

Following Nordbotten et al. [150], we consider our choice of material param-
eters for Ca = 10−2 and M = 10−1 a rough representation of a carbon dioxide
(CO2)-water system in deep sedimentary formations which implies that core-
annular flow might constitute a relevant transport mechanism during supercrit-
ical CO2 sequestration. In particular, the modeled non-wetting phase has small
but non-negligible viscosity (µn = 0.1 mPa s). For non-negligible viscous extra
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t0 t0 + 0.3 ms

min ‖uf‖

max ‖uf‖

t0 + 0.6 ms t0 + 0.9 ms

Figure 6.8: Wetting film entrapment as observed in a subdomain of microstruc-
ture A having size 2.4 mm × 1.9 mm for Ca = 10−2 and M = 10−1. Solid phase
domain is colored gray whereas wetting phase SPH particles are represented by
black markers. Non-wetting phase SPH particles are omitted for improved vis-
ibility. Streamlines are colored according to the magnitude of local fluid ve-
locity. Streamlines were generated by linearly interpolating unstructured SPH
particle data of fluid velocity to points of a regular grid and subsequently using
matplotlib.pyplot.streamplot [59].
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Figure 6.9: Evolution of specific interfacial areas awn (top) and ans (mid-
dle) as well as ratio of total viscous interaction force to total resistance force
(bottom) for microstructure C. The normalization operator n[0,1] (f) := (f −
min (f))/(max (f)−min (f)).
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Figure 6.10: Normalized P cuc
C (Sw) (dashed lines) and P res

C (Sw) (solid lines) for
primary drainage in microstructure C at M = 10−1 and various capillary numbers
Ca (color coded).

stresses, the following results furthermore indicate that the effects of interfacial
viscous coupling are ubiquitous. Since interfacial viscous coupling induces fluid
flow within the wetting film region, the dynamic profile of a trapped wetting film
is observed non-uniform, i.e. the film is not of constant thickness. Instead, the
interface of an entrapped wetting film exhibits a ridge in the wake region of the
wetted solid fiber where recirculating fluid flow takes place (Fig. 6.8, t0 + 0.9 ms).
Not only does the presence of wetting films imply a decrease in the effective
channel width accessible for advective fluid transport, but also a change in ap-
parent boundary conditions for the percolating fluid phase. In particular, before
drainage the kinematic no-slip boundary condition (3.46) applies with respect
to the percolating wetting phase whereas after drainage the dynamic interfacial
viscous coupling condition applies with respect to the percolating non-wetting
phase. Despite of the fact that streamline patterns before (Fig. 6.8, t0) and after
drainage (Fig. 6.8, t0 + 0.9 ms) are rather comparable to each other due to lami-
nar flow, the dynamic boundary condition is expected to affect energy dissipation
as evidenced by the presence of recirculating flow within wetting film ridges.

It is intuitively understood that wetting film formation has considerable effect
on the evolution of specific interfacial areas. For Ca = 10−2 and M = 10−1, awn

is observed to increase non-linearly with Sn and its magnitude at breakthrough
is found nearly six times the corresponding value for capillary fingering (Fig. 6.9,
top). The latter difference is expected to be even more pronounced for domain
sizes large enough such that fractal branching can be statistically reproduced.
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Figure 6.11: Evolution of saturation profiles in direction of e1 for microstructure
C at Ca = 10−2 and M = 10−1. Width of vertical slices ∆X1 = LW /20. Red
markers indicate residual saturation profile at breakthrough.

On the other hand, as solid surfaces are coated with wetting films, the specific
interfacial area ans formed between non-wetting phase and solid phase is observed
negligible for viscous fingering as compared to other displacement mechanisms
(Fig. 6.9, middle). For creeping flow at sufficiently large capillary numbers we
expect the total resistance force against drainage to be additively comprised of
total solid-fluid viscous drag force FVfs, i.e. Darcian drag, and interface-integrated
viscous coupling force between wetting and non-wetting fluid phase FVwn. A major
implication of wetting film formation with respect to coarse-grained or pore-
network modeling is that FVwn contributes considerably to the total resistance
force (Fig. 6.9, bottom). As awn increases non-linearly, the contribution of fluid-
fluid viscous coupling to total resistance is observed to increase in a qualitatively
similar manner. At breakthrough, nearly one fifth of total resistance is due
to viscous coupling. On the other hand, viscous coupling is indeed observed
negligible for Ca ≤ 10−4 as well as for M > 100. These results cast doubt on the
calibration of relative permeability functions, which, by definition, are related to
momentum exchange between solid and fluid phases only.

In contrast to low capillary number displacement, considerable differences
between sample-averaged P cuc

C and reservoir-averaged P res
C exist during viscous

fingering (Fig. 6.10). The latter is attributed to viscous pressure drops across
porous sample and microporous barrier as well as the presence of trapped wet-
ting phase. Besides pronounced quantitative differences, P cuc

C and P res
C exhibit

qualitative differences as well. In agreement with Ferrari & Lunati [68], the in-
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creasing amount of trapped wetting phase as breakthrough is approached leads to
significant decrease of P cuc

C which does not apply for P res
C . Disregarding fluctua-

tions that are likely artifacts related to small widths ∆X1 of the averaging slices,
saturation profiles are observed smooth and monotonically increasing functions
of X1 (Fig. 6.11). In particular, saturation overshoots as observed in the context
of unstable, gravity-driven fingering during unsaturated flow [53] are absent.

6.3.3 Stable Displacement Regime:
On the Role of the Capillary Dispersion Zone

In contrast to viscous fingering, viscosity stabilizes interfacial perturbations when
a more viscous fluid displaces a less viscous fluid (M > 1) at sufficiently large
capillary numbers. The latter gives rise to compact patterns of non-wetting phase
distribution, stochastically referred to as anti-DLA patterns [121, 156], and in-
terfaces that macroscopically appear as being flat. Residual wetting phase satu-
rations at breakthrough SBw are significantly lower for compact patterns as com-
pared to fractal or ramification patterns. Stable displacement is hence desirable
during enhanced oil recovery (EOS) due to optimal sweeping efficiency. In our
simulations, compact patterns are observed for M > 1 and Ca > 10−3 (Fig. 6.3).
Compared to other displacement mechanisms, it is intuitively understood that
compact patterns give rise to large amount of specific interfacial area ans formed
between non-wetting phase and solid phase (Fig. 6.9, middle). While large mixed
capillary numbers Ca imply that capillarity effects are macroscopically negligible,
the latter does not apply at smaller length scales. On the contrary, capillarity
greatly affects pore-scale interfacial dynamics within the capillary dispersion zone
[104, 173, 176].

Disregarding boundary effects, saturation profiles Sw,∆X1 that arise during
stable displacement are sigmoidal in shape and, in a rough approximation, up-
per and lower asymptotes to sigmoidal profiles can be considered the equilibrium
states Suw = 1 and Slw = SBw ≈ 0, respectively (Fig. 6.12). Considerable satura-
tion gradients are observed only in a localized transition zone which is referred to
as capillary dispersion zone. Since we associate macroscopic saturation gradients
with the presence of microscopic interfaces, sigmoidal profiles evidence compact
patterns. However, rather than being sharp as one would anticipate on the basis
of the Buckley-Leverett equation [34] and its admissible shock wave solutions,
capillarity is observed to regularize the shock wave within the capillary disper-
sion zone. Nevertheless, the temporal evolution of saturation profiles is indeed
reminiscent of a travelling wave solution which, in consistency with the Buckley-
Leverett equation, suggests that a hyperbolic conservation law macroscopically
governs the evolution of wetting phase saturation during stable displacement.

We define the width LC(t) of the capillary dispersion zone as spatial differ-
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Figure 6.12: Evolution of saturation profiles in direction of e1 for microstructure
A (left) and C (right) at Ca = 10−2 and M = 101. Among the set of tested
microstructures, microstructure A exhibits the narrowest fiber diameter distri-
bution and microstructure C the widest. Width of vertical slices ∆X1 = LW /20.
Red markers indicate residual saturation profile at breakthrough.

ence between both points where saturation profiles Sw,∆X1(X1, t) approach the
equilibrium asymptotes. In formal terms, LC is computed as

LC(t) := max
{

argmin
X1

(
Sw,∆X1 − SBw,∆X1

)}
−min

{
argmax

X1

(Sw,∆X1 − 1)
}
,

where SBw,∆X1
(X1) denotes residual saturation profiles at breakthrough (Fig. 6.12,

red markers). While equilibrium asymptotes Suw and Slw as well as residual wet-
ting phase saturations SBw are observed barely sensitive to properties of the mi-
crostructures, the width LC(t), on the other hand, appears to increase with the
degree of microstructure heterogeneity. In an attempt to quantify the latter, we
compute the temporal average of LC(t), hereafter denoted L̄C . In order to avoid
boundary artifacts, we consider the averaging window for L̄C equal to the time
frame during which the capillary dispersion zone is entirely contained within the
porous sample domain. We observe the latter to be the case for 0.3 < Sw(t) < 0.7.
In spite of the fact that more data and larger simulation domains are required
to gain statistical confidence, the average width of the capillary dispersion zone
is found to increase linearly with standard deviation vF of fiber diameter distri-
bution (Fig. 6.13). In particular, L̄C ≈ 14 vF mF yields a reasonable fit to the
present data. We emphasize that drainage rate, viscosities and intrinsic perme-
abilities, which are expected to affect LC(t) as well, are kept constant. Moreover,
microstructures A, B and C only differ by the degree of heterogeneity expressed
in terms of vF and vN while porosities and expectation values mF and mN re-
main unchanged (Table 6.1). If further experimental support is provided, the
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Figure 6.13: Average width L̄C of capillary dispersion zone during stable displace-
ment as a function of standard deviation vF of fiber diameter distribution. Blue
error bars correspond to standard deviations of LC(t). L̄C as well as standard
deviations are normalized with respect to mean fiber diameter mF .

latter would imply the existence of an intermediate length scale, i.e. a meso-
scopic capillary dispersion length scale, between pore-scale (∼ mF ) and Darcy
scale which depends on the second central moment of the grain size distribution.
Proper characterization of the latter is considered crucial since, as discussed in
the remainder of this section, hydraulic disconnection of wetting phase and gan-
glion dynamics [176] during stable displacement are processes that are local to
the capillary dispersion zone.

In an attempt to improve our understanding of capillary dispersion, we discuss
the evolution of mean fluid pressure profiles p̄∆X1 in time (Fig. 6.14, solid lines).
Mean pressure profiles are found to be continuous, piecewise linear functions
composed of two line segments. Each line segment can be intuitively attributed
to Darcy flow of wetting and non-wetting phase, respectively. While the kink
point, i.e. the point where both segments are connected to each other, moves
downstream as non-wetting saturation increases, slopes of line segments appear
rather invariant to the level of saturation. Clearly, the latter is due to the fact
that intrinsic permeability, bulk viscosities and macroscopic flux remain constant
during drainage. Since the viscosity of the defending wetting fluid is lower, the
corresponding slope downstream of the kink point is lower as well. While all of the
above is consistent with the macroscopic assumption that fluid permeation obeys
Darcy’s law, a prerequisite for the applicability of the Buckley-Leverett equation,
a broad fluid pressure distribution is found within the capillary dispersion zone
which we attribute to transient pore-scale events, ganglion dynamics and the
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Figure 6.14: Normalized pressure profiles in direction of e1 for microstructure C at
Ca = 10−2 and M = 101. Solid lines represent average fluid pressures p̄∆X1 within
vertical slices of width ∆X1 = LW /50. Dotted and dashed lines correspond
to lower and upper bounds to fluid pressure distribution within vertical slices,
respectively. Bounds are defined p̄∆X1±1.5vp,∆X1 where vp,∆X1 denotes standard
deviation of fluid pressure within a vertical slice. Resulting bounds envelope 87
% of pressure data.

presence of trapped wetting phase. The latter is most pronounced when the
entire capillary dispersion zone is contained within the sample domain (Fig. 6.14,
shaded blue area).

We have identified three distinct pore-scale events and corresponding flow
fields that frequently occur near the saturation front and within the capillary
dispersion zone (Fig. 6.15). A trapping mechanism that frequently takes place at
the saturation front is the formation of wetting caps due to overlap of adjacent
menisci (Fig. 6.15, top). Following Motealleh et al. [142] and Holtzman & Segre
[97], the latter is referred to as Melrose event. In contrast to the overlapping
mechanism described in Holtzman & Segre [97], however, for sufficiently large
contact angles, we observe the point of overlap to be located at some distance
downstream from the solid surface whereby the enclosed wetting phase becomes
trapped. The equilibrium shape of the trapped region is a spherical cap. While,
in principle, the wetting cap trapping mechanism is considered possible during
capillary fingering as well, fractal branching of capillary fingers is expected to
render menisci overlaps, i.e. Melrose events, rather unlikely.

In close vicinity of the saturation front, local saturation of the less viscous
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wetting fluid is comparatively high and, as apparent in the mean pressure profiles
(Fig. 6.14, kink points), the local viscous pressure drop is negligible. Due to the
resulting local dominance of capillary forces, capillary pressure thresholds govern
flow near the saturation front. Hence, along with wetting cap trapping, capillary
trapping mechanisms, i.e. high curvature trapping mechanisms, initially con-
tribute to hydraulic disconnection of the wetting phase near the saturation front.
In particular, we frequently observe trapping in the form of pendular bridges
(Fig. 6.15, middle, t0 → t0 + 1.5 ms). However, as the saturation front further
advances, the viscous pressure drop across a trapped wetting cluster increases
due to higher viscosity of the surrounding non-wetting phase. The latter leads to
mobilization and, eventually, fragmentation of trapped wetting clusters. Strictly
speaking, the latter implies that the terms hydraulic disconnection and trapping
have to be differentiated from each other. In the present microstructures, the
most frequent type of fragmentation is identified to be the transition of pendular
bridges into multiple wetting caps (Fig. 6.15, middle, t0+ 10.7 ms→ t0+ 12.2 ms).

Even more intriguingly, wetting caps that are of spatial extent large enough
such that respective viscous pressure drops exceed contact line pinning forces
are observed to move along solid surfaces and eventually coalescence with other
disconnected clusters (Fig. 6.15, bottom). The latter gives rise to a repetitive
sequence of events by which the motion of hydraulically disconnected wetting
phase, i.e. ganglion dynamics, occurs. On the other hand, if the size of a wetting
cap falls below a critical threshold size where the viscous pressure drop exceeds
the contact line pinning forces, mobilization does not occur. These results are
consistent with earlier experimental observations [49]. We emphasize that a quan-
titatively accurate model for ganglion dynamics requires an accurate model for
contact line pinning and dynamic contact angles. However, the present model, as
more thoroughly discussed in section 6.2.1, incorporates a numerical contact line
slip length and, moreover, advancing and receding contact angles are assumed
equal to Young’s contact angle. Nevertheless, we believe that our results pro-
vide qualitative evidence for the complexity of features that lead to saturation
shock front regularization as well as broad fluid pressure distribution within the
capillary dispersion zone.

6.4 Discussion
Not only does the complex interplay of viscous and capillary forces result in a
rich diversity of macroscopic displacement patterns, but, as phenomenologically
shown in section 6.3, the underlying pore-scale flow fields and trapping mecha-
nisms exhibit pronounced disparities as well: In accordance to lubrication theory,
core-annular flow is a displacement mechanism that applies to viscous fingering
and implies the formation of wetting films. Invasion percolation through prefer-
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t0 t0 + 1.6 ms t0 + 3.2 ms t0 + 4.8 ms

t0 t0 + 1.5 ms t0 + 10.7 ms t0 + 12.2 ms

t0 t0 + 3.2 ms t0 + 6.4 ms t0 + 9.6 ms

Figure 6.15: Pore-scale interfacial dynamics during stable displacement at Ca =
10−2 and M = 101. For details on visual representation of streamlines and bulk
phases, see caption to Fig. 6.8. (top) Wetting phase entrapment in form of a
wetting cap due to menisci overlap at saturation front as observed in a subdo-
main of microstructure B having size 2 mm × 2 mm. (middle) Fragmentation
of a pendular bridge into multiple wetting caps as observed in a subdomain of
microstructure C having size 2 mm × 2 mm. Time increments between plots are
non-uniform. For t0 → t0 + 1.5 ms, the depicted subdomain is located near the
saturation front, whereas for t0 + 10.7 ms → t0 + 12.2 ms it is within the capil-
lary dispersion zone. (bottom) Wetting phase ganglion dynamics by a sequence
of fragmentation and coalescence events within the capillary dispersion zone as
observed in a subdomain of microstructure C having size 4 mm× 3 mm.
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Figure 6.16: Schematic diagram of the proposed classification of hydraulically
reservoir-disconnected wetting phase clusters into wetting films ΩFw,D (yellow),
wetting caps ΩCw,D (green) and pendular clusters ΩPw,D (red). Blue markers indi-
cate contact points (2D) whereas blue lines indicate contact lines (3D). Minimum
bounding box Ωbbox

w,D,i (dashed line) and convex hull Ωconv
w,D,i (dash-dot line) serve

to identify cluster set membership.

ential flow paths of least capillary resistance gives rise to high curvature trapping
mechanisms during capillary fingering. Coalescence of menisci along the macro-
scopically flat saturation front, i.e. Melrose events, gives rise to the formation
of wetting caps during stable displacement. In attempt to quantify the above,
we introduce the following classification of hydraulically reservoir-disconnected
wetting phase. We emphasize that the following hypothesis is expected to hold
only for partially wettable solid surfaces.

Following Hilfer [91, 92] and without loss of generality one may express the
region of the pore-space or total bulk fluid phase as

Ωf = Ωw,C ∪ Ωw,D ∪ Ωn,C ∪ Ωn,D,

where Ωα,C and Ωα,D denote hydraulically reservoir-connected (percolating)
and reservoir-disconnected (non-percolating) subsets of fluid phases Ωα ∈ {Ωn,Ωw},
respectively. By definition, reservoir domains and reservoir-disconnected domains
are disjoint sets, i.e. Ωα,D∩Ωα,res = ∅, and, furthermore, Ωα,C∩Ωα,D = ∅ as well.
In the following, we study the properties of Ωw,D as breakthrough is reached after
saturation-controlled primary drainage. Provided that solid surfaces are partially
wettable, we hypothesize that Ωw,D can be further subdivided such that

Ωw,D = ΩFw,D ∪ ΩCw,D ∪ ΩPw,D ∪ ΩSw,D, (6.6)

where ΩFw,D, ΩCw,D, ΩPw,D and ΩSw,D denote pairwise disjoint domains occu-
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pied by wetting films, wetting caps, pendular clusters and trapped wetting phase
in singular curvature domains, respectively (Fig. 6.16). As more thoroughly dis-
cussed in section 6.2.1, surface singularities such as corners and grain contacts
are absent herein such that ΩSw,D = ∅. The total volume and saturation of a
domain Ωt

w,D, where the superscript t ∈ {F,C, P, S}, is defined

V t
w,D :=

∫
Ωt

w,D

dv, St
w,D :=

V t
w,D

Vf
, ∀ t ∈ {F,C, P, S},

respectively. Moreover, each region Ωt
w,D is comprised of a number N t

w,D of
individual clusters such that

Ωt
w,D :=

Nt
w,D⋃
i=1

Ωt
w,D,i, ∀ t ∈ {F,C, P, S}.

Individual clusters are mutually disjoint, i.e. Ωt
w,D,i∩Ωt

w,D,j = ∅ for all i 6= j.
In the context of imaging-based experimental techniques, e.g. X-ray computed

tomography or confocal microscopy, the identification of individual clusters is
considered possible using image segmentation methods [22, 49, 112, 208]. Using
the present direct numerical simulation approach on the other hand, individual
clusters can be identified based on the connectivity of the binary phase indicator
field Cwn. Since we attempt to quantify saturations Ωt

w,D, we require unique
properties by means of which the set membership of an individual cluster Ωt

w,D,i

to either one of the subsets in Eq. (6.6) can be identified.
An unambiguous definition of the set membership of a cluster is provided by

studying three-phase contact lines that are adjacent to a cluster. It is intuitively
understood that no contact lines are formed by wetting films. On the other hand,
wetting caps form a single contact line loop whereas pendular clusters form at
least two contact line loops (Fig. 6.16, blue lines). In two-dimensional compu-
tations, the latter implies that wetting caps form precisely two contact points
whereas pendular clusters form at least four (Fig. 6.16, blue markers). A pendu-
lar cluster that forms the minimum number of two contact line loops is referred
to as pendular bridge. As pendular clusters may form a larger number of contact
line loops, further topological classification of pendular clusters, e.g. with the use
of Betti numbers [208], is considered sensible. However, topological classification
of pendular clusters is not further discussed herein. Despite of the fact that the
above provides an intuitive definition of set membership, the implementation of
image analysis algorithms to count contact line loops is considered rather non-
trivial. Hence, we implement alternative criteria for the identification of cluster
set membership.

We denote the region and volume of the convex hull [10] that envelopes all
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Figure 6.17: Quantitative analysis of Ωw,D in terms of constituent saturations
SFw,D, SCw,D and SPw,D at breakthrough for microstructure C. Constituent satu-
rations are normalized with respect to total saturation of reservoir-disconnected
wetting phase Sw,D and represented by a stacked area chart. Black markers indi-
cate computed data points. Areas are highlighted in color according to the color
code introduced in Fig. 6.16.

points of a cluster as

Ωconv
w,D,i := conv

(
Ωt

w,D,i

)
, V conv

w,D,i :=
∫

Ωconv
w,D,i

dv,

respectively. In addition to the convex hull, we make use of the minimum
bounding box Ωbbox

w,D,i of a cluster according to Freeman & Shapira [73]. Though
not unambiguous, we identify a cluster as wetting film if the ratio of cluster
volume V t

w,D,i to its convex hull volume is lower than a critical threshold value.
For the present particulate microstructures V t

w,D,i/V
conv
w,D,i < 0.1 has proven a

stable criterion. However, the critical threshold value is expected to depend on
the morphology of the microstructure as well as capillary number. If the wetting
film criterion is not met, the cluster is either a member of ΩCw,D or ΩPw,D. We
differentiate wetting caps from pendular clusters using the local capillary pressure
difference P bbox

C,i within the region of the minimum bounding box Ωbbox
w,D,i. In

particular, the bounding box capillary pressure P bbox
C,i is computed by considering

the pressure averaging domains to be the bulk volumes contained within Ωbbox
w,D,i,

i.e. using Ωcuc
α ∩ Ωbbox

w,D,i in place of Ωcuc
α in Eq. (6.2).

Since the meniscus of a wetting cap is convex, the respective bounding box
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capillary pressure is positive, i.e. P bbox
C,i > 0. On the other hand, pendular

cluster menisci are concave such that P bbox
C,i < 0. In summary, our approximative

approach to identify cluster set membership reads

Ωt
w,D,i ∈


ΩFw,D if V t

w,D,i/V
conv
w,D,i < 0.1,

ΩCw,D if V t
w,D,i/V

conv
w,D,i > 0.1 and P bbox

C,i > 0,
ΩPw,D if V t

w,D,i/V
conv
w,D,i > 0.1 and P bbox

C,i < 0.
(6.7)

Though readily implemented into our direct numerical simulation approach,
the set of criteria outlined in Eqs. (6.7) fails if the viscous pressure drop across
Ωbbox

w,D,i dominates over local capillary pressure and, on the other hand, if the
critical threshold value is not properly calibrated. Nevertheless, due to length
scales of bounding boxes being small enough to render viscous contributions to
P bbox
C,i negligible and due to the simplicity of present microstructures that renders

results relatively insensitive to the choice of the critical threshold value, Eqs. (6.7)
have proven to be suitable approximations herein (Fig. 6.18).

Despite of the sparsity of data, the quantitative analysis of saturations SFw,D,
SCw,D and SPw,D at breakthrough is consistent with the our phenomenological
discussion of pore-scale flow fields in section 6.3 (Fig. 6.17). At sufficiently
small capillary numbers, invasion percolation results in hydraulically reservoir-
disconnected wetting clusters being predominantly present in the form of pendu-
lar clusters, i.e. Ωw,D ≈ ΩPw,D for Ca ≤ 10−4. On the other hand, wetting caps
considerably contribute to residual wetting phase saturation at breakthrough for
Ca ≥ 10−3. The formation of wetting films is indeed observed a relevant trap-
ping mechanism for Ca = 10−2 and M = 10−1, i.e. for viscous fingering. These
results indicate that the governing flow regime becomes not only apparent in the
macroscopic patterns formed by non-wetting phase distribution but also in the
composition of Ωw,D following Eq. (6.6). If further experimental support is pro-
vided, the proposed classification of hydraulically reservoir-disconnected wetting
clusters may constitute a useful extension to complement the phase diagram of
displacement patterns as introduced in Lenormand et al. [122].

6.5 Summary and Conclusions

Using fully resolved direct numerical simulations, we studied the effect of capil-
lary number and viscosity ratio on the pore-scale dynamics of fluid-fluid inter-
faces during primary drainage in partially wettable porous media of particulate
microstructure. At the length scale of individual pores, pore-scale flow fields
and trapping mechanisms as observed for the three basic flow regimes exhibit
profound differences. We draw the following conclusions from this work:
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Viscous fingering (Ca = 10−2, M = 10−1)

Stable displacement (Ca = 10−2, M = 101)

Capillary fingering (Ca = 10−5, M = 100)

Figure 6.18: Fluid phase dis-
tribution at breakthrough for
microstructure C. Domain Ωs

is colored dark gray, Ωn,C

colored black and Ωw,C col-
ored light gray. Hydraulically
reservoir-disconnected clus-
ters are highlighted in color
according to cluster set mem-
bership and the color code
introduced in Fig. 6.16. Cluster
set memberships were identi-
fied using the approximative
criteria in Eqs. (6.7). Indi-
vidual clusters are identified
by linearly interpolating un-
structured SPH particle data
of phase indicator field Cwn to
points of a regular grid using
matplotlib.mlab.griddata
[59] and subsequently using
skimage.measure.label [202]
to identify connected domains.
Thin wetting films are ob-
served to coat solid surfaces
for Ca = 10−2 and M = 10−1

(left). A significant number
of wetting caps are observed
for Ca = 10−2 and M = 101

(middle). For Ca = 10−5 and
M = 100 (right), hydraulically
reservoir-disconnected wetting
phase is observed to be solely
present in the form of pendular
clusters.
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1. During viscous fingering,

1.1. the pore-scale flow field resembles Bretherton’s coating flow and
implies the formation of wetting films.

1.2. wetting films significantly contribute to specific fluid-fluid interfa-
cial area and give rise to non-negligible interfacial viscous momen-
tum coupling.

1.3. the calibration of relative permeability functions, which by defini-
tion are related to viscous momentum exchange between solid and
fluid phases only, should be reconsidered.

2. During stable displacement,

2.1. saturation fronts extend over the finite width of capillary dispersion
zones.

2.2. fluid permeation obeys Darcy’s law far from the saturation front.
On the other hand, ganglion dynamics renders two-phase flow within
the capillary dispersion zone complex.

2.3. the width of the capillary dispersion zone is observed to increase
linearly with standard deviation of fiber diameter, or grain size, dis-
tribution when material properties, boundary conditions, porosity
and intrinsic permeability are kept constant.

2.4. trapped wetting caps form due to menisci overlaps and fragmenta-
tion of pendular clusters.

3. During capillary fingering,

3.1. our simulations confirm the occurrence of cooperative pore-filling
events.

3.2. percolation at constant macroscopic capillary pressure implies lin-
ear evolution of specific fluid-fluid interfacial area if the pore-space
exhibits microstructural simplicity.

3.3. pendular clusters are formed in high-curvature domains.
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CHAPTER 7

Summary and Outlook

In this thesis we investigated non-Darcian fluid flow in porous media using pore-
scale resolved direct numerical simulations. Exploiting its mesh-free and La-
grangian nature, we applied Smoothed Particle Hydrodynamics methods to study
high velocity and two-phase immiscible flow in particulate porous media. We ar-
ticulate the goals of this contribution as threefold: 1. to identify microscopic
flow patterns that give rise to the deviation of the macroscopic constitutive be-
havior from classical Darcian solutions. 2. to calibrate constitutive models for
flow processes beyond Darcy’s law and 3. to assess the predictive capabilities,
advantages and limitations of SPH methods with respect to pore-scale resolved
fluid flow simulations.

Localization of interfacial effects renders simulation results sensitive to parti-
cle disorder and, as a result, sensitive to the kernel function. Kernel functions that
lack non-negativity of the kernel Fourier transform, such as the quintic B-spline,
are prone to the particle pairing instability [51] - a spurious zero energy mode
due to which interpolation accuracy at interfaces is impaired. Kernel functions
with positive Fourier transform, such as Wendland kernels [207], are thus prefer-
able for two-phase simulations. As to avoid the notorious tensile instability of
weakly-compressible SPH [138, 194], which occurs if particles experience negative
principal stresses or pressures, we have furthermore used a constant positive back-
ground pressure upon which all pressure perturbations occur. Anticipating the
results of Morris [139], however, background pressures are kept small enough as to
avoid the long wavelength instability that is observed in the numerical dispersion
relation for overly large background pressures. On the basis of an extensive vali-
dation procedure, we demonstrated the ability of SPH methods to reproduce key
features of creeping, inertial and capillary flows. While we understand boundary
conditions in SPH being satisfied in a “weak” sense only, i.e. over the domain of
the interpolation kernel compact support, the critical velocity Dirichlet bound-
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ary condition as well as the equilibrium contact angle condition are found to
be reproduced with satisfactory accuracy. Weak compliance to boundary con-
ditions, however, gives rise to non-equilibrium contact line motion which, while
it does bypass the Huh-Scriven paradox [101], must be considered artificial far
from thermodynamic equilibrium. While the physical implementation of contact
line slippage is left open for future investigations, macroscopic seepage velocities
in the present work were kept small enough as to avoid large non-equilibrium
perturbations at contact lines. In spite of the above, we shall recall that the
proposed discrete SPH equations are compliant to Galilean invariance as well as
total mass and linear momentum conservation.

The inertial transition from low to high Reynolds number flow in porous me-
dia as measured on the effective macroscale is found decisively influenced by
microstructure. In particular, we have reported a strong correlation between
the macroscopically measurable quantities apparent permeability and effective
hydraulic gradient as well the microscopically measurable quantities total drag
force and hydraulic tortuosity. Indeed, these quantities fall on the same sig-
moidal curve when normalized appropriately and plotted over seepage velocity.
Flow tube narrowing and streamline rectification gives rise to sigmoidal transi-
tion of hydraulic tortuosity. On the other hand, the increase of form drag is
due to eddies that form in the low-pressure wakes of flow path obstacles and
observed subject to sigmoidal transition as well. The sigmoidal transition func-
tion consists of four free parameters: Two asymptotes, the inflection point as
well as a steepness parameter which controls the width of transition. We ar-
gue that the width of inertial transition is influenced by microstructure recalling
that the laminar-turbulent transition in simple conduits is rather discrete while
more gradual in tortuous conduits. On the basis of these empirical observations,
we have proposed a novel macroscopic constitutive model for inertial transition
that can, alternatively, be derived using the asymptotic correlation method of
Churchill & Usagi [45]. While the model is of empirical character, it is consis-
tent with Darcy’s model for small flow rates, reproduces Forchheimer’s model for
large rates and exhibits higher-order leading terms that depend on the steepness
parameter for intermediate flow rates. The proposed model is put forward as an
empirical resolution to the notorious weak-inertia regime in which the hydraulic
gradient has been observed to vary with the cube of the flow rate. How the
steepness parameter depends on microstructure is left open for future investiga-
tions. It is most-likely, however, that this parameter depends on the geometric
tortuosity of flow conduits.

We have discussed primary drainage in porous media of particulate microstruc-
ture for various points of the (Ca,M) phase diagram. In an attempt to meet
the question, whether or not pore-scale flow topologies associated with differ-
ent macroscopic displacement patterns are equivalent, we have characterized the
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entrapment of wetting phase. Our results show that for viscous fingering fluid
displacement at the pore-scale is reminiscent of Bretherton’s problem [32], i.e.
flow of gas bubbles in saturated capillary tubes. The corresponding flow pat-
tern is such that the less viscous fluid drains through the core of a pore-throat
causing the formation of wetting lubrication layers on solid surfaces. The lat-
ter is found to render non-equilibrium momentum exchange between both fluid
phases, i.e. the Yuster effect [211], non-negligible and the evolutoin of specific
interfacial area non-linear. The latter casts doubt on the classical use of relative
permeability functions, which, by definition, are related to momentum exchange
between solid and fluid phases only. For stable displacement, saturation profiles
evolve by what might be referred to as traveling shock wave - a well known so-
lution to the hyperbolic Buckley-Leverett (BL) equation [34]. However, rather
than being sharp as predicted by the BL equation, pore-scale simulations reveal
the saturation front to be diffuse. Pore-scale flow patterns within this capillary
dispersion zone were observed to exhibit complex events such as frequent frag-
mentation and coalescence of hydraulically isolated wetting clusters. The latter
implies that capillarity regularizes the saturation front. We have found a strong
correlation between the width of the capillary dispersion zone and the standard
deviation of the pore-throat size distribution which motivates further investiga-
tions. For capillary fingering fluid displacement is indeed reminiscent of invasion
percolation with frequent pore-scale events singular in time, such as Haines jumps
and associated velocity bursts [17, 81, 135]. The evolution of interfaces during
capillary fingering is governed by the free energy balance comprised of pressure-
volume work and interfacial tension-interfacial area work. Trapping of wetting
phase was observed to primarily occur in high-curvature domains that are en-
ergetically inaccessible to percolation. The latter casts doubt on coarse-grained
models that do not explicitly take into account the evolution of interfacial areas
[89]. We argue that these results speak in favor of effective macroscopic mod-
els that are augmented by balance equations for the transport and evolution of
interfaces [78, 87, 89]. Furthermore, pore-scale resolved simulations are found a
feasible approach to calibrate such models in future investigations.
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