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Introduction

In spite of significant progress in the finite element analysis of shell structures, the
search for reliable and efficient elements capable to represent the general
nonlinear behavior of shell structures with arbitrary geometry, loading, boundary
conditions, and material properties still appears as a challenging task. The vast
number of papers published on the subject is perhaps the best measure of the
encountered difficulties." It seems to be a general agreement that presently there
exists a fairly large number of shell elements, which are reliable for the analysis of
some classes of problems if used with care. However, none of those elements
meets a common acceptance to be superior to others and the search for a general
applicable shell element appears as an endless task.> To some extend this is so,
since quite often the elements are formulated on the basis of special techniques
without formal mathematical justification, and relatively few elements have
allowed a rigorous mathematical stability and error analysis. Also the lack of an
access to exact analytical solutions makes it difficult to assess various shell
element formulations. '

Generally, three distinct classes of shell elements can be distinguished: (I) Flat
triangular or quadrilateral elements formed by the superposition of stretching
behavior (plane stress element) and bending behavior (plate element), (IT) Curved
elements formulated on the basis of various specialized shell theories, usually
Kirchhoff-Love or Mindlin-Reissner type theories, (III) Elements derived from the
isoparametric 3D brick element by the use of the degeneration method. The
elements of each class have their own advantages and deficiencies. Actually,
nearly all existing shell elements are formulated on the basis of quite restrictive
assumptions. In particular, it is usually assumed that:

1. The through-the-thickness material fibres remain straight during deformation.
2. The through-the-thickness material fibres preserve their length during
deformation.

"The survey articles by GALLAGHER [1976], BELYTSCHKO [1986], WEMPNER [1989], YANG,
SAIGAL AND L1IAW [1990], and the recent works cited throughout this work give a rather complete
account of the earlier efforts, current trends and an extensive bibliography in the field.

2Cf. TAYLOR [1988].
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Moreover, it is nearly the rule that the formulation is based on strong smoothness
assumptions. Specifically, one typically assumes, implicitly rather than clearly
stated, that:

A. A shell is geometrically represented by a smooth regular surface (called a
shell reference surface).

B. A deformation of the reference surface is described by an injective, globally
invertible and smoothly differentiable map.

C. All static and kinematic variables are smoothly differentiable fields over the-
shell reference surface.

The assumption 1), when combined with the assumptions A)-C) and with the
standard finite element discretization, leads to-elements with five degrees-of-
freedom per node, three translational and two rotational ones. As a result, an
essential difficulty one encounters in the analysis of general engineering
structures, which.are typically composed of rod-like and plate/shell-like segments
interconnected pointwise at joints and along junctions in a widely varying manner
to form, in overall, fairly complex structures. Folded plates, multicell box girders,
stiffened prismatic er non-prismatic shells, shell structures sustained by columns
and stiffened with beams or plates are typical examples.

In turn, the assumption 2) precludes an application of the formulated elements to
large strain problems, which are characterized by highly nonlinear through-the-
thickness deformation. A large strain deformation is typical for rubber-like
materials, which are usually incompressible or nearly so. An attempt to extend
standard finite element formulations to such problems is accompanied by essential
difficulties due to appearance of an unknown pressure.’

The aforementioned problems are just a few among many others. From the careful
study of the literaturé, it becomes apparent that difficulties in the finite element
analysis of shell structures with arbitrary geometry, loading, boundary conditions,
etc., center around the following three main issues:

I) Shell theory - reduction of an otherwise three-dimensional problem of
continuum mechanics to the one having coordinates of a certain surface as
the only independent variables.

3 See HUGHES AND CARNOY [1983], PARISCH [1983]. The formulations presented in these papers
account for large membrane strains but still excludes large bending strains.
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IT) Discretization - finite element approximation of an otherwise two-
dimensional continuum problem.

IIT) Irregularities - treatment of shell branches and shell intersections,
stiffeners, reinforcements, shell-to-rod transitions, etc.

The aim of this work is to present a systematic treatment of all three issues with
emphasis on their different nature. Our starting point will be the shell theory
developed in the accompanying paper.4 Actually, the shell theory developed in
that paper resolves the first and third issue. In this way we can actually concentrate
on the formulation of shell finite elements. It may be noted that the formulation of
shell elements is essentially independent of the manner the underlying shell theory
was formulated. However, the physical meaning of the finite element solutions is
strongly related to the basic concepts which underlay the development of the shell
theory. This fact is particularly important in the case of the shell theory formulated
in Part I, which substantially differs from the approaches usually adopted in the
formulation of shell finite elements. For this reason we find it necessary to present
below a short summary of the main concepts, within which the shell theory was
developed in that work.

The main virtues of the approach applied in Part I are:

— It draws a clear distinction between the general physical laws, which are
independent of specific material properties and the specific constiuction of
the shell, and the constitutive relations, which define particular classes of
shells.

— The mechanical balance laws for shells are derived by direct specification of
the laws of continuum mechanics for a shell-like body with no simplifying
hypotheses and/or ad hoc postulates of whatsoever nature. In effect, various
simplifying assumptions underlying the classical derivation of basic shell
governing equations are avoided.

— The kinematics of the shell is the outcome of the formulation and not a basic
assumption or a postulate of the theory as it is the case in other formulations
of shell theory.

— Displacements, rotations and strains are not restricted in any way as to their
magnitude. There is also no thinness assumption.

4 MAKOWSKI AND STUMPF [1994], hereafter referred to as Part I The shell theory developed in
that paper provides an essential refinement and substantial generalization of our earlier studies,
MAKOWSKI AND STUMPF [1988,1990].
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~ Independent kinematical variables of the shell theory consist of the
displacement field of a shell reference surface and a proper orthogonal tensor
specifying independent mean rotations of the shell cross sections. This
feature is particularly important from the computational point of view.>

— The only approximate character of the theory may appear in the form of two-
dimensional constitutive equations.

Moreover, the regularity assumptions required in the formulation are far weaker
than one typically adopts. In particular:

~ The shell reference surface needs not be smooth but solely piecewise smooth
or a union of such surfaces.

— The deformation of the shell reference surface needs not be smooth but solely
piecewise smooth or even piecewise continuous.

-~ Various kinematic and static variables appearing in the shell theory are
admitted to suffer jump discontinuity across curves on the shell reference
surface.

In effect, the shell theory formulated within this approach, is rich enough to
account for extension (compression), flexure, transverse shear and an arbitrary
through-the-thickness deformation. Thus it is applicable to large strain problems
aside large displacement/rotation problems. The underlying kinematic model of
this theory coincides with a geometric surface (a shell reference surface), each
point of which has extra degrees of freedom of the rigid body. In effect, all shell
finite elements developed in this work include the drilling rotation formulated on
the firm foundation of an exact (in defined sense) shell theory. By implication,
these elements have all six degrees of freedom at each node, three translational
and three rotational ones. As such, they are equally applicable to smooth as well as
to irregular shell structures containing folds, branches, kinks, column supports,
stiffeners, etc.

Moreover, the relaxed regularity assumption adopted in Part I, yields not only the
field equations of the shell (equilibrium equations, kinematic relations, etc.), but
also static and kinematic jump conditions due to non-smoothness of the shell
reference surface or non-smoothness of various static and kinematic variables. In
addition, the resultant stress couple vectors include all three components along any
basis on the reference surface. By implication, the developed shell theory makes it
possible to satisfy rigorously static jump conditions. This is in contrast with

5 See CHROSCIELEWSKI, MAKOWSKI AND STUMPF [1992,1994].
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various other attempts to develop shell finite elements with drilling degree-of-
freedom. An element enriched by this degree-of-freedom makes it applicable to
non-smooth shell structures, but it does not allow to satisfy static jump conditions.
Let us note that the formulation of shell finite elements is based on a suitable
variational principle. Accordingly, static jump conditions do not enter the
formulation explicitly.

We now outline the contents of this work. In Chapt. I we provide a very short and
selective overview of the basic concepts in the finite element analysis of shells.
Chapt. II contains the summary of the complete set of shell governing equations
together with the formulation of the momentum balance law in a weak form
(principle of virtual displacements). On this basis we next present a general
iterative procedure which is needed in the solution of nonlinear shell problems.
The corresponding variational principles with relaxed regularity requirements are
formulated in Chapt. III. These principles provide the mathematical basis for the
formulation of different classes of shell finite elements. In the formulation are
included a displacement/rotation based Lagrange family of finite elements, a stress
resultant based mixed and a semi-mixed family of elements as well as so-called
assumed strain elements. Finally, in Chapt. IV we present the numerical analysis
of linearly elastic shells. In order to obtain a still deeper insight into the problem a
Lagrange family of standard degenerated shell elements with five degrees of
freedom per node and an element with six degrees of freedom per node, based on
the von Karman plate theory, are considered as well. Their limited range of
applicability is demonstrated. The presented numerical results cover a large menu
of illustrative test examples of complex plate and doubly curved shell structures,
for which linear and nonlinear solutions with a pre- and post- buckling analysis
are discussed. In the study altogether sixteen shell elements have been tested. This
includes the Lagrange family of 4-, 9- and 16-node displacement-rotation based
elements, and 4-node and 9-node elements based on the mixed formulation, on the
semi-mixed formulation, and on the assumed strain interpolation.

Where feasible we shall adopt the notation and convention of modern continuum
mechanics as well as coordinate free vector and tensor calculus. As a rule we use
boldface lower case letters to denote vectors and vector-valued functions.
Boldface capital letters will denote tensors and tensor-valued functions, and we
write uev, uxv and u ®v for the usual inner product, cross product and tensor
product of two vectors. Throughout this paper we use standard summation
convention that lower-case Greek indices have the range 1,2, lower-case Latin
indices the range 1,2,3, and that diagonally repeated indices are summed over their
range. If no confusion can arise, we make no distinction between functions and
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values of functions. By dA and dL we denote surface and line elements of
corresponding surface and line integrals.
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Concepts in finite element analysis of shells

1. Formulation of shell finite elements

1.1 Basic steps in the finite element formulations. The finite element method was
initially developed for structural problems but it has since been extended to
numerous field problems. Generally, the finite element method may be formulated
and interpreted from two different viewpoints: a physical and a mathematical one.
The physical appreach is closely related to the original formulation and an
extensive application of the method in structural analysis. Mathematically, the
finite element method can be considered as an application of the Rayleigh-Ritz
method or its more general counterpart, the Bubnov-Galerkin method, together
with the use of piecewise polynomials to approximate solutions of boundary value
problems. Regardless of the adopted viewpoint and of a problem to be solved, a
standard finite element formulation primarily involves the following steps:'

1. Definition of the problem and its domain;

2. Discretization (approximation) of the domain;

3. Discretization (approximation) of independent (unknown) variables of the
problem.

Each step requires a great deal of different constructions depending on the
physical and mathematical nature of the problem. In this work we shall be
concerned with the problems of shells.

1.2 Continuum mechanics formulation. Shells, whatever shape they have and
however thin they could be, are three-dimensional bodies. The deformation of a

! Since the basic concepts of the finite element method are well-known, e.g. ZIENKIEWICZ AND
TAYLOR [1989], we need not go into details here.
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shell is thus governed by the basic laws of continuum mechanics. These laws can
be stated either as integral balance laws (balance laws of linear and angular
momentum) or as integral identities (principle of virtual work of forces and
torques). In the finite element analysis the integral identities are usually taken as
the point of departure of a formulation. These identities provide also the starting
point of the weak formulation of the problem.

Relative to a reference configuration B the deformation of the body is described by
a map %, which assigns to each particle X its spatial place x in the current
configuration:

x=¢xX)=X+uX), (1.1)
where u denotes the associated displacement field (Fig. 1).

current

undeformed configuration

configuration

4B, u*

kinematically admisible
configuration

Fig. 1

Under prescribed loading and boundary conditions the principle of virtual work
(of forces) asserts that

vvinl _We.xr=0a (1.2)

for every kinematically admissible virtual displaccment ou, where the internal and
external virtual work are given by
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W= [, T+6FdV = [ S<SEdV,

West =fo~éudV +fan t'«SudA. (1.3)

The following standard notations are used here:

T(X) - the first Piola-Kirchhoff stress tensor,

S(X) - the second Piola-Kirchhoff stress tensor,

F(X) - the deformation gradient,

E(X) - the Green strain tensor,

f(X) — the body force vector, .

t'(X) - the external boundary force vector prescribed on the part dB; of the
boundary,

together with the well-known relations
F=Py=1+Vu, =1(u+Vu+Vu'7u), T=FS. (1.4)

The variational equation (1.2) remains valid independent of the nature of
constitutive equations. When used with appropriate constitutive equations it
provides the weak formulation of the problem.

The solution of a nonlinear problem is typically achieved using a suitable iterative
procedure, which in turn involves a linearization process. With appropriate
assumptions regarding material constitutive behavior and loading, the linearized
form of the principle of virtual work (1.2) can be derived in a standard manner.

1.3 Strategies for shell element formulations. Basically, in the computational
analysis of shells, such as the finite element method, two approximation processes
are employed:

— Reduction process — reduction of an otherwise three-dimensional problem of
continuum mechanics to one having the coordinates of a certain surface as
the only independent variables.

— Discretization process — finite dimensional approximations of an otherwise
continuum problem (infinite dimensional problem).

The two processes are essentially independent of each other and they can be
applied in either order. In effect, two basic strategies emerge for the development
of shell finite elements:
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A. Shell theory based formulation — the classical concept of a shell theory is
employed as the starting point of the finite element formulations.

B. Degenerated shell element concept — the shell elements are derived directly
from the basic equations of continuum mechanics simultaneously with the
finite element discretization.

Thus these strategies employ the two approximation processes in the inverse
order, as it is illustrated in Fig. 2.

|shell assumption?)

[2D finite element model|

l| [shell assumptions l) oD i

Fig. 2

1.4 Finite element models. Mathematical formulation of the finite element method
involves two basic aspects:

A) Weak formulation of the problem,

B) Selection of the space of trial functions and of test functions (technically, the
choice of the number of nodes, the number of nodal variables and the so-
called shape functions).

With respect to A) two main classes of finite element formulations can be
distinguished:

Al) Single field finite elements,
A2) Multi-field finite elements.

An application of the finite element method to the analysis of shells typically starts
with the displacement approach based on the principle of stationary total potential
energy together with a Lagrangean interpolation scheme. These elements remain
still most often used owing to their simplicity, computational efficiency, and the
clarity of the formulation. The most typical example of the class Al) are finite
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elements based on the displacement (in our case displacement/rotation)
formulation having the principle of virtual displacements as the underlying weak
formulation of the problem.

As an alternative to the displacement—liké‘ models mixed formulations may be
employed, in which separate interpolants are used for the displacement and the
other fields. Among the finite elements belonging to this class we can mention
mixed formulations usually based on a Hellinger-Reissner type variational
formulation.

The clear foundation of the method finite element method gives rise to various
finite element formulations, which are mainly based on some technical
constructions usually having no variational formulation of the problem. Among
such formulations the assumed strain techniques appear to be the most often used
ones. However, finite elements formulated within these techniques are less
reliable, although they can provide a sound solution for many englneenng
problems

1.5 Shell hypotheses. The conventional procedure for developing shell theories
employs the three-dimensional theory as the point of departure, and subsequently,
certain simplifying assumptions are introduced to reduce the three dimensional
problems of continuum mechanics to be applicable for shells. Classically, three
basic groups can be distinguished:

1. Kirchhoff-Love type theory;
2. Mindlin-Reissner type theory;
3. Higher order theories.

Clearly, the resulting shell theory as well as the finite element formulations
depend on the nature of the assumed kinematic constraims. The choice, which type
of theory one intends to use, depends on several factors; among them are:

1. The regularity factor — the smoothness of the variables and the demain (shell
reference surface);
2. The accuracy factor — the accuracy we wish to attain;

2 SO AND HUGHES [1986] showed that the assumed strain methods in the linear case can be
explained in a variational context by adopting the Hu-Washizu principle. However, this
explanation does not seem to be easily extensible to nonlinear case.
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3. The cost-efficiency factor — the price we are willing to pay in terms of -
computational time and effort for the formulation.

1.6 Requirements on shell elements. Independent of the type of shell theory used
and the type of finite element formulation employed, various requirements have to
be set upon the development of shell elements in order to render the elements
widely applicable in the engineering analysis. Ideally, quite a few requirements
should be satisfied:

1. The element should be reliable and computationally effective.

2. The theoretical formulation of the element should be strongly based on
continuum mechanics with assumptions in the finite element discretization,
that are physically and mathematically clear and well-founded.

3. The element should be formulated using only the complete set of engineering
nodal degrees of freedom — three nodal displacements and three rotations —
preferably at corners only.

4. The element formulation should be general, i.e. the element should be
applicable to any shell problem including

— linear and nonlinear problems with finite displacements/rotations and finite
strains,

~ thin and thick shells,

— arbitrary geometry admitting non-smooth shells and multi-shells,

— the predictive capability of the element should be high and be relatively
insensitive to mesh distortions,

5. The element should possess the actual physical rigid body modes and should
have no rank deficiency (should not contain spurious zero energy
mechanism).

6. The element formulation should provide resultant stress/couples as accurate
as displacements/rotations.

7. The element should be connectable with rod elements.

While easily stated, the above criteria are difficult to satisfy and a reasonable
compromise is needed in general.

1.7 Computational issues. There is a number of purely computational issues that
affect the efficiency of finite element solutions of shell problems:

— generation of a mesh,

3 BATHE [1986], FREY [1989].
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— element assembly,

— implementation of boundary conditions,

~ the selection of numerical techniques to solve the resulting system of linear
algebraic equations,

— the evaluation of the accuracy and quality of the solution,

— selection of numerical integration of the stiffness matrix and load vector.

In contrast to solving linear problems, the solution of nonlinear problems may
vary considerably depending on the values of the independent and dependent
variables. Accordingly, a main problem in the nonlinear analysis is the efficient
and complete solution of the resulting system of nonlinear algebraic equations. All
techniques used for solving sets of nonlinear algebraic equations involve a
sequence of iterations, and most have the drawback that convergence depends on
an initial approximation, which should be close to the true solution. Additional
difficulties arise in the analysis of buckling problems, which require to locate and
determine all singular points (limit points, branch points, etc.). Most techniques
used for solving nonlinear problems are based on the continuation method, which
has the advantage of producing solutions over a large range of the independent
variables.

1.8 Testing shell elements and error estimations. The objective of the finite
element formulation is to obtain an acceptably accurate and reliable solution of the
problem under study. Accordingly, the formulation should provide not only an
approximate solution but also some reliable information about its accuracy. In
general, the quality of the finite element solutions depends on several key factors
such as:

— The regularity (smoothness) of the solutions;

— The highest order derivative appearing in the definition of the functional
underlying the finite element formulation;

— The largest degree of complete polynomials in the space spanned by the
shape functions.

The problem of accuracy of the finite element formulations has mainly been
transformed into the question of how well the energy can be approximate. For
linear elliptic problems this question has been extensively studied in the literature.
However, the error estimation for shell problems is much more difficult.
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2. Classical C° shell elements

2.1 Isoparametric finite elements. The standard finite element recipe for handling
curvilinear elements (such as shell-like elements) is provided by the isoparametric
concept, which have been used successfully for three-dimensional problems.
Within this concept the same shape functions are employed to approximate both
geometry (domain of a problem) and displacements (independent variables of a
problem). This formulation may be well applied for the analysis of shells avoiding
the use of shell theories. Within this approach, the geometry of the shell-like finite
element €2, is described by a set of natural curvilinear. coordinates
(&) e[-1,+1F, i=1,23, such that a cube v, of bi-unit sides is uniquely mapped
onto the shell element (Fig.3). Then the displacement field (as well as the
geometry) within the element is interpolated from its nodal values using a
Largrange interpolation scheme

u(&:) . 7
w() =L@ =" LEN, u=in;, 2.1)
us(Ei) 172}

a

where L,(&;), a=12,...,n, are the so-called shape functions (usually Lagrange
polynomials).

unit cube physical element
(standard element) :

o element nodes
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Introducing the approximation (2.1) into the principle of virtual work (1.2) the
discretized finite element equation follows in the standard manner. However, a
straightforward application of the isoparametric concept to shell problems meets
certain difficulties:"

— The use of several nodal points through-the-thickness ignores the well-known
fact that for thin shells the through-the-thickness fibres remain nearly straight
and preserve their length after deformation. This leads to an element with
excessive degrees-of-freedom, which render the element uneconomical.

— The retention of all three nodal displacements at each node leads to large
stiffness coefficients for relative displacements along an edge corresponding
to the shell thickness. This causes numerical problems and inevitably leads to
ill-conditioned equations, when the shell thickness becomes small compared
with other dimensions of the element. Thus the element fails at a moderate
length to thickness ration due to displacement locking.

2.2 Degenerated solid shell element. The concept of the degenerated solid shell
element has been first applied by Ahmad to the linear analysis of shells.” Since
then, the popularity of this concept has grown enormously. The popularity of this
concept is due mainly to its simplicity of formulation.

The degenerated element concept begins by discretizing directly the three-
dimensional equations of continuum mechanics applying the isoparametric
concept. Thus the three-dimensional formulation is first applied to a three-
dimensional shell-like continuum and subsequently degenerated by assuming
linear interpolation in the thickness direction, while retaining interpolation of any
order in the surface directions. In this sense, the finite element discretization of the
three-dimensional shell-like continuum is performed first and subsequent
approximations in the thickness direction are imposed. In this way the nodal
displacements on the bottom and top surfaces are replaced by the nodal
displacement of the reference surface and the nodal vector (Fig.4). The main
advantages of this approach are:

— Conceptual simplicity is inherited from the three-dimensional theory.
— Direct applicability of existing three-dimensional constitutive models is
maintained.

1 7mENKIEWICZ, TAYLOR AND TOO [1971].
2 See AHMAD, IRONS AND ZIENKIEWICZ [1971].
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unit cube . 53 physical element
(standard element)

&
degenerated
o continuum nodes E shell element
o shell nodes 3
&
&

Fig. 4

While the basic concept behind the degenerated shell finite elements is very
simple, this approach has its own weak sides. The basic inconveniences are:

a) Their range of applicability is severely delimited by the assumption the
adopted assumptions, which rules out the deformation along through-the-
thickness fibres of the shell and thus excludes finite strain-problems.

b) The evaluation of the element matrices requires a spatial integration and
hence the elements are in general expensive in computation.

c) Essential difficulties arise in the analysis of irregular shell structures, since
the element has only two rotational degrees of freedom.

2.3 Mindlin—Reissner hypothesis. Actually, the basic assumptions employed in
the formulation of degenerated shell elements are identical to those used in the
classical Mindlin-Reissner shell theory. In this sense the two approaches have
much in common. In particular, since both are based on the same kinematical
assumption, the either formulation accounts for the primary effects of transverse
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shear and thus extend their applicability to moderately thick shells. However, they
exclude the transverse normal deformation and thus they are restricted to small
strain problems. From the computational point of view the main advantage
compared with the Kirchhoff-Love type shell theory is the fact that only C° inter
element continuity is required, what simplifies considerably the construction of the
finite element space.

Let us recall that according to the classical Mindlin-Reissner hypothesis:

1. Through-the-thickness shell fibres remain straight and inextensible during the
deformation.
2. The normal stresses can be neglected (plane stress hypothesis).

When employed together with the standard variational procedure these two
assumptions directly lead to the two dimensional shell equations, which provide
the basis for the finite element discretizations.’

Commonly, a shell is regarded as a thin or moderately thin three dimensional
body, whose reference configuration B can be described using curvilinear
coordinates (&°) =(&#,£) chosen in such a manner that the equation & =0 defines a
shell reference surface M, and the position vector X of any point in the region B
can be expressed in the form

X(E.E)=Y(E")+ED(E’.E),  Eel-h(E)+hi(EM), (2.2)

where Y (§#) = X (£2,0) denotes the position vector of the reference surface M, the
unit vector D defines through-the-thickness shell fibres, and the function
ho = b + h§ >0 determines the initial shell thickness. Typically, one takes D = Ay
to be the unit normal vector to the surface M , which in turn is assumed to be the
mid-surface so that hf =hy =hy /2.

Now, according to the first Mindlin-Reissner assumption the position vector in the
deformed configuration of the shell can be expressed in the form (Fig. 5)

x(EP,E) = y(EP) + E(EP). (2.3)

By virtue of (2.2) and (2.3) the three-dimensional displacement field is obtained in
the form

3 See, e.g., SIMO, FOX, AND RIFAI [1990].
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u(E?,5)=u(&?)+EPEP), (2.4)

where
u(Eh &)=y -Y(&%), PE=d(EF)—-D(EP), (2.5)

are the displacements associated with the reference surface. This leads to the five
parameter shell theory consisting, aside from the three components of the
displacement field, of two rotational parameters, which may be defined in various
manner.

Fig. 5

2.6 Finite element discretization. The standard finite element discretization
applied to the shell theory based on the Mindlin-Reissner assumptions leads to the
finite elements having at each node five degrees of freedom: three displacements
(uavasw,) and two rotations (0y,,0,,). These are the same degrees-of-freedom,
which possess the degenerated shell elements (Fig. 6).
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3. Other types of shell finite elements

3.1 Kirchhoff assumptions. The earlier shell finite element formulations have
been mainly based on the classical Kirchhoff-Love shell theory and the principle
of stationary total potential energy.! In this theory the displacement field of the
reference surface is the only independent kinematical variable. This theory has
been widely used in the formulation of curved thin shell elements due to its well-
established nature. However, such formulation entails some limitations and
difficulties. The Kirchhoff-Love shell theory requires continuity of the normal
slope across the inter-element boundaries. The convergence requirements,
according to the classical finite element theory, are simple polynomial
completeness through second-order and global C' continuity. Considerable
ingenuity is needed to devise element interpolatory schemes satisfying these
conditions. The requirement to ensure the C' inter-element continuity leads to a
very large finite element basis (high order interpolation polynomials). The
difficulties in developing such basis are severe and they become even more acute
for non-smooth shells. The excessive continuity needed in these elements may also
induce peculiar effects in the analysis of plastic shells. Moreover, the range of
applicability is delimited by underlying kinematic assumptions, which in the
classical form ignore both the transverse shear and the.through-the-thickness
deformation.

3.2 Discrete Kirchhoff assumptions. The aforementioned limitations and
difficulties led to the development of the discrete Kirchhoff theory (DKT)
elements, for which the requirement of C' continuity is relaxed, but additional
techniques are used to incorporate the Kirchhoff hypothesis at a discrete number
of points. The discrete Kirchhoff element was originally developed by Wempner
et al. in 1968 but the concept has only more recently become popular.> Within this
approach the formulation starts with the Mindlin-Reissner plate or shell theory and
the standard finite element approximations. Subsequently, Kirchhoff hypothesis
are enforced at a finite number of discrete points. However, some doubts arise
related to the discrete nature of the constraints.

3.3 Shallow shell elements. The problems connected with geometric
representation are reduced somehow by formulating curved elements in terms of

'See WEMPNER [1989]. Recent works in this field can be found in VAN KEULEN, BOUT, AND
ERNST [1993], VAN KBULEN [1993].
?See, e.8., DHATT, MARCOTTE AND MATTE [1986], TALBOT AND DHATT [1987].
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the shallow shell theory. This theory allows all the necessary mathematical
manipulations to be performed in a base reference plane. In addition, it is
sufficient to assume constant geometric curvature over the element. However, this
introduces geometric discontinuities in the shell reference surface at adjacent
elements, which are part of different parabolic surfaces, and they will not match
properly together.

Regardless of whether the shallowness assumption is used or not, a proper
description of the rigid body modes in elements based on curvilinear shell theory
is only possible with the inclusion of transcendental functions into the
displacement expressions. This will violate interelement compatibility and it is
more convenient to approximate the rigid body motions with higher order
polynomials describing the displacements. This higher order representation of the
displacements leads to the introduction of additional degrees-of-freedom, namely
the first- and second-order derivatives, which lead to difficulties at shell
intersections.

3.4 Idealization of shells with flat elements. The simplest and earliest application
of the finite element method to the analysis of shells involved the replacement of
the curved shape by an assemblage of flat triangular or rectangular elements. By
superposing the independent membrane and flexural behavior (plane stress
elements and plate bending elements) together with the appropriate spatial
transformation, the desired shell elements were developed. However, the success
of such analysis was delayed until formulations of plate bending elements became
mature. The research to represent the shell behavior by flat elements and to
overcome the associated difficulties continues to attract interest.

Among the major attractive features of this modelling of shells are:

a) It is easy to input data to describe the geometry.

b) They are simple to formulate.

c¢) Itis easy to mix with other types of elements.

d) They are capable of modelling rigid body motions without inducing strains.

e) The requirement of using a relatively large number of elements provides the
advantage of a convenient incorporation of complex loading and boundary
conditions.
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Their well-known shortcomings are:'

a) They poorly represent the geometry of curved shells. This problem is
particularly severe in the analysis of imperfection-sensitive problems.

b) They exclude at the element level the coupling of stretching and bending
behavior so typical for curved shells.

c) They give rise to the presence of "discontinuous" bending moments, which
do not appear in continuously-curved actual shells,

d) They lead to ill-conditioned or even singular stiffness matrices, whenever
elements are coplanar or nearly so.

These deficiencies, which can be surmounted to some extent through various
artifices, are particularly severe in the nonlinear and buckling analysis.
Nevertheless, due to their simplicity in use, flat and facet shell elements still
attract much attention in the literature.

4. Folds, junctions and shell intersections

4.1 Non-smooth and multi shells. In the engineering analysis it is often necessary
to model shell structures composed of various structural elements, containing shell
branches, junctions and intersections or the possibility of connecting rod and shell
structural elements. When discussing different ways to describe non-smooth
shells, intersections and branches of shells, one remark has to be made. In the
literature it is occasionally pointed out that the formulation of shell intersections
falls out of the realm of shell theory, and one needs a truly three-dimensional
description of the problem. Thus suggesting that any attempt in this direction is
superfluous. While the this observation is true, one must realize that this is equally
valid for smooth shells at the boundary layer.

The finite element approximations of irregular shell structures (structures of any
kind noted above) requires reliable description of each structural element as well
as an appropriate representation of their junctions. The main difficulties that arise
in the analysis of these problems are due to the lack of the sixth degree-of-freedom
in the standard formulations of shell elements. In effect, this leads to problems in
computation and modelling. The difficulties turn out to be even more severe for K-
L type and higher order shell theory based elements, which typically lead to nodal

'Recent works by ALLMAN [1994], CHEN [1992], ORAL AND BARUT [1991] provide a detailed
account of the problem.
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degrees of freedom with higher order derivatives of the displacements. This fact
was recognized since long and various concepts have been considered in order to
overcome this restriction.

4.2 Continuous field of local triads. Within a direct and simple approach one tries
to apply standard shell finite elements with 5 DOF per node to kinked and
branching shell structures in either of two ways:*

a) Through the transformation of two local rotations, described in a local
coordinate basis associated with the element, into a global coordinate basis,
which serves to assemble the elements into the global structure. In this way
the number of nodal unknowns increases from five to six due to the
appearance of an extra rotation due to the transformation.

b) Through defining the director field in a continuous manner through non-
smooth intersections of different parts of the shell structure. Such triads then
serve to assemble the element matrices into the global one.

While both possibilities are often pointed out or even worked out at length in the
literature, there is an apparent lack of representative test examples to validate the
applicability of these concepts. In fact, most of the works do not present any
numerical example at all. In some others they are illustrated by smooth shell
problems, in which case neither of the techniques is really needed. It seems that
both techniques can be applied with minor reliability of the solutions and only for
a limited class of problems. Moreover, it should be noted also that none of such
techniques will make it possible to connect rod and shell elements.

4.3 Transient elements. Shell intersectians and shell-to-solid transitions can be
modelled effectively using the so-called transition elements.” Such elements have
mid-surface nodes to couple with other shell elements and top and bottom nodes to
connect with other elements or with the usual three-dimensional isoparametric
elements.

4.4 The sixth degree-of-freedom. An alternative method of the analysis of
irregular shells requires to extend the number of rotational nodal parameters from
two to three. Earlier efforts were based on various artificial means such as a
fictitious beam along the edges of an element or a fictitious spring (rotational

2 See HUGHES AND LU [1981], HUANG AND HINTON [1986] and VU-QUOC AND MORA [1989].
3See, e.g., BATHE [1982].
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stiffness) added to an element stiffness matrix. This was recognized to be of very
limited use. The in-plane rotational degree of freedom associated with the shell
normal rotation is commonly referred to as drilling degree-of-freedom. This DOF
is particularly advantageous in"the analysis of shells with the aim of extending the
range of applicability of standard shell elements to non-smooth problems.
Moreover, in many finite element formulations the absence of the rotation about
the shell normal as a degree of freedom can also lead to serious errors and
spurious buckling modes for structures having shell segments joined with a
discontinuous tangent. In general, the main motivations behind the idea of
including the sixth degree-of-freedom into the shell/plate elements are:

— To improve the element performance;
- To provide reliable modelling of connections between plates, shells and
beams, as well as the treatment of folds and junctions in shell structures.

Classical attempts to develop plate/shell as well as membrane elements with sixth
degree-of-freedom can be viewed as unsuccessful and some authors had dismissed
the task as hopeless.* A significant progress in this direction began with the
independent works by Allman and Bergan and Felipa in the context of plane
problems.” Along the lines of the "non-conventional interpolation” of Allman and
the "free formulation" of Bergan and Felippa and extensive current attempts
followed to develop shell finite elements with the drilling rotation. This more
recent efforts have shown that the sixth degree-of-freedom, absent in the classical
shell elements, can be formulated and built into the element in a widely varying,
not equivalent manner. Basically, the two cases can be distinguished:®

— the drilling rotation,
— the vertex rotation.

4.5 The drilling rotation. Within the two-dimensional linear elasticity the drilling
rotation is interpreted as the in-plane rotation £2,, defined by

Q=2(v,—u,), 6.1)

where u, v are the in-plane components of the displacement and x, y are the in-
plane coordinates. The possibility to include £2,, as a nodal parameter in . the

‘A compilation of these early efforts is presented in MACNEAL AND HARDER [1976].
5See ALLMAN [1994], FELIPPA AND MILITELLO [1992] and references cited therein.
SFrEY [1989).



24 Chapter |. Concepts in finite element analysis of shefls

formulation of finite elements was suggested already in 1965. At that time, the
advantage in using £2,, for shell analysis was understood. However, no application
was made.” The present trend is to relating the in-plane rotational degrees of
freedom to the average in-plane rotation of the shell reference surface as a
constraint by the penalty function method could lead to an exact definition of
drilling rotation in continuum mechanics.® However, strong enforcement of such a
constraint can lead to strong locking. This is particularly severe when curved
shells are idealized.

4.6 Vertex rotational DOF. In 1984 Allman have included three vertex rotations
into CST (Constant Strain Triangular) element remarkably improving its
performance. In this approach the tangential displacement is taken to be linear,
whereas, due to the vertex rotations (additional nodal unknowns) the normal
displacement is quadratic:

u=(1—=s/by)us +(s/ ha)ug, ,

6.2
b = (1= 8/ by Yt + (5 Bt (51 2) A=/ b} (@ — 1) ©2)
The vertex rotations are then defined by
(02_(‘)1=ums(s=l12)_um:(s=0)’ (603)

where a comma denotes derivative with respect to s. Thus, the vertex rotations are
related to the derivatives of the displacements computed at the nodes of the
element.

This approach has been extended to facet shell element based on DKT (Discrete
Kirchhoff Triangular) bending element and to a curved element based on the
Marguerre shallow shell theory. While these concepts still lack firm theoretical
foundations, they have attracted much attention in the literature with varying
degrees of success. The common experience shows that special care must be taken
to avoid unexpected solutions by using elements based on this concept. Also it
became clear that some ad-hoc-devices will be needed to attain satisfactory
performance of such elements.

It should be noted that some techniques of including sixth DOF into the standard
shell elements make use of a special geometry, and they are not applicable to
higher order shell elements. For example, neither Allman’s approach nor the free

" Details of this preliminary work may be found in IRONS AND AHMAD [1975).
8 See HUGHES AND BREZzI [1989], FOX AND SIMO [1992].
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formulation has ever been applied within nine and sixteen nodes elements, which
can represent a complex shell geometry not possible within triangular and
quadrilateral elements (they do not accommodate accurately the curvature of the
shell geometry).




Chapter Il

Boundary value problems of irregular shelis

1. Shell structures and shell theory

1.1 Preliminary remarks. A short overview presented in the previous chapter tried
to make clear that in the finite element analysis of shells there are primarily three
sources of approximations:

1. Shell theory approximation — approximations due to the two-dimensional
formulation of an otherwise three-dimensional problem.

2. Structural approximation — approximations due to the impossibility of a two-
dimensional description of irregularities of real shell structures.

3. Finite element approximation ~ approximations due to the discretization of an
otherwise continuum problem.

Type as well as source of each approximation are entirely different. Therefore, it
seems to be desirable that the formulation of shell finite elements should make a
sharp distinction, as far as it is possible, between all three aspects. This is the point
of view which we take in this work.

1.2 Concepts in shell theory. Generally, the aim of shell theory is to reduce for a
shell-like body an otherwise three-dimensional problem of continuum mechanics
to one having the coordinates of a certain surface as the only independent spatial
variables. Within the shell theory the shell-like body is thus geometrically
represented by a distinguished surface, called the shell reference surface, endowed
with certain kinematic and dynamic properties, which reflect the dominant features
of the body it represents.

In the formulation of shell governing equations special care is needed for a proper
modeling of structural irregularities such as folds (non-smoothness of the shell
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faces), multiple shell intersections (three or more shell segments intersecting at a
common juncture), stiffeners, etc. Structures, which are composed of rod-like and
shell-like elements interconnected pointwise at joints and along junctions, are
typical examples:n general, the possibilities are so numerous that it is impossible
to lay down any general rule for their rigorous characterization.

The shell-like body and the shell reference surface are the basic underlying
concept of the shell theory. Intuitively, the concept of a shell-like body might
seem to be obvious. However, a rigorous description of its geometry is a quite
subtle analytical problem.! This is particularly so in the analysis of shell
structures, which are characterized by discontinuities in geometry, stiffness and
loading.

From the point of view of a general theory of such structures, a few cases need to
be considered in detail. Most of them can be grouped into five categories for
which we shall use the following names:

I) Smooth shells,
II) Folded shells,
III) Multiple-shell intersections,
IV) Multi-shell structures,
V) Rod-shell structures.

We have shown in Part I that the first two categories can be treated at one time.
They are based on the concept of a regular shell-like body. The remaining three
categories require separate considerations.

1.3 Regular shell-like body. Generally, a shell has three basic identifying features:
its reference surface, its thickness, and its edges. These features follow from the
specific geometry of the shell-like body”, whose boundary 8B consists of three
parts: an upper shell face M, a lower shell face M~ and a lateral surface (edge)
dB". We shall assume that the shell faces M* are piecewise smooth, connected,
but not necessarily simply connected, that the lateral surface B" is a piecewise
smooth surface, not necessarily connected, i.e. dB* can be a union of some number
of piecewise smooth surfaces (Fig. 1).

! See MAKOWSKI AND STUMPF [1994], hereafter referred to as Part L.
2For the purpose of this work there is no loss in generality in identifing a body with a region it
occupies in the undeformed configuration.
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Fig. 1

We shall further assume that the shell reference surface M C B is arbitrarily
located within the region B. Relative to the fixed Cartesian coordinates in space
the position vector of a typical point of M be denoted by Y. For simplicity, the
points of M and also their position vectors will be denoted by Y leaving the
context to make clear which one is meant. Let us note that even in the case of non-
smooth shell faces, the shell reference surface M can still be defined to be smooth,
but such choice of the reference surface need not be the most appropriate one.
Therefore, we shall take M to be an oriental piecewise smooth surface (Fig. 2).

Fig. 2

Let us further assume that at each point of the shell reference surface M a unit
vector D is defined such that every point in the region B is uniquely determined by
the position vector given in the form
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XY, 5)=Y+EDXY), Ee[-h¥)+hiY)], (1.1)

where hj are given non-negative piecewise smooth functions on M such that
hoY)=hs(Y)+hs(¥Y)>0. ‘ (1.2)

The vector D is required to be not tangent to M and it serves to define through-the-
thickness fibres. Note that the functions A} define the location of the reference
surface relative to the shell faces whose position vectors are given by

X*X¥)=Y xh;(Y)DY). (1.3)

We shall refer to & as through-the-thickness or "normal" coordinate and we call A,
the initial shell thickness. It is clear that the thickness of the shell defined in this
way depends on the choice of the vector D. We also note that the field D on M can
be defined in a continuous manner even if M is not smooth. Moreover, without
loss of generality we can assume that the lateral surface dB" is a ruled surface,
whose generators at each point Y €9M are defined by (1.1). When these
assumptions are satisfied we shall call B a regular shell-like body. ’

1.4 Irregular shells and multi-structures. The concept of the regular shell-like
body applies to a wide class of shell geometries. Nevertheless, there are still many
structures of engineering importance which are excluded by this definition. The
group III includes all structures, which resemble shells understood in a broader
sense, but which are not regular in the sense of the above definition. Generally,
structures of this group contain shell branching, i.e. three or more shell segments
intersect at a common juncture (Fig. 3). In such cases, the difficulties in a rigorous
derivation of the shell governing equations lie in the fact that at the intersection it
is not possible to define in a unique way the shell reference surface and the shell
thickness. In this sense they are not a regular shell-like body, but rather a union of
two or more regular shell-like bodies. Of course, we can simplify the problem
ignoring the transition zone, what is the common practice in the engineering
approach to the problem.

An example shown in Fig. 4, while similar to the previous one, in essence is quite
different. It shows not a single shell-like body but rather two shell-like bodies,
which are interconnected along the common boundaries in some technological
manner. The kinematical and mechanical properties of the interconnection cannot
be derived from the laws of continuum mechanics alone, but they must be
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supplemented by some a priori given technological data. Structures of this kind
belong to the group IV).

Fig. 3

Shell structures sustained by columns (Fig. 5) belong to the group V). They are
easier to handle by theories of structures, except for a small region of the rod-to-
shell transition.

Fig. 4

The structures of all three groups III-V require a special treatment and this was the
topic we have considered in Part 1.

As we have pointed out, structures of all three groups are not regular shell-like
bodies. However, their important feature is the fact that they are the union of such
bodies. Therefore, multiple-shell intersections and technological interconnections
of regular shell-like bodies can be modelled fairly correctly or even completely
rigorously by a union of some number of shells, whose common boundaries are
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spatial curves having their own mechanical properties. This approach to irregular
shell structures was developed in PartI and it provides the basis for the finite
element modelling presented in this paper. Without going into all details of this
concept (see Part I) we only note that this implies that irregular shell structures can
be viewed as a structured continuum, which is the superposition of two-
dimensional continua M4 (shells in the conventional sense) and one-dimensional
continua I"® being a common boundary for two or more surfaces M‘* and
having some of the properties of the conventional rods.

1.5 Surface coordinates. We shall further assume that each smooth part of the
reference surface M is given in parametric form so that the position vector can be
expressed as Y (&%) =Y, (&P )e; , where (&%),  =1,2, are surface coordinates chosen
in any convenient way. Then the natural base vectors and the unit normal vector to
M within the domain of the chosen coordinates, the components of the surface
metric and curvature tensors can be expressed in the classical form (Fig. 6)

Ap=Y,;, A% A;=05, Av=7ePA. x4,
Aaﬂ =Aa°Aﬂ, A0ﬂ=AG.Aﬂ, A:detAaﬂ>0’ (]_‘4)
Bap=AN'Aa,p=AN°Y,ap, B§=Ad31ﬁ-

Here and in the sequel a comma denotes the partial derivatives with respect to the
surface coordinates and € denotes the usual surface permutation symbol. From



32 Chapter Il. Boundary value problems of irregular shells

(1.4) other geometric quantities can be obtained in the usual way. The differential
area element of M is given by

dA=~AdE'dE*,  A=detAs>0. (1.5)

The operation of rising and loweting of the indices for the surface vector and
tensor fields is carried out with the help of the metric tensor (1.4),.

Fig. 6

However, it has to be noted here that for the curvature tensor B, to exist we have
to assume that M can be partitioned into smooth surface elements such that each
M, is of class C? or higher. This is the minimal regularity assumption needed
within the formulation of shell finite elements based on a Kirchhoff-Love type
shell theory. However, it would preclude the possibility to formulate compatible
C° shell elements, which will be our concern in this work. It will become clear
later on that such assumption is not needed and nowhere we shall use the
curvature tensor (1.4);. Thus we shall assume that each part M, of M is only
smooth, i.e. of class C'.

The boundary of the undeformed shell reference surface M will be denoted by aM .
Since M need not be simply connected, dM will be in general the union of some
number of piecewise smooth curves, each of which can be given in the form
Y (5) =Y (E?(s)), where s denotes the arc length parameter along every smooth part
of the boundary curve. Then at each regular point of dM we can define the
orthonormal triad {¥,7, Ay} in standard way

T=Y'=1PA;, v=Y'xAy=vAP, (1.6)
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where ¥ and t are the tangent vector and the outward normal vector, both lying in
the tangent plane to M at the underlying point. Here a prime denotes the derivative
with respect to the arc length parameter.

1.5 Shell coordinates. Each regular part of the shell-like body can be described in
terms of curvilinear coordinates (§')=(&#,£) chosen in such a way that the
equation & =0 defines the reference surface, and any other point in the shell space
is determined by the position vector given by

XE.EH=Y(EH+EDEP), Eel-h(E)+hEN)]. (L.7)

Then the natural base vectors and components of the metric tensor are defined in
the usual way

G=X,, G'*G;=0}, (18)
G;=G;*G;, Gi=G'+G', G =detG; >0. )
From (1.7) and (1.8) all other geometric relations can be derived in standard
manner.

2. General theory of irregular shells

2.1 Deformation of the shell-like body. In order to reduce in an exact manner the
three-dimensional balance laws of continuum mechanics to the two-dimensional
form appropriate for the shell, we shall represent the three-dimensional
deformation of the shell-like body in the form (Fig. 8)

x(¥,8)=x(X¥,E)=x¥)+LX.5). 2.1

Here y: M - & with y=%() is the deformation map of the shell reference
surface and € is an unknown vector-valued function, which defines the location of
the particle, whose initial position is measured relative to the corresponding point
on the deformed reference surface. It must be stressed that the representation (2.1)

is purely formal and imposes no restrictions on the three-dimensional deformation
of the shell-like body.
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Fig. 8

2.2 Resultant balance laws. Within a purely mechanical theory the basic laws
governing the deformation of the body are the balance laws of linear and angular
momentum. In the quasi-static case they assert that the total force and the total
torque acting on each subbody vanish in every equilibrium configuration. With the
help of (2.1) the balance laws of continuum mechanics can be specified for any
part P C B of the regular shell-like body to give the overall resultant balance laws
expressed entirely in terms of through-the-thickness resultant quantities:

JIaPdA+ [y v dL+ [0, 1 AL=0,

ffﬂ(l+yxp)dA+fame(mu+y xm)dL+j;HMMf(m'+yxn’)dL=0. 2.2
Here IT C M denotes a part of the shell reference surface which corresponds to
the subbody P C B, n,(Y,3IT) and m,(Y,dIT) are the resultant stress and couple
vectors, and p(Y) and I(Y) are the resultant external surface loads and couples,
which are statically equivalent to the external body force and surface forces acting
on the shell faces (see Part I).

2.3 Resultant stress and couple tensors. By virtue of the Cauchy’s theorem the
stress resultant force vector and the resultant stress couple vector are given by the
resultant stress tensor N and the resultant couple stress tensor M by

n(Y d)=NX¥wY), mQ,Jll)=MYWw{Y). 2.3)
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In the given parametrization of the reference surface the resultant stress tensor and
the resultant couple stress tensor are given by (Fig. 9)

N=nf®A;, M=ml®A,, (2.4)

where the resultant forces and couples along the coordinate curves on the shell
reference surface are defined by

nt=["tPuds, mP=["TxtPudt. (2.5)

Here t# are the nominal stress vectors so that the first Piola-Kirchhoff stress tensor
is given in the form T=t* @ G; +t* ® G;.

) -
mn2

n' Ay

Fig. 9

2.4 Irregular shells. In the most general case which we shall consider here, the
shell reference surface M is defined as union M =[J%,, M4 of some number of
smooth or piecewise smooth surfaces M. Two or more surfaces M4’ may have
in common a piecewise smooth curve and we shall denote by I" the union of all
such curves. In general, I" will represent kinks of the shell (non-smoothness of the
shell faces), multiple shell intersections or curves on M along which external line
forces and couples can be applied. In our subsequent considerations we shall refer
to M and I' as surface and curve, respectively. Let us note, however, that neither
M is a surface nor I is a curve in a strict mathematical sense, but they are the
union of surfaces and curves, respectively (see Part I for all details). We shall
assume that M can be partitioned into smooth surface elements M =Yy M. In
order to account for possible rod-to-shell interactions we can still enrich our model
by admitting concentrated forces and couples acting at distinct points of the shell
reference surface including the curves of intersection. Then the resultant
mechanical laws take the form (Fig. 10)
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-rfmrpM+-ran\aM, n,dL+ alTrdMy n'dL

+[.prdl+Y,_ f.=0,
ffw(l+yxp)dA+famaMf (m, +y xn,,)dL+meMf(m'+yxn')dL

+ [ U +y-xpr)dL+ Y. (€ +Ya xfa)=0.

(2.6)

Here n, and m, as well as p and [ are defined exactly in the same way as for
regular shell-like bodies. The physical meaning of the line force p, and couple I,
and of the concentrated forces and couples f, and ¢, acting at distinct points

Y, € M may vary substantially depending on the intended application of the
theory. They need to be specified for each problem separately.

Fig. 10

2.5 Virtual work identity. The next step towards the formulation of a complete
shell theory requires the introduction of suitable kinematic variables. Within the
approach developed in Part I the kinematics of the shell, like the static equations
and side conditions, are the outcome of the analysis and not the basic postulate of
the theory. The basic idea is quite simple. Let v(Y') and w(Y') be any two vector
fields, which are defined over the shell reference surface except possibly at the
curve I', and let v(Y) and w,(Y) be any two vector fields defined along I". In the
special case, we may regard (v-,w.) as the restriction of (v,w) to I". We shall also
assume that the fields v and w are of class C", n=1, within the interior of each
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smooth part M, of the reference surface and that they have finite limits v® (Y)
and w® (Y) at every point ¥ € I'" taken along paths in M,:

v®Y) = limv(Z), w®(Y) =lmw(Z), Ze M. (2.7)
Under these assumptions we have the following integral identity

ffu\rWdA"'IpWr dL:ffM\r(f sv+eceow)dA

+-’;M, (n’ev+m’ -w)dL+j;Md (Nvev+Mvew)dL, (2.8)

where
w=nfe(vs+ysxw)tmbew,, (2.9)
and
wr=[n, «(v,—v+(yr—y)xw)]+0m, s (w, —w)l—prev.+lew.. (2.10)

In effect, the integral identity (2.8) expresses the principle of virtual work with
(2.9) and (2.10) being the internal virtual work density and the virtual work
density of all forces and couples acting at the curve I'. In this sense the vector
fields v(Y), w(¥), v.(Y) and w,(Y) can be called the generalized virtual
displacements or test functions.

3. Field equations and side conditions

3.1 Deformation of the shell. Referring to Part I for all details, we summarize in
this chapter the complete set of shell governing equations and we shall point out
those concepts, which play an essential role in the subsequent development of
shell finite elements.

The undeformed configuration of the shell is represented by the shell reference
surface M and the triad of linearly independent vectors {D;(Y)} assigned to each
point ¥ € M. We then define the reciprocal triad {D'(Y)} in the usual way, i.e.
D'+D;=¢%. The deformation of the shell is completely described by the
(weighted or real) deformation y: M -> & of the reference surface and the field of
rotation tensors Q : M -> SO(3), which specifies an independent mean deformation
of the shell cross sections. Here SO(3) denotes the rotation group. The map
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x:M > & assigns to every surface particle Y its spatial place y it occupies in the
current configuration,

y=xX¥)=Y +u), (3.1)

where u denotes the associated displacement field of the reference surface. The
independent mean deformation of the shell cross sections specified by the rotation
of the triad {D;(Y )} into its spatial counterpart {d;(y)} is given by

d,Y)=0¥)D(Y), d'¥)=QF¥)D'(Y), (3.2)

where {d;(y)} is the reciprocal triad in the deformed configuration, and we write
d,(Y)=d,(x(Y)).

Fig. 12

Generally, we shall assume that (3.1) is a continuous function over each regular
surface element M, and differentiable of class C", n =1, in the interior int M;, of

each smooth surface element. Under this assumption the deformation gradient
F)=Vx(Y) exists at every point Y € int M, and it can be expressed in the
form

FE)=ys®A’, (3.3)

for any choice of the local surface coordinates. We shall not assume a priori that
the deformation y: M — & is continuous across the singular curve I" or some parts
thereof. Accordingly, we regard (3.1) as being defined for all Y e M\ T, ie.
x:M\TI - &, and it has a finite limit at every pointY € I,

FOW)=limx(Z)=Y +limu(Z),  Z €Iy, (3.4)
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whenever I is a part of the boundary oM.

Thus in the most general case the complete Hescription of the deformation of the
shell requires to introduce two sets of kinematical variables. The first set consists
of the deformation function ¥ of the shell reference surface and the rotation tensor
Q representing the mean rotation of the shell cross sections. Both being defined at
all points of the undeformed reference surface M except possibly at a singular
curve I'. The deformation of the curve I' itself is specified by the second set
consisting of the deformation function y, and the rotation tensor Q.. Thus we can
admit that the singular curve may follow its own deformation

yr=xrX)=Y +u(Y), 0-=0.%), 3.5)

where x,:I - & and Q. :I' - SO(3) are continuous maps defined only along the
singular curve. In the special case, when the deformation of the shell is assumed to
be smooth, - and @, will denote the restrictions of x and Q to the curve I.

In this work we shall assume that both fields #(Y) and Q(Y') are continuous over
the whole surface M, they are smoothly differentiable (i.e. of class C') in the
interior of each smooth part M, of M, and their first surface gradients have
continuous and bounded extensions to the boundary of M;,. Then we shall denote
by u-(Y) and Q-(Y) the restrictions of these fields to the curve I'. Let us note that
we do not assume that the first surface gradients of the fields #(Y) and Q(Y) are
continuous over the whole surface M but solely bounded. The important
implication of these assumptions is the fact that multiple-shell intersections are
rigid and the jump conditions are satisfied identically in the weak form. Let us also
note that the regularity assumptions, adopted here while fairly weak, are much
stronger than those considered in Part I.

3.5 Strain measures. Similar arguments, which led us from the generalized virtual
displacements to their real counterparts (see Part I), can also be used in order to
show that the work-conjugate strain measures consist of the stretching and
bending tensors, which in the given parametrization of the reference surface can
be expressed in the form

EX)=g,(Y)®A’(Y), K¥)=xp¥)@A ), (3.6)

where the stretching vectors and the bending vectors are defined by
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&g =u,,g—(Q--1)Y,ﬂ s Kg =ad_1K,9 s K5=Q,ﬁQT . 3.7

The equivalent strain measures referred to the undeformed configuration are
obtained as:

EY)=gX)®A(Y), K¥)=w1¥)0A YY), (3.8)
where the stretching vectors and the bending vectors are defined by
] =QTu,,g —(I—QT)Y,p , K =ad_lK/g , K,g =QTQ,,9 . (39)

The two sets of strains are related one to the other by the pull-back/push forward
formulae

E=0E, K=0K,

es=085, kz=0xs, K;=0K;Q". (3.10)

3.3 Equilibrium equations and static side conditions. We shall also assume that
the resultant stress tensor N and the resultant couple stress tensor M are of class
C", n=1, in the interior int M, of each smooth surface element and that they
have finite limits

NO@)=lmN(Z), MOW)=lnN@), Zelly,,  G1D

at every point Y € I' taken along any path in M;,. Under the assumptions stated
above, the boundary integrals in the integral balance laws containing N and M can
be transformed into surface integrals using the generalized surface divergence
theorem considered in details in Part I. In this way we can obtain the local
equilibrium equations at each regular point of M, which in a given (local)
parametrization of the reference surface M take the form ‘

nfp+p=0, mlg+y,sxnf+l=0. (3.12)

Here the vertical stroke denotes the covariant derivative in the metric of the
reference surface M.

The equivalent resultant stress and couple vectors referred to the undeformed
configuration are defined by

NY)=n(Y)®A4s(Y), MY)=m?(Y)®AY), (3.13)
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and

N=QFE, M=0K,
nt =in9 , m? -__—Qmﬁ . (3.14)

In the same way, the remaining static quantities are defined.

The equilibrium equations in terms of these variables take the form
s+ xnf +p=0, mp+Kxm?+(45+8)xnf+1=0. (3.15)

The formal similarity of the equilibrium equations (3.12) with those known in the
literature should not conceal the richness of their content and the manner they
have been obtained here. But we postpone the discussion of this point to the next
chapter. This is evident in two ways, from the structure of the static equations and
from the structure of the associated virtual work expressions. Recalling the
definitions of the resultant stress vector and the resultant couple stress vector, it
becomes obvious that both have all three components with respect to any basis
(typically, two tangential components and one normal component). Thus in the
scalar form the equilibrium equations (3.12) constitute a system of six independent
equations involving six resultant forces and six resultant couples.

3.4 Static boundary conditions. We shall further assume that the boundary dM of
the reference surface is the disjoint union of two parts M and dM,, along which

the static boundary conditions and the kinematic boundary conditions,
respectively, are prescribed:

Nv=n;, My=m;, along M, , (3.16)

where an asterisk indicates prescribed quantities. Let us note that we do not
exclude the dependency of the surface, line and boundary forces and couples on
the deformation. In general, they need not be even conservative.

3.5 Static jump conditions. In general, along the singular curve I" the following
jump conditions hold

pr—0[n,J=0,

l.—[m,J+[(u, —u)xn,J=0. (3.17)

The static jump conditions (3.17) and the static boundary conditions (3.16), when
expressed in component form, constitute a system of six scalar equations. For the
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shell reference surface to support these static equations extra kinematical variables
are needed besides the deformation of the reference surface.

3.6 Elastic shells. The field equations consisting of the equilibrium equations, the
kinematic relations, boundary conditions and the jump conditions, when
supplemented by suitable constitutive equations, provide the complete description
of shell problems with any kind of irregularities. In overall, the shell theory
formulated in this way is both geometrically and statically exact. There is no
single assumption about the three-dimensional deformation of the shell-like body,
there are no restrictions of the magnitude of displacements, rotations and strains,
there is even no thickness assumption. Moreover, this approach clearly
distinguishes the general equations valid for all shells and undergoing whatsoever
deformation (possibly unelastic) from specific constitutive relations defining
particular classes of materials the shell is made of.

The mechanical properties of the shell are specified by suitable constitutive
equations. In the case of elastic shells their most general form is

N=N(E,K:Y), M=M(E,K.Y),

~ ~ 3.18
N=NEK;Y), M=MEKY), G19

or, equivalently,

n? =il (g.,kY), mP=mP(€,kY),

W =if(e, Kk Y),  mf = (e, 10,Y). (3.19)

The response functions specify particular elastic properties. Their explicit
dependence on Y signifies that the mechanical response of the shell includes not
only the material properties but also the local geometry of the reference state
through the curvature tensor of M and other parameters like variable shell
thickness.

The shell is defined to be hyperelastic, if there exists a strain energy function

D=D(E,K;Y)=D(g5,k4:Y)

—DEKY) =B(esK5Y), (3.20)

such that

N(E,K:Y)=0;D(E.K:Y), M(E,K;Y)=0xD(E,K;Y), (3.21)
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or, equivalently,

0D(£,,k.:Y)

ID(E,, kY )
68,3 ‘

. HP(Eq, ki Y)= 2
a

At(e, kY )= (3.22)

In general, the response functions as well as the strain energy must satisfy the
principle of frame-indifference in a form carefully examined in Part I. Let us note
only that this principle can be satisfied identically whenever the constitutive
relations are written in component form. In general, the constitutive equations are
also delimited by suitable constitutive restrictions and possible material
symmetries, but for the time being this need not be our concern here.

4. Weak form of the momentum balance laws

4.1 Configuration space. Within the considered theory each configuration of the
shell is determined by the displacement field u: M - E of the reference surface
and the field of rotation tensors Q : M - SO(3). Thus the ordered pair u = (u,Q) of
two fields determines completely any other configuration of the shell, whenever
the undeformed configuration is fixed. Using the terminology of the theory of
dynamical systems, the set of all configurations can be called the configuration
space of the shell and it can be defined as the set

U =C(M,ExSO(3)={u=w,Q)lu: M >ExS0(3) }. 4.1)

The basic fact to be noted here is that the configuration space (4.1) lacks any
vector space structure, because it involves the rotation group SO(3). This fact has
many important implications for the solution of nonlinear shell problems.

Under some rather mild regularity assumptions, it can be shown that the
configuration space carrying the topology of uniform convergence is an infinite
dimensional manifold. Moreover, with the usual group operation defined
pointwise by

W +w)¥) =) +u,Y),®¥)AY)), VYeM (4.2)




44 Chapter Il. Boundary value problems of Irregular shells

for all u,,u, €%, the configuration space (4.1) becomes an infinite dimensional
(Banach) Lie group.' Using this fact the shell problem can be formulated within a
differential-geometric setting.

4.1 Virtual displacements and rotations. The (global) virtual states of the shell
are defined as elements of the tangent bundle T2/, which in turn is defined as the
pairwise disjoint union 7% =|J,_,, T.% of the tangent spaces T,% to the

configuration space ‘% at all points u&‘%/. Obviously, each tangent space T,%/
carries the linear space structure. Moreover, by the theorems on manifolds of maps
TC(M,N) is isomorphic with C(M,TN) for two mainfolds M and N. By this
- arguments we can identify the space of virtual displacements with the space

T.% = C(M,T(ExSO(3))), 4.3)

where T(E x SO(3)) denotes the tangent bundle of the six-dimensional Lie group
(direct product group) ExSO(3). Here we are using the standard differential-
geometric notion, but perhaps it needs to be explained that the tangent space T,%
given by (4.3) is the vector space of maps defined as follows: for any
configuration u €%/ of the shell the associated virtual displacement v € T,%/ is
defined as the map

V: M - T,y (ExSO3)), VYeM. 4.4

In other words, the tangent bundle T2/ is the vector space (obviously infinite
dimensional) of maps of the shell reference surface M into tangent spaces to the
group E x SO(3). Taking further into account that the tangent space to the rotation
group at any point is isomorphic with the vector space E A E of skew-symmetric
tensors, which in turn is isomorphic with the Euclidean vector space E, we have
the sequence of isomorphisms: E — so(3) = TpSO(3) by w » W — 0Q for every
rotation tensor @, where W denotes the skew-symmetric tensor, whose axial vector
is w, W = adw . By virtue of these facts the virtual displacement v € T,%/ for every
u &% can be identified with the ordered pair of fields:

v=Ww,W) M>ExX(EAE) or v=(,w):M->EXE. 4.5)
Thus we can define the space of virtual displacements as

Y =C(M,ExE)={v=@,w)lv:M->ExE}. 4.6)

I'This follows from the general theorems on manifolds of maps, see Part I and the references
cited therein.
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We can arrive at this result quite formally (see Part I).

4.2 Matrix-operator description. For an appropriate formulation of shell finite
elements, it will be convenient to introduce a matrix-operator description. To this
end we shall write the virtual displacement v=(v,w) and the external surface
force p=(p,!) and boundary force s" =(n",m") in vector form

w={:’v}, p={{’}', §={;} 4.7

Here and subsequently we use the term displacement, force, strain and stresses in a
generalized sense. Using the notation (4.7) the virtual work densities of the
external loads can be written as

Vip=pev+lew, Vis'=n"ev+m’ew. (4.8)

Using the notation for the generalized line force p, =(p,,l;) measured per unit
length of the curve I' and the generalized concentrated forces f, = (f;,¢,) acting at
distinct points of the reference surface we write

W}:[Dp =prevr +l[' ‘Wr, Wz;'ﬂ:a =fa *V, +Ca ‘W, . (49)

The generalized strain and stresses are the ordered pairs ¢=(E,K) and
s=(N,M), respectively, and they can be defined as four-tuples consisting of the
associated strain and stress vectors €= (€5,k3) and s =(n?,m?):

1

»
S

2

Lre 4.10)

2

(3¢

Il
—A—
>
———

I
Kl
(7]

i
—A—
R =
———

|

=

Ky
3 5

so that the internal virtual work density (2.13) can be written in the form

s’ée=N+OE +M *3K =nf « ez +m? « 6k

=N+SE+M+0K =n’+ 3 +m’ + 5% (4.11)

Similarly, the strain-displacement relations (3.7) can be represented as



46 Chapter Il. Boundary value problems of irregular shells

£,(u)

Ew)| _|&@)
It(u)}“ AT (4.12)

K, (u)

E:=ﬁ(lll|)={

while the virtual changes of strains take the form
oc(u)=B@)v. (4.13)
Here the differential matrix-operator is defined by

1C)a  (Artu,)x()
1(.),2 (Axtu,)x(.)
0 1(.).1 '
0 1(' ):2

B(u) = (4.14)

For elastic shells the constitutive equations (3.18) can be written as s =s(¢).

3.3 Principle of virtual displacements. We shall denote by ‘% C‘% the set of all
kinematically admissible displacement fields (trial fields), i.e. the fields u = (u,Q)
satisfying the kinematic boundary conditions along dM,;

U ={ue¥U|lu=u" alongdM,}. (4.15)

Consistently, we denote by %; C % the set of all kinematically admissible virtual
fields (test fields), i.e. fields v = (v,w) satisfying homogeneous kinematic
boundary conditions v =0 along dM,:

Vi={ve?Iv=0 alongiM,}. (4.16)

The fields u and v must satisfy the regularity assumptions stated in the previous
chapter and we shall denote by ur and v , respectively, the restriction of these
fields to the curve I'.

For elastic shells with the strain-displacement relations £=&(u) and the
constitutive equations s=8(¢) as subsidiary conditions, and with ue?%, and
Vv € %, we can define the functional

Glu; V] = Gine[1; V] — G [ V], 4.17)

where
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Gl V1= [[,, (B@)v) Su)dA,

4.
GeulsV1=[[,,., VIPdA+ [, V'sidS+ [ Vip.dS+Y, VI, *18)

are the internal and external virtual work, respectively.

Now as an obvious implication of the virtual work identity (2.8) we find that
u € %, is a weak solution of the shell boundary value problem if and only if

Glu; V] = G [U; V] - G [1; V] =0, (4.19)

for all v € %;. The variational statement (4.19) is nothing else but the principle of
virtual displacements. A weak or generalized solution borrows its name from the
fact that the admissible class of u is larger than that required in the classical
formulation. Indeed, (4.19) provides the integral representations of the problem
instead of the differential one, which requires that the differential equilibrium
‘equations are satisfied at each point of the shell reference surface.

5. lterative solutions of nonlinear problems

5.1 Linearized equations. The solution of nonlinear shell problems, like any other
nonlinear problem, typically requires to employ a suitable iterative procedure. All
such procedures involve successive approximations of a nonlinear problem by a
sequence of linearized problems. Thus a correctly formulated linearized problem is
the main point of the approximation procedure. The linearized form of the
principle of virtual displacements (4.19) about a trial solution u=(u,Q) € %, can
be derived as follows. Let us consider a one-parameter family u(y) = (u(n),Q(r;))

of the deformation in the form
u(m)=u+t+ndav,  O@)=exp(naAW)Q, (5.1)

where V= (Av, Aw) €%, denotes any kinematical admissible virtual displacement
field. As usual we denote by Aw the axial vector of the skew-symmetric tensor
AW . The directional derivative of the functional (4.17) at the point U and in the
direction Au is defined by

. -d :
SG[u; Av, V] p Glu(®); V= (5.2)

= G [U; AV, V] -G [15; AV, V].
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A not very difficult calculation yields the following form of the linearized internal
virtual work expression'

0Gu[u; av,v]= [f, . ((BVY C(BAV)+(Dv) GDAv))dA . (5.3)

Here B is the differential operator given by (4.14), C denotes the constitutive
matrix defined by

3gN(E,K) 0xN(E.K)
=4 = 5.
Lie)=deste) [GEM(E,K) aKM(E,K)] (5.4)
and G, D are matrix-operators being defined by
()l 0]
(')521 0
D= 0 ().}, (5.5
0 ('),21
| 0 1]
0 0 00 —n'x()]
0 0 0 0 —n2x()
Gu)=| O 0 0 0 —m'x()]|, (5.6)
0 0 0 0 —m?x()
n'x() n'x(.) 0 O H |
where we have introduced the folowing notation
H)=n’ @ (As +u,p)+(nf «(As+u,)l. A7

In (5.6) it is understood that all entries of this matrix are functions of the
generalized displacement through constitutive equations and strain-displacement
relations.

Admitting that external loads acting on the shell can be configuration dependent,
we denote by

F)=d,pw), Fw@=apw, F)=as. () (5.8)

! See MAKOWSKI AND STUMPF [1988,1990].
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their derivatives. Then the linearized external virtual work expression can be
written in the form

0Geulw; AV, V1= [[, . VIEAV)dA+ [ VI(F AV, )dS + [, VI(FAV)dS. (5.9)

5.2 Successive linearizations. Let us assume that the load acting on the shell is
specified by a single parameter A. For smoothly varying A in some range, the
regular solutions of the shell boundary value problem form a curve (one-
dimensional solution manifold) w(d) €% on the configuration space, called an
equilibrium path. By virtue of the principle of virtual displacements (4.19),
u(A) € %, is a weak solution of the boundary value problem if -

Gl[u(4); V] = G [u(A); VI= Go[(A); V1= 0 (5.10)

for all kinematically admissible virtual displacements v&%;. The iterative
procedure of tracing an equilibrium path may be formulated in the following way.
We seek solutions for a finite number of discrete values Ay, A,...,4,,... of the load
parameter. Let u, =u(A,) be a solution we are looking for, and let u’ denote the i-
th approximation to the solution w,. It has to be noted that u{® need not belong to
the equilibrium path. We then need suitable linearized equations, which would
allow us to calculate a correction Av*", determining together with u® uniquely a
successive approximation u$ to the solution u,. The most efficient method to
construct such approximations is based on successive linearizations of equation
(5.10). Suppose that the approximation u$’ has been found. To calculate the next
approximation u*? we replace equation (5.10) by an equation which is linearized
at u:

OG[ui*Y; AV, v+ Glut; v]=0 . (5.11)

The method defined by (5.11) is known as the Newton or Newton - Kantorovich
method. The physical meaning of equation (5.11) is standard. The second term
represents the unbalanced force at the configuration u¢’ and the first term being
linear in the unknown correction Av{*’ vyields the so-called tangent stiffness

matrix.
A typical iterative solution procedure consists of three basic steps:

1) Given the i-zh approximation u® = (u®,0%) to the exact solution U= (u,Q)
we calculate all entries of the linearized equation (5.11),
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2) The equation (5.11) is then solved for the next correction to the solution we
are looking for,

3) Through the update procedure the next approximation u®? = (g@,Qu+1) to
the exact solution is calculated.

This process is continued until the calculated successive approximation is close, in
the defined sense, to the exact one.

5.3 Exact update procedure. The central issue concerns the update procedure of
the rotation field, because the displacement field takes its values in the vector
space E and is subjected to a standard accumulation procedure. Let u® = (u?,Q®)
denote the known i-th approximation to the true solution. Assume next that the
correction AvY*™ has been obtained from the solution of the linearized problem
(5.11). Then the successive approximation ut = (g Q0+) has to be calculated
according to the rule

u(i+l) —_ u(i) + Av(x’+1) R

Q) = (exp AW “0YQ® | AW & = g Ap@D) | (5.12)

The exponential function entering (5.12) is effectively calculated using the well-
known formula

exp¥’=1+¥’+—%¥’2+...

i 1—cosy
=1+ 3%y 4 we, 5.13
w wz ( )
Y =—%tr!l’2 ,

for every skew tensor ¥, being the straightforward implication of the Cayley -
Hamilton theorem applied to the definition of the exponential function. Once the
successive approximation u®? has been calculated the associated strains € can
be obtained easily from the kinematical relations. Then the corresponding stresses
st have to be calculated using the constitutive equations.

5.4 Tracing equilibrium paths. In the nonlinear analysis of shells we are typically
interested in finding not only a single solution but a solution manifold for
smoothly varying control (usually load) parameters. In the case of loads
proportional to a single scalar parameter the tracing of a one-dimensional solution -
manifold is obtained by the continuation methods, in engineering literature better
known as incremental methods. There exists a comprehensive literature on the
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subject and the basic concept is by now well developed. Nevertheless, an effective
computer realization of the method requires some ingenuity. The main points of
the problem are:

1) Specification of a maximum and minimum step size.

2) Devising a simple rule for determining the incremental size in advancing a
step.

3) Specification of means to recognize non-convergence of the iterative process,
as opposed to slow convergence, and then deciding to terminate the process
or redefine the increment.

4) Specification of a criterion for terminating the iterative process, when
convergence is obtained.

5) Choice of suitable measures (norms) for the unknowns of the problem.

6. Parametrization of rotations

6.1 Global parametrizations. So far we have considered the complete set of the
shell governing equations regarding the displacement field u and the rotation
tensor Q as the primary unknown fields. In this way we exposed the differential -
geometrical structure of the theory- without restoring to a particular
parametrization of the rotation group SO(3). A choice of parametrization of the
rotation group is a central issue to analytical or numerical solutions of the
boundary value problems. The familiar Euler (or Brayant) angles, Cayley-Klein
parameters or quaternions are examples of possible representations of rotations,
none of which has a clear advantage over others. In evaluating the usefulness of a
particular parametrization the -following factors must be considered: 1) The
number of parameters needed and possible singularities, 2) The complexity of the
resulting equations, 3) The susceptibility to numerical errors in the computer
implementation of the shell equations, 4) Difficulties in the formulation of
kinematical boundary conditions.

As it is known, it is impossible to have a global singular free representation of
rotational degrees of freedom in terms of less than five parameters. In turn, only
three parameters are independent and any more than three-dimensional
parametrization results in redundant parameters which must satisfy suitable
constraints. This leads to an extended system of field equations with
corresponding Lagrange multipliers as additional unknown fields of the problem.



52 Chapter Il. Boundary value problems of irregular shells

Thus from the numerical point of view such approach is of less importance and
hence we shall consider only three-dimensional parametrizations.

6.2 Local parametrizations. A local singular free parametrization of rotations
means no more no less but a choice of a particular coordinate system on the
rotation group. This makes sense, since SO(3) is the Lie group and hence it is first
of all a differentiable manifold. Let U C SO(3) be an open neighborhood of
Q €S0(3), where Q is a fixed but otherwise arbitrary rotation tensor. Then any
diffeomorphism of U onto an open set of the real space R*. In short notation, we
can simply write

0=0), V=)= 0:10,), 6.1)

where the triple (3,) of real numbers are local coordinates of the rotation tensor Q.

The virtual rotation is then obtained in the form

W(@®)=00)Q@) =Y, WE@)dd, 6.2)
where
Wo@)=gr@Y @), v =D (63)
k

The tensors W® are necessarily skew-symmetric, so we can compute their axial
vectors w®, In this manner we obtain

wd)=ad"W@)=Y _whsd, wh@D)=ad WH@D). (64)

We can write this relation in matrix form

%
ug

6.3 Kinematical relations. This approach applies, when we consider not a fixed
rotation tensor but a field of rotation tensors. In this case (6.1) must be understood
as

QW )=0(H(Y)). (6.6)
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If M is given locally in the parametric form, then the partial derivatives of (6.6)
with respect to the surface coordinates are given by

0,@)=20) =5 KAV _ 5 ow,,, (6.7
where
QP@)= aQ("), k=123. (6.8)

Now the skew tensor defined by (3.7); can be expressed in the form
KP@)=0,,)QP @)=k (). (6.9)

and the strain-displacement relations (3.7) expressed in terms of the displacement
field and rotational parameters read

5,0 =u,y—@D)-DAs, k)=, £PDs.  (6.10)

Combining these results with the results of the previous section the virtnal
changes of strains can be written as

6Bﬂ =V + (Ap +£ﬂ)X W(?’) ) CSICﬂ = 2:: . (k)(ﬂ)d‘l?k,ﬁ (61 1)

5.4 Finite rotation vectors. Among various possible parametrizations of the
rotation group of special interest are the so-called finite rotation vectors. In
general, let ¥ be any vector and let ¥ = ady be the associated skew-symmetric
tensor, whose axial vector is 9. Then

Q=exp¥W (6.12)

is necessarily a uniquely defined proper orthogonal tensor (rotation tensor).
Geometrically, Q represents the rotation about a unit vector e in the positive sense
through the angle 1, where 9 = e. Now let A = A(y) be any monotonously
increasing function such that A(0) = 0. Then the generalized finite rotation vector
and the associated skew tensor can be defined as

A=A@e, A=AW)E, E=ade. (6.13)
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The assumption about the function A(3) ensures that there exists the unique
inverse function 9 = 1(1), and hence the rotation tensor Q given by (6.12) can be
regarded as function of the finite rotation vector A alone. Thus the three
components of 4 provide a local singular free parametrization of the rotation
group.
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Finite element approximations

1. Preliminaries

1.1 Finite element models. The finite element method may be formulated and
interpreted from two different viewpoints: a physical and a mathematical one. The
physical approach is closely related to the original formulation and extensive
application of the method in structural analysis. The basic concept is that every
structure may be considered to be fabricated as or approximated by an assemblage
of individual structural components or “finite elements”. The elements are
interconnected at a finite number of “node points”. Mathematically, the finite
element method can be considered as an application of the Rayleigh-Ritz method
or its more general counterpart, the Bubnov-Galerkin method, together with the
use of piecewise polynomials to approximate solutions of boundary value
problems. As such it involves two basic aspects:

A) Weak formulation of the problem,

B) Selection of the space of trial functions and of the space of test functions
(technically, the choice of the number of nodes, the number of nodal
variables, and the so-called shape functions).

With respect to A) two main classes of finite element formulations can be
distinguished:

Al) Single field finite elements,
A2) Multi-field finite elements.

The most typical example of the class Al) are finite elements based on ‘the
displacement (in our case displacement/rotation) formulation having the principle
of virtual displacements as the underlying weak formulation of the problem.
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Among the finite elements belonging to the class A2) we can mention mixed
formulations usually based on a Hellinger-Reissner type variational formulation.

There exist also finite element formulations, which are mainly based on some
technical constructions usually having no variational formulation of the problem.
Among such formulations the assumed strain techniques appear to be the most
often used ones. However, finite elements formulated within these techniques are
less reliable, although they can provide a sound solution for many engineering
problems.

In this chapter we shall present the formulation of shell finite elements on the
basis of the theory summarized in the previous chapter within all three classes.
From the computational point of view the following features of this shell theory
are worth to be noted:

a) Only C° continuity of the independent kinematic variable u=(x,Q) and
C-! (piecewise) continuity of the resultant stress s =(n?,m?) and strain
€=(€g,k) need to be ensured across the element edges. In this respect the
underlying shell theory has the same properties as the shell finite elements
formulated within the degenerated concept.

b) The formulation itself eliminates the costs associated with the through-the-
thickness integration even for thick shells undergoing finite strain
deformation with highly nonlinear through-the-thickness deformation. This
is an essential advantage of our formulation compared with the
degenerated shell concept.

¢) The theory incorporates all three rotational parameters as independent
kinematical variables, and hence the finite elements with six degrees of
freedom per node can be constructed in the usual way with no special
techniques or ad hoc devises. This completely solves the problem of
modeling irregular shells containing kinks and multi-shell intersections.

d) The construction of various finite elements is performed here according to
the usual procedure, which is independent on whether the shell is thin or
thick, isotropic or not, undergoing small or finite strain deformation. The
distinction appears only through the choice of specific constitutive
relations, whose general structure is only needed in the formulation of shell
elements. The explicit form of the constitutive equations is required only
for the solution of the specific problem under consideration.

It is also worth to be noted that the basic concepts of the finite element method are
entirely independent of a particular problem to be considered. Thus the
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development of shell finite elements is essentially based on the same concepts as
in the formulation of three-dimensional finite elements, etc. However, there is one
essential point, which distinguishes the shell finite elements to be formulated in
this paper from the classical elements. This distinguishing feature is due to the
lack of a convenient vector space structure of the underlying configuration space.

Independent of ‘a particular class of finite elements, an effective solution of
nonlinear problems requires:

C) A suitable iterative procedure involving a correct formulation of the
linearized equations, _

D) Development of a procedure enabling to trace a complete equilibrium path
together with detecting all singular points (bifurcation and snap-through
points).

However, these two additional aspects are not a part of the finite element method,
and they do not influence the accuracy of the obtained solution. We have
considered both aspects within a continuum formulation of the shell problems, and
they will be used to solve discrete problems resulting from the finite element
discretization.

1.2 Physical coordinates. In the previous chapter we have used an arbitrary local
parametrization of the undeformed reference surface M and we have admitted the
triad {D;} assigned to every point of M to be chosen in any convenient form. This
generality yields components of static and kinematic variables of the theory, which
have no physical dimension. In the se]ution of the specific problems and in the
development of shell finite elements, it is preferable to use physical components of
the variables. This can be achieved quite easily in the following way.

Let us assume that the undeformed shell reference surface M is locally
parametrized by orthogonal coordinates (£#)=(&',£2), i.e. they are assumed to
form an orthogonal net on M. Especially, they can be principal coordinates, but
this is not required here. Let us further denote by s=(s,s,) the arc length
parameter along the coordinates (£#) = (&!,£?), so that we have

dsp=0pdE?, ap=\Y,Y,s, P=12 (notsummed). (1.1

In effect, we can assume that locally M is parametrized by coordinates s = (s, $,)
being arc length parameters (Fig. 1). Then the associated natural base vectors and
the unit normal vector are given by
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Ap = g’s% s B=12 (not summed), Apy=AyXApy, (1.2)

and they form an orthonormal triad at every point of the reference surface.

Ay

Fig. 1

Within the considered shell theory the geometry of the undeformed shell
configuration is specified not only by the position vector ¥, which from now on is
regarded as being given in the form Y =Y (s5), but also by the field of the triads
{D:¥)}. In the context of the finite element formulation, we take {D;} to be an
orthonormal triad, i.e.

D,*D,=6;, D'=D,, D=D,=DxD,. (1.3)

In this case the triad {D;} can be defined at each point of M by a proper orthogonal
transformation (Fig. 2)

DI(Y)=T(Y)eI ’ i=1’293’ (1'4)
where T is a given field of rotation tensors. From (1.4) and (I1.3.2) we have then
d,¥)=0X)DX)=Q¥)T(Y)e,(Y). (1.5)

Since T must be given as part of the data, we may take QT instead of the rotation
tensor Q as independent rotational variable.
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Fig. 2

2.3 Physical components. When the shell reference surface M is parametrized by
the arc length parameters s =(s,s;), then all kinematic and static quantities and
relations have a physical dimension. Assuming that this is the case, all relations
summarized in the previous chapter can be used for the subsequent considerations
without any additional rederivation. Let us note that this is not an essential
restriction, because finally we shall not need these coordinates. The point of view
which we adopt here is just a convenient way to get physical components for all
variables without extra effort.

Having in mind that {D;} is an orthonormal triad, the physical componets of the
resultant stress and the resultant couple vectors are defined by (Fig. 3)

n® = NOD +N®D,+QOD, » n®=N2D+N®D,+0D,

md =— M(n)Dl + 1‘4(11)1)2 +MOD , m? =—M(22)D1 +M<21)D1 +M2D. (1.6)

In the same way are also defined physical components of strain vectors as well as
all static and kinematic variables entering the shell governing equations.

&y = eayDy +eynDr + ey D, €oy = €Dy + €Dy + €D,

1.7
Ky == koD Do +ipD, Koy =—konDi + koD, + koD . -
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By virtue of (1.5) it then follows that the physical components of stresses (n”,m?)
and strains (£4,k5) with respect to the rotated triad coincide with the components
of the stresses (n®,m?) and strains (€s,%3) defined by (1.6) and (1.7).
Consequently, both sets of stresses and strains can equally well be taken in the
finite element formulations.

Fig. 3

2. Discretization of the undeformed configuration

2.1 Typical finite element. In the finite element analysis of shells not only the
unknowns of the problem need to be approximated but also the domain of the
unknowns, i.e. the undeformed reference surface M. Moreover, within the shell
theory under consideration the complete description of the undeformed
configuration of the shell requires to specify the reference surface M and the triad
{D;} at each point of M.

According to the standard finite element procedure, the reference surface M is
represented as the union M =y, IT,, of subdomains (finite elements) IT,, as
illustrated in Fig. 4. According to the isoparametric concept, a typical finite
element IT,, is defined as a smooth image of the standard element 7, CR?
referred to the natural coordinates

E=(&,8)e[-1+1)x[-1,+1]cR>. 2.1)

Usually, the standard element 7., is defined as a triangular or rectangular domain
with 7 nodes defined by the values of the natural coordinates:

Ehgh“-sga’“-’gn, €a=(§las§2a)en(e)CR2‘ (2'2)
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Fig. 4

The nodes of a typical element I7,, are determined by their position vectors Y,
a=12,...,n. The orthonormal triad {D;}, ={D,(Y,)} at every node is next defined
by the proper orthogonal transformation according to (1.4), i.e.

Di(Ya)=Taei ’ i=1,23, a=1,2,...,n. (2.3)

In this way a typical n-node finite element is completely defined by the ordered
pairs (Y,,T,), a=1.2,...,n, (Fig. 5). Then the position vector ¥ (§) and the rotation
tensor T'(§) at every point within the element are interpolated from the nodal
values.

2.2 Shape functions. The position vector Y at any point of the typical element is
given by the standard interpolating formula

Y(&) =) LY., (24)

where L,(&) are the so-called shape functions having the property L,(&,)=04,
a,b=12,...,n. In the case of rectangular (standard) elements the shape functions
are usually taken in the form of Lagrange interpolating polynomials (Fig. 6).
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Fig. 5

2.3 Interpolation of rotations. Within the considered shell theory the basic
difficulty inherent in devising interpolating functions lies in the fact that the
rotation group lacks a linear space structure. This problem can be overcome using
a local singular free parametrization of the rotation group in the following way.
Given a parametrization of SO(3), the tensor T is (locally) represented by three
rotational parameters ¥ = (&,,3,,3;) in the way described in Chapt. I1.5. We then
calculate the nodal values ¥, of the rotational parameters from the given rotation
tensors T,. The rotational parameters #(£) at any point within the element are
interpolated from the nodal values using the formula (2.4), and subsequently the
rotation tensor T'(§) is computed according to the chosen parametrization of the
rotation group:

TE=T@E), HE=) LEW,. 2.5)

2.4 Transformation formulae. A typical finite element I7,,, as it is defined
above, is parametrized by the natural coordinates & =(&,,€,). On the other hand
the shell governing equations summarized in Chapt. II contain partial derivatives
with respect to the surface (arc length) coordinates s =(s;,s,). We then need the
corresponding transformation rules allowing to express the partial derivatives with
respect to the coordinates s = (s;,s;) in terms of the partial derivatives with respect
to the natural coordinates & =(£;,&,). Since the position vector Y can be regarded
as given function of either coordinates, ¥ (s5) =Y (£.(s5)), from the chain rule we
have
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4 - node element

&,

51 X3

Xy

Fig. 6

_aY _ 2 3Y o6&, _
A(ﬂ)_m_ e 3E, B B=12 (not summed). (2.6)

\

This formula applies to any variable entering shell equations such as the
displacement field u or the rotation tensor Q. Moreover, taking {D;}={As,, Av})

together with the interpolating formula (2.5) we obtain
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08 gy _0Y(E), | _oY(), —
)= ) =5 1@, w12, @)
1
%2 AN, & o]
\ l,f" . +1
/,, =
s 1=

Moreover, the area element is now given by

dA = dsids, = ad&,dE, ,

o

Fig. 7

a(§)=de

element nodes

£)

(2.8)
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3. Displacement/rotation based shell elements

3.1 Finite element discretization. Our formulation of the finite elements starts
with the displacement/rotation approach rigorously based on the weak formulation
in the form of the principle of virtual displacements: find the displacement
u=u,Q) € %, such that (see Chapt. I1.4)

Gl vl= Gl v+ Gl vi=0, VYv=@,w)EY. (3.1)

The linearized version of the variational problem (3.1) is then formulated as in
Chapt. 1L.5. :

The construction of the finite element discretization is essentially equivalent to the
determination of an approximating solution u* =(u,Q)E%” in the finite
dimensional subspace (precisely, submanifold) %" C ‘%, of trial functions such
that

Glu*; v*]= Gy [ut; v* ]+ G [u*; v ]=0, VYvi=0"whe%*, ((3.2)

where %;* C %; denotes the finite dimensional subspace of test functions, and k is
a characteristic parameter such that u* - u as # ->0 in a defined sense.

The basic idea underlying the finite element method crucially relies on the
interpolation concept of constructing approximating functions. Assuming that the
adopted interpolation scheme assures C° continuity across inter-element
boundaries the functional defined by (I1.4.17), (11.4.18) and (II.5.2) can be written
as sum over the finite element domains:

Guvl=Y_ GOwvl, OGmv,Avl=Y  8GOmv,Av].  (3.3)
Consequently, the linearized variational problem (II.5.11) takes the form

Dy (6GOMLY, AVI+ GO V) =0. (3.4)

In this way we can restrict our considerations to a single typical finite element.

3.2 Nodal degrees-of-freedom. Given a parametrization of the rotation group, the
tensor Q is (locally) represented by three rotational parameters 9 = (i, %,,75),
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Q=0(®), in the way described in Chapt. II.5. We then define the nodal
parameters-of a typical n-node finite element by

G

_ qZ _ u, - u(ga)
Qo) = e q"_{t‘),,} {ﬂ(fa)}‘ (3.5)
qr

In the context of the finite element formulation, (3.5) will denote column vectors
consisting of a consistent sequential arrangement of the (physical) components of
the displacement vector and the rotation parameters, respectively.

Fig. 8

Now the unknowns of the problem are interpolated from their nodal values. The
displacements and rotations within the element are interpolated from the nodal
parameters by

&),

where L is the matrix consisting of the interpolating functions (the so-called shape
functions). Then from (3.6) and the inverse relation for the chosen parametrization
of the rotation group we calculate the interpolated rotation tensor Q(£) = Q(D(£)).

{u(g)}="-(§)%)s (3.6)
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The resulting finite element has all six degrees of freedom at each node, three
translations and three of rotational type. However, while the former have a clear
geometric interpretation, the geometric interpretation of the latter depends on the
specific choice of the parametrization of the rotation group. A convenient
parametrization of rotations is obtained by introducing the finite rotation vector 3
such that Q =exp¥, where ¥ =ad1 denotes the skew-symmetric tensor whose
axial vector is 9. In this parametrization the nodal parameters consist of three
components of u (translational variables) and three components of 1.

Fig. 9

The interpolation (3.6) is also used for the virtual displacements and virtual
rotation parameters:

Av(E)] -
{ AN 5)} =L(&)Aq., . (3.7
With the help of formula (I1.6.5) the generalized virtual displacement is given by
_[av@®\_[1 0 J[avd)
& ={a |0 me )| ae) .

where the matrix E(£) is a function of the rotational parameters 9(€), and it is
calculated by using the interpolating formula (3.6). Substituting (3.7) into (3.8) we
have

Av(®)=1E)Ag, lL(§)=[‘1, ;g)]m). (3.9)
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Since the space of virtual rotations has the linear space structure the interpolation
of virtual rotations may also be carried out directly. This can be treated as a special
case of (3.9) by taking E=1 to be the identity matrix. Therefore we shall not
consider this case separately. Moreover, it may be noted here that the nodal virtual
rotations belong to different tangent spaces and in this sense such interpolation is
not fully correct. '

3.3 Element matrices and vectors. Substituting the interpolation formula (3.9)
into the expression (I1.5.3) we obtain

8G.) =8q(n(Ki? +Ki) Aqy) , (3.10)
where the material and the geometric element matrices are given by

K7 =[ff, BL'CBL4A, KP=[[, @OLY6DLdA.  (3.11)

-

In the case of configuration dependent loads the external forces lead also to a load
matrix resulting from the linearization of the external virtual work expression. The
distributed loads acting over the element are accommodated in the external virtual
work (1.4.9),, which for the single element with the use of the interpolation (3.9)
yields

0GR =0ql K Aqe,, KPP =ff, UFLdA, (3.12)

where the so-called load matrix is given by

Ke=ff, L'FLdA. (3.13)

This matrix has to be computed for every specific type of configuration dependent
loads.

The internal residual force vector is the discrete counterpart of the unbalanced
force. From (I1.4.18), and (3.9) we have

G =00, Ryy, Reu=[], n, BLYSW)dA. G.149)

The concentrated external forces and couples acting on the shell have to be
applied at nodal points and they are included directly in the global force vector.
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It has to be noted here that these operators contain the derivatives of the shape
functions with respect to the arc length parameters. Their effective evaluation is
carried out using the transformation rule presented below.

3.4 Lagrange elements. According to the standard isoparametric concept the
unknowns of the problem are interpolated from their nodal values in uncoupled
form, in which case (3.7) takes the form

A n Av, n
{ A,‘;((?)}=2ﬁzﬂ<§){ o }=2k=lzﬂ<§>Aq,,, (3:15)
and the interpolating matrix reads

L@E1 0

[&=[L® L® .. LE), L(§)=[ \ L,(S)l]’ (3.16)

where I,(€) are the standard Lagrange interpolating polynomials. In this case the
discrete operators are obtained in the form

BE)=(B.(&) By(E) ... B.(&)),
D(E)=([D(&) Dy(E) ... D.(&).

Substituting now (3.17) into (3.11) the element matrices and vectors take the form

(3.17)

k¥ ... k¥ ki ... ki R,
IKM =| : .. N IKG= : ' . : s R=q: s (318)
kY ... k¥ kS ... k& R,
where
k% =J[, BiCB,dA, k&=[[, DIGD,dA. (3.19)

3.5 Numerical integration. In the evaluation of element matrices we need to
compute integrals of the form

K=[[, k& dA=[[ kEa@ dd, E=né), (3.20)

where o is defined by (2.8). In practice, this is carried out applying some
numerical integration method of the form
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K=>" wk(,), & =@E.8). (3.21)

The most common choice, and the most efficient one, is the Gauss-Legendre
quadrature, which is known for its high accuracy and the ease, with which it can
be implemented in computer codes.

4 - node element 9 - node element 16 - node element -

full integration

&2

&2

-1

o elementnodes x integration points
Fig. 10

In the practice of numerical integration, to evaluate element matrices and vectors
two questions arise: which kind of integration scheme to use and which order to
select. From the point of view of the cost of the analysis the Gauss-Legendre
quadrature is very efficient and commonly used. For the element matrices and the
vectors to be integrated without error the order of the numerical integration must
be high enough, because it influences the solutions. Numerical experimentations
show that in the case of a Lagrange family of elements the required order of
numerical integration is »n for the one-dimensional element n-node.
Correspondingly, the required order of the numerical integration is nxn for the
two-dimensional (nxn)-node quadrilateral elements. In the finite element
literature this is known as full integration scheme.
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3.6 Locking effect. The simplicity and the clarity of the displacement/rotation
based formulations together with the use of standard Lagrange interpolation are
the main features of this class of shell elements. They also exhibit a reliable
performance in the analysis of moderately thick shells. However, the following
difficulties are encountered:

1) The finite element solutions appear to be far more sensitive to the shell
thickness than the true solutions and they may grossly underestimate the
displacements of the shell. As a result the performance of this class of
elements degenerates rapidly in the thin shell limit. This became known as
locking effect.

2) Inextensional or nearly inextensional deformations may be poorly
represented by these elements.

3) The accuracy of the membrane and transverse shear stress resultants
evaluated at nodes of these elements is generally low.

These shortcomings are particularly severe for lower order elements (e.g. the
standard four node quadrilateral element) and they diminish substantially for
higher order elements (e.g. the sixteen node quadrilateral element).

The third difficulty can, to some extend, be circumvented by calculating stress
resultants at the quadrature points rather than at the nodal points. This is the usual
practice, but the problem remains and it is particularly severe in the analysis of
elastic-plastic shells.

Of the three difficulties the locking effect is the major obstacle with the use of the
displacement/rotation based Lagrange elements. The root of this effect is well
recognized. Thin shells derive their characteristic behavior from the intricate
interaction between the membrane action and the relatively small shear and
bending stiffness. Hence, for shell elements even in the linear case it is difficult to
ensure that the bending deformation is not accompanied by spurious membrane
and shear deformation. There is a voluminous literature devoted to the locking
phenomenon. Nevertheless, the problem still misses a complete understanding. A
common viewpoint is that the locking effect arises because of the inability of
elements to achieve a deformed state, in which the transverse shear and membpane
strains vanish throughout the element. The consequences of this shortcoming are
severe, particularly in the thin shell limit, when small membrane or shear strains
will cause the membrane or shear energy to overshadow the bending energy.
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Various techniques were proposed to remove the locking effect of the standard
displacement/rotation based elements. The most simple one is known as the
uniform reduced integrationURI) technique, which relays on the underintegration
of the element matrices. Unfortunately, it is accompanied by spurious solutions
(zero energy modes), which can be reduced by a stabilization procedure. A more
reliable approach to the locking problem is based on a modified variational
formulation.

3.7 Stabilization procedures. The reduced integration concept is commonly
adopted in the one-dimensional case (plane or spatial rod finite elements). In the
two-dimensional case, however, it was recognized that the reduced integration rule
may lead to mesh instability often known as hourglassing. This phenomenon is
associated with spurious zero-energy modes and, in the static case, it may lead for
certain boundary conditions to singularities of the global stiffness matrix. Various
techniques have been devised to alleviate singularities associated with the
spurious zero energy modes in the case of the reduced integration rule.
Unfortunately, the proposed procedures appear to be of more heuristic type, or
they are just numerical tricks than fully mathematically sound.

The basic motivation of the stabilization procedures is to take advantage of the
rapid convergence of the underintégrated elements. The stabilization approach
consists of starting with an underintegrated element and then adding additional
“stiffnesses so that the spurious singular modes are suppressed.

Most of these techniques are based on the representation of the tangent stiffness
matrix (in the same way the residual force vector) as a sum

K =K% +yKS, (3.22)

where KY¥ denotes the underintegrated matrix (evaluated by applying the reduced
- integration scheme), K’ is the so-called stabilization matrix, and y is the so-called
perturbation coefficient (typically, y = 10%). In our developed elements, the
stabilization matrix K has been constructed following the approach presented in
our earlier papers.

3.8 Family of CAM elements. Our formulation is not restricted to a special class
of elements and this is one of its basic feature: Different types of elements are
specified by the geometry of the domain (quadrilaterals or triangles), the number
of nodes and the location of the nodes. The corresponding shape functions are
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constructed by the interpolation method. The Lagrange family of 4-, 9- and 16-
node displacement/rotation based elements formulated in a standard way will be
included in the numerical analysis presented in the following chapters.

4. Stress resultant mixed shell elements

4.1 Remarks on mixed shell models. Mixed methods can be formulated directly
from the local differential equations using a weighted residual approach or,
equivalently, using a variational based approach. Various multi-field functionals
can be constructed by regarding, besides displacements and rotations u=(%,Q),
the strains €=(E,K) or the stresses s = (N, M) or both as additional independent
variables, and by introducing the corresponding relations into the functional of
total potential energy through Lagrange multipliers. Thus the principle of
stationary total potential energy provides the starting point for the formulation of
mixed variational principles.

4.2 Principle of stationary total potential energy. Let us assume that the external
loads acting on the shell are conservative; i.e. that there exists a functional
V:9/ - R such that

OV V]=~ G..[u;Vv]. 4.1)
If in addition the shell is hyperelastic with the strain energy function
D(e) = DE,K)=D(es.kp), @
then the constitutive relation is given by

0D(E,,K,)
aﬁp

n?
s-—{mﬁ}—accb(e:)— od(e, k)| 4.3)
ale

The functional of total potential energy J:%/ - R having the displacement u € 2/
as the only independent variable is defined by

Ja)= [f, P(e))dA+V(u). (4.4)

The first differential of (4.2) takes exactly the form (3.1) for every kinematical
admissible displacement field
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o0J[u;v]=Glu; v]=0. (4.5)

In this form it asserts that among all kinematically admissible displacement fields
only those make the functional J(u) stationary, which satisfy the equilibrium
equations and the static boundary conditions. The functional of total potential
energy (4.2) is defined on the space of kinematically admissible displacement
fields. The strains @ and the stresses s are derived quantities through the strain-
displacement relations and the constitutive equations.

4.2 Two-field variational principle. In the case of linear elastic shells, the usual
constitutive restrictions ensure that the constitutive matrix is invertible, which
enables one to express the constitutive relation in the inverse form. In general, let
us assume that the constitutive relations s = s(¢) can be inverted locally to give

_[E] _= . _|E(N.M)
a:_{K}—a:(s) {I?(N,M)}' 4.6)

Then through the Legendre transformation we can define the complementary
energy density by

W(s)=sTe(s)—D(e(s))

4.7
=Ne+E(N,M)+M+*K(N,M)—®B(E(N,M),K(N,M)).

Upon introducing (4.7) into the functional of total potential energy (4.4) with the
use of the strain-displacement relations we obtain a new functional with u = (u,Q)
and s = (N, M) as the independent fields

Hau,s)= ff,, . (sT&)—-P(s))dA+V(u) “5)
= ff (N <E@+M +K@)-¥(N,M))dA+V(w). '
The first differential of this functional is given by

SHu,s;v,0s]= [f, (sTBV)+0sT(E)—3,¥))dA+OVIwvl,  (4.9)

where

sT(Bv)= N *0E[u;v]+ M *6K[u; V],

87(8 (W) —0P) = 0N +(Ew) -3:®) +oM - (K —a,®).  +17

Since v and s are independent fields we find that
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0H[u,s;v,4s]=0, 4.11)

for all kinematically admissible virtual displacements v and arbitrary ds if and
only if the equilibrium equations, the constitutive equations and the static
boundary conditions are satisfied. These are the Euler equations of the Hellinger-
Reissner type variational principle (4.11), which provides the basis to formulate
mixed finite elements. It should be noted that w must be kinematically admissible,
while s is subject to no constraints except to be smooth enough for the integral in
(4.8) to exist. Thus s may be piecewise continuous.

4.3 Linearized equation. As within the displacement/rotation based formulation,
the solution of the nonlinear problem defined above is achieved through an
iterative procedure based on a successive linearization of the functional (4.8). The
corresponding linearized equation takes the form

0% Hlu,s;v,ds, Av, As]+dH[u,s; v,0s]=0, (4.12)

where the first differential is given by (4.9). To obtain the second differential of
the functional (4.8) we need to compute the first differential of (4.9). We proceed
here like in the case of the displacement/rotation formulation

6°H = [f,  (AVIGV + AsT(Bv)+6s™BAV —-3sTHAs)dA+6V,  (4.13)

where the operators B and G are given in the same form as for the
displacement/rotation formulation, and the matrix

oW (s) JW(s)
His)=22(S) _| an°onP  on“om” (4.14)

3%s oW(s) dW(s)
' om°n? om°om*

contains second derivatives of the complementary energy density with respect to
the generalized stresses. This matrix is just the inverse of the elasticity matrix:

H(s) ' =C(£(s)). (4.15)

The second differential of the potential of external loads is just the first differential
of the external virtual work expression,

OV w; Av,v]=—0G..[w; Av, V], (4.16)
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which is given by (I1.4.18).

4.5 Finite element approximations. According to the standard finite element
procedure, the shell reference surface M is.- represented as the union
M =y, I, of subdomains I7,, (finite elements). Then the unknowns of the
problem are interpolated from their nodal values. The interpolation assures the C°
continuity enabling to express the functional (4.8) in the form

H(,s)=Y _ HO@s). (4.17)

The linearized variational problem takes the form

Y, (B*H®[u,s;v,0s, AV, 4]+ 0Hu,s; v, 6s]) = 0. (4.18)

The kinenmatical variables are interpolated within the finite element in the same
way as in the case of Lagrange elements.

The stress vector consists of the six components of the stress resultant vectors and
the six components of the stress couple vectors. In the finite element
approximation, the stress s within an-element is interpolated in terms of stress
parameters as

s(E)=P(£)s. (4.19)

Substituting (4.19) and (3.9) into the linearized form of the mixed functional we
obtain '

O H9) = AqTK0q + AsTKs0q

4.20
+AVTKT ds — AsTK ;05 + 0%V , (4.20)
where the matrices K,, and Xy are defined by
Kn= [, PT@LdA, Ky=[[, PHPAA, (4.21)

and the matrix s is given in the same form as for the displacement/rotation
formulation. In the same manner we obtain

OH® =4q"R,; +0s™R,, + 0V, (4.22)

where
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R,=[f, s"@LYdA, R,=[[, Pre)-oWP(s)dd.  (4.23)

Taking further into account (3.14) the linearized equation for the single element
reads

0=0q"((Ks —K.)Aq—R,)

4.
+3s7((Kn +KL)Ag—Kzds —R,,), (4:24)
so that the resulting system of equations takes the form
Ke—-Kp)Aq+K,As =R, ,
(Ko —K.)Aq ‘ 425

[KZ;;AQ] -[KHA§ = [Rm .

Since the stresses are required to be only piecewise continuous, they are
interpolated locally within an element and subsequently condensed at the element
level:

As=-KiKTAq+R,,, (4.26)
so that
Ko —K. - K.K#K)Ag =R, - KR, . (4.27)

In effect, the derivation of the element stiffness matrix requires an inversion of the
flexibility matrix [, being the main disadvantage of the mixed formulation. From
this point of view more effective finite element approximations can be constructed
on the basis of a variational principle considered in the following section. Let us
further note that since the stress parameters are eliminated at the element level; the
resulting shell finite elements have the same nodal degrees-of-freedom as the
displacement/rotation based elements.

4.4 MIX elements. The crucial point of the mixed formulation concerns the
judicious selection. of shape functions in the stress approximation, i.e. entries in
the matrix P.! Adhering to the guidelines set forth in the literature, we have
developed 4-node and 9-node elements constructed by using a stress based mixed
formulation with the stress resultants m=(m',n*) and the stress couples
m=(m',m?) besides u=(u,Q) as the independent variables.> Moreover, m and m

'See, e.g., PIAN AND SUMIHARA [1984], PIAN AND WU [1988], SALEEB, CHANG, GRAF, AND
YINGYEUNYONG [1989].
2 CHROSCIELEWSKI [1995].
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are interpolated independently within the typical element. Thus the formula (4.19)

read
_In®) | _[P&) O | | _
s(&)—{m@}—[ 0 P(g)]{m@}-n%&)s@. (4.28)

5. Stress resultant semi-mixed shell elements

5.1 General remarks. The mixed finite element models considered in the previous
chapter have been based on the two-field variational principle having the
generalized displacement u=(u,() and the generalized stress s =(N,M) as the
independent field variables. Within the finite element method these fields are
independently interpolated in terms of generalized nodal displacements q, and
stress parameters S(.), respectively. Since the underlying variational principle does
not require continuity of the stress field s =(N,M) at interelement boundaries,
the stress parameters s, are eliminated on the element level.

5.2 Modified two-field variational principle. Within the considered shell theory
the space of stresses can be expressed as the direct sum of the space of the stress
resultants m and of the space of the stress couples m. Analogously, we can
represent the space of strains as the direct sum of the space of the stretching @ and
of the space of the bending strains k. In matrix-operator description we can simply
write :

n &

m n? @ €
s={m}= il s:=<[k]>= ;{ : (5.1)

m? K>

Corresponding to this splitting we write the constitutive relations in an extended
form

5.2)

o[k | _ [a:dek)
@) =1 nen = ladek)|

We assume now that the first of the constitutive relations (5.2) can be partially
inverted to express the stretching vector in terms of the stress vector and bending
vector
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e=e(nk). 5.3)

We may then define the mixed energy function through the Legendre
transformation '

I(N,K)=nTe(e,k)—D(c(e,k),k)

=N +E(N,K)-®(E(N,K),K). G4

With the help of (5.4) and the strain-displacement relations we define a new
functional with w and m as independent variables

Hun)=ff _(o7c@)-Z(nkw)))dd+V@)

(5.5)
= [f . (N * E)~W(N,Ku)))dA+V(u).
We thus arrive at a variational principle
Hlu,m;v,0n]=0, (5.6)

for all kinematically admissible virtual displacements v € %; and arbitrary virtual
stress resultants om.

5.2 Semi-mixed shell elements. The formulation of the shell finite elements on the
basis of the principle (5.6) follows exactly in the same way as the mixed elements
with the flexibility matrix [K; being of twice order lower. This essentially reduces
the time of computation.

We have developed 4-node and 9-node elements designated by SEMe4 and
SEMe9, respectively. In all examined problems, a very good coincidence between
the solutions obtained with the use of MIX and SEM elements was observed. Of
these two families SEM elements are simpler and may be regarded as more
suitable for engineering computations.
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6. Assumed strain shell elements

6.1 Preliminary remarks. There exist also finite element formulations, which are
mainly based on some technical constructions not necessarily having underlying
variational formulation of the problem. Among such formulations the assumed
strain techniques, discrete Kirchhoff constraints, natural mode techniques or
penalty-parameter modifications are the most often used ones. The finite elements
formulated within such techniques are less reliable (from the mathematical point
of view), although they can provide a sound solution for many engineering
problems.

The natural mode method is based on the decomposition of the shell element
deformation into rigid-body and pure strain modes.! Using this decomposition,
which substantially simplifies the formulation, a number of simple shell finite
elements, including transverse shear deformation, has been developed and
successfully applied to linear and nonlinear problems.

The so-called assumed strain methods are currently regarded as a most promising
way to overcome both locking effects and zero-energy modes. While these
methods in one-dimension (plane and spatial rods) is remarkably straightforward,
the extension to two-dimensions (plates and shells) appears to be challenging and
cannot be considered as completely resolved and mathematically justified. It
should be also noted that the assumed strain methods'encompass a variety of finite
element procedures, quite often developed on some technmical constructions
without formal mathematical justifications.?

6.2 Basic concepts. Generally, the starting point of the assumed strain technique is
based on the classical displacement (in our case displacement/rotation)
formulation together with an application of the standard Lagrange interpolations
as described in Chapt. IIL.3. As it is known, the major difficulty within this
formulation is due to locking effect, whenever the full integration rule is applied to
evaluate the element matrices. By numerical experimentation it has been found
that the locking effect can be substantially reduced or even completely eliminated
through an independent interpolation of the strain field £(£) within an element in

'See ARGYRIS AND SCHARPF [1971], ARGYRIS AND TENEK [1994] and the references cited

therein.
2See SIMO AND HUGHES [1986], SIMO AND RIFAI [1990], SIMO AND ARMERO [1992].
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terms of the undetermined strain parameters. This interpolation can be written in
the form

e(&)=E&)x, 6.1)

where €., denotes a vector of undetermined strain parameters and [E(&) is an

interpolation matrix. In the analysis of nonlinear problems the same scheme is
applied for the incremental (virtual) strains

Ae(8)=E@)4e), (6.2)
what directly leads to the discrete differential operator given in the form
B, =BE(). (6.3)

Here we use the overbar for the discrete operator in order to distinguish it from the
operator B, which is computed in the classical way (Chapt. II1.3). The whole
subsequent formulation of element matrices and vectors proceeds exactly in the
same way as within the standard displacement (displacement/rotation) based
formulation with the discrete operator B, replaced by the operator (6.3). Of

course, in this case element matrices and vectors are evaluated applying the full
integration rule.

Then it becomes clear that the choice of strain parameters £, and of an
interpolating matrix E(&) are the crucial points of the whole concept. There is also
a little help which could be taken as a guideline in their choice, since the concept
is lacking a firm mathematical foundation.

In the existing literature on the subject, strain parameters €., are usually defined
as the values of the strain field €(£) computed within an element from the
standard displacement interpolation scheme at selected points. Such points are
called sampling points, and they are specified by the values of the natural
coordinates & =(§,,5,) €[—1,+1]x[~1,+1]. Let us denote by

g(i»j) = (gl(ibgz(j)) € [_ 1’+ ]-]>I< [_ 1’+ 1] ’ i = 1321 » L ’ j = 172) ) IJZ 3 (6-4)

the natural coordinates of the sampling points. Then the vector €, is defined as
suitable arrangement of the strain values calculated according to

At = At & n= B(& . /) AQey » (6.5)
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where B(E) denotes the discrete operator calculated as in the standard
displacement/rotation based formulation. The remaining steps proceed in the way
outlined above.

Since the strain parameters €, are eliminated at the element level, the resulting

shell finite elements have the same nodal degrees-of-freedom as the
displacement/rotation based elements.

6.2 Assumed strain technique adopted in this work. Within the considered shell
theory the generalized strains consist of the stretching strains e(§) and the bending
strains k(&). Since the locking effect is due to e() only, there is no need to apply
the assumed strain technique to the bending strains. Thus the most general case we
shall consider here is based on the following interpolation of the stretching strains

&(&)= :: ']'.Z]L%"(E[)Iff’(&)au,n,
(&)=, T:, L2(E)LP ()8 »

i=1

(6.6)

where €, ;) and €, j, are the values of the strains calculated at the sampling points
and I?(&,) and I(&,) are interpolating functions. Consistently with (6.6) the
discrete operator for the assumed strain technique is given by

B(&)=>" > LI (E)Buiy,

_ _ 6.7)
B&)=>" 2'; LP(&)LP (5B »
where By ;, and By, are the values of the standard operator B(&) calculated at
the sampling points. Here, following the relevant literature, we have assumed that
the interpolation scheme distinguishes preferable directions.

For a different choice of sampling points and interpolating functions various
particular elements can be constructed, where all elements, like the standard
displacement/rotation elements, have six degrees of freedom at each nodal point.

6.3 ASC elements. In order to gain some insight into the problem we shall include
in our analysis two elements formulated within the concept of the assumed strain
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technique: a four node element, designated ASCe4, and a nine node element,
designated ASCe9.?

The element ASCe4 has been constructed following an approach first presented in
Bathe and Dvorkin.* The sampling points of this element are shown in Fig. 11 and
the interpolating functions are assumed in the form

LP()=1,

I[P(E) =%(1+§) ’ I[2E)=(1-§), (6.8)

where £=§, or § =§,.

4 - node element

& &2
1 +]
-1 +1 -1 +1
& &
X X X X
-1 -1

o element nodes
x integration points
« sampling points

| +1

&

Fig. 11

The element ASCe9 has been constructed following Huang and Hinton®. The
sampling points of this element are shown in Fig. 11 and the interpolating
functions are assumed in the form

3 Both elements were developed by CHROSCIELEWSKI [1994], and we refer the reader to this work
for all details.
* BATHE AND DVORKIN [1985,1986].
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&) =1 (1+3),

PG =58E+),  PO=0+8), &=~
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o)=L (1-3¢),
(&) =7 (1-+3¢) 9

S HUANG AND HINTON [1986].



Chapter IV

Numerical analysis of linearly elastic shells

1. Tested shell finite elements

Linearly elastic constitutive equations. The shell governing equations derived in
Chapt. II as well as the shell finite elements formulated in Chapt. III, when used
together with appropriate constitutive relations, are equally applicable to thin or
thick shell structures undergoing small or finite strain elastic deformation.’
However, in order to have the possibility to compare our solutions with the results
reported in the literature, we shall consider in this paper only small strain
problems. For this class of problems we shall use the following form of the two-
dimensional stress-strain relations (written here in terms of physical components)

N =Clegy +veny), N® = Clg ) +veqy)
N =C(1— V)Ewy » N® =1 —V)Eqy »
Q(l) =—12-a,C(1—1’)8(1) , Q(2) =—%'-a,C(1_V)£(2) ’ (1 1)
M = D(keqy + Vi), M = D(kpay + K1),
M = D(1—V)kqy , M® =D(1-v)Kyy ,
M® =q,D(1—-v)Ky , M® =a,D(1-v)Kp.

Here the classical stiffnesses are defined by

c=-Lth =_Eh__ (1.2)

g ———_

- P=ha-wy:

1Some of these features have been demonstrated in CHROSCIELEWSKI, MAKOWSKI AND STUMPF
[1992] in the context of rubber-like shells using the constitutive equations derived in MAKOWSKI
AND STUMPF [19871].
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where E denotes Young’s modulus, v is the Poisson ration, a; and «, stand for the
shear and torsional coefficient, respectively.

The constitutive equations (1.1) may be viewed as simplest generalization of the
classical ones. In particular, upon symmetrization and omitting the constitutive
relations for the drilling couples they reduce to the form generally accepted in the
Mindlin-Reissner shell theory. Moreover, it can be shown that for smooth,
relatively thin shells undergoing small strain deformation the contribution of
strains Ky, £y to the two-dimensional strain energy function is of higher order
small and can be neglected (taking a,=0). However, from the computational
point of view it is convenient to retain this small contribution and thus to preserve
the complete structure of the general shell theory.

Catalogue of elements and designations. In this chapter we present the numerical
analysis of a number of problems, which illustrate the basic aspects of the finite
element formulation given in the preceding chapter. The considered problems
consist of standard test examples as well as a detailed analysis of special aspects
not sufficiently examined in the literature. For a unified presentation of the results
the following designations will be used:

KxL - finite element mesh, where K and L denote the number of elements
along corresponding edges of the shell,

FILLURI - full and uniform reduced integration rule, respectively,

fil. — stabilization procedure with corresponding filtering coefficient,

u,v,w — displacements along global coordinate axis x, y and z, respectively,
which are specified in each example.

In order to evaluate the performance of the developed finite elements we shall
present a comparison of our solutions with those reported in the literature as well
as our solutions obtained within different formulations of plate and shell finite
elements. The complete list of tested elements are presented in Plate 1 and Plate 2.
The elements displayed in Plate 1 were described in detail in the previous chapter..
A short description -and the references to the original literature of the elements
displayed in Plate 2 is presented below.
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Plate 1
designation nodal degrees formulation
number of nodes of freedom integration scheme
Displacement / rotation
CAMe4 O based formulation.
‘ 6dof/node
. Full (FI)
a TN . or uniform reduced (URI)
CAMe9 ‘ ‘E’V integration.
: kv o
: Stabilization precedure
a \/J v in case of URI integration.
CAMe16

MIX - mixed formulation

MiXe4

SEMe4 6dof/node

"

SEM - semi-mixed
formulation

1

Assumed strain formulation

SEMe9 vl

ASCe4

6dof/node

» sampling points

ASCe9

s sampling points
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Plate 2
designation nodal degrees formulation
number of nodes of freedom integration scheme
SElLe4 Standard degenerated shell
elements with five degrees-
5dof/node of-freedom per node.
Full (FI)
SELe9 - or uniform reduced (URI)

integration.

Stabilization procedure

SELe16 in case URI

6dof/node 4-node rectangular plate
element with six degrees-

The element is formulated
u AV on the basis of van Karman
D plate theory.

——

3-node triangular flat shell
element with six degrees-of
-freedom per node..

6dof/node

BOX g w ) R of-freedom per node.
1

The stiffness matrix is obtain
by direct superposition of:

- plane membrane stiffness,

- bending stiffness,

- in-plane rotational stiffness.
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SEL elements. In order to obtain a deeper insight into the performance of various
shell finite elements, we include in our numerical analysis a family of three
Lagrange elements with 4-, 9-, and 16-nodes, designated as SELe4, SELe9 and
SELel16, respectively. These are standard degenerated shell elements® having five
degrees-of-freedom per node, three displacements and two rotations. Like in the
case of CAM elements, in the evaluation of element matrices and vectors either
full or uniform reduced integration rule is used. In the later case the stabilization
procedure is also included in the same way as in the CAM elements.

Let us recall that the basic concept underlying the formulation of the so-called
degenerated shell elements relies on modifying a three-dimensional brick element
by assuming a linear shape function in thickness direction while retaining any
shape functions in the two remaining (surface) directions. The basic assumptions
invoked here are nothing else than the classical Mindlin-Reissner hypothesis
according to which: 1) Initially normal fibres to the reference surface remain
straight and inextensible, 2) The normal stresses can be neglected (plane stress
hypothesis). As a result of the finite element isoparametric discretization together
with the assumption 1) the resulting finite element has at each node 5 dof: three
displacements #, = (u, v, w), and two rotations 6, =(6,,6,), as shown in Fig. 1.

Fig. 1

BOX element. In the subsequent analysis we include also results of an earlier
developed plate element (designated BOX). This is a C' non-conforming flat
rectangular element based on the von Kérm4n theory of thin plates.” It has six

2These elements were developed in CHROSCIRLEWSKI [1994] following the formulation due to
BATHE [1982].

3 The element was worked out by CHROSCIELEWSKI [1983] along, in principle, the concept of LEE
AND HARRIS [1978].
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degrees-of-freedom at each node with rotational degrees defined as suitable
derivatives of the displacements (Fig. 2). The main characteristics of the element
are the following. Relative to a fixed Cartesian coordinate system {x, y,z} the in-
plane (tangential) and normal components of the displacement field are denoted by
u, v and w, respectively. The z-coordinate is taken in thickness direction so that w
denotes the normal deflection of the plate. The nodal degrees of freedom are
defined by (u,v,w,d,,8,,8, ), k£ =12,34, and the polynomial shape functions are
chosen in such a way that the compatibility between the displacements v and w are
satisfied for adjacent elements, which are joined at the non-zero angle along their
common x-axis. This enforces the preferential orientation by setting the x-axis for
both the global and local coordinate system parallel to the longitudinal direction of
the members. In the analysis of structures, for which the y-axis is naturally
distinguished, the role of x- and y-axis is reversed and thus the element is
applicable in both cases. The 6th dof #,, which is created by introducing higher
order terms in the interpolation of v (or # when the y-axis has the preferential
orientation), also serves to provide in-plane rotational stiffness to avoid a singular
matrix, when adjacent elements connected to a node are all coplanar. It should be
noted here that while &, =w,, and 3, =w,, have the geometric meaning of small
rotations about corresponding axes already at the continuum formulation stage, the
rotational dof &, is introduced at the discretization level, and its geometric
interpretation is not so direct. This is in contrast to the formulation of CAM, MIX,
SEM and ASC elements, where all three rotational dof have a clear geometric
meaning.

ng w /
| [ L 28
7
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CAT element. This is a simple 3-node traingular flat element with six degrees-of-
freedom per node.'! The element stiffness matrix is obtained by superposition of
CST (Constant Strain Triangular), DKT (Discrete Kirchhoff Theory) and an in-
plane rotational stiffness.

2. Smooth shell problems

A shell, which is geometrically represented by a smooth reference surface and
which has neither column supports nor stiffeners, is called here a smooth one. If,
in addition, the -thickness is relatively small in comparison with the two other
dimensions, and if the strains remain infinitesimally small everywhere in the shell
space, then the classical Mindlin-Reissner or equivalent kinematical hypotheses
seem to be reasonable assumptions. When such assumptions are used together
with conventional finite element formulations, the resulting standard elements
have five DOF per node, which is entirely enough to analyse shell problems in the
aforementioned cases (with the exception of flat elements). Then the main aspects
of various formulations of this kind are the accuracy and the reliability of the shell
elements, which can be verified through numerical test examples. The primary aim
lying behind the effort to develop shell elements with all six DOF per node is to
remove the limitation of the standard elements with five DOF per node and extend
their range of applicability. Contrary to the 5 DOF/node elements, the 6 DOF/node
elements are applicable not only to all regular, but also to all irregular shell
structures. In this sense, regular shell problems should be regarded as a first step in
an assessment of the correctness of the shell element formulation with six DOF
per node. With this in mind, we present as first example a problem, which became
a standard test example in the literature.

Example 1. Pinched hemisphere. The doubly-curved shell shown in Fig. 1.1,
which has been proposed by MacNeal and Harder?, is commonly regarded as a
reliable test to assess the ability of the finite elements to describe the inextensional
bending behavior. It appears also to be a good example for checking the ability of
the element to handle rigid body modes, since most sections of the shell rotate
almost rigidly under the given load. For the linear solutions the displacements
w, =— u, = 0094 the force directions with reference force value P,; =1 suggested
by MacNeal and Harder are taken for the normalization (no analytical solution is
available).

! CHROSCIELEWSKI, GORSKI AND IWICKI [1993,1994].
2MACNEAL AND HARDER [1985].
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y
free E =6.825-10
vy=0.3
R=10
h,=0.04 (0.02)
<2
3
o
P
A b X
p L =
a free

z

Fig. 1.1 Pinched hemisphere with a 18° hole at the top subjected to four radial
point forces normal to its surface at equal distances around its equator. Due to the
bi-symmetry only one quarter is discretized using a regular mesh nxn element.

In our formulation of various shell finite elements the sixth DOF (drilling rotation)
enters the picture through the underlying shell theory. Hence, it plays the same
role independently of the particular finite element formulation. However, different
formulations have their own characteristics, which may influence the solutions in
a hardly predictable manner. Accordingly, we first examine this aspect. From the
results. presented in Fig. 1.2 it can be seen that for a wide range of acceptable
values of the torsional coefficient «,, typically a, <1, no differences in the
solutions are observed within the same type of element. This characteristic
behavior is found to be independent of the type of finite element formulation
(displacement/rotation, semi-mixed, assumed strains). Some differences observed
within this range of values of «, between the solutions obtained by using different
elements are typical for their formulation. The same characteristics have been
observed in all other regular shell problems, which we have extensively studied. It
will be shown in the following chapters that this property is also preserved in the
examples of folded and kinked shell problems. The coincidence of the observed
properties supports the applied methodology, which is quite different from the
techniques used in the literature. For higher values of the torsional parameter «;,,
typically «, >1, the calculated displacements and rotations appear to be sensitive
to the type of formulation. The smallest sensitivity is observed for the higher order
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Fig. 1.2 Pinched hemisphere (linear solutions). Investigation of the influence of the
torsional coefficient within different finite element formulations.
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displacement/rotation based elements (sixteen node CAM element) with full
integration, while the biggest influence of the values of «, is observed for the
under-integrated elements. This clearly demonstrates the well-known fact that the
use of the reduced integration is generally accompanied by zero energy modes and
high sensitivity of the solutions to small imperfections of any kind. The general
conclusion, which may be drawn from our analysis, is the statement that within the
acceptable range of values of the torsional parameter we are free to use any value,
and this will not influence the results.

In the case of smooth shell problems the elements with five and six DOF per node
should lead to correct solutions with comparable accuracy. However, the
experience shows that when the sixth DOF is built into the standard 5 DOF/mnode
elements their performance can be remarkably spoiled or may even lead to erratic
solutions. Indeed, the results reported in the literature’ clearly show that the
performance of the elements with drilling DOF can strongly depend on the
manner, in which the drilling DOF is built into the element. A detailed study of
Chen’® has shown that as far as the convergence and accuracy are concerned the
standard flat CST (Constant Strain Triangular) element is superior to the Allman’s
triangular element with drilling DOF. It is then necessary that elements with six
DOF per node are first carefully tested on standard test examples of regular shell
problems.

In Fig. 1.3 we present some selected results of convergence tests for linear
solutions obtained by our elements, and a comparison with the corresponding
results presented in the literature for alternative finite element formulations.
Except our SELe16 element and the comparable S16 element due to Stander et al.,
all other elements include drilling DOF. A good coincidence between the CAM
and SEL solutions shows that for regular shells no difference should be expected,
whether one uses the elements with 5 DOF or 6 DOF per node. The same property
is also observed in the case of nonlinear solutions in the advanced range of
nonlinearity (on the scale usually presented in the literature no essential
differences would be seen) shown in Fig. 1.4 and Fig. 1.5.

It is a well-known fact, that when the full integration is applied to evaluate the
stiffness matrices, the locking effect is much more severe for lower order elements

1See e.g. JETTEUR AND FREY [1986], JAAMEL, FREY AND JETTEUR [1989] or a review article by
FRrEY [1989]. '
2CHEN [1992]
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Fig. 1.5 Pinched hemisphere (nonlinear solutions).

than for higher order ones. It was also observed that for the latter elements this
effect decreases with increasing nonlinear deformation. However, this is not the
rule. The results presented in Fig. 1.6 clearly demonstrate just the opposite.

In Fig. 1.7 we present the results of the convergence tests for the same shell
geometry but for a twice smaller thickness, where also a comparison with the
solutions presented. by Simo' is shown. Like for the thick shell (Fig. 1.3), the best
convergence is obtained by using the ASCe9 element. However, this element
suffers from the uniform rate of convergence at lower discretizations. This
characteristic property is typical for all elements, which are polluted by spurious
modes.

In overall, when the element formulations are comparable, a good coincidence of
the obtained solutions is observed independently whether or not these elements
include drilling DOF. This is the case for our CAMe16 and SELe16 elements, and

1 Smmo [1993].
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full integration rule for increasing load level.
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for the S16 element of Stander et al.!, all being 16 node elements based on the
standard Lagrange interpolation. We have also found, that most reliable are the
solutions obtained by using the CAMe16 element with full integration, whenever
they are not dominated by the locking effect. The solutions presented in the
remaining part of the work will support this conclusion.

Example 2. Hyperbolic paraboloidal shell. The problem shown in Fig. 2.1 was
proposed by Basar and Ding® for testing a large rotation shell theory and
assessment of finite elements in flexure for warped meshes.

y

Fig. 2.1 Hyperbolic paraboloidal shell is loaded by two opposite moments applied at the
supported edges, which can move in the normal direction to the shell surface. The

graded mesh for one quarter is used in the analysis.

1 STANDER, MATZENMILLER AND RAMM [1989].
2BASAR AND DING [1990], see also DING [1989].
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This problem has been subsequently considered by Stander et al.' and Wriggers
and Gruttmann.?> Unfortunately, the results presented in these papers were
presented in graphic form only. Nevertheless, within an accuracy of graphic
presentation there can be observed good coincidence of our solutions (Fig. 2.2)
with those obtained in the aforementioned papers. The numerical values of our
solutions are given in Tab.2.1 and Tab.2.2. The computed deformed
configurations are shown in Fig. 2.3 and Fig. 2.4.
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': convergence s Vi
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7| —-—-— SEMe4 24x8 m1
A ASCef 12x4
------ ASCe4 24x8
T l T l L
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generalized displacements of point (a) with reference to point (c)

Fig. 2.2 Hyperbolic paraboloidal shell. Nonlinear solutions.

! STANDER, MATZENMILLER AND RAMM [1989].
2WRIGGERS AND GRUTTMANN [1993].
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Fig. 2.3 Hyperbolic paraboloidal shell. Computed deformed configurations.

Tab. 2.1 Hyperbolic paraboloidal shell - linear solutions.
element mesh - Uy — Wa Qa qc Ya

present study

CAMe16 (Fl) | 4x2 1.5466 2.9978 2.2578 2.9308 |1.1447

8x3 1.5805 3.0804 2.3073 2.9950 [1.1581
12x4 1.5827 3.0854 2.3105 2.9992 |1.1588
SELe16 (FI) 4x2 1.5478 2.9991 2.2595 2.9330 | 1.1521
8x3 1.5833 3.0849 2.3114 3.0003 | 1.1670

SEMe4 24x8 1.0508 1.8685 | 1.5340 1.9912 | 1.0193
SEMe9 12x4 1.5778 3.0757 2.3033 2.9899 | 1.1571
ASCe4 24x8 1.6735 3.0742 2.2970 2.9817 | 1.1498

ASCe9 12x4 1.5934 3.1036 2.3261 3.0195 | 1.1655
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Tab. 2.1 Hyperbolic paraboloidal shell - nonlinear solution
load CAMe16 SEMe4 SEMe9 ASCe4 ASCe9

M=1M, 8x3 24x8 |  12x4 24x8 12x4
A horizontal displacement (- u)
0.5 1.1967 0.72533 1.1938 1,1900 1.2036
1.0 3.1205 1.9090 3.1145 3.1068 3.1343
1.5 5.2935 3.4203 5.2850 5.2775 5.3115
2.0 7.3228 5.0543 7.3111 7.3093 7.3414
25 8.9708 6.5973 8.9534 8.9616 8.9850
3.0 10.146 7.8827 10.121 10.140 10.150
35 10.883 8.8394 10.849 10.876 10.875
4.0 11.298 9.4945 11.258 11.289 11.283
5.0 11.713 10.293 11.691 11.715
6.0 12.144 11.013 12,169 12.185
7.0 12.609 11.765 12.653 12,673

vertical displacement (— w)
0.5 1.7158 0.99151 1.7128 1.7135 1.7231
1.0 3.2409 1.9796 3.2384 3.2431 3.2495
1.5 4,0395 2.6974 4.0392 4.0506 4.0456
2.0 4.1129 3.0127 41145 41322 41147
25 3.6615 2.9227 3.6654 3.6858 3.6595
3.0 2.9389 2.5305 2.9477 2.9654 2.9377
3.5 2.1730 1.9958 2.1922 2.2022 2.1818
4.0 1.5175 1.4721 1.5530 1.5533 1.5400
5.0 0.70999 0.77856 0.78316 0.76938
6.0 0.28066 0.44253 0.35229 0.34064
7.0 -0.19178 0.00929 - 0.18490 - 0.19091
rotation

0.5 37.037 31.559 36.996 36.802 37.163
1.0 78.421 67.168 78.381 78.020 78.645
1.5 120.00 104.49 120.03 119.53 120.37
2.0 161.10 142.82 161.30 160.67 161.72
25 201.73 181.84 202.22 201.46 202.71
3.0 241.92 221.33 242.84 241.98 243.38
3.5 281.71 261.15 283.22 282.28 283.68
4.0 321.12 301.21 323.43 322.39 324.14
5.0 398.77 381.93 403.31 402.20
6.0 474.61 462.92 482.75 481.59
7.0 547.25 543.94 561.91 560.66
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Fig. 2.4 Hyperbolic paraboloidal shell. Computed deformed configurations of normal
sectionsx=0andy =0.

Example 3. Clamped skew plates. This example (Fig.3.1) is chosen to
demonstrate the performance of the developed shell elements in the analysis of
problems with irregular meshes. This problem was first examined by Pica et al.!

The comparison of the solutions reported by these authors with our own results is
shown in Fig. 3.2, where a full coincidence of the vertical deflection can be seen.

1 prca, Woob AND HINTON [1980].
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Fig. 3.2 Clamped- skew plates. Nonlinear solutions.
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3. Folds and kinks in shell structures

A large and important class of engineering structures are multi-shells. They are
characterized by highly irregular multi-featured geometries consisting of folds,
kinks, branches, etc., along which several structural components are rigidly
interconnected. While the complexity of the underlying geometry and loading
makes such structures hardly tractable by analytical methods, the finite element
method appears to be a particularly suitable tool for their analysis. However, in the
case of shell elements with 5 DOF per node difficulties arise at the shell
intersections in assembling element matrices and vectors into the global ones.
Obviously, this does not concern the elements with all 6 DOF per node. In all our
CAM, MIX, SEM and ASC elements the six nodal degrees of freedom (three
translational and three rotational) are defined either relative to local triads attached
to the nodes of the element, or with respect to- an arbitrarily specified unique
global basis. Using standard rules they can be transformed uniquely from one
basis to another. Their representations with respect to local triads are usually used
for the analysis of regular shells. Transformations to the global basis are required
in the case of irregular shell and plate structures in order to assemble global
stiffness matrices and load (external and residual) vectors. When applying the
shell elements with 5 DOF per node to irregular structures obvious difficulties
appear due to the lack of the sixth (drilling) DOF.

technique "A”

real structure

Fig. 1 Two possible techniques to use shell elements with 5 DOF per node for the
analysis of shell and plate structures involving kinks.
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In the analysis of irregular structures the simplest case is the one, where two
structural elements are rigidly interconnected along a junction as sketched in
Fig. 1. Then it is always possible to define a field of local triads with a director
field continuous across the junctions (technique “"A"). Such triads then serve as
basis for the assemblage of global matrices and vectors. Hence, the standard
5 DOF per node elements can be assembled into the global stiffness matrix with
no additional efforts. We have included this technique in the SEL elements. The
second possible technique "B" involves the transformation of 5 DOF in local triads
into 6 DOF with respect to a global basis. While both techniques are pointed out in
the literature, there is an apparent lack of illustrative numerical test examples,
which would provide a deeper insight into possible influence of both techniques
on the predicted solutions. A few examples presented below aim at providing
insight into this aspect.

Example 1. Right angle cantilever plate. The first example, the right angle
cantilever plate (actually beam) clamped at one end and loaded either by
distributed forces or distributed moments applied at the other free end (Fig. 1.1), is
essentially one-dimensional. Hence, no difficulties in obtaining the solution
should be expected. Indeed, we have found that the deflections predicted by the
6DOF/node CAM elements and SDOF/node SEL elements coincide entirely with
the analytical solution for the pure bending problem in the fully nonlinear range.
The same complete coincidence was observed with other loading.

Fig. 1.1 Right angle shell. Data of the structures and computed deformed
configurations.
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Example 2. Sickle-shell. The second example in this class (Fig. 2.1), which we
have examined, was called by Simo' a sickle-shell problem. Besides the results at
the very low load level (actually, within the linear range) no details were presented
in the aforementioned work. The complete non-linear solution together with the
deformed shapes of the structure are shown in Fig. 2.2 and the numerical values
are given in Tab. 2.1. Again, a full agreement is observed between the solutions
obtained with CAM and SEL elements. :

From these results it becomes evident that this type of problems cannot be
regarded as a reliable test for the applicability of shell finite elements to analyse
irregular shell structures. Actually, from the analysis of a C-shaped beam
considered in our previous work”, one can conclude that the standard 5 DOF/node
elements can be applied with moderate reliability to kinked structures only in the
case, when the deformation along interconnections is not dominant.

Fig. 2.1 Sickle-shell problem. The computed configurations within the highly
nonlinear range of deformation coincide to the extent not distinguishable on this
scale, whether CAM, SEM or SEL elements are used.

1Smo [1993).
2 CHROSCIELEWSKI, MAKOWSKI AND STUMPF [1994], see CHROSCIELEWSKI[1994] for more
detailed analysis. :
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Tab. 2.1 Sickle shell. Nonlinear solutions, mesh (8+12)x2

load” horizontal displacement v, vertical displacement w.,
A | CAMe9™ | SEMe9 | SELe9™ | CAMe9™ SEMe9 | SELe9”
1 1460 | 1.457 1.424 0.09619 0.1068 0.09119
2 2.740 | 2.734 2.669 0.46141 0.5164 0.4410
3, 3.970 | 3.087 3.839 1.989 2.227 1.803
4. 6.214 | 6.166 6.013 6.194 6.187 6.026
6 10.11 | 10.01 10.01 9.772 9.752 0.878
8. 1230 | 12.18 12.26 10.28 10.26 10.45
10. 13.65 | 13.51 13.66 10.04 10.02 10.20
15. 1558 | 15.40 15.61 8.962 8.984 9.065
20. 16.68 | 16.47 16.72 8.096 8.136 8.151
25, 17.47 | 17.22 17.50 7.470 7.515 7.485
30. 18.09 | 17.78 18.09 7.002 7.048 6.979
40. 19.02 | 18.63 19.00 6.303 6.380 6.254
50. 19.68 |.19.23 19.65 5.782 5.901 5.737
60. 20.18 | 19.67 20.15 5.380 5.534 5.336
P = AP, Prer= 0.01, “URI integration
Tab. 2.2 Sickle shell. Nonlinear solutions, mesh (8+12)x2
load” CAMe9 (URI) SEMe9
A Y1 Y2 ) ¢a {2 Y2 () ¥s
1. | -1.565 -0.02503 | 0.1766 |-1.563 |-0.02546 | 0.1761
2. | -1.536 -0.03679 | 0.3212 | -1.531 -0.03620 | 0.3192
3. | -1.392 0.02263 | 0.3982 | -1.368 0.03244 | 0.3885
4, | -0.9186 0.2691 0.3904 |-0.9197 | 0.2594 0.3857
6. | -0.2720 0.5995 | .0.4435 |-0.2794 | 0.5758 0.4380
8. | 0.06669 | 0.7879 0.4839 | 0.05997 | 0.7545 0.4826
10. 0.2795 0.9180 0.5056 | 0.2722 | 0.8738 0.5117
15. 0.5834 1.122 0.5299 | 0.5847 | 1.060 0.5486
20. 0.7623 1.249 0.5317 | 0.7735 | 1.175 0.5602
25. 0.8945 1.343 0.5164 | 0.9107 | 1.258 0.5591
30. 1.002 1.416 0.4917 | 1.020 1.323 0.5506
40. 1.172 1.530 0.4272 | 1.189 1.425 0.5210
50. 1.287 1.621 0.3701 | 1.316 1.504 0.4846
60. 1.372 1.694 0.3170 | 1.415 1.567 0.4488
P = APrer, Pror=0.01
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Example 3. Folded plate. In order to obtain a deeper insight into the modelling of
junctions and their possible influence on the predicted solutions, we consider the
problem shown in Fig. 3.1.

Fig. 3.1 Plated structure. Due to the bi-symmetry only a quarter need to
be discretized.
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Fig. 3.2 Plated structure (linear solutions). Analysis of the torsional coefficient.
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Fig. 3.3 Plated structure. Convergence study of linear solutions.
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The results presented in Fig. 3.2 demonstrate that, like for smooth shells, the
torsional coefficient @, has no influence on the solutions as long as its values
remain within the appropriate range. It is also remarkable that the range itself is
actually problem-independent (see next chapters).
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Fig. 3.4 Plated structure. Horizontali displécements u along (c)-(d) line of the vertical
plate predicted by CAM and SEL elements with full integration rule.

Within the linear range of deformation this example was analysed by Gebhardt'
using a standard degenerated element with 5 DOF per node, together with the use
of either techniques "A" or "B" to model the connection of horizontal and vertical
plates. The results presented in that work and reproduced in Fig. 3.3 show that the
technique "B" leads to a vertical displacement under the force, which is slightly
smaller than the one obtained by using the technique "A". We carried out a
detailed convergence study showing that SEL elements give also lower values of
the displacements than CAM elements with the same number of nodes. Keeping in
mind that our SEM and ASC elements exhibit convergence to the same values as
the CAM elements, thisexample clearly indicates that the technique used to model

! GEBHARDT [1990].
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junctions of irregular structures may influence the predicted solutions. As about
the vertical displacement under the force, the differences between the CAM and
SEL element solutions are not of great importance. However, the horizontal
displacements along the vertical plate predicted by these elements differ quite
essentially (Fig. 3.4). Moreover, it is very interesting to point out that the drilling
degree of freedom formulated on the shell theory basis (CAM, SEM, ASC
elements) stabilize the solutions, when the uniform reduced integration rule is
applied (Fig. 3.5).

Example 4. Plated structure. When dealing with the problem of shell
intersections, it should be mentioned that a rigorous description of strain and stress
distributions in the vicinity of folds, kinks, branches, etc., falls outside of the
realm of any shell theory in the same way as none of the shell theories can
correctly describe the stress and deformation states within the boundary layer even
of regular shells. Besides this well-known fact, the shell-theory-based solutions
yield an appropriate description of those states outside of the vicinity of
intersections and boundaries. In order to illustrate this point, we examine finally
an example presented by Bathe et al.> and shown in Fig. 4.1.

p = 1.0 per unit length

Fig. 4.1 Folded plate structure. Owing to the bi-symmetry of the geometry and the
loading only the indicated quarter of the structure is discretized by finite elements
using the regular mesh nx(3n+n), where n denotes the number of elements across
the width of the vertical and horizontal plates.

As in the previous example, only linear solutions are given here. It was pointed
out in Bathe et al. that problems of this kind may be analysed using Timoshenko
beam finite elements (beam model), shell finite elements (shell model), or three-
dimensional finite elements (3D-model). From the results presented in Bathe et al.
and reproduced in Fig. 4.2 it can be seen that the vertical deflections under the

2BATHE, LEE, AND BUCALEM [1990].
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load line predicted by shell and 3D models coincide quite well. Obviously, the
beam model cannot account for the varying deflection along the width of the
structure, but this effect predicted by the shell model coincides very well with the
results obtained by using the 3D-model. From the results presented in Fig. 4.3 it is
also seen that a complete agreement with the results of Bathe et al. is obtained,
when CAM elements are used, even with coarse meshes. However, the SEL
element, which is comparable with the shell element applied in Bathe et al., gives
slightly smaller deflections (both are 16 node degenerated elements with 5 DOF
per node). The noted difference is presumably due to a different modelling of the
junction of horizontal and vertical plates. In Bathe et al. the technique "B" was
applied, while in the case of SEL element here the technique "A" as explained
above is used. Thus, this example illustrates again the effect of the modelling of
junctions on the predicted displacements. It is also interesting to note that in the
solution of this problem neither locking effects nor zero-energy modes are
observed (Fig. 4.3).

210
Bathe et al.
beam model
* shell mode!
® 3-D model

-
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1901 _| -~-O-- CAMe16 (URI)
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y-coordinate

Fig. 4.2 Folded plate stgucture. Vertical deflection under the load line.
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4. Folded plate structures

Thin- or thick-walled folded plate structures, such as single or multicell box
girders, corrugated flooring decks and unstiffened or stiffened prismatic or non-
prismatic plate structures, constitute a special class of multi-shell structures. Being
of particular engineering importance with own specific characteristics, they attract
much attention in engineering computations. Some special methods, such as the
finite strip method, for example, were worked out, which are valid for a limited
class of problems. Folded plate structures also provide an attractive set of
problems to verify the performance of general shell finite elements.

Fig. 1 Branching of stress resultant couples at the T-profile plate (shell) intersection.

From the computational point of view structures of this kind are simpler to analyse
than general multi-shells, because they can be modelled by using plate and facet
shell finite elements. On the other hand, folded plate structures typically contain
multi-intersections, and as such they are more difficult to model than the shell
structures containing solely single folds and kinks. A common type of intersection
has the T-profile sketched in Fig. 1. Along the common edge the plates are rigidly
connected causing coupling between the in-plane and bending response. It is
apparent that there is no way to define in a continuous manner the director field
across such an intersection. Theréfore, technique “"A" (used in our SEL elements)
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is ruled out and finite elements with only 5 dof per nodes cannot be applied. On
the other hand, it is occasionally claimed in the literature that the technique “B"
can still be applied to such structures, but we are not aware of representative
numerical solutions to support this statement. It seems that if this would be
possible the solutions may differ from the results obtained with the shell finite
elements including drilling couples (as in our CAM, SEM, ASC elements). This
can be seen, if one writes the moment equilibrium equations at the junction. For
example, the moment equilibrium about the vertical direction for elements with
drilling couples reads (using notation explained in Fig. 1)

MG+ MG+ M =0.

In the case of elements with 5 dof per node this condition would reduce to the
form M2 =0, thus enforcing the twisting couple in the vertical plate to vanish
along the junction. This simply shows that shell (or plate) finite elements, which
do not account for the drilling couples, do not allow a proper description of the
shell behavior at the junction of adjacent structural components. It should be noted
that this is true also for kinked structures, independently whether one applies the
technique "A" or "B". This fact might explain some differences in the results
obtained by using SEL elements and those based on elements with drilling DOF,
as it has been outlined in the previous chapter.

Example 1. I-shaped beam. To verify the suitability of different shell elements for
general applications including folded structures, we found a particularly attractive
and fairly simple but challenging problem first considered by Talbot and Dhatt." It
consists of a long I-shaped beam clamped at one end and loaded by a vertical force
applied at the center of the other free end (Fig. 1.1). The attractiveness of the
problem lies in the results reported in the aforementioned paper, which put shades
on the effectiveness and accuracy of the flat shell finite elements, which are often
considered in the literature. In their study Talbot and Dhatt examined three flat
triangular shell elements being the superposition of bending and membrane
elements. The bending formulation of all three elements was based on a discrete
Kirchhoff model, the classical 3-node DKT element, and a newly developed 6-
node DKTP element. The membrane (in-plane) behavior is based on the constant
(CST), linear (LST) and quadratic (QST) strain approximation. Their suitable
compositions yield the following shell elements: a 3-node DCT element (DKT +
CST), a 3-node DQT element (DKT + QST), a 6-node DLT element (DKTP +

LTALBOT AND DHATT [1987].
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LST). All elements have six degrees of freedom per node. The rotational nodal
parameters are defined in terms of derivatives of the displacements, and thus they
do not coincide with real rotations as in our formulation of the shell elements. Of
these elements, when applied to the problem shown in Fig. 1.1, DQT and DCT fail
entirely to provide a correct solution even in the initial range of the deformation.
The critical value of the load predicted by the DLT element is close to the
analytical solution of the classical beam theory (see Tab. 1.2). The DQT element
exhibits divergence at the critical load, while DCT element diverges even for a
refined mesh without buckling. From these results due to Talbot and Dhatt one can
see that this seemingly simple problem may provide a better test to assess the
performance of shell finite elements than those usually examined in the literature.

L=4800 mm
E = 2x105 N‘'mm?
v =0.30 A=2278
o= 0.01

P,r= 1000 N
P=AP,

Pmp = 0.0001 P

Fig. 1.1 Lateral buckling of I-shaped cantilever beam. Problem definition and computed
deformed configurations in the full range of the deformation.

Within the linear range we have found a quite good coincidence of the
displacements computed by using all our tested elements (CAM, SEM, ASC) and
the plate element (BOX). Partial results are shown in Fig. 1.3. The complete
analysis of the problem includes the nonlinear solutions and the determination of
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the critical load corresponding to bifurcation of the solution. As it is seen in
Fig. 1.4, for monotonously increasing values of the applied load the beam behaves
nearly linearly, remaining all the time within the plane of symmetry. At the critical
value P,, the secondary equilibrium path, corresponding to the lateral buckling of
the beam, bifurcates from the primary path. In order to determine the critical load
the perturbation force of intensity 1/1000th of the vertical force P has been applied
in the out-of-plane direction. This force has subsequently been removed, and the
critical value of the vertical load has then been determined by reducing its value
until the out-of-plane displacement reached the zero value. The critical loads
computed in this way for different elements and meshes are collected in Tab. 1.2
and Fig. 1.4.

0.490- N

vertical (in-plane) deflection [mm]
>
[e2d

N ©
1 Ip=p X o
ﬂ ref T
. +
0.475- R ¥
B <
1% / - —O—CAMe4 (URI) X
04701 —= ——== —O—SEMe4 el
= —A—ASCed ©
1% —O0—BOX ©
) T T 1 T L] T Bl I L] T [ L] T .
60 120 180 240 300 360 420

number of elements

Fig. 1.2 I-shaped cantilever beam. Convergence study of the four node elements (linear
solutions).

Unlike the linear solutions, the observed differences in the values of the critical
load are quite big and all results, except those predicted by BOX element, lie
above the values obtained by Talbot and Dhatt. This shows that perhaps a very
fine mesh would be needed in order to obtain the correct result of the critical load
(which obviously need not coincide with the one predicted by the classical beam
theory). It should also be noted that the critical load is attained at the in-plane

~
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vertical deflection, which exceeds the height of the beam. The magnitude of these
deflections is far beyond the validity of the von Karman plate theory, what
explains, why the critical value predicted by the BOX element is much below the
one obtained by using the shell elements.

Tab. 1 Linear solutions

4-node elements

element mesh
(2+2+2)x8 (4+4+4)x16 (6+6+6)x24
CAMe4 (FI) 0.2499 0.3871 0.4313 |
CAMe4 (URI) 0.4913 0.4796 0.4776
MiXe4 0.4675 0.4725
SEMe4 0.4693 0.4730 0.4741
1 ASCe4 0.4675 0.4725 0.4738
BOX 0.4685 0.4730 0.4742
9-node elements
mesh
(2+2+2)x8 (4+4+4)x16
CAMe9 (F1) 0.4735 0.4747
CAMe9 (URI) 0.4758
MIXe9 0.4739
| SEMe9 0.4740 0.4750
ASCe9 0.4887
' 16-node elements
mesh
(2+2+2)x8
CAMe16 (FI) 0.4746
CAMe16 (URI) 0.4759

The complete solutions in the full nonlinear range obtained for different
discretizations by using different elements are shown in Fig. 1.5 and Fig. 1.6. In
the nonlinear analysis of this problem two observed phenomena are worth
mentioning. First, as indicated in Fig. 1.3, the ASC element fails to converge at the
initial post-buckling range. Second, there are quantitative differences between the
solutions. The most dramatic differences appear in the range of highly nonlinear
deformation. We have no clear explanation of this fact. The basic problem with
the displacement/rotation based C? elements lies in the fact that the application of
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the full integration scheme to evaluate the element matrices results in an overstiff
solution (locking effect). A common way to avoid this effect is the application of -
underintegration. However, this generally leads to spurious modes, which may
essentially change the predicted behavior of the structure. However, in this
example no essential locking effect has been observed. It is also remarkable that
within the linear solutions the under integration results in a convergence from
above. This property is opposite to the one observed for elements with full
integration (Fig. 1.2). For the the critical load this property is just opposite
(Fig. 1.4).

1500
1250 — | - — - ]
1000 — i |
£19907 " Asc ivergance) %7 | ASC (divergance)
- AT | —— SEMeds (2+2+2)x8
8 7501 - —fhorizontal | St 17T S hede s
5 (i piane) e BOX  (2+2+2)x8
8 . ecionw ... ® bifurcation. points
§ 500 = P ' :
i ; vertical (in-plane)
250 - ~p% - deflection u
0— — - , — :

T i
-100 0 100 200 300 400 500 600 700 800
tip deflections v, w [mm]

Fig. 1.3 I-shaped cantilever beam. Primaty (pre-buckling) and secondary (post-
buckling) nonlinear solutions in the initial range of the deformation.
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Fig. 1.4 I-shaped cantilever beam. Convergence study of the critical load predicted by
different four node elements. '

Tab. 2 Critical load

element mesh Puit

CAMe4 (URI) (2+2+2)x8 790.1
(4+4+4)x16 903.8
(6+6+6)x24 921.7
SEMe4 (2+2+2)x8 1022.1
(4+4+4)x16 973.2
(6+6+6)x24 959.3
ASCe4 (2+2+2)x8 1026.3
(4+4+4)x16 973.8
(6+6+6)x24 959.3

BOX (2+2+2)x8 474 .1

(4+4+4)x16 464.6
CAMe9 (FI) (2+2+2)x8 973.3
CAMe9 (URI) (2+2+2)x8 941.2
SEMe9 (2+2+2)x8 955.8

CAMe16 (FI) (2+2+2)x8 938.0
Talbot and Datt (DL.T element) 834.2
analytical (beam theory) 830.0
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Tab. 3 Post-buckling nonlinear solutions, mesh 2x2x2x8
CAMe9 (Fl) SEMe9
P u v w P u v w
973.25 457.07 | 25.941 0.000 955.85 449.72 | 250.84 0.000
973.41 457.28 | 25.983 9.000 055,98 | 449.93 | 251.25 9.000
975.43 | 459.98 | 26.532 | 33.632 962.25 | 458.38 26.835| 57.654
908.88 | 490.96 | 32.946 | 113.88 981.66 | 484.36 32.190| 114.55
1064.0 578.94 | 52.537 | 212.73 1049.7 573.46 51.735| 211.93
1263.5 814.05 | 113.40 | 342.60 1241.6 808.96 | 112.59 | 342.24
1497.9 1066.9 194.96 | 423.94 1468.8 1062.2 193.93 | 423.32
1762.7 1319.2 | 294.26 | 479.27 1719.0 1314.2 292.60 | 477.80
2052.3 1564.0 | 409.27 |[517.04 1985.5 1558.7 406.77 | 5%5.71
2372.4 | 1799.1 538.68 |543.53 | 2381.7 | 1969.4 650.15 | 551.04
2917.6 | 2130.7 | 756.63 |567.49 2981.7 | 2445.6 | 1026.8 537.06
3556.3 | 2434.5 | 998.52 | 576.99 3480.1 2721.4 | 1304.5 507.53
4000 -
] Al | ———SEMed (2+2+2)x8 / A
X | - SEMed (4+4+4)x16 S A
] ,{.‘}é --------- SEMeS (2+2+2)x8 s
] 17 || ———~CAMeS (2+2+2)x8 (Fl) / p iy ad
3000 HH | - CAMe16 @+2:2)x8 (FI) /0" 2"
] il 4’ i | A vertical
] A horizontal .z 1 (in-plane)
= . (out-of-plane) s o deflection |
X, 1 deflection i el
& 2000 G
s 7 A
o e
1000
0y = 0.01
0 L L L L L U T
0 500 1000 1500 2000 2500 3000

tip deflections under force [mm]

Fig. 1.5 I-shaped cantilever beam. A comparison of the displacements predicted by
SEM and CAM elements in the complete range of the deformation.
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Fig. 1.6 I-shaped cantilever beam. A comparison of the dispiacements predicted by
CAM elements in the post-buckling range by using full and uniform reduced integration.
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5. Irregular shell structures

All examples considered in the previous chapters have been selected from the
literature, where partial numerical results were available. The examples have
illustrated various aspects of the finite element analysis of plate and shell
structures. We close our analysis with a new example, which essentially combines
all specific features of the previous shell problems.

Example .1 Stiffened doubly curved cylindrical panel. A shell structure of the
kind shown in Fig. 1.1 accommodates the characteristics, which are typical for
light stiffened cylindrical panels often used in the aircraft and aerospace industry.

°3-'Ou3:33l~
o

o

-

= m
LS
oL
N
|

Fig. 1.1 Stiffened doubly curved cylindrical panel. Data of the problem and computed
deformed configurations (element - CAMe16 FI) in the advanced nonlinear range
(secondary path Il).

Such structures exhibit a more complex behavior. The main difficulty in the non-
linear analysis of such structures is associated with the existence of both stable
and unstable equilibrium paths in the postbuckling range. In order to obtain a
complete picture of the behavior of such structures one needs to have a really
reliable shell finite element capable of efficiently capturing their geometry and
their deformation, as well as an effective solution procedure enabling to locate all
singular points along the complete equilibrium paths.
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Fig. 1.2 Stiffened doubly curved cylindrical panel. Load-displacement curves for two
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Fig. 1.3 Stiffened doubly curved cylindrical panel. Load-displacement curves and the
corresponding deformed configurations for the indicated load level.



130

Chapter IV. Numericat analysis of linearly elastic shells

o
(3,
TR B R

203
(1)) -
o i
5
0.2+ 7
] —__CAMe16 (FI) (5+5+2)x6
0.1 1 | -eeeeee- CAMe9 (URI) (4+4+2)x6
] —— SEMe9 -
] —-—-- ASCe9 —o—
0.0 T T T T T T T T I T T T T T T T T T ] T T L} L) T T T T T l T T T T
0.0 0.1 0.2 0.3
displacement w (in z—direction) at node (a)
0.6
0.5 '2 -t i G
. —_—— ~ Tm——
4 ;“5:::’ """""""""""""""" " ';:\\\\\ -
; e TN
0.4 /::‘,,—" : ~‘.-.**'\ e |
: '4"‘/‘/ ‘-::*-.‘.’
o ’ :/
g 037 [ 4"// - o T
e ] 4
11 &
0.2-{# :
] ——~—CAMe18 (FI) (5+5+2)x6
11 | - CAMe9 (URI) (4+4+2)x6
0.1 3 | ——SEMe9 -" = _
- —-—--ASCe9 - " -
—o—SEMe4 (8+8+6)x8
0.0 0.1

displacement w (in z—direction) at node (a)
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Fig. 1.6 Stiffened doubly curved cylindrical panel. A study of the influence of the
torsional parameter (linear solutions).
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For the particular problem shown in Fig. 1.2 partial solutions consisting of the
primary and two secondary equilibrium paths (the primary path is one, which
starts at the undeformed configuration of the structure) are presented in Fig. 1.2.
As it can be seen in Fig. 1.2, different equilibrium paths are associated with a
varying number of wave deformation patterns of the stiffener. This kind of
deformation is due to a strong coupling of the membrane and bending
deformations. It is very likely that this coupling may be strongly affected by the
technique used to model shell intersections, and thus by the technique the drilling
degree of freedom is built into the shell elements. In particular, it would be very
interesting to compare our results with solutions obtained by finite elements with
an alternative modeling of shell intersections proposed in the literature. Solving
this problem with different shell elements we have found, in general, a fairly good
coincidence of the results in the initial deformation range. However, in the
advanced range of non-linear deformation the solutions predicted by different
elements exhibit a more or less varying behavior of the structure, as it is seen in
Fig. 1.4, where partial results are presented. Presumably, these differences would
be smaller for refined finite element meshes.! Our analysis of this example ends
with a clear demonstration, that as for smooth and kinked shell structures the
torsional coefficient has no influence on the solution as long as it lies within the
admissible range (Fig. 1.5). The observed property for the full range is of the same
type as for smooth shell structures thus showing that the choice of this parameter
is problem-independent.

Fig. 1.5 Stiffened doubly curved cylindrical panel. Computed deformed configurations
(secondary equilibrium path).

! All numerical results presented in this work were obtained on PC computers and therefore we
were not able to use finer meshes.
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