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I n s t i t u t f ü r M e c h a n i k
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Kurzfassung

Das makroskopische Verhalten eines Materials das sich elastisch-plastisch verformt hängt
stark von seinem mikrostrukturellen Aufbau ab. Verändert sich dieser Aufbau unter externer
Belastung, wie z.B. bei Rekristallisation, Martensittransformation oder der Bildung von Mi-
krobändern, beeinflusst dies auch das Materialverhalten. Somit ist, um elastisch-plastisches
Verhalten zu verstehen und zu simulieren, die Untersuchung von diesen Mikrostrukturen
sinnvoll.

In dieser Arbeit werden zwei Modelle präsentiert, bei denen die jeweiligen Mikrostrukturen
als Minimierer nichtkonvexer Energien beschrieben werden. Beide Modelle haben einen va-
riationellen Charakter und untersuchen zunächst die Mikrostrukturen an einem Einkristall,
d. h. an einem homogenen Kristallgitter, unter Annahme großer Deformationen.

In dem ersten Modell entsteht eine Laminatstruktur, deren Energie einer relaxierten Ener-
giehülle des Einkristalls entspricht. Um den Zustand dieses Einkristalls und die zeitliche
Entwicklung der Mikrostruktur zu beschreiben, wird das Prinzip der minimalen Energie und
des minimalen Dissipationspotentials verwendet. Dafür müssen lediglich die freie Energie
und das Dissipationspotential definiert werden. Für die freie Energie wird ein inkompressi-
bles Neo-Hooke Material mit einem Gleitsystem verwendet. Das Dissipationspotential be-
steht aus einem ratenunabhängigen und einem ratenabhängigen Anteil. Dieses Dissipations-
potential modelliert visko-plastisches Materialverhalten. Dieser ratenabhängige Anteil des
Dissipationspotentials regularisiert das Modell, so dass die numerische Implementierung
einfach umsetzbar und stabil ist. Es werden erste numerische Ergebnisse gezeigt.

Das zweite Modell bezieht die Versetzungsdichte in die freie Energie ein, indem die nichtli-
neare Kontinuumsversetzungstheorie verwendet wird. Dieses Modell enthält eine räumliche
Regularisierung der Kristallplastizität, da die Versetzungsdichte in Abhängigkeit des Gradi-
enten der plastischen Gleitung eingeführt wird. In der Literatur wurde die physikalisch sinn-
volle Kinematik der nichtlinearen Kontinuumsversetzungstheorie noch nicht vollständig un-
tersucht, daher wird in dieser Arbeit eine begründete Kinematik vorgestellt. Davon abhängig
werden die freie Energie und Dissipation beschrieben. Mithilfe der Variationsrechnungen
können dann Probleme gelöst werden. Um diese Theorie zu bestätigen, wird sie an dem
Beispiel ”finite anti-plane constrained shear”verifiziert.Danach wird die Martensittransfor-
mation mit involvierten Versetzungen an dem Beispiel ”finite plane-strain constrained shear-
ßimuliert, wobei eine Martensitphase als Minimierer einer nichtkonvexen Energie entsteht.

Beide Modelle simulieren die Entstehung von Mikrostrukturen in Einkristallen mit einem
Gleitsystem. Trotz dieser starken Vereinfachungen sind die Ergebnisse physikalisch sinnvoll
und zeigen die Anwendbarkeit beider Modelle.
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Nomenclature

Latin notations

a width of a crystal
br resultant Burgers vector
c dimensionless parameter
C right Cauchy Green tensor
D dissipation
E energy
E dimensionless energy functional
E Green-St. Venant strain tensor
F deformation gradient
h height of a crystal
Ii invariants of a tensor
J determinant of deformation gradient
I energy functional
I unit matrix
k material constant
K kinetic energy
l dimensionless length
L length of a crystal
L Lagrangian
m mass
m normal vector of slip direction
n normal vector
p hardening parameter
P first Piola-Kirchhoff stress tensor
Q heat flow
r critical resolved shear stress
s viscous parameter
s slip direction
S second Piola-Kirchhoff stress tensor
T dislocation density tensor
t traction vector
dt time step
u displacement field
v velocity
w strain, control parameter
W work
xi coordinate
z internal variables



2 Inhaltsverzeichnis

Greek notation

α dislocation density tensor for small deformations
α angle of slip system
β plastic slip
δi j Kronecker delta
δ thickness of viscous zone
∂ partial derivative
∇ gradient
∆ dissipation potential
ε strains for small deformations
ε permutation tensor
γ plastic slip
η dimensionless material constant
κ hardening modulus
λ volume fraction
µ shear modulus
ν Poisson’s ratio
φ angle of laminate
φ mapping
ϕ energy density
Ψ free energy
ϑ factor for pseudo-velocity
ρ density
σ stress tensor
τ shear stress
ξ dimensionless variable
Ω volume of a material body in the actual configuration
Ω0 volume of a material body in the reference configuration
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1. Abstract

From experiments it is well observed that homogeneous materials may build a microstruc-
ture under certain loading conditions, [20]. This microstructure strongly influences the
macroscopic material behavior and therefore it can be applied for example for the strength-
ening of materials. One already investigated mechanism is the Hall Petch strengthening,
where grains are refined in order to obtain a higher yield stress. Thus, the investigation of
the origin and evolution of microstructures has a great importance. One typical example
for microstructual patterns is provided by the martensitic phase transition in carbon steels
(see for example [3] or [71]). Another interesting example, where the macroscopic ma-
terial behavior depends on the microstructure, is the martensitic phase transition of shape
memory alloys [43]. These formations of patterns in homogeneous crystals often occur for
plastic material behavior. Ewing and Rosenhain observed already in 1899 [22] in experi-
ments that slip steps on the surface of a crystal arise at plastic deformations of metals. In
order to model the plastic behavior of crystals, crystal plasticity was introduced. The ba-
sic mechanism of crystal plasticity is dislocation movement within the material. During
loading, dislocations travel through the crystal lattice along certain crystal planes and slip
bands may be developed as microstructure. As most of the metals and alloys have a periodic
atomic structure, they can be interpreted as crystals. Hence, the plastic deformation and the
evolving microstructure of these materials may be examined at single crystal level.

As the basic mechanism for plastic material behavior has already been well known for a
long time, there is a variety of models which try to simulate this material behavior. In this
thesis, two different approaches are presented, however, both have a variational character.

The first approach models microbands in a single crystal. For this modeling technique, two
quantities have to be defined: the Helmholtz free energy and the dissipation potential within
the range of large deformations. Kochmann and Hackl [48] already developed a model
which simulates the evolution of a first order laminate in a crystal due to loading. For mod-
eling plastic material behavior, they have chosen a rate independent dissipation potential. In
order to improve the stability of this algorithm, the dissipation potential is extended by in-
cluding a rate dependent contribution which can be regarded as a regularization in time. The
simulated microbands are considered as a first order laminate. By employing the principle of
minimum of the dissipation potential, the evolving microstructure is obtained as a minimizer
of a non-convex energy potential. The deformations are obtained by the principle of mini-
mum of total energy. The application of the first order laminate leads to a rank-one-convex
approximation of the non-convex energy. Due to the chosen dissipation potential, explicit
evolution equations are derived which display the evolution of the first order laminate.

The second approach in this thesis can model the martensitic phase transition, accommo-
dated by dislocation arrays. As the plastic deformation of the crystal is introduced by the
movement of a large number of dislocations, the energy contribution of the dislocation net-
work is taken into account. Therefore, before determining the energy and the dissipation
potential, the kinematically independent quantities, which characterize the deformed state
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of the crystal and the change of the dislocation network, have to be defined. Then, anal-
ogously to the first approach, the free energy and the dissipation potential are determined.
Afterwards the variational calculus is applied and analytical solutions can be obtained which
display the evolution of the corresponding variables (here chosen: plastic slip) in space. In
this modeling approach, not a regularization in time but in space is introduced by the gra-
dient of the plastic slip. Also this approach leads to a phase transition for minimizing the
energy if a non-convex energy density is considered.

This thesis starts with the Chapter 2, where the fundamental laws of continuum mechanics
are shown, as the conservation laws and thermodynamic principles. From this macroscopic
scale, we zoom in Chapter 3 onto the micro level. There, dislocations, which cause plastic
deformation on the macro level, are introduced and the basic mechanisms of microstructures
are presented.

In Chapter 4 an approach, which models the time continuous rate dependent evolution of
inelastic microbands in finite plasticity, is presented. This approach is based on the model
of Kochmann and Hackl [47]. The dissipation potential is adapted by a viscous contribu-
tion. After the derivation of the explicit evolution equations, a shear test and a tension-
compression test are performed. Due to the rate dependent behavior of this model the ma-
terial behavior at a longer relaxation time, here referred to as pseudo-velocity, has to be
examined. Afterwards a comparison to the results of the previous model by Kochmann and
Hackl [48] is shown and cycling tests are performed. This chapter closes with a discussion.

In Chapter 5 crystal plasticity is modeled by taking the huge number of dislocations in the
crystal into account therefore, this ansatz is based on the nonlinear dislocation theory. The
first and important step is to clarify the kinematically independent quantities which describe
the energy of the crystal containing dislocations. Then similar to the previous chapter, the
energy and the dissipation have to be defined and a variational method is used. Applying
this approach, the behavior of dislocations due to load can be analyzed. The first examined
example is a single crystal loaded in finite anti-plane constrained shear under the assumption
of a convex energy. In this case, the distribution of dislocations and the dislocation pile up
can be found. As a second example a crystal is loaded by plane-strain constrained shear. In
this example a non-convex energy is considered. In this case, a microstructure appears as a
minimizer, since this is energetically favorable. We will see that dislocations are involved in
the phase transition process and this leads to the incoherent phase interfaces. We find also
the material response to the load during this phase transition process involving dislocations.

This thesis concludes with Chapter 6, where a conclusion and an outlook are given.

A short overview of the essential mathematics, which are used, is given in the Appendix A.
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2. Continuum mechanics

In continuum mechanics a body can be interpreted as a continuum in which the molecular
lattice or any other discrete composition of the material is ignored. For that continuum, the
laws of physics have to be fulfilled:

1. Kinematics (relation between strain and displacement)

2. Conservation of mass

3. Balance of linear momentum

4. Balance of angular momentum

5. Balance of energy (first law of thermodynamics)

6. Second law of thermodynamics

In addition to these laws, constitutive equations (e. g. stress-strain relation) have to be
defined. Then the mechanical behavior and deformations of a body due to external loads
can be fully described. In the following sections, these laws are shortly provided. For
further details of the derivations, we refer to [18], [39], [78] or [33].

2.1. Description of motion and kinematics

In order to describe the motion of every material point in the space, a time-invariant Carte-
sian coordinate system, with the basis defined by the unit vectors ei and the fixed origin
O is introduced. As shown in Figure 2.1, in this coordinate system the undeformed body
occupies the volume Ω0. After a deformation, the body occupies the volume Ω. In the un-
deformed state, also called reference configuration, every material point is described by a
position vector x. In the deformed configuration, the position vector is denoted by y. The de-
formation from the reference to the deformed configuration can be realized as a one-to-one
mapping φ. Then the deformed configuration is expressed through the undeformed by

y = φ(x). (2.1)

We also introduce the displacement field u (illustrated in Figure 2.1), dependent either on
the reference configuration

u(y) = y−x(y), (2.2)

or on the deformed configuration

u(x) = y(x)−x. (2.3)
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Figure 2.1.: Deformation of a body in space

An infinitesimal line segment dx on the undeformed body Ω0 becomes dy in the deformed
configuration by

dy =
∂y
∂x
·dx = F ·dx, (2.4)

with F denoting the deformation gradient. It is a tensor and defined by Equation (2.4) as

F = ∇φ (2.5)

thereby,

Fi j = δi j + ui, j = φi, j. (2.6)

The deformation gradient relates every material line element (like dx) to the corresponding
line element in the deformed configuration. When we assume that the deformation from one
configuration to another is invertible,

dx = F−1 ·dy (2.7)

holds true. When the deformation is invertible, it is also nonsingular and therefore the deter-
minant of this deformation gradient cannot be equal to zero. Since the determinant describes
the ratio between the deformed and undeformed volume elements, it must be positive,

J = det (F) > 0. (2.8)

An arbitrary deformation consists of three independent parts: rigid body translation (then:
F = I), rotation and pure stretching.

The so called right Cauchy Green tensor C can be introduced in terms of F

C = FTF. (2.9)
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Accordingly also the left Cauchy Green tensor B is introduced,

B = FFT. (2.10)

Both tensors are symmetric and positive-definite.

Another definition for the strains is given by the Green-Lagrange strain tensor

E =
1
2

(C− I) =
1
2

(
FTF− I

)
(2.11)

or in terms of the displacements

Ei j =
1
2

(
ui, j + u j,i + uk,iuk, j

)
. (2.12)

This tensor is quite useful for applications, since it is referred to as an objective strain mea-
sure. Note that this strain tensor is zero when the body undergoes a translation or a pure
rotation from the initial state [4].

In continuum mechanics, infinitesimal deformations are often assumed, which is valid if
small elastic deformations are assumed. Since

∣∣∣ui, j
∣∣∣ << 1 in this case the Green-St. Venant

strain tensor E reduces to

εi j =
1
2

(
ui, j + u j,i

)
, (2.13)

which is called the infinitesimal strain tensor ε.

When the body Ω deforms in space, each particle of the body has a velocity vector v which
is a function of time and space

v (x, t) = lim
∆t→0

u (x, t +∆t)−u (x, t)
∆t

=
∂u
∂t

∣∣∣∣∣x . (2.14)

2.2. Stresses

In the previous section the kinematic aspects of a deformation have been discussed. Now
we focus on the forces, which may cause these deformations. An arbitrary body Ω can be
loaded by external forces. These are classified as body (denoted by g in Figure 2.2) and
surface forces. A typical example for a body force is the gravity of the earth. Surface forces
are distributed forces (denoted by q

[
N

m2

]
in Figure 2.2) acting on a surface area. Idealizations

of these distributed forces are:

• Line forces (denoted by p
[

N
m

]
in Figure 2.2) acting on a line element

• Point forces (denoted by f [N] in Figure 2.2) acting either on the surface or in the body

Surface forces are contact forces. The part of the surface where the surface forces are acting
is denoted with ∂Ωt. The part where the displacements are prescribed is denoted by ∂Ωu.

External forces have to cause a reaction inside the body. After cutting the deformed body,
an internal stress vector t, also referred as traction vector, becomes visible at the surface.
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Figure 2.2.: Stresses as response to external loads

This traction vector t, illustrated in Figure 2.2, acting on an infinitesimal area element ∆a is
defined as

t = lim
∆a→0

∆F
∆a

. (2.15)

The traction vector t represents the stress on the cut area with the normal vector n. By
cutting a cube out of the deformed body, six cut areas are obtained, all having a traction
vector ti. Assembling the stresses of all directions at all surfaces leads to a tensor, called
the Cauchy stress tensor σ, see Figure 2.3. Due to the symmetry of the stress tensor, which

n2

t1

n2

n1

n3

t2

n3

n1

t3

s23 s21

s22

s12
s11

s13

s32

s33

s31

Figure 2.3.: Link between traction vector and stress tensor

will be proven later by the balance of angular moment, only three traction vectors need to
be assembled. Hence the relation for the traction vector t at a surface and the Cauchy stress
tensor reads

t = σ ·n, (2.16)
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where n denotes the respective normal vector. This formula is also called the Cauchy stress
formula.

Considering large deformations (using the deformation gradient F), the stress tensor can be
described in three different ways. The Cauchy stress tensor σ represents the actual forces
acting on the deformed (also actual) area, sketched on the left side of Figure 2.4. The first

s P S

Figure 2.4.: Comparison of the configurations of the stress tensors: σ: Cauchy stress, P:
first Piola Kirchhoff stress tensor, S: second Piola Kirchhoff stress tensor

Piola-Kirchhoff stress tensor P represents the actual force, which is acting on the deformed
configuration, but referred to the area in the undeformed configuration, illustrated in the
middle of Figure 2.4. The first Piola-Kirchhoff stress tensor is linked to the Cauchy stress
tensor by

σ = P ·FTJ−1. (2.17)

As already mentioned, σ is symmetric but F is in general arbitrary. Therefore, the first
Piola-Kirchhoff stress tensor is not symmetric and the symmetric second Piola-Kirchhoff

stress tensor S is introduced. This stress tensor maps the traction vector to the undeformed
configuration and undeformed area (sketched on the right side of Figure 2.4). The link to
the Cauchy stress tensor is given by

σ = F ·S ·FTJ−1. (2.18)

From Equations (2.17) and (2.18), we obtain the relation

P = F ·S. (2.19)

2.3. Balance principles

2.3.1. Conservation of mass

Consider a body Ω with a constant mass m. This mass is always a positive scalar quantity
and if there is no mass source or sink, the mass has to be constant during a motion, hence

ṁ = 0. (2.20)
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The mass of a body is defined as

m =

∫
Ω

ρ (y, t) dV, (2.21)

with ρ (y, t) denoting the mass density in the actual configuration. Equation (2.20) infers that
the mass in the reference configuration has to be equal to the mass in the actual configuration,
hence∫

Ω0

ρ̃ (x, t) dv =

∫
Ω

ρ (y, t) dV, (2.22)

with ρ̃ denoting the mass density in the reference configuration. The volume element dv of
the reference configuration can be expressed by the actual configuration as

dv = dV J−1 (2.23)

and Equation (2.22) becomes∫
Ω

(
ρ (y, t)− ρ̃ (x, t) J−1

)
dV = 0. (2.24)

Since this relation has to hold in every domain of the body,

ρ̃ = ρ J (2.25)

has to be fulfilled as well. As the mass density in the reference configuration is a fixed
function of the space for the reference time, independent of the time, the law of mass con-
servation can be expressed also by

ρ̇+ρdivẋ = 0. (2.26)

2.3.2. Balance of linear momentum

The principle of conservation of linear momentum is equivalent to Newton’s second law of
motion which implies

F = ma, (2.27)

with the mass m being constant, a denotes the acceleration and F is the resulting force.
Considering an infinitesimal volume dV of the total volume V of the body, the body force
of this infinitesimal volume is determined by the body force per unit mass (denoted by f)
times the density and the volume element. Hence the total body force can be obtained by
integrating over the whole volume

F =

∫
Ω

ρf dV. (2.28)

In addition to these body forces, there is also the resultant surface force stemming from the
traction vector t acting on the surface. In order to get these forces over the whole body, the
surface integral needs to be computed,

F =

∫
∂Ω

tdS . (2.29)
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By plugging these forces into the conservation of linear momentum, the formula finally
reads ∫

∂Ω

tdS +

∫
Ω

ρf dV =

∫
Ω

ρ
∂2u
∂t2

dV, (2.30)

with u being the displacement vector defined in (2.2) or (2.3). The traction vector t can be
replaced by employing the Cauchy stress formula. The divergence theorem (A.35) converts
the surface integral into a volume integral. Then the principle can be written as

∇ ·σ+ρf = ρ
∂2u
∂t2

(2.31)

or in Cartesian coordinates

∂σi, j

∂y j
+ρ fi = ρ

∂2ui

∂t2
i = 1,2,3. (2.32)

For static equilibrium, hence no acceleration terms, it reduces to

∂σi, j

∂y j
+ρ fi = 0 with i = 1,2,3. (2.33)

These equations are also referred to as the equilibrium conditions. This balance law can also
be described for the reference configuration, the Lagrangean equation of motion reads

∇ ·P + ρ̃f̃ = ρ̃ẍ, (2.34)

with f̃ = f (φ (y, t)).

2.3.3. Balance of angular momentum

If a body in a deformed configuration is subjected to a velocity field, the total momentum of
the momentum of this body with respect to the origin is defined as∫

Ω

y×ρẏdV (2.35)

and the moment resulting by external forces reads∫
∂Ω

y× tdS +

∫
Ω

y×ρf dV. (2.36)

The balance law implies that the vectorial sum of moments acting on a body has to be equal
to the rate of change of the moment of momentum of the body, hence∫

Ω

y×ρf dV +

∫
∂Ω

y× tdS =
d
dt

∫
Ω

y× (ρẏ) dV. (2.37)

The traction vector t may be replaced again by introducing σ into the equation by applying
the Cauchy formula and the surface integral can be transformed to a volume integral by
employing the divergence theorem (A.35). As the balance of linear momentum has to be
fulfilled as well, this law implies the symmetry of the stress tensor, hence

σi j = σ ji. (2.38)
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Due to Equations (2.17) and (2.18),

PFT = FPT (2.39)

and

S = ST (2.40)

have to hold as well.

2.3.4. Balance of energy

If a material particle is moved from one point to another one due to a force F, the force has
performed a work. The work dW represents the work which is performed by the force F by
moving a particle an infinitesimal displacement du,

dW = F ·du. (2.41)

Then the total work for moving a particle from point A to B is defined by

W =

∫ B

A
F ·du. (2.42)

For a body, where an external work is performed, the rate of this mechanical external work
is called external mechanical power and is defined as the power input on a region at time t
done by forces, i. e.

W(t) =

∫
∂Ω

t ·vdS +

∫
Ω

ρf ·vdV, (2.43)

with v denoting the velocity. Considering a body Ω as a closed system and neglecting first
any heat supply, the balance of energy implies that the power due to external forces has to
be equal to the change of total energy of the body Ω,

Ėtotal = W. (2.44)

The total energy of the body Etotal is the sum of kinetic energy K and potential or also called
internal energy E,

Etotal = K + E. (2.45)

K is defined by

K =

∫
Ω

1
2
ρ |v|2 dV, (2.46)

with the velocity v and the density ρ of the body. The internal energy is defined by

E =

∫
Ω

ρedV, (2.47)

with e denoting the internal energy density.
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2.4. Thermodynamic principles

In the conservation of energy, presented in the previous section, the heat supplies are ne-
glected. If also the heat supply is taken into account, the conservation of energy leads to the
first law of thermodynamics,

Ė + K̇ = W + Q. (2.48)

The new introduced quantity Q is the heat flow and represents the rate of energy, which is
transferred into the body in form of heat. The definition for this heat flow reads

Q =

∫
Ω

hdV −
∫
∂Ω

q ·ndA =

∫
Ω

(h−∇ ·q) dV, (2.49)

with h as internal heat source per unit time and unit current volume due to nuclear fission
or fusion etc. The time-dependent scalar function q ·n represents the heat flux, respectively
describes the heat per unit time and unit current volume.

The definitions for the internal energy E and the kinetic energy K are given in Equations
(2.47) and (2.46). The internal energy may be also expressed in terms of the specific
Helmholtz free energy Ψ. Then the internal energy is defined as

E =

∫
Ω

ΨdV +

∫
Ω

θsdV. (2.50)

Therefore the specific Helmholtz free energy is the total internal energy E minus the amount
of thermal energy due to atomistic vibrations. The absolute temperature is denoted by θ, s
describes the entropy density per unit volume.

The W in the energy balance (Equation (2.48)) represents the mechanical power, also called
conventional external power, due to external forces f and externally acting traction forces
t. This power is already defined in Equation (2.43). Applying the Cauchy hypothesis, the
divergence theorem and the balance of linear momentum, the mechanical power is expressed
by

W =

∫
Ω

(
d
dt

1
2
ρ |v|2 +σ : ε̇

)
dV. (2.51)

Plugging in all derived expressions for the energies into the energy balance and assuming
no acceleration, Equation 2.48 reads

Ψ̇+
d
dt

(θs) = σ : ε̇ + h−∇ ·q. (2.52)

This equation is also defined as the first law of thermodynamics and governs the energy
transfer.

The second law of thermodynamics is responsible for the direction of the energy transfer.
Therefore, the concept of entropy needs to be introduced. In nature heat flows from warmer
regions into colder regions of a body, not vice versa. In order to describe this behavior, the
entropy s has a great importance. There are different explanations for the entropy, but it
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can be interpreted as a quantitative measure of microscopic randomness and disorder. Then
the rate of heat supply Q can be seen as a rate of entropy input. The difference between
the rate of entropy input and rate of change of entropy ṡ in a body Ω determines the total
production of entropy per unit time. This total production of entropy can never be negative,
in the reduced form the second law of thermodynamics becomes

θ ṡ = σ : ε̇ − Ψ̇− sθ̇−
1
θ

q · ∇θ ≥ 0. (2.53)

This relation defines the direction of the energy transfer and postulates the irreversibility of
most thermodynamic processes. This relation is not a balance principle since it is an in-
equality. If there is no entropy production, the thermodynamic process is called reversible
and for each loading cycle the material returns to the initial state. Reversible processes are
usually an idealization of a real irreversible process. In this second law of thermodynam-
ics, the Helmholtz free energy in general is a function of strains (or for large deformations
the deformation gradient), internal variables (assembled in a vector λ) and sometimes of
temperature. Applying the chain rule, the rate of Helmholtz free energy reads

Ψ̇ =
∂Ψ

∂ε
: ε̇ +

∂Ψ

∂θ
: θ̇+

∂Ψ

∂λ
: λ̇. (2.54)

In order to fulfill the second law of thermodynamics, constitutive equations for the stress
and entropy are obtained,

σ =
∂Ψ

∂ε
and s = −

∂Ψ

∂θ
. (2.55)

2.5. Examples for constitutive equations

2.5.1. Elasticity

We already introduced the description of deformations in terms of the deformation gradient
F or for small deformations by the strain tensor ε. Internal stresses as responses of a body
due to external forces are obtained by equilibrium conditions or the balance of linear and
angular momenta. The constitutive laws have to link these stresses and strains and should
mimic the material behavior observed in experiments.

Figure 2.5 shows a typical stress strain curve for steel a uniaxial tension test. With increasing
strain ε the normal stress σ increases linear to the yield stress σy. This yield stress is a
material parameter obtained from experiments. Up to this yield stress, the stress-strain curve
is linear, with the proportional factor E, the Youngs modulus. This linear curve represents an
elastic material behavior. When the body is unloaded, all the strains will vanish. If the strain
is increased further when σ = σy is reached, the material begins to yield and the material
does not behave elastic anymore. The stress remains constant and a plastic deformation
takes place. This behavior will be described in the next section.

The rheological model for elasticity (linear stress-strain dependence) is a spring, like sketched
in Figure 2.6. When the spring is loaded with an increasing load, the strain increases as well.
If the device is unloaded, the strain vanishes completely.
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Figure 2.5.: Uniaxial stress strain curve
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Figure 2.6.: One dimensional friction devise for elasticity

For the elastic material behavior, the constitutive relation for an elastic material is given for
example from Hooke’s law for linear elasticity

σ = C : ε. (2.56)

The C represents the elasticity tensor and is in general a fourth order tensor with 81 compo-
nents

C = Ci jklei⊗ e j⊗ ek ⊗ el. (2.57)

Due to the symmetry of stress and strain tensor and under the assumption of isotropic ma-
terial behavior, the elasticity tensor can be described in terms of two independent material
parameter, e. g. the Lamé elastic moduli µ and λ. Then the elasticity tensor reads

Ci jkl = λδi jδkl +µ
(
δikδ jl +δilδ jk

)
(2.58)

and the constitutive law for linear elasticity reduces to

σ = λ (tr (ε))I + 2µε. (2.59)

Other material parameters for the elastic properties are the Youngs modulus E and the Pois-
son’s ration ν. In the section of thermodynamic basics the relation

σ =
∂Ψ

∂ε
(2.60)

is derived with Ψ being the Helmholtz free energy (or also energy potential that stores
the elastic energy). By finding Ψ via experiments, simulations or phenomenological ap-
proaches, we get implicitly the constitutive law from Equation (2.60). For the linear elastic-
ity, the elastic energy potential reads

Ψ (ε) =
1
2
εT : C : ε. (2.61)
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For finite deformations other constitutive laws exist and therefore also other elastic energy
potentials. An important energy potential, because widely used for material models, is the
compressible neo-Hookean material model with the Helmholtz free energy

ΨNH (C) =
µ

2
(tr (C)−3) +

K
4

[
det (C)−

K + 2µ
K

ln (det (C))−1
]

(2.62)

with K being the bulk modulus. Important for this model is the logarithmic term which
penalizes the reduction of the body-volume to zero. As in the case of linear elasticity, the
constitutive law can be obtained by differentiation. In the regime of large deformations, the
three different stress tensors are obtained from the Helmholtz free energy, the first Piola-
stress tensor

P =
∂Ψ

∂F
, (2.63)

the second Piola stress tensor

S =
∂Ψ

∂E
, (2.64)

and the Cauchy stress tensor as

σ = F ·S ·FT (det (F))−1 . (2.65)

So far we get constitutive laws that link elastic strains with elastic stresses for homogeneous
materials.

2.5.2. Plasticity

As explained in the previous section, materials, for example metals, often behave elastic
until the yield stress is reached. Then the material starts to behave plastic. This plastic
behavior is time independent but irreversible, since energy is dissipated. The rheological
model for pure plasticity is a friction device [1], like illustrated in Figure 2.7. When the

s

sy

Figure 2.7.: One dimensional friction devise for plasticity

body is loaded, there will not be any displacement or strains until the load reaches σy. Then
displacements and strains occur even the load remains constant from there on.

Often materials behave elasto-plastic. In Figure 2.8, a typical idealization for the stress
strain curve for a uniaxial tension test with one load cycle is shown. After reaching the yield
stress, with further increasing strain, the stress also increases, but with a lower slope. This
section is called hardening line. At unloading, the stress follows an elastic curve but some
part of the strain remains at zero stress in the material, this strain is called plastic strain.
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Figure 2.8.: Stress strain cycle

The part which vanishes at unloading is referred to the elastic strain. Considering small
deformations, the strain can be decomposed additively

ε = εp + εe. (2.66)

For large deformations, a multiplicative decomposition is introduced in [61]

F = Fe ·Fp. (2.67)

For any plastic deformation

det
(
Fp) = 1 (2.68)

is fulfilled.

The plastic material response depends strongly on the loading and the loading history. In
addition to the hardening effect, the Bauschinger effect takes place. This effect influences
the yield stress, hence the elastic region is changed. If a material is loaded for example
by tension up to the plastic region, under pressure the yield stress is then decreased since
dislocations block each other or even sum up by the loading in opposite direction.

The rheological model for elasto-plasticity is the friction device coupled with a spring, il-
lustrated in Figure 2.9 While the load is smaller than σy, strains only occur in the spring,

ss E

sy

Figure 2.9.: One dimensional friction devise for elastic plastic material behavior

which models the elastic material behavior. After the yield stress σy is reached, the body
starts to move, hence plastic deformations occur.
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2.5.3. Viscosity

Viscosity is a time dependent material behavior, which is often used to model fluids. The
viscous material behavior is dissipative, but independent from loading history. The rheolog-
ical model (shown in Figure 2.10) for viscosity is a damper [1] with the damping coefficient
equal to the viscosity, which is a material constant. Therefore the response of the material
is dependent on the loading velocity.

s s

h

Figure 2.10.: Rheological model for viscosity

This material model can also be coupled with other material models. An elasto viscoplastic
material behavior is dissipative, time and load dependent. When the load is applied, until σy
is reached, the material behaves purely elastic. Afterwards, the material behavior is visco-
plastic. The plastic response occurs directly while the viscous responds needs a relaxation
time. The rheological model for this material model is a coupling of damper, spring and
friction device (taken from [83]) and shown in Figure 2.11.

ss E
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h

Figure 2.11.: Rheological model for viscoplasticity

2.6. Energy minimization

2.6.1. Principle of minimum of total energy

The principle of minimum of total energy (details are revealed for example in [86]) states,
that a body will always deform such that the total energy achieves its minimum therefore

δI = 0 (2.69)

has to be fulfilled, which is the necessary condition for a minimum. The sufficient condition
also needs to be fulfilled for a minimum. In the previous section 2.4 the Helmholtz free
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energy Ψ is already introduced. Then the total stored energy in a material is called internal
potential and defined as

Iint =

∫
Ω

Ψ (∇u) dV. (2.70)

Analogously to this definition, the potential of all external forces may be defined as

Iext = −

∫
Ω

f ·udV −
∫
∂Ω

t ·udA, (2.71)

where t is the prescribed traction vector acting on the surface. Then the sum of both poten-
tials gives the total energy potential of the body,

I = Iint +Iext. (2.72)

The minimization of this total energy potential results to the equilibrium condition (Equation
(2.31)) and to the Cauchy formula (2.16) on the surface of the body. On the other hand, this
principle may be used for determining unknown deformations u,

u = argmin
{
I|u = u∗ on ∂Ωu

}
, (2.73)

where u∗ is the prescribed deformation of the boundary.

2.6.2. Energy minimizer

As already described by the principle of minimum of total energy, the deformation of a
material can be found by energy minimization. If the energy landscape is quasiconvex, the
energy landscape has a global minimum.

If the energy landscape is not quasiconvex, there is no global minimum in a certain range
of loading. Then a microstructure may be built in order to reduce the energy of the body.
Then the energy of these microstructures correspond to an energy minimizing hull. Math-
ematically, this method is obtained by the relaxation theory, [49]. The relaxation is a qua-
siconvexication of the energy, therefore a quasiconvex hull should be determined. Then the
minimization may be rewritten as

u = arg min
{
IQ

∣∣∣u = u0 on ∂Ωu
}
. (2.74)

IQ is the relaxed energy functional and according to Dacorogna [19] defined as

IQ =

∫
Ω

QΨdV − ` (2.75)

with QΨ being the quasiconvex hull (definition is given by Equation (A.38)) of the energy
density Ψ. This quasiconvex hull is based on a small-scale fluctuation field which describes
the observed microstructure [48].

In reality, the microstructure which may appear exhibit a great variety. Therefore, the com-
putation of the quasiconvex hull is often too complex and this hull may be replaced by a
rank-one-convex hull. Then the minimizing problem reads

u = arg min
{
IR1

∣∣∣u = u0 on ∂Ωu
}

(2.76)
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with

IR1 =

∫
Ω

R1ΨdV − `. (2.77)

The rank-one-convex hull R1Ψ corresponds to the energy of a first order laminate mi-
crostructure and the definition can be taken from [19]. In Chapter 4 the energy of a first
order laminate with two domains will be applied, which can be determined as [47]

R1Ψ = infλi,Fi

 2∑
i=1

λiΨ (Fi) |constr.

 (2.78)

under the constraints

0 ≤ λi ≤ 1,
2∑

i=1

λi = 1,
2∑

i=1

λiFi = F, rank(F1−F2) ≤ 1. (2.79)

The split of the homogenous material into a mixture of domains with different deformation
states is schematically shown in Figure 2.12 for a one dimensional problem. This evolving

FBFA FBFA

Y

F

Figure 2.12.: Energy minimization

microstructure has to fulfill the given boundary conditions. In finite plasticity commonly a
laminar structure arises in order to minimize the energy, like a first order laminate sketched
in Figure 2.13 with two domains. The minimizing deformation gradient is the sum of the
deformation gradients of the domains (in Figure 2.13 FA, FB), weighted with their respective
volume fractions (in Figure 2.13 λA, λB). For the example shown in Fig.2.13, the deforma-
tion gradient reads

F = FAλA + FBλB. (2.80)

A second order laminate is shown in Figure 2.14. Analogously to the deformation gradient
of a first order laminate with two domains, the deformation gradient for a second order
laminate with two domains is found as

F = FAλA + FBλB. (2.81)
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Figure 2.13.: First order laminate with two phases
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Figure 2.14.: Second order laminate with two domains

For a second order laminate FA and FB are obtained by

FA = FA1λA1 + FA2λA2 (2.82)

and

FB = FB1λB1 + FB2λB2. (2.83)

The interfaces between two domains have to be planar. When the deformation is assumed
to be continuous, the deformation gradient has to suffer a jump. However if the domains are
compatible, the compatibility condition

~Fia� = χina, (2.84)

with χ being a vector and n the unit normal on the interface between the domains, has to be
fulfilled for a first order laminate [58]. The jump is the difference between the deformation
gradients of both domains, which can be denoted by F− and F+ (see Fig.2.15) and has
to be equal to a rank one tensor. Using relation (2.4), the deformation gradient can be
replaced by an actual infinitesimal line segment in the actual configuration and the kinematic
compatibility or also referred as Hadamard condition reads

dx+−dx− = χ (n ·dx) (2.85)

with − and + denoting the two domains. Since the normal vector is perpendicular to the
interface boundary, the right hand side of this equation vanished thus the kinematic compat-
ibility yields

dx+−dx− = 0, (2.86)

ensuring simply the compatible domains.
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Figure 2.15.: Interface boundary between two domains.

For a higher order laminate, kinematic compatibility has to be fulfilled in the average. At
the interface, also the equilibrium condition has to be fulfilled, which may be written as(

S+−S−
)
n = 0. (2.87)
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3. From macro to microscale

3.1. Crystal plasticity

In the previous section, we introduced plastic deformation and phenomenological models at
the macroscale in order to describe the observed material behavior. If a material behaves
plastically, non homogenous deformations may occur. One typical example is a tension test.
By loading a sample by tension, at plastic deformation slip bands occur on the surface of the
metal [22] and plastic slip takes place along certain planes. For understanding that behavior,
the crystal effects on microlevel have to be studied. By zooming into the material, the ho-
mogeneous material consists of many grains with different crystal orientations. These grains
form a polycrystal. In the following we restrict our model to a single crystal, that means one
grain. This grain consists of a crystal lattice where the smallest unit is the elementary cell.
There are different kinds of structures for this unit cell, the most popular ones are called
face-centered cubic (fcc), body-centered cubic (bcc) or hexagonal closed packed (hcp).

hcpfccbcc

Figure 3.1.: Examples for atom arrangement in a unit cell

Experiments on a single crystal under tension test exhibit a similar stress strain behavior as
observed at the macroscale. A schematical sketch in Fig.3.2 illustrates a typical stress strain
relation: up to a yield stress σy, the stress strain curve is linear, thus the material deforms
elastically. Then the crystal behaves plastic, with increasing strain, the stress remains un-
changed. Afterwards the stress slightly increases again as a hardening process takes place.
In these experiments the formation of slip bands is observed starting at plastic material be-
havior [42]. These observed slip bands produce a plastic deformation. This deformation is
irreversible, parts of a crystal glide along a glide plane (normal vector m) into a slip direc-
tion (vector s). Glide plane and slip direction represent a slip system. Ewing and Rosenheim
([22] and [23]) were the first who discovered that the slip occurs at the closed packed planes
of the atoms. The distance between these slip bands lies between several microns. From the
tensile stress σ which is applied, the shear component in the slip plane is obtained from

τ = m ·σ · s = σcosϕcosλ. (3.1)

The definition for the angles λ and ϕ are shown in Figure 3.3. The gliding process, therefore
also the plastic deformation, only takes place if the shear stress reaches a critical value.
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Figure 3.2.: Stress strain relation for a tension test
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Figure 3.3.: Plastic deformation for a tension test

The critical stress is dependent on the material and also called critical resolved shear stress.
This dependence is known as Schmid’s law. Assuming a perfect crystal lattice, the critical
resolved shear stress represents the theoretical stress, which is needed to move the crystal
block. Then it can be approximated by

τcrit =
b
a
µ

2π
≈
µ

2π
. (3.2)

The denotation for b and a can be taken from Figure 3.4 and represent the atomistic dis-
tances, µ the shear modulus. More details about the derivation are given in [51]. According
to the calculation of Mackenzie, the critical resolved shear stress for the gliding in the basal
plane of hexagonal lattice is τcrit =

µ
30 . Both ways for calculating the critical resolved shear

stress lead to values which are much larger than that observed in experiments. As an ex-
ample, zinc, has at 0 Kelvin a critical resolved shear stress τcrit = 0.784 N

mm2 , verified by
experiments (taken from [51]). Therefore the theoretical value τcrit =

µ
30 = 620.9 N

mm2 differs
strongly from the one observed in experiments. Since the crystalline structure of metals is
already well investigated, the error of this approximation can only lie in the assumption of a
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Figure 3.4.: Shear applied on atoms

perfect crystal lattice.

3.2. Defects

Experiments show that every crystal includes a huge number of defects. Zero-dimensional
or point defects are

1. Displaced atoms

2. Interstitially solute foreign atoms or vacancies

3. Schottky defects (a lattice atom wandered to the surface and leaving a vacancy) and
Frenkel defects (a lattice atom leaves its position and becomes a intestitial atom
nearby) [46]

These defects occur due to thermal fluctuations. An atom leaves its position (leaving a
vacancy) and moves to the surface or may settle down as an intersitial atom. This movement
of atoms may explain some diffusion processes. Some of these defects are illustrated in
Figure 3.5.

Frenkel defectvacancy, Schottky defect

substitute foreign atom

Figure 3.5.: Zerodimensional effects

3.3. Dislocations

One-dimensional or linear defects are irregularities in the crystal lattice, for example extra
half planes in the lattice or missing half planes, see 3.6.
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Figure 3.6.: Edge dislocation

Having one dimensional defects, the atoms are dislocated from their equilibrium position,
therefore these defects are also called dislocations. The concept of dislocations was first
introduced by Orowan [73], Polanyi [76] and Taylor [85] in 1934. These dislocations are re-
sponsible for the lower strength of crystals than that obtained by assuming a perfect crystal
lattice. The plastic deformation of the slip can be explained by the movement of a dislo-
cation, schematically shown in Figure 3.7. A dislocation is introduced in a perfect crystal

Figure 3.7.: Movement of dislocation causes plastic slip

lattice by a small shear stress. As the dislocation moves, the atoms above have to slip. When
the dislocation travels along the whole plane, all the atoms above have slipped. The stress,
which causes this movement is much smaller than the stress which is required to move the
whole block without any dislocation. Therefore the strength of the crystal depends strongly
on these dislocations. Dislocations can be basically distinguished between edge and screw
dislocations, both are shortly defined in the following sections.

3.3.1. Edge dislocation

A schematic image of an edge dislocation is shown in Figure 3.6. The atoms are arranged
regulary except the gray marked atoms, which symbolize an extra half plane. The disloca-
tion line is the edge of this half plane.

Burgers vector

In order to describe the dislocation, the so called Burgers vector b is introduced. This vector
denotes the slip direction of the dislocation. This Burgers vector is found by building the
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Burger circuit, a closed path surrounding the dislocation line and involving two lattice di-
rections. Then the Burgers vector closes the circuit path. Figure 3.8 illustrates the definition

Start & Finish Finish Start

perfect crystal crystal with edge dislocation

Burger circuit path

b

Figure 3.8.: Burgers vector for an edge dislocation

of the Burgers vector. The Burger circuit starts, going four atoms to the right, afterward four
atoms down and then four atoms left and up. In the case of a perfect crystal, this circuit is
closed. In the case of crystal including a dislocation, this path is not closed. The Burgers
vector b is required to close the path. The slip plane of a dislocation has to contain the
Burgers vector and dislocation line. This definition of the Burgers vector is valid for one
dislocation, it does not give informations, how a resultant Burgers vector of a dislocation
network, occuring at macroscopic deformations, can be determined.

Stress field

A dislocation is a defect which disturbs the crystal lattice, due to that disturbance a stress
and a displacement field occur. In order to determine the stress field, the crystal including
an edge dislocation, which is defined by the Burgers vector b, is assumed as an isotropic
cylindrical ring with the inner radius ri and an outer radius ra. Instead of the dislocation, the
endings of the cylindrical ring are deformed like illustrated in Figure 3.9.

Due to the complexity, the calculations are omitted and the results are simply presented,

σxx = −Dy
3x2 + y2(
x2 + y2)2 (3.3)

σyy = Dy
x2− y2(
x2 + y2)2 (3.4)

σzz = ν
(
σxx +σyy

)
(3.5)

τxy = τyx = Dx
x2− y2(
x2 + y2)2 (3.6)

and τyz = τzy = τxz = τzx = 0 with ν being the Poisson’s ratio and

D =
µb

2π (1− ν)
(3.7)



28 3. From macro to microscale

x

y

z

b
ri

ra

l

Figure 3.9.: Elasticity model for edge dislocation

with µ being the shear modulus. In cylindrical coordinates, these results read

σrr = σϕϕ = −D
sinϕ

r
, (3.8)

σzz = −2Dν
sinϕ

r
(3.9)

and

σrϕ = D
cosϕ

r
. (3.10)

Obviously, these stresses have a singularity at r = 0. However, they are only valid for r >
the radius of the dislocation core, afterwards the continuum model is not suitable anymore
and the situation becomes more complex. [88] determined that the radius of the dislocation
core is equal to 5b. For r > 5b, the stresses decrease drastically, but still this stress field is
long-ranged and may interact with other stress fields. The displacements can be found as

u = −
b

8π

[
tan−1 x

y
+

1
2(1− ν)

xy
x2 + y2

]
, (3.11)

v =
b

2π (1− ν)

[
(1−2ν) ln

(
x2 + y2

)
+

x2− y2

x2 + y2

]
(3.12)

and w = 0. If a circuit around the z axis is made, the displacement u changes by the amount
of −b [88]. This jump is the closure failure introduced by an inverse plastic distortion.
Therefore the plastic contribution contributes only locally near the dislocation, while the
elastic deformation (second part of (3.11)) is long-ranged. Since deformation v contains a
logarithmic term, which converges to infinity close to the dislocation core, the displacement
cannot be determined elastically for coordinates smaller than the dislocation core.
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Elastic stored energy

The elastic energy which is stored in the cylindrical region can be found by using the stress
field of the dislocation. We get the elastic energy per unit length by calculating the work
which is needed to introduce this dislocation into the perfect lattice. More details can be
found in [84]. The result reads

Eel =
µb2

4π (1− ν)
ln

(
ra

ri

)
. (3.13)

3.3.2. Screw dislocation

The second type of dislocation is the screw dislocation, schematically shown in Figure 3.10.
The upper part of the crystal is shifted with respect to the lower part. Correspondingly to
the edge dislocation, the Burgers vector is found by the Burger circuit, presented in Figure
3.10. The dislocation line points into the same direction as the Burgers vector. For screw

b

S F

F,S

perfect crystal crystal with a 
screw dislocation

Figure 3.10.: Screw dislocation

dislocations, the Burgers vector is parallel to the dislocation line (as already mentioned),
for edge dislocations, the Burgers vector and the dislocation line are perpendicular to each
other.

Stress field

Analogously to the edge dislocations, the stress field of a screw dislocation is found by
using a distorted cylindrical ring of isotropic material (see Figure 3.11) instead of the crystal
including the dislocation. The derivation for the stress field is omitted, for details see [45].
The results are

σyz = σzy =
µb
2π

x
x2 + y2 (3.14)

σxz = σzx = −
µb
2π

y
x2 + y2 (3.15)
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Figure 3.11.: Elasticity model for screw dislocation

and

σxx = σyy = σzz = σxy = σyx = 0. (3.16)

These stresses can also be expressed in cylindrical coordinates by

σrϕ =
µb
2πr

(3.17)

and the other components are zero. Analogously to the stress field of an edge dislocation,
these results are only valid for r > 5b, hence if the radius is bigger than the dislocation core.
For smaller radii, the continuum approach is not valid anymore and the discrete nature of
the crystal becomes important [88]. The stress field behaves in the same manner as for the
edge dislocation: it is long-ranged but the stress decreases strongly with increasing radius.
The displacements due to the distortion can be found as

u = v = 0 (3.18)

and

w =
b

2π
tan−1 x

y
. (3.19)

If a circuit is made around the dislocation line, the displacement from the beginning and
the ending have to differ [88] by the amount of b. Thus the displacement maintains the
closure failure due to the inverse plastic distorsion. Similar to the displacements of edge
dislocations, the plastic deformation only contributes locally near the dislocation.

Stored energy of a screw dislocation

From this known stress field, the elastic stored energy per unit length is calculated as

Eel =
1
2

∫ ra

ri

µb2

2πr
dr =

µb2

4π
ln

ra

ri
. (3.20)
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3.3.3. Force on a dislocation

The movement of dislocations produces the plastic slip of the crystal. In order to move
these dislocations, a material force has to act on it. This force, also referred as Peach-
Koehler force, acting on the dislocation line results from the applied stress on the crystal.
Mott and Nabarro [70] introduced in 1948 the following definition: The force per unit length
is defined as

F = τb. (3.21)

The derivation of this formula can be taken for example from [45]. Another definition for
the force is obtained from the work which is done when the unit length of dislocation moves
a unit distance. This idea leads to the same result as Equation (3.21).

3.3.4. Dislocation loops

Screw dislocations and edge dislocation may appear in a real crystal combined in a form
of a loop or a ring, see Figure 3.12. The slip plane contains of two regions, outside the

s

m

dislocation loop

screw 

screw

edgeedge

mixed

mixedmixed

mixed

Figure 3.12.: Dislocation loop

loop, the atoms have not slipped from the lower atoms. Inside the loop, the atoms glide
along the plane into the slip direction. If the Burgers vector is parallel to the slip direction,
the dislocation loop is an edge dislocation. If it is perpendicular to the slip direction, the
dislocation is a screw dislocation. If the Burgers vector is neither parallel nor perpendicular
to the dislocation line, this dislocation is a mixed dislocation. Then, the Burgers vector is
the sum of two Burgers vectors, parallel and perpendicular to the dislocation line, see Figure
3.13,

b = b1 + b2, (3.22)

with |b1| = |b|Sinϕ and |b2| = |b|Cosϕ.



32 3. From macro to microscale

j

b

b2

b1

dislocation line

Figure 3.13.: Mixed Burgers vector

3.3.5. Dislocation multiplication and pile ups

As determined by experiments, the dislocation density in annealed metals is not high enough
to produce the observed slip bands. Therefore, during loading dislocations need to be nu-
cleated. Various sources in a crystal may generate new dislocations and hence increase the
dislocation density. One of the most common sources is the Frank-Read source (see [25]),
which was observed in experiments by Dash in 1956. A Frank-Read source is a dislocation,
which is locked at both ends. The shear stress, which is applied to the glide plane causes a
force on the straight dislocation line. If the endings are locked, the line forms a half-circle.
The dislocation moves further and rotates around the locked endings when the shear stress
increases further. Then the dislocation line completely rotates round the endings and even-
tually returns to its original position. A new dislocation loop is the result. During loading,
dislocations can also be nucleated from dipoles (two dislocations with different sign). These
dipoles are introduced in the crystal by thermal stresses and may remain there, until shear
stresses seperate them. Then these disloactions are pulled to other directions and are called
geometrically necessary dislocations. If dislocations remain at their arbitrary positions, they
are called statistically stored dislocations.

There are different kinds of obstacles for the dislocation movement in the crystal. One
obstacle is the grain boundary. The dislocations which meet the obstacle cannot move any
further, hence they pile up. These piled up dislocations exhibit a force to the obstacle. This
results in an internal stress, characterized as τp and can be calculated via

τp = nτ (3.23)

with n being the number of dislocations. This number is obtained by

n =
πl0τ
µb

(3.24)

for edge dislocations and

n =
πl0τ(1− ν)

µb
(3.25)

for screw dislocations. G represents the shear modulus, b the magnitude of the Burgers
vector, τ the applied shear stress and l0 is the length on the slip plane where the dislocations
are piling up. The internal stress at the grain boundary τp causes a hardening effect of the
crystal. Therefore, this pile-up is also responsible for the Bauschinger effect.
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3.4. Continuum theory of dislocations

In the previous section, dislocations and their nucleation are introduced. A real crystal
consists of a huge number of dislocations (range from 108 to 1015 dislocations per square
meter), therefore in order to describe the behavior of so many dislocations, the continuum
dislocation theory was developed. Kondo [50], Bilby [12] and Kröner ([54] and [53]) were
the first who introduced that concept. Kinematic quantities which characterize the deformed
state of the crystal and the rate of change of the dislocation network are be chosen. Then the
energy and the dissipation have to be described in terms of these quantities. When these are
determined, the continuum theory of dislocations follows the thermodynamic laws.
As an introduction to the theory, small deformations are considered, hence the linear theory
is presented. These basics and further informations are revealed in [82] and [58].

3.4.1. Linear continuum theory of dislocations

Elastic and Plastic Distortion

In order to define the elastic and plastic distortions of a crystal, we first assume a crystal
which is stress free. Kröner [53] described the geometrical changes of a crystal in terms
of a relative plastic displacement δg. As an example, a former homogeneous element can
be split up into infinitesimal small volume elements with the width δx2. Then the relative
plastic displacement displaces each volume element to the other, see Figure 3.14, and the
volume element is deformed plastically. By using the relative plastic displacement, the
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x3 x3
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x2

x2dx1

dx2

dx3
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x3
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x3
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Figure 3.14.: Plastic distortion

plastic distortion βi, j is introduced by

δg j = βi jδxi. (3.26)

The entries of the diagonal of the plastic distortion tensor can be interpreted as the plastic
strains, the other entries are the plastic shear. The first index of the tensor denotes the glide
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plane and the second the slip direction. The plastic distortion can be split up into plastic
strains and plastic rotations,

βi j = ε
p
i j +ω

p
i j. (3.27)

In other terms, the plastic strains are the symmetric part of the plastic distortion,

ε
p
i j =

1
2

(
βi j +β ji

)
. (3.28)

The orientation of the volume elements are not changed due to the plastic distortion, while
the elastic distortion rotates and distorts the orientation of the volume element, see Figure
3.15. For small strains, the total strain is the sum of the elastic strain and the plastic strain,
hence

ε = εe + εp. (3.29)

The plastic strain tensor, which is the symmetric part of the plastic distortion, brings the un-

e pe=e+e

p
e

e
e

Figure 3.15.: Additive decomposition of the strain

deformed crystal to the reference stress free crystal, thus without deforming the lattice. The
elastic strain tensor deforms the crystal according to Hooke’s law [58] and may introduce a
shape and a lattice change. However, during any elastic deformation, the neighboring atoms
remain always neighbors. In contrast to the classical plasticity theory, also the plastic rota-
tion needs to be considered. This may be explained by an Gedankenexperiment, visualized
in Fig. 3.16. First a crystal is deformed by a homogeneous plastic deformation caused by
edge dislocations with the Burgers vector along x1 axis, afterward by a second homogeneous
plastic deformation by similar edge dislocations, but this time with Burgers vector along x2
axis. For an isotropic material, even if two plastic deformations have taken place, the final
result is only a plastic rotation by the angle φ. In classical plasticity theory, this rotation is
neglected. However, the energy has to change from the initial to the rotated state due to the
two dislocation movements [6].

Concerning a crystal which undergoes a single slip, the plastic distortion is found by

βi j = βsim j, (3.30)
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Figure 3.16.: Gedankenexperiment

with m and s describing the slip system as already described before, see [58]. In general,
the plastic distotion does not cause any volumetric changes, therefore βii = 0. If a crystal
contains n- number of slip systems, the plastic distortion can be calculated by

βi j =

n∑
k=1

βsk
i mk

j. (3.31)

Dislocation density

The relative displacement of two neighboring points with the distance dx may be introduced
by

duT
j = βT

i jdxi, (3.32)

due
j = βe

i jdxi (3.33)

and

dup
j = βi jdxi, (3.34)

where duT denotes the total, due the elastic and dup the plastic relative displacement. The
total distortion βT is obtained by the sum of the elastic and plastic distortion, thus

βT = βe +β. (3.35)

Under the assumption, that the elements of a plastic deformed body remain connected, the
total relative displacement has to be compatible, so that∮

C
duT

j =

∮
c

due
j +

∮
C

dup
j = 0 (3.36)

has to be fulfilled for every circuit C. Replacing the relative deformation by their definitions
(3.32), (3.33) and (3.34) and employing Stoke’s theorem (A.35) on an arbitrary infinitesimal
area with the normal vector n, Equation (3.36) leads to

curlβT = 0, (3.37)

which simply is the compatibility condition, and

curlβe = −curlβ, (3.38)
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which shows the incompatibility of the elastic distortion. Burger [14] defined the resultant
Burgers vector as

b =

∮
C

due. (3.39)

With the use of the incompatibility of the elastic distortion (3.38) and Eq. (3.34), the resul-
tant Burgers vector can expressed as

b j =

∮
C
βi j dxi. (3.40)

For one dislocation, the Burgers vector characterizes the jump of the deformations on the
slip surface. The resultant Burgers vector characterizes analogously the total closure failure
of all dislocations in the crystal at the slip surface. The application of Stoke’s theorem yields

b j =

∫
A

(curlβ)i j ni dA. (3.41)

Consequently Nye [72] introduced 1953 the dislocation density tensor αi j as

α = curlβ (3.42)

or

αi j = ε jklβil,k. (3.43)

with β being the plastic distortion and ε jkl the permutation, defined in (A.11). With this
quantity, the resultant Burgers vector of all dislocations whose dislocations lines cross the
area A can be calculated by

b j =

∫
A
αi jni dA (3.44)

with ni being the normal vector of the area A. For a crystal with one active slip system, the
number of dislocations per unit area is given by the scalar dislocation density,

ρ =
1
b

∣∣∣ε jklβ,kmin j
∣∣∣ . (3.45)

In this equation, b denotes the magnitude of the Burgers vector.

Energy of dislocation network

Kröner [55] introduced the dislocation density tensor and the elastic strain as state variables.
Taking these state variables, the state of the body can be calculated uniquely without any
knowledge of the history (e. g. loading).

For isothermal processes, the free energy per unit volume of a crystal including dislocations
consists of two terms,

ϕ
(
εe,α

)
= ϕe (εe)+ϕm (α) . (3.46)
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The first term, ϕe (εe) is contributed from the elastic deformation of the crystal. Applying
the equations (3.29), (3.28) and (2.13), the state variable εe for infinite small deformations
can be calculated by

εe
i j = u(i, j) +β(i j), (3.47)

the bracket in the indices denotes the symmetrization [82]. The second part of the energy
density, ϕm (α) is contributed by the dislocation network. This energy has to be chosen in the
form that the thermodynamic principles are fulfilled. Gurtin [31] proposed 1972 the energy
density as the quadratic form

ϕm =
1
2
α : E : α (3.48)

with E being a material tensor which has to be chosen. Berdichevsky [5] introduced 2006 a
new ansatz for the energy density in the form

ϕm = µk

ln 1

1−
√

ρ
ρs

−

√
ρ

ρs

 (3.49)

with k being a material constant. Instead of the dislocation density tensor, the scalar disloca-
tion density is the state variable. The saturated dislocation density ρs is a material parameter
which describes the closest packing of dislocations in a certain domain. If the scalar dis-
location density ρ reaches ρs, the energy density gets very large, if ρ is small the energy is
nearly linear. As an approximation,

ϕm = µkln
1

1− ρ
ρs

(3.50)

can be taken.

System of equations

The free energy of the crystal in the undeformed region Ω0 is obtained by

Ψ =

∫
Ω0

ϕ
(
εe,α,β

)
dv, (3.51)

assuming a constant temperature. Following the laws of thermodynamic, the difference
between the rate of this free energy and the power has to bigger than zero, thus

d
dt

∫
Ω0

Ψ
(
εe,α,β

)
dv−W ≥ 0, (3.52)

with W being the power. When the crystal is adiabatically isolated and heat conductivity
is neglectible, the first law of thermodynamics states that the power is equal to the time
derivative of the free energy [5], thus

W = Ψ̇. (3.53)
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Due to the chosen form of the energy it reads[81]

W =

∫
∂Ω0

(
σi jn ju̇i +σi jknkβ̇i j

)
da, (3.54)

where n is the normal vector on ∂Ω0. The power contains higher order stresses, since
the energy density is dependent on the gradient of the plastic distorsion. Mathematical
treatments (see for example [58]) lead to the inequality

τi ju̇i, j + κi jβ̇i j +τi jkβ̇i j,k +σi j, ju̇i ≥ 0, (3.55)

with τi j =σi j−
∂ϕ
∂εi j

, τi jk =σi jk−
∂ϕ
∂αim

εmk j and κi j = −
∂ϕ
∂βi j

+σi jk,k. For any rigid body rotation
where u̇i, j, βi j and β̇i j,k are zero, the energy has to be also zero, therefore σi j, j = 0 has
to hold as well and this inequality can only be fulfilled if σi j = σ ji. From the laws of
thermodynamic, the dissipation may be introduced as

D
(
u̇i, j, β̇i j, β̇i j,k

)
= τi ju̇i, j + κi jβ̇i j +τi jkβ̇i j,k. (3.56)

By assuming a rate-independent process, the dissipation function is a homogeneous first
order function of the internal variable rates and we can identify τi j = ∂D

∂u̇i, j
, κi j = ∂D

∂β̇i j
and

τi jk = ∂D
∂β̇i j,k

. Related to this dissipation, a dissipation potential ∆ can be introduced. This dis-
sipation potential has to be a homogeneous function, thus the Euler’s homogeneous function
theorem,

∂∆

∂u̇i, j
u̇i, j +

∂∆

∂β̇i j
β̇i j +

∂∆

∂β̇i j,k
β̇i j,k = m∆

(
u̇i, j, β̇i j, β̇i j,k

)
(3.57)

has to be fulfilled. Then, by assuming a rate-independent process (thus m = 1) [82] we obtain

∆ = D. (3.58)

With these derived equations, the system is closed for solving the unknowns ui and βi j, if
the energy density ϕ (see previous section) and the dissipation potential ∆ are chosen.

3.4.2. Nonlinear continuum dislocation theory

In the nonlinear continuum dislocation theory, large deformations are assumed, hence the
additive decomposition of the strain tensor is not valid anymore. The treatment, however,
remains the same: the kinematic quantities which characterize the deformed state of the
crystal and the rate of change of the dislocation network are defined. These quantities should
be independent from loading history. The energy and the dissipation have to be considered,
depending only on these quantities. Then the thermodynamic laws are applied.

Kinematics

Similar to the macroscopic deformation gradient, Bilby [12] decomposed the deformation
gradient for large deformation multiplicatively, see Eq. (2.67). In general, Fe and Fp are
incompatible but volume preserving and their corresponding inverse deformation exist,

detFe > 0 , detFp > 0. (3.59)
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In [12], the deformation gradient F is referred as a shape deformation, Fe a lattice deforma-
tion and Fp as a dislocation deformation. Kröner [53] started a Gedankenexperiment and
defined the inverse elastic deformation gradient Fe−1 as a deformation which releases all
dislocations in the current state to the surface, so that a stress and dislocation free crystal is
obtained. Therefore he introduced an intermediate configuration of the crystal. Applying
Eq. (2.67), the plastic deformation gradient is then found as

Fp = Fe−1 ·F. (3.60)

This definition does not agree with the idea of Bilby [12], where the elastic deformation
does only change the lattice but no dislocation movement occurs. Therefore the physical
interpretation of the plastic deformation gradient is still questionable. The introduction of
an intermediate configuration should be investigated further. The vectors which describe a
material can be distinguished between shape and lattice vectors. A shape vector is connected
to the material and changes whenever the material deforms plastically. The lattice vectors
are only linked to the crystal lattice, which does not change due to a pure plastic deformation.
Therefore the introduction of the intermediate configuration is not necessary, the plastic
deformation gradient Fp can be seen as a map in the reference configuration, transforming
the shape vectors but not the lattice vectors. However, due to the variety of definitions
for the plastic deformation gradient, before applying the nonlinear continuum dislocation
theory, the definition should be clarified.

Similar to the linear continuum dislocation theory, a commonly used kinematic quantity is
the dislocation density. It can be found by determining the resultant Burgers vector, which is
dependent on the plastic deformation gradient. The resultant Burgers vector has to change
when the material behaves plastic, since plastic deformation is accomodated by creating
dislocations. But the resultant Burgers vector should not depend on the loading history.
Kondo [50] and Bilby [11] introduced the definition for the resultant Burgers vector as

br = Fe
∮

Fe−1 dy. (3.61)

However, Ortiz and Repetto [74] defined the resultant Burgers vector in a different way

br =

∮
Fp dy. (3.62)

For one active slip system, this formula is valid. However, it can be shown that this resultant
Burgers vector is not invariant with respect to arbitrary superimposed plastic deformations.
Berdichevsky [5] defined the resultant closure failure, leading to the dislocation density
tensor

T = −Fp−1 ·
(
Fp×∇

)
. (3.63)

Cermelli and Gurtin [17] required that the true resultant Burgers vector has to measure
the local failure per unit area in an intermediate configuration. However, this requirement
is questenable, as the suggestions of [53], including the intermediate configuration, have
been already critically discussed above. Hence, there exist different definitions of the key
quantity which characterizes the state of the dislocation network and the kinematics have to
be examined before applying this framework.
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3.5. Microstructures

Microstructures can be understood as material instabilities, hence lattice defects which are
not in thermodynamic equilibrium form a microstructure. There are also structures which
are produced as deformation mechanisms at plastic material behavior. Usually, these mech-
anisms are caused by dislocation networks, which are already introduced in the previous
section. In the following section, these deformation mechanisms at plastic material behav-
ior are presented. The outlined information are based on [34] and [41].

3.5.1. Grains and phases

In reality, a bulk material consists not of one perfect crystal lattice, but of different crystal
grains. This means that the crystal lattices may be rotated to have different directions, hence
one crystal lattice forms one grain, a lattice with a different orientation another grain. The
boundary between two grains, referred as grain boundary, can be described by five orien-
tation parameters (also referred as Euler angles). If the grains are tilted by a small angle,
the boundary is a low-angle grain boundary and formed by parallel edge dislocations (pre-
sented in Fig.3.17 with α << 1). Then the relation between the tilt angle α, the amount of

a
b

d

Figure 3.17.: Low-angle grain boundary

the Burgers vector (b) and the distance of dislocations (d) reads

tanα ≈ α ≈
b
d
, (3.64)

if α << 1. For larger tilt angles, it is not possible forming a boundary by a network of
edge dislocations. However, there is the possibility to find a coincidence lattice, hence this
lattice is shared by both grains. A special case is a coherent twin boundary (illustrated in
Fig. 3.18), where the two grains are simply mirrored and share the complete lattice at the
boundary. The formation of twins will be described later.

If two grains not only differ in orientation but also in structure and/or composition, these
two grains are referred as different phases. The interface boundary (between two phases)
can be coherent, semi-coherent or incoherent, like shown in Fig 3.19.
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Figure 3.18.: Coherent twin boundary

coherent interface boundary
semi-coherent interface boundary

incoherent interface boundary

Figure 3.19.: interface boundaries

3.5.2. Deformation twinning

Deformation twinning, similar to the formation of slip bands, may occur during a plastic de-
formation. This mechanism can only take place in appropriate structures (for example in fcc
crystals) at low temperature but fast loading velocity. Otherwise the formation of slip bands
is favorable. For deformation twinning, instead of a sliding of planes, a part of the lattice
tilts and a new grain with a different orientation is formed. The boundary between the twins
can be coherent (see Fig 3.18) or incoherent. If the boundary is incoherent, the boundary
consists of Shockley partial dislocations. These Shockley partial dislocations are dissoci-
ated perfect dislocations and cause the twinning shear. One by one the partial dislocations
climb up a screw dislocation and convert one plane after another into the twin orientation.
This procedure is also referred as pole mechanism.

3.5.3. Martensitic transformation

Another deformation mechanism at plastic material behavior is the martensitic transfor-
mation. Commonly the cubic lattice of austenite is transformed to a tetragonal lattice of
martensite (other transformation possibilities are orthorombic or monoclinic lattices). This
effect can be generated externally by a decrease of temperature or shear stresses and is often
used for tempering steel. The transformation process is reversible, hence by an increase
of temperature or unloading, the initial state can be obtained again. The martensitic trans-
formation is a diffusion free phase transformation and a coordinated movement of atoms
takes place in a crystalline solid. There are different choices at the lattice scale how the
cubic austenite can transform to the martensite. For tetragonal martensite, three states can
occur, which are called martensite variants and are rotated to each other around the axis (see
Fig.3.20).
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austenite

martensite variants

Figure 3.20.: Tetragonal martensite variants.

The martensitic transformation has certain crystallographic features, as the habitus plane,
which is invariant for both phases, or the orientation relationship between the martensitic
and the matrix phase (the closed packed planes and directions have to be parallel for both
lattices). The martensitic deformation is a lattice deformation, thus a coherent change of
structure and results in a volume and shape change of this phase. Therefore this phase is
associated with a high strain energy. In order to decrease this energy, a accommodation
process, either slip bands or twinning, occurs. Both processes are illustrated in Fig. 3.21.
This figure corresponds to the theory presented for example in [41] or [10]. In this figure,

initial lattice, austenite
shape change due to shear

inner deformation by slip
inner deformation by twinning

Figure 3.21.: Martensitic transformation

after the accommodation processes, the martensite is still not stress free and contains an
elastic deformation, thus there is still an essential amount of bulk energy. In this thesis,
we will present a model for the martensitic phase transformation, where the martensite is
afterwards stress free, thus the energy is reduced further.

Commonly the martensitic phase occurs at grain boundaries and forms a sharp needle or
plate.

The martensitic transformation forms on the material surface a structure as sketched in Fig.
3.23. A scratch on the surface may show the unevenness due to the martensitic phase, [21].

Fig.3.23 reveals, that the habitus plane is also the interface boundary. Since the lattice has
changed, it is semi-coherent. Therefore in order to fit this boundary, it has to contain ei-
ther an array of dislocations or the martensitic phase has to consist of different variants.
Energetically both mechanism are possible. If dislocations are involved in this transforma-
tion process, they have to be considered in a model as well, since their movement to the
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Figure 3.22.: TEM bright field image of a martensitic grain. The twin lamellae show bright
and dark contrast. Reprinted by permission from [87]

matrix

matrix

habitus plane

martensite

Figure 3.23.: Matrix and martensitic phase

boundaries and formation of legs cause definitly an amount of dissipation. Due to the high
number of involved dislocations, the continuum disloaction theory seems to be favorable.
Even several models are already established (for example [75]), until now, no model, using
the nonlinear continuum dislocation theory, combines the reversible transformation strain
and the plastic deformation, caused by the dislocations.

3.5.4. Recrystallization

The previous presented mechanisms are processes which are introduced by dislocations and
its network. Recrystallization removes defects by forming new grains or by growing existing
grains. Even if the recrystallization removes defects, this structure is not in thermodynamic
equilibrium as grains remain in the material and form a recrystallization texture. There exist
two kinds of recrystallization, the first one is called primary recrystallization. This process
is temperature and deformation dependent and driven by the stored dislocation energy. A
critical deformation has to be overcome so that the process can initiate. At higher defor-
mations, less temperature is needed for the recrystallization. An important aspect are the
kinetics as the number of recrystallization nuclei per unit volume increases with time. The
recrystallization starts in most deformed regions, since the dislocation density is high there.
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The secondary recrystallization, or also referred as grain growth, is driven by the grain
boundary energy. The growth rate of grains depend on the orientation difference, the posi-
tion, the degree of deformation and temperature. At grain growth, some grains grow at the
expense of others, so that finally the material consists of less but bigger grains than before.

3.5.5. Modeling microbands

Horiuchi et al. [40] showed 1975 that drawn copper reveals linear lines under the micro-
scope. First a twinning process was assumed, but X-Rays detected that no twin orientation
was produced. An electron microscope showed finally that these lines were microbands,
starting already at small deformations. Microbands are areas or domains of the crystal which
have a different dislocation density, or are even dislocation free. The density of these mi-
crobands increased with a higher degree of deformation, and in the experiments of [40],
some bands even join at 90% deformation. In their investigations, the orientation of the
crystal is changed due to the microbands. From their results, they could exclude that mi-
crobands occur due to an elongation of the previous cells. However, they were still not able
to determine the mechanism of microband formation. 2009 Dmitrieva et al [20] examined
the formation of microbands in a single crystal of copper under a shear test at plastic de-
formation. Fig 3.24 shows a result of this shear test, an EBSD map, where the microbands
are present and a laminar structure is visible. They assumed that a lack of convexity in

Figure 3.24.: EBSD map of the part of the deformed area with several microbands. The map
shows the relative crystallographic orientation changes within 3◦ according to
the color scale. Reprinted by permission from [20]

the energy is the basic mechanism for the formation of the microstructure, comparable like
already others identified for similar microstructures ([74], [57], [16]).

Generally, a microband arises in order to reduce the energy, therefore it is dictated by the
free energy of the material and the dissipation, which is caused for example by the dislo-
cation movement. The resulting microband can be computed by employing the relaxation
theory [3]. In the relaxation theory, microstructures build the quasiconvex hull of the free
energy [2]. As this quasiconvex hull is rather complex to determine, this hull is often re-
placed by a rank one convex envelope [37], [15], which models a first order laminate. First
order laminates are able to display microbands, since a material including microbands also
consists of two domains and hence has a laminar structure.
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In order to model these microbands, two aspects have to be treated: the initiation of the
microstructure (commonly nowadays starting from the loss of convexity) and the evolution
of this microband (as experiments showed that the state of the microband is deformation
dependent [40], [20]). Several authors already outlined models to simulate the formation of
such or similar microstructures ([74], [57], [65], [68]). They have chosen suitable potentials
in a time-incremental setting and used a condensed energy functional (minimization of the
sum of the Helmholz free energy and dissipation distance with respect to the internal vari-
ables) for this formation. Unfortunately this approach is based on the assumption, that at the
beginning of each time step no microstructure is present. Therefore, these models can only
display the initiation of the microstructure correctly. For the subsequent evolution, also the
dissipation, which is caused by microstructural changes have to be taken into account [47].

In order to simulate a time-continuous evolution of a microband properly, Kochmann and
Hackl [48] outlined a model which also captures the effect of an existing microstructure at
the beginning of a time step. Instead of using the condensed energy, this model uses a par-
tially relaxed energy and a relaxed dissipation potential, which captures the dissipation due
to changes in the microstructure. They have chosen a first order laminate as a microstructure
in order to model microbands. By employing the principle of dissipation potential, evolution
equations are obtained. The dissipation potential is considered as a rate independent ansatz,
therefore the derived evolution equations are given implicitly. This model is capable to dis-
play all microstructural characteristics in every time step for a first order laminate. However,
due to the kind of derived evolution equations, this model involves a global minimization
in every time step. This makes the numerical simulation rather evolved and sometimes un-
stable. In order to improve the numerical effort and stability, we modify this model. This
modification will be presented in the next chapter.
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4. Modeling the viscous evolution of laminate
microstructures in finite crystal plasticity

As introduced in the previous section, under certain load conditions, homogenous single
crystals may develop microbands in order to reduce its energy. This microstructure influ-
ences the plastic behavior on the macroscale, therefore an appropriate simulation of the
evolving microstructure is needed. In this chapter, a variational ansatz is used to model
crystal plasticity with a first order laminate as the microstructure. For this concept, two
quantities have to be defined: the Helmholtz free energy and the dissipation potential. Then
the microstructure arises as a minimizer for the non convex energy potential without further
assumptions. The basic idea of this method was first introduced by Ortiz and Repetto, [74],
Carstensen et al. [16] and Mielke [67]. The here outlined model and parts of the examples
are also presented in [30], [28] and [29].

4.1. Variational framework

The developed material model is based on the idea that homogeneous deformations cannot
be found as minimizers for non convex energy densities [20]. Then the former homogenous
material may form a microstructure which reduces the energy of the crystal instead (see
2.6.2). In this case, the non convex energy density is replaced by a quasi convex hull and the
admissible microstructures are pre-accounted. These microstructures minimize the energy
instead [2], [3]. As the computation of the quasiconvex hull is in general not feasible, this
hull is replaced here by a rank-one-convex hull. The rank-one-convex hull corresponds to
the energy of first order laminates [66].

The total free energy of a body is described by

I (t,u,∇u,z) =

∫
Ω

Ψ (∇u,z) dV −Iext (t,u) , (4.1)

where z is a tensorial generalized internal variable which has to describe totally the cur-
rent state of the microstructure and u the displacement field. The actual displacements are
obtained by the principle of minimum of total energy, introduced in section 2.6.1,

u = argmin {I (t,u,∇u,z) |u = u0 on Ωu} . (4.2)

In order to describe the current state of a body, the internal variables have to be determined
as well. For their determination, the principle of the minimum of the dissipation potential is
applied. This principle is introduced in the following section.
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4.2. Principle of the minimum of dissipation potential

In order to derive evolution equations for the internal variables, which characterize the cur-
rent state of the microstructure, the principle of the minimum of dissipation potential is
introduced. For further details and explanations, we refer to [63], [62], [64] and [35]. In
[44] a derivation for non- isothermal processes is presented.

We consider a mechanical system, described by the derivative of the displacements ∇u and
internal variables z. Thus their material time derivatives can be determined and denoted by
∇u̇ and ż. The specific Helmholtz free energy is described in terms of both variables, hence
Ψ = Ψ (∇u,z). This energy is differentiable and the thermodynamic forces may be calculated
as −∂Ψ

∂z j
. Since the formation of microstructure is accommodated by dissipation, ∆ (z, ż) is

introduced as the dissipation potential. Then the true internal variables z have to fulfill the
variational equation [80]

δI (t,u,∇u,z) +

∫
Ω

∂∆

∂ż
: δzdV = 0. (4.3)

Since the energy of the body is independent from the rate of the internal variables, by ap-
plying the chain rule, the variation of the energy reads

δI=

∫
Ω

∂Ψ (∇u,z)
∂u

: δudV−
∂Iext (t,u)

∂u
: δu+

∫
Ω

∂Ψ (∇u,z)
∂∇u

: δ∇udV +

∫
Ω

∂Ψ

∂z
: δzdV. (4.4)

Due to the principle of minimum of total energy only the last contribution in not equal to
zero. Therefore, the variational equation 4.3 becomes∫

Ω

[
∂Ψ

∂z
+
∂∆

∂ż

]
: δzdV = 0 (4.5)

for all arbitrary δz. If all thermodynamic forces are assembled in a vector denoted by q,

q =
∂∆

∂ż
(4.6)

has to hold as well.

Another derivation of the principle of the minimum of the dissipation potential is the intro-
duction of the Lagrangean,

L = Ψ̇+∆, (4.7)

with

Ψ̇ =
∂Ψ

∂∇u

∣∣∣∣∣z=const.
: ∇u̇ +

∂Ψ

∂z

∣∣∣∣∣
∇u=const.

: ż. (4.8)

Then the principle of minimum of dissipation potential can be written in the form

L = Ψ̇+∆→ minż. (4.9)

The minimization of the Lagrangean leads to

∂Ψ

∂z
+
∂∆

∂ż
= 0, (4.10)
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thus again

∂∆

∂ż
= q. (4.11)

Employing on Equation (4.11) a Legendre transformation, the Legendre conjugate dissipa-
tion potential

J (z,q) = max {q : ż−∆ (z, ż)|q} (4.12)

leads to the evolution equations of the internal variables,

ż =
∂J
∂q
. (4.13)

The principle of the minimum of the dissipation potential is valid for any arbitrary time
step and only the energy density and the dissipation have to be chosen. By employing an
integration scheme, the updated internal variables z can be obtained from ż and the internal
variable from the previous time step.

K. Hackl and D. Kochmann [49] established a model for the evolution of microstructure
based on a rate independent dissipation potential

∆1 = r1 |ż| . (4.14)

The Lagrangean then reads

L = Ψ̇+∆1 (4.15)

and the principle of minimum of dissipation potential takes the form

L = Ψ̇+∆1→ minż. (4.16)

For the rate independent dissipation potential ∆1 considered in the model from Kochmann
and Hackl [49], the minimization leads to the stationary conditions of the Lagrangean. Re-
placing ż

|ż| by Sign(ż) the evolution equations read

Sign(ż) 3 −
1
r1

∂Ψ

∂z
. (4.17)

This kind of evolution equation is rather complicated to solve because the update of the
internal variable is not given explicitly. Therefore establishing a numerical procedure with
these kind of evolution equations is very demanding as a global minimization is involved in
every time step.

4.2.1. Visco-plastic dissipation potential

The dissipation potential is an assumption, therefore a different kind of a possible dissipation
potential can be considered in the form

∆2 =
r2

2
(ż)2 . (4.18)
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Inserting this dissipation potential into the Lagrangean and employing the principle of min-
imum of dissipation potential (Equation (4.16)),

L = Ψ̇+∆2→ minż,

the resulting stationary conditions of this Lagrangean read

∂Ψ

∂z
+ r2 ż = 0. (4.19)

From these conditions the derivation of the evolution equations of the internal variables
leads to

ż = −
1
r2

∂Ψ

∂z
. (4.20)

Thus, obviously from the dissipation potential (4.18) explicit evolution equations can be
derived. With this kind of evolution equations, the updating procedure is rather easy, but
these evolution equations lead to a time dependent material behavior. Therefore this material
behavior cannot interpreted as plastic anymore but as viscous.

In our ansatz for modeling finite plasticity, the sum of both dissipation potentials ∆1 and
∆2 is chosen. Dissipation potential ∆1 represents the plastic behavior and by employing
dissipation potential ∆2 the evolution equations get an rate dependent explicit character and
therefore the viscous dissipation potential also regularizes the minimization problem in time.
For modeling plasticity, the contribution of this viscous dissipation potential to the dissipa-
tion potential should be negligible small in comparison to the rate independent part, so that
the dominant material behavior is plasticity and a viscosity limit is reached. The principle
of minimum of dissipation potential with both dissipation potentials finally reads

L = Ψ̇+∆1 +∆2→ minż (4.21)

The minimization leads to the stationary conditions of the Lagrangean,

∂Ψ

∂z
+ r1

ż
|ż|

+ r2ż 3 0. (4.22)

Due to mathematical treatments [35], the stationary conditions become

∂Ψ

∂z
+ r1Sign

(
−
∂Ψ

∂z

)
+ r2ż 3 0. (4.23)

In order to obtain the evolution of the internal variables we follow the procedure of [49] and
impose a Legendre transformation,

J = supq

{
ż : q− r1 |ż| −

r2

2
ż2

}
, (4.24)

with the thermodynamic forces denoted by q. Using Equation (4.22), ż
|ż| can be expressed

by

r1
ż
|ż|

= q− r2ż. (4.25)
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Inserting this relation, the Legendre transformation may be written as

J = supq

{
|ż|
r1

(
q : q− r2

1

)
−
|ż|
r1

r2ż : q−
r2

2
(ż)2

}
. (4.26)

The supremum of this transform only exists if all summands of the Legendre transformation
are negative. Otherwise this function may be tending to infinity and no supremum exists.
Therefore

(
q : q− r2

1

)
≤ 0 has to be fulfilled since the two remaining parts of this supremum

are always negative. Hence this term can be identified as the yield function φ and reads

φ = q : q− r2
1. (4.27)

This yield function has to be always smaller than or equal to zero and can be reformulated
to

φ = |q| − r1 ≤ 0. (4.28)

If the yield function φ is bigger than zero, the evolution of the internal variables takes place.
Thus the updates of the internal variables are determined by the evolution equations, which
take the form

ż =
1
r2

(|q| − r1)+ Sign(q) . (4.29)

Here ()+ infers (|q| − r1) if the expression is bigger than zero or zero is taken instead. These
evolution equations may be also expressed in terms of the yield function

ż =
1
r2
φ+Sign(q) . (4.30)

4.3. Lamination

The microbands are modeled as first order laminates, illustrated in Figure 4.1. The domains
of the laminate are described by chosen internal variables. In this model, each domain i
is characterized by a volume fraction λi, a plastic slip γi and a hardening pi. Since the
microbands are not oriented along the slip system, the laminate may be rotated by an angle
φ. The normal vector b of the laminate can be expressed in terms of the angle φ.

p3F3 g3
p1F1 g1

p2F2 g2

p1F1 g1

ff

l

1-l ffp2

l1

l2

l3

N=3N=2

F2 g2

Figure 4.1.: Sketch of a first order laminate, different number of domains

In every domain of the laminate we have a constant deformation gradient Fi which can be
defined by

Fi = F (I + ai⊗b) , (4.31)
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with ai representing some deformation amplitude vector. At the laminate interfaces, the
compatibility of the deformation gradient has to be fulfilled, so that a corresponding de-
formation field exists. Therefore the volume average of the deformation gradient has to be
imposed [47],

N∑
i=1

λiFi = F, (4.32)

or alternatively

N∑
i=1

λiai = 0. (4.33)

On the other hand, each domain has to be incompressible [49],

detFi = 1. (4.34)

Since the whole material is incompressible, detF = 1 has to be fulfilled as well and Equation
(4.34) leads to

ai ·b = 0. (4.35)

According to [49], the normal vector b is considered as ingrained into the material, otherwise
any rotation changes the state of the internal variables and dissipation would be produced.
The amplitude vector a may be changed elastically. Then the partially relaxed energy of a
material consisting of a first order laminate is defined as

Ψrel (F,λ,γ,p,b) = inf

 N∑
i=1

λiΨ (Fi,γi, pi)

∣∣∣∣∣∣∣ai;
N∑

i=1

λiai

 . (4.36)

A microstructure exhibits dissipation, therefore the relaxed dissipation potential for a first
order laminate has to be found as well. For a fixed normal vector, hence the laminate cannot
rotate, the relaxed dissipation is given by

∆∗
(
λ, λ̇,γ,p,b, γ̇, ṗ

)
=

N∑
i=1

λi∆ (γi, pi, γ̇i, ṗi)

+ inf


N∑

i, j=1

∆λi jD
(
γi, pi, γ̇i, ṗi,γ j, p j, γ̇ j, ṗ j

)
|∆λi j;

N∑
i=1

∆λi j = λ̇ j,

N∑
j=1

∆λi j = λ̇i,∆λi j = 0 for |(i− j) modN | , 1

 (4.37)

[47]. D is the dissipation distance, defined in [67] and applied to the outlined problem in
[47]. This dissipation potential does not include a rotation of the laminate. However, a
rotation of the laminate may take place. This rotation causes a change in the regions of the
domains, therefore also the amount of plastic slip change in these regions, which results in
a dissipation. This amount is determined by

Db (λ,γ,p,b) =

N∑
i=1

N∑
j=1

λiλ jD
(
γi, pi,b,γ j, p j,

)
. (4.38)
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4.3.1. Constitutive framework for neo-Hookean material with one active slip
system

For modeling finite plasticity, large deformations are assumed, hence the deformation gra-
dient F has to be decomposed multiplicatively into its elastic and plastic part according to
the definition given by Equation (2.67).

As introduced in Section 3.1, the plastic deformation occurs due to a gliding process of
dislocations along an active slip system. A slip system, like sketched in Figure 3.3, is
defined by the unit vectors s and m which denote the slip direction and the normal vector of
the glide plane, respectively. For n slip planes, the plastic flow rule can be given by

ḞpFp-1 =

n∑
i

˙̄γisi⊗mi, (4.39)

see [16].

If we assume that all slip directions lie within one plane, thus mi = m, it can be shown that
m · Ḟp = 0 (note s ·m = 0). With the initial condition Fp = I, integration of this expression
leads to m ·Fp = m. Then Eq.(4.39) leads to

Ḟp =

n∑
i

˙̄γisi⊗m ·Fp =

n∑
i

˙̄γisi⊗m. (4.40)

Employing a time integration with the initial condition γi(0) = 0, the plastic deformation
gradient reads

Fp = I +

n∑
i

γ̄isi⊗m. (4.41)

From the condition FpFp-1 = I the inverse plastic deformation gradient is obtained as

Fp-1 = I−
n∑
i

γ̄isi⊗m. (4.42)

Due to the restriction to single slip plasticity, which is also referred as infinite latent harden-
ing, this flow rule can be simplified to

Fp-1 = I− γ̄s⊗m, (4.43)

where γ̄ is the total amount of plastic slip caused by this slip system and reads for N domains

γ̄ =

N∑
i

λiγi. (4.44)

An additional flow rule for isotropic hardening reads

ṗ = |γ̇| (4.45)

with the initial condition p (0) = 0. The hardening parameter p is responsible for the plastic
contribution to the energy.
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In this model, neo-Hookean material, with the elastic free energy density defined in Equation
(2.62), is considered. Assuming incompressibility the energy density reads

Ψ
(
Fe,p

)
=

1
2
µ
[
trFe TFe−3

]
+ κpα (4.46)

with µ being the shear modulus and κ the hardening modulus. Fe denotes the elastic defor-
mation gradient. The factor α describes the influence of the hardening. Commonly α is set
to 2, which represents linear hardening or α = 4 is considered. Equation (4.46) describes the
elastic energy for a homogeneous material. If a first order laminate is initiated, the partially
relaxed energy of a material consisting of several domains has to be determined according
to Eq. (4.36).

A detailed derivation of the relaxed energy of a first order laminate is given in [47]. In order
to find the relaxed energy density, the energy density of the laminates Ψlam has to be found
by summing up the energy of all domains, taking the incompressibility condition (4.35)
and the compatibility condition (4.32) into account. These constraints are introduced to the
elastic energy by employing Lagrangian multipliers, here denoted as ρi and Λ. Then the
energy density of the laminate reads

Ψlam (F,λ,γ, p,b) =
µ

2

N∑
i=1

[
λitrCe

i −2λiΛ ·ai−2λiρiai ·b
]
−

3
2
µ+ κ

N∑
i=1

λi pαi , (4.47)

where i denotes the actual domain over which is summed up. The elastic right Cauchy Green
tensor of domain i may be written as

Ce
i = Fe T

i Fe
i . (4.48)

The elastic deformation gradient of each domain can be obtained by Fe
i = FiF

p-1
i , hence

Fe
i = F (I + ai⊗b) (I− γ̄is⊗m) . (4.49)

The unknown amplitude vector ai and the Lagrange parameters ρi and Λ are determined by
a minimization of the energy density of the laminates (4.47) with respect all unknowns. The
result reads

ρi =
bi ·b

b ·C−1b
, (4.50)

Λ =
C∑N

i=1
λi

bi·b

 N∑
i=1

λi

bi ·b
bi

− 1
b ·C−1b

C−1b (4.51)

and

ai =
1

bi ·b
C−1Λ+

1
b ·C−1b

C−1b−
1

bi ·b
bi (4.52)

where bi is defined as

bi = b−γi (b ·ms + b · sm) +γ2
i b · ss. (4.53)
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Finally these expressions may be reinserted into the energy of the laminates. Then the
partially relaxed energy density reads

Ψrel (F,λ,γ, p,b) = inf
{
Ψlam |ai

}
= κ

N∑
i

λi pαi

+
µ

2

 1∑N
i

λi
bib

+

 N∑
j

N∑
k

λ jλkb j ·Cbk

b j ·bbk ·b
−

1
b ·C−1b

+

N∑
i

λi

(
bi ·b

b ·C−1b
−

bi ·Cbi

bib

)

+tr (C) +

N∑
i

λi
(
γ2

i s ·Cs−2γis ·Cm
)
−3


(4.54)

with N denoting the number of domains.

Analogously to the determination of the relaxed energy for a first order laminate, the relaxed
dissipation potential, which is caused by changes in the microstructure, has to be defined.
As mentioned before, the dissipation potential consists of a rate independent contribution,
which is already examined by D. Kochmann and K. Hackl [48] and a quadratic term in the
rate of plastic slip which captures viscous effects. The complete dissipation potential takes
the form

∆ (γ̇) = r |γ̇|+
s
2
γ̇2, (4.55)

with s being a viscous parameter and r the critical resolved shear stress. As already derived
in Section 4.2, this ansatz for the dissipation potential leads to explicit evolution equations
for the internal variables.

For simplicity the number of domains in the material is set to two in the following, hence
N = 2. The resulting laminate is shown schematically on the right hand side of Figure 4.1.
Due to the restriction of two domains, the volume fraction in domain 1 can be expressed as
λ−1, consequently the volume fraction in domain 2 reads λ.

If any microstructural change appears, dissipation is produced. The dissipation potential
caused by the changes of the plastic slips can be found easily by weighting the dissipation
potential (4.55) for each domain with its respective volume fraction, hence for two domains

∆∗1 (λ, γ̇i) = (1−λ)
[
r |γ̇1|+

s
2
γ̇2

1

]
+λ

[
r |γ̇2|+

s
2
γ̇2

2

]
. (4.56)

Any change of volume fraction is also a dissipative process, as the change of region also
changes the amount of plastic slip in this region, illustrated in Figure 4.2.

Therefore also the change of volume fraction contributes a dissipation to the relaxed dis-
sipation potential. D. Kochmann and K.Hackl [36] already derived the rate independent
dissipation potential as

∆∗2a

(
γi, λ̇

)
= r |γ2−γ1|

∣∣∣λ̇∣∣∣ . (4.57)

For the determination of the viscous contribution, the viscous part of the dissipation potential
may interpreted as an introduced viscous zone between the laminate domains instead of a
sharp interface. If a change of the volume fraction occurs, this zone moves with the velocity
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Figure 4.2.: From time step n to n+1 the volume fraction of the first domain, 1−λ changes
(the light grey highlighted area is added), respectively in this area the plastic
slip is transformed from γ2 to γ1.

v, illustrated in Figure 4.3. Since two viscous transition zones exist, the link between the
velocity of this zone and the rate of volume fraction can be determined as

v =
λ̇

2
. (4.58)

Furthermore, the smooth transition zone is described by its width δ (volume ratio) and the
viscous parameter s.
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ff

v v
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Figure 4.3.: Newly added viscous zone between the laminate domains, reprinted from [29]

For the viscous part of the dissipation potential, the intercept theorem which states

γ̇ =
|γ2−γ1|

2δ
λ̇ (4.59)

can be employed for the triangle of the transition zone. This equation allows to calculate the
dissipation of the viscous zone due to the change of volume fraction as s

2
(γ2−γ1)2

2δ λ̇2, hence
the dissipation potential due to a change of volume fraction reads

∆∗2

(
γi, λ̇

)
= r |γ2−γ1|

∣∣∣λ̇∣∣∣+ s
2

(γ2−γ1)2

2δ
λ̇2. (4.60)

Then the total relaxed dissipation potential due to microstructual changes is the sum of both
dissipation potentials ∆∗1 +∆∗2,

∆∗
(
λ,γi, λ̇, γ̇i

)
= r |γ2−γ1|

∣∣∣λ̇∣∣∣+ s
2

(γ2−γ1)2

2δ
λ̇2 +(1−λ)

[
r |γ̇1|+

s
2
γ̇2

1

]
+λ

[
r |γ̇2|+

s
2
γ̇2

2

]
. (4.61)
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Inserting the relaxed dissipation potential (4.61) and the relaxed neo-Hookean energy (4.54)
into the Lagrangian, introduced in (4.7), we get

L
(
F,λ,γi, pi, λ̇, γ̇i,b

)
=
d

dt
Ψrel (F,λ,γi, pi,b) +∆∗

(
λ,γi, λ̇, γ̇i

)
. (4.62)

4.4. Numerical treatment of the time-continuous evolution of finite
crystal plasticity

By employing the principle of minimum of dissipation potential the stationary conditions of
the Lagrangian are obtained in the form

0 ∈
∂Ψrel

∂λ
+ r |γ2−γ1|Signλ̇+

s
2δ

(γ2−γ1)2 λ̇ (4.63)

0 ∈
∂Ψrel

∂γi
+ rλiSignγ̇i +λisγ̇i (4.64)

We follow the derivation from the section (4.2) and by imposing the Legendre transforma-
tion the yield function is obtained. The resulting evolution equations can be written as

λ̇ = −
2δ

s (γ1−γ2)2

(∣∣∣∣∣∣∂Ψrel

∂λ

∣∣∣∣∣∣− r |γ1−γ2|

)
+

sign
∂Ψrel

∂λ
(4.65)

and

γ̇i = −
1

sλi

(∣∣∣∣∣∣∂Ψrel

∂γi

∣∣∣∣∣∣− rλi

)
+

sign
∂Ψrel

∂γi
. (4.66)

The direction of the evolution of the microstructure is given by the sign of the respective
driving force. The magnitude is indicated by the yield function. For the rate of plastic slip
this function reads(∣∣∣∣∣∣∂Ψrel

∂γi

∣∣∣∣∣∣− rλi

)
, (4.67)

for the rate of volume fraction, the yield function is expressed as(∣∣∣∣∣∣∂Ψrel

∂λ

∣∣∣∣∣∣− r |γ1−γ2|

)
. (4.68)

As mentioned before, the evolution only takes place if the yield function is positive. Oth-
erwise this expression is zero and therefore the update is also zero and the microstructure
remains frozen. According to [49], the driving forces in these evolution equations may be
calculated analytically. The driving force for the volume fraction reads

−
∂Ψrel

∂λ
= −

µ

2

[
tr
(
Ce

2

)
− tr

(
Ce

1

)
−2Λ · (a2−a1)−2(ρ2a2−ρ1a1) ·b

]
− κ

(
pα2 − pα1

)
(4.69)

with the elastic right Cauchy Green tensor of each domain Ce
i defined in (4.48) and the

Lagrange multipliers ρi and Λ defined in Eqs (4.50) and (4.51). The driving forces for the
plastic slip are determined as

−
∂Ψrel

∂γi
= µλitr (m⊗ s (I + b⊗ai)C (I + ai⊗b) (I−γis⊗m)) . (4.70)
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For the two domain laminate, λ1 = 1−λ and λ2 = λ may be inserted.

Once a laminate exists, a change of orientation of the laminate is possible. A higher order
laminate is built and is vanished directly, this may relocate the laminate and thus leads to
a rotation. When the laminate rotates, the domains with their corresponding plastic slip
change and dissipation is produced. This domain-changing due to the rotation is illustrated
in Figure 4.4.

fn

fn+1

Figure 4.4.: Rotation of the original laminate to the rotated system

The dashed lines correspond to the former location of the rotated domain. The produced
dissipation is proportional to the changed areas of the domains and to the dissipation dis-
tances which are required for the change of the domains. For a single slip system with two
domains, this dissipation reads

Dφ = 4rλ (1−λ) |γ1−γ2| (4.71)

[48]. Therefore the rotation only takes place when energetically favorable, hence if

inf
{
Ψrel [F,z,φn+1

]
−Ψrel [F,z,φn

]}
+ Dφ ≤ 0. (4.72)

is fulfilled.

The dissipation potential caused by rotation should be consistent to the previous dissipation
potentials. Therefore it is considered in the form

∆rel
φ = a

∣∣∣φ̇∣∣∣+ bφ̇2, (4.73)

with a and b may depending on λi and γi. Up to now, no canonical way determines a and
b, however the limit behavior should be fulfilled, thus if λ→ 0, 1−λ→ 0 or γ1 − γ2 → 0,
the dissipation potential has to tend to zero as well. According to this condition, a and b are
chosen as

a = 4rλ (1−λ) |γ1−γ2| (4.74)

and

b =
s
δ
λ (1−λ) (γ1−γ2)2 . (4.75)

Then the dissipation potential reads

∆rel
φ = 4rλ (1−λ) |γ1−γ2|

∣∣∣φ̇∣∣∣+ s
δ
λ (1−λ) (γ1−γ2)2 φ̇2. (4.76)
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The first part of this dissipation (a) is similar to the dissipation potential considered by
Kochmann and Hackl [48], determining the changed plastic slip due to the rotation. The
second contribution of this dissipation potential is chosen for regularization and considered
analogously to the dissipation potential which is exhibited by the change of volume fraction.

As the change of the angle is considered to be small, the global minimization of the free
energy for determining the angle is replaced by a local minimization, hence by taking the
tangent, shown in Figure 4.5. Then the evolution of the angle is similar to the updates of the

rel
Y

fnn fn

Figure 4.5.: Local minimization of the angle

volume fraction and plastic slip (Equations (4.66) and (4.65)) and reads

φ̇ = −
δ

2sλ (1−λ) (γ1−γ2)2

(∣∣∣∣∣∣∂Ψrel

∂φ

∣∣∣∣∣∣−4rλ (1−λ) |γ1−γ2|

)
+

Sign
∂Ψrel

∂φ
(4.77)

The remaining internal variable, which has to be updated, is the hardening parameter pi.
According to [47], it has to be updated twice. The first update is caused by the change of the
volume fraction. When the volume fraction of one domain changes, the region, associated
previously with the other hardening parameter has to change as well (illustrated in Figure
4.2). The updated values are obtained by an energetic averaging,

(λn +∆λ) pα2,n+1 = λn pα2,n +∆λpα1,n p1,n+1 = p1,n (4.78)

for ∆λ > 0 with λn+1 = λn +∆λ. For ∆λ < 0 , the updating procedure

(1−λn−∆λ) pα1,n+1 = (1−λn) pα1,n−∆λpα2,n p2,n+1 = p21,n (4.79)

holds true where ∆λ is the update for the volume fraction for each time step dt, hence

∆λ = λ̇dt. (4.80)

The second updating follows according to the flow rule given by Equation (4.45),

∆p1 = |∆γ1| (4.81)

and

∆p2 = |∆γ2| (4.82)

with ∆γi = γ̇idt.

Our aim is to model the time-continuous evolution of a microstructure. If the initial data
Fn,γi,n, pi,n,λn,φn at the beginning of a time step is known, for a given small time step dt
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with a known deformation gradient at the end of the time step Fn+1, the update of the internal
variables may be found as

∆λ = λ̇dt, (4.83)

∆γi = γ̇idt, (4.84)

and

∆φ = φ̇dt. (4.85)

The rates of the internal variables are determined by the evolution equations which are
derived above. Since all evolution equations for the internal variables which describe the
microstructure are already obtained, the microstructural changes in every time step with
given initial data can be computed.

Another crucial aspect of this modeling technique is the initiation of the evolution from the
former homogenous material. Microstructures only appear if it is energetically favorable
that the homogenous crystal splits up. Therefore a test function λtest is defined,

λtest = λn +

∂Ψ
∂λ∣∣∣∂Ψ
∂λ

∣∣∣ . (4.86)

This test function indicates whether the evolution of the volume fraction tends to the ”right”
direction. As an example: If λn = 0, the test function should be positive and therefore
the evolving volume fraction as well. Otherwise a lamination does not reduce the energy
and the crystal stays homogenous. If the test function indicates that a laminate should be
established, the volume fraction and the plastic slip of the domain, which should arise, are
set to an infinitely small value. Then the remaining internal variables are updated according
to their evolution equations.

In the model of Kochmann and Hackl [47], the laminate arises directly when it is energeti-
cally favorable, illustrated in Figure 4.6.
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Figure 4.6.: Initiation in the model from Kochmann and Hackl, [47].

In the new approach, the dissipation of the material contains also a viscous contribution.
Therefore a delay due to the viscosity occurs before the microstructure can minimize the
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energy (Figure 4.7) and the energy follows the non convex path until the the microstructure
is built. Then the energy shakes down to the rank-one-convex hull. Due to viscous effects,
also the vanishing of the microstructure is delayed.
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Figure 4.7.: Initiation of the modified approach including a viscous contribution.

This model can be implemented and testings performed, algorithm 1 illustrated the proce-
dure. Until now, this model is performed on a material point. For a continuum with several
material points and boundary conditions, this scheme has to be implemented in a finite ele-
ment code.



62 4. Viscous evolution of laminate microstructures

Algorithm 1 Numerical scheme for the incremental evolution for single slip plasticity
for incremental load update: Fn+1 = Fn +∆F do

if λ = 0 or λ = 1 then
→ Homogenous material

Calculate testfunction: λtest = λn +
∂Ψ
∂λ∣∣∣ ∂Ψ
∂λ

∣∣∣
if 0 < λtest and λn = 0 then

λn+1 = ε and γ2,n+1 = ε with ε −→ 0

γ1,n+1 = γ1,n−
1

s(1−λn)

(∣∣∣∣ ∂Ψ
∂γ1,n

∣∣∣∣− r (1−λn)
)
+

sign ∂Ψ
∂γ1,n

dt

φn+1 = φn−
δ

2sλn(1−λn)(γ1,n−γ2,n)2

(∣∣∣∣ ∂Ψ
∂φn

∣∣∣∣−4rλn (1−λn)
∣∣∣γ1,n−γ2,n

∣∣∣)
+

sign ∂Ψ
∂φn

dt

if λtest < 1 and λn = 1 then

1−λn+1 = ε and γ1,n+1 = ε with ε −→ 0

γ2,n+1 = γ2,n−
1

sλn

(∣∣∣∣ ∂Ψ
∂γ2,n

∣∣∣∣− rλn

)
+

sign ∂Ψ
∂γ2,n

dt

φn+1 = φn−
δ

2sλn(1−λn)(γ1,n−γ2,n)2

(∣∣∣∣ ∂Ψ
∂φn

∣∣∣∣−4rλn (1−λn)
∣∣∣γ1,n−γ2,n

∣∣∣)
+

sign ∂Ψ
∂φn

dt

if 0 < λ < 1 then
→ Existing microstructure

λn+1 = λn−
2δ

s(γ1,n−γ2,n)2

(∣∣∣∣ ∂Ψ
∂λn

∣∣∣∣− r
∣∣∣γ1,n−γ2,n
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+

sign ∂Ψ
∂λn

dt

γ1,n+1 = γ1,n−
1

s(1−λn)

(∣∣∣∣ ∂Ψ
∂γ1,n

∣∣∣∣− r (1−λn)
)
+

sign ∂Ψ
∂γ1,n

dt

if λn+1−λn > 0 then
Update of pi according to (λn +∆λ) pα2,n+1 = λn pα2,n +∆λpα1,n p1,n+1 = p1,n

if λn+1−λn < 0 then
Update of pi according to (1−λn−∆λ) pα1,n+1 = (1−λn) pα1,n +∆λpα2,n p2,n+1 = p2,n

γ2,n+1 = γ2,n−
1

sλn

(∣∣∣∣ ∂Ψ
∂γ2,n

∣∣∣∣− rλn

)
+

sign ∂Ψ
∂γ2,n

dt

p1,n+1 = p1,n+1 +
∣∣∣γ1,n+1−γ1,n

∣∣∣
p2,n+1 = p2,n+1 +

∣∣∣γ2,n+1−γ2,n
∣∣∣

φn+1 = φn−
δ

2sλn(1−λn)(γ1,n−γ2,n)2

(∣∣∣∣ ∂Ψ
∂φn

∣∣∣∣−4rλn (1−λn)
∣∣∣γ1,n−γ2,n

∣∣∣)
+

sign ∂Ψ
∂φn

dt
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4.5. Results

The in the previous section presented numerical scheme can be applied to any arbitrary
deformation. As the relaxed energy density is derived under the assumption of incompress-
ibility, the here tested deformation should be volume-preserving. In this chapter, a shear
test and a tension-compression test are performed on the material point level. For solving
the evolution equations, if not otherwise indicated, a forward Euler integration is used. The
resulting stresses which are shown in the results are the Cauchy stresses and calculated by

σ = µ
(
Fe ·FeT− I

)
. (4.87)

4.5.1. Shear test

The first test is a shear test, the loading and the loading path are schematically sketched in
Figure 4.8.

w

w
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w

t

Figure 4.8.: Shear test, partly reprinted from [29].

The angle α in Figure 4.8 describes the angle of the slip system, such that the slip di-
rection can be obtained by s = {cosα,sinα,0}T and the normal vector is given by m =

{−sinα,cosα,0}T . In this test, the angle is chosen as α = 150◦. For this simple shear test the
given deformation gradient reads

F =

1 w 0
0 1 0
0 0 1

 . (4.88)

The calculations are evaluated with the material parameters µ= 1 [GPa] (shear modulus), the
hardening modulus κ = 0.001 [GPa] and the critical resolved shear stress is chosen as r = 0.1
[GPa]. The viscous parameters are considered as s = r ∗ t? (t? = 0.01 [s]) and δ = r ∗ j [mm]
( j = 0.1 [mm3/N]). This shear test is driven with an incremental load update dw = 0.001
and with an time increment dt = 0.0001[s]. Fig. 4.9 shows the unrelaxed energy density,
hence the energy if the material remains homogeneous. Obviously, when no microstructure
occurs, the energy is non convex and thus a microstructure is energetically favorable.
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Figure 4.9.: Unrelaxed energy for a shear test.
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Figure 4.10.: Volume fraction of the second domain and plastic slip in both domains for a
shear test.

On the left-hand side of Figure 4.10, the volume fraction of the second domain of the lami-
nate during the loading is presented (λ). When the material is loaded with shear, at first no
microstructure evolves and the crystal stays homogenous. This can be expected: lamination
will set in only when a critical external load has been applied to the material (an expla-
nation for this behavior can be found in Section 3.1). In this example, the critical load is
reached at approximately w = 0.25 and the volume fraction of domain two starts to evolve.
With increasing the shear approximately 34% of the material will “transform” to domain
two at maximum before this value stays constant over a short loading period. Increasing the
external load in terms of prescribed deformation gradient over w > 2.50 forces the volume
fraction to shrink again and the domain vanishes completely at w = 6.50.

The evolution of the volume fraction of domain two of the laminate indicates that a mi-
crostructure is built. Therefore also the other internal variables which describe the current
state of the microstructure may evolve as well. The plastic slip γi occurs in both domains,
presented on the right hand side of Figure 4.10. The plastic slip in domain two is positive
and jumps from zero to γ2 = 1.4. During further loading, it increases slowly. First the bigger
domain one behaves elastically after initiation, thus the plastic slip is zero. At w = 0.80 the
plastic slip in domain one occurs and decreases.

The huge increase of γ2 after the initiation may seem surprising at first glance. However,
as the initiation of the microstructure takes place, we consider a very small volume fraction
of domain two. This volume fraction may be too small to minimize the energy completely.
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Therefore a drastic evolution of plastic deformation is first observed when the associate
laminate structure λ establishes. Although the plastic slip is very huge within that domain,
the total amount of plastic deformation, that is (1− λ)γ1 + λγ2, presented in Figure 4.11,
remains very limited (and smooth). Due to the high external deformation that is necessary
to initialize evolution of a laminate, a huge plastic deformation within the newly establish
laminate is physically sound.
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Figure 4.11.: Total amount of plastic slip for a shear test.

The microstructure may also rotate, which is described by the angle of the laminate, pre-
sented on the left hand side of Figure 4.12. At the beginning of loading, the angle of the
laminate is zero, which is not surprising because the entire material is homogenous. At the
onset of lamination (at w = 0.25), the angle starts to evolve. The laminate rotates until the
total amount of plastic slip (figure 4.11) reaches its maximum and the plastic slip in domain
one starts to increase. Then, the laminate does not need to rotate further and the angle of the
laminate remains constant at 0.071 rad.

The right-hand side of Figure 4.12 shows the hardening parameters of both domains. Be-
cause the plastic slip in domain two evolves from the beginning of the lamination, there is
also an increasing hardening due to the coupled evolution of hardening to the evolution of
plastic slip. The hardening increases monotonously, similar to the slope of the plastic slip.
Domain one behaves elastically first, therefore the hardening is zero until it onsets when the
corresponding plastic slip starts to evolve. When domain two no longer exists, no further
evolution of plastic slip nor hardening takes place in that domain. Therefore, p1 remains
constant from here on while p2 slightly increases further.
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Figure 4.12.: Angle of laminate and hardening parameter in both domains for a shear test.

The important evolution steps of the laminate are schematically sketched in Fig. 4.13.
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Figure 4.13.: Evolution of the microstructure.

First the material deforms elastically and is homogeneous, then a small second domain
is build with an angle nearly zero. This second domain behaves plastic, while the larger
domain remains elastic. With increasing strain up to w = 3, the laminate domains rotate
around 4◦ and the area of the second domain increases up to 34% of the whole material and
the first domain behaves plastically as well. Increasing the shear strain further, the second
domain decreases and finally vanishes at w = 6.3.

The resulting Cauchy shear stress (calculated according to Equation (4.87)) and the energy
(according to Equation (4.54)) of this shear test are presented in Figure 4.14.
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Figure 4.14.: Cauchy shear stress and energy of a shear test.

The left-hand side of Figure 4.14 shows the shear component of the Cauchy stress. Dur-
ing the first part of the shearing, the stress increases non-linearly (which is not over pro-
nounced). This follows from the non-linear neo-Hookean energy that we choose and the
delay of the microstructure. The slope of the stress decreases when the second domain of
the laminate starts to evolve (in which plastic slip is present). However, the total amount of
plastic deformation during this period remains too small to influence stresses to a very large
degree. When the plastic slip in domain one (that is 1−λ, which is here much larger than
λ) also evolves, this indeed has a strong impact on the stresses: they drop quite drastically.
In total, this stress strain curve does not display plastic material behavior. Therefore further
investigations are needed.

At a loading larger than w > 2, it is energetically more favorable to reduce the amount of
domain two in the laminate (see also Figure 4.10). The total amount of plastic deformation
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then reduces again (which is intensified by the fact that that the plastic slip in domain one
remains more or less constant). This, in turn, yields that the stress increases again. When the
microstructure vanishes, at w = 6.5, a viscous delay occurs before the crystal is homogenous
again. Therefore, we see a kink in the shear stress.

The viscous regularization also influences the energy of this material. The minimization
of the energy by the microstructure is delayed. This is visible in the energy plot in the
right-hand side of Figure 4.14. Until the laminate evolves, the energy increases. While
the microstructure adapts to the external loading in an energy-minimizing way, the energy
decreases. So the energy has still a non-convexity but less distinct. When domain two has
reached its maximum volume fraction, the energy increases again as does the shear stress.

In Fig.4.15 the unrelaxed energy (dashed) and the relaxed energy are presented. When
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Figure 4.15.: Comparison of relaxed and unrelaxed energy.

the unrelaxed energy is non convex, the relaxed energy is smaller and the non convexity
is drastically reduced. Afterward, the unrelaxed energy has lower values, which is rather
surprising. When the microstructure is vanished (at w > 6) the unrelaxed energy is still a
little bit smaller. The reason for that behavior are probably viscous effects.

4.5.2. Tension-compression test

As a second testing a tension-compression test is performed. The loading and the loading
path of this test are depicted in Figure 4.16.
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Figure 4.16.: Tension-compression test, partly reprinted from [29]
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The deformation gradient for this test is expressed as

F =

1 + w 0 0
0 1

1+w 0
0 0 1

 (4.89)

The slip system is chosen under an angle of α = 80◦. Furthermore, the same material con-
stants are taken as in the shear test. As incremental load update dw = 0.01 and as time
increment dt = 0.0001[s] are taken. Under these loading conditions, the homogeneous ma-
terial splits up and forms a microstructure since the unrelaxed energy is non convex (see Fig.
4.17).
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Figure 4.17.: Unrelaxed energy of a tension-compression test.
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Figure 4.18.: Volume fraction of the second domain for a tension-compression test

In this test, the initiation of microstructure begins at w = 0.16 (see Figure 4.18), before the
material remains homogeneous. At the beginning of the evolution of the microstructure (up
to w = 0.8), the volume fraction (presented in Figure 4.18) of domain two is approximately
zero even the plastic slip of this domain is evolving. Magnification of this small area re-
veals that there is a small constant volume fraction in this region. Subsequently, the volume
fraction increases rapidly up to a value of 16% and remains constant until the load reaches
w = 7.5. From here on, the laminate increases again. Thus, domain one is dominant to-
gether with a slight amount of domain two (with volume fraction λ). The maximum volume
fraction of domain 2 is 16%.
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Figure 4.19.: Plastic slip in both domains and total amount of plastic slip for a tension-
compression test.

The plastic slip of domain two seems to jump from zero to -9 (left-hand side in Figure
4.19). The plastic slip then increases up to -6 and afterward slightly de- and increases. The
huge amount of plastic slip in the beginning of the plastic slip in domain two is induced,
in analogy to the shear test, by having a very small volume fraction at the initiation. Even
there is the huge amount of the plastic slip in domain two, the total amount of plastic slip
(right-hand side of Figure 4.19) decreases slowly and smoothly from zero to −5.6, since the
volume fraction of domain two is quite small.

The plastic slip in domain one evolves in this example directly at the onset of the microstruc-
ture, hence both domains behave plastic directly after their initiation. The plastic slip in
domain one is negative and constantly decreasing. At a high external load it asymptotically
approaches the amount of plastic slip in domain two.

The last internal variables that describe the laminate are the hardening parameters and the
angle of the laminate, presented in Figure 4.20.
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Figure 4.20.: Angle of the laminate and hardening parameter in both domains for a tension-
compression test.

The angle is shown at the left-hand side of Figure 4.20. In this example, the laminate rotates
quite often. However, the absolute values still remain small. A comparison with the slope of
the plastic slip in domain two reveals that both slopes behave similarly since both internal
variables are coupled.

The hardening parameters are plotted on the right-hand side of Figure 4.20. Hardening is
caused by the change of plastic slip and a small amount is contributed by the change of
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volume fraction. Since the influence due to the changes of plastic slips is much larger than
due to changes of the volume fractions, the hardening parameters are similar to the absolute
values of the plastic slip, except the jump of the plastic slip in domain two. When the plastic
slip and the hardening parameters (Figure 4.20) of both domains coincide, the material is
homogeneous, since these parameters are the differences between the two domains. This
case occurs at w = 8, therefore the material becomes homogeneous again.

Taking this microstructure into account, the Cauchy stresses and the energy can be deter-
mined. Figure 4.21 shows the normal stresses σ11 and σ22.
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Figure 4.21.: Cauchy normal stresses for a tension-compression test.

The normal stress σ11 is presented on the left-hand side of Figure 4.21. During the first
loading steps, the stress strongly increases up to a maximum value of 1.4 [GPa]. Before
the microstructure is established, the material behaves purely elastic. Then the initiation of
lamination takes place and these patterns reduce the energy. In the beginning, the volume
fraction of domain two is negligible due to the viscous effect: even there is a large amount of
plastic slip in domain one, the total amount of plastic slip is too small to decrease the stress.
Therefore the stress still increases. With the increase of volume fraction and the plastic slip
in domain one, the stress drops drastically to 0.1 [GPa] and slightly increases due to the
hardening effect.

The evolution of σ22 coincides with the evolution of σ22, it is simply mirrored at the hori-
zontal axis. Figure 4.22 shows the energy of this tension-compression test and the unrelaxed
energy (dashed line). The behavior of the relaxed energy is similar to the energy of the shear
test. Before the microstructure can evolve, the viscous contribution delays th minimization
of the energy. While the laminate evolves, it is still not adapted to the external loading,
hence the energy is not minimized and increases. Thereafter, the energy is minimized by
the microstructure and decreases. Thus, the energy is still non-convex. However, the com-
parison between the relaxed and unrelaxed reveals that the non convexity of the laminate is
smaller compared to the non convexity of a homogeneous material.
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Figure 4.22.: Comparison of relaxed and unrelaxed energy

4.5.3. Viscous effects

In the previous section, the stress-strain curves do not exhibit a typical plastic material be-
havior and the energies still reveal non-convexities, thus the introduced viscosity should be
reduced. Due to the chosen viscous dissipation potential contribution, the evolution of the
microstructure is time dependent. This viscous influence may be decreased by increasing
the relaxation time for the material. Therefore the loading velocity ∆w/(∆t) influences the
material behavior. In order to compare the behavior resulting from different loading veloci-
ties, a factor ϑ is introduced. This quantity is an integer that controls the number of updates
that are performed for a fixed external load w. Then a pseudo-velocity can be defined as
∆w/(ϑ∆t). For larger values of ϑ, the pseudo-velocity decreases and the material has more
“time” to relax. Consequently, this factor is supposed to influence the material behavior to
a remarkable extent. All results in the previous section to this point were calculated with
ϑ = 1. This means, with every time step, the load is also updated. In the following, we
provide more time for the material to adapt to the external load by increasing ϑ. Figure 4.23
visualizes this pseudo- velocity in the updating procedure.
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Figure 4.23.: Update with different pseudo-velocities.

Shear test with decreased pseudo-velocity

For a first examination of the influence of the relaxation time, the pseudo-velocity factor is
increased from ϑ = 1 to ϑ = 20. In order to make a comparison, all constants are taken from
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the previous shear test.
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Figure 4.24.: Volume fraction of the second domain and plastic slip for both domains for a
shear test, ϑ = 20.

The slope of the evolution of the volume fraction of domain two (left-hand side of Fig
4.24) is bigger, therefore the volume increases much faster but also decreases faster. Under-
standably, the maximum value is reached earlier and a higher maximum value is achieved
compared to the previous one with ϑ = 1 (see Figure 4.10 left-hand side). The slope of the
plastic slip instead remains nearly the same (right-hand side). It is remarkable, that the onset
of the plastic slip in domain one starts earlier and develops with a higher slope. Obviously,
the delay of the plastic slip in the previous test is caused by viscous effects and is decreased
by a longer relaxation time.

The two remaining internal variables, the angle of the laminate and the hardening, are pre-
sented in Figure 4.25.
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Figure 4.25.: Angle of laminate and hardening in both domains for a shear test, ϑ = 20.

When the microstructure is initiated, the angle is found as φ = −0.00005 [rad] and then the
laminate does not need to rotate further (note: the variables are only plotted at the beginning
of each new load step, thus when w changes). The hardening parameters in both domains
are nearly equal the positive amount of plastic slip in both domains. Therefore compared to
the hardening with pseudo- velocity ϑ = 1, the hardening of domain one starts earlier, thus
also in this evolution the viscous effect is decreased.

These slightly changed internal variables influence strongly the behavior of the Cauchy
stress and the energy, which are presented in Figure 4.26.
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Figure 4.26.: Cauchy shear stress and energy for a shear test, ϑ = 20.

The increased time for the material to relax, which results in an “intensified” microstructure,
is visible in the results for stress and energy: the viscous peak in the stress and the non
convexity in the energy are not as high and are less distinct (Figure 4.26). The peak in the
stress for the initial pseudo-velocity has reached up to 0.4 [GPa], whereas for a reduced
pseudo-velocity the stress peak is only 0.25 [GPa]. This indicates that a viscous treatment,
which allows the material to relax , leads to a proper solution in which the energy tends to
be convex, Figure 4.26. In Fig.4.27 the comparison of the unrelaxed (dashed) and relaxed
energy is shown.
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Figure 4.27.: Comparison of relaxed and unrelaxed energy for a shear test, ϑ = 20.

When the material has more time to relax, viscous effects decrease and the energy is convex.
The comparison reveals, that with this relaxation time, the relaxed energy curve lies always
under the unrelaxed energy. This hints that the surprising behavior for ϑ = 1 appears due
to viscous effects. Since the microstructure influences strongly the plastic slip, the relaxed
energy does not correspond completely to the unrelaxed energy, even when the material is
homogeneous again.

Varying pseudo- velocities in a shear test

In the previous example, the changes in the microstructure due to a certain decrease of
loading-velocity is studied. Now the evolving microstructure is compared under several
loading-velocities in order to gain insight how this velocity influences the microstructure
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and if a viscosity limit can be reached. For this comparison we take again the parameters
from the previous shear tests.
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Figure 4.28.: Volume fraction of the second domain for a shear test under several pseudo-
velocities.

Figure 4.28 shows the evolution of the volume fraction of the laminate for different pseudo-
velocities: ϑ = 1, ϑ = 2, ϑ = 5, ϑ = 10, ϑ = 50 and ϑ = 100. Independent from the pseudo-
velocity, the initiation of the microstructure takes place at w = 0.3, hence the initiation is
not affected by the relaxation time. This is reasonable as the material is homogeneous up
to this point. As already explained, for ϑ = 1 the volume fraction of domain two increases
up to 0.34, stays constant from w = 1.6 up to w = 2.4 and then decreases. The laminate
vanishes at w = 6.3. With an increasing factor ϑ, the volume fraction increases stronger and
reaches higher maximum values. The highest maximum value is achieved with ϑ= 100 with
λ = 0.4. The decreasing slope is also increasing with an increasing factor ϑ and therefore
the laminate vanishes earlier. It is remarkable that the increase from ϑ = 1 to ϑ = 2 leads to
a rather big change in the evolution: the maximum value for the volume fraction raises from
0.34 up to 0.37 and the microstructure finishes at w = 5.3 instead of w = 6.3. Therefore, the
evolution of the volume fraction is changed quite drastically. On the other hand, the increase
from ϑ= 50 up to ϑ= 100 only slightly influences the evolution: the maximum value λ= 0.4
and the ending point of the microstructure w = 4 remain nearly unchanged. This indicates
that the evolution of volume fraction converges to this solution.

The evolution of plastic slip is presented in Figure 4.29.
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Figure 4.29.: Plastic slip in both domains for a shear test under several pseudo-velocities.

The plastic slip in domain two is just slightly affected by the factor ϑ. For every pseudo-
velocity the plastic slip starts to evolve at w = 0.3 where the initiation of the microstructure
takes place. The plastic slip of the second domain increases drastically from zero to γ2 = 1.4
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and then increases further. Starting from load w = 2, the slope of the plastic slip slightly
depends on the factor ϑ: a smaller factor ϑ leads to a higher slope of the plastic slip of
domain two. When the microstructure vanishes, the plastic slip remains constant. Since this
point strongly depends on the factor ϑ (see the evolution of volume fraction in Figure 4.28),
from there on the values of the plastic slip strongly depend on the factor ϑ as well. However,
since from this point the corresponding volume fraction is vanished, the plastic slip of do-
main two is not important anymore. The onset of the plastic slip in domain one is influenced
by the factor ϑ: An increasing factor leads to an earlier onset of the plastic slip, hence the
delay due to the viscous contribution is reduced. Then the plastic slip decreases: the smaller
the factor ϑ, the smaller the slope of the plastic slip. Once the microstructure vanishes, the
evolutions of the plastic slips with different factors follow the same path. This behavior is
comprehensible since the pseudo-velocity only influences the material if a microstructure is
present.

The total amount of plastic slip is shown in Figure 4.30. On the left hand side of Figure 4.30
a close up of the evolution at the onset of microstructure is presented.
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Figure 4.30.: Zoom in and total view of total amount of plastic slip for a shear test under
several pseudo-velocities.

The total amount of plastic slip is calculated by γ̄ = (1−λ)γ1 + λγ2. Since both internal
variables λ and γ are affected by ϑ, the total amount of plastic slip strongly depends on
the factor ϑ. Once the microstrucure is initiated, the total amount of plastic slip increases.
The factor ϑ influences the slope of the total amount of plastic slip. For ϑ = 1, the slope is
nearly linear while for ϑ= 100 the slope seems to be nearly quadratic. As already mentioned
for the evolution of the volume fraction, the total amount of plastic slip converges with an
increasing factor ϑ. Up to w = 2, a small factor leads to a smaller total amount of plastic slip.
Afterward, the total amount is bigger for smaller factors. When material is homogeneous
again, the total amount of plastic slip is independent from the factor ϑ which is physically
consistent.

The angle of the laminate is presented in Figure 4.31.
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Figure 4.31.: Angle of laminate for a shear test under several pseudo- velocities.

At the onset of the lamination, the laminate rotates. For ϑ = 1, the laminate rotates under
the load w = 0.3 up to w = 0.8. Then the angle remains constant at φ = 0.072[rad] for an
increasing shear. For higher factors ϑ, the constant angle is found faster. For ϑ = 100, the
constant angle is directly found as φ= 0.0009[rad], which is nearly zero hence no remarkable
rotation takes place anymore. By reducing the pseudo-velocity, also the constant angle of
the laminate decreases (from φ = 0.007[rad] at ϑ = 1 to φ = 0.0009[rad] at ϑ = 100).

Figure 4.32 shows the evolution of the hardening parameters p1 and p2 under several pseudo-
velocity factors ϑ.
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Figure 4.32.: Hardening parameters of both domains for a shear test under several pseudo-
velocities.

On the left hand side of Figure 4.32, the hardening of domain one is presented and on the
right hand side the hardening of domain two. The hardening in domain two is similar to
the absolute values of the evolution of the plastic slip in domain two. The hardening of the
first domain is also similar to the absolute amount of plastic slip in its domain up to the
loading step where the microstructure is vanished again. This loading step is dependent on
the pseudo- velocity, for ϑ= 1 it is reached at w = 6.3 , while employing ϑ= 100 the material
is homogenous again at w = 4. Then the hardening increases with a smaller slope linearly.
The slope is independent from the pseudo velocity. Therefore, ϑ = 1 leads to the biggest
amount of hardening.

These microstructural changes due to the increasing pseudo-velocity influence the Cauchy
stresses and the energy. In Figure 4.33 the Cauchy shear stress is presented.
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Figure 4.33.: Zoom in and total view of Cauchy shear stress for a shear test under several
pseudo-velocities.

On the left hand side of Figure 4.33, a close up of the shear stress at the initiation of the mi-
crostructure is shown. First the stress behaves purely elastic, hence it is independent of the
pseudo-velocity. At w = 0.3 the laminate is built and therefore the internal variables influ-
ence the material behavior. For ϑ = 1, the stress still increases but with a lower slope. With
an increasing factor, the slope is reduced and for factors bigger than 10 the stress decreases.
For ϑ = 50 and ϑ = 100, the stress drops down from σ12 = 0.26[GPa] to σ12 = 0.12[GPa].
Since the stress with ϑ = 1 still increases after the initiation of the microstructure, the stress
has a huge viscous peak in the beginning, which is already discussed in the previous section.
With more relaxation time, this peak shrinks from σ12 = 0.45[GPa] to σ12 = 0.26[GPa].
This is a reduction of 57.7 % and hints that a reduced pseudo-velocity reduces the viscous
effects. The evolution of the shear stress with ϑ = 50 and ϑ = 100 are quite similar, therefore
the evolution converges and the viscous effects cannot be reduced further. As the microstruc-
ture evolves, the stress behaves nearly constant for long relaxation times. As the laminate
vanishes, viscous effects occur again, independent from the relaxation time. Afterward the
material is homogeneous again, hence the evolution of the stress is again independent from
the pseudo-velocity.

In Figure 4.34 the energy is presented.
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Figure 4.34.: Zoom in and total view of energy for a shear test under several pseudo-
velocities.

Analogously to the behavior of the Cauchy stress, the non-convexity of the energy at the
beginning of the microstructure is reduced for higher relaxation times. For high factors ϑ,
the solutions converge. Aside from the non-convexity in the beginning, the energy is convex
for all factors. Since the hardening parameter are influenced by the relaxation time, the
amount of energy in the material is as well influenced.
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Tension-Compression test with decreased pseudo-velocity

Similar to the results of the shear test, also the results of the tension-compression test are
influenced by the relaxation time. Hence, analogously to the shear test, the factor of the
pseudo-velocity is set from ϑ = 1 to ϑ = 20. Therefore, by increasing the factor, the material
gets more time to relax and the viscous effects may decrease. The material parameters, the
loading and the time increment are taken from the previous tension-compression test.

Figure 4.35 shows the corresponding evolution of the volume fraction with the increased
factor ϑ = 20.

2 4 6 8
w

0.2

0.4

0.6

0.8

1.0

l

Figure 4.35.: Volume fraction of the second domain for a tension-compression test, ϑ = 20.

As the pseudo-velocity does not affect the starting point of initiation, the onset of the lam-
ination takes place again at w = 0.16, which is also the starting point of the microstructure
with ϑ = 1. However, the region where the volume fraction remains rather small is drasti-
cally reduced from w = 0.4 to w = 0.28. As explained before, in every load step, the material
has more time to relax. Therefore, the viscous effects decrease and the volume fraction of
the domain two λ can increase faster. Here, the volume fraction increases until λ = 1 is
reached at load w = 6. Then the microstructure is vanished again and the material consists
homogeneously of domain λ.
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Figure 4.36.: Plastic slip in both domains and total amount of plastic slip for a tension-
compression test, ϑ = 20.

In Figure 4.36 the plastic slip in both domains and the total amount of plastic slip is visu-
alized. The slope of the plastic slip in domain one (left hand side of Figure 4.36) remains
nearly unchanged compared to the slope with ϑ = 1, whereas the slope of the plastic slip in
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domain two is smoother than before. At first glance, the drop in the plastic slip of domain
one at w = 8 seems questionable. However, at that load, the material consists only of λ, thus
domain one does not exist anymore so this jump is rather a numerical artifact. This can be
also verified by the plot of the total amount of plastic slip (right-hand side) which proves
that the total amount of plastic slip is smooth and limited at any load step.

Figure 4.37 presents the angle and the hardening parameters of the laminate.
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Figure 4.37.: Angle of the laminate and hardening in both domains for a tension-
compression test, ϑ = 20.

After the initiation, the angle of the laminate reaches a constant value φ = 0.007 [rad] for
loads between w = 0.15 and w = 1.8. Subsequently, the laminate rotates again to φ = −0.008
[rad]. From w = 2.2 up to w = 2.5 the laminate stays constant under this angle. Then it rotates
to a constant angle of φ = 0.005 [rad]. Altogether, the angle remains again rather small and
the rotation is reduced. At w = 7, the angle jumps to a relatively large value. However,
because the laminate has already vanished at this load step, this is again a numerical artifact.
Comparable to the previous examples, the hardening parameters correspond to the absolute
values of the plastic slip in the corresponding domains.
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Figure 4.38.: Cauchy normal stresses for a tension-compression test, ϑ = 20.

The Cauchy normal stresses are plotted in Figure 4.38. As a first impression, the viscous
peaks at the onset of the microstructure still seem to be quite high, but in fact they are now
drastically reduced. In the previous tension-compression test with the factor ϑ = 1, the peak
in σ11 is 1.4 [GPa], whereas for the slower loading velocity (ϑ= 20) the peak ranges only up
to 0.65 [GPa]. Hence, the peak is reduced by more than about 45% due to more relaxation
time. The height of the peak is also reduced: it is present until w = 4 for fast loading, whereas
it has already dropped at w = 3 for slow loading. In this example, the laminate vanishes at
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the ending of the microstructure, which means that the viscous effects occur again before
the material behaves homogeneous. Thus, a small stress drop occurs then.

The last result of this tension-compression test is the energy which is shown in Fig. 4.39,
the dashed curve represents the unrelaxed solution.

2 4 6 8
w

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Y

Figure 4.39.: Comparison of relaxed and unrelaxed energy for a tension-compression test,
ϑ = 20.

At the onset of lamination, a non-convexity in the relaxed energy curve still occurs due to
viscous effects. However, similar to the behavior of the stresses, the height is reduced by
about 45 % and the relaxed energy lies always under the unrelaxed one.

Varying pseudo-velocities for a tension-compression test

In this section, we investigate the influence of a decreasing the pseudo-velocity for the
tension-compression test. For this comparison the material constants are taken again from
the previous tension-compression test. The evolution of the microstructure for the pseudo-
velocity factors ϑ = 1, ϑ = 2, ϑ = 10, ϑ = 50 and ϑ = 100 is investigated.

In Figure 4.40 the evolution of the volume fraction of domain two for several pseudo-
velocities is presented.
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Figure 4.40.: Volume fraction of the second domain for a tension-compression test under
several pseudo-velocities.

Similar to the shear test, the onset of the lamination is independent from the pseudo-velocity
and takes place at w = 0.2. For ϑ = 1, the evolution of the volume fraction is delayed: after
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the onset the volume remains rather small, as presented in the previous section. Then the
volume fraction increases with a small slope up to λ = 0.2 and then remains nearly constant.
For the factor ϑ = 2 the volume fraction also remains small in the beginning, but it starts
to evolve earlier and with a stronger slope. From w = 6.5 the volume fraction increases
drastically from λ = 0.3 up to λ = 1 at w = 7.5. Then the material only consists of domain 2,
hence the material is homogenous again. With an increasing factor ϑ, the volume fraction
evolves faster and λ = 1 is reached earlier. By decreasing the pseudo-velocity, the evolution
of the volume fraction tends asymptotically to one solution. Since the evolution for ϑ = 50
and ϑ = 100 still differ, a higher factor may reduce the viscous effects further.

The evolution of the plastic slip in both domains under different pseudo-velocities is shown
in Figure 4.41.
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Figure 4.41.: Plastic slip in both domains for a tension-compression test under several
pseudo- velocities.

At the onset of the lamination, independent from the pseudo-velocities, the plastic slip of
domain two decreases rapidly to γ2 = −9.5 and then increases with a rather small slope up to
γ2 = −6 at w = 6 and remains constant from there on. For loading steps w < 6, the evolution
varies for different factors ϑ, afterwards the are no significant differences. The plastic slip
of both domains asymptotically approach to each other. Hence, analogously to the results
of the shear test, the evolution of plastic slip for a tension-compression test is not seriously
affected by the pseudo-velocity compared to the evolution of the volume fraction.

The rotation of the laminate, represented by the angle, is presented in Figure 4.42.
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Figure 4.42.: Angle of laminate for a tension-compression test under several pseudo-
velocities.
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The laminate rotates in a very small range of 0.03[rad], hence the angle is nearly zero for
all relaxation times. For ϑ = 1, the laminate rotates quite often, as already described in the
previous section.With decreasing the pseudo-velocity, the laminate does not need to rotate
such often, it seems to be stabilized. The constant angle for high loading depends on the
pseudo-velocity: the higher the factor ϑ, the bigger the angle.

The remaining internal variable which characterizes the state of the microstructure is the
hardening which is visualized in Figure 4.43.
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Figure 4.43.: Hardening parameters of both domains for a tension-compression test under
several pseudo- velocities.

Similar to the results of the shear test, a decrease of the pseudo- velocity just slightly affects
the evolution of the hardening in both domains. The hardening of both domains increases
monotonously and nearly reaches 6.

In Figure 4.44 the Cauchy normal stress σ22 is presented. The evolution of the normal stress
σ11 is correspondingly simply mirrored at the abscissa.
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Figure 4.44.: Cauchy normal stress for a tension-compression test under several pseudo-
velocities.

For factor ϑ = 1, the normal stress decreases to −1.1[GPa] at w = 1.5. Then the stress
increases up to −0.1[GPa] at w = 5. Therefore the stress has a big peak due to a viscous
effect which is already discussed before. With an increasing pseudo-velocity factor this
peak is reduced, for ϑ = 100, the height of the peak is reduced to −0.5[GPa] and the width
to w = 3, hence the height of this peak is reduced more than 45 % and the width is reduced up
to 60 %. As already explained in the previous examples, the viscous part in the dissipation
is responsible for this big peak in the stress. With an increasing factor ϑ (and a decreasing
pseudo-velocity) the material has time to relax and the viscous effects decrease. In this
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example, a higher factor ϑ > 100 may still change the evolution of the internal variables,
hence the viscous peak may be reduced further.

The evolution of the energy, shown in Figure 4.45, is also strongly influenced by the state of
the microstructure, hence of the relaxation time.
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Figure 4.45.: Energy for a tension-compression test under several pseudo-velocities.

Similar to the evolution of the normal stress, the evolution of the energy is not convex due to
viscous effects. However with an increasing factor ϑ, this peak is reduced. Comparing the
peak with ϑ = 1 and ϑ = 100, the peak is reduced in its height up to 20 % (from 0.75 to 0.15)
and in its width up to 40 % (w = 2.5 to w = 1). Aside this viscous peak, which is reduced by
a decreased pseudo-velocity, the energy is lower with a decreased pseudo-velocity, because
for higher relaxation times more energy is dissipated.

4.5.4. Comparison to the results of the rate independent model

This outlined numerical scheme is based on a modification of the model of D.Kochmann
and K.Hackl by introducing a viscous contribution to the dissipation potential. Therefore,
a comparison of the numerical results of both approaches is interesting. The fundamentals,
the numerical scheme and the results of the rate independent model of D.Kochmann and K.
Hackl are presented in [48] and [47]. In [48], the numerical scheme is applied to a shear
and a tension-compression test. For the comparison, these tests are performed with the
here outlined model taking the same material data and compared to the results in [48]. The
results of the rate independent model are taken from [48] and reprinted with permission.
The here presented model is also referred as the modified model in the following section.
As integration scheme for obtaining the internal variables of the new time step, the second
order Runge-Kutta method is used.

Comparison of a shear test

The applied load is given by Equation (4.88) and illustrated in Figure 4.8. The slip system
is considered under an angle of 135◦, as material data µ = 2[GPa], r = 0.001[GPa] and
κ = 0.1[GPa] are taken according to [48]. For the modified model, the viscous parameters
are chosen as δ = 0.1r and s = 0.01r, like in the previous examples. In order to reduce
viscous effects, the relaxation time is increased, hence ϑ = 10.
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Figure 4.46.: Evolution of volume fraction of the second domain of a shear test, a with
the rate independent model presented in [48], b with the modified approach,
reprinted from [29].

In Figure 4.46, the evolution of the volume fraction of domain two is presented. On the left
side, the result is obtained with the rate independent model of Kochmann and Hackl. The
volume fraction of the second domain begins almost directly to evolve and reaches a maxi-
mum value of λ = 0.36 at w = 0.4. Then the volume fraction decreases again until λ = 0 at
w = 2.35, from thereon the material is homogeneous again. On the right-hand side of Figure
4.46, the volume fraction of the arising second domain with the here presented modified
model is shown. When the material is loaded, at first there is no evolving microstructure:
lamination will set in only when the energy looses its ellipticity. Here, this is the case at
approximately w = 0.10 when the volume fraction of domain two starts to evolve. Therefore
in comparison to the rate independent model, the initiation is delayed. At approximately
w = 2.35, a uniform microstructure has established that only consists of the second domain
of the laminate. Thus, both models lead to a homogeneous material for higher loadings (at
w = 2.35 for the rate independent model and w = 2.45 for the modified model).
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Figure 4.47.: Evolution of plastic slips in both domains of a shear test, a with the rate
independent model presented in [48], b with the modified approach, reprinted
from [29].

Simultaneously to the evolution of the volume fraction, plastic slip evolves in both domains
of the laminate for the rate independent approach (both approaches are shown in 4.47). The
plastic slip in domain one decreases from zero to γ1 = −1.6. The plastic slip in domain two
jumps to γ2 = 0.4 and then increases further to γ2 = 2. For the modified model, the evolution
of the plastic slip in domain one is drastically delayed due to the viscous effects and starts at
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w = 0.35. Thereafter the plastic slip increases to γ2 = 1.4, then the material consists only of
the first domain. Except the delay at the onset of the microstructure, the values of the plastic
slip of the first domain correspond to the absolute values resulting for the rate independent
model, only the sign differs. The plastic slip in domain two is negative and jumps from
zero to γ2 = −0.15. During further loading, its absolute value increases slowly to |γ2| = 1.9,
which is again similar to the absolute value of the results of the rate independent model.

Already slight differences in the microstructure influence the stress to a large extend. In
Figure 4.48 the Cauchy shear stresses are presented, the results of the rate independent
approach are again shown on the left hand and the result with the here derived modified
model on the right hand side.
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Figure 4.48.: Cauchy shear stress of a shear test, a with the rate independent model pre-
sented in [48], b with the modified approach, reprinted from [29].

For the rate independent model, while the microstructure evolves the resulting stress in-
creases slowly due to the hardening. When the material is homogeneous again, the stress
increases with a stronger slope. On the right hand side, the stresses of the here derived
approach are presented: Due to the non-linear neo-Hookean energy, the stress increases
non-linearly during the first part of the shearing, as already explained for the previous shear
test. The slope of the stress is reduced even more when the first domain of the laminate is es-
tablished (in which plastic slip is present). When the plastic slip also evolves in domain one
(which has the larger contribution to the material), this has a strong impact on the stresses:
they drop quite drastically. Afterwards, a Maxwell line can be easily identified. At a loading
larger than w > 2.35, the material is homogeneous again, thus the Maxwell line is left and
stresses start to increase again. Summarized, even the plastic slips in both models are similar
to each other, the evolutions of the shear stresses for the two models are not comparable, as
the precise values of the microstructure have a great impact.
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Figure 4.49.: Energy of a shear test, a with the rate independent model presented in [48], b
with the modified approach, reprinted from [29].

The energies of the shear tests are presented in Figure 4.49. The energy for the rate in-
dependent model (left hand side of Fig. 4.49) is convex. Due to the viscous delay of the
microstructure, the energy for the modified model (right hand side of Fig.4.49) still exhibits
a non convexity at the onset and the ending of the microstructure. In addition, the energy
obtained by the modified model is smaller than for the rate independent one, which is phys-
ically sound due to the viscous extension of the dissipation functional.

The next presented comparison is a tension-compression test, such as that depicted in Figure
4.16. We choose a slip system with an angle of α = 70◦ according to [48]. Furthermore, we
use the same material constants as in the previous example, except of κ = 0.01 which is,
again, chosen in analogy to [48]. For the here derived modified model, the relaxation time
is increased again, hence ϑ = 10.
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Figure 4.50.: Evolution of volume fraction of the second domain of a tension compression
test, a with the rate independent model presented in [48], b with the modified
approach, reprinted from [29].

Figure 4.50 shows on the left-hand side the evolution of the volume fraction of the second
domain occurring due to the rate independent model from Kochmann and Hackl and on the
right-hand side due to the here outlined model. Both evolutions have similar characteristics:
directly at the onset of loading the material forms a microstructure. The second domain
is formed and increases to one (rate independent model at w = 1.9 and modified model
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at w = 1.8), then the material is completely transformed and consists homogeneously of
domain two. Slight differences appear in the slope: the slope for the rate independent model
is smooth while for the modified model the volume fraction increases rapidly up to a value
of 30% before the slope is less pronounced.
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Figure 4.51.: Evolution of plastic slips in both domains of a stension compression test, a
with the rate independent model presented in [48], b with the modified ap-
proach, reprinted from [29].

The evolutions of the plastic slips are presented in Figure 4.51, again on the left-hand side the
results of the rate independent model and on the right side of the modified model. The plastic
slip in domain one for to the rate independent model increases from zero to γ1 = 2, then the
material only consists of the second domain. Meanwhile the plastic slip in domain one of
the modified model is delayed and then increases to γ1 = 2.5, from thereon the plastic slip
remains constant as the corresponding domain is vanished. For the rate independent model
the plastic slip of domain two has a huge jump in the beginning: from zero to γ2 = −0.55.
Afterwards the plastic slip decreases further to γ2 = −2.4. In the modified model the plastic
slip of the second domain decreases from zero to -0.15. The plastic slip then decreases
further to γ2 = −2.00 until the microstructure vanishes. In the modified model, the plastic
slips in both domains have similar absolute values, only their sign differs.

These microstructures strongly influence the resulting Cauchy normal stresses, which are
shown for both approaches in Figure 4.52.
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Figure 4.52.: Cauchy normal stress of a tension compression test, a with the rate indepen-
dent model presented in [48], b with the modified approach, reprinted from
[29].
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For the rate independent approach, the normal stress σ11 increases slowly due to the hard-
ening while the microstructure evolves. When the material is homogeneous again, the stress
slope increases. During the first loading steps, the normal stress of the here presented model
increases up to a maximum value of 0.12 [GPa]. Due to the viscous contribution, the vol-
ume fraction of domain two is negligible. Thus, even there is an amount of plastic slip in
domain two, the total amount of plastic slip is too small to decrease the stress. With the
increase of volume fraction and the plastic slip in domain one, the stress drops drastically
to σ11 = 0.0 [GPa] and then remains constant. Therefore, in contrast to the rate independent
model, no global hardening effect occurs. However, the hardening constitutes as an “inner”
hardening in each laminate, since the plastic slip is identical in both domains, except of the
sign. Therefore, a “global” hardening effect is removed (see also Equation (4.42)).
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Figure 4.53.: Energy of a tension compression test, a with the rate independent model pre-
sented in [48], b with the modified approach, reprinted from [29].

Figure 4.53 presents the energy of this tension-compression test for the rate independent
(left-hand side) and for the modified model (right hand side). While the energy of the rate
independent model is again convex, the energy of the here outlined model exhibits still a
small non convexity due to the delay of the microstructure. Before the microstructure can
minimize the energy, the viscous effects occur again. First, while the laminate evolves, it is
still not adapted to the external loading, hence the energy is not minimized and increases.
Again, as the dissipation of the modified model is higher, the energy of the material is
smaller compared to the rate independent model.

4.5.5. Cycling tests

Cycling of a shear test

The material behavior due to loading is already discussed in the previous section. Since the
behavior at unloading is also interesting, one load cycle will be performed, hence loading
and unloading is investigated in this section. Afterwards more than one load cycle is exam-
ined. In order to decrease the effect of hardening, we examine the model with linear harden-
ing, hence α = 2 and for the shear test, the hardening modulus reduced to κ = 0.0001[GPa].
The other material constants are taken from the shear test of the previous example. The
factor for the pseudo-velocity is set to ϑ = 100, thus the viscous effects stay minimal.

On the left hand side of Figure 4.54 the loading path for one load cycle is illustrated. The
material is loaded from zero to w = 4. Then the material is unloaded until w is zero again.
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Figure 4.54.: Load cycle of a shear test and corresponding evolution of volume fraction of
the second domain.

The right hand side of Figure 4.54 presents the resulting volume fraction of the laminate
which evolves under this load cycle. The behavior of the material at loading is already
discussed in the previous section: When energetically favorable, a second domain with the
volume λ is built. The volume of the domain increases up to 40 % of the total volume.
After remaining constant the volume of domain two decreases to zero. While the material
is unloaded, from w = 4 up to w = 3.5 the material stays homogeneous. Afterwards the
microstructure is established again and the volume fraction of domain two increases again.
From w = 2.8, the slope of the volume fraction increases. The volume fraction increases
until the maximum value 4 is achieved again, from thereon it remains constant up to w = 0.4
then it starts to shrink. At zero loading the microstructure is not vanished but remains in the
material with a small volume fraction (λ = 0.15) of the second domain.
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Figure 4.55.: Plastic slip and hardening in both domains for one shear load cycle.

The plastic slip in both domains for one load cycle is shown on the left hand side of Figure
4.55. The evolution of these variables under loading is already discussed. At the beginning
of unloading, a kink in the plastic slip of domain two appears. This kink is negligible since
from w = 4 to w = 3.5 the volume fraction λ of domain two is zero and the material only
consists of domain one. Then the plastic slip of the second domain decreases with the same
slope as for loading. For zero loading the remaining plastic slip is γ2 = 1.25. This value
equals the huge increase of plastic slip at the onset of the lamination at loading, for zero
loading this value is more energetically favorable than zero. At unloading the plastic slip
of domain one first slightly decreases (when the material is homogeneous) then it remains
constant at γ1 = −2.4 up to w = 2.8. Afterwards the plastic slip increases to nearly zero.

The hardening parameters are presented on the right hand side of Figure 4.55. The hardening



90 4. Viscous evolution of laminate microstructures

increases for both domains for loading and for unloading nearly linear with a similar slope
as the absolute values of the corresponding plastic slip. The small kink in the hardening
of domain 2 at the beginning of the unloading is a result of the kink in the corresponding
plastic slip. Since the hardening increases also for unloading, a huge amount of hardening
is introduced into the material after one load cycle.
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Figure 4.56.: Angle of the laminate for one shear load cycle.

In Figure 4.56 the angle of the laminate is presented. For this load cycle, the laminate does
not need to rotate, neither for loading nor for unloading. Once after the initiation, the angle
is found and stays constant as nearly zero.

This established microstructure strongly influences the behavior of the stress and the energy,
which are both presented in Figure 4.57.
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Figure 4.57.: Cauchy shear stress and energy for one shear load cycle.

Due to already discussed viscous effects, the shear stress (left side) has a huge peak at the
onset of the microstructure for loading. Then the stress strain curve correlates to a plateau.
At the beginning of unloading, while material remains homogeneous, the stress follows for a
short loading period the same path as for loading. This effect is again caused by the viscous
contribution: at loading the laminate is vanished, but the viscous effects have to be vanished
as well. Afterwards the stress decreases linearly and the material is unloaded elastically. As
the microstructure evolves, the stress remains nearly constant. At w = 2.8, the slope of the
volume fraction changes, as a result, the slope of the stress is decreased. Altogether, for one
load cycle the stress strain curve exhibits a hysteresis loop.

The energy (right side of Figure 4.57) has a peak due to the viscous effect at the onset of the
lamination. Then it increases monotonously. At the beginning of unloading (from w = 4 to
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w = 3.5), the energy decreases strongly. As the microstructure is established to minimize the
energy, viscous effects occur again and result a peak in the energy. Afterwards the energy
decreases monotonously. All in all, viscous effects occur at the onsets of the microstructure,
hence at loading and unloading.

For two load cycles (left hand side of Figure 4.58), the corresponding evolution of the vol-
ume fraction is presented in Figure 4.58.
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Figure 4.58.: Loading path for two load cycles of shear and corresponding evolution of
volume fraction of domain two.

At the end of the first load cycle, a small second domain of the laminate still exists. At the
second loading path the volume fraction first remains constant up to w = 0.2. As the load
reaches the value where the initiation of the microstructure takes place in the first cycle,
the volume fraction starts to increase again, following the same path as in the first cycle.
Therefore the only difference between the evolution in both cycles is the remaining volume
fraction at loading from zero loading up to the initiation of the microstructure in the first
cycle.
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Figure 4.59.: Plastic slip and hardening in both domains two shear load cycles.

The plastic slip (left side of Figure 4.59) of both domains evolves for both cycles similar.
The only difference appears, similar to the evolution of the volume fraction, in the evolution
of the plastic slip in domain two in the range between zero loading and the loading when the
microstructure is established in the first cycle: Instead of a huge increase (from zero to 1.3),
like in the first cycle, the plastic slip in the second cycle starts from γ2 = 1.3, which seems to
be energetically favorable. The hardening parameters (right side of Figure 4.59) increase in
the second cycle further in the same manner as in the first cycle. The values of the hardening
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parameters reach already quite high values, therefore the influence of the hardening has to
be reduced by choosing linear hardening and a decreased hardening modulus for this cycling
test.
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Figure 4.60.: Angle of laminate for two shear load cycles.

Again, also for the second load cycle, the laminate does not need to rotate: once the angle
(Figure 4.60) is found, it remains constant, also for the second cycle.
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Figure 4.61.: Cauchy shear stress and energy for two shear load cycles.

The most distinct changes in the internal variables for the second cycles appear in the begin-
ning of the second cycle. The energetically favorable microstructure remains in the material.
Therefore the evolution of the stress (left hand side of Figure 4.61) in the second cycle is
quite similar to the first cycle, the only differences are observed in the beginning of the
second cycle. There, the plastic slip does not need to increase to a certain value in order
to minimize the energy and the volume fraction starts from a value which is energetically
favorable instead of zero, hence the viscous peak in the stress is smoothed. Analogously
the peak in the beginning of the evolution of the energy (right hand side of Figure 4.61) is
vanished for the second load cycle. At the beginning of unloading, the microstructure has to
initiate again. Therefore a viscous peak occurs there again. Due to the increasing hardening
parameters, the material becomes ”stiffer” in the second load cycle, therefore the evolution
of the energy is shifted vertically.

Loading the material with three load cycles, like illustrated on the left side of Figure 4.62,
the internal variables evolve for the third cycle similar to the second cycle.
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Figure 4.62.: Three load cycle of shear and corresponding evolution of volume fraction of
domain two.

The evolution for volume fraction of the second domain (right hand side of Figure 4.62) in
the third load cycle is completely similar to the evolution in the second load cycle.

Also the plastic slip (left hand side of Figure 4.63) evolves in the third cycle completely
similar to the second cycle. The only remarkable differences in the evolution of internal
variables occur in the evolution of the hardening parameters (left hand side of Figure 4.63).
In the third cycle, they increase further, hence that the material becomes even stiffer.
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Figure 4.63.: Plastic slip and hardening in both domains for three shear load cycles.
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Figure 4.64.: Angle of the laminate for three shear load cycles.

As most of the internal variables do not change in the third cycle compared to the second
one, also the shear stress (left hand of Figure 4.65) in the third cycle is similar to the second
one. Due to the increasing hardening parameters, the material becomes stiffer and the energy
increases, hence the energy curve (right hand of Figure 4.65) is again shifted vertically.
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Figure 4.65.: Cauchy shear stress and energy for three shear load cycles.

Cycling of a tension-compression test

As a second example of loading and unloading, a tension-compression test is performed.
Similar to the cyclic loading of the shear test, linear hardening is considered and the hard-
ening modulus is decreased to κ = 0.00001[GPa]. The viscous parameters are considered as
s = 0.001r and δ = 0.1r.

For one load cycle (load cycle is shown on the left side of Figure 4.66), the evolution of the
volume fraction of the second domain is presented on the right hand side of Figure 4.66.
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Figure 4.66.: One load cycle of tension-compression and corresponding evolution of vol-
ume fraction of domain two.

At loading, up to w = 0.3 the material is homogeneous. Afterwards a second domain with
the volume fraction λ is established. This domain increases up to λ= 0.24 (at w = 1.8), hence
the material consists of 24 % of domain two. Then the volume fraction remains constant for
the remaining loading path. Also for unloading the volume fraction does not change until
the load reaches w = 0.3 (where at the loading path the initiation of the microstructure takes
place), then the volume fraction decreases. For zero loading the remaining volume fraction
reads λ = 0.17.

The plastic slip of both domains are shown on the left hand side of Figure 4.67.
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Figure 4.67.: Plastic slip and hardening in both domains for one tension-compression load
cycle.

When the microstructure is initiated, the plastic slip in domain two decreases drastically
to −12 in order to minimize the energy with a too small volume fraction. During further
loading the plastic slip of domain two slightly increases, while at unloading it first remains
constant, thus this domain is unloaded elastically. Then the plastic slip slightly decreases
again. Finally at zero loading it reads γ2 = −14.1. The plastic slip of domain one starts at
zero plastic slip and decreases smoothly to −5.5 at the end of the loading path. For unloading
the plastic slip also remains constant first thus the material behaves elastic before the plastic
slip increases again and reaches −2 at zero loading. Since both plastic slips remain constant
at the beginning of unloading the whole material is unloaded elasitically. Afterwards the
plastic behavior occurs again. The hardening parameters (right hand side of Figure 4.67)
both increase for loading and unloading since the absolute values of the plastic slip are their
major contributions. The hardening parameter of domain two has a kink due to the jump of
the plastic slip at the onset of the lamination.

The evolution of the angle of the laminate is presented in Figure 4.68.
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Figure 4.68.: Angle of laminate for one tension-compression load cycle.

Once the microstructure is built, the angle is found as approximately zero. From w = 1.8 the
volume fraction of the laminate remains constant and the laminate starts to rotate. First the
angle decreases and then increases. At unloading, the angle first decreases. As w reaches
1.8, the angle remains constant at −0.04[rad].

The Cauchy normal stresses (left side of Figure 4.69) are strongly influenced by the estab-
lished microstructure.
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Figure 4.69.: Cauchy normal stress and energy for one tension-compression load cycle.

First the material behaves elastically, hence the stress increases linear. Due to already dis-
cussed viscous effects, the microstructure is delayed and results a peak in the stress. As
the microstructure evolves, the stress decreases slowly. At unloading, as the plastic slip
remains constant, the material behaves elastically first and the stress decreases linear. Af-
terwards the plastic slip evolves again and the stress remains constant and then decreases
further. Thus, a hysteresis loop is visible. The peak due to viscous effects at the initiation of
the microstructure also occurs in the energy (right hand side of Figure 4.69). Then the en-
ergy curve is convex. At unloading the energy curve increases as the hardening parameters
increase, which makes the material stiffer.

For two load cycles (load cycles illustrated on the left hand side of Figure 4.70) the evolution
of the volume fraction of domain two is shown on the right hand side of Figure 4.70.
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Figure 4.70.: Two load cycles of tension-compression and corresponding evolution of vol-
ume fraction of domain two.

At the beginning of the second cycle the volume fraction starts with the initial value λ =

0.17. When the starting point of the microstructure for the first cycle is reached, the volume
fraction slightly drops down. At w = 1.3 the volume fraction increases up to λ = 0.18 and
remains constant from there on. For unloading, first the volume fraction remains unchanged.
The evolution starts at w = 2.6, the volume fraction slightly increases up to λ = 0.2 and
remains again constant from there (w = 1.8) on. In total, the domain two is the smaller
domain and even decreases further in the second cycle.
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Figure 4.71.: Plastic slip and hardening of both domains for two tension-compression load
cycles.

The plastic slip of both domains (left side of Figure 4.71) remains constant at the beginning
of unloading but then decreases further in the second load cycle. The plastic slip in the
second domain exhibits larger deviations to the first cycle compared to the first domain.
This behavior is different to the results of the cycling of the shear test, where the plastic
slip remains similar for all cycles. The reason for this increasing amount of plastic slip is
the rotation of the laminate (Figure 4.72). When it rotates, the dislocations which cause the
plastic slip cannot not vanish fully at unloading. Therefore the dislocations remain or even
increase and more plastic slip is produced. Similar to the behavior of the cycling of the shear
test, the hardening parameters increase monotonously.
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Figure 4.72.: Angle of the laminate for two tension-compression load cycles.

In the second cycle at loading, the laminate does not rotate until w = 3 is reached. Then the
angle (Figure 4.72) increases nearly linear to φ = −0.02[rad]. For unloading, the angle is
constant for a short load period (from w = 4 to 3.8), but then it decreases to −0.08 at w = 1.
Up to w = 0.2 the laminate does not need to rotate, afterwards the angle starts to increase.
At zero loading, the angle reads φ = −0.075[rad].

The resulting Cauchy normal stress and the energy are presented in Figure 4.73.
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Figure 4.73.: Cauchy normal stress and energy for two tension-compression load cycles.

In the second cycle, the microstructure remains in the material. Therefore the peak in the
stress due to viscous effects of the initiation does not occur in the second cycle and a hys-
teresis loop with a smaller width is exhibited. The evolution of the energy shows no peak
in the beginning of the second load cycle as the microstructure remains in the material and
does not need to be initiated. However, at the loading path, a peak occurs with a maximum
at w = 1.3. At this point, the volume fraction of domain two starts to increase again and the
peak in the energy decreases.

The loading path presented on the left hand side of Figure 4.74 illustrates three load cycles
of a tension-compression test.
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Figure 4.74.: Three load cycle of tension-compression and corresponding evolution of vol-
ume fraction of domain two.

On the right hand side of Figure 4.74 the resulting evolution of the volume fraction of
domain two is shown. For the loading path of the third cycle, the volume fraction remains
first unchanged. As the loading increases (w = 2.8 to w = 4) the volume fraction decreases
further to 0.11. At unloading the volume fraction finally increases again and reaches 0.19
at zero loading. Obviously, the evolution of the volume fraction is different for every load
cycle.
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Figure 4.75.: Plastic slip and hardening in both domains for three tension-compression load
cycles.

Analogously to the behavior in the second cycle the amount of plastic slip in both domains
(left side of Figure 4.75) increases further since due to the rotation of the laminate, the
dislocations, which cause the plastic slip, are not vanished at unloading. The hardening
parameters (right side of Figure 4.75) still increase further for loading and unloading and
reach already rather high values.
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Figure 4.76.: Angle of laminate for three load cycles.

The angle of the laminate is shown in Figure 4.76. For the loading path in the third cycle,
the laminate does not need to rotate, the angle is found as -0.075[rad]. At unloading the
angle decreases to -0.105[rad].
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Figure 4.77.: Cauchy normal stress and energy for three tension-compression load cycles.

The energy for the load cycle three (right side of Figure 4.77) is shifted vertically due to the
increased hardening parameters. The Cauchy normal stress hysteresis (left side of Figure
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4.77) shrinks further. This effect is caused by the drastic enlargement of the deformed area at
this tension-compression test. The Cauchy stress refers the actual force to this enlarged area,
therefore the width of the hysteresis decreases. Hence the first Piola Kirchhoff stresses may
be interesting because the actual force is referred to the reference area and the enlargement
of the actual area is not taken into account. However they are not representing the ”true”
stresses. The normal Piola Kirchhoff stresses are presented in Figure 4.78.
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Figure 4.78.: First Piola Kirchoff stresses for three tension-compression load cycles.

Both normal stresses show a clear hysteresis loop which does not change for the second and
third cycle. Therefore the changes in the Cauchy stresses are only a result of the change of
area.

4.6. Discussion

In this chapter, a new approach for modeling finite plasticity is introduced by adding a van-
ishing viscosity to the existing model of [49]. In the first part of this chapter, the modified
dissipation potential and the energy potential are presented and relaxed for an underlying
microstructure. By modifying the dissipation potential explicit evolution equations for the
internal variables, which characterize the current state of the microstructure, are obtained.
These equations no longer consist of global minimizations, hence they can be determined
with standard approaches for numerical integrations. Afterwards numerical tests are per-
formed, here a shear and a tension-compression test are presented. Due to the chosen dis-
sipation potential viscous effects arise and have to be reduced by introducing a relaxation
time, hence reducing the loading velocity. In this chapter, the examples show that an in-
crease of the relaxation time reduces drastically the viscous effect. As second testings, a
comparison to the results of D.Kochmann and K.Hackl [48] is presented. The results show
good agreements, however deviations occur, especially in the stress strain behavior. Then
cycling tests are performed where clear hysteresis loops are exhibited. If the actual area
enlarges, the Cauchy stress may loose its clear hysteresis character for higher numbers of
load cycles. However, the first Piola Kirchoff stress still exhibits a hysteresis loop then.

In conclusion, this model has a stable character and is able to model the evolution of mi-
crobands in finite crystal plasticity. The numerical effort in comparison to the approach of
[49] is reduced. However, due to the viscous contribution, a viscous material behavior is
obtained which can be reduced but not vanished. The reason for the restriction to one active
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slip system and a first order laminate is just the simplicity: a generalization to higher order
laminates and higher order slip systems leads to a higher numerical effort.
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5. Modeling finite crystal plasticity involving
dislocations

In the section 3.4, the continuum theory of dislocations for small deformations is introduced.
However, ECAP (equal-channel angular pressing) tests reveal that large plastic deformations
may change the state of a microstructure, [38]. Crystals are pressed through a channel which
is kinked by 90◦. Due to that kink, large plastic deformations may appear. A comparison of
the crystal before and after the test show that the grains change their size, for example from
20µm to 1µm. Also the martensitic phase transformation can occur at high plastic strains.
Thus, for modeling these microstructures, small deformations are not suitable and large
deformations have to be considered. In order to model finite crystal plasticity, the continuum
theory will be extended in the following section for large deformations. Therefore new
independent kinematic quantities have to be specified which characterize the deformed state
of the crystal and the change of dislocation network. Analogously to the theory with small
deformations, the energy and the dissipation are described in terms of these quantities. The
first who introduced this concept for large deformations were Kondo [50], Bilby et al [12]
[11], Kröner [53] [54] followed by Berdichevsky and Sedov [9] and others.

In this chapter first the kinematically independent quantities which describe the deformed
state of the crystal are outlined. Then the nonlinear continuum dislocation theory is em-
ployed on the examples of finite anti-plane constrained shear and plane-strain constrained
shear under the assumption of uniform deformations. These results are already published
in [59] and [60]. For the example of plane- strain constrained shear also a solid-solid phase
transition involving dislocations which can be interpreted as a martensitic phase transition
is modeled.

5.1. Kinematics

If large deformations are considered, the additive decomposition of the deformation gradi-
ent is not valid anymore. According to Equation (2.67) the deformation gradient has to be
decomposed multipilcatively. Both components, hence the elastic and the plastic deforma-
tions, are orientation preserving

detFe > 0, detFp > 0. (5.1)

This implies that both deformations have inverse deformations, thus Fp-1 and Fe-1 exist. In
the continuum dislocation theory, we assume that the plastic deformation Fp is the defor-
mation which creates dislocations or changes the position of the dislocations, but it does
not deform the crystal lattice and therefore the lattice vectors remain unchanged, see right
lattice in Fig.5.1. The elastic deformation Fe instead deforms the crystal lattice with frozen
dislocations. Since this deformation deforms the lattice but not the dislocations, it can be
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Figure 5.1.: Multiplicative decomposition of the deformation gradient, reprinted by permis-
son from [60]

also called lattice deformation. Under that deformation, the lattice and the shape vectors
change. Both deformations together bring the crystal to its final state.

As already discussed in Section 3.4.2, the definition of the Burgers vector is still a crucial
issue. When a plastic deformation takes place, this vector has to change as well, since the
total closure failure changes. Ortiz and Repetto [74] already introduced the resultant Burgers
vector by

br =

∮
Fp · dx. (5.2)

The question arises, if this is a correct definition. Let us consider a non-uniform plastic
deformation in the form of

Fp
1 = I + cx1s1⊗m1, (5.3)

thus a plastic slip along the x1 axis in the reference configuration and we assume sT
1 = (1 0 0)

and mT
1 = (0 1 0). The resulting deformation is illustrated in Fig.5.2 for a quadratic cross

section with the size l. The edge dislocations are sketched as arrows of vacancies which
break the lattice in the vertical columns. The subsequent elastic deformation restores these
breaks in the lattice and thus brings the crystal in its final form. If the dislocations are
distributed uniformly in the crystal, their density can be defined by ρ = n

l2 with n being the
number of dislocations.

x2
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p
F
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br

Figure 5.2.: Plastically deformed crystal including dislocations, reprinted by permisson
from [59]
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If the definition of (5.2) is considered, the Burgers vector of this example can be determined
as

br =

∮
Fp · dx =

∫ l

0
cls1 dx2 = cl2s1. (5.4)

In order to obtain the total closure failure, c has to be equal to c = ρb = nb
l2 , thus br = nbs1.

Hence in the continuum limit, when the atomic distance tends to zero at fixed representa-
tive volume element and fixed dislocation density per area of the unit cell, definition (5.2)
leads to the total closure failure of the single crystal with one slip system and a plastic slip
introduced by Fp.

The application of Stoke’s theorem (A.35) on Equation (5.2) gives

br = −

∫
Ω0

(
Fp×∇

)
·nda. (5.5)

For small deformations, the relation between the dislocation density tensor and the Burgers
vector is given by Equation (3.44). Analogously we define the dislocation density tensor for
finite deformations by

T = −Fp×∇. (5.6)

Applying this definition, the resultant Burgers vector of dislocation which cross this in-
finitesimal area da can be written in terms of the dislocation density,

br = T ·nda, (5.7)

with da being an infinitesimal area having the normal vector n. This dislocation density
tensor is referred to the reference configuration. In order to compare the dislocation den-
sity with experimental results, the dislocation density of the current configuration is needed,
since the experiments measure the deformed lattice, which corresponds to the current con-
figuration (for example [56]). In order to get to the current configuration the relation (2.4)
can be applied,

br =

∮
FpF ·dx. (5.8)

Using the multiplicative decomposition of the deformation gradient (2.67), the resultant
Burgers vector in the current configuration is obtained,

br =

∮
Fe-1 ·dy. (5.9)

Correspondingly the spatial dislocation density tensor can be introduced,

T
′

= −Fe×∇y, (5.10)

where ∇y is the nabla operator with respect to the coordinate y of the current configuration.

The crucial topic of this section is the definition of the kinematically independent quantities
which characterize completely the deformed state of the crystal with dislocations and the
rate of changes of the dislocations network. The plastic deformation gradient Fp depends
on the cut surface and on the whole history of creating dislocations. Therefore this quantity
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cannot be a state variable. Equation (5.7) shows, that the dislocation density tensor depends
only on the Burgers vector and on the position of dislocation lines. Thus we choose for an
isothermal process the dislocation density tensor T as one state variable. As a second one,
the elastic deformation gradient Fe could be considered, hence

Ψ = Ψ
(
Fe,T

)
. (5.11)

However, superposing a rigid-body rotation R onto an actual deformation,

F∗ = R ·F (5.12)

then the actual deformation gradient F will change to F∗. Since Fp is regarded as acting
only in the reference configuration (it does not deform the lattice), the elastic deformation
gradient has to change,

Fe∗ = R ·Fe. (5.13)

Since a rigid-body rotation should not change the energy, the state variable Fe is replaced
by the right Cauchy Green tensor for the elastic deformation (see e. g. [32]), hence

Ψ = Ψ
(
Ce,T

)
. (5.14)

with

Ce = Fe T ·Fe (5.15)

analogously to the definition (2.9). Another state variable which describe the state of the
crystal is the density of statistically stored dislocations. However for low temperatures they
tend to be dipoles. The density of such dipoles only depends on the temperature, therefore
it is a constant for an isothermal process and will be omitted.

5.2. Thermodynamic framework

For simplicity we restrict ourselves to a single crystal with one active slip system. In this
case, the plastic deformation gradient can be expressed by

Fp = I +βs⊗m, (5.16)

with s and m denoting the slip system as already used in the previous chapters. Kröner
introduced the plastic slip in the continuum dislocation theory as β, therefore to maintain
this historical tradition the plastic slip is denoted in this chapter by β instead of γ. Inserting
Equation (5.16) into the definition (5.5), the dislocation density reads

T = s⊗ (∇β×m) . (5.17)

Under the assumption that all dislocation lines are straight lines parallel to the direction l,
the resultant Burgers vector of all excess dislocations whose lines cross an infinitesimal area
da under 90◦ may be found by using Equation (5.7) as

br = s
[
(∇β×m) · l

]
da. (5.18)
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Similar to the theory with small deformations (Equation (3.45)), the scalar dislocation den-
sity can be calculated by

ρ =
1
b
|(∇β×m) · l| , (5.19)

with b being the magnitude of the Burgers vector. Instead of the dislocation density tensor,
this quantity can be used as a state variable, since it is also independent from the history of
creating dislocations. Hence

Ψ = Ψ
(
Ce,ρ

)
. (5.20)

For the examined examples, a single crystal in the three dimensional euclidean space is
considered which occupies in the undeformed configuration a domain Ω0. The boundary of
this crystal ∂Ω0 is divided into ∂k, where the crystal is clamped and ∂τ, where a dead load τ
is given. Since the boundary part ∂k is clamped, the displacements and the plastic slip have
to be zero there,

u = 0, β = 0 at ∂k, (5.21)

with u being the displacement field already defined in (2.3). In the case that no body force
acts on the crystal, its energy functional is defined as

I (u,β) =

∫
Ω0

W (F,β,∇β) dv−
∫
∂τ

τuda, (5.22)

where W (F,β) is equal to the free energy density Ψ (Ce,ρ). Assuming first that the dis-
sipation is negligibly small the variational principle for a single crystal having one active
single slip system states: The true displacement û and the true plastic slip β̂ minimize in
the final state of the deformation the energy functional (5.22) under the boundary conditions
(5.21). Applying the standard variational calculus, the first variation of the functional (5.22)
is obtained,

δI (u,β) =

∫
Ω0

(
WF : δF + Wβδβ+ W∇β · ∇δβ

)
dv−

∫
∂τ

τδuda = 0. (5.23)

The first Piola- Kirchhoff stress is defined as the derivative of the free energy with respect to
the deformation gradient, hence P = W,F. We also may replace δF = δu∇ and by integrating
by part, we get

δI =

∫
Ω0

[
(P · ∇)δu +

(
Wβ−∇ ·W∇β

)
δβ

]
dv +

∫
∂τ

[
(P ·n−τ)δu + W∇β ·nδβ

]
da. (5.24)

For arbitrary variations δβ and δu the variation of the energy functional has to vanish, hence
δI = 0. Then the result is on one hand the equilibrium of macro-forces acting on the crystal

P · ∇ = 0, (5.25)

with P denoting the first Piola Kirchoff stress, illustrated in Figure 2.4. At the boundary ∂τ
the boundary condition

P ·n = τ (5.26)
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has to be fulfilled. On the other hand, the equilibrium of the micro-forces acting on the
dislocations is found as

Wβ−∇W∇β = 0, (5.27)

where −Wβ represents the resolved shear stress and ∇W∇β the back stress. The boundary
condition at ∂τ reads

W∇β ·n = 0. (5.28)

Employing the chain rule, the first Piola Kirchhoff stress, used in Equation (5.25), can be
defined in terms of the strain tensor Ce as

P = WF = 2Fe ·ΨCe ·Fp−T . (5.29)

For the resolved shear stress we obtain

−Wβ = −s ·FeT ·P ·m. (5.30)

The back stress may be calculated by inserting Equation (5.19) into Equation (5.20) and by
applying the chain rule, the result reads

∇W∇β =
1
b

sign((∇β×m) · l) l ·Ψρ×m. (5.31)

The unknown variables u and β can be determined if these arguments (Equations (5.29),
(5.30) and (5.31)) are inserted into the equilibrium conditions (Equation (5.25) and (5.27)).

Consider now the case that the energy dissipation cannot be neglected. In this case, follow-
ing [80], the variational principle (5.23) is replaced by

δI+

∫
Ω0

∂D
∂β̇

δβdv = 0. (5.32)

The last term of this equation describes the dissipation due to the dislocation motion and is
assumed to be dependent only on the rate of plastic slip, hence

D = D
(
β̇
)
. (5.33)

The most simple ansatz for the dissipation is

D
(
β̇
)

= r
∣∣∣β̇∣∣∣ (5.34)

where r denotes the critical resolved shear stress. Using again the standard variational cal-
culus, Equation (5.32) leads again to the equilibrium of macro forces, hence

P · ∇ = 0. (5.35)

The equilibrium of micro forces changes to

Wβ−∇W∇β+
∂D
∂β̇

= 0. (5.36)

By using the relation

Wβ−∇W∇β =
δWF
δβ

, (5.37)
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Equation (5.36) may be written as

δWF
δβ

= −
∂D
∂β̇

. (5.38)

Assuming that the sign of β̇ does not change during the evolution of β, the variational equa-
tion (5.32) reduces to minimizing the relaxed energy functional,

I (u,β, ) =

∫
Ω0

[
W (F,β,∇β) + rsign

(
β̇
)
β
]

dv−
∫
∂τ

τuda. (5.39)

According [16], now the true displacement u and the true plastic slip β minimize in the final
deformed state the relaxed energy functional. If the rate of plastic slip is zero, hence β̇ = 0,
the plastic slip is frozen and the displacements can be found by minimizing (5.22) with a
constant β.

5.3. Finite anti-plane constrained shear

As a first examined example for the nonlinear dislocation theory a crystal under anti-plane
constrained shear is studied. This single crystal is assumed as a beam with the length L and
a rectangular cross section with the width a and height h. The crystal is plotted in Figure
5.3 with a coordinate system chosen that the coordinate x3 corresponds to the length, x2 to
the height and x1 to the width of the crystal. Since the crystal is considered as a beam, the
width a is much smaller than the height h and the length L, a << h and a << L.

x3

x1

x2

a

h
L

Figure 5.3.: Single crystal beam.

This crystal is put in a hard device with prescribed displacements at the surface of its cross
section. At its boundaries, the displacements read

u =

 0
0

wx2

 . (5.40)

This deformation is illustrated in Figure 5.4 and w corresponds to the overall strain. Since
the width is assumed to be comparably small, end effects can be neglected. Hence the
stresses and the strains only depend on x1.



110 5. Modeling finite crystal plasticity involving dislocations

h

x3

x1

x2

a

L

Figure 5.4.: Deformed single crystal beam under finite anti-plane constrained shear.

Applying the definition (2.6), the deformation gradient may be determined from the dis-
placements as

F =

 1 0 0
0 1 0
0 w 1

 . (5.41)

Assuming that all slip planes are parallel to x2 = 0 and that all dislocation lines of the screw
dislocations are parallel to the x3 axis, the slip direction reads

s =

001
 (5.42)

and the normal vector to the slip plane

m =

010
 . (5.43)

We also assume that the plastic slip only depends on x1, hence β = β (x1). The boundary is
an obstacle, therefore the dislocations cannot penetrate the boundary of the crystal and the
plastic slip has to be zero,

β (x1 = 0) = β (x1 = a) = 0. (5.44)

From Equation (5.16) the plastic deformation gradient Fp may be determined as

Fp = I +βs⊗m =

 1 0 0
0 1 0
0 β 1

 . (5.45)

Inserting this plastic deformation into Equation (5.6), the dislocation density tensor reads

T =

 0 0 0
0 0 0
0 0 β,x1

 . (5.46)
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Hence, the scalar dislocation density can be obtained as

ρ =
1
b

∣∣∣β,x1

∣∣∣ . (5.47)

Since the total deformation gradient is given and the plastic deformation gradient deter-
mined, from the multiplicative split of the deformation gradient (Equation (2.67)) the elastic
deformation gradient can be evaluated as

Fe =

 1 0 0
0 1 0
0 w−β 1

 . (5.48)

The free energy density has to be considered in terms of the scalar dislocation density and
the elastic strain Ce. Berdichevsky [6] proposed the energy density in the following form

Ψ
(
Ce,ρ

)
=

1
2
λ
(
tr
(
Ee))2

+µEe : Ee +µkln

 1
1− ρ

ρs

 , (5.49)

with λ and µ being the Lamé constants. The elastic strain tensor Ee in the energy density is
only dependent on our state variable Ce and defined as

Ee =
1
2
(
Ce− I

)
. (5.50)

In the case of finite anti-plane constrained shear, this elastic strain tensor reads

Ee =


0 0 0
0 1

2 (w−β)2 1
2 (w−β)

0 1
2 (w−β) 0

 . (5.51)

The first two terms of the energy density (5.49) describe the contribution to the energy by
the macroscopic elastic deformation of the crystal, while the last term corresponds to the
energy of the dislocation network. According to Berdichevsky [6], the energy density of the
dislocation network depends on a logarithmic term because of two facts: for small disloca-
tion densities the energy density is the sum of the energy from non-interacting dislocations.
Secondly a saturated dislocation density ρs is obtained when the closest packing of disloca-
tions admissible in the discrete crystal lattice is reached. Therefore the energy density slope
is linear for a small dislocation density ρ. If the dislocation density reaches the saturated dis-
location density, the energy tends to infinity. For small up to moderate dislocation densities,
the energy density due to the dislocation network can be approximated by

µkln

 1
1− ρ

ρs

 ≈ µk
ρ

ρs
+

1
2
ρ2

ρ2
s
. (5.52)

This approximation is used in the following calculations. Inserting the elastic strain tensor
and the scalar dislocation density into the energy density, it is written as

Ψ =
1
8

(λ+ 2µ) (w−β)4 +
1
2
µ (w−β)2 +µk


∣∣∣β,x1

∣∣∣
bρs

+
1
2

β2
,x1

b2ρ2
s

 . (5.53)
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5.3.1. Finite anti-plane constrained shear with zero dissipation

For simplicity and for a first analysis of the given system, zero dissipation is assumed.
Then following the variational principle (5.23), the true plastic slip minimizes the energy
functional

I
[
β (x1)

]
= hL

∫ a

0

1
8

(λ+ 2µ) (w−β)4 +
1
2
µ (w−β)2 +µk


∣∣∣β,x1

∣∣∣
bρs

+
1
2

β2
,x1

b2ρ2
s

 dx1 (5.54)

among all admissible functions β satisfying the boundary conditions (5.44). The total strain
w is considered as the control parameter, so that the evolution of the plastic slip along a
change of total strain may be determined. For convenience, dimensionless quantities replace
the material constants, hence

c = abρs and η =
λ+ 2µ

2µ
. (5.55)

Analogously the variable x1 is replaced through ξ,

ξ = x1bρs (5.56)

and the energy functional through E ,

E =
bρs

µhL
I. (5.57)

The dimensionless variable ξ changes in the interval from zero to c. Finally the dimension-
less energy functional reads

E
[
β (ξ)

]
=

∫ c

0

[
1
2

(w−β)2 +
1
4
η (w−β)4 + k

∣∣∣β,ξ∣∣∣+ 1
2

kβ2
,ξ

]
dξ. (5.58)

The boundary conditions (5.44) are replaced by

β (ξ = 0) = β (ξ = c) = 0. (5.59)

Now the plastic slip β (ξ) has to be determined which minimizes the dimensionless energy
functional (5.58). When the shear stress is applied, positive dislocations move along the x1
axis to the left, while negative dislocations move to the right. Based on this observation we
propose to seek β in the form (see also [8])

β (ξ) =


β1 (ξ) for ξ ∈ (0, l)
βm for ξ ∈ (l,c− l)
β1 (c− ξ) for ξ ∈ (c− l)

(5.60)

with βm being a still unknown parameter and l an unknown width of a layer of the cross
section. For l 0 ≤ l ≤ c

2 has to be fulfilled. We demand that the plastic slip is continuous,
therefore β1 (ξ = l) = βm holds true. The physical idea of choosing this kind of plastic slip
is, that under a certain deformation, dislocations start to move. The boundary of the cross
section is an obstacle which cannot be penetrated. Therefore the dislocations pile up there.
This pile up takes place in a small boundary layer with the width of l. Considering this
type of minimizer β1 (ξ), βm and l still have to be determined. Replacing β by the chosen
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minimizer (5.60) and assuming that the derivative of the plastic slip is positive at the small
layer on the left boundary (β1,ξ > 0 for 0 ≤ ξ ≤ l), the energy functional becomes

E = 2
∫ l

0

[
1
2

(w−β1)2 +
1
4
η (w−β1)4 + k

(
β1,ξ +β2

1,ξ

)]
dξ

+

[
1
2

(w−βm)2 +
1
4
η (w−βm)4

]
(c−2l) .

(5.61)

In order to satisfy the boundary conditions (5.59) and the continuity condition,

β1 (ξ = 0) = 0 and β1 (ξ = l) = βm (5.62)

have to be fulfilled. The variation of energy functional (5.61), hence δE = 0, leads to

δE = 2
∫ l

0

[
− (w−β1)−η (w−β1)3

]
δβ1dξ+ 2

∫ l

0
k
(
1 +β1,ξ

)
δβ1,ξ dξ

+2
[
1
2

(w−βm)2 +
1
4
η (w−βm)4 + k

(
β1,ξ (l) +β2

1,ξ (l)
)]
δl

−2
[
1
2

(w−βm)2 +
1
4
η (w−βm)4

]
δl

+
[
− (w−βm)−η (w−βm)3

]
(c−2l)δβm = 0.

(5.63)

By employing partial integration the variation with respect to δβ1,ξ is obtained in terms of

2
∫ l

0
k
(
1 +β1,ξ

)
δβ1,ξ dξ = 2

[
k
(
1 + 2β1,ξ (l)

)]
δβm−2

∫ l

0
kβ1,ξξδβ1 dξ (5.64)

which can be inserted into the energy variation (5.63). Thus the variation with respect to
any arbitrary length δl gives

kβ1,ξ (l) = 0. (5.65)

Obviously, the obtained boundary condition may be written as

β1,ξ (l) = 0. (5.66)

The variation with respect to any arbitrary δβm leads to the boundary condition[
− (w−βm)−η (w−βm)3

]
(c−2l) + 2k = 0. (5.67)

Varying the energy functional with respect to the unknown function β1, we obtain an Euler
equation

− (w−β1)−η (w−β1)3− kβ1,ξξ = 0 (5.68)

on the interval 0 ≤ ξ ≤ l. Still unknown in this equation is β1, which is a function dependent
on ξ and describes the plastic distorsion in the small region near the boundary of the crystal.
By denoting w−β1 (ξ) = q (ξ), the Euler equation takes the form

−q−ηq3 + kq
′′

= 0 (5.69)

with q
′′

=
d2q
dξ2 . In order to get a solution for β1, the first integral of the Euler equation (5.69)

may be calculated as

−
1
4
ηq4−

1
2

q2 +
1
2

kq
′2 = θ, (5.70)
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with θ being an unknown constant. The phase portrait of this differential equation is illus-
trated in Fig 5.5.
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Figure 5.5.: Phase portrait.

Since we have the condition q
′

(ξ = l) = 0, the phase curves lying above and below the sep-
aratrices cannot represent our solution, as they never reach the states with q

′

= 0. We know
that q = w−β1, therefore we consider only positive values for q. At the left boundary layer
of the crystal the plastic slip increases, consequently q (ξ) must be a decreasing function of
ξ. Since q (0) = w and q

′

(l) = 0 only the right curves (plotted bold) represent our solutions.

We already concluded that β1 (l) = βm, along with the boundary condition (5.66), the un-
known constant θ can be determined as

θ = −
1
2

(w−βm)2−
1
4
η (w−βm)4 . (5.71)

Applying the separation of variables on Equation (5.69) and using the relation q
′

=
dq
dξ , the

differential equation reads

dξ = ±

√
kdq√

q2 + 1
2ηq4 + 2θ

. (5.72)

Using q (0) = w, ξ may be found as

ξ = −

∫ q

w

√
k dq̄√

q̄2 + 1
2ηq̄4 + 2θ

. (5.73)

This equation gives implicitly the dependence of q (ξ) on ξ. The minus in front of the integral
is chosen in accordance to the phase portrait (5.5). Since the plastic slip is increasing, q has
to decrease with increasing ξ, thus dq has to be negative. Equation (5.73) is an elliptic
integral, therefore ξ can also be expressed in terms of an elliptic function. In order to find
the elliptic function, the linear factor dissection is applied on the denominator, hence

q̄2 +
1
2
ηq̄4 + 2θ =

1
2
η
(
q̄2 +α2

1

) (
q̄2−α2

2

)
, (5.74)
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where ±α1 and ±α2 are the roots of the polynomial. They are determined by employing the
Cardano’ s method (for details take a look at [13]) as

α1 = ±

√√√
1
η

+

√
1
η2 −

4θ
η

α2 = ±

√√√
−

1
η

+

√
1
η2 +

4θ
η
. (5.75)

According to [27], the elliptic function is found as

ξ (q) = −

√
2k
η√

α2
1 +α2

2

F
arcsin


√√√√√√√ √

α2
1 +α2

2√
α2

1 + w2

 ,m
−F

arcsin


√√√√√√√ √

α2
1 +α2

2√
α2

1 + q2

 ,m

 (5.76)

with F denoting the inverse Jacobian elliptic function and m =
α1√
α2

1+α2
2

. Using Equation

(5.76), the function q can be determined implicitly in terms of ξ. Since q = w−β holds true,
the plastic slip β is then also found for fixed overall strain w. Figure 5.6 shows the plastic slip
over the cross section dependent on the dimensionless width ξ for different overall strains:
w = 0.005, w = 0.01 and w = 0.015. For this example, the material parameters are chosen as
k = 1.138 ∗10−3, b = 2.5 ∗10−10 [m] and ρs = 8.8 ∗1015

[
m−2

]
. The geometry of the crystal

is considered as a = 10−6 [m], hence c = abρs = 2.2 and η = 1.
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w=0.005

Figure 5.6.: Plastic slip β as a function of ξ for different overall strain w, reprinted by per-
mission from [59].

At the boundary of the crystal, the plastic slip is zero. This is already required by a boundary
condition as the dislocations cannot penetrate through this obstacle. In a small layer near the
boundary, the plastic slip increases (at the left side) or decreases (at the right side). These
small layers near the boundaries, where the plastic slip increases (or decreases) have the
width l. Since q (l) = w−βm holds true at ξ = l, this width may be determined by

l = ξ (w−βm) , (5.77)

where ξ is obtained by using the elliptic function (5.76). Along the rest of the width of the
cross section, the plastic slip stays constant, β = βm. As expected, with an increasing overall
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strain w, the total amount of plastic slip increases as well. When w = 0.005, the plastic slip
reaches βm = 0.004, for w = 0.01 the plastic slip reaches βm = 0.009.

An important variable which describes the crystal including a dislocation network is the
dislocation density. In the case of finite anti-plane constrained shear, the dimensionless
dislocation density may be calculated by ρ = β,ξ. Taking the first integral (5.70), q,ξ may be
obtained by

q,ξ =

√
1
k

[
2θ+ q2 +

1
2
ηq4

]
(5.78)

where q is determined implicitly by the elliptic function (5.76). Since q = w−β holds true,
the dimensionless dislocation density is equal to −q,ξ. In Figure 5.7 the dimensionless dis-
location density as a function of ξ at different w is presented. For this example, the same
constants are taken as before.

0.5 1.0 1.5 2.0

x

0.10

0.05

0.00

0.05

0.10

w=0.015

w=0.01

w=0.005

b, x

0.00 0.02 0.04 0.06 0.08 0.10 0.12

x
0.0

0.1

0.2

0.3

0.4

w=0.015

w=0.01

w=0.005

b, x

Figure 5.7.: Dimensionless dislocation density as a function of ξ for different overall strain
w, partly reprinted by permission from [59].

The dislocation density for all amounts of overall strains is only non-zero at small layers
with the width of l near the boundary. At the left side, the dislocation density increases and
on the right boundary, the dislocation density decreases. On the right hand side of Figure
5.7, a zoom of this small layer at the left boundary is shown. For the overall shear w = 0.005,
width of this layer is l = 0.075. When the overall strain is increased to w = 0.015 the zone
enlarges to l = 0.11. At the boundary ξ = 0, the dislocation density at w = 0.005 is β,ξ = 0.15,
for w = 0.015 the value is bigger, β,ξ = 0.41. Outside of these small layers near the boundary,
the dislocation density is zero. This behavior may be explained physically: due to the shear,
dislocations are nucleated and positive dislocations are pulled to the left side and negative
dislocations to the right side. No dislocations remain in the middle of the crystal. When
the dislocations reach the boundary, they cannot move further since the penetration of the
boundary is not possible. Then they pile up at the boundary. A higher overall shear produces
more dislocations, therefore zone has to be larger and hence l increases.
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The boundary layer l in which the pile up of dislocations takes place is dependent on the
plastic slip, thus also on our control parameter, the shear strain. In Fig. 5.8 this dependence
is shown.
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w
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0.12
l

Figure 5.8.: Width l of boundary layer versus deformation.

The width of the boundary layer is zero while the crystal behaves elastic, since no disloca-
tions pile up. When the threshold value w = wen is reached, the width of the layer, thus the
number of the dislocation which pile up, increases strongly. With further increasing strain,
the width of the boundary layer still increases, but more slowly.

A very interesting result is the stress in this plastically deformed crystal. In order to calculate
this stress the threshold value wen has to be determined, the strain at which the crystal starts
to behave plastic and dislocations start to nucleate. At this threshold value, βm is still zero
since no dislocations are introduced and therefore the length of the layer l also tends to zero.
Taking this into account, the boundary condition (5.67) reads

2k =
(
w +ηw3

)
c. (5.79)

The threshold value wen is the real root of this equation. For w < wen, no dislocations are
nucleated and hence the plastic slip is zero. Equation (5.79) depends on the dimensionless
width of the crystal c, hence the threshold value wen also depends on the geometry, exhibiting
clearly the size effect. This size effect is also illustrated in Figure 5.9.
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Figure 5.9.: Threshold value wen dependent on dimensionless width c.



118 5. Modeling finite crystal plasticity involving dislocations

With a width tending to zero, the threshold value wen tends to infinity, thus the model is
not working correctly there. However, the model is a continuum model, therefore the width
of the crystal c needs to be much larger than the Burgers vector, so that enough atoms and
dislocations are in the crystal. Afterwards the threshold value depends reciprocally on the
width c, with an increasing width, the threshold value decreases. Therefore with a larger
width c, the crystal starts to behave plastic at a smaller strain wen compared to one with a
smaller width. For large width c, the threshold value tends to zero, which is not physically
consistent as the crystal behaves elastic first. Therefore dissipation needs to be considered
as well, in order to obtain a realistic behavior for a large width c.

For the case of anti plane constrained shear, the average shear component P32 of the first
Piola Kirchhoff stress tensor is most significant. Employing the definition (5.29), the average
of the first Piola Kirchoff shear stress may be obtained by

P̄32 =
P32

µ
=

1
c

∫ c

0

[
η (w−β)3 + (w−β)

]
dξ. (5.80)

Figure 5.10 shows the dimensionless average shear component of the first Piola Kirchhoff

stress as a function of the overall strain w.
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Figure 5.10.: Shear stress versus overall strain, reprinted by permission from [59].

Until the threshold value wen is reached, the crystal behaves purely elastic and the plastic
slip β is zero. From w > wen, the stress increases with a smaller slope. This effect can be
also called work hardening, due to the pile up of dislocations at the boundaries. There is no
residual strain, this means for unloading, the stress follows the same path back. Therefore
the plastic deformation is completely reversible and no energy is dissipated. This behavior is
physically not consistent, the nucleation and the movement of dislocations cause dissipation,
which has to be considered as well in order to obtain realistic results.

5.3.2. Finite anti-plane constrained shear with non-zero dissipation

As already mentioned in the previous section, the movement of dislocations costs energy
and therefore the dissipation has to be considered as well. If the simplest type of dissipation
(Equation (5.33)) is considered and under the assumption that the sign of β̇ does not change,
the solutions are obtained by minimizing the relaxed energy functional (5.39). For the case
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of anti- plane constrained shear, this functional reads

I
[
β (x1)

]
= hL

∫ a

0

[
1
8

(λ+ 2µ) (w−β)4 +
1
2
µ (w−β)2

+µk


∣∣∣β,x1

∣∣∣
bρs

+
1
2

β2
,x1

b2ρ2
s

+ rsign
(
β̇
)
β

 dx1

(5.81)

For convinience, dimensionless quantities ξ, c, E and η are introduced, taking the defini-
tions from the previous section ((5.55), (5.56) and (5.57)). Similar to these dimensionless
quantities, wc is introduced to replace the critical resolved shear stress r by

wc =
r
µ
. (5.82)

Using these quantities, the energy functional becomes

E
[
β (ξ)

]
=

∫ c

0

[
1
2

(w−β)2 +
1
4
η (w−β)4 + k

∣∣∣β,ξ∣∣∣+ 1
2

kβ2
,ξ + wcsign

(
β̇
)
β

]
dξ. (5.83)

The unknown minimizer β (ξ) is considered again in the form of Equation (5.60). The mini-
mizer is constant (βm) along the width of the cross section except at small boundary layers
with the width l, where the plastic slip de- or increases. The width of this layer is an un-
known constant. This chosen minimizer has to fulfill the boundary conditions

0 ≤ l ≤
c
2

and β1 (l) = βm. (5.84)

Similar to the previous case without dissipation, the derivative β,ξ is assumed to be positive
at the left boundary layer, hence

β,ξ > 0 for 0 ≤ ξ ≤ l. (5.85)

Furthermore the rate of the plastic slip is assumed to be positive ( sign
(
β̇
)
> 0) for loading,

while for loading in the opposite direction the rate considered to be negative. Considering
first loading, the energy functional becomes

E = 2
∫ l

0

[
1
2

(w−β1)2 +
1
4
η (w−β1)4 + k

(
β1,ξ +β2

1,ξ

)
+ wcβ

]
dξ

+

[
1
2

(w−βm)2 +
1
4
η (w−βm)4 + wcβ

]
(c−2l) .

(5.86)

The function β1 is subjected to the boundary conditions (5.62). The variation of this relaxed
energy functional with respect to the unknown constants βm and l leads to two boundary
conditions at ξ = l, hence

β1,ξ (l) = 0 and 2k =
[
(w−βm) +η (w−β1)3−wc

]
(c−2l) . (5.87)

The variation of the relaxed energy functional under loading with respect to the unknown
function β1 gives the Euler equation in the form

(w−β1) +η (w−β1)3−wc + kβ1,ξ,ξ = 0. (5.88)

Analogously to the case without dissipation, the function β1 is still unknown in this Euler
equation. We may replace w−β1 by introducing q, then the first integral from the differential
equation (5.88) can be determined as

1
2

kq′2−
1
2

q2−
1
4
ηq4 + wcq = θ, (5.89)
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where θ is a still unknown constant. Since q′ (l) = 0 and q (l) = w−βm hold true, θ is identified
as

θ = −
1
2

(w−βm)2−
1
4

(w−βm)4 + wc (w−βm) . (5.90)

From the first integral (5.89), dξ by using q′ = dq
dξ is obtained as

dξ = ±

√
kdq√

q2 + 1
2ηq4−2wcq + 2θ

, (5.91)

with the minus sign chosen again due to a phase portrait analogously to the case without
dissipation. Taking q (0) = w into account, we get the elliptic integral

ξ = −

∫ q

w

√
k dq̄√

q̄2 + 1
2ηq̄4−2wcq̄ + 2θ

. (5.92)

In order to express this elliptic integral by an elliptic function, the polynomial in the inte-
grand has to be factorized. For small wc, this factorization reads

q̄2 +
1
2
ηq̄4−2wcq̄ + 2θ =

1
2
η (q̄−α1) (q̄−α2)

[
(q̄−χ1)2 +χ2

2

]
, (5.93)

with α1 and α2 being the real roots of the polynomial and χ1 ± iχ2 being the complex-
conjugate roots. These roots are determined with the Cardano’s method [13]. Ordering the
real roots such that α1 < α2 and taking into account that w and q are larger than α2, the
elliptic function for ξ dependent on q [27] reads

ξ =

√
2k
η√

f1 f2

F
2arctan


√

f2 (w−α2)
f1 (w−α1)

 ,m
−F

2arctan


√

f2 (q−α2)
f1 (q−α1)

 ,m

 , (5.94)

with f1 =

√
(χ1−α2)2 +χ2

2, f2 =

√
(χ1−α1)2 +χ2

2 and m = 1
2

√
( f1+ f2)2(α1+α2)2

f1 f2
. Using the

elliptic function (5.94), the plastic slip β may be determined implicitly since q = w− β. In
Figure 5.11, the plastic slip along the width of the cross section for different total strains is
presented. The material and geometry constants are taken from the case of no dissipation
and the dimensionless critical resolved shear stress is set to wc = 2 ·10−3.
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Figure 5.11.: Plastic slip β as a function of ξ for different w, reprinted by permission from
[59].

At the boundary ξ = 0 the plastic slip is zero, then it increases up to β = βm. A higher total
strain leads to an increased βm. Near the right boundary, in a small layer, the plastic slip
decreases to zero. Compared to the case without dissipation, the behavior of the plastic slip
is similar, but the maximum of the plastic slip is decreased. For a total strain of w = 0.015,
if dissipation is taken into account, the plastic slip reaches βm = 0.002. For the same strain
but zero dissipation, the plastic slip reaches βm = 0.004. The physical explanation for this
behavior is that the dissipation due to the movement of dislocations costs energy, therefore
less dislocations can be moved and less plastic slip is produced. The basic mechanism stays
the same: due to the shear, dislocations are nucleated and pulled to the boundaries where
they pile up.

Analogously to the case without dissipation, the dislocation density may be determined by
ρ = q,ξ and from formula (5.89) the result finally reads

q,ξ =

√
1
k

(
q2 +

1
2
ηq4−2wcq + 2θ

)
, (5.95)

where q dependent on ξ obtained implicitly by Equation (5.94). This dimensionless dislo-
cation density along the cross section is shown in 5.12 for different total strain.
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Figure 5.12.: Dimensionless dislocation density q,ξ as a function of ξ for different w, partly
reprinted by permission from [59].

The behavior of the dimensionless dislocation density is similar to the case without dissi-
pation. Due to the loading, dislocations are nucleated and pulled to the boundaries. The
positive ones to the left boundary and the negative ones to the right. The boundary is an
obstacle which cannot be penetrated, hence they pile up. A higher amount of overall strain
leads to more piled up dislocations, for w = 0.001, the density at the boundary is q,ξ = 0.1,
while for w = 0.015 the density reads q,ξ = 0.38. The dissipation reduces the amount of dis-
locations, from q,ξ = 0.14 for w = 0.001 without dissipation to q,ξ = 0.1 with the same strain
but considering dissipation. Due to the dissipated energy, less dislocations can be moved to
the boundary.

Similar to the case without dissipation, the threshold value wy, at which the nucleation of
dislocations starts, has to be determined in order to obtain the stresses. If the total strain is
smaller then the threshold value, no dislocations are nucleated and therefore the plastic slip
is zero. The threshold value may be determined by using the boundary condition (5.87) with
βm and l tending to zero since no plastic slip is present. Thus the threshold value is the root
of

ηw3 + w = wc +
2k
c
. (5.96)

From (5.96) we see that wy depends on c which is the dimensionless width of the cross
section, this exhibits the size effect. The dependence of the threshold value wy with the
width c is presented in Figure 5.13
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Figure 5.13.: Threshold value wy dependent on c.

As the dimensionless width of the geometry tends to zero (which is physically not possible),
the threshold value tends to infinity, similar to the case without dissipation. Again, this
continuum model needs a width c larger than the Burgers vector, so that enough dislocations
can be inside the crystal. With an increasing width c, the threshold value decreases. Due to
the dissipation, for large width c, the threshold value tends to wc, which is illustrated by a
dashed line in Fig. 5.13.

If dissipation is taken into account, the direction of the load is important in the minimizing
problem. Loading in the opposite direction as before, the rate of the plastic slip is negative,
hence Sign

(
β̇
)

= −1. The minimizer β has to be considered again in the form of formula
(5.60) and inserted into the relaxed energy functional. Then this relaxed energy functional
reads

E = 2
∫ l

0

[
1
2

(w−β1)2 +
1
4
η (w−β1)4 + k

(
β1,ξ +β2

1,ξ

)
+ wcβ

]
dξ

+

[
1
2

(w−βm)2 +
1
4
η (w−βm)4−wcβ

]
(c−2l) .

(5.97)

Analogously to the loading case, the variation of this functional with respect to βm and l
leads to two boundary conditions,

β1,ξ (l) = 0 and 2k =
[
(w−βm) +η (w−β1)3 + wc

]
(c−2l) . (5.98)

The variation with respect to the unknown function β1 gives the differential equation

(w−β1) +η (w−β1)3 + wc + kβ1,ξ,ξ = 0. (5.99)

The procedure of solving this problem remains the same. We set w−β1 and determine the
first integral, hence

1
2

kq′2−
1
2

q2−
1
4
ηq4−wcq = θ. (5.100)

The phase portrait of this differential equation shows similar characteristics to the previous
ones. The constant θ is determined by the conditions q′ (l) = and q (l) = w−βm as

θ = −
1
2

(w−βm)2−
1
4

(w−βm)4−wc (w−βm) . (5.101)
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From the first integral (5.100) and q (0) = w, the implicit dependence of q on ξ in terms of
the elliptic integral is obtained,

ξ = −

∫ q

w

√
k dq̄√

q̄2 + 1
2ηq̄4 + 2wcq̄ + 2θ

, (5.102)

with −dq chosen in accordance to the phase portrait. The polynomial can be again factorized
like in the previous case as

q̄2 +
1
2
ηq̄4−2wcq̄ + 2θ =

1
2
η (q̄−α1) (q̄−α2)

[
(q̄−χ1)2 +χ2

2

]
. (5.103)

Then the elliptic function that calculates q implicitly is given by Equation (5.94). The only
difference is the values of roots from the polynomial and in this loading case α2 and w may
have negative values in some range of 0 ≤ l ≤ c

2 .

Between loading and loading in the opposite direction, the material is unloaded and β̇ = 0.
In this process, the dislocations remain frozen hence the plastic slip remains constant.

After the determination of the plastic slip, the energy can be calculated and the stresses as
well. In Figure 5.15 the average shear component of the first Piola-Kirchhoff stress tensor
for one load cycle (illustrated in Figure 5.14) is shown. The stress component is calculated
by Equation (5.80).

t

w

w*

w0

Figure 5.14.: Loading path of finite anti-plane constrained shear, reprinted by permission
from [59].

First the crystal is loaded up to the strain w∗, then unloaded and loaded in the opposite
direction up to w0. We choose w0that all dislocation which were created at loading are
vanished by loading in the opposite direction. Therefore w0 is found by β = 0. Afterwards,
the crystal is unloaded until the total strain is zero.
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Figure 5.15.: Dimensionless shear stress for one load cycle, reprinted by permission from
[59].

For a strain smaller than wy, no dislocations are nucleated, therefore the plastic slip is zero
and the crystal behaves elastic. This behavior implies that the stress strain cure is linear.
From A to B, the crystal is loaded further (w > wy) with β̇ > 0. Dislocations are nucleated
and pulled to the boundaries where they pile up. This pile up leads to a work hardening
in the stress strain curve. After the loading process, the crystal is unloaded (line BC) and
the strain decreases from w∗ to some value between w∗ and w0. The plastic slip remains
constant at β∗ as the dislocations are frozen. Hence the crystal behaves elastically and the
stress strain curve decreases linearly. As the strain is further decreased, the crystal is loaded
in the opposite direction and plastic behavior occurs (with β̇ > 0). At this loading path, all
dislocations which has been nucleated are pulled to the opposite direction. Therefore the
stress strain curve exhibits work hardening again. The dislocations annihilate and at loading
point D (which corresponds to our chosen w0) all dislocations are vanished. Finally, since
all dislocations are vanished, the crystal behaves elastic again (line D0). Dissipation only
occurs when the plastic slip changes, hence at line AB and CD. The stress strain curve
exhibits the Bauschinger effect: due to the plastic deformations, the yield stress is decreased
(shifted vertically). This behavior is achieved without any assumptions, it occurs due to the
dislocation movements.

5.4. Finite plane-strain constrained shear

In this section, the nonlinear continuum dislocation theory is applied to a crystal under
plane-strain constrained shear. For this example the single crystal is considered as a strip
with the undeformed length L and a rectangular cross section with the width a and the height
h (presented in Figure 5.16). The length L of this strip is considered to be large enough in
comparison to the width and height to guarantee the plane strain state.
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Figure 5.16.: A strip of a single crystal.

This crystal is assumed to be dislocation free at the beginning. It is placed in a hard device
with prescribed displacements at its boundary, illustrated in Figure 5.17. The displacements
at the upper and lower sides of the boundaries read

u1 (x2 = 0) = u2 (x2 = 0) = u3 (x2 = 0) = 0
and u1 (x2 = h) = wh,u2 (x2 = h) = u3 (x2 = h) = 0,

(5.104)

with w being the overall strain.

x3

x2

x1

Figure 5.17.: Deformed strip under plane-strain constrained shear, reprinted by [60].

Using these boundary conditions, the displacements are found as

u1 = wx2 and u2 = u3 = 0. (5.105)

By employing definition (2.6) on the displacements, the total deformation gradient is ob-
tained as

F =

 1 w 0
0 1 0
0 0 1

 . (5.106)

If the total shear strain is sufficiently small, the crystal behaves purely elastic. Therefore
the plastic deformation gradient and the plastic slip are zero. When a critical shear strain
is archived, edge dislocations appear and plastic slip occurs. The slip direction of this slip
is assumed to be parallel to the x1 axis and the slip planes parallel to the plane x2 = const,
hence

s =

100
 and m =

010
 . (5.107)
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Then the dislocation lines are parallel to the x3 axis. Considering these assumptions, the
plastic slip is dependent on x1 and x2,

β = β (x1, x2) . (5.108)

Analogously to the previous example, the plastic deformation gradient may be determined
by Equation (5.45) as

Fp =

 1 β (x1, x2) 0
0 1 0
0 0 1

 . (5.109)

Using the multiplicative split of the deformation gradient (Eq (2.67)), the elastic deformation
gradient is calculated as

Fe =

 1 w−β (x1, x2) 0
0 1 0
0 0 1

 . (5.110)

Taking the infinitesimal area da perpendicular to the x3 axis, the resultant Burgers vector of
all excess dislocations whose dislocation lines cross da reads

br =

β,x1

0
0

da (5.111)

using the definitions (5.6) and (5.7). This vector is parallel to the slip direction, since only
edge dislocations appear in this example. The number of excess dislocations per unit area
represents the scalar dislocation density and takes the form

ρ =
1
b

∣∣∣β,x1

∣∣∣ . (5.112)

5.4.1. Prototype free energy density

Our main interest is the modeling of the martensitic phase transformation, which arise due to
a non-convexity of our chosen energy density. In order to employ the nonlinear continuum
dislocation theory, the energy of the crystal should be dependent on the elastic deforma-
tion gradient and the scalar dislocation density. For a first examination of the problem, a
prototype free energy density per unit volume of the undeformed crystal under plain strain
constrained shear with the form

Ψ
(
Fe,ρ

)
=

1
2
µ (w−β)2 (w−β−1)2 +µcb2ρ (5.113)

is analyzed. The first part of Equation (5.113) describes the elastic energy of the crystal
due to macroscopic elastic deformations. For a small shear strain, this term is quadratic and
the material behavior elastic, for a larger range, it becomes non convex with respect to the
elastic shear strain (w−β). Thus, a martensitic phase transformation will occur in the range
of large deformations. The last subtrahend ”1” in the second factor may be interpreted as the
transformation strain, from w = 1 no phase mixing is possible anymore. The second term
of the energy density (5.113) represents the energy of the dislocation network for small dis-
location densities (taken from [74]). The material constant c is considered later as 0.3. For
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larger dislocation densities, this energy assumption is not appropriate anymore and should
be replaced by a logarithmic form including the saturated dislocation density proposed from
Berdichevsky [5] [6].

As already mentioned in the previous example, the dissipation caused by the dislocation
movement cannot be neglected. Considering the simplest kind of dissipation, the relaxed
energy functional may be determined as

I
[
β
]
= L

∫ h

0

∫ a

0

[
1
2
µ (w−β)2 (w−β−1)2 +µcb

∣∣∣β,x1

∣∣∣+ rSign
(
β̇
)
β

]
dx1 dx2 (5.114)

if no forces act on the crystal. Then the true plastic slip minimizes this energy functional
(Eq (5.114)) among all admissible functions β (x1, x2) which fulfill the boundary conditions

β (x1, x2 = 0) = β (x1, x2 = h) = 0. (5.115)

Additionally, the plastic slip has to be a continuous function of the total strain. If the total
strain is zero, no plastic slip and no dislocations are nucleated.

Finite plane-strain constrained shear with uniform deformations

If a shear is applied to the crystal, which is higher then a threshold value, dislocations are
created and move to the boundary. If the boundary is free, they form there legs as their traces.
Then the dislocation density inside the crystal is vanished and the plastic deformations can
be considered to be uniform, hence β = const.. In this case, the energy of the dislocation
network is zero and the relaxed energy functional reads

Iu
[
β
]
= Lah

[
1
2
µ (w−β)2 (w−β−1)2 + rSign

(
β̇
)
β

]
. (5.116)

Similar to the previous example of anti-plane constrained shear for convenience dimen-
sionless quantities are introduced. The dimensionless energy per unit volume at uniform
deformations can be expressed as

Eu
[
β
]
=
Iu

[
β
]

Lah
=

[
1
2
µ (w−β)2 (w−β−1)2 + wcSign

(
β̇
)
β

]
. (5.117)

with wc = r
µ . The crystal is slowly loaded from zero up to a large value of w and we as-

sume for this loading process that β̇ > 0, hence Sign
(
β̇
)

= 1. Then the uniform plastic slip
minimizes the relaxed energy functional and the sufficient condition reads

dEu

dβ
= 0, (5.118)

or

2(w−β)3−3(w−β)2 + (w−β)−wc = 0. (5.119)

Applying a substitution (w−β) = θ, this equation is cubic for θ and therefore three roots
exist. If wc is sufficiently small, these three roots are real and may be denoted with θ1, θ2
and θ3 such that θ1 < θ3 < θ2. In Figure 5.18 the roots are illustrated with wc = 10−3.
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Figure 5.18.: Roots of cubic Equation, reprinted by permission from [60].

For the determination of the minimum of the relaxed energy, in addition to the sufficient
condition, the necessary condition d2Eu

dβ2 > 0 has to be fulfilled. Therefore only the roots θ1

and θ2 minimize the relaxed energy. From these two roots θi the plastic slip is obtained by

βi = w− θi for i = 1,2. (5.120)

Initially, the crystal is dislocation free hence the plastic slip is zero, β = 0. Then it is loaded
with an increasing w, at w = θ1, dislocations occur and the plastic slip starts to increase.
Therefore root θ1 ≈ wc can be interpreted as the threshold value. As long as the total strain
is smaller than θ1, the plastic slip is zero, no dislocations are nucleated and the crystal
behaves completely elastic. Since no plastic slip is present for w < θ1, the minimum relaxed
energy in this region reads

Eu =
1
2

w2 (w−1)2 . (5.121)

When the total strain reaches the threshold value and increases further (w > θ1), dislocations
are nucleated and move to the boundaries where they form legs. The plastic slip is obtained
as β = w− θ1 and the minimum of the relaxed energy is determined as

Eu =
1
2
θ2

1 (θ1−1)2 + wc (w− θ1) . (5.122)

When the total strain becomes much larger than the threshold value, the dissipation due to
dislocation gliding dominates the relaxed energy. The second minimum of the energy is
obtained when w > θ2 ≈ 1 + wc holds true and then the plastic slip reads β = w− θ2. The
energy is found as

Eu =
1
2
θ2

2 (θ2−1)2 + wc (w− θ2) . (5.123)

The determined uniform deformations (5.120) do not fulfill the boundary condition (5.115),
since the plastic slip is a nonzero constant. Therefore the plastic slip has to be modified
slightly to

β =


w−θi
ε x2 if 0 ≤ x2 ≤ ε

w− θi if ε ≤ x2 ≤ h− ε
w−θi
ε (h− x2) if h− ε ≤ x2 ≤ h

(5.124)

with i = 1,2. This modified plastic slip is constant along the height except near to the
boundaries: there it in- or decreases to zero. This correction is also illustrated in Figure
5.19.
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Figure 5.19.: Modified plastic slip.

The constant ε describes the small width of the layer in which the plastic slip tends to zero.
This modified plastic slip satisfies the boundary conditions (5.115) and the contribution of
this correction tends to zero as the width ε tends to zero.

The shear stress is calculated by P12 = dE
dw as

P12 = µ (w−β) (w−β−1)2 +µ (w−β)2 (w−β−1) (5.125)

with β being piecewise constant dependent on w. The stress strain curve is presented in
Figure 5.20.

P12

w
q »w1 c q »1+w2 c

Figure 5.20.: Stress strain curve for uniform plastic deformations.

Up to w = θ1 ≈ wc, no dislocations are nucleated and the plastic slip is zero, hence the stress
strain relation is purely elastic. When the threshold value is reached, the dislocations appear
and move to the boundaries where they form the legs, the plastic slip is β = w− θ1 and the
stress is constant with an increasing strain. At w = 1 + wc the stress has a jump since the
plastic slip jumps from β = w− θ1 to the other state β = w− θ2.

Finite plane-strain constrained shear with laminate structure as energy minimizer

In Figure 5.21 the energy density versus the elastic deformation is presented. In this figure,
the contribution to the energy density due to the dislocation network is neglected since it is
independent of the elastic deformation.
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Figure 5.21.: Energy density versus w−β.

In this figure the non-convexity of the energy density in the range of 0 < w− β < 1 is vis-
ible. Therefore the uniform deformations which are found in the previous section cannot
minimize the relaxed energy functional in that region (0 < w < 1). As explained in 2.6.2, a
formation of a microstructure is energetically favorable for the homogeneous crystal. We
consider a laminate structure depending on x1 such that the first phase occupies the volume
fraction λ. In this phase the plastic slip is β = w. The second phase has the volume fraction
1− λ and the plastic slip in this phase reads β = w− 1. The plastic slip is now piecewise
constant along x1. This constructed minimizer is schematically sketched in Figure 5.22.

pF 1

pF 1
pF 2

(1-l)a/N(1-l)a/N la/N(1-l)a/Nla/N la/N

Figure 5.22.: Minimizer: Piecewise constant plastic deformation, reprinted by permission
from [60].

In order to get a minimal dissipation, the parameter λ is determined by the condition∫
A
βdx1 dx2 = 0 (5.126)

which leads for these patterns to∫ aλ

0
wdx1 +

∫ (1−λ)a

0
(w−1) dx1 = 0 ⇒ λw + (1−λ) (w−1) = 0. (5.127)



132 5. Modeling finite crystal plasticity involving dislocations

Hence, the volume fraction reads λ = 1−w.

Since the elastic deformations (Equation (5.110)) are dependent on the plastic slip, they have
to be piecewise constant as well. The elastic shearing (w−β) is zero in the first phase (there
β = w) and in the second phase (w−β) = 1. Figure 5.23 shows schematically the plastic and
elastic deformations in both phases.

pF
1

pF
2

eF
2

Figure 5.23.: The sequences of deformations in both phases, reprinted by permission from
[60].

As already mentioned before, the elastic deformation gradient deforms the crystal lattice
with frozen dislocations, therefore the lattice of the first phase is not changed, as the elastic
deformation gradient is zero there, while the lattice of phase two is strongly changed.

The elastic and the plastic shearing of both phases bring the crystal to its final shape, shown
in Figure 5.24.

Figure 5.24.: Final shape of the crystal, reprinted by permission from [60].

f

Figure 5.25.: Dislocation arrays in deformed crystal, reprinted by permission from [60].

Since both deformations are nonuniform and discontinuous, two dislocation array occur.
For small s, the two close disloaction arrays act like a double array. As the plastic slip in
both phases is the same, the surface energy density with zero resultant Burgers vector reads

ρ = ±b. (5.128)
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Due to the rotation of the lattice in phase two, resulting from the elastic deformation gra-
dient, the dislocation arrays are inclined by an angle φ such that tanφ = w, as presented in
Figure 5.25. The total deformation is compatible.

Now we have to show that the relaxed energy caused by the laminar structure is less then
the resulting relaxed energy under uniform plastic deformations. Therefore the resulting
energies have to be compared. First the relaxed energy caused by the laminar structure is
examined. The contribution of the relaxed energy functional (5.114) caused by the macro-
scopic elastic deformation (first term) vanishes for both phases (Remark: β = w for the first
phase, β = w− 1 in the second). The integration over the dissipation term for both phases
leads to

E =

∫ λa

0
wcwdx1 +

∫ (1−λ)a

0
wc (1−w)wdx1 = a [wc (wλ+ (1−λ) (w−1))] . (5.129)

Due to the choice of λ (Equation (5.127)), this equation is equal to zero. The energy con-
tributed by the dislocation network is also zero in the phases since the plastic slip is constant
in each phase. The only contribution to the energy is introduced by the jumps of the plastic
slip at the surfaces of theses phases. These jumps can be calculated by

Ei = µLhNcb (5.130)

where N is the number of jump surfaces. This energy term is consistent to the term of
the dislocation network of the relaxed energy (5.114) and is the only term in the relaxed
energy for the material with a laminate structure. The non-convexity in the energy occurs at
0 < w−β < 1, in that region, the relaxed energy with uniform plastic deformations is found
by Equation (5.122). Thus as long as the relaxed energy resulting from the microstructure
is smaller than the energy caused by homogenous deformations, or as long as

Ncb < a
[
1
2
λ2

1 (1− θ1)2 + wc (w− θ1)
]

(5.131)

is fulfilled, the laminar structure is preferable because the relaxed energy is smaller. From
Equation (5.130), we see that a phase mixing with one jump surface (one dislocation array)
gives the smallest relaxed energy of the crystal. A larger number of phases is also possible
as local minimizer but the relaxed energy is higher. These metastable solutions may occur
if there is an obstacle (for example impurities) which prevents the expansion of one phase.
If the energy barrier due to this obstacle is higher than the energy of the interface, it is
favorable building a finer microstructure.

Similar to the uniform plastic deformations, the piecewise constant plastic deformations do
not satisfy the boundary condition (5.115). Therefore, the plastic slip in the first phase has
to be corrected to

β =


w
ε x2 if 0 ≤ x2 ≤ ε

w if ε ≤ x2 ≤ h− ε
w
ε (h− x2) if h− ε ≤ x2 ≤ h

(5.132)

and in the second phase to

β =


w−1
ε x2 if 0 ≤ x2 ≤ ε

w−1 if ε ≤ x2 ≤ h− ε
w−1
ε (h− x2) if h− ε ≤ x2 ≤ h

. (5.133)
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In Figure 5.26 the corrected plastic slip is presented.
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Figure 5.26.: Modified plastic slip.

The correction of the plastic slip is negligible small and tends to zero as the width of the zone
ε goes to zero. Due to the large resolved shear stress in the small zone at the boundaries,
a second slip system for the plastic slip might be activated. In this case the relaxed energy
(5.114) has to be extended by the term µcb

∣∣∣β,2∣∣∣ in the integrand. However, this correction
does not affect the energy essentially since b is much smaller than a.

The laminate structure of the material leads to a stress strain curve for loading schematically
shown in Figure 5.27. The shear stress is evaluated by P12 = dE

dw .

q »1+wc2
q »wc1

P12

1

Figure 5.27.: Stress- strain curve, reprinted by permission from [60].

For small strains, the stress strain curve behaves completely elastic. When the shear strain
overcomes the threshold value θ1 dislocations start to nucleate and plastic slip occurs. The
condition (5.131) has to be checked, whether it is energetically favorable building phases.
Then with phase mixing, the shear stress drops to zero and remains vanished up to w = 1. At
first sight, the zero stress at phase mixing seems to be surprising since the incoherent phase
interfaces in form of dislocation arrays cause stress. However, both phases are stress free due
to our choice so that they can coexist without violating the equilibrium condition. According
to Read and Shockley [77] or Berdichevsky [7], the stress field resulting from the dislocation
arrays has a very short range character localized only near the interface. This stress strain
behavior can also describe the martenisitic phase transition. Both phases, the martensitic
and the austenitic phase are stress free, except at the incoherent interface boundary where
dislocation arrays occur. From w = 1, the energy density is convex again and no phase
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mixing is possible anymore. At w = 1 the plastic slip is zero, since the condition β̇ > 0 has
to be fulfilled, the plastic slip is zero up to w = θ2. Therefore the stress strain curve is again
a linear line and describes the elastic material behavior of the second phase. For w > θ2, the
plastic slip is uniform and the stress is constant.

From this example, we see that a phase transition involving dislocations is possible. The
phase boundaries are incoherent in form of dislocation arrays. Like the model presented
in chapter 4 the phase transition is energy driven and the microstructure is energetically fa-
vorable. This underlying mechanism can be for example interpreted as a martensitic phase
transition. However, the assumed energy density is highly hypothetical in order to under-
stand the basic mechanism.

5.4.2. Realistic double-well free energy density

The basic mechanism of the phase transformation involving dislocations is studied in the
previous section on a very simple idealized energy density. Using this prototype free energy
density a microstructure is obtained which is energetically favorable and minimizes the en-
ergy. The analysis with a more realistic energy density may lead to further results. Therefore
a double-well free energy density is considered in the general form

Ψ
(
Fe,ρ

)
= ϕ (θ) +µcb2ρ, (5.134)

where the elastic strain is equal to θ = w− β. The shear modulus is denoted by µ and the
energy density ϕ due to macroscopic elastic deformations reads

ϕ (θ) = minθ

{
1
2
µθ2,

1
2
µ (θ−wt)2 +τmwt

}
. (5.135)

In this energy density wt can be interpreted as the transformation strain and correspondingly
τm as the transition stress. The normalized free energy density due to macroscopic elastic
deformations is shown schematically in Figure 5.28 with the material constants wt = 0.01
and wm =

τm
µ = 0.001.
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Figure 5.28.: Non-convexity and the convex envelope, reprinted by permission from [60].
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Due to our choice of ϕ, the function is non-smooth at the intersection between both quadratic
functions of the energy density. In the neighborhood of this point the function can be
smoothed to remove that behavior. The graph in Figure 5.28 illustrates that the chosen
energy density is non-convex. In the region of the non-convexity (between θA and θB), a
tangent can be found as a convex hull which replaces the non-convex function. This tangent
(denoted by ϕc) touches the curve ϕ with the slope τ0, hence the function reads

ϕc = τ0θ. (5.136)

In order to construct the convex hull, θA, θB and the slope τ0 have to be determined. At the
touching point from the tangent with the function, the slopes have to be the same,

dφ
dθ

(θA) = τ0 =
dφ
dθ

(θB) . (5.137)

At the touching points, the values of the functions have to be equal to the values of the
tangent,

ϕ (θA) = τ0θA, and ϕ (θB) = τ0θB. (5.138)

From Equations (5.137) and (5.138) the unknowns are identified as

τ0 =
wm

µ
= τm, θA = wm and θB = wm + wt. (5.139)

Using this free energy density, the relaxed energy functional reads

I
[
β (x)

]
= L

∫ h

0

∫ a

0

[
ϕ (w−β) +µcb

∣∣∣β,x1

∣∣∣+ rSign
(
β̇
)
β
]

dx1 dx2. (5.140)

In this example, r is chosen as r = τy = τm + τ∗ = µ (wt + w∗), where w∗ is much smaller
than wt. In that case, r is a little bit higher than τm. The true plastic slip, which should
be determined, minimizes among all admissible plastic slips β (x1, x2) the relaxed energy
functional (5.140) fulfilling also the boundary conditions (5.115). At the beginning of the
section, the crystal is considered as dislocation free for zero loading, therefore the plastic
slip is zero at zero strain (β (w = 0) = 0). With an increasing strain, the plastic slip has to be
a continuous function of the control parameter w.

Finite plane-strain constrained shear with uniform deformations

First the relaxed energy at uniform plastic deformations is examined. When a critical load
is reached, dislocations occur and move to the free boundaries where they can form steps.
Since the plastic slip is constant, the relaxed energy functional becomes

Iu (β) = ahL
[
ϕ (w−β) +τySign

(
β̇
)
β
]
. (5.141)

The minimum of this relaxed minimum is found by dEu
dβ = 0 and by assuming β̇ > 0, this

equation reads

dϕ
dβ
−τy = 0. (5.142)
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Due to the choice of τy, the roots of this equation (substituting again θ = w− β) are larger
than the corresponding roots of Equation (5.138). If these roots are denoted by θ1 and θ2,
we may write θ1 > wm and θ2 > wm + wt. Then the homogeneous plastic slip is determined
by

βi = w− θi for i = 1,2. (5.143)

Analogously to the solution with the prototype free energy, initially the plastic slip is zero
and no dislocations occur. The material behaves purely elastic and the relaxed energy per
unit volume for w < θ1 reads

Eu =
1
2
µw2. (5.144)

If the total strain w reaches θ1, the dislocations are nucleated. So θ1 can be interpreted
as the threshold value. When the strain is higher than the threshold value, the nucleated
dislocations move to the boundaries and the plastic slip is calculated as

β = w− θ1. (5.145)

In this region the uniform plastic deformations lead to the relaxed energy per unit volume in
the form of

Eu =
1
2
µθ2

1 +τy (w− θ1) . (5.146)

With an increasing shear strain, the second minimum θ2 is archived and the plastic slip is
determined by

β = w− θ2. (5.147)

The relaxed energy per unit volume then reads

Eu =
1
2
µ (θ2−wt)2 +τy (w− θ2) . (5.148)

The resulting shear stress is determined again by P12 =
dEu
dw and the stress-strain relation for

homogeneous deformations is shown in Fig.5.29.
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Figure 5.29.: Stress strain curve for uniform deformations.
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Finite plane- strain constrained shear with laminate structure as energy
minimizer

Similar to the case with a prototype free energy density, the solution with the uniform plastic
slip does not give the minimum to the relaxed energy functional in the region where the
energy density is non-convex (θA <w < θB). There (up to w = θB), a microstructure has to be
found as a minimizer. We consider a laminate structure with one layer occupying the volume
fraction λ where the plastic slip is β = w− θA and the other layer with the volume fraction
1−λ and the plastic slip β = w− θB. In this case the plastic deformation is nonuniform but
piecewise constant. The volume fraction λ can be determined in such way that∫

A
βda = 0 (5.149)

is fulfilled. This condition leads to∫ aλ

0
w− θA dx1 +

∫ (1−λ)a

0
w− θB dx1 = 0 ⇒ λ (w− θA) + (1−λ) (w− θB) = 0.

(5.150)

Hence, λ = 1− (w−wm)
wt

.

Due to the multiplicative decomposition of the deformation gradient, a piecewise plastic
deformation gradient leads to a piecewise constant elastic deformation gradient. In this
loading example, only an elastic shearing exists (see Equation (5.48)). In the first phase
the elastic shearing is θA and in the second θB. The combination of the elastic and the
plastic shearing, both discontinuous and nonuniform, brings the crystal in its final shape
with parallel dislocation arrays inclined at an angle φ to the x2 axis. The final shape is
similar to the result of the case with the prototype free energy density and is illustrated in
Figure 5.25. The surface dislocation density of each array is the difference of the plastic
slips of both phases, hence

ρ = ±
1
b

(θB− θA) =
wt

b
. (5.151)

In order to show that the plastic slip is a true minimizer, the average relaxed energy per unit
volume caused by the laminate structure has to be less than the relaxed energy minimized by
uniform plastic deformations. For the constructed laminate structure, the first term of the re-
laxed energy functional (5.140) becomes after averaging ϕc since the convex hull minimizes
the energy density where it is non-convex. Due to our choice of a piecewise constant plastic
slip, the second term has to vanish. Analogously to the case with the prototype free energy
density, the third term is zero due to our choice of λ. However, the piecewise constant plastic
slips in the laminate cause jumps in the plastic slip at the surfaces. These jumps contribute
energy to the relaxed average energy functional, which can be determined by µNcbwt

a where
N is again the number of jump surfaces. Taking all contributions into account, the average
relaxed energy density reads

Ēi = ϕc (w) +µNcb
wt

a
. (5.152)

As long as the average relaxed energy caused by the laminate structure is less than the one
caused by the uniform plastic slip, thus as long as

ϕc (w) +µNcb
wt

a
<

1
2
µθ2

1 +τy (w− θ1) , (5.153)
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the phase mixing is energetically favorable.

Once again, the piecewise constant plastic slip does not satisfy the boundary condition
(5.115). Therefore the plastic slip has to be modified near the boundaries in the standard
way. In the first phase the plastic slip reads

β =


w−θA
ε x2 if 0 ≤ x2 ≤ ε

w− θA if ε ≤ x2 ≤ h− ε
w−θA
ε (h− x2) if h− ε ≤ x2 ≤ h

(5.154)

and in the second phase

β =


w−θB
ε x2 if 0 ≤ x2 ≤ ε

w− θB if ε ≤ x2 ≤ h− ε
w−θB
ε (h− x2) if h− ε ≤ x2 ≤ h

. (5.155)

When ε tends to zero, the contribution of this correction to the relaxed energy goes to zero.

Also for the phase mixing, the stress can be determined by P12 = dE
dw . The stress-strain curve

is presented in Fig.5.30.

ty

wqA

tm

qBq2q1

P12

Figure 5.30.: Stress strain curve, reprinted by permission from [60].

The stress strain behavior is linear up to θ1, thus the material behaves elastic. Before the mi-
crostructure minimizes the energy, dislocation arrays occur, therefore the stress still follows
the elastic path before it drops down to τm and the microstructure minimizes the energy.
From θB, the energy is convex thus the material homogenous again. As β = 0 at w = θB,
the plastic slip is zero up to w = θ2 and the material behaves elastic. Afterwards, the stress
remains constant at P12 = τy with the constant plastic slip β = w− θ2.

5.5. Discussion

In the first part of this chapter the kinematically independent variables which characterize
the energy of the crystal including the dislocation network and the changes of the network
are defined. Here, these quantities are the dislocation density and the right Cauchy Green
tensor for elastic deformations. Afterwards the energy and the dissipation are expressed
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through these quantities and the variational calculus is applied in order to obtain the un-
known plastic slip. Then this method is applied to a single crystal under finite anti-plane
constrained shear and finite plane-strain constrained shear. In the case of finite plane-strain
constrained shear a non-convex energy functional is considered, therefore a laminate struc-
ture is energetically preferable than the homogeneous state. For both loading examples the
stress strain curve is presented. In the first example a load cycle is performed and the stress
response is a hysteresis loop exhibiting work hardening due to the dislocation pile-ups. In
the second example the stress strain curve exhibits a sharp load drop at the onset of the
laminar structure, followed by a stress plateau.
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6. Conclusions and outlook

The main focus on this work is the modeling of microstructures in finite crystal plasticity. In
this thesis, two approaches are presented. Both applied approaches are based on variational
concepts.

The first ansatz models microbands and is based on a modification of the existing model
of [49] by adding a vanishing viscosity in order to regularize the model in time. The re-
sulting evolution equations which describe the current state of the microstructure are given
in an explicit form. These equations are not based on a global minimization hence they
can be calculated directly. First numerical examples are illustrated here, a shear test and
a tension-compression test. In both tests, a microstructure arises and evolves in order to
minimize the energy. The introduced vanishing viscosity leads to a delay in the energy
minimization and to peaks in the stresses and the energy. However, if the relaxation time
is increased by reducing the pseudo-velocity, the viscous effect decreases. Therefore the
effect of the pseudo-velocity on the evolution of the microstructure is examined. With a
decreasing pseudo-velocity, the evolution converges to a viscosity limit. This approach is
also compared to the results of the existing model, presented in [48]. Both results show a
good agreement, however differences appear. Also cycling tests are performed, where the
stress strain curve exhibits a hysteresis loop. Since the hardening increases with every load-
ing cycle, the material gets stiffer and the energy increases. In total, the algorithm of the
evolution of the microstructure is stable and further treatments, as the implementation in a
finite element code or the comparison to experiments can be performed. Still missing is the
verification by experimental results. Also the solution of full boundary-value problems and
the extension of the model to higher order slip systems are still open tasks.

The second ansatz is able to model the martensitic phase transformation. For this approach,
first the kinematically independent quantities which describe the energy and the change of
the dislocation network in the framework of finite deformations and the nonlinear continuum
dislocation theory are defined. Then the energy and the dissipation can be determined and
the variational calculus applied. In order to apply the nonlinear continuum dislocation theory
on a first example, a single crystal is loaded under finite anti-plane constrained shear. For
simplicity the dissipation is neglected in the first step, then the basic mechanism of the
dislocation pile-up already occurs. Afterward the dissipation is also taken into account. This
first example is determined by assuming a convex energy density, hence only homogeneous
deformations occur as minimizers. This test shows whether it is possible to solve problems
in the framework of nonlinear continuum dislocation theory. For one load cycle a hysteresis
loop is exhibited as a stress strain curve. Due to the dislocation pile up at the loading paths,
the stress strain curve exhibits work hardening. After the verification that the nonlinear
continuum dislocation theory is applicable, in order to model a martensitic phase transition,
a crystal with a non-convex energy is loaded by finite plane-strain constrained shear. At first
a very simple prototype free energy density is assumed. Already in this case a formation of
pattern is energetically favorable. The plastic slip in these patterns is analyzed. In order to
solve the variational principle and to fulfill the boundary conditions, the plastic slip has to
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be corrected. Finally the resulting stress strain curve is determined. When the patterns are
energetically favorable, the stress has a sharp drop and is zero. After studying the simple
energy density, a more realistic energy density is considered as well. Also then in this
case patterns are energetically preferred. Further testings could verify the results and the
applicability of this material model. However, in other examples, the analytical solution
may be very evolved and the application of the finite element method could be necessary.
Also for this approach, the comparison to experimental data is a very interesting topic.
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A. Mathematics

In this chapter, the used mathematical definitions and properties are shortly given. These
basics and more details are provided in [33], [24], [13] and [39].

A.1. Euclidean vector space

In order to define the length of a vector or its angle, we need to introduce the euclidean
vector space. This physical space has three dimensions, hence three orthonormal vectors
may be used to define vectors. We denote this basis by

B =
[
e1 e2 e3.

]
(A.1)

with

e1 =

100
 , e2 =

010
 , e3 =

001
 . (A.2)

These three basis vectors (A.2) define the space of all three-dimensional vectors. In Figure
A.1 this space and an arbitrary vector are sketched. This vector v can be determined by

v2

v1
v3

v

e1

e2

e3

Figure A.1.: Basic vectors denote the space

v =

3∑
i=1

viei (A.3)

where vi is the cartesian entry of the vector v. In this space, the scalar product, the angle
between two vectors and the length of a vector are defined and described in the following.
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A.2. Some Matrix and vector operations

A.2.1. Products

There are different kinds of products for scalars, vectors and matrices which are used in this
thesis. The multiplication of a scalar by an array (including vectors and matrices) is defined
as the multiplication of the scalar by every entry of the array, hence

as =

as1
as2
as3

 . (A.4)

Using this definition, a vector in the euclidean space can be expressed through

s =

3∑
i=1

siei = siei. (A.5)

The second definition uses the Einstein summation convention. Everytime an index is re-
peated, we have to sum up over this index from 1 to 3.

One product between two vectors is the dot-product. Each entry of one vector is multiplied
with the same entry of the other vector and then summed up. The result of the dot-product
is a scalar, therefore the dot- product is also called scalar product. It is defined by

s ·m =
∑

i

simi = simi = smcos(ϕ), (A.6)

with ϕ being the angle between the two vectors, here between s and m. The angle can be
determined by

cos(ϕ) =
s ·m
|s| · |m|

. (A.7)

We can easily see that the scalar product of two orthogonal vectors (ϕ = 90◦) vanishes,

e1 · e2 = 0. (A.8)

Another multiplication of two vectors is the dyadic product. The definition of this product
is the following

s⊗m = sim jeie j = sim j =

 s1m1 s1m2 s1m3
s2m1 s2m2 s2m3
s3m1 s3m2 s3m3

 . (A.9)

The third multiplication between two vectors is the cross product or also referred as screw
product,

s×m = sim jεi jkek. (A.10)

ε denotes the permutation tensor and is defined by

εi jk =


1 if i, j,k is an even permutation
0 if two indices are the same
−1 if i, j,k is an uneven permutation.

(A.11)
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A.2.2. Further useful operations

Beside the products of vectors, another important operation is the length of a vector. In the
Euclidean space its definition reads

|s| =
√

s · s =
√

sisi. (A.12)

A unit vector like ei has the unit length 1. Analogously to the definition of the length of
vector, there exists the norm of tensor, denoted by

‖F‖ =
√

Ti jTi j. (A.13)

This norm is called Hilbert-Schmidt norm.

A special tensor is the identity tensor, which is defined by

I = δi jei⊗ e j, (A.14)

where δ denotes the Kronecker delta

δi j = ei · e j =

1, if i = j,
0, if otherwise.

(A.15)

The partial derivative of a function is denoted by

u,i = ∂iu. (A.16)

The comma in the index indicates the partial derivative, the following entry shows to which
variable the function is differentiated.

If a function depends on several variables, which can be assembled in a vector, this function
is called field function. The gradient of a scalar field function leads to

∇a(x) =
∂a(x)
∂xi

ei =


∂a
∂x1
∂a
∂x2
∂a
∂x3

 . (A.17)

Obviously the gradient for a scalar is a vector-valued function. Analogously the gradient of
a vector may be obtained, for example for a vector u = (u1, u2, u3)T the result reads

∇u(x) =
∂ui

∂x j
ei · e j =


∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 . (A.18)

A.2.3. Principal directions and invariants

If the coordinate system is rotated, the components of a tensor change. However, there are
scalar quantities of a tensor which do not change, therefore they are called invariants.
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Consider a tensor σ of second rank

σ =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 . (A.19)

The components of this stress tensor undergo a transformation, if the coordinate system is
rotated. The maximum normal stresses are achieved if the shear stresses vanish, hence

σ =

 σ1 0 0
0 σ2 0
0 0 σ3

 . (A.20)

The entries of the diagonal correspond to the principal normal stresses. From the condition
that the shear stresses vanish at principal stresses, three equations are obtained. To admit a
nonzero solution of this system, the coefficient determinant has to be zero,

det

 σxx−σ σxy σxz
σyx σyy−σ σyz
σzx σzy σzz−σ

 = 0. (A.21)

Equation (A.21) is cubic, and therefore we obtain three real roots forσ, the principal stresses
σ1, σ2 and σ3. Since the principal stresses for one point are fixed for every rotation, the co-
efficients of Equation (A.21) also remain constant and invariant for every rotation. Equation
(A.21) is also referred as the eigenvalue problem and may be written in the form

σ3− I1σ
2 + I2σ− I3 = 0, (A.22)

where I1, I2 and I3 are called the invariants of the tensor. The first invariant is the trace of
the tensor,

I1 = σxx +σyy +σzz = σii = trσ. (A.23)

The second invariant is referred as the sum of principal minors,

I2 =
1
2

(
σiiσ j j−σi jσ ji

)
. (A.24)

The determinant of the tensor is the third invariant

I3 = detσ. (A.25)

A.3. Legendre transform

Considering a single, smooth convex function F with one single variable x, the Legendre
transform of F (x) reads

G (s) = sx (s)−F (x (s)) (A.26)

with s being the slope of F, s =
dF(x)

x . This transform is presented graphically in Figure A.2.
In this figure, the convex function F is plotted versus its variable x. A point on this curve
may be chosen, then the horizontal distance to the origin to this point can be denoted with
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F(x)

x

sx
F

G
-G

sx-G

Figure A.2.: Graphic presentation of a Legendre transform

x. From this point a tangent is constructed with the slope s and its intercept is −G. Then it
is obvious that sx = F +G holds true. The Legendre transform leads to a function which has
the same information as the former function, but it is dependent on the derivative, not on the
variable anymore.

If the function F is non-convex, the Legendre transform is not unique but multi-valued. Then
the Legendre transform may develop discontinuous first derivatives. By performing another
transformation, the convex hull of the original would be obtained. These information and
further details are presented in [89].

A.4. Variational Calculus

Functionals play an important role in solving mechanical problems. Since the variational
calculus of a functional is used in this thesis, a basic introduction is presented here. The
basics are taken from [26], where further information are revealed.

A functional is a function, where the variable is a function itself. Even the first problems in
this area are already solved by Euler (1707-1783), the calculus of functionals still does not
have general solving methods. Finding minima and maxima of a functional is referred as
the calculus of variation. One necessary condition for an extremum (here at y = ŷ) is, that
the variation of the functional (here denoted by J ) vanishes for y = ŷ, hence

δJ = 0. (A.27)

The functions y which satisfy this condition are called admissible functions. The concept of
variation of a functional is similar to the concept of a differential of a function. As a simple
example we may consider a differentiable functional J dependent on the function y [x],
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hence

J
[
y
]
=

∫ b

a
F

[
x,y,y′

]
dx (A.28)

with the boundary condition y [a] = A and y [b] = B. Then the necessary condition (A.27)
leads to

F,y−
d
dx

Fy′ = 0. (A.29)

This second-order differential equation is also called the Euler’s equation. Its solutions are
determined from the boundary conditions y [a] = A and y [b] = B.

A.5. Elliptic integrals and functions

In Chapter 5, elliptic integrals and functions are used. Therefore, a short introduction is
revealed, for more details and information, we refer to [52]. In general, elliptic integrals are
given in the form

E (x) =

∫ x

a
R
(
t,

√
p (t)

)
dt, (A.30)

where R is a rational function and p a polynomial of third or fourth order with no repeated
roots. One of the first historical elliptic integrals reads

E (x) =

∫ x

a

1√
p (t)

dt. (A.31)

From this example it can be easily seen, that the roots of the polynomial cause a division by
zero. Hence an elementary integral cannot be found. However, all elliptic integrals can be
reduced to one of the three Legendre forms or a Weierstrass form.

The inverse functions of these elliptic integrals are called elliptic functions. These elliptic
functions help to find explicit solutions of differential equations and to determine integrals.
[27] provides tables of elliptic integrals and their elliptic functions.

A.6. Divergence theorem

In this thesis, a surface integral over the surface ∂Ω is denoted by∫
∂Ω

dS (A.32)

and a volume integral over a body Ω by∫
Ω

dV. (A.33)
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Ω is assumed as a bounded region with the boundary ∂Ω. Furthermore, Ω is considered
as the domain of a scalar field m, a vector field x and a tensor field F. If the outward unit
normal vector n of the boundary ∂Ω is known, the divergence theorem reads∫

∂Ω

mndS =

∫
Ω

gradmdV, (A.34)

∫
∂Ω

x ·ndS =

∫
Ω

divxdV (A.35)

and ∫
∂Ω

F ·ndS =

∫
Ω

divFdV. (A.36)

This divergence theorem is important for the derivation of basic laws in mechanics, like the
balance of linear moment.

A.7. Convexity

In the following chapters, which are dealing with microstructures, the notations of quasi-
convexity and rank-one convexity of the energy appear. Therefore, a short definition of
convexity is revealed, more detailed information are presented in [19], [79] or [47].

The energy potential may be defined as a functional in the form

I [u] =

∫
Ω

Ψ (∇u) dV − l (u) , (A.37)

where u is the displacement field, Ψ an energy density and l a linear functional resulting
from loading e.g. body forces. Microstructures commonly arise whenever a non uniform
deformation field leads to a lower energy than the homogeneous deformation state. Then
the energy is replaced by a hull with the microstucture as its minimizer. The homogeneous
deformations are obtained from the minimum of total energy (see section 2.6.1). This mini-
mum principle leads to a minimum if three conditions are fulfilled: the energy potential has
to be bounded, coercive and weakly lower semi-continuous. The mathematical notations
can be found in [19]. According to Ball [2], these conditions can be replaced by conditions
for the energy density: the energy density has to be coercive, bounded and quasiconvex.

The energy density is called quasiconvex if for every domain ω and every perturbation field
α of the deformation gradient F

Ψ (F) ≤
1
ω

∫
ω

Ψ (F +∇α) dV with α = 0 on ∂ω (A.38)

holds true, [69]. This condition is poorly applicable, since it is non-local.

In order to get applicable conditions, the quasi convexity is replaced by approximate local
conditions, like the convexity. A potential is convex [79] if

Ψ (λF1 + (1−λ)F2) ≤ λΨ (F1) + (1−λ)Ψ (F2) (A.39)
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with F1 and F2 being arbitrary and λ varying from 0 to 1 is fulfilled.

According to [2], a potential which is polyconvex can always be expressed through a convex
function f , such that

Ψ (F) = f (F,cofF,detF) (A.40)

is satisfied.
A potential is called rank-one-convex if condition (A.39) is fulfilled with

rank(F1−F2) ≤ 1 (A.41)

holds true [19]. These definitions imply that a convex potential is also polyconvex and
rank-one-convex. A polyconvex potential is always rank-one-convex.
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ebenen Bewegungen aufgrund von kinematographischen Aufnahmen

Nr. 17 H. Stumpf/F. J. Biehl: 1979
Approximations and Error Estimates in Eigenvalue Problems of Elastic
Systems with Application to Eigenvibrations of Orthotropic Plates

Nr. 18 Uwe Kohlberg: 1979
Variational Principles and theirNumerical Application to Geometrically
Nonlinear v. Karman Plates

Nr. 19 Heinz Antes: 1980
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Überprüfung am Beispiel einer unidirektional verstärkten CFK-Verbundplatte

Nr. 52 W. Tampczynski: 1987



Mitteilungen aus dem Institut für Mechanik 161

Strain history effect in cyclic plasticity

Nr. 53 Dieter Weichert: 1987
Zum Problem geometrischer Nichtlinearitäten in der Plastizitätstheorie

Nr. 54 Heinz Antes/Thomas Meise/Thomas Wiebe: 1988
Wellenausbreitung in akustischen Medien Randelement-Prozeduren im 2-D
Frequenzraum und im 3-D Zeitbereich

Nr. 55 Wojciech Pietraszkiewicz: 1988
Geometrically non-linear theories of thin elastic shells

Nr. 56 Jerzy Makowski/Helmut Stumpf: 1988
Finite strain theory of rods

Nr. 57 Andreas Pape: 1988
Zur Beschreibung des transienten und stationären Verfestigungsverhaltens von
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Schadensfrüherkennung auf mechanische Konstruktionen

Nr. 61 Martin Pitzer: 1988
Vergleich einiger FE-Formulierungen auf der Basis eines inelastischen
Stoffgesetzes

Nr. 62 Jerzy Makowski/Helmut Stumpf: 1988
Geometric structure of fully nonlinear and linearized Cosserat type shell
theory

Nr. 63 O. T. Bruhns: 1989
Große plastische Formänderungen - Bad Honnef 1988

Nr. 64 Khanh Chau Le/Helmut Stumpf/Dieter Weichert: 1989
Variational principles of fracture mechanics

Nr. 65 Guido Obermüller: 1989
Ein Beitrag zur Strukturoptimierung unter stochastischen Lasten

Nr. 66 Herbert Diehl: 1989
Ein Materialmodell zur Berechnung von Hochgeschwindigkeitsdeformationen



162 Mitteilungen aus dem Institut für Mechanik

metallischer Werkstoffe unter besonderer Berücksichtigung der Schädigung
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Regelung mechanischer Strukturen mit Hilfe piezokeramischer Stapelaktoren

Nr. 119 Dirk Kamarys: 1999
Detektion von Systemveränderungen durch neue Identifikationsverfahren in
der experimentellen Modalanalyse

Nr. 120 Wolfgang Hiese: 2000
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Mitteilungen aus dem Institut für Mechanik 167

Nr. 135 Markus Böl: 2005
Numerische Simulation von Polymernetzwerken mit Hilfe der
Finite-Elemente-Methode

Nr. 136 Gregor Kotucha: 2005
Regularisierung von Problemen der Topologieoptimierung unter Einbeziehung
von Dichtegradienten

Nr. 137 Michael Steiner: 2006
Deformations- und Versagensverhalten innendruckbeanspruchter Stahlrohre
durch Stoßbelastung

Nr. 138 Dirk Bergmannshoff: 2006
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Nr. 142 Christian Grabe: 2007
Experimental testing and parameter identification on the multidimensional
material behavior of shape memory alloys

Nr. 143 Markus Peters: 2007
Modellierung von Rissausbreitung unter Verwendung der p-Version der
XFEM mit einer adaptiven Integrationsmethode

Nr. 144 Claus Oberste-Brandenburg: 2007
Thermomechanical modeling of shape memory alloys at different length scales

Nr. 145 Stefan Reichling: 2007
Das inverse Problem der quantitativen Ultraschallelastografie unter
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