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Abstract
Conventional inelastic material models with softening effects result in ill-posed boundary
value problems due to the loss of ellipticity of the governing field equations. In the present
work a regularization framework for inelastic material models via gradient enhancement of
the Helmholtz free-energy function is investigated. The enhancement is defined by means
of an interaction potential dependent on the difference between additionally introduced non-
local variables and the suitably chosen potential function of the internal variables. The gradi-
ents of the newly introduced variables are used to regularize the model. The corresponding
boundary value problem is formulated as a pure minimization of the potential functional
with respect to the displacement fields and the additional (non-local) variable field. The for-
mulation of the constitutive relations is performed in thermodynamically consistent way and
it results in only small modifications compared to the models without regularization. The
evolution of the internal variables is specified by a minimum principle for the dissipation
potential, while the dissipation potential itself retains the form of the classical model.

The application of the proposed gradient enhancement strategy is demonstrated on several
inelastic material models, including damage, plastic and coupled models. Representative
numerical examples illustrate the behavior of the material models regularized by the pro-
posed gradient enhancement strategy. It is shown that all material models treated in this
thesis are successfully regularized. Furthermore, the influence of newly introduced model
parameters on the global response of the system, distribution of inelastic variables and the
calculation procedure is discussed.

Kurzfassung
Übliche inelastische Materialmodelle, die Materialentfestigung beschreiben, führen auf-
grund des Verlustes der Elliptizität in den beschreibenden Feldgleichungen zu schlecht
gestellten Randwertproblemen. In der hier vorgestellten Arbeit wird ein Ansatz zur Reg-
ularisierung inelastischer Materialmodelle mittels einer Gradientenerweiterung der Freien
Helmholtz-Energie untersucht. Die Erweiterung des Models besteht darin, eine zusätzliche
Feldvariable einzuführen, die durch einen Interaktionsterm mit den internen Variablen gekop-
pelt wird. Durch Bestrafen des Gradienten dieser Feldgröße wird eine Regularisierung des
Models erreicht. Ausgehend von der Formulierung der reinen Minimierung des Gesamt-
potentials bezüglich der Verschiebungen sowie der nicht-lokalen Feldvariablen wird das
entsprechende Randwertproblem abgeleitet. Die konstitutiven Gleichungen werden in einer
thermodynamisch konsistenten Art und Weise hergeleitet woraus sich nur kleine Abwe-
ichungen im Vergleich zu Modellen ohne diesen Regularisierungsansatz ergeben. Die Evo-
lution der internen Variablen basiert auf dem Prinzip des Mimimums des Dissipationspoten-
tials, wobei das Dissipationspotential unverändert bleibt bezogen auf das klassische Model.

Die Anwendung der vorgestellten Strategie der Gradientenerweiterung wird anhand ver-
schiedener inelastischer Materialmodelle demonstriert, einschließlich Schädigungs- und Plas-
tizitätsmodellen sowie deren Kopplung. Beispielhafte numerische Ergebnisse verdeutlichen
das Verhalten der durch den vorgestellten Ansatz regulariserten Materialmodelle und den
Einfluss der zusätzlich eingeführten numerischen Parameter auf die globale Systemantwort.
Es wird gezeigt, dass alle in dieser Arbeit betrachteten Materialmodelle erfolgreich regular-
isiert werden können.
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1

1. Introduction

In this thesis we focus on the investigation of a particular class of non-linear material be-
havior, namely softening behavior of materials accounting for inelastic effects. Two major
inelastic effects are addressed here: damage defined as modification of the material physical
properties due to the presence or the growth of microdefects (microcracks, voids, delamina-
tion etc.) and plasticity characterized by the development of permanent deformation caused
by e.g. plastic slip along crystalline planes in metals, sliding over one another of grains and
particles in soil or wooden chips in chipboard etc. in the microscale level.

It is a well known fact that the utilization of conventional inelastic material models with
softening behavior leads to ill-posed boundary value problems due to loss of ellipticity of
the governing field equations. In this case, the underlying continuum problem does not
have regular solutions and the result obtained by numerical calculations merely reflects the
specifics of the approximation of the problem. As a result, difficulties in the convergence of
the discretized system of equations occur together with a strong dependence of the obtained
results on the numerical approximation itself. A typical example of this problem is a patho-
logical dependence of the results on the discretization mesh in the calculations utilizing the
finite element method in conjunction with inelastic material models experiencing a soften-
ing regime. In this case one obtains localization of the inelastic process within a small zone,
whose size is determined merely by the mesh resolution.

There are several strategies proposed to overcome this problem that take into consideration
an internal material length scale in one form or another. One of them is the introduction
of non-local interactions into the model. That task can be accomplished following two
approaches: integral-type or gradient-type. The integral strategy introduces non-local vari-
ables as weighted averages of the local variables over a neighborhood of the point under
consideration, whereas the gradient approach relies on the introduction of higher order gra-
dient terms (mostly Laplacean) into governing evolution equations.

In the present contribution a regularization strategy based on gradient enhancement of the
free energy function is presented. The enhancement is formulated by introducing a list of
additional variables, which is coupled to the list of internal variables via an interaction term.
By penalizing the gradients of the additional variables, one attains the regularization of the
problem. The corresponding boundary value problem is formulated as a pure minimization
of the potential functional with respect to displacements and additional variables.

The thesis is organized as follows: In chapter 2 a rough description of fundamental mechani-
cal quantities (like the deformation, stress etc.) is given. Furthermore, the thermomechanical
balance laws are presented, which constitute the basis for the discussion in the chapter 3.
Chapter 3 contains the description of the constitutive laws, elastic as well as inelastic. The
evolution of the inelastic internal variables is specified based on the minimum principle for
the dissipation potential and the issue of localization is discussed in the same chapter. In the
chapter 4 the regularization strategy based on the gradient enhancement of the free-energy
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function is presented and some aspects related to the thermodynamics and the practical im-
plementation are highlighted. The application of the proposed strategy onto several selected
material models is demonstrated in chapter 5, whereas is its implementation in the context
of finite element method depicted in chapter 6. Some representative numerical examples
which illustrate specific aspects of the gradient enhancement framework as well as the be-
havior of the resulting material models are gathered in chapter 7. Finally, conclusions are
drawn in chapter 8.
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2. Fundamentals of thermomechanical material modeling

The aim of this chapter is a presentation of a rough description of

• motion and deformation (kinematics),

• stress in a continuum (kinetics) and

• fundamental laws governing the motion of a continuum (balance relations).

The provided results are material-independent and therefore form the basis for the subse-
quent formulation of the mathematical models describing the behavior of materials involv-
ing irreversible effects.

2.1. Kinematics

Continuum kinematics deals with the geometry of a body, its motion in space as well as its
deformation during motion. It considers a body as an ensemble of material points whose
initial and current position is characterized by means of the position and displacement vec-
tors. By considering the immediate vicinity of material points one gets to the concept of
strains, which describe the deformation of a material body. The strains and related quanti-
ties are first obtained without further assumptions in a non-linear form and afterwards they
are reduced to a linear description according to the small deformation theory.

2.1.1. Motion and deformation

A continuum body B is a composition of material points or particles in the three- dimen-
sional Euclidean space at some instant of time t. It moves in space from one instance in
time to another, occupying a continuous sequence of geometrical regions Ω0, . . . ,Ω, called
configurations of B at that time t. The configuration Ω0 at initial time, taken here without
loss of generality as t = 0, is referred to as the reference (initial, undeformed) configuration.
The position of a typical point P of the body B (Figure 2.1) in the initial configuration is
uniquely identified by the reference position vectorX

X = Xi ei. (2.1)

The configuration Ω occupied by the body B at a subsequent time t = t∗ > 0 is called cur-
rent (or deformed) configuration. The typical point P that is related to the position vector
X in the reference configuration, occupies a position uniquely identified by the current po-
sition vector x in the deformed configuration (Figure 2.1). It is assumed that the description
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e1
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u(X,t*)

�(X,t*)
e3
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t=0 t=t*

P

P

Figure 2.1.: Configurations and motion of a body B

of the current position vector is done utilizing the same basis vectors and with respect to the
same origin as in the case of the reference configuration

x = xi ei. (2.2)

The motion of the body B is specified by a vector field Φ, that maps the reference position
vectorsX onto the current ones x for all points of the undeformed configuration Ω0 and for
all times t

x = Φ(X, t). (2.3)

For every single time t the mapping Φ is called a deformation. Hence, the parametric equa-
tion (2.3) determines successive positions x of a typical point P in space for arbitrary time
t, thus forming a curve in the Euclidean space which is called the trajectory of the point P .
The motion Φ is assumed to posses the continuous derivatives with respect to time and
space, cf. Holzapfel (2000). Furthermore, the mapping Φ is assumed to be uniquely invert-
ible. Hence, there exists the inverse mapping (called inverse motion) Φ−1

X = Φ−1(x, t), (2.4)

which answer the question which reference position vector X ∈ Ω0 is related to the point
P determined by the position vector x ∈ Ω at the current instant of time.

Physical phenomena associated with the deformation Φ of a body B may be described using
fields defined over the reference configuration ψ(X, t) (ψ stands here for an arbitrary field
of interest), or using fields defined over the current configuration ψ(x, t). The former is
the so-called Lagrangean or material description and the later is the Eulerian or spatial
description. In the material description attention is paid to a material point, and it is observed
what happens with that point as it moves. Predominant application of this description is in
the field of solid mechanics. On the contrary, in the spatial description attention is paid to a
fixed point in space, and it is investigated what happens at that point as time changes. This
description is mainly applied in the field of fluid mechanics, though it is sometimes used in
the solid mechanics as well.
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2.1.2. Displacement, velocity and acceleration

The vector field obtained as a difference between the current and the reference position
vectors of the body B at a certain time t is called a displacement field at the instant of time t

u(X, t) = x(X, t)−X. (2.5)

The velocity of a material point represents the rate of change of its position vector, i.e. the
time derivative of the deformation mapping holding the reference position vectorX fixed

v(X, t) = Φ̇(X, t) =
DΦ

Dt
(X, t) =

∂Φ(X, t)

∂t

∣∣∣∣
X

=
∂Φ

∂t
. (2.6)

Taking into consideration the definition of the displacement field (2.5), the velocity of a
material point can be alternatively expressed as

v(X, t) = Φ̇(X, t) =
D(X + u(X, t))

Dt
=
∂u(X, t)

∂t

∣∣∣∣
X

= u̇(X, t). (2.7)

The acceleration of a material point represents the rate of change of velocity of a material
point, defined as time derivative of the velocity field holding the reference position vector
X fixed

a(X, t) = v̇(X, t) =
D2Φ

Dt2
(X, t) =

∂2Φ(X, t)

∂t2

∣∣∣∣
X

=
∂2Φ

∂t2
. (2.8)

Taking once again into consideration the definition of the displacement field (2.5) and the
alternative representation of the velocity (2.7), the acceleration can be expressed as

a(X, t) = v̇(X, t) =
D2(X + u(X, t))

Dt2
=
∂2u(X, t)

∂t2

∣∣∣∣
X

= ü(X, t). (2.9)

The derivative D(·)/Dt at fixed X is called the Lagrangian (or material) time derivative.
As far as the quantity under observation is defined in material description, it is equivalent to a
simple partial time derivative of the underlying field. However, the requirement of keeping
the reference vector X fixed makes the material time derivative of a quantity defined in
spatial description more complicated. Considering a smooth spatial field ψ(x, t), its material
time derivative (denoted as D(ψ(x, t))/Dt or ψ̇(x, t)) is obtained as

D(ψ(x, t))

Dt
= ψ̇(x, t) =

∂ψ (Φ(X, t), t)

∂t

∣∣∣∣
X=Φ−1(x,t)

. (2.10)

Utilizing the chain rule of differentiation, it can be found from (2.10) that:

D(ψ(x, t))

Dt
= ψ̇(x, t) =

∂ψ(x, t)

∂t

∣∣∣∣
x

+
∂ψ(x, t)

∂x

∣∣∣∣
t

· v(x, t). (2.11)

The first term on the right hand-side (partial time derivative at fixed x) is called the Eulerian
(or spatial) time derivative, while the second term is called the convective (or transport) rate
of change of ψ , cf. Holzapfel (2000). The relation (2.11) is very useful since it allows to
find the total (material) time derivative of some field on a basis of local information in the
current configuration (the spatial time derivative and the spatial gradient of a field) and the
velocity of a point, without knowing the motion Φ(X, t) explicitly. Hence, in the Eulerian
description the acceleration is

a(x, t) = v̇(x, t) =
∂v(x, t)

∂t
+
∂v(x, t)

∂x
· v(x, t). (2.12)
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2.1.3. Deformation of line, volume and surface elements

e1

X

X
dX

+

u(X,t*)

dX
dx

�(X,t*)
�(X+dX,t*)

u(X+dX,t*)

e3

e2

��

��

��� �

�(X,t)

�(X+dX,t)

t=0 t=t*

P

P

Figure 2.2.: Deformation of an infinitesimal line element dX

Let us consider an infinitesimal oriented line element dX , placed at a typical point P of
the body B in the reference configuration Ω0 (Figure 2.2). During a motion Φ(X, t) this
line element is mapped onto an infinitesimal line element dx in the current configuration Ω.
Focusing on a certain instant of time t = t∗, the spatial (or deformed) line element can be
expressed utilizing the deformation mapping Φ(X, t∗)

dx = Φ(X + dX, t∗)−Φ(X, t∗) (2.13)

Since the deformation at any fixed time t = t∗ does not depend on intermediate stages in
motion, but solely on the geometry of the reference Ω0 and the current configuration Ω, the
explicit dependence on time in (2.13) can be omitted. Expanding Φ in a Taylor series around
the pointX one obtains

dx =
∂Φ(X)

∂X
· dX + h.o.t. (2.14)

Neglecting the terms of higher order and introducing the deformation gradient

F =
∂Φ(X)

∂X
=

∂x

∂X
, (2.15)

the mapping of the differential line element of the reference configuration dX to the current
line element dx is expressed in the following form

dx = F · dX. (2.16)

It is assumed that the description of both reference and current configuration is performed
employing the same set of basis vectors ei. Hence, the deformation gradient tensor is a
two-point tensor with one index describing spatial coordinates xi, and the other reference
coordinates XJ

F =
∂xi
∂XJ

ei ⊗ eJ . (2.17)

In general, F is an unsymmetric second order tensor. The assumption that the deformation
mapping is uniquely invertible has been already stated and recalling the definition of the
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inverse motion (2.4), one can find that its derivative with respect to the current position x is
the inverse of the deformation gradient

F−1 =
∂Φ−1(x, t)

∂x
=
∂X

∂x
, F−1 =

∂XI

∂xj
eI ⊗ ej. (2.18)

Furthermore, the mapping of the differential line element of the current configuration dx to
the reference line element dX is expressed in the form

dX = F−1 · dx. (2.19)

The assumption of uniquely invertible deformation mapping implies the nonsingularity of
the tensor F . That can be assured if its determinant fulfills the condition detF 6= 0. Intro-
ducing the definition of the displacement field (2.5) into (2.15) and (2.18), one obtains the
deformation gradient and its inverse in terms of the corresponding displacement derivatives

F =
∂x

∂X
=
∂(X + u)

∂X
= I +

∂u

∂X
, F−1 =

∂X

∂x
=
∂(x− u)

∂x
= I− ∂u

∂x
, (2.20)

where the notion I stands for the second order unity tensor

I = δij eI ⊗ ej, δij =

{
0 | i 6= j
1 | i = j

(2.21)

e1

X Y

u(X,t*)

�(X,t*)
�(Y,t*)

u(Y,t*)

e3

e2

��

��

���

�

t=0

t=t*

dx
da

dx²

dx1

dx
ds

dX1

dX²

dX
dA
dX²

dX1

dX
dS
dX²

dX1

dX³

dX1

dX²

dX³

dx1

dx²

dx³

dx1

dx²

dx³

X x

Y

y

Figure 2.3.: Deformation of infinitesimal volume dV and surface dS elements

Let us consider three non-coplanar line elements dXI in the reference configuration, Figure
2.3, and their mapped counterparts dxI in the current configuration assuming in addition
that both triads are positively oriented. They form the infinitesimal volume elements, whose
volumes are

dV = dX1 · (dX2 × dX3) = det
[
dX1 dX2 dX3

]
, (2.22)

dv = dx1 · (dx2 × dx3) = det
[
dx1 dx2 dx3

]
. (2.23)
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Taking the transformation relation (2.16) into consideration, the connection between the
volume elements in the reference and in the current configuration is obtained

dv = detF dV = J dV. (2.24)

The Jacobi determinant J = detF is therefore the ratio of current to reference volume of a
material volume element. This interpretation poses another strong requirement on deforma-
tion gradient F . Namely, its determinant has to be strictly positive (detF > 0) in order to
assure the impenetrability of matter (to prevent negative volumes).

In order to obtain the relation representing the mapping of the infinitesimal surface elements,
two line elements dX1 and dX2 in the reference configuration are considered. They define
a material surface element dA, with the associated surface vector

dA = dAN , N =
dX1 × dX2∥∥dX1 × dX2

∥∥ . (2.25)

Material elements dX1 and dX2 map to the corresponding spatial elements dx1 and dx2

during a motion Φ, Figure 2.3. They form a spatial surface element da, with its associated
surface vector

da = da n, n =
dx1 × dx2

‖dx1 × dx2‖
. (2.26)

Utilizing an additional reference vector dX , non-coplanar with dX1 and dX2 but otherwise
arbitrary, and its mapped counterpart dx, one can connect the resulting infinitesimal volume
elements via the relation (2.24)

dv = da · dx = JdA · dX. (2.27)

Substitution of (2.16) yields Nanson’s formula

da = J F−T · dA, (2.28)

which shows the relation between the elements of the infinitesimally small areas da and dA
on the current and reference configuration.

2.1.4. Deformation measures

The deformation gradient is the fundamental kinematic tensor that characterizes changes of
material elements. However, it is not the most suitable measure of the deformation, since
it is not free from contribution of the rigid body motion. In general, a motion Φ of a body
will change its shape (form and size), position and orientation. Consider a pure change of
the position (a so-called rigid-body translation), which can be represented by the mapping

x(X, t) = c(t). (2.29)

It is obvious that the deformation gradient F is not affected by it and is equal to the one of
the undeformed state F = I. However, that is not the case with the change of orientation (a
so-called rigid-body rotation) of a body. The mapping in this case reads

x(X, t) = Q(t) ·X, (2.30)
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with the tensor Q specified to be proper orthogonal. Clearly, the deformation gradient F
is not equal to the one of the undeformed state. Hence, a rigid-body rotation does affect
F . In order to separate this influence from the part that comes from the pure deformation
(change in lengths of linear elements and in angles between them), one can make use of the
polar decomposition theorem, cf. Başar and Weichert (2000). It states that any second order
tensor F can be split up multiplicatively into an arbitrary proper orthogonal tensorR and a
positive definite second order tensor U or V of the form

F = R ·U = V ·R. (2.31)

The decomposition (2.31) is in general not unique. Its uniqueness is assured introducing the
additional assumption that both U and V are symmetric

U = UT , V = V T . (2.32)

These second order tensors are called the right and left stretch tensor, respectively. Due to
the fact that the rotation tensor R is proper orthogonal

R ·RT = RT ·R = I, detR = 1, (2.33)

it follows that

det F = det U = det V . (2.34)

The polar decomposition theorem may be illustrated graphically as shown in the Figure 2.4.
It follows that the deformation of an infinitesimal volume element at X can be considered

e1

X

u(X,t*)

�(X,t*)

e3

e2

��

��

���

�

t=0

t=t*

dX1

dX²

dX³

dx1

dx²

dx³

dX1

dX²

dX³

dx1

dx²

dx³

X

dx
1

dx
²

dx
³

x

dX
1

dX
²

dX
³

R

V

U R
X

x

Figure 2.4.: Illustration of the polar decomposition F = R ·U = V ·R

as the successive application of (cf. Başar and Weichert (2000)):

F = R ·U F = V ·R
a stretch by the tensor U : dxi = U · dXi a translation by u: x = X + u
a rigid-body rotation byR: dxi = R · dxi a rigid-body rotation byR: dXi = R · dXi

a translation by u: x = X + u a stretch by the tensor V : dxi = V · dXi
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Hence, the right stretch tensor U is a tensor of the reference configuration, while the left
stretch tensor V belongs to the current configuration. They are related to each other through
the relations

V = R ·U ·RT , U = RT · V ·R. (2.35)

Denoting the eigenvalues of U by λi and the corresponding orthonormal unit eigenvectors
byN i, tensor U can be represented through its spectral decomposition 1

U =
3∑
i=1

λi N i ⊗N i. (2.36)

From the relations (2.35) and (2.36) it follows that the left and the right stretch tensor U
and V have the same eigenvalues λi (called principal stretches). The eigenvectors ni of
the tensor V in the current configuration (called Eulerian principal axes) are obtained by
rotation of the corresponding eigenvectorsN i of the tensorU in the reference configuration
(called Lagrangian principal axes)

V =
3∑
i=1

λi ni ⊗ ni, ni = R ·N i. (2.37)

Combining the spectral decomposition of the stretch tensors (2.36) and (2.37) with the defi-
nition of the polar decomposition of the deformation gradient (2.31), one obtains

F =
3∑
i=1

λi ni ⊗N i, R =
3∑
i=1

ni ⊗N i. (2.38)

In general, one has to solve a system of 9 linear equations with 9 unknowns in order to find
the components of the tensors R, U and V , which is a time consuming task. Therefore
one introduces a so-called deformation tensors which describe deformations without being
influenced by a pure rotation. In that purpose is the orthogonality condition of the rotation
tensorRT = R−1 utilized

C := F T · F = (R ·U)T ·R ·U = UT ·RT ·R ·U = U 2, (2.39)

B := F · F T = V ·R · (V ·R)T = V ·R ·RT · V T = V 2. (2.40)

The tensors C and B are called the right Cauchy-Green deformation tensor and the left
Cauchy-Green deformation tensor, respectively. The first one (C) is a tensor of the reference
configuration, while the second one (B) belongs to the reference configuration. They are
related by

C = F−1 ·B · F , B = F ·C · F−1. (2.41)

In view of (2.39) and (2.40) the spectral decomposition of the right and left Cauchy-Green
deformation tensor reads

C =
3∑
i=1

λ2
i N i ⊗N i, B =

3∑
i=1

λ2
i ni ⊗ ni. (2.42)

Hence, the eigenvalues of the left and right Cauchy-Green tensor are equal to the squared
eigenvalues of the left and right stretch tensor, respectively.

1For details on spectral decomposition of a second order tensor see the section A.3.2.
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Figure 2.5.: Infinitesimal line elements in reference and current configuration

Let us consider two infinitesimal line elements dX1 and dX2 in the reference configuration,
Figure 2.5. After the deformation they are mapped on the line elements dx1 and dx2 in the
current configuration. The scalar products of those vectors are obtained as 2

dx1 · dx2 = (F · dX1) · (F · dX2) = dX1 · (F T · F ) · dX2

= dX1 ·C · dX2, (2.43)
dX1 · dX2 = (F−1 · dx1) · (F−1 · dx2) = dx1 · (F−T · F−1) · dx2

= dx1 ·B−1 · dx2. (2.44)

Therefore, one can utilize the right Cauchy-Green tensor C to express the scalar product
of two line elements in the current configuration through the line elements of the reference
configuration. In an analogous manner, the inverse of the left Cauchy-Green tensor (B−1)
can be used to express the initial scalar product of two line elements identified in the current
configuration.

2.1.5. Strain measures

With the introduction of the deformation tensors C andB is the influence of the rigid body
rotation on the deformation efficiently removed. Let us consider a motion that maps an
infinitesimal line element dX in the reference configuration on the line element dx in the
current configuration. Squared norms of the corresponding vectors are evaluated utilizing
the right and the left Cauchy-Green tensor and the relations (2.43) and (2.44) as

ds2 = dx · dx = dX ·C · dX, (2.45)

dS2 = dX · dX = dx ·B−1 · dx. (2.46)

2From the definition of the scalar product a · b = ‖a‖ ‖b‖ cos(^(a, b)) it follows that the difference in
the scalar products of the reference vectors and that of the current vectors is affected by pure deformation
(change of size and shape) only. Furthermore, by definition holds a · b = b · a
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However, deformation tensors do not quantify the actual change in length of the line element
under consideration. This change can be expressed in view of (2.45) and (2.46) in the
following two forms

ds2 − dS2 = dx · dx− dX · dX
= dX ·C · dX − dX · I · dX
= dX · (C − I) · dX, (2.47)

ds2 − dS2 = dx · dx− dX · dX
= dx · I · dx− dx ·B−1 · dx
= dx ·

(
I−B−1

)
· dx. (2.48)

From the above expressions one can define the so-called Green-Lagrange strain tensor E
and the so-called Almansi strain tensor e

E :=
1

2
(C − I) , e :=

1

2

(
I−B−1

)
, (2.49)

leading to

ds2 − dS2 = dX · (2E) · dX = dx · (2 e) · dx. (2.50)

Thus, the Green-Lagrange strain tensor E gives the change in the squared length of the
infinitesimal line element dX identified in the reference configuration Ω0, while the Almansi
strain tensor e permits to evaluate changes of length if an infinitesimal line element dx is
identified in the current configuration Ω.3. Both E and e are symmetric tensors, see (2.42)
and (2.49), and both vanish in the undeformed state or for the rigid body motion, cf. Başar
and Weichert (2000). They are related to each other by so-called push-forward (E → e)
and pull-back (E ← e) operations

e = F−T ·E · F−1, E = F T · e · F . (2.51)

Recalling the definition of the displacement vector (2.5) and the representation of the defor-
mation gradient and its inverse in terms of displacement derivatives (2.20), Green-Lagrange
and Almansi strain tensors can be expressed alternatively as

E =
1

2

(
∂u

∂X
+

(
∂u

∂X

)T
+

(
∂u

∂X

)T
· ∂u
∂X

)
, (2.52)

e =
1

2

(
∂u

∂x
+

(
∂u

∂x

)T
−
(
∂u

∂x

)T
· ∂u
∂x

)
. (2.53)

In index notation (2.52) and (2.53) read

E =
1

2

(
∂uI
∂XJ

+
∂uJ
∂XI

+
∂uK
∂XI

∂uK
∂XJ

)
eI ⊗ eJ , (2.54)

e =
1

2

(
∂ui
∂xj

+
∂uj
∂xi
− ∂uk
∂xi

∂uk
∂xj

)
ei ⊗ ej. (2.55)

3The scaling factor 1
2 is introduced to maintain backward compatibility with the classical engineering defini-

tion of strain
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2.1.6. Deformation and strain rates

Consider an infinitesimal oriented line element dX , placed at a typical point P of the body
B in the reference configuration Ω0, Figure 2.6. During a motion Φ(X, t) this line ele-
ment is mapped onto a infinitesimal line element dx in the current configuration Ω by the
deformation gradient F (X, t)

dx = F (X, t) · dX. (2.56)

Taking the material time derivative (D(·)/Dt at fixed X) of this relation, one obtains the
infinitesimal velocity change

dv =
DF (X, t)

Dt
· dX = Ḟ (X, t) · dX. (2.57)

In view of (2.57), the material rate of the deformation gradient Ḟ can be interpreted as a
tensor that maps the line elements connecting two infinitesimally distant points P and Q in
the reference configuration, Figure 2.6, on the relative velocity dv presenting the difference
of the velocity vectors of these two points, cf. Başar and Weichert (2000). Therefore, the

e1

X

X
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+

u(X,t*)

�(X,t*)
�(X+dX,t*)

u(X+dX,t*)

e3

e2

��

��

��� �

�(X,t)

�(X+dX,t)t=0

t=t*

P

P

Q
Q

dx

v
P

Q

dv

v+dv

L

F
.

dX

P

Q

Figure 2.6.: Infinitesimal line elements in reference and current configuration

material rate of the deformation gradient Ḟ at some instant of time is equal to the partial
derivative of the velocity field with respect to the reference coordinates keeping the time
fixed

Ḟ =
∂v(X, t)

∂X

∣∣∣∣
t

=
dv

dX
(2.58)

Using (2.57) and (2.56) one can relate the infinitesimal line element dx in the current con-
figuration to the infinitesimal change in velocity vectors of its end points, Figure 2.6

dv =
DF (X, t)

Dt
· dX = Ḟ (X, t) · F−1(x, t) · dx = L(x, t) · dx, (2.59)
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through the so-called spatial velocity gradient L. It is obtained by taking the partial deriva-
tive of the velocity field with respect to the current coordinates keeping the time fixed

L := Ḟ · F−1 =
∂v(x, t)

∂x

∣∣∣∣
t

=
dv

dx
. (2.60)

As a second order tensor the spatial velocity gradient L can be presented in the form

L = D +W (2.61)

as a sum of a symmetric tensor D, called the rate of deformation tensor and a skew-
symmetricW , called the spin tensor

D :=
1

2
(L+LT ) =

1

2

(
∂v

∂x
+

(
∂v

∂x

)T)
, (2.62)

W :=
1

2
(L−LT ) =

1

2

(
∂v

∂x
−
(
∂v

∂x

)T)
. (2.63)

The material time derivative of the change in length of the infinitesimal line element under-
going a motion Φ(X, t) can be expressed in view of (2.50) as

D

Dt

(
ds2 − dS2

)
= 2 dX · Ė · dX. (2.64)

Alternatively, using the relations (2.50) and (2.59) it follows

D

Dt

(
ds2 − dS2

)
= 2 (dv · e · dx+ dx · ė · dx+ dx · e · dv)

= 2 dx ·
(
LT · e+ ė+ e ·L

)
· dx. (2.65)

The connection between the material time derivative of the Green-Lagrange strain tensor
Ė and the rate of deformation tensor D can be deduced from the definitions (2.49), (2.39),
(2.60) and (2.62) as

Ė = F T ·D · F , D = F−T · Ė · F−1. (2.66)

In order to establish the connection between the material time derivative of the Almansi
strain tensor ė and the rate of deformation tensor D, one forms the material time derivative
of the squared length of the infinitesimal line element in the current configuration

D

Dt

(
ds2
)

= 2 dx · dv = 2 dx ·L · dx = 2 dx ·D · dx. (2.67)

In view of this result and using the fact that the length of the line element in the reference
configuration remains constant during deformation, consideration of (2.65) leads to

D = LT · e+ ė+ e ·L, ė = D −LT · e− e ·L. (2.68)

The term on the right-hand side of the first equation is defined as the so-called Lie-derivative
of the Almansi strain tensor and is usually denoted as Lv

Lv e := LT · e+ ė+ e ·L = D. (2.69)
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Recalling the definition of the displacement (2.5) the velocity vector (2.6) and the represen-
tation of the Green-Lagrange and Almansi strain tensor in terms of displacement derivatives
(2.20), the rate of the Green-Lagrange strain tensor can be expressed alternatively as

Ė =
1

2

(
∂v

∂X
+

(
∂v

∂X

)T
+

(
∂v

∂X

)T
· ∂u
∂X

+

(
∂u

∂X

)T
· ∂v
∂X

)
. (2.70)

In index notation (2.70) reads

Ė =
1

2

(
∂vI
∂XJ

+
∂vJ
∂XI

+ 2
∂vK
∂XI

∂uK
∂XJ

)
eI ⊗ eJ , (2.71)

Before proceeding, the relations for the material time derivatives of the surface and volume
elements have to be specified, in which purpose one considers the derivative of the volume
ratio J = detF

D

Dt
(J) = J̇ =

∂J

∂F
: Ḟ = J F−T : (L · F ) = J trL. (2.72)

Using the definition of tensor L (2.60) and its additive split (2.61), we deduce from (2.72)

J̇ = J trD = J div v = J
∂vi
∂xi

(2.73)

Since from (2.27)

dv̇ = J̇ dV = J̇ J−1 dv, (2.74)

the material time derivative of the volume element is in view of (2.73)

dv̇ = div v dv = trD dv, (2.75)

Finally, recalling the Nanson’s formula (2.28), the definitions of surface vectors (2.25) and
(2.26), and utilizing the time derivative of the Jacobian (2.73), after some manipulation one
obtains the material time derivative of the infinitesimal area element, cf. Başar and Weichert
(2000)

dȧ =

(
J̇ n · F−T ·N + J n · ˙

(F−T ) ·N
)
dA = (trD − n ·D · n) da. (2.76)

2.1.7. Linearization of strain measures and strain rates

Throughout this section it is shown how to express the strain and deformation measures, as
well as rates of strain and some important deformation quantities (e.g. Jacobi determinant) in
terms of the displacement field and its space and time derivatives. In this thesis it is assumed
that displacements remain small, which allows for simplification of the relations obtained
so far. In that purpose, let us consider the displacement state u(X, t) = u(x, t) = u0 at
certain time t = t∗. Denoting the displacement increment ∆u, one can perform linearization
of all deformation-dependent quantities about the displacement state u0 using the so-called
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Gâteaux-derivative 4. We start from the relation (2.20) connecting the deformation gradient
F to the material gradient of the displacement field, which leads to

LF = F 0 +DF (u)(∆u) = F 0 +
∂∆u

∂X
. (2.77)

In view of the definitions of the Green-Lagrange strain tensor E (2.52) and the Almansi
strain tensor e (2.53), one obtains

LE = E0 +DE(u)(∆u)

= E0 +
1

2

(
∂∆u

∂X
+

(
∂∆u

∂X

)T
+
∂∆u

∂X
·
(
∂u0

∂X

)T
+

(
∂∆u

∂X

)T
· ∂u0

∂X

)
,(2.78)

Le = e0 +De(u)(∆u)

= e0 +
1

2

(
∂∆u

∂x
+

(
∂∆u

∂x

)T
− ∂∆u

∂x
·
(
∂u0

∂x

)T
−
(
∂∆u

∂x

)T
· ∂u0

∂x

)
. (2.79)

Furthermore, the Jacobi determinant, which is an important quantity relating a deformed
volume element to the undeformed one, see (2.24), is linearized as well. From its definition
J := detF it follows

LJ = J0 +DJ(u)(∆u) = J0 + J F−T : DF (u)(∆u)

= J0 + J0 F
−T :

∂∆u

∂X
= J0 + J0 F

−T :

(
∂∆u

∂x
· F
)

= J0 + J0 divu = J0

(
1 +

∂∆ui
∂xi

)
. (2.80)

Assuming that the linearization is performed around the reference (undeformed) state (u0 =
0), the displacement increment becomes equal to the displacement itself u = ∆u. The
initial values of the quantities under consideration are therefore

F 0 = I, E0 = 0, e0 = 0, J0 = 1. (2.81)

An additional assumption that the displacement remains small has to be introduced in order
to ensure satisfactory approximation of the original quantities by the linearized ones. In
view of (2.5), this assumption leads further to the conclusion that x ≈X . Hence, the initial
configuration Ω0 of the body B can be considered coincident with the current configuration
Ω. In this case we speak of the geometrically linear theory, or the theory of small strains.
The linearized deformation gradient reads

LF = I +
∂u

∂X
, (2.82)

which is identical to the definition of the deformation gradient in terms of the displacement
field (2.20) due to the fact that F is already linear in the displacement gradient. This result
is given just for the sake of completeness, since the deformation gradient is in the theory of
small strains not explicitly used. The main role in the small-strain theory plays the linearized

4For details on linearization and the Gâteaux-derivative see the section A.1.
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strain tensor ε, obtained by linearization of either Green-Lagrange or Almansi strain tensor
under adopted assumptions

ε := LE = Le =
1

2

(
∂u

∂X
+

(
∂u

∂X

)T)
=

1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
ei ⊗ ej. (2.83)

Denoting for notational convenience

∇u =
∂u

∂X
=

∂ui
∂Xj

ei ⊗ ej, (2.84)

the definition of the linearized strain tensor (in further discussion just called the strain ten-
sor) can be written as

ε = LE = Le =
1

2

(
∇u+ (∇u)T

)
(2.85)

The linearized Jacobi determinant (2.80) attains, in view of the introduced assumptions, the
following form

LJ = 1 + divu =

(
1 +

∂ui
∂Xi

)
= 1 + tr ε. (2.86)

The adopted assumption of small displacements allows for linerization of the rate quantities
around the undeformed state, and in that purpose one starts by considering the material
rate of the deformation gradient Ḟ (2.58) and the spatial velocity gradient L (2.60). Since
the initial configuration Ω0 of the body B can be considered coincident with the current
configuration Ω, it follows

LḞ = LL =
∂v

∂X
. (2.87)

Denoting for notational convenience

∇v =
∂v

∂X
=

∂vi
∂Xj

ei ⊗ ej =
∂u̇i
∂Xj

ei ⊗ ej, (2.88)

the rate of deformation tensorD and the spin tensorW can be expressed as

LD = D =
1

2

(
∂v

∂X
+

(
∂v

∂X

)T)
=

1

2

(
∂u̇i
∂Xj

+
∂u̇j
∂Xi

)
ei ⊗ ej (2.89)

LW = W =
1

2

(
∂v

∂X
−
(
∂v

∂X

)T)
=

1

2

(
∂u̇i
∂Xj

− ∂u̇j
∂Xi

)
ei ⊗ ej (2.90)

Linearization of the rate of the Green-Lagrange strain tensor (2.70) about the reference state
results in

LĖ =
1

2

(
∂v

∂X
+

(
∂v

∂X

)T)
=

1

2

(
∇u̇+ (∇u̇)T

)
= ε̇. (2.91)

In index notation (2.91) reads

ε̇ =
1

2

(
∂u̇i
∂Xj

+
∂u̇j
∂Xi

)
ei ⊗ ej, (2.92)
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which in view of (2.89) leads to the conclusion that in the small-strain theory the rate of the
Green-Lagrange strain Ė coincide with the Lie-derivative of the Almansi tensor Lv e. The
rate of the deformation tensor becomes therefore simply the strain rate

ε̇ = D. (2.93)

Finally, the time derivatives of the surface and volume elements should be specified. In
that purpose one considers first the linearization of the material time derivative of Jacobi
determinant (2.72) and (2.73), which in view of (2.81) results in

LJ̇ = trD = tr ε̇. (2.94)

With this result at hands, one obtains from (2.74), (2.75) and (2.76) the linearized rates of
change of volume v̇ and surface ȧ elements

Ldv̇ = tr ε̇, Ldȧ = (tr ε̇− n · ε̇ · n) = ε̇ : (I− n⊗ n) . (2.95)

2.2. Kinetics

In this section the relation between external and internal forces acting on a material body
is described. Motion and deformation give rise to internal interactions between adjacent
material particles in the interior part of the body. These interactions are reflected by the
notion of stress, which is a measure of local internal forces. Together with the static and
dynamic loads acting throughout the volume, these stresses form the local equilibrium of
forces. This equilibrium must be satisfied throughout the current configuration Ω of the
material body B. However, in the context of the geometrically linear theory, which is used
in this thesis, the current configuration coincides with the reference one Ω0.

2.2.1. Cauchy stress tensor and Cauchy theorem

�F

n

�M

�A

�F

n

�M

dv

b

� �

P

Figure 2.7.: Infinitesimal line elements in reference and current configuration

Let us consider an arbitrary typical point P inside the body in its deformed state. The body
B is separated into two parts by a surface passing through P with the unit normal vector n.
The interaction between the two portions leads to the forces that are transmitted across the
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surface. Taking a surface element ∆A in the vicinity of P , the resulting internal force and
moment acting on the element are denoted as ∆F and ∆M . Through the limit ∆A → 0
are the so-called stress vector tn and the so-called stress couple cn

lim
∆A→0

∆F

∆A
=
dF

dA
= tn, lim

∆A→0

∆M

∆A
=
dM

dA
= cn (2.96)

defined. In the classical continuum mechanics theory, which is followed here, it is assumed
that the stress-couple vanishes cn = 0 5 . Hence, the action of one body on another across
an infinitesimal surface area dA is adequately represented by a stress vector tn. The stress
vector can be split in two parts: one in the direction of the surface normal n (called normal
stress) and one being a projection of the stress vector onto the surface plane (called shear or
tangential stress). Denoting as ti the stress vector acting on the surface whose normal n is
aligned with one of the basis vectors ei, its components are

ti = σi1 e1 + σi2 e2 + σi3 e3 (2.97)

Let us separate at some point an infinitesimal tetrahedron (Figure 2.8) bounded by the
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Figure 2.8.: Equilibrium of infinitesimal tetrahedron

surfaces Xi = const, i = 1, 2, 3 and a given surface whose unit normal vector is

n = ni ei. (2.98)

The faces Xi = const of the tetrahedron have the areas 1/2 dAi, and the surface with the
unit normal n the area 1/2 dA, which are related in component form by ni dA = dAi, cf.
Başar and Weichert (2000). The equilibrium of the infinitesimal tetrahedron is described by

t dA =
3∑
i=1

ti dAi = ti ni dA, (2.99)

which leads with (2.97) to

t = tj nj = σij nj ei. (2.100)

Defining the so-called Cauchy stress tensor σ as

σ = ti ⊗ ei = σij ei ⊗ ej, (2.101)

5This assumption is not followed in th co-called Coserat theory, which includes rotations as additional vari-
ables, see e.g. Cosserat and Cosserat (1909); Eringen (1999)
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the equilibrium of the infinitesimal tetrahedron (2.100) results in

t = σ · n. (2.102)

This result is known as Cauchy theorem and it states that the Cauchy stress σ is a tensor
that maps the unit normal vector field n of an arbitrary surface onto the stress vector field t
acting on that surface, Figure 2.8.

Consider again the split of the stress vector t acting on the an infinitesimal surface area dA
into a component in the direction of the surface normal n (called normal stress and denoted
σ) and a component being a projection of the stress vector onto the surface plane (called
shear stress and denoted τ ). These components can be obtained from the stress tensor by
means of the projection tensors, cf. Holzapfel (2000), Brannon (2003)

P⊥ = n⊗ n, P ‖ = I− n⊗ n, (2.103)

in the form

σ = σ : P⊥, τ = σ : P ‖. (2.104)

If σ > 0 normal stresses are said to be tensile, while negative normal stresses σ < 0 are
known as compressive. Those two types of loading are fundamentally different and in a lot
of materials they cause different behavior. In contrary to that, the sign of a shear stress has
no intrinsic physical meaning, the type of loading is the same.

2.2.2. Equilibrium conditions of an infinitesimal volume element

Consider an infinitesimal hexahedron whose faces are defined by normal vectors aligned
with the basis vectors ei and their negative counterparts −ei, Figure 2.9. The forces acting
on a body can be deformation independent volume specific loads ρ b, inertial forces −ρ ü
and the forces resulting from stress. The first two are both volume-specific loads, so that
one can put them together into the volume load f

f = ρ b− ρ ü, (2.105)

acting in the center of the volume element. At the boundaries of the volume element the
stress tensor maps the surface normals onto the stress vectors. Hence, stress components
with the corresponding area elements contribute to the force equilibrium. The differential
changes in the stress components and stress vectors, denoted as dσij and dti in Figure 2.9,
are obtained as

dσ(ij) =
∂σ(ij)

∂X(j)

dX(j), dt(i) =
∂t(i)
∂X(i)

dX(i) (no summation). (2.106)

The force equilibrium in the directions of base vectors results in

divσ + f = 0 ⇒ ∂σij
∂Xj

+ fi = 0. (2.107)

The moment equilibrium about the center of the infinitesimal hexahedron leads to the con-
clusion that the Cauchy stress tensor σ has to be symmetric

σ = σij ei ⊗ ej with σij = σji. (2.108)
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Figure 2.9.: Representation of infinitesimal equilibrium conditions

2.3. Balance laws

In this section is an overview on the balance relations of continuum thermodynamics pro-
vided. Physical quantities such as mass, momentum, energy and entropy can be exchanged
between a thermodynamic system and its environment, which is mathematically described
by thermodynamical balance relations. Balance relations for quantities that do not change
within the thermodynamic system (denoted as conservative quantities), such are mass and
energy, are named conservation laws. A detailed review on this subject can be found in
Holzapfel (2000); Šilhavý (1996); Truesdell and Noll (2004).

2.3.1. Conservation of mass

Consider a continuum body B, with the amount of material contained in it measured by
a physical quantity called mass and denoted m. The mass m is a positive scalar measure
which is invariant during a motion. Assuming that there are neither mass sources nor mass
sinks within the system and that there is no mass exchange with the environment (closed
system), the law of conservation of mass states that the mass of a body remains constant
during the motion

ṁ = 0. (2.109)

If ρ is a mass density of the body in the current configuration Ω, then its total mass in the
current state is

m(t) =

∫
Ω

ρ(x, t)dv. (2.110)

Recalling the connection between the volume elements in the reference and in the current
configuration (2.24)

ṁ =
D

Dt

∫
Ω0

ρ(x, t) J dV =

∫
Ω0

(ρ̇+ ρ div v) J dV = 0, (2.111)
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in view of the relation (2.73) for the time derivative of the Jacobi determinant, it follows

ṁ =

∫
Ω

(
ρ̇+ ρ

∂vi
∂xi

)
dv =

∫
Ω

(ρ̇+ ρ trD) dv = 0 (2.112)

This statement has to hold for every subdomain Ω̄ ∈ Ω as well. Hence, the conservation of
mass (2.112) can be expressed in the local form as

ρ̇+ ρ div v = ρ̇+ ρ trD = 0 (2.113)

From the relations (2.109) and (2.110) an alternative form of the conservation condition can
be deduced, cf. Başar and Weichert (2000)

ρ0 dV = ρ dv, (2.114)

where ρ0(X) stands for the mass density of the reference configuration Ω0.

Within the framework of the small deformation theory, which is assumed to sufficiently
accurately describe problems dealt with throughout this thesis, one uses linearized rela-
tions presented in the section 2.1.7. In view of (2.94) and (2.95) the conservation condition
(2.114) attains the form

ρ̇+ ρ tr ε̇ = 0 (2.115)

2.3.2. Balance of linear momentum

Consider a body B occupying a region Ω with boundary surface ∂Ω at time t. The body is
subjected to volume forces b measured per unit mass and the surface forces t acting upon
the boundary surface a with the outward normal vector n in its current state, Figure 2.10. It
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Figure 2.10.: Forces acting on a body B

is assumed that the body is a closed system (no exchange of mass with the surroundings).
The total linear (translational) momentum is defined by

L :=

∫
Ω

ρ v dv, (2.116)

and the resultant external force applied on the body is described by

F := F b + F t =

∫
Ω

ρ b dv +

∫
∂Ω

t da. (2.117)
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The balance of linear momentum states that the change of the total momentum L is balanced
by the external forces F acting on the body (consisting of volume forces F b and surface
forces F t)

L̇ = F . (2.118)

This postulate can be expressed in view of (2.116) and (2.117) as

D

Dt

∫
Ω

ρ v dv =

∫
Ω

ρ b dv +

∫
∂Ω

t da. (2.119)

Utilizing the conservation of mass (2.111) one ends up with∫
Ω

ρ v̇ dv =

∫
Ω

ρ b dv +

∫
∂Ω

t da. (2.120)

In order to obtain the local form of the balance of linear momentum one first has to use
Cauchy-theorem (2.102) 6∫

∂Ω

t da =

∫
∂Ω

σ · n da. (2.121)

After applying the theorem of Gauß-Ostrogradski and using the definition of the acceleration
field (2.9) the relation (2.120) becomes 7∫

Ω

(divσ + ρ b− ρ ü) dv = 0. (2.122)

This statement has to hold for every subdomain Ω̄ ∈ Ω as well. Hence, the balance of linear
momentum (2.122) can be expressed in the local form as

divσ + f = 0 ⇒ ∂σij
∂xj

+ fi = 0, (2.123)

where f represents the total volume load, see (2.105).

Within the framework of the geometrically linear theory, which is used later in this thesis,
the reference configuration Ω0 of the body B can be considered coincident with the current
configuration Ω. Therefore, one can replace the spatial coordinates with the reference ones
in (2.123), leading to

divσ + f = 0 ⇒ ∂σij
∂Xj

+ fi = 0, (2.124)

The resulting equation is identical to the local equilibrium of forces on the infinitesimal
volume element (2.106).

2.3.3. Balance of angular momentum

Consider again a body B occupying a region Ω with boundary surface ∂Ω at time t subjected
to volume and surface forces b and t, respectively (Figure 2.10). It is assumed that the

6For details on Cauchy theorem see the section 2.2.1
7For details on theorem of Gauß-Ostrogradski see the section A.2
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body is a closed system (no exchange of mass with the surroundings) and that there are no
distributed couples (the so-called Boltzman- (or non-polar-) continua). The total angular
(rotational) momentum about an arbitrary point x0 is defined by

J :=

∫
Ω

(x− x0)× (ρ v) dv, (2.125)

and the resultant moment of the external forces applied on the body is described by

M := M b +M t =

∫
Ω

(x− x0)× (ρ b) dv +

∫
∂Ω

(x− x0)× t da. (2.126)

The balance of angular momentum states that the change of the total rotational momentum
J is balanced by the moments of external forces M acting on the body (consisting of the
moment of volume forcesM b and the moment of surface forcesM t)

J̇ = M . (2.127)

This postulate can be expressed in view of (2.125) and (2.126) as

D

Dt

∫
Ω

(x−x0)× (ρ v) dv =

∫
Ω

(x−x0)× (ρ b) dv +

∫
∂Ω

(x−x0)× t da. (2.128)

Utilizing the conservation of mass (2.111), the balance of linear momentum (2.123) and the
Cauchy theorem (2.102) one obtains∫

Ω

(x− x0)× (divσ + ρ b) dv =∫
Ω

(x− x0)× (ρ b) dv +

∫
∂Ω

(x− x0)× (σ · n) da. (2.129)

After applying the theorem of Gauß-Ostrogradski and some manipulation, cf. Holzapfel
(2000), the relation (2.129) becomes∫

Ω

I× σ dv = 0. (2.130)

This statement has to hold for every subdomain Ω̄ ∈ Ω as well, implying the symmetry of
the Cauchy stress tensor

σ = σT ⇔ σij = σji (2.131)

The result is identical to the one originating from the local moment equilibrium on the
infinitesimal volume element (2.108).

2.3.4. Conservation of energy

In this section the postulate of energy balance in local and global form is presented. First,
we introduce some common terminology.

All quantities describing a system at a certain state are called thermodynamic state variables
and they generally depend on position and time. Equations that interrelate state variables are
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called constitutive equations or equations of state. If there is no change in the values of state
variables at any point in the system with time, the system is said to be in thermodynamic
equilibrium. A process in a system that remains close to this state at each time is called a
quasi-static process. A quasi-static process is a sufficiently slow process with enough time
remaining for the system to adjust itself internally. Hence, the contribution due to dynamical
quantities are negligible.

Let us consider again a body B occupying a region Ω with boundary surface ∂Ω at time t
subjected to volume and surface forces b and t, respectively. Additionally, thermal loading
is considered in the form of internal heat sources of value r per unit mass and a heat transfer
across the boundary surface of the body reflected by the heat flux q per unit area, Figure 2.11.
It is assumed that the body is a closed system (no exchange of mass with the surroundings).
The total energy E(t) of a body B is obtained as a sum of internal energy E(t) and a kinetic

�
31

e1

e3

e2

dv

� �n

t

n

da

nq

b
da

da

dv

dv

r

Figure 2.11.: Forces and thermal loads acting on a body B

energy K(t)

E = E +K. (2.132)

The internal and kinetic energy are defined by

E :=

∫
Ω

ρ e dv, K :=

∫
Ω

1

2
ρ v · v dv, (2.133)

where e represents the internal energy density (internal energy per unit mass). The power of
external forces applied on the body is described by

Pext := Pb + Pt =

∫
Ω

ρ b · v dv +

∫
∂Ω

t · v da, (2.134)

while the heat input (heat power) due to the heat flux and the heat source is obtained as

Q :=

∫
Ω

ρ r dv +

∫
∂Ω

qn da. (2.135)

The heat flux qn represents the rate at which heat enters the body (inward normal flux) across
the boundary surface ∂Ω. It can be transformed using the Stoke’s heat flux theorem to the
so-called Cauchy heat flux vector q

qn = −q · n, (2.136)
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where n stands for the outward unit normal to an infinitesimal surface element da of the
boundary ∂Ω.

The balance of energy states that the change of the total energy E of a body is balanced by
the power of external forces Pext and the heat introduced into the system Q

Ė = Pext +Q. (2.137)

This postulate can be expressed in view of (2.132), (2.133), (2.134) and (2.135) as

D

Dt

∫
Ω

ρ

(
e+

1

2
v · v

)
dv =

∫
Ω

ρ (b · v + r) dv +

∫
∂Ω

(t · v − q · n) da. (2.138)

Utilizing the theorems of Cauchy (2.102) and Gauß-Ostrogradski, the last integral in (2.138)
is transformed to∫

∂Ω

(t · v − q · n) da =

∫
Ω

div (v · σ − q) dv. (2.139)

With this result at hands, one can use the conservation of mass (2.111) to obtain∫
Ω

ρ (ė+ v̇ · v) dv =

∫
Ω

[div (v · σ − q) + ρ (b · v + r)] dv. (2.140)

This equation represents the global form of the balance of energy, called also the first law of
thermodynamics. Stating that it has to hold for every subdomain Ω̄ ∈ Ω as well, we end up
with

ρ (ė+ v̇ · v) = div (v · σ − q) + ρ (b · v + r) . (2.141)

Relation (2.141) contains both changes of the internal and kinetic energy. With help of the
balance of linear momentum (2.123) and the definition of the rate of deformation tensor D
(2.62), one can separate these contributions into two balance laws. The one of interest for
us is the balance of internal energy, expressed as∫

Ω

ρ ė dv =

∫
Ω

(σ : D − div q + ρ r) dv, (2.142)

in global, or as

ρ ė = σ : D − div q + ρ r. (2.143)

in its local form. The remaining part, or the balance of kinetic energy is nothing else then
scaled (with the velocity v) version of the balance of linear momentum. Hence, it brings no
additional physical information.

Within the framework of the geometrically linear theory, which is used in this thesis, the
reference configuration Ω0 of the body B can be considered coincident with the current
configuration Ω. Therefore, one can replace in (2.143) the spatial coordinates with the
reference ones and the rate of the deformation tensor D with the rate of linearized strain
tensor ε̇ (see (2.93)), leading to

ρ ė = σ : ε̇− div q + ρ r ⇒ ρ ė = σij ε̇ij −
∂qi
∂Xi

+ ρ r. (2.144)
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2.3.5. Balance of entropy

The balance of energy (2.140) governs the energy transfer within the thermodynamic pro-
cess, but it is insensitive to its direction. However, natural processes show certain asymme-
try, so that the transfer always goes in one direction. For example, heat always flows from
the warmer to the colder part of the body. In order to capture this natural behavior, a state
variable called entropy is introduced, which could be viewed as the measure of microscopic
randomness and disorder, cf. Holzapfel (2000). The entropy of a body is denoted by S while
its spatial density (entropy per unit mass) is denoted as s(x, t).

S =

∫
Ω

ρ s dv. (2.145)

The rate of entropy input due to the entropy transported across the body surface and the
entropy generated within the body is described by

Hext := Hb +Ht =

∫
Ω

ρ rh dv +

∫
∂Ω

hn da. (2.146)

The entropy flux hn represents the rate at which entropy enters the body (inward normal
flux) across the boundary surface ∂Ω. It can be transformed using the Stoke’s heat flux
theorem to the so-called Cauchy entropy flux vector h

hn = −h · n, (2.147)

where n stands for the outward unit normal to an infinitesimal surface element da of the
boundary ∂Ω.

The balance of entropy states that the change of the total entropy S of a body is governed
by the rate of entropy input H and by the production of entropy inside the system due to
irreversible processes Sirr, the later being non-negative quantity

Ṡ = H + Ṡirr, Ṡirr ≥ 0. (2.148)

This postulate can be expressed in view of (2.145), (2.146) and (2.148) as

Ṡirr =
D

Dt

∫
Ω

ρ s dv −
∫

Ω

ρ rh dv +

∫
∂Ω

h · n da ≥ 0. (2.149)

Utilizing the theorems of Cauchy (2.102) and Gauß-Ostrogradski together with the conser-
vation of mass (2.111), the relation (2.149) is transformed to

Ṡirr =

∫
Ω

(ρ ṡ− ρ rh + divh) dv ≥ 0. (2.150)

This equation represents the global form of the balance of entropy, called also the second
law of thermodynamics. At this point one can introduce a spatial density of the production
of entropy inside the system due to irreversible processes ṡirr

Ṡ =

∫
Ω

ρ ṡirr dv. (2.151)

Stating that it has to hold for every subdomain Ω̄ ∈ Ω as well, we end up with the local form
of the second law of thermodynamics

ρ ṡirr = ρ ṡ− ρ rh + divh ≥ 0. (2.152)
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Very often is postulated that the rate of the entropy input is related to the thermal work (cf.
Holzapfel (2000)) by

h =
1

Θ
q, rh =

r

Θ
(2.153)

With this assumption at hands, one can use the balance of internal energy (2.142) to obtain

Ṡirr =

∫
Ω

ρ Θ ṡirr dv =

∫
Ω

ρ Θ ṡ− ρ ė+ σ : D − 1

Θ
q · ∇Θ dv ≥ 0. (2.154)

This equation is called a Clausius-Duhem inequality in its global, or

ρ Θ ṡirr = ρ Θ ṡ− ρ ė+ σ : D − 1

Θ
q · ∇Θ ≥ 0 (2.155)

in its local form. In order to fulfill the requirement that the heat always flows from the
warmer to the colder part of the body, it has to hold

1

Θ
q · ∇Θ ≤ 0. (2.156)

The requirement (2.156) is a so-called heat conduction inequality, which additionally im-
plies that there is no heat flow without temperature gradient. In view of (2.156) one can state
the Clausius-Duhem inequality in a stronger form, called Clausius-Planck inequality

Ṡirr =

∫
Ω

ρ Θ ṡ− ρ ė+ σ : D dv ≥ 0, (2.157)

whose local form reads

Dint = ρ Θ ṡ− ρ ė+ σ : D ≥ 0. (2.158)

The quantity Dint is called internal dissipation or local production of entropy. It is equal to
zero for reversible processes, while inequality holds for irreversible ones.

In further discussion it is advantageous to work with the Helmholtz free-energy function ψ
instead of the internal energy e. The Helmholtz free-energy function (shortly free-energy
function) is defined by the Legendre transformation of e

ψ = e−Θ s. (2.159)

Utilizing (2.159) the global (2.154) and the local (2.155) form of the Clausius-Duhem in-
equality become

Ṡirr =

∫
Ω

ρ Θ ṡirr dv =

∫
Ω

σ : D − ρ Θ̇ s− ρψ̇ − 1

Θ
q · ∇Θ dv ≥ 0, (2.160)

ρ Θ ṡirr = σ : D − ρ Θ̇ s− ρψ̇ − 1

Θ
q · ∇Θ ≥ 0. (2.161)

The Clausius-Plank inequality is expressed in its global and local form in terms of free-
energy function as

Ṡirr =

∫
Ω

σ : D − ρ Θ̇ s− ρψ̇ dv ≥ 0, (2.162)
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Dint = σ : D − ρ Θ̇ s− ρψ̇ ≥ 0. (2.163)

Within the framework of the geometrically linear theory, which is used later in this thesis,
the reference configuration Ω0 of the body B can be considered coincident with the current
configuration Ω. Therefore, one can replace in (2.160), (2.161), (2.162) and (2.163) the
spatial coordinates with the reference ones and the rate of the deformation tensor D with
the rate of linearized strain tensor ε̇ (see (2.93)), leading to the Clausius-Duhem inequality
of the linearized problem

Ṡirr =

∫
Ω

ρ Θ ṡirr dV =

∫
Ω

σ : ε̇− ρ Θ̇ s− ρψ̇ − 1

Θ
q · ∇Θ dV ≥ 0, (2.164)

ρ Θ ṡirr = σ : ε̇− ρ Θ̇ s− ρψ̇ − 1

Θ
q · ∇Θ ≥ 0. (2.165)

Within the same setting the Clausius-Plank inequality reads

Ṡirr =

∫
Ω

σ : ε̇− ρ Θ̇ s− ρψ̇ dV ≥ 0, (2.166)

Dint = σ : ε̇− ρ Θ̇ s− ρψ̇ ≥ 0. (2.167)

2.4. Consequences of the thermodynamic balance laws

In this section an overview on the restrictions put by the balance relations of continuum
thermodynamics is provided together with some comments on the description of the ther-
momechanical coupling.

2.4.1. Thermodynamic consistency

The kinematic relations, derived in the section 2.1, and the balance laws, presented in the
section 2.3, are material-independent in its formulation. Therefore, thermomechanical prob-
lems cannot be solved using this equations alone. In order to close the system, one needs
additional relations called constitutive equations.
Constitutive equations describe the dependence of the so-called response functions (stress
tensor σ, temperature flux q, entropy s and the free-energy ψ) on a set of process variables
(linearized strain tensor ε, absolute temperature Θ and its gradient ∇Θ etc.) The response
functions of the body consisting of thermoelastic material (material that does not dissipate
energy) can be described solely by the appropriate measure of the deformation (in the case
of the geometrically linear theory that is the linearized strain tensor ε) and the temperature
Θ. However, such description turned out to be inadequate for materials which do dissipate
energy. In that case new state variables have to be introduced that are supposed to describe
aspects of the internal structure of a material associated with the irreversible (dissipative)
effects. They are called internal variables and are collected in the list

P = {P 1,P 2, . . . ,P ni} . (2.168)
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The index ni stands for the total number of the elements P i of the list P . These elements
can be scalar or tensorial quantities.8 The actual number of the elements depends on the
material itself as well as the underlying theory. Similar to the quantities σ, q, s and ψ, a
response function governing the evolution of P has to be defined. The evolution of internal
variables is connected to the history of deformation, therefore they are often called history
variables.

Adopting the principle of equipresence, cf. Truesdell and Noll (2004), which states that the
response functions depend on the complete set of the process variables, unless that leads to
the contradiction with the general physical laws or the assumed symmetries of the material,
it follows

ψ = ψ(ε,Θ,∇Θ,P )
σ = σ(ε,Θ,∇Θ,P )
s = s(ε,Θ,∇Θ,P )
q = q(ε,Θ,∇Θ,P ) .

(2.169)

Application of the material time rate to the Helmholtz free-energy (2.1691) gives

ψ̇ =
∂ψ

∂ε
: ε̇ +

∂ψ

∂Θ
Θ̇ +

∂ψ

∂(∇Θ)
· ˙(∇Θ) +

∂ψ

∂P
: Ṗ . (2.170)

Since P can be a collection of scalars and tensors of arbitrary order, the double dot product
it is involved at in (2.170) has to be understood as the scalar product of Ṗ with a similarly
structured object. Once the structure of P is known, the operator (:) may be interpreted
accordingly (as a simple contraction of vectors, double contraction of second order tensors
etc.). Substituting the relation (2.170) into (2.165), the local form of the Clausius-Duhem
inequality becomes(

σ − ρ ∂ψ
∂ε

)
: ε̇−

(
ρ s+ ρ

∂ψ

∂Θ

)
Θ̇

−
(
ρ

∂ψ

∂(∇Θ)

)
· ˙(∇Θ)− ρ ∂ψ

∂P
: Ṗ − 1

Θ
q · ∇Θ ≥ 0. (2.171)

Let us now consider two extreme cases. The first one is a process of pure heating or cooling
during which the strain and the internal variables remain constant and only the temperature
varies in time but remains constant in space. Requirement of non-negative dissipation for
arbitrary rates of temperature delivers the constitutive relation for the entropy

s := −∂ψ
∂Θ

. (2.172)

The second one is a process of pure elastic deformation, during which the temperature re-
mains constant in time and space and the internal variables do not evolve. The dissipation
must be non-negative for the arbitrary rates of the strain tensor, therefore one can deduce the
constitutive relation for the stress tensor

σ := ρ
∂ψ

∂ε
. (2.173)

8This description includes naturally vector variables, since vectors are first order tensors.



2.4. Consequences of the thermodynamic balance laws 31

Similar consideration leads to the statement that the free-energy function in the classical
theory has to be independent of the temperature gradient9

∂ψ

∂(∇Θ)
= 0 ⇒ ψ = ψ(ε,Θ,P ). (2.174)

In this context the Helmholtz free-energy function is referred to as thermodynamic potential,
since it has potential character for σ and s.
In view of (2.172), (2.173) and (2.174) the Clausius-Duhem inequality (2.171) takes the
form

Q : Ṗ − 1

Θ
q · ∇Θ ≥ 0, (2.175)

where an additional quantity Q is being introduced for the sake of notational clarity. It
represents the derivative of the free-energy function with respect to the list of the internal
variables, rendering ψ as a thermodynamic potential forQ

Q := −ρ ∂ψ

∂P
, (2.176)

and therefore it is a list itself, structured in the same way as P

Q = {Q1,Q2, . . . ,Qni} , Qi = −ρ ∂ψ

∂P i

. (2.177)

The first term in the remaining inequality (2.175) represents the mechanical dissipation,
while the second comes from thermal dissipation. As it is already stated, the thermal dissi-
pation has to fulfill the heat conduction inequality (2.156). A suitable constitutive law which
relates the heat flux q to the temperature gradient∇Θ is furnished by the Duhamel´s law of
heat conduction, cf. Holzapfel (2000)

q = −K · ∇Θ, ⇒ qi = −Kij
∂Θ

∂Xj

(2.178)

In view of (2.156), the symmetric second order thermal conductivity tensor K is restricted
to be positive-semidifinite. If the material under consideration is thermally isotropic (no
preferred direction for the heat conduction),K becomes

K = k I, (2.179)

and the constitutive relation for the heat flux reduces to

q = −k ∇Θ, ⇒ qi = −k ∂Θ

∂Xi

, (2.180)

which is known as Fouirer´s law of heat conduction.
Recalling the Clausius-Planck inequality (2.167) as a stronger requirement on the dissipa-
tion, one can see that it reduces to the mechanical dissipation from (2.175)

Dint = Q : Ṗ ≥ 0. (2.181)

What remains to be specified is the response function governing the evolution of the internal
variables P . This task is the subject of the forthcoming chapters.

9There exist non-classical theories of thermoelasticity that do take into consideration the dependence of the
Helmholtz free-energy function on the gradient of the temperature field, see e.g. Bargmann and Steinmann
(2006).
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3. Inelastic constitutive modeling

In this chapter constitutive models describing the response behavior of a certain material
under external loading are considered. The attention is restricted to the isothermal case,
i.e. no temperature dependence is going to be considered. Based on the discussion in the
previous chapter, a material is called elastic if it does not dissipate energy, i.e. its internal
dissipation (2.167) is equal to zero. If this condition is not met, a material is referred to
as inelastic, in which case one has to consider some micro-structural features in order to
properly explain its macroscopic behavior. The first part of this chapter (section 3.1) recalls
some basics of the elastic material modeling, while the rest is devoted to inelastic materials.
The principle governing the evolution of internal variables within the concept of generalized
standard material is presented in section 3.2, together with the inelastic constitutive models
used later in the thesis. The issue of localization, which is a characteristics of the material
models involving softening effects is discussed in section 3.3. Finally, an overview of the
techniques for the regularization of the problem is given in section 3.4.

3.1. Elastic material response

In this section we consider constitutive relations which describe the behavior of a body
consisting of a non-disipative (elastic) material. Following the discussion in the previous
chapter, the response function of a stress tensor is obtained from the free energy function
(see (2.173)), which is a thermodynamic potential for σ. Such material is referred to as
hyperelastic.

3.1.1. Elastic constitutive law

Motivated by the case of isothermal elastic deformations it is advantageous to employ sim-
plified notation introducing the Helmholtz free-energy function per unit reference volume
Ψ rather then per unit mass ψ. They are related to each other by

Ψ := ρ0 ψ, (3.1)

resulting in the following expression for the stress tensor

σ :=
∂Ψ

∂ε
. (3.2)

Let us consider the strain state ε(X, t) = ε0 at certain time t = t∗. Denoting the strain
increment ∆ε, one can perform linearization of the stress tensor about the strain state ε0
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using the Gâteaux-derivative 1

Lσ = σ0 +Dσ(ε)(∆ε) = σ0 +
∂2Ψ

∂ε ∂ε

∣∣∣∣
ε0

: ∆ε. (3.3)

Furthermore, one refers to the second derivative term as a hyperelastic material tensor, which
can be seen as a measure of the curvature of the free energy with respect to strains

C(ε) :=
∂2Ψ

∂ε ∂ε
, C =

∂2Ψ

∂εij ∂εkl
ei ⊗ ej ⊗ ek ⊗ el. (3.4)

In view of (3.4) relation (3.3) can be written as

Lσ = σ0 + C(ε0) : ∆ε. (3.5)

Although the free-energy function in the general case presented above results in the elastic
material tensor dependent on strains, such forms are rarely used in small deformation theory
(models of that kind are presented for example in Lade and Nelson (1987); Duncan and
Chang (1970)). The vast majority of work is done employing free-energy function that
leads to linear relation between the stress and strain tensor, so that (3.5) becomes

σ = σ0 + C : ∆ε. (3.6)

Assuming that the linearization is performed around the the reference (undeformed) state
(ε0 = 0), the strain increment becomes equal to the linearized strain tensor itself, ε = ∆ε.
Additional assumption of an unstressed reference state (σ0 = 0) leads finally to

σ = C : ε. (3.7)

The corresponding form of free-energy reads

Ψ =
1

2
ε : C : ε ⇒ Ψ =

1

2
Cijkl εij εkl. (3.8)

Under the assumption of sufficiently smooth free energy, the order of partial derivation can
be exchanged by Clairaut’s theorem, which results in the so-called major symmetry of the
elastic tensor

Cijkl = Cklij. (3.9)

In addition, the symmetry of the strain tensor imposes the so-called minor symmetry property
of the elastic tensor

Cijkl = Cjikl = Cjilk = Cijlk. (3.10)

Hence, the number of independent components of the elastic material tensor has reduced
from original 81 to 21 in general case of anisotropic elasticity.
Let us now consider a linear isotropic material. A requirement of an invariant response
σ under arbitrary rotations of material particle reduces further the number of independent
components to two, cf. Başar and Weichert (2000). As a result one obtains the constitutive
law for a Hookean material

σ = λ tr ε I + 2µ ε, (3.11)
1For details on linearization and the Gâteaux-derivative see the section A.1.
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involving the Lamé material constants λ and µ . The free-energy attains in the present case
the form

Ψ =
λ

2
(tr ε)2 + µ ε : ε ⇒ Ψ =

λ

2
εii + µ εij εij (3.12)

Apart from Lamé constants, there are several material parameters associated with the linear
elastic material behavior. But among them only two can be specified independently. The
relation between the material parameters used within this thesis, i.e. the Young modulus E,
the shear modulus G, the Poisson (transverse contraction) ratio ν and the bulk modulus K
is given by2

E =
µ (3λ+ 2µ)

λ+ µ
ν =

λ

2 (λ+ µ)
K = λ+

2

3
µ

µ =
E

2 (1 + ν)
= G λ =

E ν

(1 + ν) (1− 2 ν)
K =

E

3 (1− 2 ν)
.

(3.13)

In view of (3.12) and (3.8), the fourth-order elastic material tensor C is expressed as

C = λ I⊗ I + 2µ I
⇒ C = [µ (δilδjk + δikδjl) + λ δijδkl] ei ⊗ ej ⊗ ek ⊗ el. (3.14)

The fourth-order identity tensor I in (3.14) is defined as

I =
1

2
(δilδjk + δikδjl) ei ⊗ ej ⊗ ek ⊗ el. (3.15)

Motivated by the decomposition of the stress tensor (relation (3.11)) into its spherical (sphσ)
and deviatoric (devσ) parts

σ = sphσ + devσ, (3.16)

sphσ =
1

3
(σ : I) I = K tr ε I, (3.17)

devσ = σ − sphσ = 2G dev ε, (3.18)

and the formulation of C involving the bulk modulus K and the shear modulus G

C = K I⊗ I + 2G

(
I− 1

3
I⊗ I

)
⇒ C =

[
G

(
δilδjk + δikδjl −

2

3
δijδkl

)
+K δijδkl

]
ei ⊗ ej ⊗ ek ⊗ el, (3.19)

the fourth-order elastic material tensor can be alternatively decomposed into two parts, cf.
Başar and Weichert (2000)

C = sph C + dev C, (3.20)

which are obtained as

sph C = K I⊗ I,

dev C = 2G

(
I− 1

3
I⊗ I

)
. (3.21)

2Further relations between usually used elasticity constants can be found in Başar and Weichert (2000); Stein
and Barthold (1996); Kuhl and Meschke (2003)
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This form has advantages in the formulation of the deviatoric plasticity since it results in the
direct decomposition of the stress tensor into a spherical part and a deviatoric part

sphσ = sph C : sph ε

devσ = dev C : dev ε. (3.22)

3.2. Inelastic material response

In this section we consider constitutive relations which describe the behavior of a body
consisting of a dissipative (inelastic) material. The proper explanation of the underlying
processes and the macroscopic material behaviour requires a consideration of some micro-
structural features, which is still very demanding task. Hence, in common praxis one utilizes
so-called phenomenological models which are focused on the description of the macroscopic
behavior of a material. This task is accomplished by introduction of new state variables that
are supposed to describe aspects of the internal material structure associated with the ir-
reversible (dissipative) effects. Their precise physical interpretation is often less relevant
and they are not observable or controllable. As a consequence, internal variables can be
identified in the course of phenomenological experiments, but this identification merely re-
flects macroscopic description assumptions used in their definition. That poses an additional
problem: the evolution of internal variables, which is strongly connected to the history of
deformation, has to be specified in a way consistent with the physical laws derived in chap-
ter 2. In particular the internal dissipation Dint has to satisfy Clausius-Planck inequality
(2.181). This condition can be automatically fulfilled introducing a dissipation potential
dependent on the rates of internal variables, which is a subject of the following section.

3.2.1. Dissipation potential and generalized standard material

The discussion in this section is based on the concept of the so-called generalized standard
material, introduced in Halphen and Nguyen (1975), which covers a number of inelastic
material behaviors. The evolution of internal (inelastic) variables is governed by two po-
tentials: the Helmholtz free-energy Ψ(ε,P ) and the dissipation potential J(Ṗ ) (see e.g.
Hackl and Fischer (2008); Lorentz and Benallal (2005); Carstensen et al. (2002)). Restrict-
ing our attention to the case of rate-independent material behavior, the dissipation potential
is specified in the form

J(Ṗ ) = sup
Q

[
Q : Ṗ − IK(P ,Q)

]
. (3.23)

The quantity IK represents the characteristic function of a certain domain

IK(x) =

{
0 if x ∈ K
+∞ if x /∈ K ,

(3.24)

with the domain K being defined through the set of m convex functions called inelastic
constraints

K = {Q | φi(P ,Q) ≤ 0, i = 1, ...,m} . (3.25)
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As it was discussed in section 2.4.1, the double contraction in (3.23) is to be understood as
the scalar product of Ṗ with a similarly structured object and interpreted accordingly. The
relations (3.23 - 3.25) are one of the possible formulations of the minimum principle for the
dissipation potential, cf. Hackl and Fischer (2008).
Restricting ourselves to the isothermal case and employing the Helmholtz free-energy func-
tion per unit reference volume Ψ (3.1), the response function forQ becomes

Q := − ∂Ψ

∂P
. (3.26)

From the definition of the dissipation potential (3.23) it is obvious that within the classi-
cal concept of generalized standard medium the inelastic constraints (3.25) depend solely
on the lists of internal variables P and their thermodynamic conjugates Q. This require-
ment poses a severe restriction, since it excludes dependence on strain or stress tensors,
which is a necessary requirement in the description of materials experiencing unsymmet-
ric response with respect to tension and compression (e.g. tension sensitive materials like
concrete, rocks etc.). However, following the discussion in Hackl and Fischer (2008), it is
possible to include the dependence of the characteristic function IK on the strain tensor as a
parameter IK =IK(P ,Q, ε) using the definition of some (possibly all) inelastic constraints
φi = φi(P ,Q, ε). A resulting extended dissipation potential reads

J(Ṗ ) = sup
Q

[
Q : Ṗ − IK(P ,Q, ε)

]
, (3.27)

leading to a (possibly multiple) constrained optimization problem, cf. Simo and Hughes
(1998), whose solution are the evolution equations for the internal variables

Ṗ =
m∑
i=1

λ̇i
∂φi
∂Q

, (3.28)

subjected to corresponding Kuhn-Karush-Tucker optimality conditions

λ̇i ≥ 0, φi ≤ 0, λ̇iφi = 0, ∀ i = 1, ...,m. (3.29)

From the conditions (3.29) one can define the set of indices of active inelastic constraints

Sact =
{
j ∈ 1, ...,m | φj = 0, λ̇j > 0

}
, (3.30)

which can be used to modify the relation (3.28) into

Ṗ =
∑
j∈Sact

λ̇j
∂φj
∂Q

. (3.31)

Relations (3.29)-(3.31) constitute the differential-algebraic system of equations driving the
evolution of internal variables and therefore closing the formulation of the problem.

Let us consider the state ε(X, t) = ε0 and P (X, t) = P 0 at certain time t = t∗. Denoting
the increments of strain and internal variable list ∆ε and ∆P respectively, one can perform
linearization of the stress tensor about the state ε0, P 0 using the Gâteaux-derivative 3

Lσ = σ0 + Dσ(ε,P )(∆ε) + Dσ(ε,P )(∆P ) =

σ0 +
∂2Ψ

∂ε ∂ε

∣∣∣∣
ε0,P 0

: ∆ε +
∂2Ψ

∂ε ∂P

∣∣∣∣
ε0,P 0

: ∆P . (3.32)

3For details on linearization and the Gâteaux-derivative see the section A.1.
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In the case that the evolution of inelastic variables take place we have from (3.29) φj =
0 ∀ j ∈ Sact and therefore the consistency condition

∆φj =
∂φj
∂P

: ∆P +
∂φj
∂Q

: ∆Q +
∂φj
∂ε

: ∆ε = 0 ∀ j ∈ Sact (3.33)

has to be fulfilled. In view of (2.176) and (3.1), the incrementation of the list Q attains the
form

∆Q = − ∂2Ψ

∂P ∂P
: ∆P − ∂2Ψ

∂P ∂ε
: ∆ε, (3.34)

which, taking into consideration relation (3.31), allows to express the consistency condition
as

∆φj =
∑
k∈Sact

∆λk

(
∂φj
∂P

:
∂φk
∂Q
− ∂φj
∂Q

:
∂2Ψ

∂P ∂P
:
∂φk
∂Q

)
+

(
∂φj
∂ε
− ∂φj
∂Q

:
∂2Ψ

∂P ∂ε

)
: ∆ε = 0 ∀ j ∈ Sact. (3.35)

Collecting the coefficients multiplying incrementation of inelastic consistency parameters
∆λk into a matrix

Gjk =
∂φj
∂P

:
∂φk
∂Q
− ∂φj
∂Q

:
∂2Ψ

∂P ∂P
:
∂φk
∂Q

(3.36)

and inverting it

Gjk = (Gjk)
−1 , (3.37)

one can solve (3.35) for the increments of the inelastic consistency parameters

∆λj =
∑
k∈Sact

Gjk ·
[(

∂φk
∂Q

:
∂2Ψ

∂P ∂ε
− ∂φk

∂ε

)
: ∆ε

]
. (3.38)

In view of (3.38) and (3.31) the linearization of the stress tensor (3.32) becomes

Lσ = σ0 +
∂2Ψ

∂ε ∂ε
: ∆ε

+
∑
j∈Sact

∑
k∈Sact

Gjk

[(
∂2Ψ

∂ε ∂P
:
∂φj
∂Q

)
⊗
(
∂φk
∂Q

:
∂2Ψ

∂P ∂ε

)
−
(

∂2Ψ

∂ε ∂P
:
∂φj
∂Q

)
⊗ ∂φk

∂ε

]
: ∆ε. (3.39)

Obviously, one can relate increments of the stress tensor to increments of the strain tensor
in a manner analogous to the linear theory (3.6)

Lσ = σ0 + CIN(ε0,P 0) : ∆ε, (3.40)

utilizing the so-called inelastic (algorithmic) tangent operator in the form

CIN =
∂2Ψ

∂ε ∂ε
+
∑
j∈Sact

∑
k∈Sact

Gjk

[(
∂2Ψ

∂ε ∂P
:
∂φj
∂Q

)
⊗
(
∂φk
∂Q

:
∂2Ψ

∂P ∂ε

)
−
(

∂2Ψ

∂ε ∂P
:
∂φj
∂Q

)
⊗ ∂φk

∂ε

]
(3.41)
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In general, the tangent operator CIN is not going to be symmetric. Hence, very appealing
symmetry property of generalized standard material, cf. Hackl (1997); Lorentz and Benallal
(2005), is lost with the introduction of the explicit dependence of the elastic range on the
strain tensor. That is clearly a drawback in numerical implementation of material models
adopting this assumption. However, the realistic description of the macroscopic behavior of
a wide range of materials is only possible if the dependence of yield functions on the strain
is taken into account.

3.2.2. Damage material model

One defines damage as a modification of any material physical property due to the pres-
ence or the growth of defects (microcracks, voids, delamination etc.). Continuum damage
models characterize, represent and model at the macroscopic scale the effects of distributed
defects and their growth on the material behavior by a set of continuous damage variables.
According to the pretty wide and abstract definition of the phenomena they describe, there
is a variety of damage variables used in literature, ranging from scalars over first-, second-,
forth- up to eighth-order tensors. A survey on this subject can be found in Skrzypek and
Ganczarski (1999).
The evolution of damage, that means nucleation of new microcracks resulting in distributed
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Figure 3.1.: Illustration of the isotropic damage assumption

microcracking, on the one hand, and propagation (growth) of already existing microcracks,
on the other hand, induces anisotropy even in the initially isotropic materials. In order to
take the anisotropic effects of the damage evolution into account, one has to introduce ten-
sorial variables, e.g. Cordebois and Sidoroff (1982); Carol et al. (2001a,b); Govindjee et al.
(1995); Chaboche (2003). However, in a lot of problems it is sufficient, at least from the
phenomenological point of view, to assume that the development of damage does not affect
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material isotropy. The Figure 3.1 illustrates such idealized situation: either the microcracks
are randomly oriented so that no preferable direction exists or the microvoids have spherical
shape. In these cases scalar damage variables adequately describe the local state of a dam-
aged material. Based on the Figure 3.1, two classical interpretations of the scalar damage
variable can be given. The first one (cf. Rabotnov (1968) ) represents the ratio between the
area dAD of the intersection of all microcracks and microvoids with the total area dA of
the plane section D = dAD/dA. The second one (cf. Gurson (1977)) represents the current
volume fraction of the voids in the representative volume elementD = dVP/dV . From both
definitions follows D ∈ [0, 1], where D = 0 stands for the undamaged material and D = 1
represents complete loss of integrity. For further details on the subject of continuum dam-
age mechanics, one is referred to e.g. Lemaitre and Chaboche (1988); Krajcinovic (2002);
Skrzypek and Ganczarski (1999).

In order to take isotropic damaging process into account the Helmholtz free-energy function
of an elastic material (3.8) is modified in the form

Ψ =
1

2
f(d) (ε : C : ε) + g(d). (3.42)

The scalar variable d measures the degree of the material stiffness loss (reduction of the
Young‘s modulus, see Ju (1990))

f(d) =
Ec
E0

, (3.43)

where Ec stands for the current effective Young‘s modulus (or better named secant stiffness
modulus, cf. Willam (2002)) and E0 represents its initial value. Strictly speaking, the initial
material always contains some defects, but it is assumed that these are accounted for in the
virgin material properties. The formulation (3.42) unifies the so-called postulate of strain
equivalence (Chaboche (1984)) with the postulate of energy equivalence (Cordebois and
Sidoroff (1982)), which could be restored for the specific forms of f(d). Moreover, it allows
for generalization of the damage variable d in the sense that it does not have to be restricted
to the interval [0, 1] any more. From the relation (3.43) one obtains the condition that has to
be met by the damage softening function f(d): it should be at least twice differentiable and
has to satisfy the conditions

f(d) : (0, d∞)→ [0, 1) | {f(0) = 1, f(d∞) = 0} . (3.44)

These conditions assure pure elastic behaviour of the undamaged material d = 0 and the
complete material stiffness loss in the case limiting case d = d∞. Depending on the def-
inition of the damage variable, its domain interval can be bounded from above by some
constant value d ∈ <+ (e.g. d∞ = 1) or can be unbounded as well (d∞ → ∞). The lists
of internal variables and their thermodynamic conjugates (3.26) involved in the formulation
becomes trivial in this case

P = {d} , Q = {ηd} . (3.45)

In view of (3.45) and (3.42) the constitutive relations for the stress tensor σ and the thermo-
dynamic driving force ηd become

σ = f(d) C : ε, ηd = −1

2
f ′(d) (ε : C : ε)− g′(d). (3.46)
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The dissipation potential (3.27) specified for the present case reads

J(Ṗ ) = sup
ηd

[
ηd ḋ − IK(d, ηd, ε)

]
. (3.47)

In order to complete the conjugate potential J(Ṗ ), the set of inelastic constraints defining an
elastic domain IK (relations (3.23) and (3.25)) has to be specified. Furthermore, a softening
function f(d) and the damage potential g(d) have to be given. That task is accomplished in
the following part of this section.

Damage models

The first damage model used in this thesis is denoted as damage model I and employs
an energetic threshold condition, whose variances are used by e.g. Lorentz and Benallal
(2005); Simo and Ju (1987); Lorentz and Andrieux (2003); Liebe et al. (2001); Dimitrijević
and Hackl (2008).

The model quantities according to the consideration in sections 3.2.1 and 3.2.2 are summa-
rized in Table 3.1. In addition, the material parameter r1 represents the threshold value that
triggers damage evolution. Apart from the specification of the model quantities, Table 3.1
contains the plots of the initial threshold surfaces in both principal strain and principal stress
space as well as a stress vs. strain diagrams obtained for the monotonic uniaxial tension and
compression put together for comparison. This model belongs to the category of generalized
standard materials, cf. Halphen and Nguyen (1975); Hackl (1997), and therefore is partic-
ularly suitable for subsequent analysis as well as numerical implementation. However, due
to its energetic formulation (see the plots in Table 3.1), it does not distinguish between the
loading in tensile and compressive regime. That is a significant drawback in the modeling
of concrete and rock material, which exhibit great sensitivity of their mechanical behavior
to pressure, resulting in a dramatically lower strength in tension than in compression.

To resolve the problem, a formulation of the threshold condition dependent on the norm of
the positive part of the strain tensor

ε+ =
3∑
i=1

1

2
(εi + |εi|) ni ⊗ ni =

3∑
i=1

1

2
(εi + |εi|)N i (3.54)

is introduced in Mazars and Pijaudier-Cabot (1989) and afterwards employed by e.g. Peer-
lings et al. (1998); Peerlings (1999); Peerlings et al. (2004). In the relation (3.54) εi stands
for the eigenvalues of the strain tensor, while ni and N i stand for the corresponding eigen-
vectors and eigenbases.4 Thermodynamically consistent variance of the Mazar’s model is
developed by Nedjar (2001) and subsequently used by e.g. Makowski et al. (2006); Dimitri-
jević and Hackl (2008). Its variance is summarized in Table 3.2 and it is denoted in sequel as
damage model II. Model parameter r1 represents the damage threshold, while the parameter
a1 controls the rate of softening. The inelastic tangent modulus of the model is presented
in the relation (3.53) and attains symmetric form only in the case where all principal strains
are positive. The Heaviside function

H(εi) =

{
0| εi < 0
1| εi ≤ 0

(3.55)

4For details on spectral decomposition of a second order tensor see the section A.3.2.
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Damage model I

(1) Threshold function φd softening function f(d) and damage potential g(d):

φd := ηd − r1 ≤ 0, f(d) = e−d, g(d) = 0 (3.48)

(2) Initial damage threshold surface in principal strain (left) and principal stress space (right):
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0
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0
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0
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0

Σ2

0
Σ3

0

Σ1

0

Σ2

(3) Stress tensor σ and the thermodynamic driving force ηd:

σ = e−d C : ε, ηd =
1

2
e−d (ε : C : ε) (3.49)

(4) Combined stress-strain curves in uniaxial tension and compression:

�0.0010 �0.0005 0.0005 0.0010

Ε11

�3

�2

�1

1

2

3Σ11

L
0

L
0

(5) Inelastic tangent operator:

CIN = e−d
(

C − 1
1
2

(ε : C : ε)
(C : ε)⊗ (C : ε)

)
(3.50)

Table 3.1.: Summary of the damage model I
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Damage model II

(1) Threshold function φd softening function f(d) and damage potential g(d):

φd := ηd −
1

2

(
ε− : C : ε− + ε+ : C : ε− + ε− : C : ε+

)
≤ 0,

f(d) = (1− d)2, g(d) =
1

a1

r1
1

(1− d)a1
(3.51)

(2) Initial damage threshold surface in principal strain (left) and principal stress space
(right):
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0Σ1
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(3) Stress tensor σ and the thermodynamic driving force ηd:

σ = (1− d)2 C : ε, ηd = (1− d) ε : C : ε− r1

(1− d)a1+1
(3.52)

(4) Combined stress-strain curves in uniaxial tension and compression:

a1= 0.05
a1=0.102
a1=0.198
a1=0.338
a1=0.522
a1= 0.75
a1=1.022
a1=1.338
a1=1.698
a1=2.102
a1= 2.55
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L
0

L
0

(5) Inelastic tangent operator:

CIN = (1− d)2 C − 4(1− d)2

ε+ : C : ε+ + r1 (a1+1)
(1−d)a1+2[

(C : ε)⊗

(
3∑
i=1

H(εi)
(
N i : C : ε+

)
N i

)]
(3.53)

Table 3.2.: Summary of the damage model II
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assures that only eigenbases characterized by positive eigenvalues take part in the construc-
tion of the inelastic tangent. The Table 3.2 comprises, in addition, plots of the initial thresh-
old surface in both principal strain and principal stress space as well as stress-strain diagrams
obtained by monotonic uniaxial tension and compression tests. These results confirm the
ability of the damage model II to describe the strength dependence on pressure. However,
that capability is limited by the fact that the threshold is defined solely by one parameter. In
order to demonstrate the weakness, the threshold value r1 in (3.52) is calibrated to yield the
correct strength in the uniaxial tensile test, i.e.

r1 =
f 2
t (1− ν)

E (1− 2ν)(1 + ν)
. (3.56)

The degree of difference between the uniaxial tensile ft and compressive fc strengths is then
merely dependent on the value of Poisson’s ratio ν, cf. Nedjar (2001)

fc =
ft
ν

√
1− ν

2
. (3.57)

The typical values of Poisson’s ratio for e.g. concrete (0.15-0.21) and rocks like marble and
granite (0.2-0.3) result in lower than experimentally obtained compressive strength values.
To resolve this limitation, a dependence on at least two parameters has to be introduced, cf.
Comi (2001); Comi and Perego (2001); Peerlings (1999).

3.2.3. Plastic material model

A lot of materials loaded to a sufficiently high stress exhibit permanent deformation. Such
processes are described by the plasticity theory, whose phenomenological description relies
on the introduction of the irreversible strains in the modeling of the macroscopic behavior
of a material. The root of the permanent strains lays on the microscale level, e.g. disloca-
tion sliding and nucleation thus generating plastic slip along crystalline planes in metals, cf.
Lubliner (1997), sliding over one another of grains and particles in soil or wooden chips in
chipboard Müller (2006). In concrete and rocks the permanent deformation is due to several
mechanisms, the foremost of which are the opening and closing of cracks, reorientation of
the aggregate grains and pore collapse at high confinement, cf. Jirásek and Bazant (2002);
Vrech and Etse (2009).
Plastic deformation is irreversible and after unloading remains accumulated within the ma-
terial, thus leading to residual geometric distortion. A small illustration of the microscale
processes for metals, where the plastic deformation is the result slip on specific crystallo-
graphic planes in response to shear stress along these planes, and soil, where permanent
shearing deformation occurs due to sliding of the particles over one another is given in the
Figure 3.2. Due to different mechanisms on the microscale level, macroscopic behavior of
materials undergoing plastic deformation varies significantly. While the crystallographic
slip process in metals runs almost without volume change, sliding of particles and grains in
soil-like materials is connected to the volume changes due to loosening and reorientation of
the grain structure. The development of plastic strains in metals results in hardening (in-
crease of the strength) of the material due to interaction of the propagating dislocations, cf.
Kochman (2009). On the contrary, plastic deformation of soils, rock-like materials, wood
has softening (decrease of the strength) as a consequence, owing to disintegration of grain
structure (soil, wood) or opening of cracks (concrete, rocks). A detailed review on the theo-
retical and computational aspect of plasticity can be found in Hill (1950); Lubliner (1997);
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Figure 3.2.: Illustration of the microscale processes behind plastic strains

Simo and Hughes (1998); Han and Reddy (1999).
Assuming small strains, the total strain is decomposed into elastic εE and plastic εP parts

ε = εE + εP , (3.58)

so that the elastic strain is recovered after unloading. In order to account for plastic strains,
the Helmholtz free-energy function of an elastic material (3.8) is modified in the form

Ψ =
1

2
(ε − εP ) : C : (ε − εP ) + W (αP ). (3.59)

The plastic potential W (αP ) defines hardening or softening behavior of a material under
consideration as a function of a list of history-dependent variables αP . Based on relations
(3.58) and (3.59) a number of plasticity theories, like the classical ones of Rankine (1858);
Tresca (1864); Mohr (1900); von Mises (1913); Drucker and Prager (1952), can be utilized
in the description of a material response.

The consideration in the present thesis is restricted to the model based on the theory of von
Mises (1913), which is defined under assumption that no plastic volumetric strain occurs. In
view of the relations (3.19) and (3.20) which define volumetric-deviatoric split of the strain
and the elastic material tensors, respectively, free energy function commonly used in the
modeling of plasticity with isotropic hardening is obtained as

Ψ =
1

2
((tr ε I) : sph C : (tr ε I))

+
1

2
(dev ε− εP ) : dev C : (dev ε− εP ) + W (αP ). (3.66)

The inherent assumption of all plasticity theories that the elastic material tensor C remains
unaffected by plastic deformation is obvious from (3.66).
The lists of internal variables and their thermodynamic conjugates (3.26) involved in the
formulation becomes in this case

P = {εP , αP} , Q = {σP , ηP} . (3.67)
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Plastic model I

(1) Yield function φP and plastic potentials W (αP ):

φP :=
√
σP : σP − ηP ≤ 0, W1(αP ) = −r2 αP +

1

2
KH α2

P (3.60)

(2) Initial plastic yield surface in principal stress space:
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0Σ2

0

Σ3

0
Σ1

0Σ2

(3) Stress tensor σ and the thermodynamic driving forces σP and ηP :

σ = C : (ε − εP ) ,

σP = dev C : (dev ε− εP ) , ηP,1 = r2 − KH αP (3.61)

(4) Stress-strain curves in uniaxial tension:
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0

(5) Inelastic tangent operator:

CIN = C − 1

σP : dev C : σP −KH σP : σP
[(dev C : σP )⊗ (dev C : σP )] (3.62)

Table 3.3.: Summary of the plastic model I
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Plastic model II

(1) Yield function φP and plastic potential W (αP ):

φP :=
√
σP : σP − ηP ≤ 0,

W2(αP ) = −r2,∞ αP +
r2,0 − r2,∞

KH

(
1

KH αP − 1
− 1

)
(3.63)

(2) Initial plastic yield surface in principal stress space:
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(3) Stress tensor σ and the thermodynamic driving forces σP and ηP :

σ = C : (ε − εP ) , σP = dev C : (dev ε− εP ) ,

ηP,2 = r2,∞ +
r2,0 − r2,∞

(KH αP − 1)2
(3.64)

(4) Stress-strain curves in uniaxial tension:

KH = 0.

KH = 40.

KH = 80.

KH = 120.

KH = 160.
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(5) Inelastic tangent operator:

CIN = C − 1

σP : dev C : σP − 2KH
r2,0 − r2,∞

(KH αP − 1)3
σP : σP

[(dev C : σP )⊗ (dev C : σP )] (3.65)

Table 3.4.: Summary of the plastic model II
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In view of (3.45) and (3.42) the constitutive relations for the stress tensor σ and the thermo-
dynamic driving forces σP and ηP become

σ = C : (ε − εP ) = sph C : (tr ε I) + dev C : (dev ε− εP ) , (3.68)

σP = dev C : (dev ε− εP ) = devσ, ηP = −W ′(αP ). (3.69)

The dissipation potential (3.27) specified for the present case reads:

J(Ṗ ) = sup
σP ,ηP

[σP : ε̇P + ηP α̇P − IK(εP , αP ,σP , ηP , ε)] . (3.70)

In order to complete the conjugate potential J(Ṗ ), the set of inelastic constraints defining
an elastic domain IK (relations (3.23) and (3.25)) has to be specified, as well as the plastic
potential W (αP ).

The plastic model used in this thesis employs a von-Mises yield function, cf. von Mises
(1913). Two types of isotropic hardening and softening are investigated: a linear one in the
plastic model I and a nonlinear one in saturation form in the plastic model II. The model
quantities according to the consideration in sections 3.2.1 and 3.2.2 are summarized in Ta-
bles 3.3 and 3.4. The material parameter r2 of the linear hardening law represents the plastic
yield limit, while the parameters r2,0 and r2,∞ of the nonlinear hardening law characterize
the initial and the saturation value of the yield stress, respectively. Finally, the parameterKH

defines the rate of hardening. The term hardening is used here in generalized sense, denoting
both softening and hardening behavior. Softening laws are obtained for appropriate values
of material parameters, e.g. negative KH in the plastic model I or including r2,0 > r2,∞ in
the plastic model II.

Apart from the specification of the model quantities, Tables 3.3 and 3.4 contain the plot
of the initial yield surface in principal stress space and the expressions for the inelastic
tangents of the corresponding plastic models. Just like the damage model I, defined in
the previous section, the plastic models in the Tables 3.3 and 3.4 belong to the category
of generalized standard materials, cf. Halphen and Nguyen (1975); Hackl (1997), with
the very nice property of symmetric inelastic tangent (3.62), (3.65). The behavior of a
material described by the plastic models I and II in monotonic uniaxial tension tests and the
dependence upon hardening modulus KH is illustrated by resulting stress-strain diagrams.

3.2.4. Coupled damage-plastic material model

As it was discussed in the previous sections, plasticity and damage are dissipative material
behaviors that are attributed to distinct microstructural phenomena. Plastic deformation is
associated with dislocations along preferred slip planes or sliding over one another of grains
and particles, while damage is related to nucleation and growth of microvoids or microc-
racks. However, a lot of non-metallic materials, in particular under compressive loading,
develop both irreversible deformation as well as degradation of stiffness. In order to take
both phenomena into consideration coupled theories are developed, which can be separated
into two groups depending on the assumptions introduced in the modeling of coupling, cf.
Grassl and Jirásek (2006); Al-Rub and Voyiadjis (2009). One type of combination relies
on stress-based plasticity formulated in the effective (undamaged) space (e.g. Simo and
Ju (1987); Ju (1990); Lee and Fenves (1998); Makowski et al. (2006)), where the effective
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stress is defined as the average microscale stress acting on the undamaged material between
microdefects. Another type is based on stress-based plasticity in the nominal (damaged)
stress space (e.g. Ortiz (1985); Krätzig and Pölling (2004); Meschke et al. (1998) where the
nominal stress is defined as the macroscale stress acting on both damaged and undamaged
material. The later approach can be cast into a form involving the notion of damage strains
εd, cf. Meschke et al. (1998); Ibrahimbegović et al. (2003), while the former one leads to
the physical interpretation of undamaged material matrix prone to plastic deformation be-
tween microdefects. Such microdefects cause inevitably stress concentrations which can
exceed by large the average stress in the material matrix. The illustration involving a case of
spherical microvoids (Figure 3.3), which corresponds to the assumption of isotropic scalar
damage made in section 3.2.2, shows clearly the amplifying influence of the microcracks
on the actual ”plastic” stress σP . Hence, the formulation of plasticity in the effective space
describes the actual state of material more accurately, and is therefore favourable, cf. Ols-
son and Ristinmaa (2003). An additional advantage pointed out in Grassl and Jirásek (2006)
is that formulation in effective stress space fulfills a priori the local uniqueness conditions,
while these conditions put sometimes strict restrictions on the value of hardening parameter
in the formulation in nominal macroscopic stress space. Consequently, the effective stress
approach is followed in the formulation of coupled model.
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Figure 3.3.: Influence of microdefects on microscale stress

Assuming small strains, the decomposition of total strain in elastic εE and plastic εP parts
(3.58) and the forms of the free-energy function accounting for damage (3.42) and plastic
deformation (3.59), one can obtain the Helmholtz free-energy function of an material that
develops both irreversible deformation as well as deterioration of stiffness as

Ψ =
1

2
f(d) (ε − εP ) : C : (ε − εP ) + W (αP ) + g(d). (3.71)
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Restricting consideration to the case of purely deviatoric plasticity (3.66) it follows

Ψ =
1

2
f(d) ((tr ε I) : sph C : (tr ε I))

+
1

2
f(d) (dev ε− εP ) : dev C : (dev ε− εP ) + W (αP ) + g(d). (3.72)

The definition of the quantities involved in (3.71) and (3.72) is already given in sections
3.2.2 and 3.2.3. Hence, a free-energy function of a coupled material model merges the
damage and plastic one by replacing the elastic material tensor C in the plastic model with
the reduced one from the damage model. In addition, both plastic (W (αP )) and damage
(g(d)) potentials are included. Strictly speaking, one should consider an interaction between
the micromechanical processes behind damage and plasticity (Figure 3.3). That will lead to
the introduction of an additional coupling potential which is dependent on actual material.
However, in the scope of this thesis we restrict ourselves to the consideration of uncoupled
potentials only.
The lists of internal variables and their thermodynamic conjugates (3.26) involved in the
formulation becomes

P = {d, εP , αP} , Q = {ηd,σP , ηP} . (3.73)

In view of (3.72) and (3.73) the constitutive relations for the stress tensor σ and the thermo-
dynamic driving forces ηd, σP and ηP become

σ = f(d) C : (ε − εP )

= f(d) sph C : (tr ε I) + f(d) dev C : (dev ε− εP ) , (3.74)

σP = f(d) dev C : (dev ε− εP ) = devσ, ηP = −W ′(αP ), (3.75)

ηd = −1

2
f ′(d) (ε − εP ) : C : (ε − εP ) − g′(d). (3.76)

The dissipation potential (3.27) specified for coupled model reads

J(Ṗ ) = sup
ηd,σP ,ηP

[
ηd ḋ + σP : ε̇P + ηP α̇P − IK(d, εP , αP , ηd,σP , ηP , ε)

]
. (3.77)

In order to complete the conjugate potential J(Ṗ ), the set of inelastic constraints defining an
elastic domain IK (relations (3.23) and (3.25)) has to be specified, as well as plastic W (αP )
and damage g(d) potentials .

Coupled models used in sequel combine the energetic damage threshold condition (dam-
age model I) with the von-Mises plastic yield condition accounting for isotropic hardening
(plastic models I and II). According to the type of plastic hardening (softening), one obtains
two coupled models: the one including linear plastic hardening (denoted as coupled model I)
and the one based on nonlinear saturation type plastic hardening (denoted as coupled model
II). Both models involve exponential damage softening. The model quantities according to
consideration in sections 3.2.1 and 3.2.2 are summarized in Tables 3.5 and 3.6. The material
parameters of the models are already defined in sections 3.2.2 and 3.2.3 and are not going
to be repeated here.
The plot of initial plastic yield and damage threshold surfaces in principal stress space in
the Tables 3.5 and 3.6 represents one of the possible combinations, dependent on the actual
values of the corresponding limits. In the current plot the yield stress is chosen such that
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Coupled damage-plastic model I

(1) Yield function φP , damage threshold function φd, damage and plastic potentials g(d)
and W (αP ) and damage softening function f(d):

φP :=
1

f(d)

√
σP : σP − ηP ≤ 0, φd := ηd − r1 ≤ 0,

f(d) = e−d, g(d) = 0, W1(αP ) = −r2 αP +
1

2
KH α

2
P (3.78)

(2) Initial plastic and damage limit surfaces in principal stress space:
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(3) Stress tensor σ and the thermodynamic driving forces σP , ηP and ηd:

σ = e−d C : (ε − εP ) , ηd =
1

2
e−d (ε − εP ) : C : (ε − εP ) ,

σP = e−d dev C : (dev ε− εP ) , ηP,1 = r2 − KH αP (3.79)

(4) Stress-strain curves in uniaxial tension:
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L
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L
0

Table 3.5.: Summary of the coupled damage-plastic model I
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Coupled damage-plastic model II

(1) Yield function φP , damage threshold function φd, damage and plastic potentials g(d) and
W (αP ) and damage softening function f(d):

φP :=

√
σP : σP
f(d)

− ηP ≤ 0, φd := ηd− r1 ≤ 0, f(d) = e−d (3.80)

g(d) = 0, W2(αP ) = −r2,∞ αP +
r2,0 − r2,∞

KH

(
1

KH αP − 1
− 1

)
(3.81)

(2) Initial plastic and damage limit surfaces in principal stress space:
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(3) Stress tensor σ and the thermodynamic driving forces σP , ηP and ηd:

σ = e−d C : (ε − εP ) , ηd =
1

2
e−d (ε − εP ) : C : (ε − εP ) , (3.82)

σP = e−d dev C : (dev ε− εP ) , ηP,2 = r2,∞ +
r2,0 − r2,∞

(KH αP − 1)2
(3.83)

(4) Stress-strain curves in uniaxial tension:

KH = 0.
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Table 3.6.: Summary of the coupled damage-plastic model II
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Coupled damage-plastic model I

(5) Inelastic tangent operator:

CIN = e−d C −
H(φd) e

−d [(C : (ε − εP ))⊗ (C : (ε − εP ))]
1
2

(ε − εP ) : C : (ε − εP )
+

H(φd) H(φP ) e−d [(C : (ε − εP ))⊗ (dev C : σP )]
1
2

(ε − εP ) : C : (ε − εP )
(

1
e−d
σP : dev C : σP − KH σP : σP

) −
H(φP ) [(dev C : σP )⊗ (dev C : σP )]

1
e−d
σP : dev C : σP −KH σP : σP

(3.84)

Table 3.7.: Inelastic tangent operator of the coupled damage-plastic model I

Coupled damage-plastic model II

(5) Inelastic tangent operator:

CIN = e−d C −
H(φd) e

−d [(C : (ε − εP ))⊗ (C : (ε − εP ))]
1
2

(ε − εP ) : C : (ε − εP )
+

H(φd) H(φP ) e−d [(C : (ε − εP ))⊗ (dev C : σP )]
1
2

(ε − εP ) : C : (ε − εP )

1(
1
e−d
σP : dev C : σP − 2KH

r2,0 − r2,∞

(KH αP − 1)3
σP : σP

) −
H(φP ) [(dev C : σP )⊗ (dev C : σP )]

1
e−d
σP : dev C : σP − 2KH

r2,0 − r2,∞

(KH αP − 1)3
σP : σP

(3.85)

Table 3.8.: Inelastic tangent operator of the coupled damage-plastic model II
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plastic deformation occurs as first in the uniaxial tension test, followed by the evolution of
damage which starts slightly later. The resulting stress-strain diagram are included in the
Tables 3.5 and 3.6 as well, providing an insight on the effect of plastic hardening modulus
KH on the material response. Finally, the expressions for the inelastic tangents of the cor-
responding coupled models are presented in the Tables 3.7 and 3.8. Unlike the ”ingredient”
models, coupled damage-plastic models do not posses symmetric inelastic tangents (3.84),
(3.85) due to formulation of the plastic yield functions in the effective stress space.

In order to illustrate elementary differences in the material response modeled by damage,
plastic and coupled models a uniaxial tension tests are performed. In the first part of the
test the test sample is loaded up to a strain value which is clearly in the inelastic range.
The sample is then fully unloaded (up to zero stress). Material parameters of all models are
calibrated such that the inelastic processes start at the same point (the same value of strain).
The curves presented in Figure 3.4 correspond to plastic model I (Table 3.3), damage model
I (Table 3.1) and their combination, coupled model I (Table 3.5). In the case of plastic model
the total strain is, owing to the assumptions of small deformation, decomposed into elastic
and plastic parts, relation (3.58). The elastic part of strain is recovered after unloading,
with the stiffness (elastic modulus E) being unaffected by plastic deformation. The plastic
part of strain (εP ) remains unchanged after unloading, resulting in observable permanent
deformation. In contrary to the plastic model, the damage model does not affect strains,
but rather the elastic material tensor, represented by elastic modulus E, relations (3.42,
3.43). Hence, there is no residual deformation upon unloading. However, the unloading
part of the response curve is not defined by the initial elastic modulus E0 any more, but
rather by the damage-influenced secant elastic modulus Ec. The coupled model combines
both characteristic features of the ingredient models: residual strains upon unloading that
proceeds along the path determined through damage-affected secant stiffness (modulus Ec).
Consequently, the response of the coupled model resides in between the responses of plastic
and damage models, depending on the type of loading.

P

E
0 E

0

E
C1

E
C2

11

1

1 L
0

L
0

Figure 3.4.: Loading-unloading stress-strain curves of damage, plastic and coupled models



3.3. Localization 55

3.3. Localization

Utilization of material models with a softening phase is closely connected to the phe-
nomenon of localization. Localization is characterized by the fact that the deformation tends
to accumulate into narrow zones with high concentration of strains and in the development
of internal variables, while the rest of the structure experiences unloading. The width of
the localization zone is small, but finite and it is dependent on the material microstructure.
Hence, it can be considered as a material-specific quantity called internal material length,
determined by the size or spacing of dominant heterogeneities, cf. Jirásek (2002). Material
models based on classical continuum considerations, like the ones discussed in the previous
section, do not involve an internal material length and therefore fail to achieve an objective
description of strain localization. In order to illustrate this fact, we start with an elucidative
one-dimensional localization example.

3.3.1. One–dimensional example illustrating problems with an objective description
of strain localization

Let us consider a straight bar with a constant cross section A and total length L under
uniaxial tension, see Figure 3.5(a). The material behavior is described utilizing the damage
model I (Table 3.1), resulting in the stress-strain dependence presented in Figure 3.5(b). The
peak stress is developed at strain

ε0 =

√
2 r1

E
. (3.86)

Recalling the local form of the balance of linear momentum (2.124), under vanishing volume
forces one obtains that the stress state in the bar is homogeneous

∂σ11

∂X
= 0 ⇒ σ11(X) = σ = const =

P

A
, (3.87)

where P stands for the applied force and A for the cross-sectional area of the bar. The
resulting displacement of the right end of the specimen is denoted as u(X = L) = U . In
view of the relation (2.50) which defines the components of the strain tensor in terms of
displacement derivatives a compatibility condition∫ L

X=0

ε11 dx =

∫ L

X=0

ε dx = U, (3.88)

arises in the present one-dimensional case.

If the bar is monotonically loaded in tension the stress – strain relation remains linear up to
the critical value of strain remains smaller than a critical value ε0 defined in (3.86)

σ = E ε if ε < ε0. (3.89)

Above the critical value the stress becomes decreasing function of the strain

σ = e−d E ε if ε > ε0. (3.90)
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(b) Stress-strain curves resulting from the material model, development of damage zones in the
specimen and corresponding strain distribution

Figure 3.5.: Localisation of deformation in uniaxial tension test
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From the definitions of the damage threshold condition (3.48) and the damage driving force
(3.49) one obtains for the monotonic tensile loading

d = − ln

(
2 r1

E ε2

)
⇒ σ =

2 r1

ε
if ε > ε0. (3.91)

In the solution of the problem one has to consider two stages. In the first stage of the test
the response is linear elastic and therefore it follows from (3.89), (3.87) and (3.88) that the
the strain field is homogeneous and given by

ε(X) =
U

L
∀ X, (3.92)

which results in the following relation between the applied force and the measured displace-
ment at the right end of the specimen, Figure 3.5(a)

P =
E A U

L
. (3.93)

The relation (3.92) is valid up to displacement U0 = L ε0 at which the peak stress (and
consequently peak force) is reached, Figure 3.5(b). Then, stress cannot increase anymore
and the second stage starts.

At each material point stress can decrease either with increasing strain and evolving damage
(softening) or with decreasing strain (elastic unloading). That gives rise to the development
of two regions (possibly containing several subregions): the damaged one ΩD with cumula-
tive length LD and the elastic one ΩE with cumulative length LE = L− LD. This situation
is illustrated in the Figure 3.5(b), where the damaged subregions are colored in red, while
the elastic regions are colored in green. Relation (3.87) implies that the stress has to remain
homogeneous along the bar. However, every stress value between the peak one and zero
corresponds to two values of the strain: the one attained in damaged region εD and the one
realized in the elastic region εE

ε(X) =


σ

E
∀X ∈ ΩE

2 r1

σ
∀X ∈ ΩD

. (3.94)

Consequently, a piecewise constant distribution of strains is obtained, Figure 3.5(b). The
compatibility condition (3.88) results in

εE LE + εD LD = U. (3.95)

In view of (3.94) relation (3.95) becomes

LE
σ

E
+ LD

2 r1

σ
= U, (3.96)

and furthermore

LE
P

E A
+ LD

2 r1 A

P
= U. (3.97)

The global responses of the structure in terms of the normalized applied load P
A

versus the
displacement of the right end of the specimen U for several values of the normalized length
of the damaged zone LD

L
is presented in the Figure 3.5(a). For every value of the normalized
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Figure 3.6.: Post-peak displacement of the end of the specimen scaled with the elasticity
modulus (EŪ ) in dependence on the length of the damaged zone

load between the peak one and zero one can obtain displacement corresponding to a specific
value of LD (yellow points on the curves). Obviously, the response depends crucially on the
size of the damaged zone and may even exhibit a snap-back behavior. In order to illustrate
this possibility, a plot of the quantity

Ū = U − U0 = U − ε0L, (3.98)

where U0 stands for the displacement at limit of elastic behavior, is presented in the Figure
3.6. The black bold line in this figure represents the displacement equal to the one on the on-
set of inelastic behavior (U = U0). It can be observed that every length of the damaged zone
shorter than a half of the specimen results in snap-back behaviour (the part of the diagram
below the line Ū = 0). Due to the fact that the length of the damage zone remains undeter-
mined and can take any value between zero (corresponding to the limit case when the bar is
unloaded just before any softening occurs) and the total length of the bar (corresponding to
the limit case of uniformly damaged specimen), the discussed problem has infinitely many
solutions. Without knowing the size of the damage zone one can not decide which of these
solutions is the correct one. From the mathematical point of view, the problems involving
materials with softening phase become ill-posed after the onset of softening and there does
not exist a regular solution at all.
Taking into consideration small imperfections in geometry and material, the size of the
softening zone is going to be governed by the size of the region with minimum strength.
That region can be arbitrary small leading to the global response that tends to a pure elas-
tic unloading, see Figure 3.5(a). Such behavior of material models with softening phase
is particularly dangerous if numerical methods (e.g. FEM, Finite Difference Method) are
used for the approximation of the solution of the problem, since numerical round-off errors
act as imposed imperfections. Consequently, one obtains the solution governed solely by
the properties of the numerical approximation of the problem variables, which is going to
be illustrated later when we discus the implementation of material models within the finite
element method.
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3.3.2. Localization condition

In the one dimensional problems, localization occurs when the peak of the stress-strain
diagram is reached, independently of the specific constitutive model used. In two- or three-
dimensional problems the localization process is more complicated and one has to define
conditions under which the strain can localize in one or more narrow bands separated from
the remaining part of the body by weak discontinuity surfaces. The meaning of the adjective
weak is that the displacement field remains continuous but the strain can have a jump, cf.
Kuhl et al. (2000); Jirásek (2007).

n
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�
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�-dv

b

e1
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Figure 3.7.: Weak discontinuity surface in a deformed body

Let us consider a typical point PD of the discontinuity surface SD with the unit outward-
normal vector n, Figure 3.7, at the moment the strain continuity is lost. The body Ω is
split by the discontinuity surface into two disjoint parts Ω+ and Ω−. If we approach the
point PD on the surface SD separating Ω+ and Ω−, we obtain different limits for the fields
characterizing localization

ξ+ = lim
κ→0+

ξ (XD + κn) , ξ− = lim
κ→0+

ξ (XD − κn) . (3.99)

The jump in the corresponding fields is obtained as the difference between the values defined
in (3.99) and is denoted as [[ξ]], i.e.

[[ξ]] = ξ+ − ξ−. (3.100)

At the onset of localization, the current strain and stress are still continuous and the jump
appears only in their increments. However, these jumps cannot be completely arbitrary. Re-
calling the definition of the components of the stress tensor (2.97) and the Cauchy theorem
(2.102), it has to hold

∆σ+ · n = ∆σ− · n. (3.101)

Additionally, the continuity of the displacement field imposes the condition that the gradi-
ents of the displacement increments on different sides of the discontinuity surface have to
be rank-1 connected in the form(

∂(∆u)

X

)+

=

(
∂(∆u)

X

)−
+ ∆γmm⊗ n. (3.102)
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Hence, the jump in the gradients of the displacement increments is defined by the rank-
1 second order tensor dependent on the unit normal n on the surface SD, the so-called
polarization unit vector m and the magnitude of the jump ∆γm. The unit vectors n and m
correlate to the failure mode of the structure: if they are parallel (n = m) a tensile splitting
(mode I) is obtained, while the shear slip (mode II) results if they are perpendicular to each
other (n⊥m). In view of the definition of the linearized strain tensor (2.85) the relation
(3.102) can be rewritten as

∆ε+ = ∆ε− +
1

2
∆γm (m⊗ n+ n⊗m) . (3.103)

In order to find the necessary condition (Jirásek (2007)) for the strain localization, the in-
crements of strain and stress have to be connected to each other. For a given state at certain
time t = t∗, defined by ε(X, t) = ε0 and P (X, t) = P 0, one can relate increments of the
stress tensor to increments of the strain tensor by

∆σ = CTAN(ε0,P 0) : ∆ε, (3.104)

where CTAN can be identified as inelastic tangent CIN , relation (3.41), in the case the evo-
lution of inelastic processes takes place. In the case the elastic unloading does take place,
the tangent stiffness is simply equal to the secant stiffness at the current state

CTAN =


CIN(ε0,P 0) if ∆P 6= 0
∂2Ψ

∂ε ∂ε

∣∣∣∣
ε0,P 0

if ∆P = 0 .
(3.105)

In general, although the current state of the material is initially the same on both sides of
the initiating discontinuity, it is permitted that the evolution of internal variables progresses
differently. In particular, one side can experience softening, while the other experiences
elastic unloading. Hence, the tangent stiffness tensors can be different as well, leading to

∆σ+ =
(
CTAN

)+
: ∆ε+, ∆σ− =

(
CTAN

)−
: ∆ε−. (3.106)

In view of (3.106) and (3.103), the continuity of the stress vector (3.101) can be rewritten as

n ·
[(

CTAN
)+

:

(
∆ε− +

1

2
∆γm (m⊗ n+ n⊗m)

)]
=

n ·
[(

CTAN
)−

: ∆ε−
]
. (3.107)

Taking into consideration minor symmetry of the tangent tensor CTAN
ijkl = CTAN

ijlk , one arrives
after some manipulation at

∆γm

(
n ·
(
CTAN

)+ · n
)
·m = n ·

((
CTAN

)+ −
(
CTAN

)−)
: ∆ε−. (3.108)

This general equation can be significantly simplified if the tangent stiffness tensors on both
sides of the discontinuity are the same,

(
CTAN

)+
=
(
CTAN

)−
= CTAN , cf. Jirásek

(2007). Considering the fact that a discontinuity is obtained only if the magnitude of the
jump ∆γm > 0, the relation (3.108) in this case reduces to(

n · CTAN · n
)
·m = 0. (3.109)
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The second order tensor

Q = n · CTAN · n (3.110)

is the so-called localization (acoustic) tensor. At the initiation of a weak discontinuity is the
localization tensor singular

detQ = 0 (3.111)

and its zero eigenvalue is associated to the eigenvector parallel to the polarization vectorm.

From the mathematical point of view, singularity of the localization tensor indicates the so-
called loss of ellipticity of the governing system of differential equations which gives rise
to the development of bifurcation modes. In Jirásek (2007) it is shown by an example in-
volving damage model that (3.111) is stricter than (3.108). A similar statement regarding
plastic models can be found in Forest and Lorentz (2004). Therefore, the simplified analy-
sis based on the determinant of the localization tensor is fully sufficient. Since the tangent
stiffness CTAN is known for a given state, the relation (3.111) can be used to search for a
unit vector that leads to a singular localization tensor Q. A jump in the strain field across
a surface with the normal n can develop only in the case that the unit vector n satisfying
(3.111) exists. However, it is already stated that (3.111) represents the necessary local con-
dition for the development of a localized deformation. Whether it indeed develops in a body
depends on the state of the surrounding material and on the boundary conditions, cf. Forest
and Lorentz (2004). Nevertheless, the analysis of localization tensors can be used as an
important indicator of the occurrence of weak discontinuities.

3.4. Regularization strategies

It was already mentioned that classical continuum material models do not describe material
microstructure and consequently do not involve characteristic internal material length scales
into formulation. Whereas that property can rarely lead to problems in utilization of material
models involving hardening (e.g. in the case of non-associated plasticity formulations with
very low values of hardening parameter, cf. Kuhl et al. (2000)), it has devastating influence
on the reliability of the results obtained employing material models involving softening
effects (as it was illustrated in the one-dimensional example in section 3.3.1).

To achieve objective description of strain localization, one can follow several approaches
based on a general idea that the displacement field remains continuous in the whole domain.5

3.4.1. Fracture energy approach

One approach is to consider a smeared inelastic process, distributed uniformly within the
zone of a finite thickness li. Hence, the stress-strain softening law becomes the law connect-

5This is not the only possibility. Considering modeling of fracture and development of macroscopic cracks,
one has to permit jumps in the displacement filed. The strategies following this path include so-called
strong discontinuity approach, e.g. Oliver (2004); Jirásek (2000); Mosler (2005) and method-based X-
FEM, e.g. Möes et al. (1999); Belytschko et al. (2001); Sukumar et al. (2003)
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Figure 3.8.: Strain distribution in regularized continuum (left) and crack band (fracture en-
ergy) models (right)

ing the stress transmitted by the localization band to the average strain in that band. In order
to fulfill the requirement that all the points within the zone dissipate the same amount of en-
ergy, one has to modify the softening law. That is done by making the softening parameter
dependent on the fracture energy, cf. de Borst et al. (2004)

GC =

∫ ∫
σ dε(x) dx = li

∫
σ dε (3.112)

necessary for the opening of a crack of a unit area. It is evident from (3.112) that a length
scale is accounted for. The strain profile across the localization zone shows jumps charac-
teristic for the localization, Figure 3.8, which matches the material behaviour. However, a
stumbling block of the strategy is a length parameter li.
In order to circumvent the inherent property of common numerical approximation within
the finite element method that the element size represents at the same time the length scale
for the low-order-continuity approximation, one has to relate the material law (softening pa-
rameter) to numerical discretization (size of the elements). Moreover, this approach tweaks
artificially the material law to force the structural response to be almost independent (cf.
de Borst et al. (2004)) on the numerically introduced length parameter, but it does not change
the fact that the underlying differential system of equations losses its ellipticity. As a con-
sequence, the weak discontinuity surfaces still tend to align with numerical-method-specific
discretization (e.g. to follow the boundaries of the finite elements thus leading to mesh-
dependent development of the localized zone), cf. de Borst et al. (2004); Forest and Lorentz
(2004); Feenstra and de Borst (1995).

3.4.2. Regularized continuum models

When adhering to a continuum concept, the only way to avoid the ill-posedness caused by
the loss of ellipticity are various forms of enhanced continuum theories, which introduce
intrinsically internal material length. In such theories strain field remains continuous even
after the onset of localization, Figure 3.8. Moreover, the presence of an intrinsic length
parameter results in models that are not invariant with respect to spatial scaling, in contrast to
the classical models. As a consequence, regularized models are able to predict and describe
the so-called size effects (dependence of the nominal stress on the size on the structure),
cf. Fleck et al. (1994); Bažant and Jirásek (2002); Frantziskonis et al. (2001); Al-Rub et al.
(2007).
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In order to introduce the length scale into the model, one has to consider some form of non-
locality, i.e. one has to consider interactions of the point under consideration with the points
in its neighbourhood. The approach which is followed can be weakly non-local, typically de-
scribed by differential equations containing derivatives of different orders (therefore involv-
ing implicit dependence on the neighbourhood) or strongly non-local, typically described by
integro-differential equations (hence involving explicit dependence of the material response
on the state of the neighboring points), cf. Bažant and Jirásek (2002). According to the
character of the enhancement, regularization strategies can be classified into two groups,
cf. Jirásek (2002): the one relying on enhanced kinematic relations and the one relying on
enhanced constitutive relations.

Enhanced kinematic relations

The first strategy in the group of enhanced kinematic relations belongs to the category of
weakly non-local models and it is based on the introduction of rotational degrees of freedom
in addition to translational ones, leading to the so-called micropolar (Cosserat) continuum,
cf. Cosserat and Cosserat (1909); Mindlin and Tiersten (1962a); Toupin (1962); Saczuk
(1993). The characterization of deformation requires, besides the strain tensor, the knowl-
edge about an additional second order tensor called curvature tensor. As an result of the
enhanced kinematics one obtains unsymmetric stress and an additional (in general unsym-
metric too) so-called couple stress tensor from the balance relations for linear and angular
momentum. The constitutive relation relating the couple stress to the curvature has to be
supplemented, requiring the specification of additional material parameters which implic-
itly introduce the internal length. Hence, the utilization of this strategy requires significant
modification of the material model. Moreover, such modification influences elastic as well
as inelastic behavior of a material.

The second weakly non-local strategy in the group of enhanced kinematic relations retains
the displacement as the only independent kinematic field and introduces gradients of strain
(i.e. higher order gradients of the displacement field) into the constitutive relations, cf.
Toupin (1962); Mindlin and Tiersten (1962b); Aifantis (1999). The internal material length
is implicitly introduced through the coefficients multiplying higher order gradients. Exten-
sions in order to consider plastic material behaviour are presented in e.g. Aifantis (1984);
Zbib and Aifantis (1988a,b,c); Fleck and Hutchinson (1993); Fleck et al. (1994); Huang
et al. (1999, 2000). Due to existence of strain gradients, additional response functions for
couple stresses (which are work-conjugates of the strain-gradient field) have to be defined.
Consequently, equilibrium equations resulting from the balance of linear momentum have
to be modified as well as constitutive equations. In application to plasticity the plastic yield
function has to be formulated in dependence on the couple stress as well. In addition, higher
order continuity (at least C1) of the displacement field is required, which is possible with-
out restrictions only in one-dimensional problems (see e.g. de Borst and Pamin (1996)). In
two- or three-dimensional problems C1 continuity is achievable only for special cases (as
it is done in de Borst and Pamin (1996), Zhou et al. (2002), Zervos et al. (2001)). Hence,
although the overall complexity of the modeling strategy is reduced in comparison to the
micropolar continua, significant modifications in material models are still required.
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Integral non-local models

The integral non-local strategy, which is categorized as strongly non-local introduces non-
local variables as the weighted averages of the local variables over a neighborhood of the
point under consideration, cf. Bažant and Jirásek (2002); Jirásek (2002). Internal material
length is explicitly introduced as a parameter that defines the size of the averaging zone.
Denoting a local field in the domain Ω as ξ(x), its non-local counterpart is defined as

ξ̄(x) =

∫
Ω

α(‖x− y‖) ξ(y) dy, (3.113)

where α(‖x− y‖) represents the non-local weight function, which is usually taken either
as Gaußfunction

α(r) =
1(

l
√

2π
)3 e

− r
2

l2 , (3.114)

or as Green function

α(r) =
1

(4π l r)
e
− r√

l , (3.115)

cf. Peerlings et al. (2001a); Jirásek and Rolshoven (2003), where the parameter l stands for
the internal length of the nonlocal continuum. The non-local variables obtained this way
replace the local counterparts in the constitutive equations.
Depending on the variables represented non-localy, enhancement of either kinematic or con-
stitutive relation is obtained. In the former case some strain measure is enhanced, leading
to non-local elasticity theories, cf. Kröner and Datta (1966); Edelen et al. (1971); Erin-
gen and Edelen (1972). Much more popular is the latter approach, where internal variables
or their thermodynamic conjugates are replaced in the constitutive relations by their non-
local counterparts. Applications to damage mechanics are presented in e.g. Pijaudier-Cabot
and Bažant (1988); Jirásek (1998); Comi (2001), while non-local plasticity can be found in
e.g. Eringen (1981); Svedberg and Runesson (1998); Jirásek and Rolshoven (2003). That
approach retains the balance equations and the kinematic relations, changing only the con-
stitutive law, which constitutes considerable simplification in the application of the theory
compared with micropolar or strain-gradient strategies. However, the application of non-
local integral models together with inelastic materials has the drawback that global averag-
ing procedure is required and consequently the resulting equations cannot easily be numer-
ically approximated.

Gradient enhanced models

The gradient strategies introduce higher order gradient terms (mostly Laplacian) of non-
local variables into the constitutive relations and belong to the group of weakly non-local
strategies. They can be considered as the differential counterpart of integral nonlocal formu-
lations. Moreover, first gradient models were derived from integral ones, see e.g. Mühlhaus
and Aifantis (1991); Peerlings et al. (2001b), expanding generic variable ξ(x) introduced in
(3.113) in Taylor-series around the material point x

ξ(y) = ξ(x) +
∂ξ

∂x
· (y − x) +

1

2

∂2ξ

∂x⊗ ∂x
: (y − x)⊗ (y − x) + · · · . (3.116)
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Inserting (3.116) into (3.113) and integrating, it follows that only the gradient terms of even
order remain due to the form of the weighting function (3.114). Truncating terms of higher
order than two results in

ξ̄(x) = ξ(x) + c(l)∇2ξ(x). (3.117)

Replacing the generic variable ξ(x) in the corresponding constitutive relations with the
right-hand side of (3.117) one introduces an internal length parameter (c(l)) into the model
thus regularizing it. However, not all gradient models can be derived from the non-local
ones in such straight-forward way, e.g. Nedjar (1996); Makowski et al. (2006); Voyiadjis
and Al-Rub (2005).
In general, models that involve explicit gradients (mostly Laplacian) of a certain problem
variable in the formulation of the constitutive relations are called explicit gradient models.
Their main advantage is that they can be formulated in thermodynamically consistent way
(e.g. Nedjar (1996, 2001); Liebe et al. (2001); Liebe and Steinmann (2001); Makowski
et al. (2006)) and offer simplification of the numerical treatment compared to non-local
models. However, the explicit presence of higher order gradients in the generic variable de-
mands higher-order continuity of its interpolation, which is, as we already discussed in the
consideration of strain-gradient theories, achievable only for special cases. Therefore one
has to resort to alternative methods for the calculation of the required gradients (for exam-
ple simplified, but still relatively complicated super-element strategy found in Al-Rub and
Voyiadjis (2005)), or to loosen the continuity requirements performing integration of the re-
sulting equations using mixed method (e.g. Dorgan (2006)), generalized principle of virtual
power (as in Nedjar (2001); Makowski et al. (2006)) or generalized principle of virtual work
(as in Liebe et al. (2001); Liebe and Steinmann (2001)). The drawback of integrated tech-
niques is that the description of the evolution of internal variables turns from a local system
of differential-algebraic equations into a boundary value problem with a-priory unknown
domain. Consequently, there emerge implementation difficulties related to the search for
the inelastic domain (as it was done i.e. in Liebe et al. (2001); Liebe and Steinmann (2001))
and enforcement of the interface conditions at the evolving boundary of inelastic region.

An alternative approach, leading to the so-called implicit gradient models, which is followed
by Peerlings et al. (1998); Peerlings (1999); Peerlings et al. (2001b); Simone et al. (2003)
in the field of damage modeling and by Engelen et al. (2003, 2006) in the field of plasticity
can be derived starting from the relation (3.117). Applying Laplace-operator on both sides,
one obtains

∇2ξ̄(x) = ∇2ξ(x) + c(l)∇4ξ(x). (3.118)

In view of (3.118) the relation (3.117) can be written, under assumption that the subtracted
coefficients multiplying terms of equal differential order are equal to zero, in the form

ξ̄(x)− c(l)∇2ξ̄(x) = ξ(x). (3.119)

The result is a Helmholtz-type differential equation for the non-local variable, which has to
be supplemented with an appropriate boundary conditions in order to obtain a well-posed
problem. Usually, a vanishing flux of the non-local variable across the boundary of a body
is employed, cf. Peerlings et al. (2001b), which allows for a simple transformation of the
differential equation (3.119) into a corresponding boundary value problem. As a result, the
continuity requirement for the non-local field loosens to a simple C0 continuity, which is
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achievable without problems. Moreover, changes in the existing model are small due to the
fact that the equations governing the evolution of inelastic variable remain quasi-local. One
just replaces the generic variable ξ(x) in the equations by its non-local counterpart, as it was
done in integral-type non-local models. It is even shown in Peerlings et al. (2001b) that im-
plicit gradient models are equivalent to integral-type non-local models with special nonlocal
weight functions (Green’s function of the problem (3.119), given in (3.115)). Despite their
simplicity and efficiency, the main disadvantage of implicit gradient models is that they are
not formulated in a thermodynamically consistent way. Hence, common thermodynamics
considerations are difficult to apply to such models.

Another strategy for gradient enhancement of inelastic material models will be discussed in
the rest of the thesis. It unifies the simplicity and efficiency of implicit gradient models with
the thermodynamically consistent formulation of some explicit gradient models.
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4. A strategy for gradient enhancement of
rate-independent inelastic material models

In this chapter a regularization strategy based on gradient enhancement of the free-energy
function is in section 4.1 presented. The regularization is formulated by means of an interac-
tion potential dependent on additional variables whose gradients play regularization role in
the model, similar to implicit gradient models. The corresponding boundary value problem
is further formulated in section 4.3 as a pure minimization of the potential functional with
respect to displacements and additional non-local variables. Furthermore, thermodynamic
aspects of the strategy are discussed and the constitutive update relations and algorithm are
presented in section 4.4.

4.1. Gradient enhancement of the free-energy function

Let us consider a Helmholtz free-energy function of an isothermal deformation, defined per
unit volume in the form

Ψ = Ψ(ε,P ). (4.1)

Following the definitions adopted in previous chapters, ε denotes the linearized strain tensor
and P denotes a list of internal variables. The latter can include scalar as well as tensorial
quantities and consists of two disjoint parts:

P = {P L,PNL} . (4.2)

The list P L contains the variables which are treated in completely local manner, while the
list PNL comprises the variables included in the regularization procedure

P L = {P L 1, . . . ,P L nl} , PNL = {PNL 1, . . . ,PNL nnl} . (4.3)

The parameters nl and nnl in the relation (4.3) stand for the number of elements of the
corresponding lists, which can be scalar as well as tensorial fields. Following the discussion
in sections 3.3 and 3.4, it is essential to account for the non-local interaction in order to
attain well-posedness in the model. For that purpose a list of variables ϕ and a potential list
Hϕ(PNL) are introduced (as in Dimitrijević and Hackl (2006, 2008, 2009)), which enter
the interaction potential in the form

Ψintr(PNL,ϕ,∇ϕ) =
1

2

〈
ϕ−Hϕ(PNL), β (ϕ−Hϕ(PNL))

〉
NL

+
1

2

〈
∇ϕ, c (∇ϕ)

〉
GNL

. (4.4)

We start the consideration of the relation (4.4) by discussing a potential list Hϕ(PNL). It
consists of several scalar or tensorial functions Hϕ i dependent on the sublist of internal
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variables PNL. Although it is possible that any function Hϕ i depends on several variables
PNL i of the list PNL, we restrict our attention to the cases where an one-to-one correspon-
dence between the elements of both lists is established

Hϕ = {Hϕ 1(PNL 1), . . . ,Hϕ nnl(PNL nnl)} . (4.5)

As an example of the function Hϕ i in the case of a plastic material model, one may think
of an increment of the plastic strain tensorHϕ i(εP ) = ∆εP , which was used e.g. in Zervos

et al. (2001), but one may as well utilize the effective plastic strainHϕ i(εP ) =
√

2
3
εP : εP ,

used e.g. in Mühlhaus and Aifantis (1991). In view of (4.5), the fieldϕ should be understood
as a list of variables rather than a single one, including possibly subsets of different nature
(scalars or tensors). In order to comply with the relation (4.5) the list ϕ has to be structured
in the same way asHϕ i. The gradients of the elements of ϕ are gathered in the list ∇ϕ

∇ϕ = {∇ϕ 1, . . . ,∇ϕ nnl} . (4.6)

In general, the operator β in (4.4) can be non-linear and can depend on both lists ϕ and
PNL (or more precisely on the elements of both lists). However, in this thesis we restrict
ourselves on the linear operator β, which renders the expression β (ϕ−Hϕ) a linear form
of the difference between the elements of the lists ϕ andHϕ. In the simplest case one may
think of a diagonal operator β, resulting in

β (ϕ−Hϕ(PNL)) = {β1 (ϕ1 − Hϕ 1) , . . . , βnnl (ϕnnl − Hϕ nnl)} . (4.7)

Furthermore, the bilinear product operator
〈

(ϕ−Hϕ) ,β (ϕ−Hϕ)
〉
NL

becomes〈
ϕ−Hϕ(PNL),β (ϕ−Hϕ(PNL))

〉
NL

=

nnl∑
i=1

βi (ϕi − Hϕ i) : (ϕi − Hϕ i) . (4.8)

Since the elements ϕi of the list of non-local variables ϕ can be a scalars or tensors of ar-
bitrary order, the double dot product they are is involved at in (4.8) has to be understood as
the scalar product between equally structured objects. Once the structure of ϕi is known,
the operator (:) may be interpreted accordingly (as a simple contraction of vectors, double
contraction of second order tensors etc.).
Similar consideration applies to the operator c: generally it can be be non-linear and depen-
dent on the elements of the lists ϕ and PNL (such approach is advocated in e.g. Voyiadjis
and Al-Rub (2005) and Geers (1997); Geers et al. (1998)), but in the scope of this thesis is
only a linear operator c considered. Nevertheless, the present work can be easily extended
to account for such dependence. The choice of linear c leads to bilinear product operator〈

∇ϕ, c (∇ϕ)
〉
GNL

. In the simplest case where it is assumed that whether interaction
between the gradients of the individual elements of the list of non-local variables ϕi nor
preferable direction for their development exist, one obtains

c (∇ϕ) = {c1 ∇ϕ1, . . . , cnnl ∇ϕnnl} , (4.9)

and consequently

〈
∇ϕ, c (∇ϕ)

〉
GNL

=
nnl∑
i=1

ci ∇ϕi
... ∇ϕi. (4.10)
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Discussion above concerning the double dot product applies at triple dot product in (4.10)

as well. Once the structure of the lists ϕi is known, the operator (
...) may be interpreted as a

simple contraction in the case ϕi is a scalar, double contraction if ϕi is a vector etc.
The enhanced Helmholtz free-energy function of a small strain isothermal problem is ob-
tained by adding the interaction potential (4.4) to the standard form (4.1), leading to

Ψ̃ = Ψ̃(ε,P ,ϕ,∇ϕ) = Ψ(ε,P ) + Ψintr(PNL,ϕ,∇ϕ). (4.11)

The meaning and the influence of the operators β and c will be discussed later in details. At
this point we just mention that the interaction between them introduces the necessary length
scale in the material models, as it is discussed by Forest (2009) in his work that shares the
same spirit with the current contribution.

4.2. Variational formulation of the problem

Before proceeding with the variational formulation of the problem, we repeat the relations
defined or derived in the previous chapters that constitute the boundary value problem of an
inelastic-deformable solid under assumption of quasi-static small deformation and isother-
mal conditions.

4.2.1. Boundary value problem

�
31

e1

e3

e2

dV

�n

t dA

n

da

dA

�b dV

��u

���

X

u(X) = u*(X)

Figure 4.1.: Boundary value problem

Let us consider a body occupying the domain Ω, Figure 4.1, limited by the boundary ∂Ω,
which consists of two non-overlapping parts: a so-caled Dirichlet boundary ∂Ωu and a so-
called Neumann boundary of the body ∂Ωσ

∂Ω = ∂Ωu ∪ ∂Ωσ, ∂Ωu ∩ ∂Ωσ = ∅. (4.12)

As a rule, primary variables (in the classical mechanical setting displacements) are pre-
scribed on the Dirichlet boundary

u = u∗ on ∂Ωu, (4.13)
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and the fluxes of the dependent quantities (in the classical mechanical setting Cauchy stress
vector using the Cauchy-theorem (2.102)) are prescribed on the Neumann boundary

t = σ · n on ∂Ωσ. (4.14)

In order to formulate the boundary value problem, apart from the boundary conditions spec-
ified in (4.13) and (4.14), one has to include the kinematic relations, i.e. the definition of the
linearized strain tensor (2.85)

ε =
1

2

(
∇u+ (∇u)T

)
. (4.15)

Furthermore, the local forms of the balance of linear (2.122) and angular (2.131) momentum

divσ + ρ b = 0, σ = σT , (4.16)

delivering kinetic relations have to be supplemented. Finally, the balance of entropy and the
discussion of its consequences in the section 2.4.1 delivers the constitutive relation for the
stress tensor (3.2)

σ =
∂Ψ

∂ε
(4.17)

and the list of driving forces thermodynamically conjugated to the internal variables (3.26)

Q = − ∂Ψ

∂P
. (4.18)

In order to close the formulation of the problem, the evolution of the internal variables is
specified through the dissipation potential (3.27)

J(Ṗ ) = sup
Q

[
Q : Ṗ − IK(P ,Q, ε)

]
. (4.19)

In the equations aboveu stands for the displacement vector, ε for the linearized strain tensor,
P denotes the list of the internal variables, ρb stands for the force per unit volume of the
body Ω and t for the external loading per unit surface of the Neumann boundary ∂Ωσ, Figure
4.1.
In view of relation (4.11) that defines the enhanced form of the free-energy function it is
obvious that the introduced enhancement does not cause any changes to the stress tensor σ
given by (4.17). Hence, it can be written

σ =
∂Ψ

∂ε
=

∂Ψ̃

∂ε
. (4.20)

However, that is not the case with the list of the conjugate microforces Q, due to the pres-
ence of the sublist of internal variablesPNL within the interaction potential (4.4). This issue
is going to be addressed later in the section (4.4).
The system of differential equations (4.15)-(4.19) subjected to the boundary conditions
(4.13) and (4.14) constitutes the boundary value problem which should be solved for the
displacement, strain, stress and internal variable fields. The enhancement of the free-energy
function defined in (4.11) introduces an additional field ϕ (or more precisely a list of ad-
ditional fields) that have to be accounted for as well. The solution is obtained through two
variational principles coupled to each other. The first one unifies the relations (4.13)-(4.16)
and the definition of the stress tensor utilizing the enhanced free-energy into an extended
principle of minimum of potential energy and it is time-independent. It is presented in the
section 4.3. The second one is time-dependent minimum principle for the dissipation po-
tential, already discussed in the section 3.2.1. It handles the remaining equations (4.18)
and (4.19) and its modified formulation resulting from the ehnacement of the free-energy is
presented in the section 4.4.
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4.3. Potential functional and the variational (minimum) principle

With the definition of the enhanced free-energy function (4.11) at hands, one can define the
potential of internal forces

Πint :=

∫
Ω

Ψ̃(ε(u),P ,ϕ,∇ϕ)dV (4.21)

as an integral of the free-energy over the domain Ω occupied by the body. The kinematic
relation (4.15) is explicitly taken into account in (4.21). The potential energy of the ex-
ternal forces can be obtained in a classical manner, integrating the work performed on the
deformation by the volume f and surface t forces

Πext = −
∫
Ω

u · f dV −
∫
∂Ωσ

u · t dA. (4.22)

Here f = ρb denotes the force per unit volume of the body Ω. One can furthermore define
the global potential functional as a sum of the potentials of internal and external forces, cf.
Washizu (1982); Hackl (1997)

Π = Πint + Πext =

∫
Ω

Ψ̃(ε(u),P ,ϕ,∇ϕ)dV −
∫
Ω

u · fdV −
∫
∂Ωσ

u · tdA. (4.23)

The corresponding variational problem is stated in the form:

find {u,ϕ} = argmin {Π(u,ϕ) | u = u∗ on ∂Ωu} . (4.24)

The primal variables of the variational problem are displacements u and the non-local field
ϕ, while the internal variable set P is considered constant with respect to variation. The
body f and the surface t forces are assumed to be independent on the actual state of the
body, i.e. only conservative loading is considered here.

Variation of the potential functional (4.23) with respect to the variables u and ϕ, defined by
the Gâteaux-derivative1 of the potential

δΠ := DΠ(u,ϕ)(δu) +DΠ(u,ϕ)(δϕ) (4.25)

yields the following expression

δΠ =

∫
Ω

δε(u) : σ dV −
∫
Ω

δu · f dV −
∫
∂Ωσ

δu · t dA

+

∫
Ω

[
∂Ψ̃

∂ϕ
δϕ +

∂Ψ̃

∂(∇ϕ)
∇δϕ

]
dV. (4.26)

1For details on linearization and the Gâteaux-derivative see the section A.1.
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The stationary point (in the present case a minimum point) of the functional Π, relation
(4.23) is achieved by demanding the vanishing variation (δΠ = 0). Hence, minimization of
the potential (4.23) leads to the system of variational equations that has to be solved∫

Ω

δε(u) : σdV −
∫
Ω

δu · fdV −
∫
∂Ωσ

δu · tdA = 0 ∀ δu | δu = 0 on ∂Ωu, (4.27)

∫
Ω

[
∂Ψ̃

∂ϕ
δϕ +

∂Ψ̃

∂(∇ϕ)
∇δϕ

]
dV = 0 ∀ δϕ | δϕ = 0 on ∂Ω. (4.28)

The first equation (4.27) is the so-called principle of virtual work and it represents the most
common basis for the numerical solution of the underlying boundary value problem. It
contains no changes compared with the form obtained using standard (unenhanced) form of
the free energy function. However, the second equation (4.28) is a direct consequence of
the introduced enhancement. It consists of two terms: the one representing a variation with
respect to the list of non-local variables ϕ and the one representing a variation with respect
to the list of the gradients of non-local variables ∇ϕ. In view of the relation (4.4) and the
assumption of linearity of the operators β and c therein, one obtains from (4.28)∫

Ω

[〈
δϕ, β (ϕ−Hϕ(PNL))

〉
NL

+
〈

∇δϕ, c (∇ϕ)
〉
GNL

]
dV = 0 ∀ δϕ | δϕ = 0 on ∂Ω. (4.29)

The relations (4.27) and (4.28) (or consequently (4.29)) constitute two boundary-value sub-
problems coupled to each other, formulated on the whole domain of the body Ω. Conse-
quently, the implementation difficulties of the explicit gradient models related to the search
for the inelastic domain (as it was done e.g. in Liebe et al. (2001); Liebe and Steinmann
(2001)) and enforcement of the interface conditions at the evolving boundary of inelastic
region are eliminated.
Let us focus on the second term in (4.28) and (4.29). This volume integral can be trans-
formed using the divergence theorem of Gauß-Ostrogradski2 into one integral over boundary
of the body and one volume integral involving a second order differential term∫

Ω

〈
∇δϕ, c (∇ϕ)

〉
GNL

dV =

∫
∂Ω

〈
δϕ, (c (∇ϕ))n

〉
NL

dA −
∫
Ω

〈
δϕ, ∇ · (c (∇ϕ))

〉
NL

dV. (4.30)

Here the following notation has been introduced

(c (∇ϕ))n = {c (∇ϕ1) · n, . . . , c (∇ϕnnl) · n} . (4.31)

The vector n in the expression above stands for the outward unit normal to the infinitesimal
surface element of the domain boundary dA ⊂ ∂Ω. The requirement of the vanishing
variation together with the absence of other boundary terms in (4.23) results in vanishing
boundary integral∫

∂Ω

〈
δϕ, (c (∇ϕ))n

〉
NL

dA = 0 ∀ δϕ | δϕ = 0 on ∂Ω. (4.32)

2For details on theorem of Gauß-Ostrogradski see the section A.2
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If it is moreover assumed that the operator c has diagonal structure (as in the relation (4.9)),
which is the case with the models used in this thesis, the condition (4.32) reduces to a
vanishing flux of the non-local variable field across the boundary∫

∂Ω

nnl∑
i=1

ci δϕi : (∇ϕi · n) dA = 0 ∀ δϕ | δϕ = 0 on ∂Ω. (4.33)

As a consequence of the arbitrariness of δϕ, the gradients of the non-local variables at every
point of the boundary of the body ∂Ω have to lie in the tangent plane on the boundary at that
point:

∇ϕi · n = 0 on ∂Ω i = 1, . . . , nnl. (4.34)

In view of the results (4.32) and (4.30), the relation (4.29) becomes∫
Ω

〈
δϕ, β (ϕ−Hϕ(PNL))−∇·(c (∇ϕ))

〉
NL

dV = 0 ∀ δϕ|δϕ = 0 on ∂Ω. (4.35)

Owing to arbitrariness of δϕ and the linearity of the operator c, the integral variational
equation (4.35) can be transformed into its strong (differential) form

β (ϕ−Hϕ(PNL)) − c (∇ ·∇ϕ) = 0. (4.36)

The choice of diagonal operators β and c leads to further simplification and to the system
of uncoupled second order partial differential equations

βi (ϕi −Hϕ i(PNL i)) − ci ∇2ϕi = 0 i = 1, . . . , nnl. (4.37)

Comparison of the differential equations governing the distribution and evolution of non-
local variables resulting from the present strategy (4.37) with the one of the implicit gradient
models (3.119) reveals that the later one can be recovered from the former one for a specific
choice of the model parameters βi = 1 and ci = c(l). Hence, the particularly convenient
properties of the implicit models (low-order continuity requirement for the primary variable
fields and quasi-local evolution equations for internal variables) are kept by the strategy that
is investigated in the thesis. Moreover, one can state that it represents a generalization of the
implicit gradient models.

4.3.1. Linearization of the potential variation

The variation of the potential functional δΠ, given in (4.26), is a non-linear functional itself.
For the application in numerical procedures, which typically make use of linearized quanti-
ties, its linearization around a current variable state {u0,ϕ0} has to be performed, cf. Başar
and Weichert (2000). Denoting the increments of the displacement and non-local fields ∆u
and ∆ϕ respectively, one one can perform a linearization of all dependent quantities using
the Gâteaux-derivative

LδΠ := δΠ(u0,ϕ0) + DδΠ(u0,ϕ0)(∆u) + DδΠ(u0,ϕ0)(∆ϕ). (4.38)

For notational simplification the last two summands in (4.38) are denoted as

∆δΠ := DδΠ(u0,ϕ0)(∆u) + DδΠ(u0,ϕ0)(∆ϕ). (4.39)
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Applying the definition (4.39) on the relation (4.26) under consideration of (4.29) and as-
sumed linearity of the operators β and c, one ends up with the following expression for the
incrementation of δΠ

∆δΠ =

∫
Ω

δε :
∂σ

∂ε
: ∆ε dV +

∫
Ω

δε :
∂σ

∂ϕ
∆ϕ dV

+

∫
Ω

〈
δϕ,

∂

∂ε
[β (ϕ−Hϕ(PNL))] : ∆ε

〉
NL

dV

+

∫
Ω

〈
δϕ,

∂

∂ϕ
[β (ϕ−Hϕ(PNL))] ∆ϕ

〉
NL

dV

+

∫
Ω

〈
∇δϕ, c (∇∆ϕ)

〉
GNL

dV. (4.40)

If, additionally, operators β and c possess a diagonal structure in the sense that they couple
neither elements of the non-local list ϕi and ∇ϕi, respectively, nor their components, i.e.

β(ϕi) = βiϕi, c(∇ϕi) = ci∇ϕi (4.41)

(as it is the case with the models in this thesis), the relation (4.40) attains the form

∆δΠ =

∫
Ω

δε :
∂σ

∂ε
: ∆ε dV +

∫
Ω

nnl∑
i=1

δε :
∂σ

∂ϕi
: ∆ϕi dV

+

∫
Ω

nnl∑
i=1

δϕi :
∂

∂ε
[βi (ϕi −Hϕ i(PNL i))] : ∆ε dV

+

∫
Ω

nnl∑
i=1

δϕi :
∂

∂ϕi
[βi (ϕi −Hϕ i(PNL i))] : ∆ϕi dV

+

∫
Ω

nnl∑
i=1

ci ∇δϕi
... ∇∆ϕi dV. (4.42)

The discussion within this section was based on the consideration of the internal variable set
P as constant with respect to variation of the potential functional (4.23), which left us with
displacement u and non-local variables ϕ as problem unknowns. However, internal vari-
ables are not constant, but rather dependent on the history of deformation. In the following
section the evolution of internal variables and its consequences on the variational problem
defined in this section is discussed.

4.4. Constitutive model

The evolution of internal variables, which is connected to the history of deformation, has to
be specified in a way consistent with the physical laws derived in chapter 2. That task was
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accomplished in the case of a classical theory introducing a dissipation potential given in
(4.19). In order to follow the same approach in conjunction with the investigated regular-
ization strategy, we first discuss the thermodynamic applicability and consequences of the
gradient enhancement of the free-energy function (4.11) in the section 4.4.1. Afterwards,
the formulation of the constitutive update is presented in the section 4.4.3 and its consistent
linearization in the section 4.4.4. Finally, some remarks about the application of the strategy
are given in the section 4.4.5.

4.4.1. Thermodynamic consistency of the enhanced strategy

The balance of entropy, derived in the section 2.3.5, leads to the Clausius-Plank inequality
in the small-deformation setting (2.166), (2.167). Assuming isothermal deformation, it is
expressed in its global form in terms of free-energy function per unit volume (3.1) as

Ṡirr =

∫
Ω

σ : ε̇ − Ψ̇ dV ≥ 0. (4.43)

The local form is deduced from (4.43) demanding that it has to hold for every subdomain
Ω̄ ∈ Ω as well, leading to

Dint = σ : ε̇− Ψ̇ ≥ 0. (4.44)

Inserting the enhanced Helmholtz free-energy function (4.11) into (4.43) it follows

Ṡirr =

∫
Ω

σ : ε̇ − ˙̃Ψ(ε,P ,ϕ,∇ϕ) dV ≥ 0. (4.45)

In view of the relation (4.11) and the decomposition of the list of internal variables (4.2),
the rate of the enhanced free energy function is obtained as

˙̃Ψ = Ψ̇(ε,P L,PNL) + Ψ̇intr(PNL,ϕ,∇ϕ), (4.46)

and consequently as

˙̃Ψ =
∂Ψ

∂ε
: ε̇ +

∂Ψ

∂P L

: Ṗ L +
∂Ψ

∂PNL

: ṖNL +

∂Ψintr

∂PNL

: ṖNL +
∂Ψintr

∂ϕ
ϕ̇ +

∂Ψintr

∂(∇ϕ)
˙(∇ϕ). (4.47)

Non-negativity of the internal dissipation in a process of elastic deformation (4.44) for arbi-
trary rates of strain tensor results in the constitutive relation for the stress tensor identical to
the one of classical theory

σ :=
∂Ψ

∂ε
=

∂Ψ̃

∂ε
. (4.48)

In view of (4.48) and (4.47), the global form of Clausius-Planck inequality (4.43) becomes

Ṡirr =

∫
Ω

− ∂Ψ

∂P L

: Ṗ L −
∂Ψ

∂PNL

: ṖNL −

∂Ψintr

∂PNL

: ṖNL −
∂Ψintr

∂ϕ
ϕ̇ − ∂Ψintr

∂(∇ϕ)
˙(∇ϕ) dV ≥ 0. (4.49)
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Recalling the variational equation (4.28) and the arbitrariness of the variation of the list of
non-local variables ϕ therein, the last two integrals in (4.49) vanish∫

Ω

− ∂Ψintr

∂ϕ
ϕ̇ − ∂Ψintr

∂(∇ϕ)
˙(∇ϕ)dV = 0, (4.50)

so that one obtains

Ṡirr =

∫
Ω

− ∂Ψ

∂P L

: Ṗ L −
∂Ψ

∂PNL

: ṖNL −
∂Ψintr

∂PNL

: ṖNL dV ≥ 0. (4.51)

The global form of Clausius-Planck inequality (4.51) results from the proposed gradient-
enhancement strategy, and its local form can be deduced as

Dint = − ∂Ψ

∂P L

: Ṗ L −
∂Ψ

∂PNL

: ṖNL −
∂Ψintr

∂PNL

: ṖNL ≥ 0. (4.52)

Motivated by the split of the list of internal variables (4.2) into two sublists P L and PNL,
one can define two lists of their thermodynamical conjugatesQL andQNL as well

QL := − ∂Ψ

∂P L

, QNL := − ∂Ψ

∂PNL

− ∂Ψintr

∂PNL

, (4.53)

which are structured in the same way as corresponding lists of internal variables

QL = {QL 1, . . . ,QL nl} , QL i := − ∂Ψ

∂P L i

, (4.54)

QNL = {QNL 1, . . . ,QNL nnl} , QNL i := − ∂Ψ

∂PNL i

− ∂Ψintr

∂PNL i

. (4.55)

The parameters nl and nnl in the relations (4.54) and (4.55) respectively, stand for the
number of elements of the corresponding lists, which can be scalar as well as tensorial
fields. Hence, the internal dissipation attains the form

Dint = QL : Ṗ L + QNL : ṖNL ≥ 0. (4.56)

4.4.2. Consequences of the enhancement strategy on the micromechanical driving
forces

Comparing the relations (4.54) and (4.55) with the one derived within a classical (local)
model (3.26), one can notice that the only difference represents the presence of an additional
conjugate term in the listQNL. This outcome is in agreement with the fact that the list PNL

comprises the variables included in the regularization procedure, while list P L contains
the variables which are treated in classical (local) manner. Let us furthermore consider
the interaction potential presented in (4.4) in conjunction with the assumption of the linear
operator β therein. The derivative of Ψintr with respect to the internal variables PNL turns
out to be

∂Ψintr

∂PNL

=
∂

∂PNL

(
1

2

〈
ϕ−Hϕ(PNL), β (ϕ−Hϕ(PNL))

〉
NL

)
=

− β (ϕ−Hϕ(PNL))
∂Hϕ

∂PNL

. (4.57)
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Utilization of operators β satisfying the condition (4.41), which is the case investigated in
this thesis, leads to

∂Ψintr

∂PNL

=

{
∂Ψintr

∂PNL 1

, . . . ,
∂Ψintr

∂PNL nnl

}
,

∂Ψintr

∂PNL i

= − βi (ϕi −Hϕ i(PNL i)) :
∂Hϕ i

∂PNL i

. (4.58)

Since the elements ϕi and Hϕ i of the corresponding lists can be scalars or tensors of ar-
bitrary order, the double dot product has to be understood as the scalar product between
equally structured objects.
In view of (4.57), the thermodynamic conjugatesQNL of the list of internal variables PNL,
defined in (4.55), can be written as

QNL = − ∂Ψ

∂PNL︸ ︷︷ ︸
Q̂NL

+ β (ϕ−Hϕ(PNL))
∂Hϕ

∂PNL︸ ︷︷ ︸
Q̃NL

. (4.59)

The first part (Q̂NL) on the right-hand side in (4.59) comes from a classical (local) inelastic
consideration. The second one (Q̃NL), on the other hand, is a direct consequence of the
gradient enhancement of the free-energy function (4.11). It introduces non-local interaction
into the definition of the micromechanical driving forces QNL and consequently into the
evolution of corresponding internal variables PNL, as it will be shown later. Recalling the
relation (4.36) and rewriting it as

β (ϕ−Hϕ(PNL)) = c (∇ ·∇ϕ) , (4.60)

one can express the non-local interaction part (Q̃NL) in an equivalent form that involves the
second order derivative (Laplacian) term in the non-local variable ϕ

QNL = c (∇ ·∇ϕ)
∂Hϕ

∂PNL

. (4.61)

The result (4.62) can be used to transform the equation (4.59), leading to the following
expression

QNL = − ∂Ψ

∂PNL︸ ︷︷ ︸
Q̂NL

+ c (∇ ·∇ϕ)
∂Hϕ

∂PNL︸ ︷︷ ︸
Q̃NL

. (4.62)

Hence, one can consider the driving forces QNL as being dependent on the second order
derivatives of the non-local variable field ϕ in addition to the strain tensor ε and internal
variables P . If the specific form of the enhanced free-energy function (4.11) employs the
operator β satisfying the condition (4.41), the micromechanical driving forceQNL becomes

QNL = {QNL 1, . . . ,QNL nnl} ,

QNL i = − ∂Ψ

∂PNL i︸ ︷︷ ︸
Q̂NL i

+ ci
(
∇2ϕi

) ∂Hϕ i

∂PNL i︸ ︷︷ ︸
Q̃NL i

. (4.63)
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4.4.3. Evolution of inelastic variables

The evolution of inelastic variables is described following the lines defined in the section
3.2.1. A particularly suitable property of the proposed enhancement strategy is that, in view
of (4.56), the dissipation potential J(Ṗ ) retains its common form (cf. Dimitrijević and Hackl
(2006, 2008, 2009)). Following the discussion in the 3.2.1, the dissipation potential

J(Ṗ ) = sup
Q

[
Q : Ṗ − IK(P ,Q, ε)

]
= sup

QL,QNL

[
QL : Ṗ L + QNL : ṖNL − IK(P L,PNL,Q, ε)

]
. (4.64)

is utilized in the subsequent considerations. The quantity IK in (4.64) represents the charac-
teristic function of a domain K and is already defined in (3.24). The domain K is assumed
to be defined through the set of m inelastic constraints, as it was done in the discussion of
classical (local) models (section 3.2.1)

K = {QL,QNL | φi(P L,PNL,QL,QNL, ε) ≤ 0, i = 1, ...,m} . (4.65)

The definition of the dissipation potential (4.65) results in a (possibly multiple) constrained
optimization problem, cf. Simo and Hughes (1998), whose solution are the evolution equa-
tions for the internal variables:

Ṗ L =
m∑
i=1

λ̇i
∂φi
∂QL

; ṖNL =
m∑
i=1

λ̇i
∂φi
∂QNL

(4.66)

subjected to corresponding Kuhn-Karush-Tucker optimality conditions:

λ̇i ≥ 0, φi ≤ 0, λ̇iφi = 0, ∀ i = 1, ...,m (4.67)

From the optimality conditions (4.67) one can define the set of indices of active inelastic
constraints

Sact =
{
j ∈ 1, ...,m | φj = 0, λ̇j > 0

}
. (4.68)

Owing to the fact that only activated inelastic constrains contribute to the evolution of the
internal variables, the set Sact can be used to modify the relation (4.66) into

Ṗ L =
∑
j∈Sact

λ̇j
∂φj
∂QL

, ṖNL =
∑
j∈Sact

λ̇j
∂φj
∂QNL

. (4.69)

Relations (4.67)-(4.69) constitute the differential-algebraic system of equations driving the
evolution of internal variables and therefore closing the formulation of the problem. For
the implementation within the numerical procedure this system has to be discretized in time
and in that purpose unconditionally stable Backward-Euler discretization is employed, cf.
Hackl and Schmidt-Baldassari (2001); Hackl (2001). The constitutive update is formulated
through the elastic predictor-inelastic corrector scheme, cf. Simo and Hughes (1998), and
it is summarized in the Tables 4.1 and 4.2.
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Elastic predictor step

(1) Initialize the variables:
Given: t = tn+1, εn+1, ϕn+1, P n ,

Set: it = 0, P (it)
n+1 = P n, inel = 0 ,

Calculate: Q
(it)
L, n+1 = −

∂Ψ
(

ε,P
(it)
L ,P

(it)
NL

)
n+1

∂P L
,

Q
(it)
NL, n+1 = −

∂Ψ
(

ε,P
(it)
L ,P

(it)
NL

)
n+1

∂P NL
−

∂Ψintr

(
ϕ,P

(it)
NL

)
n+1

∂P NL
,

φi = φi (PL,PNL,QL,QNL, ε)
(it)
n+1 , i = 1, ...,m .

(2) Check for inelastic processes:
IF φi ≤ 0 ∀ i = 1, ...,m THEN:

Set: PL, n+1 = P
(it)
L, n+1, PNL, n+1 = P

(it)
NL, n+1 ,

QL, n+1 = Q
(it)
L, n+1, QNL, n+1 = Q

(it)
NL, n+1 .

GO TO 11.
ELSE

Extract active set: Sact = {j ∈ 1, ...,m | φj > 0} ,
Set: it = 1, ∆λj = 0 ∀ j ∈ Sact, inel = 1 ,

GO TO 3.
ENDIF

Table 4.1.: Constitutive update algorithm I

4.4.4. Linerization of the update algorithm

The important difference between the classical (local) inelastic material models and the
gradient enhanced models based on the presented strategy is that in the latter case the con-
stitutive update algorithm is not only strain-driven, but additionally driven by the set of
additional non-local variables ϕ as well. Hence, for the solution of the system of variational
equations (4.27) and (4.28) it has to provide, in addition to the commonly required stress
tensor σ, the value of the updated quantity β (ϕ−Hϕ(PNL)) at the end of the current time
step tn+1. In order to notationally simplify forthcoming derivation, let us denote

Lϕ := β (ϕ−Hϕ(PNL)) . (4.70)

Furthermore, the constitutive update has to supply the tangent moduli occurring in the lin-
earization of the potential variation (equation (4.40)), since their utilization is crucial in the
numerical approximation of the problem. As a consequence, consistent linearization of the
update algorithm has to be performed. Due to additional driving variables additional tangent
moduli are required as well, and they present the most significant difference in the treatment
of the constitutive update between the local and enhanced model. For the sake of notational
clarity, a use of the relation (4.70) is made, leading to

∂Lϕ
∂ε

=
∂

∂ε
[β (ϕ−Hϕ(PNL))] ,

∂Lϕ
∂ϕ

=
∂

∂ϕ
[β (ϕ−Hϕ(PNL))] . (4.71)

Let us consider the state ε(X, t) = ε0, ϕ(X, t) = ϕ0 and P (X, t) = P 0 at certain time
t = t∗. Denoting the increments of strain , non-local variable list and internal variable list
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General multiple-constrained update iteration

(3) Calculate residuals and inelastic constraints:

Q
(it)
L, n+1 = −

∂Ψ
(

ε,P
(it)
L ,P

(it)
NL

)
n+1

∂P L
, Q

(it)
NL, n+1 = −

∂Ψ
(

ε,P
(it)
L ,P

(it)
NL

)
n+1

∂P NL
−
∂Ψintr

(
ϕ,P

(it)
NL

)
n+1

∂P NL
,

φ
(it)
j = φj (PL,PNL,QL,QNL, ε)

(it)
n+1 , ∀ j ∈ Sact ,

R(it) =

{
R(it)

P L

R(it)
P NL

}
=

{
−P (it)

L, n+1 + PL, n

−P (it)
NL, n+1 + PNL, n

}
+
∑
j∈Sact

∆λ(it)
j

{
∂φj

∂QL
∂φj

∂QNL

}(it)

.

(4) Check for convergence:

IF φ(it)
j ≤ TOL1 ∀ j ∈ Sact and

∥∥∥R(it)
∥∥∥ ≤ TOL2 THEN:

GO TO 9.
ENDIF

(5) Calculate derivatives for the local Newton update:

D(it) =

[
− ∂2Ψ
∂P L∂P L

− ∂2Ψ
∂P L∂P NL

− ∂2Ψ
∂P NL∂P L

− ∂2Ψ
∂P NL∂P NL

− ∂2Ψintr

∂P NL∂P NL

](it)

,

A(it) = −
(
D(it)

)−1
+

∑
j∈Sact

∆λj

[
∂2φj

∂QL∂QL

∂2φj

∂QL∂QNL
∂2φj

∂QNL∂QL

∂2φj

∂QNL∂QNL

](it)

,

[Gjk](it) =
{

∂φj

∂QL

∂φj

∂QNL

}(it)

: A(it) :

{
∂φk

∂QL
∂φk

∂QNL

}(it)

,

[
Gjk

](it) =
(

[Gjk](it)
)−1

.

(6) Obtain increment to consistency parameters:

∆∆λ(it)
j =

∑
k∈Sact

[
Gjk

](it) {
φk −

[
∂φk

∂QL

∂φk

∂QNL

]
: (A)−1 : R

}(it)

,

∆λ̄(it+1)
j = ∆λ(it)

j + ∆∆λ(it)
j ,

IF ∆λ̄(it+1)
j ≤ 0 for some k ∈ Sact THEN:

Update active set Sact =
{
j ∈ 1, ...,m | ∆λ̄j > 0

}
,

GO TO 3.
ELSE

GO TO 7.
ENDIF

(7) Obtain increment to internal variables:{
∆PL

∆PNL

}(it)

=
(
A(it)

)−1
:

−R−
∑
j∈Sact

∆∆λj

{
∂φj

∂QL
∂φj

∂QNL

}(it)

.

(8) Update internal variables and continue the loop:{
PL
PNL
∆λj

}(it+1)

=

{
PL
PNL
∆λj

}(it)

+

{
∆PL

∆PNL
∆∆λj

}(it)

,

Set it← it+ 1 ,
GO TO 3.

Table 4.2.: Constitutive update algorithm II
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∆ε, ∆ϕ and ∆P respectively, one can perform linearization of the stress tensor σ and the
response function Lϕ about the state ε0, ϕ0, P 0 using the Gâteaux-derivative3

Lσ = σ0 + Dσ(ε,ϕ,P )(∆ε) + Dσ(ε,ϕ,P )(∆ϕ) + Dσ(ε,ϕ,P )(∆P ) =

σ0 +
∂2Ψ̃

∂ε ∂ε

∣∣∣∣∣
ε0,ϕ0,P 0

: ∆ε +
∂2Ψ̃

∂ε ∂ϕ

∣∣∣∣∣
ε0,ϕ0,P 0

: ∆ϕ +

∂2Ψ̃

∂ε ∂P L

∣∣∣∣∣
ε0,ϕ0,P 0

: ∆P L +
∂2Ψ̃

∂ε ∂PNL

∣∣∣∣∣
ε0,ϕ0,P 0

: ∆PNL. (4.72)

LLϕ = Lϕ 0 +DLϕ(ε,ϕ,P )(∆ε)+DLϕ(ε,ϕ,P )(∆ϕ)+DLϕ(ε,ϕ,P )(∆P ) =

Lϕ 0 +
∂2Ψ̃

∂ϕ ∂ε

∣∣∣∣∣
ε0,ϕ0,P 0

: ∆ε +
∂2Ψ̃

∂ϕ ∂ϕ

∣∣∣∣∣
ε0,ϕ0,P 0

: ∆ϕ +

∂2Ψ̃

∂ϕ ∂PNL

∣∣∣∣∣
ε0,ϕ0,P 0

: ∆PNL. (4.73)

In the case that an evolution of inelastic variables takes place, from (4.67) we have φj =
0 ∀ j ∈ Sact and therefore the consistency condition

∆φj =
∂φj
∂P L

: ∆P L +
∂φj
∂PNL

: ∆PNL +
∂φj
∂QL

: ∆QL +
∂φj
∂QNL

: ∆QNL +

∂φj
∂ε

: ∆ε = 0 ∀ j ∈ Sact (4.74)

has to be fulfilled. In view of (4.53), incrementation of the listsQL andQNL becomes

∆QL = − ∂2Ψ̃

∂P L ∂P L

: ∆P L −
∂2Ψ̃

∂P L ∂PNL

: ∆PNL −
∂2Ψ̃

∂P L ∂ε
: ∆ε, (4.75)

∆QNL = − ∂2Ψ̃

∂PNL ∂P L

: ∆P L −
∂2Ψ̃

∂PNL ∂PNL

: ∆PNL −

∂2Ψ̃

∂PNL ∂ε
: ∆ε − ∂2Ψ̃

∂PNL ∂ϕ
: ∆ϕ, (4.76)

which, taking into consideration the evolution equations for internal variable lists (4.66),

3For details on linearization and the Gâteaux-derivative see the section A.1.
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allows to express the consistency condition in the form

∆φj =
∑
k∈Sact

∆λk

(
∂φj
∂P L

:
∂φk
∂QL

+
∂φj
∂PNL

:
∂φk
∂QNL

−

∂φj
∂QL

:
∂2Ψ̃

∂P L ∂P L

:
∂φk
∂QL

− ∂φj
∂QL

:
∂2Ψ̃

∂P L ∂PNL

:
∂φk
∂QNL

−

∂φj
∂QNL

:
∂2Ψ̃

∂PNL ∂P L

:
∂φk
∂QL

− ∂φj
∂QNL

:
∂2Ψ̃

∂PNL ∂PNL

:
∂φk
∂QNL

)
+(

∂φj
∂ε
− ∂φj
∂QL

:
∂2Ψ̃

∂P L ∂ε
− ∂φj
∂QNL

:
∂2Ψ̃

∂PNL ∂ε

)
: ∆ε −(

∂φj
∂QNL

:
∂2Ψ̃

∂PNL ∂ϕ

)
: ∆ϕ = 0 ∀ j ∈ Sact. (4.77)

Collecting the coefficients multiplying incrementation of inelastic consistency parameters
∆λk into a matrix

G̃jk =
∂φj
∂P L

:
∂φk
∂QL

+
∂φj
∂PNL

:
∂φk
∂QNL

+

∂φj
∂QL

:
∂2Ψ̃

∂P L ∂P L

:
∂φk
∂QL

− ∂φj
∂QL

:
∂2Ψ̃

∂P L ∂PNL

:
∂φk
∂QNL

−

∂φj
∂QNL

:
∂2Ψ̃

∂PNL ∂P L

:
∂φk
∂QL

− ∂φj
∂QNL

:
∂2Ψ̃

∂PNL ∂PNL

:
∂φk
∂QNL

(4.78)

and inverting it

G̃jk =
(
G̃jk

)−1

, (4.79)

one can solve (4.77) for the increments of the inelastic consistency parameters

∆λj =
∑
k∈Sact

G̃jk ·

[(
∂φk
∂QL

:
∂2Ψ̃

∂P L ∂ε
+

∂φk
∂QNL

:
∂2Ψ̃

∂PNL ∂ε
− ∂φk

∂ε

)
: ∆ε +(

∂φk
∂QNL

:
∂2Ψ̃

∂PNL ∂ϕ

)
: ∆ϕ

]
. (4.80)
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In view of (4.80) and (4.69) the linearization of the stress tensor (4.72) becomes

Lσ = σ0 +
∂2Ψ̃

∂ε ∂ε
: ∆ε +

∂2Ψ̃

∂ε ∂ϕ
: ∆ϕ

+
∑
j∈Sact

∑
k∈Sact

G̃jk

[(
∂2Ψ̃

∂ε ∂P L

:
∂φj
∂QL

)
⊗

(
∂φk
∂QL

:
∂2Ψ̃

∂P L ∂ε

)

+

(
∂2Ψ̃

∂ε ∂PNL

:
∂φj
∂QNL

)
⊗

(
∂φk
∂QL

:
∂2Ψ̃

∂P L ∂ε

)

+

(
∂2Ψ̃

∂ε ∂P L

:
∂φj
∂QL

)
⊗

(
∂φk
∂QNL

:
∂2Ψ̃

∂PNL ∂ε

)

+

(
∂2Ψ̃

∂ε ∂PNL

:
∂φj
∂QNL

)
⊗

(
∂φk
∂QNL

:
∂2Ψ̃

∂PNL ∂ε

)

−

(
∂2Ψ̃

∂ε ∂P L

:
∂φj
∂QL

+
∂2Ψ̃

∂ε ∂PNL

:
∂φj
∂QNL

)
⊗ ∂φk

∂ε

]
: ∆ε

+
∑
j∈Sact

∑
k∈Sact

G̃jk

[(
∂2Ψ̃

∂ε ∂P L

:
∂φj
∂QL

)
⊗

(
∂φk
∂QNL

:
∂2Ψ̃

∂PNL ∂ϕ

)

+

(
∂2Ψ̃

∂ε ∂PNL

:
∂φj
∂QNL

)
⊗

(
∂φk
∂QNL

:
∂2Ψ̃

∂PNL ∂ϕ

)]
: ∆ϕ, (4.81)

while the linearization of the response function Lϕ (4.73) is obtained as

LLϕ = Lϕ 0 +
∂2Ψ̃

∂ϕ ∂ε
: ∆ε +

∂2Ψ̃

∂ϕ ∂ϕ
: ∆ϕ

+
∑
j∈Sact

∑
k∈Sact

G̃jk

[(
∂2Ψ̃

∂ϕ ∂PNL

:
∂φj
∂QNL

)
⊗

(
∂φk
∂QL

:
∂2Ψ̃

∂P L ∂ε

)

+

(
∂2Ψ̃

∂ϕ ∂PNL

:
∂φj
∂QNL

)
⊗

(
∂φk
∂QNL

:
∂2Ψ̃

∂PNL ∂ε

)

−

(
∂2Ψ̃

∂ϕ ∂PNL

:
∂φj
∂QNL

)
⊗ ∂φk

∂ε

]
: ∆ε

+
∑
j∈Sact

∑
k∈Sact

G̃jk

[(
∂2Ψ̃

∂ϕ ∂PNL

:
∂φj
∂QNL

)
⊗

(
∂φk
∂QNL

:
∂2Ψ̃

∂PNL ∂ϕ

)]
: ∆ϕ.

(4.82)

Hence, one can relate increments of the stress tensor to increments of the strain tensor and
the non-local variable field in a manner analogous to the classical (local) theory (3.40),
except for the additional term which is a consequence of the gradient enhancement

Lσ = σ0 + CIN(ε0,ϕ0,P 0) : ∆ε+
∂σ

∂ϕ
(ε0,ϕ0,P 0) : ∆ϕ. (4.83)

The increments of the response function Lϕ are related to increments of the strain tensor
and the non-local variable field as

LLϕ = Lϕ 0 +
∂Lϕ
∂ε

(ε0,ϕ0,P 0) : ∆ε+
∂Lϕ
∂ϕ

(ε0,ϕ0,P 0) : ∆ϕ. (4.84)



84 4. A strategy for gradient enhancement of rate-independent inelastic material models

The tangent moduli CIN and ∂Lϕ

∂ε
can be extracted from the relations (4.81) and (4.82) as the

quantities multiplying the increment of the strain tensor ∆ε, respectively. Analogous holds
for the moduli ∂σ

∂ϕ
and ∂Lϕ

∂ϕ
. The results of the linearization procedure are summarized in

the Table 4.3. It contains the description of quantities obtained from the constitutive update,
which are used in the solution of the boundary value problems (4.27) and (4.28).

4.4.5. Portability of the strategy

The utilization of the investigated regularization strategy results in the constitutive update
whose structure is very similar to the one of the local model. Hence, the implementation
within numerical schemes is particularly convenient and does not increase computational
effort significantly, due to a very few differences compared to the classical (local) models.
The question that naturally arises in practical application is whether it is possible to employ
the strategy on the material models whose numerical implementation is already done with-
out performing tedious derivation and coding from the beginning. This is indeed possible
for the models developed within the concept of generalized standard media or its extended
version used in this thesis (which considers explicit dependence of the boundaries of the
elastic range on the linearized strain tensor (3.27)). The changes to be made are highlighted
in red in the Tables 4.1, 4.2 and 4.3 that contain summarized algorithm of the local consti-
tutive update. First, the local micro structural driving force QNL has to be replaced by the
enhanced one, relation (4.59). Next, the intermediate algorithmic modulus (D(it))local of the
local model has to be replaced by the enhanced one as well

D(it) = (D(it))local +

 0 0

0 − ∂2Ψintr

∂PNL∂PNL

 . (4.85)

After the constitutive update has been made, one needs to introduce changes in the calcula-
tion of the stress-strain derivative (inelastic tangent). This is accomplished by modification
of the corresponding metric coefficients of the local model

G̃jk = (G̃jk)local −
∂φj
∂QNL

:
∂2Ψintr

∂PNL∂PNL

:
∂φk
∂QNL

. (4.86)

Utilizing these metric coefficients in the calculation of the inelastic tangent CIN within the
local model results in the correct stress-strain tangent modulus of the enhanced model. Fi-
nally, there are additional tangent operators emerging from the linearization of the stress
tensor (4.83) and the conjugate of the non-local variable list (4.84) that have to be evaluated.
They are specified in the Table 4.3 as well, together with the list of conjugates of the non-
local variable Lϕ.
Obviously, an implementation of the proposed gradient enhancement strategy requires rela-
tively little modifications of the classical (local) material models developed within the con-
cept of generalized standard media (Halphen and Nguyen (1975); Hackl (1997); Lorentz
and Benallal (2005)), thus making its application attractive.
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Calculation of the updated quantities and the tangent moduli

(9) Calculate metric coefficients:

G̃jk = −
{

∂φj

∂QL

∂φj

∂QNL

}
:

[
∂2Ψ

∂P L∂P L

∂2Ψ
∂P L∂P NL

∂2Ψ
∂P NL∂P L

∂2Ψ
∂P NL∂P LN

+ ∂2Ψintr

∂P NL∂P NL

]
:

{
∂φk

∂QL
∂φk

∂QNL

}

+
{

∂φj

∂P L

∂φj

∂P NL

}
:

{
∂φk

∂QL
∂φk

∂Q̃

}
,

G̃jk =
(
G̃jk

)−1

.

(10) Calculate intermediate moduli:

A(ε,ε)
jk =

([
∂2Ψ

∂ε∂P L

∂2Ψ
∂ε∂P NL

]
:

{
∂φj

∂QL
∂φj

∂QNL

})
⊗

({
∂φk

∂QL

∂φk

∂QNL

}
:

[
∂2Ψ

∂P L∂ε
∂2Ψ

∂P NL∂ε

])

−

([
∂2Ψ

∂ε∂P L

∂2Ψ
∂ε∂P NL

]
:

{
∂φj

∂QL
∂φj

∂QNL

})
⊗ ∂φk

∂ε ,

A(ε,ϕ)
jk =

([
∂2Ψ

∂ε∂P L

∂2Ψ
∂ε∂P NL

]
:

{
∂φj

∂QL
∂φj

∂QNL

})
⊗
(

∂φk

∂QNL
: ∂2Ψintr

∂P NL∂ϕ

)
,

A(ϕ,ε)
jk =

(
∂2Ψintr

∂ϕ∂P NL
: ∂φj

∂QNL

)
⊗

({
∂φk

∂QL

∂φk

∂QNL

}
:

[
∂2Ψ

∂P L∂ε
∂2Ψ

∂P NL∂ε

])

−
(
∂2Ψintr

∂ϕ∂P NL
: ∂φj

∂QNL

)
⊗ ∂φk

∂ε ,

A(ϕ,ϕ)
jk =

(
∂2Ψintr

∂ϕ∂P NL
: ∂φj

∂QNL

)
⊗
(

∂φk

∂QNL
: ∂2Ψintr

∂P NL∂ϕ

)
.

(11) Calculate tangent moduli:
IF inel = 0 THEN:

CIN =
∂2Ψ
∂ε∂ε

,
∂σ

∂ϕ
= 0,

∂Lϕ

∂ε
= 0,

∂Lϕ

∂ϕ
=
∂2Ψintr

∂ϕ∂ϕ
.

ELSE

CIN =
∂2Ψ
∂ε∂ε

+
∑
j∈Sact

∑
k∈Sact

G̃jk A(ε,ε)
jk ,

∂σ

∂ϕ
=
∑
j∈Sact

∑
k∈Sact

G̃jk A(ε,ϕ)
jk ,

∂Lϕ

∂ε
=
∑
j∈Sact

∑
k∈Sact

G̃jk A(ϕ,ε)
jk ,

∂Lϕ

∂ϕ
=
∂2Ψintr

∂ϕ∂ϕ
+
∑
j∈Sact

∑
k∈Sact

G̃jk A(ϕ,ϕ)
jk .

ENDIF

(12) Calculate dependent variables and exit:

Calculate: σn+1 =
∂Ψ
∂ε

(εn+1,PL ,n+1,PNL ,n+1) ,

Lϕ, n+1 =
∂Ψintr

∂ϕ

(
PL ,n+1,PNL ,n+1,ϕn+1

)
.

EXIT

Table 4.3.: Constitutive update algorithm III
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5. Application of the gradient enhancement strategy

In this chapter the gradient regularization strategy described in the previous chapter will be
applied to several rate-independent inelastic material models. The section 5.1 deals with
the gradient enhancement of damage models, while the application on the plastic model is
given in the section 5.2. Finally, section 5.3 utilizes the gradient-enhancement strategy in
conjunction with the coupled damage-plastic model.

5.1. Gradient enhancement of damage material models

In this section is the application of the investigated gradient regularization strategy on the
damage material models described in the section 3.2.2 presented. We first consider the reg-
ularization of the damage model I, with the quantities arising in this process gathered in the
Table 5.1. In order to perform the gradient enhancement within the present framework, one
has to specify the elements of the internal variable lists P , PNL and P L, see equation (5.1).
This task is trivial, since the only internal variable in the model is the damage parameter
d. Hence, it is automatically the variable which is used in the definition of the interaction
potential. Utilizing the simplest choice for the potential Hϕ by taking it to be equal to
the damage parameter d, relation (5.3), the non-local variable list ϕ degenerates to a single
variable ϕd, see (5.2). The micromechanical driving forces are specified in (5.6) and (5.7),
while the inelastic tangent operators originating from the linearisation of the variation of the
potential functional (4.42) are given in (5.8)-(5.11).

Let us now focus on the thermodynamical conjugate of the damage variable (5.7). As it
is already discussed in the section 4.4.2, it contains two types of contribution: the purely
local one η̂d and the one that introduces non-local interaction into the definition of the mi-
cromechanical driving forces η̃d. Recalling the expression of the internal dissipation of the
gradient-enhanced model (4.56), it follows

Dint = ηd ḋ = η̂d ḋ + η̃d ḋ. (5.12)

Analyzing (5.12) in view of (5.7), one can state that the first part (η̂d ḋ) represents the
dissipation of energy resulting from the local deformation at the considered point. The
second part (η̃d ḋ) is a result of the interaction between the neighboring points and therefore
describes the transfer of energy within the body due to inelastic processes. Focusing on the
second term and utilizing the relation (4.63) it is obtained

η̃d ḋ = βd (ϕd − d) ḋ = cd ∇2ϕd ḋ. (5.13)

Owing to the fact that the non-local variable ϕd is a solution of the differential equation

βd (ϕd − d)− cd ∇2ϕd = 0, (5.14)
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Damage model I

(1) Internal variable lists:

P = {d} , PNL = {d} , P L = {∅} (5.1)

(2) Non-local variable list ϕ and the potentialHϕ(PNL):

ϕ = {ϕd} , Hϕ(PNL) = {Hϕ(d)} , (5.2)

Hϕ(d) = d (5.3)

(3) Interaction potential Ψintr and the operators β and c:

Ψintr =
1

2
βd (ϕd − d)2 +

1

2
cd ∇ϕd · ∇ϕd, (5.4)

Lϕ = βd (ϕd − d), c (∇ϕ) = cd ∇ϕd (5.5)

(4) Lists of the micromechanical driving forces:

QL = {∅} , QNL = {ηd} , (5.6)

ηd =
1

2
e−d (ε : C : ε)︸ ︷︷ ︸

η̂d

− βd (ϕd − d)︸ ︷︷ ︸
η̃d

(5.7)

(5) Inelastic tangent moduli:

CIN = e−d

(
C − 1

1
2

(ε : C : ε) + βd
e−d

(C : ε)⊗ (C : ε)

)
, (5.8)

∂σ

∂ϕ
=

βd
1
2

(ε : C : ε) + βd
e−d

(C : ε) , (5.9)

∂Lϕ
∂ε

=
βd

1
2

(ε : C : ε) + βd
e−d

(C : ε) , (5.10)

∂Lϕ
∂ϕ

= βd

(
1− βd

1
2
e−d (ε : C : ε) + βd

)
(5.11)

Table 5.1.: Gradient enhancement of the damage model I
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relation (4.63), it follows that the ϕd has to have lower values than the damage parame-
ter d within the zone of the concentrated damaging and consequently a negative Laplacian
∇2ϕd < 0, cf. Liebe (2003), Dorgan (2006). Outside of the process zone is the situation
opposite: the non-local variable has to have higher values than d resulting in positive Lapla-
cian∇2ϕd > 0. Hence, the interaction part of the micromechanical driving force η̃d follows
the same pattern: it is negative within the localization zone and positive elsewhere, Figure
5.1

�
d
/r

1

�
d
/r

1

Figure 5.1.: Evolution of a distribution of local (η̂d) and interaction (η̃d) part of the microme-
chanical driving force normalized with the damage threshold r1

Having this in mind, one can conclude from (5.12) that the second part (η̃d ḋ) of the internal
dissipation reduces the dissipation within the zone of excessive deformation thus slowing
down the evolution of the internal variable d. Outside of this zone, on the contrary, it in-
creases the dissipation thus forcing the spreading of the region in which the damage variable
evolves. This implies additionally, in view of (3.48) that the higher values of the purely local
part of the micromechanical driving force will be allowed then in the unregularized model.
In order to illustrate this point, let us repeat the damage threshold condition of the damage
model I, accounting for (5.7)

φd := ηd − r1 = η̂d + η̃d − r1 ≤ 0. (5.15)

Collecting last two terms into a quantity we are going to name the non-local damage thresh-
old

r1 NL := r1 − η̃d = r1 − βd (ϕd − d), (5.16)

the relation (5.15) attains the form

φd := η̂d − r1 NL ≤ 0. (5.17)

Adhering to the discussion above, it follows from (5.16) that the damage threshold will
be effectively increased within the localization zone (r1 NL > r1) and decreased outside
(r1 NL < r1), Figure 5.2.

In the gradient enhancement of the damage model II, Table 5.2, a slightly different approach
is used. The difference is in the definition of the potential Hϕ, which is taken here to
be equal to the cumulative change in the damage potential g(d), equation (5.20). Due to
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Damage model II

(1) Internal variable lists:

P = {d} , PNL = {d} , P L = {∅} (5.18)

(2) Non-local variable list ϕ and the potentialHϕ(PNL):

ϕ = {ϕd} , Hϕ(PNL) = {Hϕ(d)} , (5.19)

Hϕ(d) = g(0)− g(d) (5.20)

(3) Interaction potential Ψintr and the operators β and c:

Ψintr =
1

2
βd (ϕd − g(0) + g(d))2 +

1

2
cd ∇ϕd · ∇ϕd, (5.21)

Lϕ = βd (ϕd − g(0) + g(d)) , c (∇ϕ) = cd ∇ϕd (5.22)

(4) Lists of the micromechanical driving forces:

QL = {∅} , QNL = {ηd} , (5.23)

ηd = (1− d)2 (ε : C : ε)− g′(d)︸ ︷︷ ︸
η̂d

+βd g
′(d) (ϕd − g(0) + g(d))︸ ︷︷ ︸

η̃d

(5.24)

(5) Inelastic tangent moduli:

Gdd = − ε+ : C : ε+ −
g′′(d) [1 + βd (ϕd − g(0) + g(d))]− βd (g′(d))

2 (5.25)

CIN = (1− d)2 C +

4(1− d)2

Gdd

[
(C : ε)⊗

(
3∑
i=1

H(εi)
(
N i : C : ε+

)
N i

)]
, (5.26)

∂σ

∂ϕ
= −2(1− d) βd g

′(d)

Gdd

(C : ε) , (5.27)

∂Lϕ
∂ε

= −2(1− d) βd g
′(d)

Gdd

(C : ε) , (5.28)

∂Lϕ
∂ϕ

= βd

(
1 +

(βd g
′(d))2

Gdd

)
(5.29)

Table 5.2.: Gradient enhancement of the damage model II
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Figure 5.2.: Evolution of a distribution of the non-local damage threshold r1 NL (left) and
the damage parameter d (right) in uniaxial tension problem.

the fact that the corresponding damage potential defines the damage threshold and controls
the softening response, relation (3.51), it fits perfectly into the non-local damage threshold
interpretation discussed above. Denoting the damage-parameter-dependent quantity which
determines the limits of the elastic range

R1(d) = g′(d), (5.30)

one can introduce its counterpart arising from the non-local interaction

R1 NL(d) = g′(d) [1 + βd (ϕd − g(0) + g(d))] . (5.31)

In view of (4.37) the non-local variable ϕd has to satisfy the condition

βd (ϕd −Hϕ(d))− cd ∇2ϕd = 0. (5.32)

Taking into consideration positivity of the parameters βd and cd, and the fact that Hϕ(d) is
a monotonically decreasing function of the damage variable, Figure 5.3, it follows that term
in the brackets (ϕd −Hϕ(d)) has to be positive in the localization zone. Consequently, the
term ∇2ϕd > 0 is positive in this zone as well, in contrast to the damage model I. That
is due to the monotonically increasing potential function employed in the regularization of
the damage model I. The potential function chosen in conjunction with the damage model
II therefore yields higher values of the non-local variable than the corresponding potential
within the localization zone, while is convers outside of this zone. Hence, the term in square
brackets in the relation (5.31) is going to be greater than one in the process zone, leading
to the increase of the elastic limit value due to non-local interaction and accordingly to
damping of the damage evolution. Interestingly, the regularization procedure produces the
same effect as the increase of the softening model parameter a1 in the localization zone,
Figure 5.3. However, outside of this zone is R1 NL(d) < R1(d), which is an equivalent of
decreasing the value of a1, thus leading to the acceleration of damage evolution.

5.2. Gradient enhancement of a plastic material model

This section deals with the application of the investigated gradient regularization strategy
on the plastic models described in the section 3.2.3. The details on the application are
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Figure 5.3.: Potential functions g(d) and Hϕ(d) and their derivatives. The red arrow shows
the direction in which the parameter a1 increases.

summarized in the Tables 5.3 and 5.4. The internal variable lists P , PNL and P L are
specified in the equations (5.33) and (5.45), and they are equal in both cases. The potential
Hϕ is chosen to be a function of the hardening (softening) variable αP . Two different forms
of the corresponding potential function are investigated. In the first one, the simplest choice
is made by taking it to be equal to the hardening variable itself, relation (5.35). In the second
case the total change in the plastic hardening (softening) potential W (αP ) is utilized in the
regularization procedure, expression (5.47). Both approaches result in a single scalar non-
local variable ϕP , equations (5.34) and (5.46), respectively. The micromechanical driving
forces are specified in (5.38) and (5.39) for the first case , and in (5.50) and (5.51) for
the second case. The plastic stress tensor retains its local form (3.69) and it is therefore
not repeated here. Finally, the inelastic tangent operators related to both approaches are
presented in (5.41)-(5.44) and (5.53)-(5.56) respectively.

In view of (5.39) the internal dissipation of the gradient-enhanced model (4.56) becomes

Dint = σP : ε̇P + ηP α̇P = σP : ε̇P + η̂P α̇P + η̃P α̇P . (5.57)

Therefore one may, as in the case of damage material models, identify the part coming from
non-local interaction as

D̃int = H ′ϕ(αP ) βP (ϕP −Hϕ(αP )) α̇P . (5.58)

In order to reduce the overall dissipation at the current point in the localization zone, the
non-local interaction part has to be negative. Outside of the zone, however, the situation is
converse: D̃int has to be positive in order to accelerate the inelastic evolution process. Owing
to negativity of the rate of the plastic hardening variable, it follows that H ′ϕ(αP ) has to have
the same sign as the bracketed term in (5.58) within the localization zone and vice versa.
Since it is assumed that in the initial state the non-local variable has zero value, one has to
choose either the potential function with negative values and positive first derivative or the
positive function with negative first derivative. All three functions used in the enhancement
procedure, e.g. (5.35) in the first approach and (5.47) in the second approach1, fulfill this

1Since the procedure is applied onto two models with different softening functions (3.60) and (3.63), one has
actually two different potential functions Hϕ(αP ).
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Plastic models

(1) Internal variable lists:

P = {εP , αP} , PNL = {αP} , P L = {εP} (5.33)

(2) Non-local variable list ϕ and the potentialHϕ(PNL):

ϕ = {ϕP} , Hϕ(PNL) = {Hϕ(αP )} , (5.34)

Hϕ(αP ) = αP (5.35)

(3) Interaction potential Ψintr and the operators β and c:

Ψintr =
1

2
βP (ϕP − αP )2 +

1

2
cP ∇ϕP · ∇ϕP , (5.36)

Lϕ = βP (ϕP − αP ), c (∇ϕ) = cP ∇ϕP (5.37)

(4) Lists of the micromechanical driving forces:

QL = {σP} , QNL = {ηP} , (5.38)

ηP = −W ′(αP )︸ ︷︷ ︸
η̂P

+βP (ϕP − αP )︸ ︷︷ ︸
η̃P

(5.39)

(5) Inelastic tangent moduli:

GPP = − σP : σP
σP : dev C : σP + (W ′′(αP ) + βP ) σP : σP

(5.40)

CIN = C +
1

GPP

[(dev C : σP )⊗ (dev C : σP )] (5.41)

∂σ

∂ϕ
= − βP

GPP

1

σP : σP
(dev C : σP ) , (5.42)

∂Lϕ
∂ε

= − βP
GPP

1

σP : σP
(dev C : σP ) , (5.43)

∂Lϕ
∂ϕ

= βP

(
1 +

βP
GPP

)
(5.44)

Table 5.3.: Gradient enhancement of the plastic models - variant I
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Plastic models

(1) Internal variable lists:

P = {εP , αP} , PNL = {αP} , P L = {εP} (5.45)

(2) Non-local variable list ϕ and the potentialHϕ(PNL):

ϕ = {ϕP} , Hϕ(PNL) = {Hϕ(αP )} , (5.46)

Hϕ(αP ) = W (αP )−W (0) (5.47)

(3) Interaction potential Ψintr and the operators β and c:

Ψintr =
1

2
βP (ϕP −W (αP ) +W (0))2 +

1

2
cP ∇ϕP · ∇ϕP , (5.48)

Lϕ = βP (ϕP −W (αP ) +W (0)) , c (∇ϕ) = cP ∇ϕP (5.49)

(4) Lists of the micromechanical driving forces:

QL = {σP} , QNL = {ηP} , (5.50)

ηP = −W ′(αP )︸ ︷︷ ︸
η̂P

+βP W
′(αP ) (ϕP −W (αP ) +W (0))︸ ︷︷ ︸

η̃P

(5.51)

(5) Inelastic tangent moduli:

GPP = − 1

σP : σP
σP : dev C : σP −

W ′′(αP ) [1 + βP (ϕP −W (αP ) +W (0))] + βP (W ′(αP ))
2 (5.52)

CIN = C +
1

GPP

[(dev C : σP )⊗ (dev C : σP )] (5.53)

∂σ

∂ϕ
= −βP W

′(αP )

GPP

1

σP : σP
(dev C : σP ) , (5.54)

∂Lϕ
∂ε

= −βP W
′(αP )

GPP

1

σP : σP
(dev C : σP ) , (5.55)

∂Lϕ
∂ϕ

= βP

(
1 +

βP (W ′(αP ))2

GPP

)
(5.56)

Table 5.4.: Gradient enhancement of the plastic models - variant II
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requirement. Since ϕP is a solution of the differential equation

βP (ϕP −Hϕ(αP ))− cP ∇2ϕP = 0, (5.59)

its Laplacian in the localization zone will be negative in conjunction with the positive plastic
interaction potential function Hϕ(αP ) and positive if the negative function is employed. In
view of (5.59) the hardening (softening) driving force becomes

ηP = η̂P + H ′ϕ(αP ) βP (ϕP −Hϕ(αP )) = η̂P + H ′ϕ(αP ) cP ∇2ϕP . (5.60)

Recalling the definitions (3.60) and (3.63) of the yield function utilized in plastic models I
and II, respectively, one can interpret η̃P as a contribution to the yield strength coming from
non-local interactions

η̃P = H ′ϕ(αP ) cP ∇2ϕP . (5.61)

From the discussion in this section it follows that η̃P attains positive values in the localization
zone, thus increasing the yield limit and consequently damping the evolution of inelastic
variables. Outside of this zone the converse holds: the yield limit is decreased and therefore
the evolution of inelastic variables is accelerated.
In this context, let us consider the regularization of the plastic model II employing the second
approach, e.g. taking

Hϕ(αP ) = W2(αP )−W2(0) = −r2,∞ αP +
r2,0 − r2,∞

KH

1

KH αP − 1
. (5.62)

The plots of this function and its derivative are presented in the Figure 5.4. As it is obvious,
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Figure 5.4.: Potential function Hϕ(αP ) and its derivatives based on the plastic potential
W2(αP ). The red arrow shows the direction in which the parameter KH

increases.

the derivative H ′ϕ(αP ) decreases in the absolute value with the evolution of the softening
variable∣∣H ′ϕ(αP (tn+1))

∣∣ ≤ ∣∣H ′ϕ(αP (tn))
∣∣ ∀ tn+1 > tn. (5.63)

In view of (5.61), the relation (5.63) implies that the influence of non-local interaction de-
clines with evolving plastic process. Hence, utilizing (5.62) in the regularization of the
plastic model II will lead to problems if used with small values of the parameter r2,∞, as it
is going to be demonstrated by suitable example in the next chapter.
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5.3. Gradient enhancement of a coupled damage-plastic material
model

In this section the application of the investigated gradient regularization strategy on the
coupled damage-plastic model (which is described in the section 3.2.3) is presented and its
details are summarized in the Tables 5.5 and 5.6.

Coupled damage-plastic models

(1) Internal variable lists:

P = {d, εP , αP} , PNL = {d, αP} , P L = {εP} (5.64)

(2) Non-local variable list ϕ and the potentialHϕ(PNL):

ϕ = {ϕd, ϕP} , Hϕ(PNL) = {Hϕ d(d), Hϕ P (αP )} , (5.65)

Hϕ d(d) = d, Hϕ P (αP ) = αP (5.66)

(3) Interaction potential Ψintr and the operators β and c:

Ψintr =
1

2

(
βd (ϕd − d)2 + βP (ϕP − αP )2

)
+

1

2
(cd ∇ϕd · ∇ϕd + cP ∇ϕP · ∇ϕP ) , (5.67)

Lϕ = {βd (ϕd − d), βP (ϕP − αP )} , (5.68)

c (∇ϕ) = {cd ∇ϕd, cP ∇ϕP} (5.69)

(4) Lists of the micromechanical driving forces:

QL = {σP} , QNL = {ηd, ηP} , (5.70)

ηd =
1

2
e−d (ε− εP ) : C : (ε− εP )︸ ︷︷ ︸

η̂d

+βd (ϕd − d)︸ ︷︷ ︸
η̃d

(5.71)

ηP = −W ′(αP )︸ ︷︷ ︸
η̂P

+βP (ϕP − αP )︸ ︷︷ ︸
η̃P

(5.72)

Table 5.5.: Gradient enhancement of the coupled damage-plastic models

The internal variable lists P , PNL and P L are specified in (5.64). Since PNL contains two
scalar variables, one has to define two potential functions that are the elements of the list
Hϕ, relation (5.65). They are chosen to be equal to the variables themselfs, equation (5.66).
Hence, the non-local variable list ϕ contains two elements, see (5.65), and the interaction
potential is obtained as a sum of the interaction potentials of constituent models, relation
(5.67). The micromechanical driving forces are specified in (5.70)-(5.72) and their interac-
tion parts are identical with the ones occurring in the damage model (5.7) and the plastic
model (5.39). Finally, the inelastic tangent operators are presented in the Table 5.6. As it is
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Coupled damage-plastic models

(5) Metric coefficients:

G̃dd = − 1
1
2
e−d (ε− εP ) : C : (ε− εP )

(5.73)

G̃PP = − 1
1

e−d σP :σP
σP : C : σP + W ′′(αP ) + βP

(5.74)

G̃dP = −
−e−d √σP : σP

1
e−d σP :σP

σP : C : σP + W ′′(αP ) + βP

1
1
2
e−d (ε− εP ) : C : (ε− εP )

(5.75)

(6) Inelastic tangent moduli:

CIN = C − e−2d G̃dd [C : (ε− εP )]⊗ [C : (ε− εP )] +

e−d
√
σP : σP

G̃dP [C : (ε− εP )]⊗ [C : σP ] −

1

σP : σP
G̃PP [C : σP ] ⊗ [C : σP ] , (5.76)

∂σ

∂ϕ
=
{
e−d βd G̃

dd C : (ε− εP ) ,

−e−d βP G̃dP C : (ε− εP )− βP√
σP : σP

C : σP

}
, (5.77)

∂Lϕ
∂ε

=

{
e−d βd G̃

dd C : (ε− εP )

−e−d βP G̃dP C : (ε− εP )− βP√
σP :σP

C : σP

}
, (5.78)

∂Lϕ
∂ϕ

=

[
β2
d G̃

dd −βd βP G̃dP

0 β2
P G̃

PP

]
(5.79)

Table 5.6.: Inelastic tangent moduli of the coupled damage-plastic models
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already stated, there are no differences in the interaction parts between the coupled damage-
plastic model and the constituent models. Hence, the discussions made in the sections 5.2
and 5.1 apply here as well.

This section completes the presentation of the application of the gradient regularization strat-
egy onto investigated material models completed and we proceed to the numerical solution
of the boundary value problem posed in the section 4.3.
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6. Finite Element implementation

In this chapter we discuss the numerical solution of the boundary value problem posed in the
section 4.3 utilizing finite element method. After some introductory remarks about the finite
element method presented in the section 6.1, we continue by presenting the discretization
of the boundary value problem in the section 6.2. Finally, the solution of the discretized
problem is discussed in the section 6.3.

6.1. Finite element method

Mathematical modeling of physical problems in engineering results often in the system of
partial differential equations which cannot be solved analytically due to complicated geom-
etry of the domain of the problem, highly nonlinear relations describing the model etc.. An
example of such system is a boundary value problem defined in the section 4.3. In order
to find an appropriate solution of a posed problem one typically has to resort to numeri-
cal approximation methods. Although it is possible to apply numerical approximation to
differential equations directly using the method of finite differences, cf. Orkisz (1998), it
is much more common and suitable to utilize the so-called weak (integral) formulations of
the investigated problem, cf. Zienkiewicz and Taylor (2000a). A weak formulation of the
boundary value problem under investigation in this thesis (equations (4.13)-(4.18)) is given
by the the system of variational equations (4.27) and (4.28). In order to solve that system,
one can use a finite element method, which is a particular instance of a Galerkin method, cf.
Galerkin (1915).
The Galerkin method is based on the approximation of the unknown functions u,ϕ that
represent the solution of the problem (4.24) in the finite dimensional Sobolev subspace1

Vh ∈ H1(Ω) using finitely many linear independent basis functions ψI and ζI

uh = ũh(X) +
NU∑
I=1

ψI(X) ûIh, ϕh =

Nϕ∑
I=1

ζI(X) ϕ̂Ih, (6.1)

with the following properties

ũh = u∗ on ∂Ωu : fulfills inhomogeneous displacement boundary conditions
ψI = 0 on ∂Ωu : fulfills homogeneous displacement boundary conditions
ζI = 0 on ∂Ω : fulfills homogeneous boundary conditions.

(6.2)

The quantities ûIh and ϕ̂Ih in (6.1) denote the coefficients of the basis expansion. The index
h elucidates the fact that the relations (6.1) result in the approximation of the corresponding
functions. Following the Bubnov-Galerkin approach, the test functions δu and δϕ, which

1The Sobolev space H1(Ω) is a function space of all functions that are square integrable and possess square
integrable first derivatives on the domain Ω

H1(Ω) =
{
f(X) : Ω→ <n |

√∫
Ω
fifi dV <∞,

√∫
Ω

∂fi

∂Xj

∂fi

∂Xj
dV <∞

}
.
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represent within a variational formulation the arbitrary variations of the solution u(X) and
ϕ(X), are expanded in the same function space and utilizing the same bases as for the
governing problem variables

δuh =
NU∑
I=1

ψI(X) δûIh, δϕh =

Nϕ∑
I=1

ζI(X) δϕ̂Ih. (6.3)

Inserting (6.1) and (6.3) into the relation (4.26), one can obtain the discrete approximation
of the potential variation. It can be further used together with the assumption of arbitrari-
ness of the variations of the primal variables δu and δϕ to construct the discrete system
of equations which yields the unknown expansion coefficients. However, the choice of ba-
sis functions that satisfy the conditions (6.2) can be in general case very difficult owing to
complicated geometry of the domain Ω. This problem can be efficiently solved employing
a finite element method.
The finite element method is a special version of the Galerkin method. The considered do-

main Ω is divided into NE non-overlapping subdomains Ω =
NE⋃
I=1

ΩI called finite elements.

The primal variables u and ϕ are approximated within every element ΩI by

uh(Ω
I) =

nnu∑
I=1

N I
u(X) uIh, ϕh(Ω

I) =

nnϕ∑
I=1

N I
ϕ(X) ϕIh. (6.4)

Here nnu and nnϕ stand for the number of basis functions N I
u and N I

ϕ used in the de-
scription of the displacement and non-local variable fields on ΩI , respectively. As it is
already stated, the basis functions have to belong to the subspace Vh ∈ H1(Ω), leading
to an approximation of the primal variables by piecewise continuous functions, Figure 6.1.
The subdomains ΩI are chosen to have a simple shape: three- or four-sided elements in

e1

e3

e2

��u

���

�
�

Figure 6.1.: Finite element discretization of domain and a typical basis function in a two-
dimensional case

two-dimensional or four- or six-sided elements in three-dimensional problems. Restricting
attention to four-sided (2D) and six-sided (3D) subdomains, the basis functions are con-
structed on a parent square (2D) or cube (3D) with help of the so-called natural coordinates
ξi, i = 1, ..., ndm and afterwards mapped onto elements ΩI in physical space. That allows
us to express the approximation relations (6.4) on the parent element in terms of normalized
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local natural coordinates

uh(Ω
I) =

nnu∑
I=1

N I
u(ξi) u

I
h, ϕh(Ω

I) =

nnϕ∑
I=1

N I
ϕ(ξi) ϕ

I
h, (6.5)

providing a one-to-one correspondence between the physical and natural coordinates is es-
tablished. This task is accomplished following an isoparametric approach2, the geometry
is described using the same set of functions as those employed in the approximation of the
displacement field

Xh(Ω
I) =

nnu∑
I=1

N I
u(ξi) X

I
h, (6.6)

where XI
h denotes the coefficients of the expansion. The expansion coefficients in the rela-

tions (6.5) and (6.6) obtain a very suitable interpretation if one uses the Lagrange polynomi-
als to construct the basis functions (which is a predominant case in applications nowadays).
Owing to their property to be equal to one in one node and equal to zero in all the other
nodal points prescribed on the element, it follows straightforward from the approximation
relations that the expansion coefficients are equal to the actual values of the considered quan-
tity at the node corresponding to the particular basis function. Hence, uIh and ϕIh become
the displacement vector and the non-local variable list at the node denoted as I , while XI

h

represents its position vector, Figure 6.2. The required uniqueness of the mapping between

2
2

�1

�2

1
2

3
4

1 2

34

X( )� ��� �

e1e3

e2

��u
���

XX

e1

e2

X

Xe1 Xe2

Xe3Xe4

Figure 6.2.: Example of a two-dimensional mapping of an element

the physical element and its ”isoparametric” image is assured if the Jacobian matrix of the
transformation relation (6.6)

Jij =
∂Xj

∂ξi
=

nnu∑
I=1

∂N I
u

∂ξi
XI
h,j, i = 1, . . . , ndm (6.7)

remains non-singular within the element. If one utilizes low-order (linear or quadratic)
Lagrange polynomials in the construction of the basis functions, commonly called shape
functions, there are very simple rules that guarantee the positive-definiteness of the Jacobian

2The name quasi-isoparametric will be more suitable, due to the fact that we use the same set of approxi-
mation functions for the description of the displacement field and the geometry of an element. However,
non-local field can be described using some other set of functions, so that in its view an approximation is
not isoparametric.
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matrix (detJ > 0) a-priory, cf. Zienkiewicz and Taylor (2000a). The derivatives of the
approximation functions with respect to the physical coordinates are obtained applying the
chain rule and the Jacobian matrix from (6.7) as

∂N I
a

∂Xi

=
∂N I

a

∂ξj

∂ξj
∂Xi

⇒ ∇N I
a = J−1 · ∂N

I
a

∂ξ
, a ∈ {u, ϕ} (6.8)

Finally, following the spirit of the Bubnov-Galerkin approach, the test functions (variations)
δu and δϕ are represented in the same function space as the problem variables u and ϕ
using the same basis functions:

δuh(Ω
I) =

nnu∑
I=1

N I
u(ξi) δu

I
h, δϕh(Ω

I) =

nnϕ∑
I=1

N I
ϕ(ξi) δϕ

I
h. (6.9)

For the sake of notational clarity, the index h standing for the approximation of the corre-
sponding field is going to be suppressed in the sequel.

6.2. Finite element discretization of the boundary value problem

The focus in this section is put on the discretization of the variational problem (4.24) uti-
lizing a finite element method. Before presenting an implementation of the finite element
approximation discussed in the previous section, one additional issue has to be commented
on. As it is mentioned in the section 4.1 dealing with the investigated form of the gradient
enhancement of the free-energy function, generic non-local variable ϕ stands for the list of
variables, including possibly sublists of different nature (scalars, tensors). In the numerical
implementation it is advantageous to collect and order all components of the list into a vec-
tor ϕ. While that task is trivial for the subsets which are scalars or vectors, care should be
taken in the ordering of the components of higher order tensors in order to obtain consistent
formulation of the problem.

6.2.1. Finite element approximation of the governing variables

Let us consider a single finite element ΩI . Within it are the geometry and the primal variable
fields approximated by relations (6.5) and (6.6). Introducing element geometry, displace-
ment and non-local variable vectors (X̂ , û and ϕ̂, respectively)

X̂ =


X1

...
Xnnu

 , û =


u1

...
unnu

 , ϕ̂ =


ϕ1

...
ϕnnϕ

 (6.10)

and the matrices containing the approximation functions connected with a generic element
node I

NI
u = diag

{(
N I
u

)
1
· · ·
(
N I
u

)
ncu

}
, NI

ϕ = diag
{(
N I
ϕ

)
1
· · ·
(
N I
ϕ

)
ncϕ

}
, (6.11)

one can define the element approximation matrices

Nu =
[
N1
u · · · Nnnu

u

]
, Nϕ =

[
N1
ϕ · · · Nnnϕ

ϕ

]
, (6.12)
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and subsequently cast the relations (6.5) and (6.6) into the following matrix form

X = Nu · X̂, u = Nu · û, ϕ = Nϕ · ϕ̂. (6.13)

Dimension indices ncu and ncϕ in (6.11) represent the number of the unknown components
of the vectors u and ϕ respectively. The gradient of the non-local variable list, which
enters the formulation of the enhanced free-energy function (4.11), is obtained from the
approximation relation (6.5) as

∇ϕ(ΩI) =

nnϕ∑
I=1

ϕI ⊗∇N I
ϕ. (6.14)

In order to write (6.14) in a matrix form, one has to introduce a vector comprising the
components of∇ϕ ordered in a way consistent with the definition of the vector of non-local
variables ϕ

∇ϕi =


∂(ϕ)i
∂X1...
∂(ϕ)i
∂Xndm

 , ∇ϕ =

 ∇ϕ1
...

∇ϕncϕ

 , (6.15)

and the nodal and element matrices that comprehends the gradients of the basis functions
used in the approximation of the non-local variable field

GI
ϕ =


[
∇N I

ϕ

]
1

0
. . .

0
[
∇N I

ϕ

]
ncϕ

 , Gϕ =
[
G1
ϕ · · · Gnnϕ

ϕ

]
. (6.16)

Utilizing the definitions (6.16), (6.15) and (6.10) one can write

∇ϕ = Gϕ · ϕ̂. (6.17)

The approximation of the variation of primal variables is obtained following the Bubnov-
Galerkin approach in (6.9) and its matrix form, in view of (6.13) and (6.17), reads

δu = Nu · δû, δϕ = Nϕ · δϕ̂, ∇δϕ = Gϕ · δϕ̂. (6.18)

In the linearization of the potential variation (4.42) one has to approximate the increments
of governing variables. Their approximation follows the same steps as for the variation of
displacements and non-local variables, resulting in

∆u = Nu ·∆û, ∆ϕ = Nϕ ·∆ϕ̂, ∇∆ϕ = Gϕ ·∆ϕ̂. (6.19)

As next, the correlation between the strain tensor and the element displacement vector has
to be defined. Recalling the definition of the linearized strain tensor (2.83) and utilizing the
approximation relation (6.5) it follows

εij(Ω
I) =

1

2

nnu∑
I=1

(
∂N I

u

∂Xj

δik +
∂N I

u

∂Xi

δjk

)
uIk, (6.20)

where the summation over repeated indices i, j and k is implied and the Kronecker delta
symbol

δij =

{
1 if i = j
0 if i 6= j

(6.21)
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is being used. Introducing the strain ε and the stress σ vectors that assemble the components
of the corresponding tensors using either the Voigt or the Mandel basis3, cf. Brannon (2003),
one can evaluate the approximated strain components as

ε =
nnu∑
I=1

BI · uI . (6.22)

The matrix of the discrete strain-displacement operator containing the derivatives of the ap-
proximation function connected with the element node I depends on the basis used, see
the section A.4 and can be deduced from (6.20). Forming the element discrete strain-
displacement operator by collecting nodal operators (either Voigt or Mandel) in a matrix

B =
[
B1 · · · Bnnu

]
(6.23)

and employing the element displacement vector (6.10), the relation (6.22) attains the fol-
lowing form

ε = B · û. (6.24)

Owing to the Bubnov-Galerkin concept, which is followed in this work, the variation and
the incrementation of the strain vector are obtained as

δε = B · δû, ∆ε = B ·∆û. (6.25)

Having defined the finite element approximation of the governing variables, we proceed to
the approximation of the potential variation.

6.2.2. Finite element discretization of the potential variation

In order to obtain numerical solution of the variational problem (4.24) using finite element
method, the domain of the problem Ω is subdivided in a number of finite elements ΩI .
The domain integrals occurring in the relation (4.26) are evaluated as a discrete sum of the
integrals over the single subdomains, leading to

δΠ =
NE∑
e=1


∫
Ωe

δε : σ dV e −
∫
Ωe

δu · f dV e −
∫
∂Ωeσ

δu · t dAe

+

∫
Ωe

[
δϕ : Lϕ + ∇δϕ

... c (∇ϕ)

]
dV e

 . (6.26)

Applying the finite element approximation specified in the section 6.2.1 on (6.26), one ob-
tains the approximation of the potential variation

δΠ =
NE∑
e=1


∫
Ωe

(B · δû)T · σ dV e −
∫
Ωe

(Nu · δu)T · f dV e −
∫
∂Ωeσ

(Nu · δu)T · t dAe

+

∫
Ωe

[
(Nϕ · δϕ̂)T ·Lϕ + (Gϕ · δϕ̂)T · Γϕ

]
dV e

 . (6.27)

3For details on matrix notation see the section A.4.
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The vectors Lϕ and Γϕ contain the assembled components of Lϕ (equation (4.70)) and
c (∇ϕ) respectively. The assembling procedure has to be performed in a way consistent
with the definition of the vectors ϕ and ∇ϕ, so that the corresponding products from (6.26)
are preserved in the matrix formulation (6.27).
The components of the element test function (variable variation) vectors δû and δϕ̂ are the
coefficients of the expansion with respect to the corresponding basis functions, equation
(6.9). Hence, they can be moved out of the integrals, resulting in the following element
vectors

Feint =

∫
Ωe

BT · σ dV e, feb =

∫
Ωe

NT
u · f dV e, fet =

∫
∂Ωeσ

NT
u · t dAe, (6.28)

Feϕ =

∫
Ωe

NT
ϕ ·Lϕ dV e, Fe∇ϕ =

∫
Ωe

GT
ϕ · Γϕ dV e. (6.29)

Utilizing (6.28) and (6.29), the approximation of the potential variation (6.27) attains the
form

δΠ =
NE∑
e=1

δΠe =
NE∑
e=1

{
δûe · (Feint − feb − fet ) + δϕ̂e ·

(
Feϕ + Fe∇ϕ

)}
. (6.30)

The computational efficiency of the finite element method results from the fact that the
basis function used in the description of the governing variables of the problem (6.5) and
(6.9) have compact support which includes very small number of elements, see the Figure
6.1 for a typical illustration in a two-dimensional case. Hence, a contribution from only a
few functions has to be considered in every element. However, that implies that the basis
functions in a typical case contribute to the overall integrals in several elements. These
contributions are summed together by application of the standard finite element assembling
procedure (the details on this topic can be found e.g. in Zienkiewicz and Taylor (2000a) or
in Smith and Griffiths (2008)). In that purpose the global solution (d), the solution variation
(δd) and the residual (R) vectors are introduced

d = A
e

{
û
ϕ̂

}e
; δd = A

e

{
δû
δϕ̂

}e
; R = A

e

{
Fint − fb − ft

Fϕ + F∇ϕ

}e
, (6.31)

leading to the approximation of the variation of the potential functional that reads

δΠ = (δd)T · R . (6.32)

6.2.3. Finite element discretisation of the incrementation of the potential variation

As a result of the subdivision of the problem domain into a number of finite elements,
the incrementation of the potential variation defined in (4.42) is evaluated as a sum of the
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contributions of single elements

∆δΠ =
NE∑
e=1


∫
Ωe

δε : CIN : ∆ε dV e +

∫
Ωe

δε :
∂σ

∂ϕ
: ∆ϕ dV e

+

∫
Ωe

δϕ :
∂Lϕ
∂ε

: ∆ε dV e +

∫
Ωe

δϕ :
∂Lϕ
∂ϕ

: ∆ϕ dV e

+
nnl∑
i=1

∫
Ωe

ci ∇ϕi
... ∇ϕi dV e

 . (6.33)

Applying the finite element approximation specified in the section 6.2.1 on (6.33), one ob-
tains the approximation of ∆δΠ as

∆δΠ =
NE∑
e=1


∫
Ωe

(B · δû)T · CIN · (B ·∆û) dV e

+

∫
Ωe

(B · δû)T ·
(
∂σ

∂ϕ

)
· (Nϕ ·∆ϕ̂) dV e

+

∫
Ωe

(Nϕ · δϕ̂)T ·
(
∂Lϕ
∂ε

)
· (B ·∆û) dV e

+

∫
Ωe

(Nϕ · δϕ̂)T ·
(
∂Lϕ
∂ϕ

)
· (Nϕ ·∆ϕ̂) dV e

+

∫
Ωe

(Gϕ · δϕ̂)T · c · (Gϕ ·∆ϕ̂) dV e

 . (6.34)

Overlined quantities in (6.34) stand for the matrix counterparts of the corresponding tan-
gents defined in the Table 4.3. The only exception is c, which is, owing to decoupled form
of the interaction potential (4.10) and the utilized form of the vector of the gradients of the
non-local variables (6.15), a diagonal matrix comprising the gradient parameters ci. Once
again, care should be taken during the transformation into matrix form so that the consistent
results are obtained at the end.
Recalling the fact that the components of the element test function (variable variation) vec-
tors δû and δϕ̂ and the element variable incrementation vectors ∆û and ∆ϕ̂ are the co-
efficients of the expansion of the considered quantities with respect to the corresponding
basis functions (equations (6.9), (6.19)), they can be moved out of the integrals. As a con-
sequence, one obtains the following element tangent matrices

Ke
uu =

∫
Ωe

BT · CIN · B dV e, Ke
uϕ =

∫
Ωe

BT ·
(
∂σ

∂ϕ

)
· Nϕ dV

e, (6.35)

Ke
ϕu =

∫
Ωe

NT
ϕ ·
(
∂Lϕ
∂ε

)
· B dV e, Ke

ϕϕ =

∫
Ωe

NT
ϕ ·
(
∂Lϕ
∂ϕ

)
· Nϕ dV

e, (6.36)

Ke
∇ϕ∇ϕ =

∫
Ωe

GT
ϕ · c ·Gϕ dV

e, (6.37)
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while the approximation of the incrementation of the potential variation (6.34) attains the
form

∆δΠ =
NE∑
e=1

{
δûe ·Ke

uu ·∆û
e + δûe ·Ke

uϕ ·∆ϕ̂
e + δϕ̂e ·Ke

ϕu ·∆û
e

+ δϕ̂e ·Ke
ϕϕ ·∆ϕ̂

e + δϕ̂e ·Ke
∇ϕ∇ϕ ·∆ϕ̂

e
}
. (6.38)

The contributions of the single elements are summed up by the standard finite element as-
sembling procedure, which results in the global solution increment vector ∆d and the global
tangent matrix K

∆d = A
e

{
∆û
∆ϕ̂

}e
, K = A

e

[
Kuu Kuϕ

Kϕu Kϕϕ + K∇ϕ∇ϕ

]e
(6.39)

in addition to the problem vectors defined in (6.31). Employing these quantities one obtains
the approximation of the increment of the potential variation (6.34) as

∆δΠ = (δd)T ·K ·∆d . (6.40)

As next, we proceed to the formulation of the discretized problem and furthermore to the
brief description of the method used to solve it.

6.3. Discretized approximation problem and its solution

Let us consider the variational problem (4.24). Its solution is obtained requiring that the
variation of the potential functional vanishes. The finite element approximation of the primal
variables (u andϕ) of the problem (6.13) results in the approximation of δΠ given in (6.32).
As a consequence, the following discretized problem arises

δΠ = (δd)T · R (d) = 0 ∀ δd | δdu = 0 on ∂Ωu, δdϕ = 0 on ∂Ω, (6.41)

with du and dϕ standing for the displacement and the non-local variable parts of the global
solution vector, respectively. Taking into consideration the arbitrariness of the variation of
the solution vector, the problem (6.41) reduces to the solution of the system of algebraic
equations

R = 0. (6.42)

An additional issue concerning the boundary conditions (4.13) posed on the primal vari-
ables (in the present contribution on the displacement field only) has to be discussed here.
As it is already stated, the global residual vector is formed by assembling the contributions
from all elements used in the subdivision of the domain Ω. Recalling the general Galerkin-
ansatz (6.1) and the required properties of the approximation functions used in the Galerkin
method (6.2), it follows that certain finite element basis functions which are used in the cal-
culations on the element level do not fulfill basic requirements (6.2). These are the approxi-
mation functions connected with the nodes laying directly on the Dirichlet boundary, Figure
6.3. Hence, their contribution to the potential variation is suppressed and consequently the
corresponding equations are removed from the system (6.43) if one has to deal with the ho-
mogeneous Dirichlet boundary condition. However, if inhomogeneous boundary conditions
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Figure 6.3.: Finite element basis function on the Dirichlet boundary in a two-dimensional
case

are imposed, these basis functions are used to approximate the particular solution ũh(X)
of the boundary value problem (equation (6.1)). If one uses the Lagrange polynomials to
construct the basis functions (which is the case in this thesis) the expansion coefficients con-
nected with the nodes on the Dirichlet boundary are obtained straightforward as the actual
values of the prescribed displacement components and no equation should be solved. Yet,
the influence of the discussed functions cannot be disregarded, as it is done in the case of ho-
mogeneous boundary conditions, due to interaction with the other approximation functions
and the non-vanishing expansion coefficients.

The residual vector R depends on the solution vector d in a non-linear way. Therefore,
some appropriate numerical procedure has to be employed in the solution of (6.43). In
the present contribution an incremental-iterative scheme based on the Newton‘s method
is applied, cf. Zienkiewicz and Taylor (2000b), Wriggers (2008). The loading history is
formulated through a number of quasi-time dependent sequential loading steps. For every
quasi-time increment

tn+1 = tn + ∆tn+1, n ∈ {0, 1, . . . , nts} , (6.43)

where nts stands for the total number of time steps, the problem of finding the vector of
solution parameters n+1d that satisfies the given Dirichlet boundary conditions and results
in vanishing residual

R
(
n+1d

)
= 0, (6.44)

for the given incremented loading is solved. Therefore the solution of the original problem
results in solving a sequence of the algebraic problems for every specific time tn+1. This
task is, due to non-linearity of R (d), accomplished iteratively using Newton’s method. The
method attempts the solution of the problem (6.43) by solving a series of linearized problems

LδΠ := δΠ + ∆δΠ = 0. (6.45)

In view of the relations (6.32) and (6.40), the linearisation of the potential variation around
the current solution state n+1d(i) and accordingly the problem (6.45) attain the following
form

LδΠ = (δd)T · R
(
n+1d(i)

)
+ (δd)T ·K

(
n+1d(i)

)
·∆d(i+1) = 0. (6.46)
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Accounting for the arbitrariness of the solution vector variation (δd) one obtains (this time
linear) system of algebraic equations

R(i) + K(i) ·∆d(i+1) = 0, (6.47)

where the following notation is introduced for the sake of clarity

R(i) = R
(
n+1d(i)

)
, K(i) = K

(
n+1d(i)

)
. (6.48)

The system of linear equations (6.47) results in the increment vector ∆d(i+1), which is fur-
ther used to update the current solution state

n+1d(i+1) = n+1d(i) + ∆d(i+1). (6.49)

The procedure is repeated using the updated current solution state as long as convergence
criterion is not met. For example that the norm of the residual vector R reduces below some
tolerance (equation (6.50,a)), or that the norm of the update vector ∆d(i+1) decreases down
to the level that renders further iterations uneconomic (6.50,b)).

a)
∥∥R(i+1)

∥∥ ≤ TOL; b)
∥∥∆d(i+1)

∥∥ ≤ TOL
∥∥n+1d(i+1)

∥∥ . (6.50)

Finally, as an initial guess at the beginning of the time step ∆tn+1 a converged solution nd
from the previous time tn is used:

n+1d(0) = nd. (6.51)
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7. Numerical Examples

The aim of this chapter is the presentation of numerical results obtained in the calculations
utilizing the proposed gradient enhancement strategy. Its behavior is illustrated by means
of several problems involving material models defined in the section 3.2 and afterwards
adopted according to the presented regularization strategy. Furthermore, the influence of
newly introduced model parameters on the global response of the system, distribution of in-
elastic variables and the calculation procedure is discussed. The section 7.1 contains results
of calculations employing damage models, while the examples employing plastic models are
given in section 7.2. Finally, the behavior of the enhanced coupled damage-plastic model is
presented in section 7.3.

7.1. Problems involving damage material models

In this section we present results of calculations enrolling regularized damage models I and
II. Several appropriate examples that illustrate the influence of the regularization procedure
of corresponding damage models are selected. Let us start with the damage model I.

7.1.1. Numerical examples involving gradient enhanced damage model I

The first example is an infinitely long brick with a preexisting crack subjected to tension,
applied as uniform displacement at the ends of the specimen. The geometry of the prob-
lem is given in Figure 7.1, and it allows for dimensional reduction of the problem to two-
dimensional plane strain case. Moreover, due to existing symmetries only one fourth of the
system is analyzed. The problem parameters are summarized in the Table 7.1.

The aim of this example is to illustrate the localization problem in the context of the finite
element method. We already discussed the issue of localization in section 3.3, where it is
demonstrated by means of a uniaxial tension problem that classical inelastic models fail to
achieve an objective description of strain localization. The reason is an inherent lack of an
internal material length scale in the formulation of the constitutive relations, resulting in an
undetermined size of the inelastic process zone.

E ν cd βd r1 h b a

MPa MPa·mm2 MPa MPa mm mm mm
18000.0 0.2 1.0 1.0 0.01 100.0 40.0 16.0

Table 7.1.: Material parameters used in the pre-cracked brick test in conjunction with the
gradient enhanced damage model I
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Figure 7.1.: Geometry of the pre-cracked brick test
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Figure 7.2.: Finite element basis functions on the element on the crack tip

If one uses the finite element method in the numerical solution of the variational minimiza-
tion problem (4.24), one has to divide the body in a number of elements with final size,
Figure 7.2. Recalling the representation of the displacement field in the finite element basis
(6.4), it is obvious that the strain field and consequently the damage variable at some point
depend on a few basis functions only, Figure 7.2. Hence, one has implicitly introduced a
length scale equal to the size of the support of the approximation functions in the formu-
lation. If the mesh is conveniently constructed so that the elements are aligned with the
direction of the propagation of the localization zone, like in the current example, its length
becomes even smaller and equals the element size. As a consequence, the discretized sys-
tem of equations (6.41) becomes instable and cannot be solved by the displacement-driven
incremental-iterative solution algorithm described in the section 6.3. That is due to an in-
creasingly smaller size of the localization zone which triggers the snap-back behavior of the
structure. Therefore a bifurcation point occurs significantly earlier in a refined mesh, as it
can be seen in the Figure 7.3(a).

In contrast to that, the gradient enhanced model introduces an internal material length scale
implicitly and therefore results in the mesh-independent response. Analyses performed with
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(b) Gradient enhanced model

Figure 7.3.: Load-displacement diagrams for the cracked brick problem using local and gra-
dient enhanced damage model I

350, 1170 and 6240 elements result in almost identical force-displacement curves, Figure
7.3(b). The distribution of the damage parameter shows mesh-objectivity as well, which
can be seen in Figure 7.4, where the damage distribution on the 350-element mesh (Figure
7.4(a)) and on the 1170-element mesh (Figure 7.4(b)) is presented.
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Figure 7.4.: Distribution of the damage parameter for the cracked brick problem at the end
of the test using gradient enhanced damage model I

Infinitely long brick with a circular hole

The next example is an infinitely long brick with a circular hole subjected to tension, applied
as uniform displacement at the ends of the specimen. The geometry of the problem is given
in Figure 7.5 and, as in the previous example, it allows for a dimensional reduction of the
problem to the plane strain case and the analysis of only one fourth of the domain owing
to symmetry. The calculations are performed utilizing gradient enhanced damage model I,
together with the parameters listed in the Table 7.2.

In the first part of the test, the behavior of the local material model is investigated. For this
purpose four tests with increasingly refined meshes are calculated, Figure 7.6(a). The size
of the inelastic zone, following discussion in the previous section, is induced by the domain
discretization and it is equal to the size of an element. These values of the internal length are
too small, thus leading to ill-posed discretized problem (6.41). Since this length becomes
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E ν cd βd r1

MPa MPa·mm2 MPa MPa
18000 0.2 1.0 1.0 0.01

Table 7.2.: Material parameters used in the brick-with-a-hole test in conjuction with the gra-
dient enhanced damage model I

Figure 7.5.: Geometry of the brick-with-a-hole test

even smaller with mesh refinement, the bifurcation points occur even earlier, Figure 7.6(a).
In contrast to that, the gradient enhanced model is successfully used to perform the calcu-
lation even very far in the softening range without large difficulties (Figure 7.6(b)). Ad-
ditionally, analyses performed with 200, 800 and 1800 elements result in almost identical
force-displacement curves, as it is seen in the same Figure. In all these tests biquadratic
serendipity functions are employed in the approximation of the displacement field and bi-
linear functions in the approximation of the non-local variable field (Q2S/Q1 formulation).
This formulation is selected following e.g. de Borst and Pamin (1996); Peerlings et al.
(1998); Liebe (2003); Lorentz and Benallal (2005). In the context of implicit gradient mod-
els it is shown in Simone et al. (2003) that this is not necessary from the mathematical point
of view. Namely, a completely valid solution of the problem in terms of primal variables
(u and ϕd) and the inelastic variables is obtained using equal order of interpolation of the
displacement field and the non-local variable field. The only drawback is a spurious stress-
oscillation within elements, which would have to be post-processed in order to obtain usable
results for the stress field. Owing to the fact that the regularization strategy investigated in
this thesis results in a pure minimization problem rather than the mixed one, relation (4.24),
the famous LBB-conditions do not have to be considered. Therefore one can select equal
order of approximation of the primal fields, which results in almost indistinguishable force-
displacement diagrams, Figure 7.6(c). Hence the mesh dependence of the overall structural
response is removed as well.
The same holds for the damage distribution within the specimen. This is illustrated in Figure
7.7, where the distribution of the Material Damage, defined as percentage of the material
stiffness loss

MD = (1.0 − f(d)) · 100 [%] (7.1)

on the 200-element mesh (Figure 7.7(a)) and on the 1800-element mesh (Figure 7.7(b)) is
presented. It is obvious that the evolution of the inelastic process (in this case damaging) is
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(a) Local model
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Figure 7.6.: Load-displacement diagrams for the the brick-with-a-hole problem using gradi-
ent enhanced damage model I
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not restricted to the one-element-row-width zone, as it was the case utilizing local model, but
rather to some zone of final width, practically independent on the size of the finite elements
used. Therefore, the internal material length is efficiently introduced into the model, leading
to a well-posed continuum as well as discretized problem. Its value is implicitly introduced
via gradient enhancement, therefore it depends on the values of the model parameters βd
and cd, equation (5.4). Recalling the relation (5.14), and writing it as

(ϕd − d)− cd
βd
∇2ϕd = 0, (7.2)

one can state that the internal material length is defined by the ratio between the two en-
hancement parameters rather than by a single one. Hence, focusing an investigation on the
influence of the ratio cd

βd
a series of tests on the semi-fine 800-element mesh is performed.

The value of the gradient parameter cd is varied, while all the other parameters remain fixed
(including βd which is set to be equal to one). The resulting force-displacement curves are
given in the Figure (7.8(a)).
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Figure 7.7.: Distribution of the Material Damage for the brick-with-a-hole problem at the
end of the test using gradient enhanced damage model I

For small values (0.01-0.2) of the gradient parameter the calculations cannot be advanced far
into the softening range due to numerical instabilities of the system of equations. However,
values cd ≥ 0.5 result in successful regularization, and the calculations are completed
without significant difficulties (Figure 7.8). Another property of the model is obvious from
the same Figure: the higher the value of cd is, the higher limit load on the structure is found.
That is due to the fact that the increase of the gradient parameter results in smoothing of
the damage parameter distribution along a wider activated zone, thus practically slowing its
evolution down, as it is presented in Figure 7.8. The plots given there represent the damage
distribution across the specimen, obtained for several distinct values of cd, at the quasi-time
(displacement) state denoted in the Figure 7.8(a).
Recalling the discussion in section 5.1, one can compare the difference between the non-
local variable ϕd and the corresponding local potential function Hϕ(d), which in the case of
damage model I is identical to the damage parameter itself (equation (5.3)). This difference
is equal to the scaled Laplacian of the non-local field, relation (5.14), and it influences the
damage threshold condition (5.17) via a quantity we named non-local damage threshold,
equation (5.16). The distribution of both quantities at the state denoted in the Figure 7.8(a)
is shown in Figure 7.9. The increase of the gradient parameter cd for a fixed parameter βd =
1.0 introduces a higher value of the length scale, as it is stated above, and therefore forces
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Figure 7.8.: Influence of the parameter cd on the structural response and the Material Dam-
age distribution for the brick-with-a-hole problem on the 800-element mesh at
the test stage denoted in the Figure 7.8(a) for βd = 1.0
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Figure 7.9.: Distribution of the selected problem quantities for the brick-with-a-hole prob-
lem on the 800-element mesh at the test stage denoted in the Figure 7.8(a) for
βd = 1.0
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a smoother distribution of the non-local variable. Consequently, the differences between
the non-local and corresponding local fields are smaller on the cost of wider spreading of
the damage process zone, Figures 7.9(b), 7.9(d) and 7.9(f). As we commented in section
5.1, within the zone of excessive straining this difference is negative, while outside of the
process zone the opposite is the case. In view of (5.16) and (5.17), such distribution implies
an apparent increase of the damage strength in the localization zone (non-local damage
threshold) and apparent decrease outside, Figures 7.9(a), 7.9(c) and 7.9(e). This is a reason
for the increase of the structural strength observed in the Figure 7.8(a). As a remark, the
original damage threshold is given in the Table 7.2 and is equal to 0.01.

7.1.2. Numerical examples involving gradient enhanced damage model II

In this section we focus on the investigation of the behavior of the gradient enhanced damage
model II. In that purpose two representative examples are selected. The first one is the same
problem treated in section 7.1.1 using damage model I, while the second one represents
the simulation of the experiment investigating the cracking of an L-shaped concrete panel
Winkler (2001).

Infinitely long brick with a circular hole

The geometry of the problem is already defined in Figure (7.5) together with the assumption
of dimensional reduction and are not going to be repeated here. However, material parame-
ters have to be specified owing to the fact that different material model is utilized, and they
are summarized in Table 7.3. Following the discussion in section 7.1, the calculations are
performed employing bilinear quadrilateral elements with equal order of aproximation of
the displacement field and the non-local variable field (Q1/Q1).

E ν cd βd r1 a1

MPa MPa·mm2 MPa MPa
18000 0.2 1500.0 1500.0 0.0222 0.5

Table 7.3.: Material parameters used in the brick-with-a-hole test in conjunction with the
gradient enhanced damage model II

As in the case of the gradient enhanced damage model I, the resulting force-displacement
diagrams, Figure 7.10(a), and the damage distribution within the structure, Figures 7.10(b)
and 7.10(c) show mesh-objectivity. Hence, the damage model II is successfully regularized
using the presented gradient enhancement strategy (Table 5.2). The difference between
the non-local variable ϕd and the local potential function Hϕ(d) is presented in the Figure
7.10(d). As it is discussed in the section 5.1, it has to be positive in the localization zone and
negative outside, which is evident. This difference gives rise to the change in the damage
threshold accounting for non-local interaction, relation (5.31). The Figure 7.10(e) contains a
distribution plot of the modified inelastic limit R1 NL(d) normalized with the initial damage
threshold value.
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(a) Load-displacement diagrams for the brick with a hole problem
using gradient enhanced damage model II
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Figure 7.10.: Selected calculation results for the brick-with-a-hole problem at the end of the
test using gradient enhanced damage model II
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Concrete L-panel

The second example represents the simulation of the experiment investigating cracking of
the L-shaped concrete panel. The experiment is performed on the University of Insbruck and
it is documented in Winkler (2001). The geometrical characteristics of the samples are given
in the Figure 7.11 together with the crack-pattern observed in the experiments, cf. Winkler
(2001). The vertical arm of the specimen is clamped at the lower edge and the force is ap-

Figure 7.11.: Geometry of the L-Panel test together with the crack pattern from Winkler
(2001)

E ν cd βd r1 a1

MPa MPa·mm2 MPa MPa
25850.0 0.18 10000.0 90000.0 5.154·10−4 0.12

Table 7.4.: Material parameters used in the L-panel test in conjunction with the gradient
enhanced damage model II

plied via steel bar with the 20 mm diameter at the lower edge of the horizontal arm (precise
position denoted in the Figure 7.11). For the characterization of the structural behavior of
the specimen is the vertical displacement on the left edge of the horizontal arm measured,
in addition to the the applied force value. Experiments are realized as displacement-driven.
The material model parameters used in the calculation are specified in Table 7.4. Two nu-
merical tests are performed: the first one employing 2300 trilinear (8-node) elements and
the second one employing 4300 elements of the same type (the same order of interpolation
is selected for the displacement field and the non-local variable field). The resulting force-
displacement diagrams are shown in Figure 7.12, together with the experimentally obtained
curves from Winkler (2001) and the simulation results from Huber (2006). The overall be-
havior of the structure in the post-peak part of the simulation is well approximated even
using relatively small number of elements. Employing more advanced material models, like
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Figure 7.12.: Load-displacement diagrams for the L-panel problem using gradient enhanced
damage model II

the one in Huber (2006), one could obtain improvement in the simulation results. The dif-
ference occurring before peak (even in elastic range) is attributed in Oliver et al. (2002) to
rigid body rotation caused by slip in the mechanical connection between the specimen and
the measuring device. In the work of Schütt (2005) the correction procedure is proposed in
order to remove this ambiguity. However, it seems that this difference has little effects on
the post-peak behavior, cf. Huber (2006).
The damage distribution within the structure obtained by calculations using a gradient en-
hanced damage model is shown in 7.13(a) for 2300-element mesh and 7.13(c) for 4300-
element mesh, while the Figures 7.13(b) and 7.13(d) contain the distribution of the non-local
variable ϕd. All plots are related to the end of the test, i.e. the displacement uy = 1.0mm.
The damage zone obtained in both tests follows the curved crack pattern observed in the
experiments, Figure 7.11. Owing to finer discretization, the initial crack curvature is better
depicted by the 4300-element than by 2300-element. This is due to to the fact that for the
precise reproduction of the curved crack pattern one requires very fine mesh, cf. Kuhl et al.
(2000). Nevertheless, the results show good overall agreement with the experimental data
implying that the regularization of the damage model II via gradient enhancement of the
free-energy function is successfully performed.

7.2. Problems involving plastic material model

In this section we present the results of the calculations enrolling regularized plastic mod-
els I and II. In order to investigate the influence of the proposed regularization, numerical
tests are performed on the benchmark brick-with-a-hole problem utilizing both models and
selected results are presented in what follows.
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(a) Material Damage on 2300-element mesh

(b) Non-local variable on 2300-element mesh

(c) Material Damage on 4300-element mesh

(d) Non-local variable on 4300-element mesh

Figure 7.13.: Distribution of the selected problem quantities for the L-panel problem at the
end of the test using gradient enhanced damage model II
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7.2.1. Numerical examples involving gradient enhanced plastic model I

The plastic model I is specified in Table 3.3 and its enhancement-related quantities are given
in Table 5.3. Geometry and loading are already defined in section 7.1.1 and values of the
model parameters are specified in Table 7.5. In these tests biquadratic serendipity functions
are used in the approximation of the displacement field, whereas the non-local variable field
is approximated by bilinear functions (Q2S/Q1 formulation).

E ν cP βP r2 KH

MPa MPa·mm2 MPa MPa MPa
18000.0 0.2 1250.0 1250.0 20.0 -300.0

Table 7.5.: Material parameters used in the brick-with-a-hole test in conjunction with the
gradient enhanced plastic model I

The first part of the test is committed, as in the example involving damage model, to the
investigation of the behavior of the local (without the gradient regularization) plastic mate-
rial model. As it is discussed in the section 3.3, the use of the classical (local) formulation
of the model leads to an ill-posed continuum problem due to absence of the characteristic
material length. In the context of the finite element method this length is substituted by the
characteristic length of the discretization mesh, resulting in strong dependence of the results
on the finite element mesh, as already stated in section 7.1. This behavior is obvious in Fig-
ure 7.14(a) that contains force-displacement diagrams obtained employing the set of three
increasingly refined finite element meshes. On the contrary, the calculations performed uti-
lizing the gradient enhanced model on the same discretization meshes (with 200, 800 and
1800 Q2S/Q1 elements) result in a structural response in terms of force-displacement dia-
grams that clearly shows convergence, Figure 7.14(b).
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(b) Gradient model

Figure 7.14.: Load-displacement diagrams for the brick-with-a-hole problem using plastic
model I

The illustration of the pathological behavior of the local plastic model I described above is
given in Figure 7.15. Owing to the absence of an intrinsic length parameter in the model,
deformation and consequently inelastic process localize within the shear band whose width
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is defined by the size of the support of the finite element approximation functions in the
process zone. That results in more rapid structural strength loss on finer meshes observed in
the Figure 7.14(a).
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Figure 7.15.: Distribution of the plastic softening variable for the brick-with-a-hole problem
at the last converging loading increment using local plastic model I

Taking a closer look on the distribution of the softening parameter αP on the 200-element
mesh (Figure 7.16(a)) and on the 1800-element mesh (Figure 7.16(b)) obtained utilizing the
gradient-enhanced model, one can identify the source of the small difference in the post-
peak response noticed in Figure 7.14(b). It occurs because the 200-element mesh is simply
too coarse to accurately capture the inelastic process zone, although it qualitatively delivers
good approximation.
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Figure 7.16.: Distribution of the plastic softening variable for the brick-with-a-hole problem
at the end of the test using gradient enhanced plastic model I

7.2.2. Numerical examples involving gradient enhanced plastic model II

The plastic model II is specified in Table 3.4 and its enhancement-related quantities are
given in Table 5.4. As it is already mentioned, the properties of the gradient-enhanced model
are going to be investigated utilizing the brick-with-a-hole problem. The problem setting,
i.e. geometry and loading are already defined in section 7.1.1, whereas are the values of
the model parameters specified in Table 7.6. The two sets of gradient parameters carrying
indices 1 and 2 correspond to the types of the potential functions Hϕ (Tables 5.3 and 5.4)
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used in the formulation of the interaction potential, respectively. Following the discussion
in section 7.1.1, the calculations are performed employing bilinear quadrilateral elements
with equal order of approximation of the displacement field and the non-local variable field
(Q1/Q1).

E ν cP 1 βP 1 cP 2 βP 2 r2,0 r2,∞ KH

MPa MPa·mm2 MPa MPa·mm2 MPa MPa MPa
18000.0 0.2 500.0 2000.0 10.0 40.0 20.0 0.5 20.0

Table 7.6.: Material parameters used in the brick-with-a-hole problem in conjunction with
the gradient enhanced plastic model II
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(b) Gradient enhanced model, Hϕ(αP ) = αP (vari-
ant 1)
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(c) Gradient enhanced model, Hϕ(αP ) = W (αP )−
W (0) (variant 2)
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(d) Comparison between the results obtained using
Q2S/Q1 and Q1/Q1 element formulation using gra-
dient enhanced model, variant 1

Figure 7.17.: Load-displacement diagrams for the the brick-with-a-hole problem using gra-
dient enhanced plastic model II

Let us start by investigating the behavior of the local plastic material model. In that purpose
three numerical tests, utilizing meshes with 800, 1800 and 5000 elements, are performed.
The resulting force-displacement diagrams, Figure 7.17(a) show the typical mesh-dependent
behavior of softening materials. Not only these diagrams differ: the plots of the distribution
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of the plastic softening variable, Figures 7.18(a) and 7.18(b), reveal that the shear bands re-
alized on the 800-element-mesh and on the 5000-element mesh have considerably different
shape in addition to different size.
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(c) Gradient model, 800-element mesh
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(d) Gradient model, 5000-element mesh

Figure 7.18.: Distribution of plastic softening variable for the brick-with-a-hole problem at
the end of the test using gradient enhanced plastic model II

These problems are efficiently removed if one utilizes a gradient enhanced plastic model
based on the first variant of the enhancement, specified in the Table 5.3. The force-displacement
diagrams presented in the Figure 7.17(b) show obvious convergence with mesh refinement,
however at a slower rate than in the case involving the gradient enhanced damage models.
This is due to a narrow localization zone which cannot be entirely captured with the rough
mesh, Figures 7.18(c) and 7.18(d). Although the geometry of the shear band is approxi-
mated well with the 800-element mesh, Figure 7.18(c), for the approximation of the strain
field and consequently the softening variable this mesh is simply too coarse. Utilization of
the quadratic serendipity functions in the approximation of the displacement field improves
the behavior significantly, as it is manifested in the Figure 7.17(d).
In Figure 7.18 it can additionally be noted that the local plastic model is not able to accu-
rately approximate neither shape nor size of the shear band. Moreover, spurious localization
of the deformation can occur governed solely by discretization mesh, which can be seen
in Figure 7.18(a). The shear band presented there is obviously aligned with a conveniently
oriented row of elements. This is caused, as it is already discussed in section 3.3, by the ill-
posedness of the underlying continuum problem. The gradient enhanced model, however, is
well posed and successfully approximates the evolving shear band.

Application of the second variant of the gradient enhancement on the plastic model II, spec-
ified in the Table 5.4, does not lead to successful regularization, as it is obvious from Figure
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Figure 7.19.: Influence of the change in the parameter βP on the load-displacement diagrams
for the brick-with-a-hole problem for the fixed ration cP/βP = 0.5 utilizing
plastic model II

7.17(c). Although the enhanced model behaves initially significantly better than the one
based on the first variant of the regularization (Figure 7.17(c)), with time its advantage de-
teriorates. The reason behind the growing dependence on the discretization mesh evident in
Figure 7.17(c) is already stated in section 5.2. Namely, owing to properties of the poten-
tial function Hϕ(αP ), the relations (5.61) and (5.63) imply that the influence of non-local
interaction declines with the evolving plastic process, which is exactly what is observed
analyzing calculation results.

The gradient-enhanced model, as it is already discussed, introduces the internal material
length implicitly and it depends on the values of the model parameters βP and cP . Recalling
the second order partial differential equation that has to be satisfied by the non-local variable
(4.37) and writing it as

(ϕP −Hϕ(αP ))− cP
βP
∇2ϕP = 0, (7.3)

the square of the internal material length can be identified as the ratio cP
βP

. Its influence for
the fixed value of the parameter β is already investigated in the context of gradient-enhanced
damage model, section 7.1.1. Here we focus on the opposite case: the ratio between the two
enhancement parameters is kept fixed, while the parameter βP changes its value. The set
of tests on the 1800-element mesh is performed utilizing the first variant of the gradient
enhancement (the one with the plastic softening parameter itself used in the definition of
the interaction potential). The resulting force-displacement diagrams, Figure 7.19, reveal
that the increase of βP while keeping the ratio cP

βP
fixed produces the same consequences

as the converse case: the higher the value of βP is, the stronger influence of the gradient
enhancement is found. In order to explain this behavior, let us recall the definition of the
micromechanical driving force ηP

ηP = −W ′(αP )︸ ︷︷ ︸
η̂P

+βP (ϕP − αP )︸ ︷︷ ︸
η̃P

. (7.4)

In view of (7.3) it follows from (7.4) that increasing any of the two multipliers in η̃P while
keeping the other one fixed results in the increase of the interaction influence.
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7.3. Problems involving coupled damage-plastic material models

In this section we present the results of the calculations enrolling regularized coupled damage-
plastic models I and II. The properties of the regularization procedure and its influences are
investigated in numerical tests, which are performed utilizing both models on the brick-
with-a-hole benchmark problem. The selected results of the tests are presented in the rest of
this section.

7.3.1. Numerical examples involving gradient enhanced damage-plastic model I

The coupled damage-plastic model I is specified in Table 3.5 and its enhancement-related
quantities are given in the Table 5.5. Geometry, boundary and loading conditions of the
brick-with-a-hole benchmark problem are already defined in the section 7.1.1.

An example with gradient enhanced damage model combined with local hardening
plasticity

In the first test we investigate the behavior of the model obtained when the gradient-enhanced
damage model I is coupled with the local hardening plasticity described by the plastic model
I. It should be mentioned that this type of coupling is utilized in most works on regularized
coupled damage-plastic modeling, cf. de Borst et al. (1999); Makowski et al. (2006); Nedjar
(2001). In these tests biquadratic serendipity functions are used in the approximation of the
displacement field, whereas is the non-local variable field approximated by bilinear func-
tions (Q2S/Q1 formulation). The material parameters presented in the Table 7.7 are applied
in the calculation.

E ν cd βd r1 r2 KH cP βP
MPa MPa·mm2 MPa MPa MPa MPa·mm2 MPa
18000 0.2 1.0 1.0 0.01 20.0 1000.0 0.0 0.0

Table 7.7.: Material parameters used in the brick-with-a-hole problem in conjunction with
the gradient enhanced damage model I coupled with the local plastic model I

The force-displacement diagrams obtained from the calculations on variably fine meshes
show very little differences, Figure 7.20(a). That was expected since the hardening plastic
behavior does not introduce a new source of irregularity (apart from rarely cases of non-
associated plasticity formulations with very low values of hardening parameter, cf. Kuhl
et al. (2000)). The same holds for the distribution of damage and plastic deformation within
the specimen, taking into consideration that on a finer mesh more precise post-processing
can be performed. This is illustrated in Figure 7.21, which presents the distribution of the
Material Damage and the plastic hardening variable at the end of the test.

However, the decrease of the plastic hardening parameter KH results in the deterioration
of the convergence rate of the results. That can be clearly noticed in the Figure 7.20(b),
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Figure 7.20.: Load-displacement diagrams for the brick-with-a-hole problem using using
gradient enhanced damage model I combined with the local plastic model I
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Figure 7.21.: Distribution of internal variables for the brick-with-a-hole problem at the end
of the test using gradient enhanced damage model I combined with the local
plastic model I

which contemplates the force-displacement diagrams obtained for a very small value ofKH .
Further decrease of the hardening parameter (KH < 0) leads to softening plastic behavior
and therefore to an additional source of the irregularity in the problem. This type of coupled
model is investigated next.
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Figure 7.22.: Load-displacement diagrams for the the brick-with-a-hole problem using gra-
dient enhanced damage-plastic model I for the negative plastic hardening pa-
rameter KH < 0 (plastic softening)

An example of a gradient enhanced damage model combined with a softening plastic
model

In the next test the behavior of the coupled damage-plastic model I accounting for soften-
ing plasticity (parameter KH < 0) is investigated. The approximation of the displacement
field is attained utilizing biquadratic serendipity type functions, whereas the non-local vari-
able field is approximated by bilinear functions (Q2S/Q1 formulation). The values of the
model parameters used in the calculation are given in Table 7.8. This test is, as the one in

E ν cd βd r1 r2 KH 1 KH 2 cP βP
MPa MPa·mm2 MPa MPa MPa MPa MPa MPa·mm2 MPa
18000 0.2 1.0 1.0 0.01 20.0 0.0 -500.0 1250.0 1250.0
Table 7.8.: Material parameters used in the brick-with-a-hole problem in conjunction with

the gradient enhanced coupled damage-plastic model I
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Figure 7.23.: Distribution of the plastic softening variable for the brick-with-a-hole problem
at the end of the test using gradient enhanced damage model combined with
local plastic model with KH < 0

the previous example, performed in two stages: first employing gradient enhanced damage
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combined with local softening plasticity, and afterwards using full gradient enhancement of
the coupled damage-plastic model I. The calculations on three increasingly refined meshes
(with 200, 800 and 1800 elements) facilitate the comparison of the typical behavior of stan-
dard and regularized models involving a softening regime. The resulting force-displacement
diagrams for the first case (combination of gradient damage and local softening plasticity)
are presented in the Figure 7.22(a), with noticeable strong mesh dependence of the obtained
results. In the first part of the test, up to the displacement of approximately 0.1 mm, the dom-
inating inelastic process is damage (for the selected set of material parameters). Afterwards,
however, plasticity becomes dominant due to the fact that it is formulated in the effective
stress space and it remains the leading inelastic process until the end of the test. Owing
to the classical (local) formulation of the plastic model, which does not include an internal
material length, the boundary value problem defined in the section 4.3 becomes ill-posed.
The gradient enhancement of the damage parameter alone is not enough to regularize the
problem, and one obtains localization of plastic process within a shear band, whose width is
restricted solely by the discretization mesh (Figure (7.23)).
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Figure 7.24.: Distribution of internal variables for the brick-with-a-hole problem at the end
of the test using gradient enhanced coupled damage-plastic model I

In contrary to that, utilization of the model introducing gradient enhancement of both dam-
age parameter and plastic softening variable results in significantly improved behavior in
the softening regime, Figure 7.22(b). There is obvious convergence of the structural re-
sponse and thus removed mesh dependence. The small difference in the post-peak response
is mainly due to the fact that the 200-element mesh is simply to coarse to quantitatively
accurately capture the evolving plastic shear band. That can be clearly seen in the Figure
(7.24), where the distribution of the softening parameter αP on the 200-element mesh, Fig-
ure 7.24(b), and on the 1800-element mesh, Figure 7.24(d) at the final stage of the test is
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presented. In addition, Figure 7.24 contains the plots of the Material Damage, which are
depicted for the calculations on the 200-element mesh (Figure 7.24(a)) and on the 1800-
element mesh (Figure 7.24(c)) at the end of the loading history. Obviously, the damage
zone is well captured even with a very coarse mesh, due to its relatively simple geometry
(in contrast to the plastic zone).

7.3.2. Numerical examples involving gradient enhanced coupled damage-plastic
model II

The final example concerns the application of the gradient enhanced damage-plastic model
II in the numerical tests performed on the benchmark brick-with-a-hole problem, whose
geometry, boundary and loading conditions are already defined in the section 7.1.1. Follow-
ing the discussion in the section 7.1.1, the calculations are performed employing bilinear
quadrilateral elements with equal order of aproximation of the displacement field and the
non-local variable field (Q1/Q1). The material parameters presented in Table 7.9 are ap-
plied in the calculation.

E ν cd βd r1 r2,0 r2,∞ KH cP βP
MPa MPa·mm2 MPa MPa MPa MPa MPa·mm2 MPa
18000 0.2 1.0 1.0 0.01 20.0 0.5 20.0 2000.0 500.0

Table 7.9.: Material parameters used in the plate-with-a-hole test in conjunction with the
gradient enhanced coupled damage-plastic model II

0 , 1 0 0 , 1 1 0 , 1 2 0 , 1 3 0 , 1 4
6 0 0

6 5 0

7 0 0

7 5 0

8 0 0

8 5 0

0 , 0 0 0 , 0 5 0 , 1 0 0 , 1 5 0 , 2 0 0 , 2 5 0 , 3 0 0 , 3 5
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

   8 0 0  e l e m e n t s ,  g r a d i e n t  e n h a n c e d  c o u p l e d  m o d e l
 1 8 0 0  e l e m e n t s ,  g r a d i e n t  e n h a n c e d  c o u p l e d  m o d e l
 5 0 0 0  e l e m e n t s ,  g r a d i e n t  e n h a n c e d  c o u p l e d  m o d e l

Re
su

lta
nt 

rea
ctio

n f
orc

e [
N/m

m]

D i s p l a c e m e n t  [ m m ]

 

Figure 7.25.: Load-displacement diagrams for the the brick-with-a-hole problem using gra-
dient enhanced coupled damage-plastic model II

The calculations performed utilizing the gradient enhanced damage-plastic model II on the
discretization meshes containing 800, 1800 and 5000 quadrilateral elements result in the
structural response in terms of force-displacement diagrams that clearly shows convergence,
Figure 7.25. The same holds for the distribution of the internal variables obtained in these
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numerical tests, which is evident in Figure 7.26. Both evolution of the damaging process,
Figures 7.26(a) and 7.26(c) as well as the plastic softening, Figures 7.26(b) and 7.26(d) are
well represented even on the 800-element mesh
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Figure 7.26.: Distribution of the selected calculation results for the brick-with-a-hole prob-
lem at the end of the test using gradient enhanced coupled damage-plastic
model II

This example completes the presentation of the numerical results obtained utilizing the ma-
terial models regularized via gradient enhancement of the free-energy function and we pro-
ceed to the final chapter of the thesis, which contains the conclusions gathered from the
theoretical as well as numerical investigation of the proposed gradient enhancement strat-
egy.
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8. Conclusions and outlook

In the present work a a regularization framework for inelastic material models via gradient
enhancement of the Helmholtz free-energy function is presented. The enhancement is de-
fined by means of an interaction potential dependent on the difference between additionally
introduced variables and the suitably chosen potential function of the internal variables. The
gradients of the newly introduced variables are used to regularize the model, similar to im-
plicit gradient models. It should be mentioned that the internal variables remain completely
local quantities, connected to the corresponding material point, whereas the additional vari-
ables are related to global structure and behave as non-local. The corresponding boundary
value problem is formulated as a pure minimization problem of the potential functional with
respect to the displacement field and the non-local variable field, which results in additional
variational integral equations. These boundary-value subproblems are posed on the whole
domain of the problem, eliminating the implementation difficulties related to cumbersome
search for the inelastic region and enforcement of the interface conditions at its evolving
boundary typical for explicit gradient models.

The formulation of the constitutive relations is performed in a thermodynamically consis-
tent way and it results in small differences compared with classical models. The differences
are restricted to the micromechanical driving forces thermodynamically conjugated to the
part of the list of internal variables used in the definition of the interaction potential. The
evolution of the internal variables is specified by the minimum principle for the dissipation
potential. The dissipation potential itself retains the form of the classical (without regu-
larization) model, therefore accounting for the non-local interaction only implicitly. The
implementation within numerical schemes is particularly convenient and does not increase
computational effort significantly, due to very few differences compared to the classical
(local) models. Hence, it is possible to apply this strategy to material models whose nu-
merical implementation is already done without performing tedious derivation and coding
from the beginning. The main difference is a consequence of the statement of the problem
as a multi-field minimization, implying that the local constitutive numerical update has to
supply additional tangent moduli in order to achieve desired convergence properties of the
discretized boundary value problem.

The application of the proposed gradient enhancement strategy is demonstrated by several
inelastic material models, including damage, plastic and coupling models. The characteris-
tic details of the specific material models are discussed and convenient interpretations are
given. It is shown that gradient enhancement leads to apparent increase of the inelastic
limit in the localization zone, which reduces the dissipation of energy and consequently
results in slowing down the evolution of the corresponding internal variable. Conversely,
outside of the localization zone the dissipation of energy is increased, which results in a
more rapid evolution of corresponding internal variables. Furthermore, the implementation
of the gradient regularization strategy in the context of finite element method is presented.
The introduction of a non-local variable field as an additional primal variable leads, after
inserting the finite element approximation of the variables into the governing variational
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equations, to additional discretized algebraic equations. The whole system of discretized
equations is non-linear and it is solved by applying an incremental-iterative scheme based
on the Newton‘s method.

Several numerical examples illustrate the behavior of the material models regularized by the
proposed gradient enhancement strategy. It is shown that all material models treated in this
thesis are successfully regularized. Furthermore, the influence of newly introduced model
parameters on the global response of the system, distribution of inelastic variables and the
calculation procedure is discussed. It is shown that the success of the regularization depends
crucially on the interrelation between these parameters.

Hence, one can conclude that the presented gradient enhancement strategy can be success-
fully utilized in the regularization of various inelastic rate-independent material models.
There is, however, a number of aspects that remain to be investigated. Firstly, an application
of the strategy on more sofisticated material models, considering possibly rate-dependent
formulations or thermomechanical coupling. Some work in this direction is already done,
and it will provide an opportunity to test the behavior of the strategy in a more demanding
setting. A further point that can draw more attention in the future work is the interaction
potential itself. In the present contribution it is formulated in decoupled form, stating that
there is a one-to-one map between the non-local variable and a selected local variable, with
no interaction between the non-local variables. However, one can think of the potential
functions dependent on more than one internal variable as well. An additional issue along
this line are the interaction parameters. They are taken to be constant in the present work,
but, as advocated by some authors, one can consider their dependence on the inelastic pro-
cesses in order to obtain more realistic predictions. One of the possible directions of future
research is an implementation of the strategy within structural elements, like inelastic shells.
Finally, a possibly most important direction of further research is a realistic identification of
the parameters introduced in the gradient enhancement.
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A. Appendix

A.1. Gâteaux-derivative and linearization

The directional (Gâteaux-) derivative of a functional φ(y) in the direction δy is defined as:

Dφ(y)(δy) =
d

dα
φ(y + αδy)|α=0 (A.1)

Considering a generic function W (Y) depending on the set of independent variables Y, its
Gâteaux-derivative in the direction δY is defined as

DW (Y)(δY) :=
∂W (Y + ηδY)

∂η

∣∣∣∣
η=0

=
∂W (Y)

∂Y
δY (A.2)

An incrementation operator ∆ is defined by the Gâteaux-derivative of the quantity under
consideration:

∆W (Y)(∆Y) :=
∂W (Y + η∆Y)

∂η

∣∣∣∣
η=0

=
∂W (Y)

∂Y
∆Y (A.3)

Utilizing the incrementation operator the linearization of the generic function W (Y) around
the point Y = Y0 is defined in the form:

LW (Y)(∆W ) := W (Y0) + ∆W (Y0)(δY) (A.4)

A.2. Theorem of Gauß-Ostrogradski

This theorem permits to transform the volume integral of a divergence into a surface integral
or vice versa. It states that the changes of a vectorial field v or a second order tensor fieldA
within some domain Ω are equal to the flux across the boundary of a domain Γ.

∫
Ω

div v dV =

∮
Γ

v · n dA =

∮
Γ

vjnjdA

∫
Ω

divA dV =

∮
Γ

A ·n dA =

∮
Γ

Aijnj dA

Figure A.1.: Theorem of Gauß-Ostrogradski
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A.3. Some elements of tensor calculus

A.3.1. Differential operators

The gradient operator

The gradient of a scalar-valued function θ is a vector defined by

grad Φ =
∂θ

∂xi
ei = θ,iei = ∇θ (A.5)

The gradient of a vector-valued function u is a second order tensor defined by

grad u =
∂u
∂xk
⊗ ek = u,k ⊗ ek = ui,kei ⊗ ek = ∇u (A.6)

The gradient of a second-order-tensor-valued function A is a third order tensor defined by

grad A =
∂A
∂xk
⊗ ek = A,k ⊗ ek = Aij,kei ⊗ ej ⊗ ek = ∇A (A.7)

The gradient of a product is obtained by

grad(Φu) = u⊗ grad Φ + Φ grad u (A.8)

The divergence operator

The divergence of a vector u is a scalar-valued invariant defined by the rule

div u = grad u : I = ui,i (A.9)

The divergence of a second order tensor A is a vector-valued function defined by the rule

div A = grad A : I = Aij,jei (A.10)

The divergence of a product is obtained by

div(u A) = A : grad u + u · div A (A.11)

A.3.2. Spectral decomposition of a second order tensor

Invariants of a second-order tensor

IA = tr A = A : I (A.12)

IIA =
1

2
[(tr A)2 − tr A2] (A.13)

IIIA =
1

3
[tr A3 − 2

3
tr A2 tr A +

1

2
(tr A)3] (A.14)
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Analytical solution of eigenvalue-problems

Λ3 − ICΛ2 + IICΛ− IIIC = 0 (A.15)

C =
3∑
i=1

Λini ⊗ ni =
3∑
i=1

ΛiNi with Ni = ni ⊗ ni (A.16)

Λk =
1

3
[IC + 2(I2

C − 3IIC)
1
2 cos

1

3
(Θ + 2πk)] (A.17)

Θ = arccos

(
2I3
C − 9ICIIC + 27IIIC

2(I2
C − 3IIC)

3
2

)
(A.18)

If the eigenvalues Λi (i=1,2,3) are distinct, then

Nr =
1

(Λr − Λs)(Λs − Λt)
(C− ΛsI)(C− ΛtI) (A.19)

In the case of coalescence of two eigenvalues (Λ1 6= Λ2 = Λ3 = Λ) we have

C =
3∑
i=1

Λni ⊗ ni + (Λ1 − Λ)n1 ⊗ n1 = (Λ1 − Λ)N1 + ΛI (A.20)

whereas

N1 =
1

(Λ1 − Λ)
(C− ΛI) (A.21)

Finally, for the case of coalescence of all eigenvalues (Λ1 = Λ2 = Λ3 = Λ) the closed form
solution becomes

C = ΛI (A.22)

A.3.3. Derivatives of the eigenvalues of a second order tensor

For the formulation of the algorithm it is necessary to calculate the expressions for the first
and second derivatives of the yield functions with respect to the tensor ξ, i.e. ∂ξA

∂ξ
. To

accomplish that task, the starting point is the expression for the eigendecomposition of a
tensor:

(ξ − ξAI) nA = 0 (A.23)

where ξA represents the A-th eigenvalue of the tensor ξ, nA its corresponding eigenvector
and 0 vector with zeros as elements. For further development it would be more suitable to
write (A.23) in index notation:

(ξij − ξAδij) nAj (A.24)

Taking the derivatives with respect to tensor ξ leads to:

(
∂ξij
∂ξkl
− ∂ξA

∂ξkl
δij)n

A
j + (ξij − ξAδij)

∂nAj
∂ξkl

= 0ikl (A.25)
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Premultiplying (A.25) with nAi gives:

nAi (
∂ξij
∂ξkl
− ∂ξA

∂ξkl
δij)n

A
j + nAi (ξij − ξAδij)

∂nAj
∂ξkl

= 0kl (A.26)

The tensor ξ is symmetric, so the following holds (from (A.24)):

nAi (ξij − ξAδij) = 0j (A.27)

Then equation (A.26)) transforms to the:

nAi
∂ξij
∂ξkl

nAj =
∂ξA

∂ξkl
nAi δijn

A
j (A.28)

and further to:

∂ξA

∂ξkl
= nAk n

A
l (A.29)

Denoting the eigenbase of the second order tensor as:

NA = nA ⊗ nA (A.30)

the final expression for the first derivative of the yield function with respect to the tensor ξ
is obtained as:

∂fA
∂ξ

=
∂ξA

∂ξ
= NA (A.31)

In the calculation of the second derivative the starting point is the explicit expression for the
eigenbasesNA as in Simo and Ju (1987); Meschke (1996); Dimitrijević (2004):

NA =
(ξ − ξBI)(ξ − ξCI)

DA

(A.32)

with the definition :

DA = (ξB − ξA)(ξC − ξA) (A.33)

The transfer to the index notation as more suitable for the derivation will again be made, so
that (A.32))reads:

NA
ij =

(ξim − ξBδim)(ξmj − ξCδmj)
DA

(A.34)

After multiplication and expanding, (A.34) reads:

NA
ij =

1

DA

(ξimξmj − ξijξC − ξijξB + ξBξCδij) (A.35)

The equation (A.35) will be now differentiated, which gives:

∂NA
ij

∂ξkl
=

1

DA

[
∂(ξimξmj − ξijξC − ξijξB + ξBξCδij)

∂ξkl

]
− 1

D2
A

(
(ξimξmj − ξijξC − ξijξB + ξBξCδij)

) ∂DA

∂ξkl
(A.36)
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and after expanding:

∂NA
ij

∂ξkl
=

1

DA

{
1

2
(δikδml − δilδmk)ξmj +

1

2
(δmkδjl − δmlδjk)ξim

−1

2
(δikδjl − δilδjk)ξC − ξijNC

kl −
1

2
(δikδjl − δilδjk)ξB

−ξijNB
kl + ξCNB

klδij + ξBNC
klδij

}
− 1

D2
A

(
(ξimξmj − ξijξC − ξijξB + ξBξCδij)

)
[
(ξC − ξA)(NB

kl −NA
kl) + (ξB − ξA)(NC

kl −NA
kl)
]

(A.37)

The final expression for the second derivative of the yield function with respect to the tensor
ξ is:

∂NA
ij

∂ξkl
=

1

DA

{
1

2
(δikξlj + δilξkj + δjlξik + δjkξil)

−1

2
(ξB − ξC)(δikδjl + δilδjk)− ξij(NB

kl +NC
kl)

+δij(ξ
BNC

kl + ξCNB
kl )

−NA
ij

[
(ξC − ξA)(NB

kl −NA
kl) + (ξB − ξA)(NC

kl −NA
kl)
]}

(A.38)

A.4. Matrix notation of stress and strain tensors and related derivatives

Strain and stress vectors using Voigt notation

ε =
{
ε11 ε22 ε33 2ε12 2ε23 2ε13

}T
,

σ =
{
σ11 σ22 σ33 σ12 σ23 σ13

}T
. (A.39)

Strain and stress vectors using Mandel notation

ε̃ =
{
ε11 ε22 ε33

√
2ε12

√
2ε23

√
2ε13

}T
,

σ̃ =
{
σ11 σ22 σ33

√
2σ12

√
2σ23

√
2σ13

}T
. (A.40)

Discrete strain-displacement operators

BI =



∂NI
u

∂X1
0 0

0 ∂NI
u

∂X2
0

0 0 ∂NI
u

∂X3
∂NI

u

∂X2

∂NI
u

∂X1
0

0 ∂NI
u

∂X3

∂NI
u

∂X2
∂NI

u

∂X3
0 ∂NI

u

∂X1


, or BI

M =



∂NI
u

∂X1
0 0

0 ∂NI
u

∂X2
0

0 0 ∂NI
u

∂X3√
2

2
∂NI

u

∂X2

√
2

2
∂NI

u

∂X1
0

0
√

2
2
∂NI

u

∂X3

√
2

2
∂NI

u

∂X2√
2

2
∂NI

u

∂X3
0

√
2

2
∂NI

u

∂X1


. (A.41)
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Components of a fourth order tensor Cijkl with a symmetries Cijkl = Cjikl = Cijlk = Cjilk
is transformed into 6× 6 matrix using Voigt:

Ĉ =



C1111 C1122 C1133 C1112 C1123 C1113

C2211 C2222 C2233 C2212 C2223 C2213

C3311 C3322 C3333 C3312 C3323 C3313

C1211 C1222 C1233 C1212 C1223 C1213

C2311 C2322 C2333 C2312 C2323 C2313

C3111 C3122 C3133 C3112 C3123 C3113


(A.42)

and Mandel notation

Ĉ =



C1111 C1122 C1133

√
2C1112

√
2C1123

√
2C1113

C2211 C2222 C2233

√
2C2212

√
2C2223

√
2C2213

C3311 C3322 C3333

√
2C3312

√
2C3323

√
2C3313√

2C1211

√
2C1222

√
2C1233 2C1212 2C1223 2C1213√

2C2311

√
2C2322

√
2C2333 2C2312 2C2323 2C2313√

2C3111

√
2C3122

√
2C3133 2C3112 2C3123 2C3113


. (A.43)
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Jirásek, M. and Z. Bazant (2002). Inelastic analysis of structures. New York: John Wiley
& Sons.
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materiales? Zeitschrift des Vereines Deutscher Ingenieure 46, 1524–1530, 1572–1577.

Mosler, J. (2005). On the modeling of highly localized deformations induced by material
failure: The strong discontinuity aproach. Archives of Computational Methods in Engi-
neering 11, 389–446.
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