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Introgluction

Shells and shell structures. In a common sense, the term shell refers to specific
shapes of artificial (man-made) structures or to shapes in nature. However, shapes
which feature shells are so numerous that it is impossible to lay down any general
rules for their rigorous characterization. Roughly speaking, shells are curved
surface-like structures which, when acted upon by external loads and its own
weight, can develop load-carrying abilities in shear in addition to extension
(compression) and bending. When suitably designed, each factor can dominate the
other two. The stone and brick Roman vaults (such as shown in Fig. 1) can well be
taken as typical examples of the oldest, thick structures featuring shell roofs,
which carry its own weight and imposed loads mainly by compressive membrane
stresses.

Fig. 1

Now-a-days man-made shells are utilized in almost every engineering field:
aerospace and medical technology, automotive and shipbuilding industries,
mechanical and civil engineering or chemical, nuclear reactor and electronic
technologies. Aircraft fuselages, spacecraft and missile boosters, pipes and
pressure vessels, liquid storage tanks, cooling towers and domes, as well as many
off-shore installations may be cited as examples of shell structures." The primary
aim in designing artificial shells is to minimize the materials to be used for
maximum strength (strength through form as opposed to strength through mass).
Modern constructions of shells often combine strength and enclosing proportions
through rings (circumferential) and stringers (longitudinal) stiffeners (Fig. 2

! An interesting account of shell examples and the development of shell technology can be found
in SECHLER [1974].
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shows a typical example) and new material technology, which makes it possible to
construct even very thin, light weight shells that can span large distances and
support large loads.

Fig. 2

There is also an abundance of shell-like shapes in nature. Shells of eggs, nuts,
snails, turtles, skulls and hollow horns are just a few commonplace examples. All
these shells express an unbelievable richness of surface forms as well as strength
to bending. The various spiral geometries of seashells shown in Fig. 3 are typical
examples.

2See ILLERT {1989,1990].
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A special class of shells constitute the membranes. However, it must be
distinguished between the membrane response of an idealized shell structure and
the response of flexible membranes, which may be called soft shells. Flexible
membranes- cannot support compression or couples. They respond to external
force action by pure tension by adjusting their form in a manner similar to a single
cable system. Pneumatic structures are typical examples (Fig. 4). Historical use of
membranes in engineering structures may be traced back to sails and tents. Kites,
parachutes, balloons, and other flaying structures are of more recent use. The red
blood cells or sea urchin eggs are just two examples of flexible membranes
occurring in nature.

Fig. 4

The few examples presented above cannot be considered as a representative list of
shell shapes. Qur guideline in their selection was rather to give an imagination of
shapes that must be taken into account in any attempt to develop a general shell
theory.

From the point of view of shell theory, man-made and natural shells can be
classified in many ways. The following factors are of particular importance:

— geometry, including characteristic dimensions and their relative proportions,
- construction and composition,

— mechanical properties of materials,

— supports and external loads.

With respect to the geometry, a shell is generally regarded as a material body
having two basic identifying features: its reference surface and its thickness. The
reference surface and thickness can thus be used to classify various shells. Thus,
shells may be classified by the same criteria as mathematical surfaces:

— singly or doubly curved surfaces,
— closed (complete) or open (incomplete) surfaces,
— simply connected or multiply-connected surfaces.



4 Introduction

Other important criteria are:

— rate of variation of the curvature,
— discontinuities in slopes and curvatures.

Singly curved surfaces, like cylinders and cones, are developable. They can be
developed into a plane without stretching, shrinking, or tearing. Most shells
occurring in nature are doubly curved, they are non-developable. Shells of double
curvature are among the most efficient of known structural forms, they do not tend
to flatten out under applied loads. This explains their superior performance. A
further classification of shell surfaces is possible on the basis of the Gauss
curvature. A subclassification is possible depending upon whether a shell surface
is a translational, a ruled, or a revolution one. It is clear, however, that various
classifications refer to parts of the real shell structures rather than to the whole
structures, which are typically composed of some number of identical or different
geometries (Fig. 5).
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Fig. 5

With respect to the thickness shells can be classified as:

— thin or thick shells,
— shells of uniform, smoothly varying or abruptly changing thickness.

As a rule one assumes that the shell thickness must be small in comparison with
the remaining two characteristic dimensions. A characteristic behavior of thin
shells is the intricate interaction between the membrane action and the relatively
small bending stiffness. However, thick shells are equally important structures in
engineering practice.
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To predict the behavior of shell structures as well as to be able to construct them,
not only their geometry must be known, but also the type of construction and the
mechanical properties of the materials they are constructed of. Thus,
independently of their geometry, a few classes of shells can be distinguished:

— shells made of a single isotropic and homogenous material,
— anisotropic and reinforced shells,
— composite-material and layered shells.

Sandwich shells, which can be regarded as special cases of multilayered shells,
typically consist of a soft core that resists very little to bending or stretching (such
as a honeycomb core) and thin facing sheets with high bending and stretching
stiffness. The behavior of anisotropic and layered shells differs substantially form
the behavior of isotropic and homogenous shells when subjected to the same load
and support conditions. A few of the many applications of composite-material
shells are aircraft and helicopter fuselage sections, wing leading edges or tubular
drive shafting.

Different classifications of shells can be based on the loads, constraints and
supports. The boundaries of shells are often restrained elastically, which means
that the edge support permit displacements and rotations depending upon the edge
reaction. Free edges are the simplest case, they are not restricted at all. The so-
called fixed or. built-in edges are totally restricted against any deformation. In
reality, shell edges are nearly always restrained elastically. For example, a dome
with a built-in ring along the boundary has restricted deflections and rotations.
This restriction is imposed by a ring, which itself is deformed under loading. The
fixed edges are no more no less than a convenient approximation which simplifies
the analysis.

. Shells can be subjected to many types of external loading. The most obvious loads .
are the gravity action caused. by the weight of the structure and snow. Lateral
forces are exerted upon structures by wind and earthquakes, as well as earth and
hydrostatic pressure. The loads may be permanent, such as dead loads, or
temporary such as live loads. The duration of live loads is important especially for
the analysis of the deflection. Generally, a few classes of forces can be
distinguished:

- volume or surface forces,
— static (time independent) or dynamic forces,
— dead or configuration dependent forces.
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In contrast to dead forces, live forces are variable; they change with time in
magnitude and location.

Various specific features of shells as discussed above provide convenient means
for classification of shell problems. However, it must be stressed that such
classifications are based on idealizations, which in many cases cannot be
uncritically accepted. For example, many shell shapes cannot be described as
surfaces in the usual sense. As a typical example we can pick up the seashell
shapes shown in Fig. 3 and the shell-like shape presented in Fig. 6, which are
certainly not surfaces in the sense of differential geometry nor even topological
surfaces. This is also true for many shell shapes of engineering importance.

e
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Fig. 6

In general, shells may have any of a great variety of geometric configurations and
they may contain various kinds of discontinuities, such as holes, bosses, changes
in thickness, -etc. For many shell structures discontinuities in geometry, stiffness
. and loading may be dominant factors. For example, shell branching (three¢ or more
shell segments intersecting at a common juncture) is an important factor in the
buckling analysis. Moreover, many engineering structures are not really shells in
the common sense but rather they are composed of rod-like and plate/shell-like
segments interconnected pointwise at joints and along junctions in a widely
varying manner to form, in overall, fairly complex structures. Folded plate
structures, multicell box girders, stiffened prismatic or non-prismatic shell
structures, shell structures sustained by columns and stiffened with beams are
typical examples. A rather simple example of such a structure is shown in Fig. 7.
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Fig. 7

Remarks on shell theory. There is no doubt that since the time, shell-like
structures were built and constructed, some empirical rules were known -
concerning their strength. However, it was not until the beginning of the twenties
century that the theory of shells started to influence the engineering practice.
Historically, the interest in the formulation of shell theories was motivated by the
desire to understand the basic parameters of vibrating drums, bells and plates. The
earliest tentative efforts to formulate the problems in mathematical form were
undertaken, when the theory of strings and beams was advanced but before the
discovery of the general (linear) equations of elasticity.” But even after the general
equations of elasticity had been formulated little advance has been made to treat
shell problems. Only the special case of plates was formulated by Kirchhoff
(1850) in a form, which even today is generally accepted. The pioneering work of
Aron (1874) may well be considered as marking the origin of a general theory of
thin elastic shells, and the classical paper of Love (1888) influenced for many
decades the development of the shell theory.*

The possibility of formally extending the classical notion of a continuous body as
a collection not only of points but also of directions associated with points,
suggested by Duhem, was adopted by the brother Cosserat’ to develop a general

3See TRUESDELL [1960] on 2 historical development of the theory of strings, beams, bars ‘and
rods.

4See LOVE [1927] for earlier developments of plate and shell theories and references to the
original papers.

5 COSSERAT [1907].
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theory of elastic shells. While the work of the Cosserats went unnoticed for a half
of the century, Love’s pioneering works stimulated considerably during the
twenty’s century research efforts on the shell theory in several directions. One
direction has been concerned with the nonlinear theory, another one with the
derivation of theories for thin and thick shells- from the three-dimensional
elasticity without the Kirchhoff-Love hypothesis.®

Modern shell literature tends to make a clear distinction between the two possible
methods to formulate a general shell theory: the direct approach and the derived
approach.” Conceptually, these two approaches are very different as sketched in
Fig. 8.

real shell stiuctures

N1 N1

A) Methods of constraints

B) Methods of weighted moments
C) Successive approximations

D) Asymptotic analysis

|Direct approach \ (—Derived approach

e

Fig. 8

Within the direct approach a shell is regarded from the outset as an intrinsically
two-dimensional continuum governed by its own laws, which in principle can be
independent of the laws underlying the classical continuum mechanics. As such
the direct approach permits the formulation of a shell theory without recourse to
the three-dimensional continuum mechanics. This approach has been invented in
the pioneering works of the Cosserat brothers (cited above), who introduced the
concept of a geometric surface, to each point of which a rigid triad of vectors is
attached. Ericksen and Trusedell® generalized this concept to allow for three
linearly independent vectors, and they called them directors. A surface with a

¢ Among the papers, where a detailed account of classical shell theories can be found, we cite
here only NAGHDI [1963], KOITER [1966], KOITER AND SIMMONDS [1972], PIETRASZKIEWICZ
[1979, 1989] and STUMPF [1986].

7 See e.g. NAGHDI [1972,1980].

8 ERICKSEN AND TRUSEDELL [1958].
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single vector was developed by Green et al.” The two-dimensional continuum
defined in such a manner is commonly called a Cosserat surface. When a
particular model is adopted, the complete formulation of the shell theory proceeds
parallelly to the methodology of continuum mechanics. Thus one needs to
postulate suitable two-dimensional balance laws (physical principles) and suitable
constitutive laws specifying the physical response to applied generalized forces. In
this respect the shell equations are not regarded as approximations to the three-
dimensional equations of classical continuum mechanics but rather as an
independent theory to predict some of the main properties of the three-dimensional
shell-like bodies. In this sense the shell theory formulated within the direct
approach is exact. But it should be clear that exact means here exact by definition.

Within the derived approach a shell is regarded as a conventional material body,
whose motion and deformation is governed by laws of classical continuum
mechanics. The main objective of the shell theory is then to develop a systematic
procedure which enables to reduce the problem for three spatial variables and time
to one having the coordinates of a certain surface and time as the only independent
variables. This goal can be reached in substantially varying manner, which
essentially can be grouped into four methods (Fig. 8).

The traditional way of deriving shell equations from the three-dimensional theory,
having its origin in Kirchhoff’s plate theory and Love’s shell theory, starts with a
set of kinematic hypothesis with respect to the variation of the deformation across
the thickness. This approach may be formalized and based on a rigorous
mathematical ground to the extent which makes the derivation of the shell
equation a routine task. The basic idea is quite simple. Assuming that a three-
dimensional motion of the shell is subjected to appropriate kinematic constraints,
the current position vector can be expressed as a given function of a finite set of
functions having the parameters of the reference surface as the only independent
variables (generalized displacements). The basic field equations and the
corresponding boundary conditions can then be obtained from the three-
dimensional principle of virtual work by a standard variational procedure. Also the
two-dimensional constitutive laws can be derived, at least in principle, from the
corresponding three-dimensional constitutive equations by making use of the
adopted hypothesis. ‘This methodology (method of constraints) has been exposed
with all rigor by Antman.'® In the latter paper, the authors draw attention to one
fact not noticed in all earlier papers on shell theory: the kinematical constraints

® GREEN, NAGHDI AND WAINWRIGHT [1965].
10 ANTMAN [1976]. See also ANTMAN AND MARLOW [1991].
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imposed on the motion of the body induce associated reactive forces, and these
forces must appear in the resulting shell equations. In this way they actually
demonstrated that all shell theories formulated earlier by applying the method of
hypothesis are defective.

Another usual way to obtain the two-dimensional shell equations is based on the
integration of the three-dimensional equations of continuum mechanics through
the shell thickness. Higher order equations can be obtained using weighted
functions. This methodology can also be formalized as a method of weighted
moments. The method of successive approximations originates from Cauchy and
Poisson. In general, it is based on a series expansion of displdcements and stresses
with respect to the thickness coordinate. Power series, Legendre polynomials, and
trigonometric functions have been employed. Within the method of asymptotic
integration appropriate length scales are introduced in the three-dimensional
equations of continnum mechanics for the displacements, strains and stresses
together with parametric (asymptotic) expansions of these quantities. In this
manner the three-dimensional equations are reduced to recursive sets of two-
dimensional equations governing the interior and edge zone responses of the shell.
The edge zone or boundary layer is produced by self-equilibrated (in the thickness
direction) boundary stresses. We omit here the reference to the relevant literature,
since these methods to derive basic shell equations will not be our concern in this
work. We rather note that non of the various methods to formulate a general shell
theory has a unique status as preferable over others. All of them suffer from one
essential drawback: the resulting shell theory is depending in one or another way
on the method of its formulation. Moreover, it is nearly the rule that the
formulation of the shell governing equations is based on strong regularity
assumptions, and it essentially relays on the use of the coordinate description.’
Specifically, one typically assumes, implicitly rather than clearly stated, that:

— A shell is geometrically represented by a smooth regular surface (called a
shell reference surface) in the sense of classical differential geometry.

— The reference surface admits a global, regular parametrization.

— A deformation of the reference surface is described by an injective, globally
invertible and smoothly differentiable map.

— All static and kinematic variables are smoothly differentiable fields over the
shell reference surface.

. — Material properties vary smoothly over the shell.

' This is exemplified by the well-known treatise of NAGHDI [1972].
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On the other side, in papers devoted to the problem of the existence of solutions of
shell boundary value problems: (usually linear) one considers a class of generalized
functions. In such papers no special attention is paid to the fact that the derivation
of the shell equations presented in other papers was based on much more
- restrictive regularity assumptions. Moreover, shell equations are usually also
derived starting with a number of simplifying hypotheses about the displacement
and stress distribution across the shell thickness without paying any attention to
the question, if such hypotheses are really needed. This situation is in sharp
contrast with standards set in modern continuum mechanics, where regularity
assumptions, conceptual clarity and the mathematical rigor of a truly coordinate
free formulation are the main issues.'> This unsatisfactory situation in shell theory
is well recognized and many aspects have been clarified, but there still remains
much to do."

Goal of the present work. In this work we shall be concerned with a general shell
theory formulated within a rational and convincing approach, which has been set
down by Libai and Simmonds' and subsequently worked out in.our previous
works."” The main virtues of this approach, which substantially differs from the
methods discussed above, are:

— It draws a clear destinction between the general physical laws, which are
independent of specific material properties and the specific construction of
the shell, from the constitutive relations, which define particular classes of
shells.

— The mechanical balance laws for shells are derived by direct specification of
the laws of continuum mechanics for a shell-like body with no simplifying
hypothesis and/or ad hoc postulate of whatsoever nature. In effect, various
simplifying assumptions underlying the classical derivation of .basic shell
governing equations appear to be superfluous.

— The kinematics of the shell is the outcome of the formulation and not a basic
assumption or a postulate of the theory as it is the case in other formulations
of shell theory.'®

— Displacements, rotations and strains are not restricted in any way as to their
magnitude. There is also no thinness assumption.

125ee e.g. NOLL AND VIRGA [1992].

13 See e.g. GURTIN AND MURDOCH [1984], ANTMAN [1976].

14 IBAI AND SIMMONDS [1983] and SIMMONDS [1984].

15 MAKOWSKI AND STUMPF [1988,1990]. ,
18 Within a purely two-dimensional formulation this was first clearly demonstrated by REISSNER
[1974].
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— Independent kinematical variables of the shell theory consist of the
displacement field of a shell reference surface and a proper orthogonal tensor
specifying independent mean rotations of the shell cross sections. This
feature is particularly important from the computational point of view.!”

— The only approximate character of the theory may appear in the form of two-
dimensional constitutive equations.

In effect, the shell theory formulated within this approach, is rich enough to
account for extension (compression), flexure, transverse shear and an arbitrary
through-the-thickness deformation. The underlying kinematic model of this theory
coincides with a geometric surface (a shell reference surface), each point of which
has extra degrees of freedom of the rigid body. Thus this approach shows that the
shell theory rigorously derived from the classical continuum mechanics (Cauchy
continuum) has the structure of the two-dimensional Cosserat continuum. In other
words, an exact reduction of the problem from three to two dimensions results in a
richer continuum than the Cauchy continuum, but not richer than the classical
Cosserat continuum. By implication, it turns out that the so-called higher order
shell theories (such as multi-director shell theories) need not be more accurate.

The primary aim of this work is to present a refinement and substantial
generalization of the approach outlined above mainly by an essential relaxation of
various regularity assumptions with a special emphasis on non-smooth and
irregular shell structures. In this way we are able to formulate a general shell
theory with an arbitrary geometry. The main steps of the adopted approach are
illustrated in Fig. 9. Its main feature is the fact that we take the dynamics rather
than the kinematics as the underlying concept. Thus starting with the three-
dimensional integral balance laws of mechanics, we obtain the resultant two-
dimensional balance laws for shells in a logic and straightforward manner with no
assumption of whatever nature. Under fairly weak regularity assumptions the local
equilibrium equations and jump conditions are then obtained as a direct
implication of the (generalized) surface divergence theorem. The same approach
leads also to the exact static boundary conditions. In turn, the associated integral
identity makes it possible to obtain the two-dimensional kinematical model for the
shell and the work-conjugate strain measures. The same line of thinking also leads
to the associated resultant boundary conditions for generalized displacements and
the corresponding kinematic jump conditions. Finally, through an analysis of the
stress power the general structure of the two-dimensional constitutive equations is
established.

17See CHROSCIELEWSKI, MAKOWSKI AND STUMPF [1992,1994].
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Fig. 9

One of our main concern in this work will be a theory of shells and shell structures
of complex geometry (non-smooth and irregular shells). However, it must be
. stressed that in order to treat the problem of irregular shells with all possible rigor
a proper setting would be the concept of rectifiable currents (measure-geometric
surfaces) and not differential-geometric surfaces, the theory of Hausdorff measure
and not the classical concept of area measure as well as the concept of functions of
bounded variation and not classical differentiable functions. These are the
concepts, which play an increasing role in modern continuum mechanics.
However, this setting would take us into too many very subtle mathematical
problems. Accordingly, we shall introduce a number of much stronger regularity
assumptions: piecewise smooth surfaces and piecewise smoothly differentiable
fields. Within these assumptions we are able to derive a complete set of shell
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equations including side conditions (jump and boundary conditions) for shells
which need not be smooth.

We now outline the contents of this work. In Chapt. I we provide a short summary
of the key concepts of classical continuum mechanics. The presentation does not
aim at a detailed exposition of the field. Our aim is rather to establish the notation
and to emphasize those concepts, which are central for the subsequent formulation
of the shell theory. We also make comments on various regularity assumptions.

Chapt. II contains the formulation of the resultant mechanical balance laws for
smooth, regular and irregular shells as well as the derivation of the static field
equations (equilibrium equations) and static side conditions (jump and boundary
conditions). These results extend our earlier works through an explicit account for
jump conditions across singular curves representing kinks, branches and multi-
shell intersections.

In Chapt. Il we formulate the general kinematics of the shell including suitable
strain measures, strain rates, and kinematic jump and boundary conditions. It is
also shown that there exist two entirely equivalent representations of the complete
set of shell governing equations.

Finally, in Chapt. IV we discuss the general structure of shell constitutive
relations. No attempt is made to derive the explicit form of the constitutive
relations for special classes of shells. This problem is left for a separate study.

Notation and convention. Where feasible we shall adopt the notation and
convention of modern continuum mechanics as well as coordinate free vector and
tensor calculus.'®

As a rule we use boldface lower case letters to denote vectors and vector-valued
functions. Boldface capital letters will denote tensors and tensor-valued functions,
and we write #+v, uxv and u®v for the usual inner product, cross product and
tensor product of two vectors. However, X and Y will denote position vectors of
material points in the undeformed configuration B of a body and of a shell
reference surface M, respectively.

Throughout this paper we use standard summation convention that lower-case
Greek indices have the range 1,2, lower-case Latin indices the range 1,2,3, and

B Gee e.g. NOLL AND VIRGA [1990], GURTIN AND MURDOCH [1975], MAN AND COHEN [1985].
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that diagonally repeated indices are summed over their range. Also, if no
confusion can arise, we make no distinction between functions and function values
and, where convenient, we omit specific reference to the independent variables of
a given function.
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Index of notations

The following notations are consistently used throughout the work:

E — three-dimensional Euclidean vector space, whose elements are
called vectors,

& — three-dimensional Euclidean points space (physical space),
whose translation space is E,

Bcé — region in space & occupied by a three-dimensional material body

in the undeformed configuration,
gur,
{£4, A=1,2,3} - curvilinear coordinates in B chosen in any convenient way,

G,,G* — natural and reciprocal base vectors for the chosen curvilinear
coordinates in B,

MCB — undeformed shell reference surface,

LM — tangent space (the two-dimensional Euclidean subspace of
E=Ty6) at each regular point Y € M of the shell reference
surface M,

(84,A=12} - curvilinear coordinates on each smooth surface element of the
shell reference surface M,

Ap AN - natural and reciprocal base vectors for a surface coordinates on
M.
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Elements of classical continuum mechanics

1. Basic concepts

1.1 Preliminary remarks. In this chapter we provide a short summary of the key
concepts of classical continuum mechanics. The presentation does not aim at a
detailed exposition of the field, there is no need for that here.! The problems we
shall consider in this chapter are classical. Our aim is rather to establish the
notation and to emphasize those concepts, which are central for the subsequent
formulation of the shell theory. We shall also make comments on various
regularity assumptions, which too often are omitted in the literature.

Generally, continuum mechanics deals with the mechanical interactions between
deforming bodies in motion. Motion and deformation of a body and the
interactions between bodies must be formulated within the context of a space-time
(event world). A space-time and a material body are thus the basic underlying
concepts, on which the whole theory is founded. When these two concepts are
mathematically characterized, the exposition of the complete theory proceeds in
three main steps:”

1) Kinematics — description of motion and deformation of the body including
\ the general theory of strains and strain rates.

2) Dynamics — statement of physical principles (laws of mechanics), which
govern the motion and deformation of the body acted upon by forces
including those which are specified at the boundary.

3) Constitutive equations — development of general constitutive equations,
which describe specific mechanical properties of materials encountered in
reality.

'The famous treatise by TRUESDELL AND TOUPIN [1960] with its historical annotations still
provides an excellent guide to continuum mechanics.
%(Cf., e.g., TRUESDELL AND TOUPIN [1960], BOWEN [1989].
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The study of the kinematics of the body is based on theorems of geometry and
analysis. Basic theorems of kinematics are thus independent of the concept of
forces and stresses and of physical principles governing the motion and
deformation of the body. As such, they are applicable to all material bodies. Laws
of mechanics are mathematical statements of physical principles. Like theorems of
kinematics, they are applicable to all material bodies with arbitrary material
behavior and undergoing arbitrary motion and deformation. Constitutive equations
are mathematical statements and not physical principles. They represent the
observed response of material bodies to external forces.

A clear distinction between general laws of mechanics and constitutive
assumptions is one of the basic points of modern continuum mechanics. To keep
this distinction will also be one of our main tasks in the subsequent formulation of
the shell theory. It is also important to point out already here that the starting point
of our considerations will be the dynamics rather then the kinematics, and finally
we investigate the theory of constitutive equations. This appears to be crucial to
the whole formulation for the shell theory.

1.2 Newtonian space-time. Classical theories of mechanics are based on the
concept of Newtonian space-time %), which may be mapped homeomorphically
onto the product space é xJ. Here & denotes the three-dimensional Euclidean
point space (physical space) referred to a fixed Cartesian coordinate system
{x,k =123}, and J is the one-dimensional Euclidean point space (time interval).
In our subsequent considerations the translation space of &, being the three-
dimensional Euclidean vector space, will be denoted by E and {e,,k =1,2,3} will
denote the underlying orthonormal basis.

The map @W—->&%J is called the framing or the frame of reference or the
observer.) Informally, frame of reference may be understood as a choice of a
particular Cartesian coordinate system. Once a frame of reference is chosen, the
motion is measured by specifying how coordinates of a particular object change as
time goes on. We shall consider the motion and deformation of a body in a fixed
frame of reference. Then places of the Newtonian space-time, which are stationary
with respect to this reference frame, will be identified with places of the space &

1.3 Ordinary material continuum. Within continuum mechanics real material
bodies are mathematically modeled in a number of different ways (e.g. continua

3 WANG AND TRUESDELL [1973] and BOWEN [1989].
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with microstructure, distributed material continuum, multicomponent continua).
Classical theories are based on the concept of an ordinary material body, which is
envisaged as a set consisting of point-like elements, called material particles,
which at each time instant are continuously distributed over a region in the
physical space. Such a region is then called an instantaneous current configuration
of the body. A motion of the material body is thus perceived as a continuous
sequence of its configurations. This picture is mathematically formalized by
defining a body as a three-dimensional smooth manifold @ together with a class of
imbeddings into the physical space (Fig. 1). This definition emphasizes that for
conceptual clarity the body should not be confused with any of its spatial
configurations.

+ material

% body

physical space

reference '\
configuration ™

current
X1 X, configuration

Fig. 1

It should be noted, however, that such concepts as sets of finite perimeter or
reduced boundary, which are central in modern continuum mechanics, can hardly
be defined on a smooth manifold (the concept of a manifold is strictly related to a
differentiable structure and not to a. measure geometric structure). It is this reason,
why one usually identifies a body with a region BC & in the space the body
occupies in a fixed reference configuration.” This configuration serves also to
identify material particles. We shall follow this point of view. Relative to a fixed
frame of reference, a typical point X € B is determined by its position vector X

4 See e.g. NOLL AND VIRGA [1990].
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having (Xx) as its Cartesian coordinates. In the sequel we shall not make a
distinction between points (elements of the space &) and their position vectors
(elements of the space E). The (set topological) boundary of the region B will be
denoted by 3B (Fig. 2).

Fig. 2

Classical continuum mechanics is based on the idea that laws of mechanics are
valid for every part of the body, called a subbody, regardless of its size. The
concept of subbodies becomes a central one in the whole theory. In general, a
subbody P C B is defined as a standard domain in the sense of Whitney, or as.a
regular region in the sense of Kellogg.” However, such definitions appear to be
too restrictive for the axiomatic setting of continuum mechanics. It has been
shown that the suitable definition of subbodies should be based on the concept of
sets of finite perimeter.® For the purpose of this work it will suffice to define a
subbody as a domain (open connected set) with a smooth or piecewise smooth
boundary. Clearly, this substantially simplifies the whole considerations.

1.4 Motion of the body. Relative to a fixed reference configuration B a motion of
the body is described by a one—parameter family of maps

Y. :B—=>é&, X->x=yX)=90X,t), (1.1)

where x denotes the place in the current configuration ,(B) occupied by the
particle, whose initial place was X. The velocity, with which the body transverses

S GURTIN [1972].
6 GURTIN, WILLIAMS AND ZIEMIER [1986].
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the space, is determined by the material velocity field £(X,t)=x(X,t), where the
superimposed dot denotes the material time derivative, i.e. the derivative with
respect to ¢ keeping X fixed.

In general, suitable regularity assumptions have to be introduced in order to ensure
that the motion of the body represented by (1.1) be physically reasonable.
However, the precise nature of such assumptions depends on the class of problems
to be modeled. In general, we shall assume that at each time instant 9, is smooth
enough, one-to-one (injective) except possibly on the boundary, and orientation
preserving. The injectivity assumption ensures that two distinct particles cannot
simultaneously occupy the same place in space. The reason, why 7%, may loose its
injectivity at the boundary, is the fact that a “self-contact” must be allowed. The
term “smooth enough” is just a convenient way of saying that in a given
definition, theorem, proof, etc. the smoothness of %, involved is such that all
operations make sense. Clearly, the required degree of smoothness can vary from
place to place depending on the intended applications and considered aspects of

the theory. For most of our considerations in this chapter 9, may be taken to be C?

in the interior of B and C' on the closure of B. This means that 7, is twice
differentiable at each point X € intB and the second derivative is continuous on
int B, while the first derivative has a continuous extension to the boundary 4B.
However, these regularity assumptions can substantially be relaxed. In fact, it is
enough to assume that o, be a Lipschitz homeomorphism (this suffices for the
classical gradient to exist almost everywhere). In our subsequent formulation of
the shell theory it will be enough to assume that ¢, is piecewise smooth or even
piecewise continuous, since we shall make no use of local field equations.

1.5 Change of frame of reference. The motion and deformation of the body
cannot be specified physically in an absolute sense but only relative to a given
frame of reference. A change of frame of reference is a transformation of space
and time, which preserves distances in the physical space. In this sense it
expresses the physical assumption that two observers should agree about
distances. It should be noted that only the concept of change of observer, not the
concept of observer itself, is regarded as having a mathematical meaning. If
x=y%(X,t) and x*=7*(X,t*) describe the same deformation relative to different
observers, then’

(X, t)=0(t)+0(t)(X,t), t'=t+c, (1.2)

7 TRUESDELL AND NOLL [1965), p. 41.
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where o is a vector, O is an orthogonal tensor, and c is a scalar constant. A change
of observer induces transformations of quantities describing a material body.

1.6 Curvilinear coordinates. For analytical convenience the region B may be
parametrized by curvilinear coordinates {§4,A=1,2,3} chosen in any convenient
way. Then the position vector of a typical point relative to the fixed Cartesian
coordinates in space may be expressed as a vector function of these curvilinear
coordinates (Fig. 3):

X (&Y= Xx(E")ex. (1.3)

Fig. 3

Associated with such a coordinate system are the natural base vectors, the
reciprocal base vectors, the components of the metric tensor and the permutation
symbols, all being defined in a standard manner:

GA-_’X’A’ GA.GB=6ga
Giz=G,*Gyg, G =G*G?, G =detG,>0,. (1.4)
€snc =(G,xGp)* G, € =(G* xGB)+G°.

Here the comma stands for partial derivative with respect to coordinates £4. All
other relevant relations follow now from (1.4) using the standard operation of
rising and lowering of indices. In the same manner, the current configuration of
the body may be parametrized by curvilinear coordinates {§*,a=1,2,3} chosen
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entirely independent of the curvilinear coordinates &* in the reference
configuration B. Then the current position vector may be expressed in the form

x(5)=x(E%ey . (L.5)

The associated natural base vectors, the reciprocal base vectors, the components of
the metric tensor and the permutation symbols are then defined by

ga=xma ga.gb=6za
B =8a*8b > gab':ga'gb’ g=detgab>0, (16)
€abe =(8aX8b)* 8, € =(g"xg’)egc.

For any choice of curvilinear coordinates in the reference configuration and a
possibly independent choice of curvilinear coordinates in the current configuration
the motion x = ,(X) of the body is specified by

x(8%,t)=x(X ("), & =E&"(E%1). (1.7)

Whenever the map 9, is invertible for all time instants, the inverse motion is given
by

X(EL0=2"(x(&")), & =8%). (1.8)

A special but convenient choice of curvilinear coordinates is such that for any time
instant ¢, £ =0%£%. Coordinates defined in this way are called convective ones
(Fig. 4).

Fig. 4
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2. Local deformation and strains

2.1 Deformation gradient. Generally, the moving body will change its orientation,
shape and volume. This is loosely called a deformation. The deformation is thus a
relative concept. Like geometry, deformation theory abounds in special theorems,
concepts, and constructions. Thus, it should not be surprising that the main
theorems of the deformation theory are, at the core, theorems of analysis.®

For a fixed time instant, the map y,: B> & is referred to as a global deformation
of the body. On a large scale this map will be as a rule nonlinear(Fig. 5). Its
differentiability makes it locally linear, the standard power expansion shows that
the deformation gradient F(X,¢) =Vy,(X) approximates 7, at X to within the first
order. As such, it provides a complete description of a homogeneous local
deformation, meaning both a rigid rotation and a pure deformation. The
deformation gradient is thus considered as the primitive measure of local
deformation. The requirement

J(X,t)=detF(X,1)>0 (2.1)

assumed to hold almost everywhere (except possibly on subsets of measure zero)
ensures that y, be locally invertible and orientation preserving.

reference (undeformed) current (deformed)
configuration configuration

Fig. 5

8 See e.g. Truesdell and Toupin [1960].
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2.2 Decomposition of local deformation. As an implication of the assumption
(2.1), the deformation gradient is nonsingular, and hence it admits the polar
decomposition

F(X,))=RX,)HU(X,)=V(X,)HR(X,?), 2.2)

which splits a local deformation into a local rigid rotation described by the proper
orthogonal tensor R, called the rotation tensor, and a pure stretch described by the
symmetric positive definite tensors U and V, called the right and left stretch
tensors, respectively. The decomposition (2.2) shows that F is orthogonal only if
U =1, and hence V =1. Moreover, in the operator norm, we have

IFll, =10l =V, . (2.3)

Thus, the tensors U and V describe, how much F differs from the rotation tensor
R. As such, they provide the basic measures of pure strain.

2.3 Measures of local deformation.-Let us consider the differential line element
dX, the oriented area element dA and the volume element dV at a point X € B Let
dx, da and dv denote corresponding elements at the image point x =9,(X) in the
current configuration of the body. Then the following three scalar quantities

x(X,t)=I'r'§;—'}r, 1‘|(X,t)=]|]|%||1]-? (X, =4 @.4)

provide a complete description of the local, pure strain deformation. Taking into
account the classical formulae

dx =FdX , da=J(F ) dA, dv=JdV , 2.5)
.one finds
A=tCt, n=Jn:C'n, o=J=+detC. (2.6)

Here t is the unit vector along dX, m denotes the unit vector normal to the area
element dA, and the symmetric tensor C is defined by

C(X,t)=F"F=02. 2.7)

The tensor C, called the right Cauchy-Green deformation tensor, plays a basic role
in the description of local deformation of the body.
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2.4 Strain measures. A general measure of strain may be defined by a smooth
function E,,=G(U) of the stretch tensor satisfying some conditions.” One
~ usually assumes that: 1) it must vanish in the absence of change in length, 2) it
should be a monotonously increasing function of stretch, and 3) it should coincide
with the classical definition of infinitesimal strain. The most known examples of
possible strain measures are

E(") =;1i(Un_1)) n=1;2’“-, H =E(0) =an- (2.8)

These tensors give rise to a family of tensorial strain measures, of which the
Green-strain tensor

E=1C-1 =%(U2 -1) (2.9)

S

is the most familiar one.

While the polar decomposition (2.2) of the deformation gradient is commonly
regarded as a reliable background for the analysis of finite deformation, the
displacement field u defined by

r=%X)=X +u(X,?) (2.10)

provides a basis for computations. From (2.10) we then have the classical relations

F=1+/u, E=2(Fu+@Fu) +@u)Vu). @.11)

2.5 Compatibility equations. When all kinematic quantities are calculated in terms
of the function ,(X) or of the displacement field u(X,t), the continuity of
deforming body is assured by the assumption that 9,(X) be one-to-one and
continuously differentiable. Alternatively, if the Green strain tensor E(X,?) is
used as the fundamental kinematic quantity in the description of deformation of
the body, then eqn (2.11), constitutes a system of six partial differential equations
for three unknown components of the displacement field u. This over-determined
system will not admit a solution unless the components of the strain tensor E
satisfy suitable compatibility equations. The easiest way to infer the compatibility
equations is to use some notions of geometry of Riemann spaces.'”

% See e.g. WANG AND TRUESDELL [1973].
105ee e.g. FOSDICK [1966].
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If strains in the body are assumed to be small in some sense, the question arises,
what one can infer from such an assumption about the local rotation R and the
deformation gradient F. The problem is by no means trivial, since for a given
strain measure the deformation map %, is determined uniquely modulo rigid-body
motionl.1 By implication, F is determined uniquely up to a constant orthogonal
tensor.

2.6 Formulae in curvilinear coordinates. In terms of the curvilinear coordinates
the motion of the body is described by (1.7), so that the deformation gradient and
its inverse take the form

F=x,A®GA.=E?an®GA’ AsagAﬁ
] 2.12
agA ( . )

F“=X,,,®g“=é'z‘GA®_g", ggEaga’

together with the obvious relations
§ifr =065, EiE3=03. (2.13)

With the help of (2.12) various geometric relations can easily be calculated. For
example, the two basic deformation tensors C and E take the form

C=CABGA ®GB, . CAB=st.xQB=§i€ngnbs

E=EwG'®G’, Eup=%(Ci—Guw). @19
Introducing the displacement field and its gradient
=u,G*=u'G,, Vu=u,;0G’=u,,G*®G?, (2.15)
' the Green strain tensor is obtained in the form
Es =%(GA *u;+Gpen, +u,00,;)
(2.16)

= %(“A;B +ug,+ uC:AuC;B) s

where (.).; denotes the covariant derivative in the metric G,5.

1 KouN [1982].
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3. Principles of mechanics

3.1 Mechanical balance laws. Continuum mechanics is based on the fundamental
assumption that on the large (macroscopic) scale the motion and deformation-of a
body are governed by a suitable set of global balance laws. Such laws entail
interactions between bodies and rules responsible for their motion. All purely
mechanical theories are based on three fundamental physical principles (recall that
we identify the body with a region it occupies in the reference configuration):

I) Balance law of mass — The body B is equipped with a positive scalar quantity
M(B), called the mass of the body, which is independent of time, so that

M(B)=0.

II) Balance law of linear momentum — The total force @(B,t) acting on the body
B equals the rate of change of its linear momentum £(B,?),

B(B,1)=2L(B,1).

III) Balance law of angular momentum — The total torque ¥T(B,t) acting on the
body B equals the rate of change of its angular momentum (B, ¢),

T(B,1)=U(B,1).

These three physical principles are supposed to hold for all material bodies,
whether solid or fluid, deformable or rigid, and whatever motion and deformation
they undergo. Mathematically, all entities appearing in these laws are primitive
concepts, and the laws themselves should be regarded as axioms of the theory. For
the ordinary material continuum the three balance laws constitute the complete set
of purely mechanical principles. For continua with microstructure additional
balance laws can be needed.

Like motion and deformation, forces acting on the body cannot be specified in an
absolute sense, but only relative to a given frame of reference. All frames in which
the balance laws hold are called inertial frames. These frames may be in motion
relative to each other, but their relative motion should be at constant translational
velocity.
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3.2 Non-polar body. In classical theories the mechanical balance laws are assumed
to hold not only for the whole body but also for every subbody. Various theories,
which are based on this postulate, are known as local theories. Within these
theories the entities of the balance laws I)-III) are set-functions obeying the
suitable additivity rules on separate subbodies. Their densities can be defined over
the body itself (material description), over the current configuration of the body
(spatial description), or over a fixed reference configuration of the body
(referential description). In this work we restrict our considerations to the
referential description and we identify the body with its reference configuration B.
Thus the material and referential descriptions coincide.

The mass for every subbody PC B is defined to be a time independent scalar
M(P), which is determined by a mass density o(X) measured per unit volume of

the reference configuration B:
M(P)= [, p(X)dV . 3.1)

The linear momentum L(P,t) and the angular momentum (P,t) are time
dependent, vector-valued functions. Within classical continuum mechanics based
on the concept of ordinary continuum, these functions are defined for every
subbody and for each time instant by

&P,n=[,piX,0dV, WP=[prX.Nx¥X,ndV. (3.2

Let us note that from the point of view of generalized continua, definitions (3.2)
should be regarded as a kind of constitutive assumptions.

The classical theory of continuum mechanics is concerned with three types of
forces:
— Internal contact forces between separate parts of a body through a common
smooth boundary.
~ Body forces exerted on interior points of a body by its environment.
— External contact forces exerted on the boundary of a body by its environment.

In the material description, the body force f(X,t) is measured per unit volume of
B, and the contact force ty(X,t;dP) arising from the action of one part of the body
on an adjacent part across a separating surface is measured per unit area of dP.
These functions are assumed to be sufficiently smooth, and they must be
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compatible with the laws of mechanics. The total force and the total torque acting
on the subbody at time ¢ are (Fig. 6)

.= [ (X, 0dV + [ tu(X,1,0P)dA,

t(P,t)sfPx(X,t)xf(X,t)dV+j;Px(X,t)xtN(X,t,aP)dA. (3:3)

Properly, the torque (3.3), should be called the torque with respect to the origin of
the frame of reference.

Fig. 6

3.3 Stress tensors. According to the classical Cauchy's hypothesis the contact
force (stress vector) ty(X,t;0P) depends upon the surface P only through its
positive unit normal vector n(X):

tv(X,5,0P) =ty (X,5n(X)). (3.4

The Cauchy's hypothesis is one of the most important and far reaching axioms of
continuum mechanics. Under the additional assumption that ty(X,.;.) is a

continuous function with respect to X, it implies the existence of the first Piola-
Kirchhoff stress tensor T(X) such that'

tyv(X,0P)=T(X)n(X). (3.5)

12:The existence of the stress tensor can be proved under weaker assumptions, cf. Gurtin and
Martins [1976].
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This is known as Cauchy's fundamental theorem. It enables one to replace the
integral balance laws of linear and angular momentum by the local differential
equations of motion.

It may be noted that under some regularity assumptions the Cauchy’s hypothesis
follows from the balance of linear momentum. This is know as the Hamel-Noll
theorem.'®> Moreover, applying a variational method Fosdick and Virga'* proved
Cauchy's hypothesis (3.4) can be weakened to allow the stress vector ty(X,#;0P)
acting on any oriented surface dP to depend upon both the unit normal vector
n(X) and its surface gradient /;n(X).

From the point of view of generalized continua the Cauchy's hypothesis should be
regarded as defining a specific property of the contact force. In this sense it
expresses a kind of constitutive assumption. For example, in the theory of so-
called higher—grad materials admitting hyperstresses the classical form (3.4) of
this hypothesis cannot be uncritically accepted."

3.4 Local equations of motion. For the integral balance laws I-III to make sense it
is enough that all fields appearing in (3.2) and (3.3) be integrable over their
domains. For example, if P is a regular region with a piecewise smooth boundary
dP, and if the deformation map %, the body force f and the stress tensor T are
piecewise continuous and bounded, then the Riemann integrals exist. However,
the integral balance laws make sense also under far weaker regularity assumptions.

However, in order to obtain the local field equations (equations of motion) implied
by the integral balance laws much stronger regularity assumptions have to be
made. Usually one assumes that the domain P, the motion %, and the stress tensor

T be sufficiently regular for the classical divergence theorem to be applicable.
Then the boundary term in the expression of the total force can be transformed
into a volume integral

J,,TndA=[ DivTdV . (3.6)

Taking further into account that

ad (X(P,t))=—[,xafdV—[ xATndA 3.7)

13 TRUESDELL [1977], p. 134.
14 FOSDICK AND VIRGA [1989].
15 See e.g. FORTE AND VIANELLO [1988].
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and using a slightly more general form of the divergence theorem, we have'®
J.,xATndA= [ (TF" —FT" + x A(DiT)dV . (3.8)

Since the domain of integration is time independent, upon making use of (3.6) and
(3.8) the balance laws of linear and angular momentum read:

J(DvT+£ - p%)dV =0,

3.9
fP(TFT—FTT+xA.(DivT+f—p£))dV=0. 39)
Under the assumption that the integrands in (3.9) are continuous functions, in view
of the arbitrariness of P, the equations of motion implied by the integral balance
laws are

DivT+f = p¥, TF? =F'T. (3.10)

These two local field equations are known as Cauchy's first and second law of
mechanics. In the spatial description, the second of these equations just asserts that
the Cauchy stress tensor 6= J"'TF” is symmetric. Since the symmetry of the
Cauchy stress tensor is assured by the constitutive assumptions, the balance law of
angular momentum leading to (3.10), is not of central importance in classical
continuum mechanics. However, this remark is no longer true for polar bodies and
bodies with microstructure, i.e. for bodies with intrinsic spin, surface couples, and
body couples. This is exactly the case for shells.

For any choice of the curvilinear coordinate systems in the reference and current
configurations of the body (see Sect. 1.2.6), the first Piola-Kirchhoff stress tensor
can be expressed in the form

T(X,t)=t4(X,)@G(X), (3.11)
where the so-called nominal stress vectors t4, A=1,2,3, are defined by
t*=TG* =T“g,. (3.12)
With the help of (3.11) the equations of motion (3.10) can be written in the form

tA;A+f=p.if, X,4 XtA=0, (3.13)

16 See e.g. TRUESDELL [1977).
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where (.)., denotes the covariant differentiation in the metric of the chosen
curvilinear coordinate system {£*} in the region B.

3.5 Change of frame of reference. Like motion and deformation, the forces acting
on the body can be specified not in an absolute sense but only relative to a given
frame of reference.

In the spatial description, the body force, the internal contact force and the Cauchy
(true) stress tensor are assumed to be frame-indifferent. These postulates imply
that under the change of frame of reference the body force f and the first Piola-
Kirchhoff stress tensor T obey the following transformation rules

f'(X,t)=0)(X,1),

T'(X,t)=00)T(X,1). (3.19)
As a simple implication of (3.14),, (3.5) and (3.11) we have
ty(X, %)= Oit)tN(X,t) (3.15)
and
Y (X, tN=0(t4(X,t), A=123. (3.16)

It is interesting to note here that while the first Piola-Kirchhoff stress tensor is not
objective (according to the standard definition), the internal contact force ty and
the nominal stress vectors t* are objective.

3.6 Singular surfaces. A moving and deforming body may contain a surface,
generally called a singular surface, which transverses the body with its own
velocity and across which various fields may suffer jump discontinuity.
" Propagation of waves or formation of cracks are typical examples of such singular
surfaces. In the presence of singular surfaces as well as other kinds of singularities
the integral balance laws still remain valid, but the local theory requires a more
subtle mathematical setting: sets of finite perimeter, functions of bounded
variations and a good part of the measure theoretic theory."” However, for the
purpose of this work it will be sufficient to consider the problem within a much
more restrictive context: regular domains and piecewise continuous or smooth
functions. Moreover, since our subsequent formulation of the shell theory will be

17 See e.g. NOLL AND VIRGA [1990].
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restricted primarily to the quasi-static case, we shall assume that possible singular
surfaces are stationary.

If various fields appearing in the integral balance laws fail to satisfy the classical
regularity assumptions, then from the integral balance laws, besides field
equations (3.10), one obtains corresponding jump conditions. In the quasi-static
case, let the deformation map 7 and the stress tensor T be regular enough for the
classical divergence theorem to hold for a finite partition of the region B. Then the
jump1 g:onditions at any point X € S of a stationary singular surface S C B take the
form

[TIn=0, [LxxTnl=0. (3.17)

Here n denotes the unit normal vector to the singular surface § and the jump [¥]
of any field Wis defined as the difference of the limits taken from both sides of S:

[WX)=PY(X)-P¥)(X). (3.18)

The jump conditions (3.17) hold across any smooth surface S provided the
relevant limits taken from both sides of § exist.®

4. Weak form of the momentum balance laws

4.1 Classical boundary conditions. Generally, the boundary conditions at any
point X € B consist of a prescription of the position, or the traction, or some
suitable combination of them. In classical form one assumes that there are two
disjoint subsets of dB such that the traction boundary condition is specified on the
part 0B, of the boundary in the form (analogue of the Neumann condition)

TX,)n(X)=t'(X,1), X €9B; . (4.1)

On the complementary part 0B, =dB\dB; the kinematic boundary condition is
specified in the form (analogue of the Dirichlet condition)

xX,)=y%(X,t), XE€EOiB;. (4.2)

'8 See e.g. STRIFORS [1990].
19 See TRUESDELL AND TOUPIN [1960] for detailed account of the concept of singular surfaces and
jump conditions in classical continuum mechanics.
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Here t'(X,t) and %' (X,f) are given vector-valued functions of their arguments.

Let us note that an asterisk used here has different meaning than in the previous
subchapters.

4.2 Principle of virtual work. The classical way of deriving the weak form of the
momentum balance laws is quite simple. Let v(X,£) be any vector-valued field (it
may be called the virtual displacement or test function). Then, as a direct
implication of Euler's first law (3.10); and the dynamic boundary condition (4.1),
we have

[y(DVT+E—pi)evaV+ [, (' ~Tn)*vdA=0. 4.3)

Upon applying the divergence theorem to the first term in the first integral of (4.3)
we obtain

[opEevdV+ [ TevvadvV=[fevdV+[, t+vdA+[ Tnevda. @44)

Assuming that v=0 on dB,, in accordance with the kinematic boundary condition
(4.2), the equation (4.4) reduces to

J[ypEovdV + [ TePvdV = [ fevdV +[ tovdA (4.5)

for all v satisfying the above condition. Eqn (4.5) expresses the principle of virtual
work of forces. Reversing the process of derivation we can easily show that (4.5)
implies the local equations of motion (3.10); and the dynamic boundary condition
(4.1). Applying the same arguments we easily see that from the second Euler law
(3.9), alone we have

[,F'T+Wdv =0, (4.6)

for every skew-symmetric tensor field W. This equation expresses the principle of
virtual work of torque.

‘In the above considerations we have followed the conventional line of derivation.
Antman and Osborn® have reconsidered the problem pointing out that this
procedure is unsatisfactory for the following reason: both, the integral balance
laws and the principle of virtual work, are regarded as valid under regularity
assumptions far weaker than those used in the preceding arguments to show their

20 ANTMAN AND OSBORN [1979].
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equivalence. Using some techniques from modern analysis they next established
the equivalence of the principles of virtual work and the integral balance laws
without having introduced the local equations of motion in an intermediate step.

4.3 Stress power. Taking v to be the velocity field, the principle of virtual work of
forces (4.5) takes the form

[opEexdV+ [ TeVidV={fexdV+ b o XdA. 4.7

This integral identity expresses the principle of virtual velocity. Taking further
into account that F =Vx, we may rewrite (4.7) in the form

KRB+ [ Z(X,0)dV = [ f+xdV +[, teidA, 4.8)
where the kinetic energy of the body is defined by
R(B,t)=-% [.pxsxav (4.9)

and
(X,)=T(X,t)*F(X,¢t) (4.10)

is the stress power density (measured per unit volume of the reference
configuration of the body).

4.3 Alternative stress measures. In the material description, stresses within the
body are usually described by the first Piola-Kirchhoff stress tensor T(X,?). There
are, however, many other stress tensors which are more convenient in the analysis
of special problems. For example, recalling the definitions of the right Cauchy-
Green deformation tensor and the Green strain tensor, from (4.10) we have

):=T-F=%S-C=S-E, 4.11)
where S(X,?), known as the second Piola-Kirchhoff stress tensor, is defined by
S=F"'T. 4.12)

In the same way we can introduce the work-conjugate stress tensor for any
generalized strain measure.
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5. Constitutive equations

5.1 Dynamic processes. Our considerations so far may be summarized as follows.
A motion %, :B->& of the body assigns to every material particle, whose
reference placement is X € B, its spatial placement x =,(X ) in the region y(B)
instantaneously occupied by the body at time £ The body is endowed with the
mass, the mass density in the reference configuration B being p(X). The forces
acting on the body are of two kinds: the body force f(X,#) and the contact force
ty(X,1;,0P), the latter one being completely determined by the first Piola-
Kirchhoff stress tensor T(X,#). The following four functions (y,,T, p,f) are thus

the basic variables of the theory.

The motion of the body is gévemed by three balance laws: the balance law of
mass (satisfied identically in the material description), and two momentum balance
laws represented in the local form by the field equations

DivT+f=pi, TF =F'T. (.1

Like the acceleration ¥(X,¢)=%,(X), the deformation gradient F(X,#) =V ,(X)
is not an independent variable, since it is defined in terms of the motion. In
general, the body force f and the mass density p are assumed to be given as a part
of the data. Then the motion 9, and the stress tensor T should be determined from
the field equations (5.1) and suitable side conditions (initial, jump and boundary
conditions). However, the system of field equations and side conditions derived in
this way is underdetermined, in general. This merely shows that principles of
.mechanics alone do not suffice to determine the motion of the body even if applied
loads and side conditions are given. Constitutive equations, i.e. relationships
 between stresses and deformation, are needed to specify a diversity of materials.

Constitutive equations are mathematical statements and not physical principles.
They represent the observed response of material bodies to external loadings.
There are many approaches to the constitutive theory, but they all fall into two
categories: Within the first category one seeks constitutive relations for a
restricted class of materials in an unrestricted class of deformations. Within the
second category one seeks constitutive relations for an unrestricted class: of
materials in a restricted class of deformations. These two approaches are not
mutually distinct. The procedure in utilizing the basic laws of mechanics rests
upon the following:
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a) The field equation (5.1); is assumed to hold for an arbitrary choice of the
motion including, if required, an arbitrary choice of space and time
derivatives.

b) The stress tensor is calculated from its respective constitutive equation.

¢) The value of the body force can be found from the balance of linear
momentum.

d) The equations resulting from the principle of moment of momentum and the
side conditions are regarded as identities for every motion.

This procedure imposes some restrictions upon possible forms of the constitutive
relations, which are needed to close the system of field equations and side
conditions.

The ordered pair (,,T) is called a dynamic process for the body, if the motion
and the stress tensor are related in such a way that they satisfy the momentum
balance laws, i.e. the local field equations (5.1). Two dynamic processes (:,T)
and (¢, T") are said to be equivalent, if they are related by

L X)=0(t)+0(t)(X), TX,t)=01)T(X,?). (5.2)

A change of observer induces transformations of quantities describing a material
body. This definition stipulates that the equivalent processes describe the same
dynamic process recorded by two observers.

5.2 General pn'ndples of constitutive theory. The general theory of the
constitutive relations rests upon its own postulates, which are believed to be
reasonable physical assumptions for all kind of materials encountered in reality:*'

1) Principle of determinism. The stress at the material particle X at the time ¢ is
determined by the motion %, of the body up to the time . Said differently, the
past and present motion determine the present stresses, future has no
influence upon it.

2) Principle of local action. The present stress at a material particle X is entirely
determined by the history of motion of an arbitrarily small neighborhood of
that particle. The motion of the particles at a finite distance from X may be
disregarded in calculating the stress at X.

21 See Truesdell and Noll [1965] or Wang and Truesdell [1973].
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3) Principle of material frame-indifference. If a constitutive relation is satisfied
by the dynamic process, it is satisfied by every equivalent process.

According to the first of these principles, the general constitutive equations
expressed in mathematical form reads:

T(X,t)=b;0(xt(X,S),X,t), (5'3)

where B, denotes a constitutive functional (response functional), i.e. a function,
whose argument is the history %' (X, s) of the motion of the body. According to the
general theory the response functional must be compatible with the balance law of
angular momentum.

Let us first recall that given a time dependent field f(X,#) with values in a finite
dimensional inner product vector space F, the history of f(X,#) up to the present
time instant ¢ is defined by

(X,s)=1(X,t-s), t €[0,). 54

The variable s is called the time-lapse from the past instant #—s to the present time
instant £ and (X, s) is the value of f(X,?) at a time s units before the present time
instant ¢. Note that '(X,s) is defined only for s <0, though (X ,r) may be well
defined for all ¢, and we have (X ,0) = f(X,?).

According to the principle of determinism the stress at a particle X may depend on
the complete history of the motion of the whole body B. Various special classes of
materials can be defined by introducing additional assumptions, which delimit
such dependence. :

In particular, a theory of non-simple materials admits a dependence of the
response functional on the history of the first and higher deformation gradients. A
material, whose constitutive equations have the form

T(X, ) =§20(F(X, 5),....FOF (X, 5); X ), (5.5)

is called n—grad material.”

22 TRUESDELL AND NOLL [1965].
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5.3 Simple materials. In the theory of simple materials mechanical properties are
assumed to be determined by functionals having the history of the first
deformation gradient as the only arguments. In other words, its mechanical
response is governed by the constitutive equations in the form

T(X,t) =92 (F'(X,s) X). (5.6)

The statement (5.5) says that the mechanical response of the body to the
deformation is sensitive only within an arbitrarily small neighborhood of a point
X. In this sense it expresses the principle of local action, which is assumed to be
valid in the theory of simple materials. The fact that the constitutive equation (5.6)
may depend on the past values of F indicates that in general a simple material- may
have memory effects.

For a simple material the principle of frame indifference asserts that the response
functional must satisfy the relation

120(0(F! (X, 5% X ) = 0(0)h(F' (X, s); X) (5.7)

for all histories of proper orthogonal tensors. This requirement may be viewed as a
transformation law of the constitutive relation under a change of frame of
reference. Making use of the polar decomposition theorem, the following Noll's
representation theorem can be proved: A constitutive functional satisfies the
principle of frame-indifference if and only if it can be represented by the
restriction of it to positive symmetric histories

B (F (X, 5); X ) = RO (UH (X, 5); X ). (5.8)

This theorem asserts that the response functional is entirely independent of all past
rotations and it depends on the present rotation in a limited way.

5.4 Elastic constitutive laws. An elastic material is one, which has no memory. Its
mechanical response depends on the current state of the body only and the
constitutive functionals reduce to functions:

T(X,t)=H(F(X,1), X ). (5.9)

Below, for simplicity of writing, the material particle X will generally be
suppressed from the arguments of the response functions. The response function §
must be compatible with the balance of angular momentum, and it is delimited by
the principle of frame-indifference, i.e.
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h(EF" =F§F)",  OY(F)=HOF), (5.10)

and possible symmetries of the material. Making use of the polar decomposition of
the deformation gradient, F = RU, the representation theorem implies that

T=RKU)=RHC), C=U2, (5.11)

where C is the right Cauchy-Green deformation tensor. It can be proved that the
constitutive equations (5.11) satisfy the principle of frame-indifference if and only
if they can be reduced to the form

S=¢C)=§E), E=1lcC-D. (5.12)

Here S denotes the 2nd Piola-Kirchhoff stress tensor and E is the Green strain
tensor.

5.5 Hyperelastic material. In the particular case of a hyperelastic material, whose
mechanical properties are governed by a strain energy function W=W(F,X) per
unit volume of the reference configuration B, we have

B(F,X)=0:W(F,X). (5.13)

The frame-indifference requirement implies that W =W(C, X'). This expresses our
understanding that the strain energy W, like the stresses in the body, is caused by
pure deformation and not by rigid rotations.

For an isotropic homogeneous hyperelastic material the strain energy density is a
function of the principal invariants of the right Cauchy-Green deformation tensor:

I=tC, h:%((trcy—tr@), L=detC=J>. (5.14)
Taking into account that
dch=1, dchL=I1-C, dcL=ILC", (5.15)
the constitutive equations (5.11) read
T = 2(W, + IW,)F —WFC + LW, (F~1)T), (5.16)

where
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aW(Ils Il, 133 )

ol s,  k=123. (5.17)

“]k(lh 12) ISy) =

Recalling that T =FS we may rewrite the constitutive equation (5.16) in terms of
the second Piola-Kirchhoff stress tensor:

S = 2(W, + IW,)1—W,C+ LWC). (5.18)



Chapter Il

Resultant laws of mechanics for shells

1. Preliminary considerations

1.1 Basic concepts and definitions. From the point of view of continuum
mechanics, a shell is a three-dimensional material body B, called a shell-like body,
enjoying a specific shape. The motion and deformation of the shell-like body is
thus governed by general principles of continuum mechanics €<Ghapt.I). The
general aim of shell theory is then to reduce an otherwise three-dimensional
problem of continuum mechanics to the one having coordinates of a certain
surface as the only independent spatial variables. Within the shell theory the shell-
like body is thus geomietrically represented by a distinguished surface M C B,
called a shell reference surface (or a shell carrying surface). The shell-like body
and the shell reference surface are-thus the basic underlying concepts of shell
theory.

Let us make it clear from the very beginning that a shell (in the sense of shell
theory) is not merely a surface -but rather-a two-dimensional coatinuum. In
general, such a continuum is defined as a shell reference surface M endowed with
certain kinematic and dynamic properties, which reflect the dominant features of
the body it represents. Moreover, within the general theory we shall be concerned

"in this work, the shell reference surface M need not be the surface in the sense of
classical differential geometry.'

The principal aim of shell theory is to describe, how a shell-like body will deform
under applied forces. The rules responsible for the deformation are imbedded in
the mechanical balance laws. The first step of the shell theory is to formulate
appropriate resultant balance laws. Like in continuum mechanics, the resultant
balance laws for shells can be formulated in the spatial description or in the

! Such surfaces exclude self-intersections, self-tangencies, etc. (see Appendix D).
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referential (material) description. While in continnum mechanics the emphasize is
placed on the former one, the latter one is more appropriate in the formulation of
shell theory. Under suitable regularity assumptions both descriptions are
completely equivalent, as it has to be, since laws of mechanics refer to the body
and not to its particular configurations. In this work we shall be concerned with
the derivation of the shell governing equations in the material description alone.
Corresponding form of shell governing equations in the spatial description can be
easily derived, if necessary, by appropriate transformation rules.

For the time being, we leave unspecified the precise meaning of the shell-like
body. Using the notation of Chapt. 1.3, we denote by (P,t) and (P, ) the total
force and the total torque, respectively, acting on any shell-like subbody PC B at
the time instant ¢. Then for IT = M N P, being the corresponding part 11 C M of
the shell reference surface, we -define the through-the-thickness resultant total
force §(I1,t) and torque ¢(I1,t) by

fUr,n=gPr,), IL,H=P). (1.1)

Within a purely mechanical theory the basic laws governing the motion and
deformation of the body are the balance laws of linear and angular momentum. In
the quasi-static case they assert that the total force (P,t) and the total torque
F(P,t) vanish in every (dynamic) equilibrium configuration. In view of
definitions (1.1), the resultant balance laws for the shell in the quasi-static case
take the form

fU1,1)=0, t(ﬁ,t)=0. (1.2)

The resultant dynamic equations for the shell can be obtained exactly in the same
manner. Denoting by £(P,¢) and W(P,¢) the linear and angular momentum of the
shell-like subbody P, the through-the-thickness resultant linear momentum (171, ¢)
and angular momentum a(/7,¢) are defined by

(1,)=(P,), elIn=WP). (1.3)

Then the resultant balance laws of linear and angular momentum for the shell take
the form

fUT,0=WILt), ¢IT,0)=a(Il,z). (1.4)

If the motion of the shell is very slow, the inertial forces i(]f[ ,t) and a(I1,t) can
be neglected. Then (1.4) reduces to the quasi-static form (1.2). In this work we
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confine ourselves to the quasi-static case. The fully dynamic shell theory should
include also such phenomena as wave propagation, formation of cracks, etc. A
detailed exposition of such problems will be our concemn in a separate study.
Restricting our considerations to the quasi-static case, all what remains to do is to
deduce the explicit forms of f(I7,t¢) and t(11,t) satisfying the conditions (1.1). We
shall gain this aim using a technique, which is essentially customary in shell
theomy. However, when applied with great care, it yields the resultant laws
enjoying a generality, which cannot be found in the literature.

1.2 General features of shells. Intuitively, the concept of a shell might seem to be
obvious. However, a rigorous description of shell shapes is a quite subtle
analytical problem. In general, a shell has three basic identifying features: its
reference surface, its thickness, and its edges. As a rule, one assumes that a shell
reference surface is a smooth differential-geometric surface admitting a global
parametrization.” However, such an assumption excludes many shell structures of
engineering importance. In fact, many shell shapes cannot be described as smooth
or even piecewise smooth differential-geometric surface (see Introduction).

upper shell face

‘\\

upper shell face

Fig. 1

"The basic geometric features of shells come from the concept of a shell-like body,
a three-dimensional body B, whose boundary dB is assumed to consist of three
parts: an upper shell face M*, a lower shell face M~ and a lateral surface (edge)
oB°,

dB=M*UM~UdB°, (1.5)

having no internal points in common. Two examples of “nice” shell-like bodies
are shown in Fig. 1. Mathematically, we shall assume B to be a regular region with

2See e.g. NAGHDI [1972] or ANTMAN [1976].
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a piecewise smooth boundary. Thus, the shell faces M* and the lateral surface dB*
will be assumed to be piecewise smooth surfaces. In general, neither M* nor 3dB°
need to be even connected. However, we shall assume that the shell faces have no
common points, i.e. Mt N M~ =, since otherwise serious difficulties arise in the
formulation of the resultant boundary conditions (as in the case shown in Fig. 2).
We also note that in the case of closed shells the lateral surface dB° is an empty set
(complete spherical shell is a typical example).

Fig. 2

Aside of the geometry, the definition of a shell-like body must also specify loads
and boundary conditions. In general, loads acting on the body B consist of the
external body force £(X) applied at each interior point X € B and the external
surface force t'(X) applied on the part 3B, CdB of its boundary. On the
complementary part dB; =3B\ dB, of the boundary the deformation of the body is
specified (Chapt. 1.4). In the case of a shell-like body we assume that

0B, =M*UM~uUéB;, 0dB°=434BfUIB; .- (1.6)
The boundary of the shell reference surface is defined by M = M NdB° so that
M;=MnNadB;, OM;,=MnNoB;, oM =0oM;UdM,. (1.7)
Thus the traction boundary conditions for the shell-like body take the form

TX)n*(X)=%=t*(X), X e M*,

T(X)n"(X)=t'(X), X €9B;. (18)

The minus.sign in (1.8); is conventional. The deformation of the body is described
by the map x =%(X), and the kinematic boundary condition are given by

x(X)=x'(X), X €4dB;. (1.9)
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Usually, the body force f(X) and the forces t*(X) acting on the shell faces are
supposed to be given as a part of data of the three-dimensional theory. But this
assumption is not necessary for the subsequent formulation of the shell theory.

The above description provides a general characterization of shell-like bodies,
which resemble general shell structures. However, from the point of view of shell
theory this characterization is not precise enough. In fact, we shall see later on that
several cases need to be considered separately:

I) Smooth shells — shells whose reference surface can be represented by a
smooth regular surface.
II) Folded (non-smooth) shells — shells whose reference surface can be
represented by a piecewise smooth, regular surface.

II) Branched shells — shell structures that consist of multiple shell intersections,
i.e. three or more shell segments intersecting at a common juncture.

IV) Multi-shell structures — shell structures that consist of two or more distinct
shells that are joined together in some technological manner along common
boundaries.

V) Rod-shell structures — structures that consist of both shell-like and rod-like
structural elements.

Smooth shells constitute a subclass of folded shells and they can be called
collectively regular shells. Shells and shell structures belonging to the remaining
three classes, called irregular shells, will be of our concern in Chapt. I1.3.

1.3 Regular shell-like body. In general, we definé the shell reférence surface to be
a geometric surface M C B arbitrarily located within the region B. Relative to a
fixed Cartesian system in space the position vector of a typical point Y€ M will
_be denoted by Y. For simplicity, points of M and their position vectors will be
denoted by Y leaving the context to make clear, which one is meant. Let us note
that even in the case of non-smooth shell faces the shell reference surface M can
still be defined to be smooth (Fig. 3), but such a choice of the reference surface
needs not be the most appropriate one. Therefore, we shall take M to be an
orientable, piecewise smooth and connected, but not necessarily simply connected,
surface (Fig.4). Thus, M is the union of disjoint smooth surface elements My,

such that®

M=UI/$=] M(k), intM(,,)ﬂintM(l) =®, k#l, (1.10)

3See Appendix D.
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where each M|, is of class C' or higher and has a piecewise smooth boundary
dM,, consistently oriented with M. The unit normal vector at every interior point
of smooth surface elements will be denoted by Ay, and we shall write AP for its
limit value at the edges taken along paths in M(,,.

shell reference surface

Fig. 3

Fig. 4

Let us further assume that at each point of the shell reference surface M a unit
vector D can be defined so that every point in the region B is uniquely determined
by the position vector given in the form (Fig. 5)

XY.5=Y+EDY), Eec[-h(Y)+hi(¥)], (1.11)
where hj are given non-negative piecewise smooth functions on M such that
ho(Y)=hs (Y)+h5(Y)>0. (1.12)

The vector D is required to be not tangent to M, and it serves to define through-
the-thickness fibres. Note that the functions 43 define the location of the reference
surface relative to the shell faces, whose position vectors are given by



1. Preliminary considsrations : 49
X*Y)=Y £h5(Y)D{Y). (1.13)

We shall refer to £ as through-the-thickness or "normal" coordinate, and we call A,
the initial shell thickness. It is clear that the thickness of the shell defined in this
way depends upon the choice of the vector D. We also note that the field D on M
can be defined in a continuous manner even if M is not smooth. Moreover, without
loss of generality we can assume that the lateral surface dB° be a ruled surface,
whose generators at each point Y € dM are defined by (1.11).

Fig. 5

When the above conditions are satisfied, we call B a regular shell-like body and,
until Chapt. I1.3, B will always have this meaning. Let us note that the shell faces
M* of the regular shell-like body B must be connected (but not necessarily simply
connected), while the lateral surface dB° need not be even connected (Fig. 6). We

_also note, that as a special case, we can take D to coincide with the unit normal
vector Ay. However, this is possible only if M is smooth. Moreover, if the shell is
composed of a single homogenous material, the reference surface can be taken to
be the middle surface, that is the locus of all points equidistant to the shell faces.
However, if the shell is layered or of other nonhomogeneous structure, in the case
of relatively thick shells, in the analysis of contact problems, etc., it may be more
convenient to take one of the shell faces as the reference surface. The shell
reference surface can also be defined as a so-called neutral geometric surface
(analogously to the neutral axis of a beam), whose position vector is determined
by '
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Y=["X¥Emy B, [=[1, (1.14)

where 7 is any given positive scalar function. For general considerations, it is then
reasonable to leave the particular choice of the reference surface unspecified. We
also note that even though the formulation of the shell theosy is expected to be
reasonable only for relatively thin bodies, no assumption of this kind is neither
fnecessary nor invoked in this work.

upper shell face

lateral shell surface

)

lower shell face

Fig. 6

1.4 Shell reference surface. At each regular point ¥ € M of a piecewise smooth
surfice M the tangent space Ty M, ie. the two-dimensional vector space,
geometrically represented by the tangent plane (Fig.7), is well defined. The
ambient space &, in which the surface M is immersed, induces in a natural way the
direct decomposition of its translational space:*

E=T,6=T,M®T,M*, - (1.15)

where Ty M* denotes the orthogonal complement of the tangent space Ty M. We
shall then denote by

IX):TM—>E, PY)E->TyM, (1.16)

the inclusion and projection operators, respectively. The tangent space 7y M with
an inner product, being the restriction to 7y M of the inner product of E, becomes
the two-dimensional Euclidean vector space. In turn, the inner product makes the

“Many concepts and definitions we shall be using below are treated in more detail in GURTIN
AND MURDOCH [1975] and MURDOCH AND COHEN [1979], see also Appendix D.
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surface M into a Riemannian manifold with the metric Ay = A(Y) defined at each
point of M by -

Ay(u,v)=usv, YuvehyM. (1.17)

Fig. 7

The orientation of M is determined by the Gauss map, which assigns to every point
Y € M aunit normal vector Ay(Y). If M is of class C? or higher, the Gauss map is
differentiable and its tangential gradient is the curvature tensor

BY)=PXY W ANY). (1.18)

The principal invariants of B are the mean curvature H and the Gaussian curvature
K, which are given by

HY)=2rB(Y), K(¥)=detBXY). (1.19)
Let us note that in the case of a piecewise smooth shell reference surface the

definitions (1.15)-(1.19) make sense only at interior points of every smooth
element M.
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While all subsequent considerations will be carried out in a coordinate-free form,
parallelly we shall also present their component form. To this end we introduce
suitable coordinate systems. This also serves to fix notation.’

Locally, but not globally, the shell reference surface M (more precisely, any
smooth surface element) may be parametrized by surface coordinates (§4,A4 =1,2)
chosen in any convenient way. Then its position vector Y can be expressed as a
given function of £ in the form (Fig. 8)

Y(E2)=Ye(E)ex . (1.20)

Assuming that (1.20) be a differentiable function of surface coordinates, the
natural base vectors and the reciprocal base vectors at each regular point of M are
defined in the usual way

AAV)=Y 4 (Y), A'X)+Ar(Y)=067. a.z1n

It should be noted that the position vector ¥ of M is an E-valued function, and so
are the partial derivatives Y,, at every point of M. On the other hand, the natural
base vectors are elements of the tangent space TyM. Therefore, it is not fully
correct to write A4 =Y ,4. The correct definition is A4 = PY,4, where P denotes
the projection operator.

Fig. 8

For the chosen surface coordinates the metric tensor of M can be expressed in the
familiar form

S Where feasible, we shall adopt the notation, which became standard in continuum mechanics
and in part of the shell literature, e.g. TRUESDELL AND TOUPIN [1960], NAGHDI [1972].
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A=AsrA @ AT =AY A, Q@ Ar, (1.22)

with components being just the inner product of the natural base vectors, and with
a positive determinant:

Apr=A, *Ax, AT =A% A%, A=detAss >0. (1.23)
Similarly, the curvature tensor (1.18) of M has the cdmponent form
B =B, A'@ AT, Bir =Y, ir* Ay. (1.24)

Then the mean and Gaussian curvatures of M are given by

H=La4p, =

1 %Bj} . K=detBd= %e’“’emBuBeg . (1.25)

Here the surface permutation symbols at any point of M are defined in the standard
way

ear=+Aear, eﬂ:ﬁeﬂ, (1.26)

where € =—é€y =] and &1 =8€n =0. NOtillg that €Exr = (Y,A XY,[‘ )‘ AN the unit
normal vector to M can be expressed in the classical form

Ay =%e ATy Y. 1.27)

Moreover, we have the standard identities
AAI‘ — eA(beI"}’Aﬂp , eA(beI‘!l’ =_AAI‘A¢LV - AAWAI‘G) , (128)

“ together with a number of identities, which follow from the standard operation of
rising and lowering indices.

Any piecewise smooth curve on M, such as the boundary curve dM, can be
specified for the chosen surface coordinates implicitly, ¢(§%)=0, or in a
parametric form, £4 =£“(S). Here we assume that the curve is given in the
parametric form ¥ () =Y (§4(S)), where S denotes the arc length parameter along
the curve. Then at each regular point of it we can define the orthonormal triad

{r,v,Ay) by (Fig. 9)
t=PY'=144,, v=P(Ay xY")=v,A1, (1.29)
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where 7 is the tangent vector and v the outward normal vector, both lying in the
tangent plane to the reference surface at the underlying point. A prime will
invariably stand for the derivative with respect to the arc length parameter. From
the chain rule we-have the familiar relations

A
74 =df—s, Voa=€Ext’ {1.30)
and
A STAT T V4P, (1.31)

Fig. 9

1.5 Spatial coordinates. In principle, any choice of coordinates in the shell space
B and on the reference surface M needs not be related at all. However, it is
convenient and reasonable to assume that the local coordinates (§4)=(£4,E) in B
are chosen in such a way that the reference surface M is defined by the equation
& =0. Then the position vector (1.11) is given by

X(ELEH=Y(EN+EDEY),  Eel-h(E*)+hi(EM)]. (1.32)

From (1.32) all relevant geometric relations-in the shell space can be derived in a
standard way. In particular, the natural base vectors at any point X € B are
obtained in the form (Fig. 10)

Gi=X,A=As+ED,,, G:=X,=D. (1.33)
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Here and in the sequel partial differentiation with respect to & will interchangeably
be denoted by (.),, or (.), as it will be convenient for typographical reasons.
Taking further into account that

JG =(G,xG,)+G, =%EM\/Z(GAXGA)°D, (1.34)
we have

ﬂs\/g;h *D+E€N (V.4 x Dr ) D+LEEA (D4 xDr)eD.  (135)

Fig. 10

Now the reciprocal base vectors can be expressed in the form
G4 =% SeMGrxD, G =u'eG,xGr . (1.36)
Since D is a field of unit vectors, D+ D,, =0, components of the metric tensor for

the chosen coordinates in B are

GAI' =AAI'+§(Y)A .D»I'+Y,I' .D)A )+§2D’A .D)I' 1-
Gas =Y ,4*D, (1.37)
Gy =1.
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Reciprocal components of the metric tensor can be obtained by taking the inner
product of the reciprocal base vectors given by (1.36).

As special case we can take the unit vector D to be the unit normal vector Ay to
the reference surface. This choice defines the so-called normal coordinates in the
shell space with the position vector given by

X(ENE)=Y(EN+EAvEY),  E€[-hg(E")+hi(EM). (1.38)

Then the natural base vectors can be expressed in the form
GA = ,uﬁAI‘ ’ GA = ('u-l)?AI" ’ G3 =63 =AN [} (1'39)

where the so-called shifters are given by
uft =0 —EBf,

(s =5 [0% +E(BE ~2H8%)], (140)

and

ﬂ=\[§=dety¢=l—2EH+252K. (141)

Let us recall that H and K denote the mean and Gaussian curvatures of the
reference surface M, respectively. The component of the metric tensor at any point
of the shell space can now be obtained in the usual way.®

1.6 Volume and area elements. We shall consistently denote by dV(X), dA(Y)
and d4S(Y) the differential volume element at any point of the region B, the
differential area element of the reference surface M and the differential line
element of any curve on M, respectively. In terms of the chosen coordinate system

(%)= (&4,£) they are given by
dS=\AuwdE"ET,  dA=VAdEdE?,  dV=VGd'd’dE.  (1.42)

By simple implication we have

WrH=ur.HEMN,  wrH= O, (143)

S NAGHDI [1972].
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where the invariant u-is given by the formula (1.35).

In the subsequent considerations we shall also need the relations between oriented
area elements of the shell faces and the shell lateral surface, and corresponding
elements of the reference surface and its boundary.

The position vectors of the shell faces are given by _
CXAEM=YEOHEREDDED, (1.44)
and the position vector of the lateral surface can be expressed in the form
X85 =Y +ED(S),  E€[-m(S)+hi(S)]. (1.45)

The corresponding Qriented area elements are defined by

(dA* =ndA* =X* x X*, dE'dE? (1.46)
d11°=l'l°dA°=(X°)'XX°,§deE, t

and they can be expressed in the form "
dA* =€TX* X X*,rdA,  dA°=(X"Y x DdSd. (147)

2

Keeping in mind that the position vectors of the shell faces depend on the surface
coordinates also through the variable thickness, the partial derivatives of (1.44) are

X*4=A,2h5D,s = h5,4D. (1.48)

Differentiating the position vector.(1.45) of the lateral surface with respect to the
_arc length parameter we should take into account that EA =EA(S). Then from the
chain rule we obtain

A
(Xo)'ﬁ'dfTXO,A=7AGA ="‘E_I‘AG1"VA . (149)

Taking into account the definition of the natural base vectors in the shell space
and on the reference surface we thus have
dA* =+ (G* THE, G Y utdA,  dA® =G v,udEdS . (1.50)

By implication of (1.50), the unoriented (scalar) differential areae of the shell
faces and the shell lateral surface are obtained in the form
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*=a*dA, dA® =a°dEdsS , (1.51)

where

a* =% y*\(G* F 205, G + . 6 ,r G*TY*

a’= M/GAF‘VA‘V]' .

(1.52)

2. Resultant laws - regular shell-llke bodies

2.1 Regular shell-like subbody. The mechanical balance laws of continuum
mechanics are postulated to hold not only for the whole body but also-for every
subbody. In order to derive corresponding resultant laws we shall consider a shell-
. like subbody P C B, which is regular in the sense of Sect. 1.3. This means that the
position vector of every point in P can be expressed in the form (1.11), and that
the boundary of P is the union of three disjoint parts, the faces IT* C M* and the
lateral surface dP° so that

oP=IT*UIT-UaP° . ' 2.1)

By definition, IT C M is a part of the shell reference surface corresponding to the
selected region P enclosed by a curve 911, i.e.

II=MnP, olT = MnaP°, 2.2)

/Moreover, the lateral surface dP° fs a ruled surface described in the same way as
the lateral surface of a regular shell-like body. A “nice” shell-like subbody is
shown in Fig. 11.

Fig. 11
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The forces acting on P consist of the external body force f and the surface contact
force ty. By virtue of Cauchy’s theorem the contact force on the faces and on the
lateral surface are given in terms of the first Piola-Kirchhoff stress tensor T by

Tn*=+t*, X ell*, Tn®=t,, X eoprP. 2.3)

In view of (2.1) and (2.3) the total force and the total torque acting on the subbody
P can be written in the form

BP) = [£aV+ [[ . thdA* —[[ _tydA~+[ . TndA°,

T(P)= [ xxfdV + [[ . x* xthdA* ~ [ _x~xtydA™ + [, , xx Tn°dA°®, @9
where x =¢(X)=x(Y,§) and
X*(¥)=x(X (¥, =hH(Y))). 2.5)

In order to reduce (2.4) in an exact manner to a two-dimensional form appropriate
for shell theory, we shall represent the three-dimensional deformation of the shell-
like body in the form (Fig. 12)

x(¥,E)=xXX,5))=y¥)+&¥,8) . (2.6)

Fig. 12



60 Chapter Il. Resultant laws of mechanics for shells

Here y: M - é with y=x(Y) is the deformation map of the shell reference
surface, and & is an unknown function which defines the location of the particle
relative to the corresponding point on the deformed reference surface. It must be
stressed that the representation (2.6) is purely formal and imposes no restrictions
on the three-dimensional deformation of the shell-like body. This is reflected in
the dependence of the function & on the through-the-thickness coordinate £. With
the help of (2.6) the total force and the total torque (2.4) can easily be reduced to
the two-dimensional form satisfying the requirements (1.1).

2.2 Resultant forces and couples. The contact forces Tn® acting on the lateral
surface dP° entail the internal stresses in the body and they can be reduced to the
resultant force and couple along the corresponding part of the boundary curve d.11.
To this end, we make use of (2.6) together with the geometric relation (1.51), for
the differential area element dA°, so that integrals in (2.4) over the lateral surface
dP° can be rewritten in the form

STt dae = [ ([*Tntatdg)ds .
[oxxTn°dd’=[ (ffl;x Tn°a’dé + y x (ijn°a°d§))d§ :

Now we define the resultant stress vector and the resultant stress couple vector by

2.7

n(Y,0IT)= ["In‘a’de, m,Y,0IT)=['ExTn'ad, (2.8)

so that

.rap° Tn®dA’ =-raun“ ds ,

2.9
[, xxTn®dA® =fm(my+y x‘nv}dS. 2:9)
This shows that n, and m, entail the interaction along the boundary curve 917
equipollent to the action of the stress vector Tn° upon the corresponding part of
the lateral surface dP° coinciding with 417 on the reference surface.

In the same manner we can next reduce the remaining integrals in (2.4) to
statically equivalent forces and couples defined over the shell reference surface.
With the help of geometric relation (1.43), and making use of (2.6), the volume
integrals in (2.4) can be written as
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[o2av =1, (["tude ),
fyxxtav = ff, (e xtude+yx ([ tpd))a.

Similarly, with the use of geometric relation (1.51), the integrals in (2.4) over the
shell faces can be written in the form

ffn+ th dA” _ffzr tydA™ = ffn(a*-t;’ _a_tﬁ)dA ’
[l xtxtidar =[x xtydA™ = [[ (a*C xth —a & xty)dd  (2.11)
" [z (@t ~atz))da,

(2.10)

where, analogously to (2.5), we write
W) =LX ¥, 2R X)) (2.12)

The body force f and the surface forces tj; acting on the shell faces are usually
given as a part of data of the three-dimensional theory. Accordingly, they can be
combined together in the definition of the resultant surface force and couple
vectors: )

p(¥)=["fudt +a*th —aty,

+ (2.13)
IY)=[(exfudt+a*C xth—a ¢ xty.

This shows that p and [ are statically equivalent to the external body force and the
external surface forces acting on the shell faces.

f
-

c

Fig. 13
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When definitions (2.13) and (2.8) are substituted into (2.4), the resultant total
force and the resultant total torque acting on the part I7 C M of the shell reference
surface corresponding to the subbody P C B, are obtained in the form (Fig. 13)

f(II)=fprcM+j;Hn.,dS,

2.14
t(II)=ffH(l+yxp)dA+LH(mv+y xn,)ds . (2.14)

This derivation shows that the resultant force and torque (2.14) satisfy the
requirement (1.1), and the resultant laws of mechanics (1.2) ensure the overall
equilibrium of any shell-like subbody of finite thickness bounded by the shell
faces and the lateral surface.

2.3 Resultant stress and couple stress tensors. 1t can be shown that at each regular
point of the reference surface M the resultant stress vector n,(Y;dIT) and the
resultant stress couple vector m,(Y;3IT) depend upon the curve 917 only through
the unit normal vector ¥(Y )& T; M. Moreover, there exist the resultant stress
tensor N(Y)€ E® Ty M and the resultant stress couple tensor M(Y)E EQ Ty M
such that

n(Y;dll)=NX¥w¥), mY,dll)=MXWwX). (2.15)

This theorem, being the analogue of the Cauchy theorem in continuum mechanics,
can be proved within purely two-dimensional considerations, or it can be obtained
as implication of definitions (2.8). The latter way provides a clear three-
dimensional interpretation of the resultant stress and stress couple tensors and is
presented below.

For any choice of coordinates (£4)=(£4,&) in the reference configuration of the
shell-like body, the first Piola-Kirchhoff stress tensor T can be expressed in the
form

T=t"®G,+t*QG;. (2.16)

Taking into account the geometric relations (1.50), for the oriented area element
of the lateral surface we have

Tn°dA°® = TG v, udEdS = t"v,udEdS . (2.17)

Substituting (2.17) into (2.8) the resultant stress and stress couple vectors are
obtained in the form
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mo=([tudpa,  mo=([Txtudls, @19
or
m=n'vy, m=m'v,, (2.19)

where the resultant forces and couples along the coordinate curves on the shell
- reference surface are defined by

nt=['tuds,  mt=[1extiudk. (2.20)

In this way we have shown that the resultant stress and stress couple tensors take
the form .

N=n"®As, M=m"Q@A,. (2.21)
This also indicates that N and M are surface tensors of first Piola-Kirchhoff type.

2.4 Change of frame of reference. Since our considerations are restricted to
quasi-static deformations, we have not indicated the dependence of all variables
on time. However, it is clear from the above considerations that all definitions and -
results remain valid for the dynamic case as well. Accordingly, whenever
dependence on time of various variables is of importance, like in the analysis of
frame-indifference properties given below, we shall ‘add the time argument
explicitly. ~

Under the change of frame of reference the three-dimensional motion of the body
obeys the following transformation rule (Chapt. I.1)

x*X,)=0(t)+0()x(Y,1), (2.22)

where for each time instant ¢, o(¢) € E is a spatial vector and O(¢t) € O(3) is an
orthogonal tensor. From (2.22) and the formal representation (2.6) of the motion
of the shell-like body we easily find the following transformation rules.

YE¥.)=0+0WYX.),  CE.EH=OCRT.ED.  (223)

Moreover, in continuum mechanics the Cauchy stress tensor is postulated to be
frame-indifferent. In terms of the first PlOla-Kll'Cthff stress tensor this postulate
takes the form
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T(X,)=0()T(X,t) = tv(X,)=0()tn(X 1) . (2.24)

When the transformation rules (2.24) and (2.23), are substituted into definitions
(2.8), we obtain
+ L3P ) + LV
m(¥)=["OTn'udt =0 Tnpra],

X A X (2.25)
mi(¥)= [*00xOTn'pwds = 0{ ["{x Twwdg].

This shows that under the change of frame of reference the resultant stress and
stress couple vectors transform according to the rules

n(Y,t)=00nX.1), m¥.)=0"m{¥,z). (2.26)

Moreover, since the unit normal vector ¥ remains unchanged under the change of
frame of reference, from (2.26) and (2.15) we have

N'¥.)=0ONY.), M¥,)=00MY,?). (2.27)
Indeed, a direct calculation yields
n=Nv=0n,=0Nv)=(ON)Ww, (2.28)

and in the same manner for the stress couple vector. Thus (2.27) follows. This
shows that the resultant stress and couple stress tensors obey the same
transformation rules as the first Piola-Kirchhoff stress tensor, from which they are
derived.

Exactly in the same manner we can show that the resultant surface force and
couple vectors undergo the following transformations under the change of frame
of reference:

pPY.)=00p¥,n, UF.r)=00I¥.1). (2.29)

It has to be noted here that transformation rules for the shell variables derived
above are direct implications of basic postulates of continuum mechanics, and not
of the postulates of shell theory, as this is the case within the direct formulation of
shell theory.
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2.5 General remarks and comments. The easy with which the resultant balance
laws for shells have been derived from the underlying principles of continuum
mechanics is perhaps the best recommendation for the applied methodology. In
this sense it may be regarded as the mathematical device designated to illuminate
the intrinsic structure of the exact shell theory. The preceding details make it -also
clear that the presented derivation is rigorous in every aspect. There is no single
assumonn about the three-dimensional motion of the shell-like body, there are no
restrictions on the mechanical properties of a material the shell-like body is made
of, there is ¢ven no thickness assumption. We also note that the derived principles
are valid for any choice of the reference surface. As such they are valid in the most
general theory of shells, linear or nonlinear, elastic or unelastic, thin or thick. In
this respect the presented derivation makes a clear distinction between the general
principles valid for all shells and undergoing whatsoever deformation, and specific
assumptions, which might be needed in the analysis of specific problems.

There is another important fact in our approach. The applied methodology relies
on the most natural definitions of the resultant mechanical quantities involving
solely integration through-the-thickness. As such regularity assumptions are far
weaker than this is required in any other method of a shell theory formulation.
Specifically, for the definitions (2.8) and (2.13) to make sense, we only need that
the involved three-dimensional fields are.integrable through the shell thickness,
and hence they need not to be even continuous. A few special cases are worth to
be considered in more details.

Shell irregularities such as folds and kinks are due to non-smoothness of the shell

faces. From the above derivation it becomes clear, that irregularities of this kind

are included in our formulation with no extra effort or assumptions. For example,

the resultant total force and torque (2.14) remain valid-for every regular shell-like

subbody, like that shown in Fig. 14, and not necessarily for one having smooth
"faces and a smooth lateral surface.
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An important class of shells are layered shells with jumps of various mechanical
fields across inter-layers. The three-dimensional deformation of such shells need
not be smooth across the thickness (Fig. 15). But such assumptions are not
required in our formulation, and hence layered shells are also included here.

Fig. 15

As they stay, the resultant total force and torque (2.14) require only that the
resultant mechanical quantities and the deformation of the shell reference surface
are integrable fields. Thus we do not need to assume that the deformation of the
reference surface is smooth (differentiable) or even continuous. A non-smooth
deformation arises, e.g. for so-called non-elliptic materials, fracture, etc. All these
problems are covered by the above formulation.

2.8 Discontinuous shell thickness. Most of the shells in engineering practice are
characterized by a discontinuous thickness. A rigorous derivation of the resultant
total force and torque leads then to the resultant total force and torque in the form

fUD)= [[ ;. pdA+ [,omdS+ [, pedS,
tUn) = ff, A+xxp)dA+ ], (m,+xxn,)dS (2.30)
+ Hm(l¢+y¢xp¢)dS N

rather than (2.14), where £ is a piecewise smooth curve on the reference surface
M, along which the force and couple vectors are given. The shell reference surface
itself need not be smooth along this curve (Fig. 16).
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Fig. 16

3. Irregular shell structures

3.1 Preliminaries. The concept of regular shell-like bodies introduced in Sect. 1.3
and the resultant total force and torque derived in the previous chapter for such
bodies cover a wide class of shell problems, wider than ever has been subject of a
rigorous analysis before. Nevertheless, there are still many problems of
engineering importance, which are not included within the presented setting.

Generally, engineering structures are typically composed of rod-like and shell-like
elements interconnected pointwise at joints and along junctions in a widely
varying manner to form, in overall, fairly complex structures. The possibilities are
numerous, but, as we have already pointed out in Sect. 1.2, only three groups need
to be considered separately.

The group III includes all structures, which resemble shells understood in a
broader sense, but which are not regular in the sense of our definition. A typical
example is shown in Fig. 17. Generally, structures of this group contain shell
branching, i.e. three or more shell segments intersect at a common juncture. In
such cases, the difficulties in a rigorous derivation of the resultant total force and
torque lie in the fact that at the intersection it is not possible to define in a unique
way the shell reference surface and the shell thickness. In this sense they are not a
regular shell-like body, but rather a union of two or more regular shell-like bodies.
Of course, we can simplify the problem ignoring the transition zone, what is the
common practice in an engineering approach to the problem. But this need not be
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our concern here, since we are seeking for a more reliable modelling of
engineering structures.

a\%

Fig. 17

An example shown in Fig. 18, while similar to the previous one, in essence is
quite different. It shows not a single shell-like body but rather two shell-like
bodies, which are interconnected along common boundaries in some technological
manner. The kinematical and mechanical properties of the interconnection cannot
be derived from the laws of continuum mechanics alone, but they must be
supplemented by some a priori given technological data. Structures of this kind
belong to the group IV).

' Fig. 18

Shell structures sustained by columns (Fig. 19) belong to the group V. They are
easier to handle by methods of a theory of structures, except for a small region of
the rod-to-shell transition.
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L
Fig. 19

It should be noted here that a rigorous description of the three-dimensional stress
and strain fields in the aforementioned cases fall out of the realm of shell and rod
theories in the same sense as non of them can provide a complete description of
the boundary layer even for smooth shells and rods. But this fact in no way
invalidates shell and rod theory based solutions at some distance of the
irregularities. Furthermore, any theory of shells is distinguished from the exact
three-dimensional theory of continuum mechanics insofar as one spatial variable is
suppressed in the mathematical description. Such a theory, therefore, deal
essentially merely with resultants of the local stresses. It is then obvious that only
resultants can be correctly determined by shell theory. This is also true for rod
theory. Moreover, rod theory can also be used for modelling of multiple shell
intersections and technological interconnections of distinct shells. This is the
, viewpoint which we adopt in this chapter.

3.2 Rod equations. There is a strict analogue .in the derivation of mechanical
balance laws for shells and rods, as there is an analogue between the concept of a
shell-like body and a rod-like body. This analogue is affected by interchanging the
role of the shell faces M* and the lateral surface dB°. Within a rod theory a rod-
like body is geometrically represented by a piecewise smooth curve £ (rod axis
being a one-dimensional analogue of the shell reference surface M). Moreover, in
the case of a regular rod-like body R, such as shown in Fig. 20, the rod cross
sections II(S) play the role of the lateral shell surface oP°, and the lateral rod
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surface dR* correspond to the shell faces M*. Here we assume that the rod axis £
is given in a parametric form, ¥ =Y (S), where S denotes the arc length parameter.

Fig. 20

Referring to Fig. 20 and applying exactly the same method, which we have used to
derive the resultant balance laws for a regular shell-like body, we can write down
at once the resultant total force and torque acting an any regular rod-like body:’

f(R)= [, f dS +[n];,

3.1
t(R)=fg(f+yxc)dS+[m+yxn]‘;f. G.1

Here the resultant line force and couple vectors, measured per unit length of £ are
defined by

[ fds=[fdv+[f .tyda

3.2
Jle+yxf)dS= fxxde+ff xxtN (3.2)

The resultant force and couple at the rod cross section are
n(S)=ffms)tN dA, 63

(m+yxn)Sy=[f, xxtydA.
Integration by parts applied to (3.1) yields the total force and torque in the form

f(R)= [, p.dS, P(S)=n'+f,

- (3.4)
t(R)= [ U+ y.x p)dS, I(S)=m'+y,xn+c,

7 Aside of regularity assumptions, details of the derivation are given in SMOLENSKI [1994].



3. irregular shell structures 71

where a prime stands for the derivative with respect to the arc length parameter
along the rod axis.

3.3 Structured continua. As we have pointed out in Sect. 3.1, structures of all
three groups III-V are neither regular shell-like bodies nor regular rod-like bodies.
However, their important feature is that they can be regarded as unions of such
bodies. Therefore, multiple-shell intersections and technological interconnections
of regular shell-like bodies can be modelled fairly correctly or even completely
rigorously by a union of some number of shells, whose common boundaries are
spatial curves having their own mechanical properties. This point of view can be
also justified as follows.

Let us consider a material body (precisely, a region in the space occupied by a
body) B, which can be written as a union of some number of separate regular
shell-like bodies B, A=12,...,N, and rod-like bodies R®, a=1.2,...,n, i.e.

B =(USet BY) U(Un R) . (3.5)

Typically, each R@ will represent a region of multiple intersection or a
technological interconnection of regular shell-like bodies B,

Within an axiomatic formulation of the basic laws of continuum mechanics, the
forces and torques are assumed to be vector-valued, additive measures on the set
of pairwise disjoint subbodies. Without going into all details of this concept we
only note that this implies that the total force and total torque acting on the body
defined by (3.5) are the sum of forces and torques acting on each subbody:

IB)= FBEO)+>" FR),
T(B)=Y T(BY)+Y. TAR®).

By virtue of the results of Chapt. 2 and of Sect. 3.2, we can model the body B as a
structured continuum

(3.6)

M = (e MP)u (Ui £9) , 3.7)

which is the superposition of two-dimensional continua M (shells in the sense
of the previous chapter) and one-dimensional continua £ (having the properties
of rods in the sense of Sect. 3.2). The resultant total force and torque are thus the
appropriate sum of forces and torques given by (2.14) and (3.4).
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A structured continuum M defined in this way may be called an irregular shell or
the shell reference surface of an irregular shell-like body. Geometrically, M
represents a “multi-surface” and, according to (3.7), it is defined as union of
pairwise disjoint piecewise smooth, oriented and connected (but not necessarily
simply connected) surfaces M‘Y. Two or more surfaces MY may have in
common a piecewise smooth spatial curve £ being a boundary for all M. We
shall denote by £ the union of all such curves £“. Let us state it clearly that M is
not a surface in the sense of classical differential geometry but rather a union of
surfaces.

Admitting that £ is a one-dimensional continuum with its own mechanical
properties and using the method of Chapt. I1.2 and of Sect. 3.2 we can write down
at once the resultant total force and the resultant total torque acting on any part of
the irregular shell:

f(n) = ffmsz-l-faHn"dS-l-fnnsp‘ ds,

3.8
tUD=ff, A+yxp)dA+[, (m,+yxn)dS+[ . (:+y.xp)dS. (3:8)

Here n, and m, as well as p and / are defined exactly in the same way as for the
regular shell-like body. The physical meaning of the line force p, and couple I,
may vary substantially depending on the intended application of the theory.

In order to account for possible rod-to-shell interactions we can still enrich our
model by admitting concentrated forces and couples acting at distinct points of the
shell reference surface including the curves of intersections. In such cases the total
force and couple (3.8) should be replaced by

fun=[f . pdA+ n,ds

*J e Pe dS+2:=1f“ '
t(ID)=[[  A+yxpydA+ [ (m,+yxn,)dS

e Qe+ Yex pYAS +_(€at+Yoax fu),

(3.9)

where f, and ¢, are concentrated forces and couples acting at distinct points
Y, € M. Their physical meaning must be specified for each problem separately.

i
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4. Equilibrium equations and static jump conditions

4.1 Regularity assumptions. In the most general case the shell is represented by
the reference surface M, which is defined as a union of piecewise smooth surfaces
M® A=12,...,N. We shall further assume that each M is partitioned into
-disjoint smooth surface elments M, k=12,...,N,, in such a way, that within

) ?

every element M) all fields are continuous and smoothly differentiable as many

times as needed. We can then renumber the elements M) so that the reference

surface M will be a union of smooth surface elements M, k =12,...,n, where

n= 2:=1 N,. Two or more smooth surface elements M, can have in common a
piecewise smooth curve. We shall then denote by £ the union of all such curves. In
general, £ will represent kinks, multiple-shell intersections, technological
interconnections or a curve on possible smooth parts of the reference surface,
across which some fields may suffer jump discontinuities. With this convention,
we shall refer to £ as a singular curve.

The orientation of each element M, is specified by the unit normal vector Ay
being defined at every point ¥ € M. The boundary of M, isa closed piecewise
smooth curve M, with the outward normal vector denoted by ¥*). If the element
M, has a part of £as its boundary, then »* is defined by

YO =+, x AP, 4.1

where 7, denotes the unit vector tangent to £ The sign in (4.1) must be chosen in
such a way that the boundary aM, is consistently oriented with M,. The
boundary of the whole shell reference surface M will be denoted by aM and the
‘outward unit normal vector at each regular point of dM will be denoted by ». The
same notation and convention will be applied to any part of M.

Omitting concentrated forces and couples, which within the local theory must be
considered separately, and making use of the Cauchy’s theorem (2.15) the
resultant laws for shells (3.8) take the form

[fopdA+ [, NvdS+ [,  p.dS=0,

“2)
Jfne@+yxp)dA+ [ (Mv+yx MYdS+ [ (e+y.x p)dS =0,
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These two laws are assumed to hold for every part I C M of the shell carrying
surface M. As they stay, the only underlying regularity assumptions are those,
which ensure that the integrals in (4.2) make sense. However, in order to derive
the corresponding local laws stronger regularity assumptions must be imposed on
various fields in (4.2) as well as on their domains.

An essential initial step in order to derive the corresponding local laws is that of
choosing a class of deformations for the shell reference surface. The usual
assumption, as a rule implicit, that a deformation is injective (globally invertible),
differentiable with differentiable inverse would exclude many of the problems we
have considered in the previous chapters.

Generally, the deformation of the shell reference surface is described by a map
x: M - &, which assigns to every surface particle Y its spatial place y it occupies
in the current configuration,

y=xX)=Y +ud), (4.3)

where u denotes the associated displacement field. We shall assume that (4.3) is a
continuous function over each regular surface element My, and differentiable of
class C", n=1, in the interior int M, of each smooth surface element. Under this

assumption the gradient
FY)=VyY)EE®TL M, (4.4)

exists at every point Y €intM,,. We shall not assume a priori that the
deformation x: M — & is continuous across the singular curve £ or some parts

thereof. Accordingly, we regard (4.3) as being defined for all Y e M\ &, ie.
x:M\& - &, and it has a finite limit at every pointY € £,

YO = O ) = limy(2)=Y +fimu(Z),  ZEIl, (4.5)
whenever £is a part of the boundary aM(,.

We shall admit that the singular curve may follow its own deformation

Ye=xY)=Y +u, ), 4.6)
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where x,:£ -+ & is a continuous map defined only along the singular curve. If the
deformation (4.3) is continuous over the whole reference surface M, then (4.6)
should be regarded as being the restriction of ) to the curve £, 1.e. X, = Ye.

We shall also assume that the resultant stress tensor N and the resultant couple
stress tensor M are of class C", n=1, in the interior int M, of each smooth

surface element and that they have finite limits

N®X)=UmN(Z), M®X)=LmN(Z), Zell,, 4.7)
at every point Y € £ taken along paths in M.

4.2 Derivation of field equations. Under the assumptions stated in the previous
section, the boundary integrals in (4.2) containing N and M can be transformed
into surface integrals using the generalized surface divergence theorem®

f.oNvds=[f_ Div.NdA-[,__[n]ds,

. 4.8)
[, MvdS=[[_  DivMdA~[  [m,1]dS,
and
J.pxxNvdS=[[__(yxDiv.N+ad(NF"—FN"))dA “9)
- =) gLy %xn,1dS.
Here the jumps are defined by
[n, 0= n = 37 N®p®),
2:" = (4.10)
[m, D=2 m = 2L, M©v®,
and
CyxnJ= E:;y(") xnfd =" y®x N6y, (4.11)

Here it should be noted that F(¥ )€ EQ ;M and N(Y) € E® Ty M so that both
NFT and FNT are well defined, they are elements of the tensor space E ® E and
their difference NFT” — FNT is a skew-symmetric tensor, whose axial vector is '

8 The details of the proof are given in the Appendix E.
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ad '(NFT—-FNT) . 4.12)

Substituting now (4.5) and (4.6) into (4.2) and rearranging the terms the integral
balance laws are obtained in the form

ffmr_(Dlv"N.i-p)dA.*'fnm(pl —H:nv]])ds =0,
[f..(Div.M +ad™ (NFT —=FNT)+1+yx (Div.N + f))dA @.13)
+ [ e le—Lm, T+ y. x p.—Lyxn,1)dS =0.

4.3 Local equilibrium equations. Since the two integral laws (4.13) must hold
simultaneously for each part 71 C¢ M of the shell reference surface, and since the
assumptions stated above ensure that the integrands are continuous functions on M
except possibly at the singular curve £ the local (dynamic) equations of
equilibrium at every regular pointY € M\ £ are

Div.N+p=0,

Div.M +ad"'(NFT —FNT)+1=0. (4.14)

In order to express the equilibrium equations (4.14) in a more familiar form, let us
assume that M be given locally in the parametric form (see Sect. 1.4). Then the
deformation (4.3) may be expressed in the form

y(EM)=x¥ (¢")). (4.15)
The deformation gradient F at every regular point of M is given by
FX)=Fx¥)=y.¥)®ANY), (4.16)

where a comma denotes the partial derivative with respect to the corresponding
surface coordinate. It is worthwhile to note here that for the deformation gradient
to exist at a point Y it is not enough that partial derivatives y,5(Y) exist, but they
must also be continuous at that point.

Recalling further that N =n* ® A,, the tensor defined by (4.12) may be obtained
in the form
NFT—FN"=(n"® As)(A*® y,5)—(y,:0A% ) (A4, ®n")

4.17
=nA®y,A_y5A®nA=nAAy)A’ ( )

and the associated axial vector is given by
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ad " (NFT~FNT)=ad '(n* A y,s)=—n"xy,,. (4.18)
Moreover, the surface divergence of N can be expressed as |
Div,N =n'4, (4.19)

and the same form for the stress couple tensor M, where the vertical stroke denotes
the covariant derivative in the metric of the surface M. With the help of (4.17) and
(4.18), the equilibrium equations (4.14) take the form

nYy+p=0,

4,
mis+y,,xnt+1=0. (4.20)
With the definition of the covariant derivative
nA|A =nA,A —I‘FAIIA (4.21)
and
=LA et an,. (4.22)

\/—63"’

the equilibrium equations (4.20) can be rewritten in a form, which does not
contain covariant derivatives:

('\/Z"A)A +W/ZP =0,
(VAmA)4 +VA(y.a xnt +1)=0

The formal similarity of the equations (4.20) and (4.23) to those known in the
literature should not conceal the richness of their contents and the manner they
have been obtained here. But we postpone any discussion of this up to the next
chapter.

(4.23)

4.4 Jump conditions. In the integral laws (4.13) the integral along the curve £
must vanish separately. This leads to jump conditions at the singular curve to be

pl - l]:nv]] =0 ’

lL=[m,J+y,xp,—[yxnJ=0. (4.24)

With the use of the jump condition (4.24);, the second term in the jump condition
(4.24), may be rewritten in the form
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Yex pe=yex[n, =Ly, xn1. (4.25)

The jump conditions (4.24) can also be expressed in an equivalent form

P _u:nv]] =0$

L~[m, 1+ L(y. - y)xm,T=0. (4.26)
Taking further into account that
Yemy= 1) - O@)=u @) ~u®¥), Yee,  (427)
. the second of the jump conditions becomes
L—[m,J+[(u,—u)xn,]=0. (4.28)

Various special cases can now-be examined in detail under suitable regularity
assumptions. But we postpone such an analysis until subsequent chapter.

5. Static boundary conditions

5.1 Integral form of 3D boundary conditions. Within the three-dimensional
theory the shell-like body is subjected to the external body force f(X) acting at
each interior point X € B and external surface forces given on a part of its
boundary. The surface forces acting on the shell faces are included in the
definition of the resultant surface force and couple vectors. Denoting by t'(X) the
surface force acting on a part dB; of the lateral surface aB°, the traction boundary

conditions take the form:
T(XIn*(X)=t(X), X €oB;. 5.1)

In order to obtain the resultant traction boundary conditions for the shell we
consider the following integral form of (5.1),

ffaB} (Tn® ~t7)dA® =0, ."f.ala;:“”((T“o_t‘)dA<> =0, (5.2)

where the deformation of the shell-like body is represented in the form

x(¥,8)=x(X¥ ,8)=y¥)+I¥.8). (5.3)
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Applying to (5.2) the same technique, which has been used to derive the resultant
balance laws, we can formulate the resultant dynamic boundary conditions for the
shell.

5.2 Resultant traction force and couple vectors. We denote by oM, = M N B}
the part of the boundary of the shell reference surface, which corresponds to the
lateral surface on which the external surface loads are prescribed. Using (5.3) and
the geometric relation n°dA° =n’a’dEdS for the oriented area element of the
lateral surface we have

[y (Tt =) aa* = [, (7(Tn* — €02k ds,

+ + . (54)
[ %% (T =€) = [, (yx [2(Tn® =€)’ + [7{x (T~ )a"dE ) ds

By virtue of the definitions of the internal resultant stress and stress couple vectors
we have (see Chapt. I1.2)

[Ineacdé=Nv, [‘txTn'a’dE=Mpy. (5.5)

By the same arguments the resultant boundary force and couple vectors, which are
statically equivalent to the prescribed external load, are defined by

n¥)=["Cads, m¥)=["txt a%dk. (5.6)

5.3 Resultant boundary conditions. In view of (5.5) and (5.6), the integral form
(5.2) of the traction boundary conditions reads

Jou, N¥—n")dS =0,

faMf (Mv—m"l'yx(Nv—n'))dS:O, CN))

By implication, the resultant dynamic boundary conditions at each point ¥ € oM,
take the form '

N¥pX)=n'¥), MYWEY)=m'¥). (5.8



Chapter il

Kinetics of the shell

1. Virtual work identity

1.1 Summary of dynamic equations. Considerations of the previous chapter have
led us in a clear and logic way to the complete set of dynamic shell equations
implied by basic laws of continuum mechanics. In the local form this set of
equations consists of:

the (dynamic) equilibrium equations at every regular point Y € M\ & of the shell
reference surface;

Div;N +p =0, Div.M +ad '(NFT—FN")+1=0, (1.1)
the (dynamic) jump conditions at every point Y € £ of the singular curve £,
p:—[nJ=0, L—Lm,J+0(y.—y)xn]=0, (1.2)

the (dynamic) boundary conditions at every point Y €M, of that part of the
boundary of the reference surface, along which the external resultant force and
couple vectors are prescribed,

Nv=n,, Mv=m,. (1.3)

The equations (1.1)-(1.3) appear to be all, what can be extracted from the
underlying laws of three-dimensional theory by a most direct and natural approach
involving no assumptions or ad hoc postulates whatsoever. While exact in this
sense, this set of equations is obviously not complete, and it provides solely a firm
foundation on which the theory of shells can be built. There is still an obvious lack
of suitable kinematic variables, kinematic boundary and jump conditions, and
appropriate constitutive relations.
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In all foregoing considerations the only obvious kinematic concept has been the
one of deformation of the shell reference surface. However, the kinematics of the
shell is not merely the kinematics of its reference surface. The presented.exact
reduction of the problem from three to two dimensions enriches each particle of
the reference surface with extra degrees of freedom. This is evident from the
structure of the dynamic equations (1.1)-(1.3). Recalling the definitions of the
resultant stress vectors n and the resultant stress couple vectors m*, it becomes
obvious that both have all three components with respect to any basis (typically,
two tangential components and one normal component). Thus, in scalar form the
equilibrium equations (1.1) constitute a system of six independent equations
involving six resultant forces and six resultant couples. Also, the dynamic jump
conditions (1.2) and boundary conditions (1.3), when expressed in component
form, constitute a systems of six scalar equations. For the shell reference surface
to support these dynamic equations, extra kinematic variables are needed besides
its deformation y=x(¥). Referring to x as the translational or macroscopic
deformation, extra kinematic variables which the shell reference surface should be
equipped with may be called internal or microscopic variables.

The crucial point in the theory is the derivation of a sufficiently general concept
for the kinematics. In effect, the way this concept will be introduced will delimit
the resulting structure of the shell theory. The usual treatment is based either on ad
hoc postulated kinematics of the shell (direct approach) or it involves the
representation of the three-dimensional deformation of the shell-like body as a
given a priori function of some two-dimensional independent kinematical
variables. In effect, the kinematics of the shell is no more no less but the basic
postulate of the theory and the results to be obtained are embedded in the
assumptions laying at the starting point.

.Another way in approaching the problem is to take as a reasonable anticipation
that the shell kinematics, like the dynamic shell equations, should be an outcome
of the analysis, and not the basic postulate of the theory. This is exactly the point
of view, which we take here. To this end, we first derive some integral identities,
which are natural implications of the dynamic shell equations (1.1)-(1.3).
Although our considerations are restricted to the quasi-static case, we shall
consider not a single equilibrium state of the shell but a one-parameter family of
such states. Consequently, we shall consider a one-parameter family
y=x.Y)=yx{,t) of deformations of the reference surface. We may regard t € 5
as time or just as a real parameter. The underlying maps x.: M = & can then be
referred to as a real or virtual motion of the shell. For simplicity of presentation we
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shall speak about the motion of the shell, and we define the time derivative as
partial derivative with respect to ¢ keeping Y fixed. Moreover, like in dynamic
considerations, we admit that the motion of the shell reference surface needs not
be even continuous across the singular curve £, which may follow its own motion
y.=x.,t). If the motion is continuous over the entire reference surface, then ¥,

is defined to be the restriction of ) to the singular curve £

1.2 Virtual work expressions. Let v(Y,t) and w(Y,t) be any two vector fields
defined over the shell reference surface, except possibly -at the singular curve.
Thus, the fields v and w need not be defined along £. Let v,(Y,t) and w,(Y,t) be
two other vector fields defined along the singular curve £ In the special case we
may regard (v,,w,) as the restrictions of (v,w) to-£

Taking the dynamic shell equations (1.1)-(1.3) as the starting point, we shall
consider the following expressions:

(DivN + p)+*v +(Div.M +ad " (NFT ~FNT)+1)w, (1.4)
(ny—Nv)ev+(m, —Mv)sw, (L.5)
(pe—~nT)+ v+ (L —Tm, I +L(ye— y)x mT) o we, (1.6)

which are well defined at every point of M\ £, dM; and £, respectively. Taking
the integrals of (1.4)-(1.6) over corresponding domains and adding the results we
obtain

=~ [, (Div:N + p)ev +(Div.M +ad"(NFT —FN")+1)+w)dA

+ [, (pe—[nT)eve+(le—[m,+[(y. — y) x m,]) ) * w, ) dS (L.7)
+ [, (= N¥) ey +(m; —My)ow)dS .
The minus sign preceding the first integral in (1.7) is convention. The physical
meaning of-this expression is actually self-evident, but at this stage of analysis this
needs not be our concern and all subsequent considerations can be regarded as
purely formal. Let us only note that the quantity defined by (1.7) is in effect a set
function having the entire shell reference surface and the fields v = (v,w,v,,w;) as
its arguments. To emphasize this fact we may write W =1(M;v). It may also be
noted that we can equally define 1W(IT;v) for any part JIT C M of the reference
surface.
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In order to obtain a more convenient form of W =1(M;V) we assume that the
fields v and w be of class C", n =1, within the interior of each smooth part M, of
the reference surface, and they have finite limits v (¥') and w®(Y) at every point
Y € £ taken along paths in M, i.e.

v®¥)= ‘lziﬁzv(Z), w®X)= éi_?]}}W(Z), ZeMgy. (1.8)

Moreover, we assume that the deformation of the reference surface and the
resultant stress tensors satisfy the regularity conditions of Sect. I1.4.1. Under these
assumptions the generalized surface divergence theorem together with the
following differential identity

(DiviN)*v =Div(NTv)— N *I[v (1.9)
yields
ffM\.e(Disz).va:_ffM\EN.ZVM (1.10)
+ [, [n,*v]dS+ [ Nvevds.
In exactly the same manner
fme(Diy,M)owdA=—ffM\£M-ldeA (w11
+ [ Im,owldS+ [, Mvewds.
Here the jumps at every point ¥ € £ of the singular curve are defined by
[n,ev]=Y n@ep® =" N®y®p®
Ek=1 Ek=1 (1'12)

n

[m, ew]= :=1”"$k) oy = z M ©p®) o 0

k=l

"The boundary of the shell reference surface can be written as union of two
mutually complementary parts oM, and oM,, dM =dM; UdM,. Then integrals
along dM can be expressed as sum of two parts:

faMNVOVdS =faMva.VdS+faMde.VdS’

(1.13)
JuMyewdS=[, MyewdS+[ Mvewds.

With the use of (1.10), (1.11) and (1.13) the expression (1.7) can be rewritten as
w(M;v) =1, (M;v)+1Ww,(M;v)—w,.,(M;V), (1.14)
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where

0 (M:v) = [, w(¥)dA, (1.15)

wEN°Zv+ad"'(NFT—FNT)°w+M-IZw (1.16)

may be called the internal virtual work (or the stress power),
(&) = [, wi(¥)dSs , (1.17)

wi=peevi+lew,+[n,ev]—[nJev,

+[[mvow]]—l]:m,:[lowe+|]:(y_ye)xnv]].w£ (1.18)

the virtnal work (or the mechanical power) of all forces and couples acting along
the singular curve £, and

W (MV)= [, (pev+lew)dA+ [, (n"ev+m’+w)dS

1.19
+[,, (Nvev+Myew)ds (L1

the virtual work of external forces and couples acting on the shell reference
surface and along its boundary, respectively. While these names are fully justified
by the involved quantities, for the time being, they can equally be regarded as just
convenient names. Let us only note that the last integral in (1.19) includes
unknown resultant force and couple vectors being the reactions to possible
constraints, which can be imposed on the deformation of the shell along the part
oM, of the boundary dM .

1.3 Stress power density. Let us denote by W: M\L > EAE the field of skew-
symmetric tensors associated with the vector field w, i.e. W = adw at every regular
point of the reference surface. Then

ad (NFT —FNT)ew =%(NFT—FNT)-W . (1.20)

From the classical property of the inner product of tensors we further have

NF"+W =N WF ,
FNT«W =N"+F'W =NT«W'F Y (1.21)
=—NT+(WF) =—N *WF,

and (1.20) is obtained in the form
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ad™'(NFT—FNT)ew =N «WF . (1.22)

Substituting (1.22) into (1.16) the stress power density (or the internal virtual
work density) takes the form

w=Nelv—WF)+M-l[w. (1.23)

Since (1.23) is defined only at regular points of the reference surface, it can be
rewritten in a more familiar form using surface coordinates. In local coordinates
the surface gradients of the fields v and w are given by

Mv=v,@4%, Vw=w,,04". (1.24)
Consequently, we have

N- V,V =(nA ®AA). (VQX®AE) =pAe VA

1.25
Mw=(m*@A )+ (w,s@A%)=m"*w,,. (1.25)

Moreover, keeping in mind that W is a skew-symmetric tensor, whose axial vector
is w, we have

N WF =(n"®As)+W(y,r®AT)=n"«(y,4xw). (1.26)

Substituting (1.24) and (1.26) into (1.23) the internal virtual work density is
obtained in the form

w=nte( s+ yaxw)tmiow,, . 1.27

Using the obvious relations

[n, evl—~[n,Jev,=[n,(v—v,)1,

[m,swl—0[m,Jew,=[m,(w—w,)] (1.28)
and the standard vector identity

[y—y)xnJew, =Ly —y)xn)ewl=[n,+(y-y)xw)l, (1.29)
the virtual work density (1.18) along the singular curve is obtained as

We=|]:nv‘("e—" +(ye—y)x Wz)]]"'[mv'(Wz—w)]]—Pe°Ve—lz'Wt . (1-50)
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1.4 Statement of the problem. The foregoing considerations show that if the
equilibrium equations (1.1), the static jump conditions (1.2) and the static
boundary conditions (1.3) hold, then

W(M;V) = 10, (M;v)+10,(M;V) — ., (M;v) =0, (1.31)

for every set v = (v,w,v,,w,) of vector fields satisfying the regularity assumptions
stated in Sect. 1.2. Conversely, if (1.31). holds for every set v =(v,w,v,,w,) of
vector fields satisfying the same regularity assumptions, then the equilibrium
equations (1.1), the static jump conditions (1.2) and the static boundary conditions
(1.3) hold.

With the theorem (1.31) as the starting point we can now state the problem of the
kinematics of the shell theory in a clear manner. By the way of preparation let us
first make clear the physical sense of the above theorem.

The equilibrium equations (1.1), the jump conditions (1.2) and the boundary
conditions (1.3) represent in the local form the balance laws of forces and torques
acting at each regular point of the shell reference surface, at each point of the
singular curve, and at every point of the boundary, respectively. Accordingly,
W, (M;v), w,(M;v) and v,,(M;Vv), respectively, represent the associated virtual
work densities. In effect, the theorem (1.31) expresses the principle of virtual work
with v=(v,w,v,,w,) being the test functions, more often called the virtual
displacements. However, it must be stressed that the term “displacement” has to be
understood here in a generalized sense. The local dynamic equations (1.1)-(1.3)
are implications of the overall resultant balance laws .expressed entirely in terms of
through-the-thickness resultant quantities. Accordingly, the theorem (1.31), which
has been derived from those equations, expresses the overall resultant balance
laws in a weak form.

As to the theorem (1.31), we note that the stress tensor N(Y,t) and the stress
couple tensor M (Y,¢) represent through-the-thickness resultant stresses within the
shell-like body. Accordingly, the expression (1.23) is just the overall virtual work
performed by internal stresses with

Vv —WF , Vw, (1.32)

as the work-conjugate, overall virtual strains. In general, these virtual strains need
not be related to the virtual displacements ¥ =(v,w,v,,w,). The theorem (1.31)
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shows that they are related by the formulae (1.32) in every dynamic equilibrium
state of the shell.

The problem to be solved can now be stated in the following way: find the real
motion of the shell and the real strain measures, whose virtual counterparts are
v =(v,w,v,,w,) and (1.32), respectively.

2. Overall motion of the shell

2.1 Translational and rotational motion of the shell. If we take the motion
y=x{,t) of the shell reference surface as the primary kinematic variable, then
the inspection of the virtual work expression (1.15)- (1.19) shows that the field
v(Y,t) entering those expressions should be regarded as the associated virtual
motion or, what means the same, the associated velocity field. In other words, the
translational velocity, with which the shell transverses the space, is defined as time
derivative of the motion y = y(¥,?), i.e.

v¥,0)=3(¥,1). @.1)

Fig. 1

However, we can also set the problem in the inverse form. Taking a field v(Y ,t) as
primary variable, we want to find a one-parameter family of maps y,: M - & such
that (Fig. 1) ‘

% 1¥.0=v¥,t), Vies. (2.2)
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From the theory of first order differential equations it follows that the solution of
(2.2) exists whenever suitable regularity assumptions are satisfied. In the language
of differential geometry, ¥, is the flow of the vector field v.

Now it becomes clear that extra degrees of freedom, with which the carrying
surface is equipped, must have the field w(Y,t) appearing in the virtual work
expressions (1.4) as the virtual counterpart or, in an other interpretation, as the
velocity field. Formally, this problem can be set in the following way. Given a
vector field w(Y,?), find a one parameter family of maps Q,: M - EQ E by
Q=0 ,t), such that

g?Q(Y,t) =W¥.00F,1), WE,)=adw(¥,r). (2.3)

Here and in the sequel for simplicity of writing we use the same symbol Q for the
map and its values leaving the context to make clear, which one is meant. Since
W({¥,r) is a skew tensor, the solution of the differential equation (2.3) is the
rotation tensor. Thus, the extra microstructure of the carrying surface is
determined by the field of rotation tensors, which equips every point of M with
three rotational degrees of freedom, Q,: M - SO(3), where SO(3) denotes the

rotation group.

2.2 Angular velocity fields. A velocity field associated with the rotational motion
of the shell can be defined in the same way as the translational velocity field, i.e.
as time derivative of a given motion Q, : M - SO(3). However, since SO(3) lacks a
vector space structure, a greater care is needed in the calculation of the time
derivative of the rotation tensor. The basic fact here is that SO(3) is the three-
dimensional Lie group. Hence, for any fixed point ¥ € M -the rotational motion of
Y is a smooth curve on the rotation group. Then the time derivative Q(t) at a fixed
time instant # is an element of the tangent space to SO(3) at the “point” Q(¢), that
is an element of the vector space T,SO(3). In this consideration Y is an arbitrary -
but fixed point of M and we simply. write Q(z) instead of Q(Y,z). The tangent
space TpSO(3) is isomorphic in two ways with the tangent space at the identity
(Fig. 2), which is the vector space of skew-symmetric tensors 7;SO(3)=EAE.
The two isomorphisms of these vector spaces are determined by the left and right
translation on the group SO(3). Using these facts we easily find the time derivative
of the rotational motion @, : M - SO(3) of the shell in terms of angular velocity
fields.
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Fig. 2

The angular velocity fields can also be derived from elementary calculations in the
following way. The rotation group SO(3) can be considered as a “hypersurface” in
the vector space E ® E of tensors, i.e. the vector space of linear maps of E into
itself. Then we can consider Q,: M - SO(3) as a map having ‘E ® E as its range
and satisfying the constraint

OX,nQX,0)" =0(Y,1y Q¥ ,1)=1. (2.4)

Within this setting the time derivative Q(¢) has the meaning of derivative in the
usual sense, and the differentiation of (2:4) yields

OX,H)=W{¥,H00F,))=0F,)W({Y,1), (2.5)
where the two tensors
W{¥.n=00", W{Y¥,n=0"0, (2.6)
are necessarily skew-symmetric. We shall denote by
w¥,)=ad"W¥,t), w{¥,f)=ad'W{¥,1), Q2.7)

the corresponding axial vectors. These two vectors, equivalently the skew tensors
W and W, represent the angular virtual motion or the angular velocity field. This
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terminology is justified by the rigid body dynamics. Moreover, as simple
implications we have the following relations

W =0WQ", w=0w. (2.8)

The first of these relations is a direct implication of (2.5), the second one follows
from the property of the map-ad,

ad™'(QWQ")=0(ad"'W), (2.9)

which is true for.any two skew tensors and every rotation tensor.

For our subsequent considerations another point is to be noted. The fields (2.7)
represent the same virtual or real angular velocity of the shell in two
representations. This is the direct consequence of the fact that the tangent space
T,50(3) is isomorphic with the tangent space at the identity of the group (this
space is in turn isomorphic with the Lie algebra of the group). An important
implication of this fact is that all shell equations have also two entirely equivalent
representations. Moreover, various kinematic and dynamic variables of the shell
theory in the two representations are related through the formulae similar to (2.8).
In particular, it will become clear in the next chapters that it is convenient to
introduce-the translational velocity field defined by

v(Y,t)=0X,)v(Y,?), (2.10)

in correspondence with the angular velocity fields.

2.3 Moving triads. To determine the rotational motion Q, : M -> §O(3) of the shell
we have taken the field w(Y,?) as the primary kinematic variable. This means that
Q(Y,t) determines the change of extra degrees of freedom with which the shell
reference surface is equipped, and not the degrees of freedom themselves. Such
degrees of freedom must be specified independently in every configuration of the
shell reference surface. This can be done in. many ways, but it is clear that it is
enough to specify the extra degrees of freedom in the undeformed configuration
M. The corresponding degrees of freedom in the current configuration x.(M) are

related through the tensor Q to their counterpart in the reference configuration.

In the most general case the extra degrees of freedom of M can be specified by any
invertible tensor field T,(Y). Then its spatial counterpart is the invertible tensor
field T (y,t) related to To(Y ) by
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T(x(Y,),1)=0F ,0)Iy(Y). (2.11)

Let us note that neither To(Y) nor T'(y,t) need to be rotation tensors, but solely
invertible tensors. Since T,(Y) is a nonsingular tensor, it can be specified by
assigning to each point Y € M the triad {Dx(Y )} consisting of any three linearly
independent vectors (Fig. 3). We can also introduce the reciprocal triad, which is
defined pointwise in the usual way

DX(Y)D,(Y)=0f. (2.12)

Fig. 3

The triad {Dx(Y)} may be defined in any convenient way. For example, by the
relation

Dr(Y)=To(Y )ex , (2.13)

"where {ex} denotes a fixed orthonormal basis in the space. Then from (2.12) we
have

DXXY)=Ty'(Y)eX, eX=eg. (2.14)

This definition is very convenient in the formulation of shell finite elements. Let
us note here that the triad {Dx(Y )} can be defined in a continuous manner even if
the reference surface M itself is not smooth (Fig. 4). Moreover, without loss of
generality we can always take

DY)=D,(Y)=D*Y). (2.15) |
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Fig. 4

As special case we can take the anholonomic triad {Dx} to coincide with the
natural triad for the chosen surface coordinates:

{Da,D}={As, Ay},  {DA,D}={A% Ay} (2.16)

More generally, we can also define the anholonomic triad in terms of the natural
triad, namely

Dy =TAx, D*=(I7")Y'A". (2.17)

However, the choice of the anholonomic triad in the form (2.16) or (2.17) is
convenient only for smooth shells. Therefore, in general considerations it is
preferable to leave unspecified the particular choice of the anholonomic triad.

For any choice of the anholonomic triad {Dx} over the undeformed shell reference
surface M we can define at each point y € y(M) of the deformed shell reference
surface the triad {d,(y,¢)} and the reciprocal triad

d*(y,t)~d\(y,r)=0} (2.18)
such that
d.(Y,t)=0f0,t)D(Y), d4Y,H)=080F,1)D*Y). (2.19)
Taking the time derivative of (2.19) and using the relations 12.5) we obtain |
d, =650Dy =Wd, = 5fQ(WDy), (2.20)

or in terms of the associated axial vectors
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d, =wxd,=0fQ(wxDy). (2.21)

Fig. 5

The same formulae hold for the reciprocal triad. Now we can solve (2.21) for the
angular velocity

w =-%d* xd, = —%Jk xd*. (2.22)

This result can also be derived by direct calculations if we note that (2.19) implies
the following expression for the rotation tensor

Q =6kxdk ® DX = 6fdk ® DK . (2.23)

Then the time derivative of (2.23) is given by

Q0 =6kd, ® DX =6fd* ® Dy . (2.24)
By implication,
W =040Ld, @D e D,y =853Ld, @ DD, ®d).  (229)
Hence
W=d,@d" =d"®d,. (2.26)

Since W is a skew tensor, we have

W =d, rd*=d*rd, (2.27)
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whose axial vector is given by (2.22).

It is now an easy task to show that components of the velocity fields v and w taken
with respect to the moving triad {d,} are equal to the components of the velocity
fields v and w with respect to the referential triad {Dy}. Indeed, setting

v=vydt=v4d,, w=wd*=wtd,, (2.28)
from transformation rules (2.10) and (2.8) we have
v=wDX¥=ykD,,  w=wyD¥ =wXDy, (2.29)
where

Vi = ofvy , w, =0Kwy . (2.30)

2.4 Virtual displacement and rotation. Within purely static considerations various
kinematic fields can be interpreted in a different manner, but their sense remains
unchanged. Let y = x(¥) and @ =Q(Y) be a given deformation of the shell. Then
for any vector fields v(Y) and v(Y¥') and any two skew tensor fields W(Y) and
W(), the virtual deformation of the shell is defined as a one-parameter family of
deformations given in the form (suppressing the argument Y for simplicity of
writing)

yA)y=y+iv=y+iQv,
O(A)=exp(AW)Q = Qexp(AW),

where A denotes a real parameter. In this context (v,v) and the axial vectors (w,w)
associated with the given skew tensors y ywy can be referred to as virtual
displacements and virtual rotations, respectively. Setting 4 =0 in (2.31) we obtain
the given deformation of the shell. Then the virtual change of the given
deformation is defined by

(2.31)

oy = %y(l)lm , O00= %Q(/‘t)h:o . (2.32)

Now a simple calculation shows that

oy=v=0v, O0=W0O=0W. (2.33)
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Thus, the resulting formulae are exactly the same as those derived in the previous
sections.

2.5 Kinematics of irregular shells. So far we have considered the kinematics of
the shell only for regular shell-like bodies. In order to model various irregularities,
such as multiple-shell intersection, technological interconnections, etc., we have
introduced the concept of irregular shells (Chapt. I1.3). In such cases the above
considerations should be regarded as being referred to points of M\ £ only, while
the singular curve £should be allowed to move and deform in its own way. This is
reflected in the form of dynamic jump conditions (1.2) and in the corresponding
virtual work expression (1.30), which contains the motion y, = y.(Y,t) of the
singular curve and the virtual fields v,(Y,¢) and w,(Y ,¢) along this curve.

. By the same arguments, which have led us to the real translational and rotational
motions of every régular part of the shell, we can determine the real translational
and rotational motion of the singular curve. They are related to the virtual fields by

1Y, )=v,(Y,)=0,Y,0)v(Y,1) (2.34)
and )
0¥ ,) =W, ,0Q.(Y,)=0:(¥ ,HW(Y ,1), (2.35)

where O, =0,(Y,t) is the field of rotation tensors. The angular velocity fields
along the singular curve £ are then defined in the same manner as at regular points
of the reference surface. They also obey the relations identical to those of (2.8).

Like for regular parts of the shell, the rotational degrees of freedom of the singular
curve can be specified by the triad {Dx(Y)}, assigned at every point Y € £ and the
triad {d,(y,t)}. at every point y € x.(£,¢). These triads are related by

dy(Y,)=0,Y,)D(Y), dx(Y,t)=0kd ()Y, 1),1). (2.36)

The corresponding reciprocal triads and various relations can now be derived in
the same manner as in the foregoing considerations.

Thus, in the most general case the complete description of deformation and
kinematics of the shell requires introduction of two sets of kinematic variables.
The first set consists of the deformation function ¥ of the shell reference surface
and of the rotation tensor Q representing the mean rotation of the shell cross
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sections, both being defined at all points of the undeformed reference surface M
except possibly at a singular curve £ The deformation of the curve £ itself is
specified by the second set consisting of the deformation function ¥, and the
rotation tensor Q.. In the special case when the deformation of the shell is assumed
to be smooth, x, and @, will denote the restrictions of ¥ and @ to the curve £

3. Local déformation and strains

3.1 Surface deformation gradients. We have shown that the motion of the shell is
completely determined by :

xn:M-=>6, Q:M->S003), 3.1)

Having the description of kinematics of the shell, the next step is to obtain a
suitable description of strains and strain rates (equivalently, virtual strains). The
general theory of strains for shells substantially differs from the theory of strains
in classical continuum mechanics. The main difference is threefold:

" 1) The shell is a “curved continuium” imbedded in the Euclidean space (each
configuration x,(M) of the shell reference surface isa geometric surface and
not a region in the space & ). Hence, in the analysis of strains not only the
changes of distances between surface particles but also changes of curvatures
must be taken into account.

2) The shell is a two-dimensional continuum having an internal structure (each
particle of the reference surface has extra degrees of freedom). Consequently,
strains in the shell are of two kinds.

3) The internal structure of the shell is not a vectorial one (the rotation group
SO(3) is not a vector space but a Lie group).

All these facts must be taken into account in the analysis of shell strains.

For a fixed time instant ¢, the two maps (3.1) determine the global deformation of
the shell relative to the reference configuration. Assuming that these maps be
differentiable at all points of M, except possibly at points on the curve £ we
denote by

FY.t)=kxX,t), F¥,)=KQ¥,t) (3.2)
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their surface gradients. It is clear that F(Y,)e E®@ Ty M, as we have already
pointed out in many places. On the other hand, strictly speaking, Q(Y,t) is not
defined, since the rotation group SO(3) lacks a vector space structure. Leaving
aside for a moment this aspect, we note that the deformation gradients (3.2)
approximate the deformation maps (3.1) to within the first order. As such, they
provide the basic measures of the local deformation of the shell. However, it must
be stressed that the local deformation of the shell depends also on the rotation
tensor @(Y,¢) and not only on its gradient Q(Y,t). Moreover, to determine the
local deformation associated with the change of curvatures of the reference surface
not only the deformation gradient F(Y,t) but also the second gradient of y, is
needed. These are the main differences in comparison with classical continuum
mechanics.

Using local surface coordinates (§4) on the undeformed reference surface M, and
possibly independent coordinates (§*) in the current configuration ¥,(M), the
translational motion of the shell is given by

yEAY=x(¥ (1)), EF=EP(EAD). (3.3)

Hence, its deformation gradient reads

B
F=y,8A°=Ea,® A, E sjgi,,. (3.4)

Assuming that the deformation of the reference surface be locally invertible, the
inverse deformation is described by

YEY=x'(y(& 0,0, E'=ENED). (3.5)

Consequently, the inverse deformation gradient is given by

A
F'=Y,@d =4, ®a", & sg—gg. (3.6)

Moreover, we have the obvious relations

E36f =05, EEa=0h. 3.7

3.3 Surface gradient of the rotation tensor. In order to calculate the surface
deformation gradient of the rotational motion of the shell we can proceed in two
ways, which we have pointed out in Sect. 2.2. The first way requires to base our
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calculations on the theory of Lie groups. The second one, which we take here, is
based on the fact that the rotational motion of the shell can be regarded as the map
0;: M —-»SO(3)C E®E having the tensor space E®E as its codomain and
subjected to the constraint (2.4). Then the surface gradient operator is well defined
and QY ,t)e L(z M,EQE).

In terms of surface coordinates the rotational motion of the shell is given in the
form

Q(E4,D=0X (")), (3.8)
so that the gradient can be written as
ROY,)=0.,(Y,)® AL(Y). (3.9)

Moreover, since Q is the rotation tensor, its partial derivative with respect to the
surface coordinates can be expressed in the form

0.4=K,0=0Ky,, (3.10)

where K,(Y,?) and K,(Y,t) are necessarily skew-symmetric tensors whose axial
vectors we shall denote by k4(Y,#) and k(Y ,t), respectively, i.e.

K1s=0,40" =adky , Ki=0"0.x,=adk,. (3.11)
We can then define the following third-order tensors
KY,)=K,®A%, KY,))=K,®A". (3.12)
It is seen now that Au and [Ku are skew tensors for every vector u€ ly M, i.e.
KY,t),K¥,H)e L(lyM,EAE). (3.13)

In effect, the above definitions and the derived results are two-dimensional
counterparts of the calculations which we have carried out to obtain the angular
velocity fields. Likewise, they are direct implications of the fact that the tangent
space to the rotation group is ismomorphic in two ways with the space of skew
tensors. This becomes obvious if we regard I[Q(Y,?) as the tangent map of the
rotational motion (3.1);. Then KQ(¥,t)€ L(Ty M, Ty »SO(3)) and all facts

mentioned in Sect. 2.2 apply.
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3.4 Strain measures. As basic measures of the local deformation of the shell we
have (F,Q, /). The above considerations show that, equivalently, we can take the
triples (F,0Q, k) or (F,Q,K). From them we can derive various strain measures
and there are many possibilities. Among various possible strain measures there are
some which are naturally distinguished by the dynamic shell equations, namely,
those which are work-conjugate to the resultant stress and stress couple tensors. In
view of the second theorem of Sect. 1.3, the problem to be solved is: find the
strain tensors whose appropriate rates (or virtual changes) are tensors given in
terms of the virtual displacement and rotation by relation (1.32).

Having in mind that there are two equivalent sets of velocity fields we can expect
that there are also two equivalent sets of strain measures. In fact, we shall show
that work-conjugate to the resultant stress and stress couple tensors N(Y,t) and
MY ,t) are the strain tensors E(Y,t), K(Y,t) € E® Ty M defined by

E=F-0QI, Ku=ad '(ku), YuehyM. (3.14)

Let us recall that I(Y)e E®Ty M denotes the inclusion map, and the rotation
tensor Q is regarded here as an element of the space E ® E. The inclusion operator
can be expressed in the form I =Y,,®A4, and we easily find that the strain
tensors (3.14) can be expressed in the form

‘E=eA®‘AA) eA=y,A_QY’A’

3.15
K=ks®A%, kyi=ad(Q,40"). G19
Equivalent strain tensors E(Y,#), K(Y,z) € E® Ty M can be defined by
E=Q'F-1, Ku=ad'(Ku), VuehM. (3.16)
In terms of surface coordinates these tensors are given by
— A =0Ty . —
E=e,8A4", e1=0"y.4-Y,., 3.17)

K=k,®A%, Kki=ad(Q70.,s).

Let us note that &u and [Ku are skew tensors for every vector u € Ty M, so we can
compute their axial vectors. Thus, the two tensor fields K and K defined by (3.14),
and (3.16), are well defined. These two definitions are equivalent to

(Ku)xw =(ku)w, Ku)xw =(Ku)w, YueyM, weE. (3.18)
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From their definitions and the properties of the ad map we easily see that the two
sets of strain measures are related by

EY,t)=0X 0 )EY,t), KX.t)=0F,)K{T,?) (3.19)
and
ex=Qe,, kyi=0ks, Ki=0K.Q0". (3.20)
Components of the strain measures (3.15) are defined by
ea=E,d*+Ed, ki=dx(K,d*)+Kid. (3.21)
Then, from (3.20) we obatin
e,=Er,D"+E,D, k,=Dx(KryD")+K,D, (3.22)
where
Eipn=0LEr,, Kua =0LKra . (3.23)

Thus, the strains in the two representations have the same components but referred
to the initial and rotated triads, respectively.

3.6 Strain rates. Differentiation of the stretch tensor (3.14), with respect to time
yields

E=F—-0I=¢é,®A". (3.24)
In view of (3.2) and (2.5) we have
F=lpy=py=pv=v.04", Q=WQ. (3.25)
Substituting (3.25) into (3.24) yields
E=F —-WF +WE . (3.26)

Comparing (3.26) with (1.32); we now see that the rate of the stretch tensor E is
given by

0,E =E ~WE =F —WF =Fy—-WF . 3.27)

Moreover, in view of (3.15); we obtain
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6‘E=6,8A ®AA, 6,8,1 =éA—WX8A=V,A +y,Axw. (328)

Somewhat lengthy calculation based on definitions (3.14), shows also that the rate
of the bending tensor is given by

e OK=K-WK=Fw. .. . .. (329

It is next interesting to observe that equivalent definitions of the strain rates are
S,E =Q(%(QTE)) . K= Q(%(QTK)] . (3.30)
Moreover, directly from the relations (3.19) we obtain
SE=QE, O0K=0K. . ' (3.31)
From the component representation (3.21) of strains we have
Sr=FE d*+Erd, Okp=dx(Kid®)+Kad®. (3.32)
Moreover, since the initial triads are time independent we obtain

éA =-E.I1"ADF+E.'AD, I.‘A =DX(K['ADT)+ KAD. . (333)
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4. Kinematic side conditions

4.1 Kinematically admissible deformation. In Chapt. I1.5 we have shown that it is
rather a simple matter to formulate the resultant static boundary conditions for the
shell. Given a three-dimensional distribution of external force t'(X) acting on a
part 8B} of the shell lateral surface dB° we have derived the statically equivalent
force vector n*(Y) and couple vector m*(Y) acting along the corresponding part
oM, = M NoB} of the boundary of the shell reference surface. Then the resultant
static boundary conditions follow naturally from the balance laws of linear and
angular momentum applied to the three-dimensional boundary element. We have
also seen that the static jump conditions flow naturally out from the integral
balance laws (Chapt. I1.4). It may also be noted that the boundary conditions can
actually be regarded as a special case of the jump conditions.

A different approach is needed in order to derive resultant kinematic boundary
conditions and kinematic jump conditions. In general, they cannot be obtained
directly from corresponding three-dimensional boundary and jump conditions, but
should rather follow from the two-dimensional integral (virtual work) identity
derived in Chapt. III.1. Taking into account the kinematic relations (3.27) and
(3.29) the virtual work identity (1.31) can be rewritten in the form

[,y (N*SE+M+5K)dA= [ widS+.(Mv), 4.1)

where the virtual work density (1.29) of all forces and couples acting along the
singular curve £is given by

we=ppevet+lisw,~In, e (v,—v+(y.—y)xw)l—Lm,*(w,—w)]l 4.2)
and the last term in (4.1)

W Miv) = [f, (Pov+Iew)dA+ [, (n"+v+m’ew)dS

+LMJ(Nv-v +Mvew)dS 43)
expresses the virtual work of all external forces and couples acting on the shell.
The physical meaning of the first line integral in (4.3) is clear: it represents the
virtual work of the resultant force and couple vectors which are statically
equivalent to the external force t'(X) acting on the corresponding part of the
lateral surface.
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4.2 Kinematic boundary conditions. In classical form the three-dimensional
kinematic boundary condition requires that the deformation x =(X ) of the shell-
like body be prescribed on the part 0B; =dB*\ B} of the lateral surface:

x(X)=%(X), X €0B;. - .(44)

In other words, the part dBj of the lateral surface is assumed to deform in the
prescribed manner. From the theory of constraints it then follows that there must
exist reactive forces which support this kind of deformation. Let us further note
that the complementary part oM, of the shell boundary curve is defined by
oM, =8M\0M; = MNJB;. 1t is seen then that the second line integral in the
virtual expression (4.3) represents the virtual work of the resultant force and
couple vectors which are statically equivalent to the reactive force acting on dB;
due to the constraint (4.4). Moreover, we have seen in Chapt. III.2 that the
deformation y=y(Y) of the reference surface and the independent rotational
deformation @ =Q(Y) of the shell have the vector fields v and w appearing in
(4.3) as their virtual counterparts. We then conclude that the prescription of the
deformation map x and of the rotation tensor Q along the complementary part oM,
of the shell boundary

¥V)=x'®), QX)=Q'¥), Y €M, (4.5)

constitute the kinematic boundary conditions for the shell which are energetically
equivalent to the pointwise, three-dimensional kinematic boundary condition
(4.4). In (4.5), '(Y) and Q'(Y) are functions which determine the prescribed
deformation of the reference surface and the prescribed independent rotations
along the part M, of the boundary curve.

From the above considerations it becomes clear that if

AxX)=X, X €0B;, ' 4.6)
then we must set
r¥)=Y, Q¥)=1, Y eoM,, @.7)

where 1 denotes the identity tensor. The conditions (4.7) correspond to the fully
clamped boundary of the shell. However, this is one of a few obvious cases. In
general, it is not an easy task to determine the functions ¥"(¥Y) and Q*(Y) from the
given three-dimensional function ¢’ (X ), unless one adopts ad hoc some classical
hypotheses about through-the-thickness deformation of the shell-like body. But



104 Chapter Ill. Kinetics of the shell

then the derived two-dimensional kinematic boundary conditions for the shell
represent the assumed kinematical hypothesis rather than real constraints imposed
at the boundary of the shell-like body.

4.4 Rigid junctions between shells. In the remaining part of this chapter we shall
be concerned with the formulation of kinematic jump conditions. Like in the case
of static jump conditions, a few cases need to be examined separately. However,
the general idea underlying the formulation of the kinematic jump conditions is
the same and parallels the arguments we have used in the discussion of the
kinematic boundary conditions. Our starting point will be always the virtual work
expression (4.2). In general, we must make a clear distinction between two classes
of problems.

The deformation of the shell reference surface is said to be continuous, if x, and
0, denote the restrictions of ) and Q to the singular curve £, in other words, if

xP¥)=limy(Z)=xY), Z€My (4.8)
and
élz',!Q(Z) =0.Y), Ze M, 4.9)

at every point ¥ € £. Then virtual displacements and virtual rotations must satisfy
the same conditions, i.e. the fields v and w are continuous over the entire shell
reference surface M including the singular curve £ In this case the virtual work
expression (4.2) reduces to the form

We=p¢‘Vg+lg°W¢. (4.10)

This shows that under the above assumptions the static jump conditions are
satisfied identically in the weak form.
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5. Equivalent forms of shell equations

5.1 Work-conjugate dynamic variables. Considerations presented in the previous
two subchapters show that there are two equivalent forms of kinematic shell
variables. Accordingly, there must also exist two equivalent forms of dynamic
shell variables and dynamic shell equations. The most natural way to define the
dynamic variables in the second representation is to take as a starting point the
virtual work identity (1.31).

Let us consider first the internal virtual work (stress power) density (1. 23) which
in view of (3.27) and (3.29) can be expressed in the form

W=NeSE+M+6,K=nde,+mi,k,. (5.1)

We have shown that the virtual changes (6,E,d0,K) and (6,e4,0,k,) are related to
the material time derivative of the strains (E,K) and (e4,k,) through (3.31). Thus,
we can rewrite (5.1) in the form

w= N'QE"‘M QK—II °QeA+m ‘Q'(A

=QTN°E+QTM‘K—Q ‘eA+QTmA‘kA. (5.2)

We then define the work-conjugate stress resultant tensor N(Y,t) and the stress
resultant couple tensor M(Y, t) by '

N(Y,t)=Q'™N =n"® A,, n(Y,)=0"n",

MY,)=0"M=m"®A4,, m{¥,)=0"m". (5:3)

Then the stress power density (5.1) in the equivalent representation takes the form
w=NeE+MeK=n%+é,+m"k,. (5.4)

Excatly in the same manner we can introduce the remaining work-conjugate
dynamic variables. Specifically, the force power (virtual work) of the external
forces and couples acting.on the shell is given by

Wi = [[,1 (v +lew)dA+ [, (n'ev+m"+w)dS

+f.,, (Nvov+Myew)ds. (5.5)
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Then using the relations between translational and rotational velocity fields in the
two representations (see Chapt. II1.2) we define the resultant surface force vector
p(Y,t), the surface couple vector KY,t), the external boundary force vector
n’(Y,¢) and the external boundary couple vector m*(Y,¢) such that

pevtlew=pev+iew (5.6)
and
Revim ew=mevimew, (5.7)

Recalling the relations between the velocity fields in the two representations we
have

p,)=0"p, IY,t)=0"1,

n‘(Y,t) =QTnt , m.(Y,t) =Qrmt . (5-8)
Now the external virtual work (5.5) is obtained in the form
o = [ @ VI W)dA+ [, (0" ov-+m" e w)dS 59

+LM4(Nv-v+Mvow)dS.

5.2 Equilibrium equations and boundary conditions. Using the relation N =QON
between the resultant stress tensor in the two representations we obtain

Div,N =Div,(ON) = QDivN+ZOINI=0(DivN+QT QD). (5.10)

Recalling next the definition of the bending strain tensor K, (5.10) can be
transformed into

Div,N =Q(DivN+ad~'(NK" —KN")). (5.11)
Exactly in the same manner we obtain
" Div,M =0(DivM+ad™ (MK™ —KM")). (5.12)
From the relation F =Q(I +E) it follows that

NFT—FN™ =Q(N(I +E)" —(I +E)NT). (5.13)
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Substituting (5.11)-(5.13) into the equilibrium equations (1.1) in spatial
representation, the equivalent form of the equilibrium equations in the material
representation is obtained as

DivN+ad '(MK" —KM")+p=0,

In terms of local coordinates on the reference surface M, the resultant stress. tensor
N and the stress couple tensor M are given by (5.3). Then the equilibrium
equations (5.14) can also be represented by

nYi+ksxnt+p=0,

M4 +kaxm? +(44 +e ) xnt +1=0. (5.15)

In view of (5.3) and (5.8) the dynamic boundary conditions (1.3) can equivalently
be expressed in _the form

Nv=n', Mv=m', YeoM,. (5.16)

5.5 Change of frame of reference. The tranformation rules for the dynamic
variables under the change of frame of reference can now be obtained

N'(Y.r)=NY,t), M¥,r)=MY,r), ) (5.17)
and

p'Y,.)=pd,t), IX,")=KY,?). (5.18)
By simple calculation we have

N'=Q"N*=QT0"ON =Q'N =N. (5.19)

5.6 Component representation of stresses. Using the triad {Dy}={Ds,Ds} to
define the components we have

n*=N™Dr+Q*D, m* =Dx(M™Dr)+ M*D. (5.20)

Now having in mind that the spatial triads are defined as the rotated material
triads, the use of the relations between spatial and material representations of
strains and stresses yields at once
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n =N, +0d , mt=dx(M*d,))+ M, (5.21)

where
NA=§FNTA,  MeA=83MTA. (5.22)

Thus the internal virtual work density when written in the component form is
given by

w= NrAErA +QAEA + MFAKrA + MAKA

= NE,, +Q4E, + MK, 4 + MAK, . (5:23)
This form is identical in the two representations.
In the same manner we set )
p=p'Ds+p’D, |I=Dx('Dy)+ID. (5.24)
Then in the spatial representation we obtain
p=pd,+pd, I=dx(d,)+ld. (5.25)

5.6 Jump conditions. In order to obtain the dynamic jump conditions we first need
to define the line force and couple vectors in the material representation. Using the
same arguments as for the surface and boundary forces and couples we obtain

pY,)=Q¥,0Y pY,1), LE¥,)=QF,0)1Y,0). (5.26)

Substituting now (5.26) into the jump conditions (1.2) and taking subsequently
into account (5.3) we have ’ '

Oop.—0[0On,J=0, . Qd-[0m]J+[(y.—y)x0On]J=0, (5.27)
or

p.—[Q/On.J=0, 1,—[QIQm,1+[Q7(y.—y)xQiOn,]=0. (5.28)
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6. Parametrization of rotations

6.1 Rotational parameters. So far we have considered the kinematics of the shell
regarding the field Q,: M - SO(3) of rotation tensors, besides the deformation
map x,: M —>& of the shell reference surface, as the primary independent
kinematic variable. In this way we have been able to expose the general structure
of the shell theory without restoring to a particular parametrization of the rotation
group SO(3). A choice of a particular parametrization of SO(3) is a central issue
for analytical and numerical solutions of the shell boundary value problems.

The familiar Euler (or Brayant) angles, Cayley-Klein parameters or quaternions
are just a few examples of possible parametrizations of the rotation group SO(3),
none of which have a clear advantage over others. Formally, the parametrization
of rotations is defined as an embedding of the rotation group SO(3) in the real
space R¥: A

So3)-»RY, Q.=0(d)). (6.1)

Then the N-tuple (#,) of real numbers is called the rotational parameters, and N is
called the dimension of the parametrization. In evaluating the usefulness of a
particular parametrization of SO(3) the following points have to be considered:

1) the number of parameters needed and possible singularities,
2) the complexity of the resulting equations,
3) the susceptibility to numerical errors in the computer implementation of shell
equations,
4) difficulties in the formulation of side conditions and complexity of kinematic
 relations.

1

It is well known that it is impossible to have a global singular free-parametrization
of the rotation group in terms of less than five parameters. In turn, only three
parameters are independent, and any more than three-dimensional parametrization
results in redundant parameters which must satisfy suitable constraints. This leads
to an extended system of field equations with corresponding Lagrange multipliers
as additional unknown fields of the problem. Thus, from the computational point
of view such an approach is of less importance. Hence, we shall consider only
three-dimensional parametrizations in terms of the so-called finite rotation vectors.
Such vectors can bé defined in many ways, but all definitions have the same
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underlying concept. In effect, various definitions of finite rotation vectors can be
obtained as special cases of the following construction.

6.2 Geometric picture of rotations. Geometrically, the rotation tensor is an
Euclidean, orientation-pré®®rving isometry Q: E -» E leaving one point fixed. By
virtue of the Euler theorem, every rotation of E is completely characterized by an
axis of rotation and an angle of rotation. Given a rotation tensor Q, the axis of
rotation is determined by the unit vector e being the eigenvector of Q associated
with the real eigenvalue +1. Both the unit vector e and the rotation angle ¢ of a
given rotation tensor Q are determined by the relations

Qe=+1le, costp=%[trQ-1}. (6.2)

In terms of e and y the rotation tensor Q is given in the form
| Q=exp(yE), E=ade. 63)

Exceptionally, here E denotes. the skew-symmetric tensor associated with the unit
vector e, and it should not be identified with the strain tensor denoted by the same
symbol elsewhere. From the definition of the exponential function one can easily
show that

0 =1+ simpE +(1—cosy)E?. 6.4)

The inverse relationship, expressing e and ¢ in terms of Q can be found directly
by solving the equation (6.4). The result takes the form

SmpE=0~0",  cosp=1(tr@-1). (6.5)

In terms of the unit vector e and the rotation angle 1 the skew tensor E can also be
expressed in the form

E= —.iw((l+2cos¢)1—(1+cos¢:)g +0/2). (6.6)

St

6.3 Generalized finite rotation vector. Let 6(y) be any monotonously increasing
function -of the rotation angle 9 such that 6(0)=0. Then the generalized finite
rotation vector 8 and the associated skew tensor @ are defined by
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0=0y)e, O=add=0)E. 6.7)

Substituting (6.7) into (6.3) we have

i 1-siny
0)=1+>1 4 + e?, .
The monotonicity of the function () ensures that there exists a unique inverse
function 8(y), and hence the rotation tensor Q given by (6.8) can be regarded as a
function of the finite rotation vector 8 alone. Thus, three components of 8 provide
the local singular-free parametrization of the rotation group.:

The time derivative of the rotation tensor (6.8) is given by

0 =329 6.9)
Then the angular velocity fields are given by
W =00"=(0:0)0)0", W=070=0"((3:0)9). (6.10)
The associated axial vectors can be expréssed in the form
w=I10), w=/L(0)6, (6.11)

where both tensors 1(0) and L(0) are given functions of the finite rotation vector
0. In the general case these tensors are quite complex and involve trigonometric
functions of the rotation angle . In such a form they are not very useful in the
formulation of basic shell equations. Therefore, we shall not present here all the
relations using the generalized finite rotation vector (6.7). Instead we consider
only one special case.

Let us consider the finite rotation vector defined by
0=tg%—e, 9=ad0=tg%E. 6.12)

Substituting (6.12) into (6.8) and making use of some standard trigonometric
identities the rotation tensor is obtained in the form

0=1+3O+6?%, I=21H0oF)". (6.i3)
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Now simple calculations lead to the following representation of the two angular
velocity vectors given in terms of time derivative of the finite rotation vector (6.7)

w=>900-0x0), w=30+0x0). (6.14).

It is seen that the relations (6.14) do not contain trigonometric functions. It can
also be shown that the finite rotation vector defined by (6.7) is the only one, up to
an arbitrary constant multiplier, which leads to the formulae (6.11) containing no
trigonometric functions.

In a similar way, substituting (6.13) into (3.15) we may obtain expressions for the
strain measures

E=Vu-90-6"I, K =0(1+%9)zo, (6.15)

and

€A =u,A—1?(0xAA —OX(OXAA)),

6.16
kA=ﬂ(l+%e)orll=ﬂ(osd+0x0ad)-' ( )
6.4 Virtual work expressions. Let us consider the external virtual work
W = [[,(Pev+lew)dA+ [, (0" ev+m'-w)ds. (6.18)

The corresponding form of the virtual work expressions in terms of the
generalized finite rotation vector (6.8) can be directly obtained using the formulae

W= [[, (Pv+L1e0)dA+ [, (0" ev+Lm +6)dS. (6.19)

In the special case using the finite rotation vector (6.11) the external virtual work
takes the form

Wo=[[ (pev+dI+0x1)0)dA

. . " a (6.20)

+_|;M!(n ov+9(m +0xm )-O)dS.
This form provides the interpretation of the static quantities which are work-
conjugate to the chosen parameters representing rotational degrees of freedom. It
becomes clear, however, that their resulting form is more complicated than in the
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case when the rotation tensor is taken as the primary unknown field. Moreover, it
is valid only locally due to the underling singularities of any three-dimensional
parametrization of rotations, and hence we shall not go into details.



Chapter IV

Constitutive relations and other topics

1. General theory of constitutive relations

1.1 Nature of constitutive relations. We have been concerned so now with the
derivation of field equations and side conditions for shells from general principles
of classical continuum mechanics. We have shown that the resultant dynamic shell
equations (Chapt. IT) as well as the overall kinematics of the shell (Chapt. IIT) can
be formulated in a clear and exact way without appealing to simplifying
assumptions or ad hoc postulates. In this sense the formulated theory applies to all
shells: smooth or irregular, thin or'thick, homogeneous or multi-layered, etc. There
is also no single restriction on the shell deformation: small strain or finite strain
deformation, restricted or arbitrarily large displacements and rotations, reversible
or irreversible deformation, etc. On the other hand, it is easily seen that the derived
set of field equations and side conditions (boundary and jump conditions) is
under-determined, and it has to be supplemented by suitable constitutive relations.
Constitutive relations are needed in order to take into account the mechanical
properties of the shell and to close the system of shell field equations and side
conditions. In this sense, the constitutive relations in shell theory play the same
role as in continuum mechanics (Chapt.1.5). However, the general theory of
constitutive relations for shells is not merely an analogue of the theory of three-
dimensional constitutive relations.

Mechanical properties of the shell depend not only upon mechanical properties of
a material the shell is made of. The geometry of the shell, the shell thickness and
the construction of the shell influence the mechanical response of the shell to
external loads as well. For example, the deformed shape of a homogenous plate
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substantially differs from the deformed shape of a sandwich plate, even though the
thickness, load and boundary conditions are the same’ (see Fig. 1).

Fig. 1

The dependence of shell constitutive relation upon the geometry of a shell
reference configuration can also be illustrated by the simple example shown in
Fig. 2.

N#0, M=0
S )

N=0, M#0

Fig. 2

" A specific form of the constitutive relations for shells can be determined by at
least two entirely different methods — the direct method and the reduction
method.”> The direct method requires to devise a suitable methodology of physical
experiments for a piece of a shell, which would make it possible to establish
directly two-dimensional stress-strain relations. The reduction method requires to
develop a reliable mathematical method allowing to deduce constitutive relations
for a shell from three-dimensional constitutive relations of continuum mechanics.

! See experimental results presented by SAYIR AND KOLLER [1986].
2 Cf. LIBAI AND SIMMONDS [1983], REISSNER [1974].
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The usual way to determine constitutive relations for shells is based on three-
dimensional constitutive relations for a material the shell is made of (the reduction
method). Assuming some specific form of the deformation across the shell
thickness, together with some smallness assumptions, one tries to derive two-
dimensional constitutive relations for the resultant stresses and couples in terms of
the associated strain measures. However, the shell constitutive relations
formulated in this manner do not reflect the general structure of shell theory. They
should rather be regarded as direct implications of the introduced assumptions.

In the following considerations we shall concentrate on the general structure of
constitutive relations for shells. The formulation of particular types of constitutive
relations is regarded as a problem requiring separate considerations for each class
of shells. We take into account that a general form of constitutive relations is
implied by the general theory of stresses and strains in the shell. In this sense the
considerations given below provide the general framework, within which the
specific forms of the constitutive relations can be sought by either of the two
aforementioned methods.

1.2 Dynamical processes. Once dynamics and kinematics of the shell are well
formulated, a general theory of constitutive equations can be developed in a way,
which parallels the general theory of constitutive equations in continuum
mechanics (Chapt. 1.5). Let the reference configuration M of the shell reference
surface be fixed, and let us identify a typical shell particle with the place Y it
occupies in M. Analogous to the three-dimensional theory, a mechanical process
of the shell is defined to be a collection of functions of ¥ and ¢. This collection
consists of:

1) the generalized motion (deformation) pair
y¥,0=(y¥,,0¥,1), (1.1)

2) the generalized internal stress defined as ordered pair involving the resultant
stress and stress couple tensors

s¥,)=(N¥,t),M¥,t)) or s¥,t)=(NY,),MY,s), (1.2)

3) the generalized external force consisting of the surface force and couple
vectors

pY.)=(p¥.,0IY¥,0) or p¥,0)=(pX,.)IY.0)), (1.3)
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4) the generalized boundary force given at all points ¥ € 0M, and consisting of
the boundary force and couple vectors

S¥,H=(m'¥,Om¥,0)) or sE,H=@Y,)m¥,z)), (14)

5) the generalized deformation given at each point Y €dM, of the
complementary part of the shell boundary

Y'Y, =0',),0'Y,t). (1.5)
We shall also denote by @the generalized strain defined as the ordered pair
eY,)=(E¥,0,KY¥,5)) or e¥,)=(EY,)KE¥.,»).  (16)

Let us note that @ is not an independent variable of the shell theory, but it is
defined in terms of the generalized deformation (1.1).

For regular but not necessarily smooth shells, (1.1)-(1.5) constitute the complete
set of variables of the theory. For irregular shells the variables (1.1)-(1.3) and the
generalized strain (1.6) are defined at every point of the shell reference surface M,
except possibly at the singular curve £, which can move and deform
independently. In the latter case the shell variables (1.1)-(1.6) must be
supplemented by:

6) the generalized deformation of the singular curve being defined as the

ordered pair a
V¥, 1) = (1Y ,0.Q:¥ ,1)); (1.7)
7) the generalized line force at every point of the singular curve
pX.0)=(pX.0LY,0) or pX,n)=(pX.1Y,1). (1.8)

All variables (1.1)-(1.8) are assumed to be consistent with the resultant laws of
mechanics for shells, i.e. they must satisfy the equilibrium equations, jump
conditions and boundary conditions, they must obey the corresponding
transformation rules under the change of frame of reference and they must satisfy
suitable regularity assumptions.

In general, the surface force (1.3), the boundary force (1.4) and the boundary
deformation (1.5) are assumed to be given as a part of data. The role of the line
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force (1.8) is less direct. This problem will not be our concern here. It is clear now
that the most general constitutive relations for the shell have to be formulated as
relations between the generalized stress (1.2) and the generalized motion (1.1). For
irregular shells, additional constitutive relations can be needed in order to relate
the line force (1.8) to the line deformation (1.7). A simple problem which requires
such additional constitutive relations is shown in Fig. 3.

soft material (e.g. rubber)

stiff material (e.g. steel)

Fig. 3

1.3 General constitutive functional. In order to ensure that shell constitutive
relations be physically meaningful, they must satisfy the same principles, which
constitute the basis of the theory of constitutive relations in continuum mechanics
(Chapt. 1.5). According to the first of these principles, the principle of
determinism, the generalized stress s at the particle Y at time ¢ is determined by
the history of motion y up to time :

s(¥,t)=82(y(¥,t—5)Y). (1.9)

An additional constitutive relation, which might be needed for irregular shells,
takes the form

peY 1) = po(ye(Y £ —5)Y). (1.10)

Here J=, and #=, denote constitutive functionals. The explicit dependence of
these functionals on Y signifies the fact that the mechanical response of the shell
depends not only upon material properties, but also upon the local geometry of the
shell reference state through the curvature tensor B of the undeformed shell
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reference surface M, the triad {Dx(Y )} assigned at each point of M, and other
parameters like a variable shell thickness #,(Y ).

The constitutive relations (1.9) and (1.10) are further delimited by the principle of
local action and the principle of material frame-indifference. According to the
principle of local action it is possible to distinguish a particular class of shells,
whose mechanical response is determined by the constitutive relation of the form

sY,t)=82(e'¥,s),le'{¥,s),.. .k "e'¥,s)Y), (1.11)
where the history of the generalized strain eis defined in the usual way,
eY,s)=el¥,t-s), (1.12)

and F™e denotes the n-th surface gradient of the strains. Following the
terminology of continuum mechanics,’ shells governed by the constitutive relation
(1.11) can be called n-grad shells or, more general, non-simple shells.

1.4 Simple shells. A special and most important.subclass of non-simple shells is
the one, whose constitutive functional depends only on the history of strain
measures and not on their gradients. In this case the constitutive equation (1.11)
reduces to

sY,t)y=82(e'Y,s)Y). (1.13)

Using standard terminology of continuum mechanics, we shall refer to this class of
shells as to simple shells. However, it must be stressed that the adjective “simple”
refers here to the mechanical response of the shell and not to-its geometry, which
can be entirely arbitrary.

In the analysis of simple shells it will be more convenient to write the constitutive
relation (1.13) in explicit form
N(Y’ t) = ”.\:O(E'(Yv S), KI(Y, S);Y) )

MY ,1)= m2o(E'(Y,5),K'(Y,5);Y), (1.14)

or

3 See TRUESDELL AND NOLL [1965] or CHEVERTON AND BEATTY [1976).
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NY.t)=n o (E'(Y,5),K'(Y,5)Y), 115
MY ,1)=m2(E'(Y,s),K'(Y,s5)Y). (1.15)
Recalling the relations between the resultant stress and stress couple tensors and
the work-conjugate strain measures in the two representations (Chapt. I11.4), it
becomes obvious that (1.14) and (1.15) are two equivalent forms of the same
constitutive relations, which can be obtained from each other through formal
transformations.

The third basic principle of the general theory of constitutive equations — the
- principle of frame-indifference — asserts that the mechanical response of a shell
has to be independent of the choice of the frame of reference. In order to examine
consequences of this principle, let us recall that the stress resultant tensors (N, M)
and the work-conjugate strain tensors (E,K) transform under the change of
observer according to the following rule

E'®)=0ME(®), K'(t)=01)K(),

N'()=0)N(@), M @®)=00M(), (1.16)

while the stress tensors (N,M) and the strain tensors (E,K) remain unchanged
under the change of observer. For simplicity of writing, we have omitted Y from
the argument of the corresponding stress and strain tensors. With the help of
. (1.16) we easily find that the principle of frame-indifference implies the following
reduced forms of the constitutive relations (1.10):

#2o(E'(5), K'(5);Y) = 0(t) #29(O(1)E'(5),0(1)K"(s);Y ),

m2o(E'(5), K (s);Y ) =0V m2o(O(OE(5),00K (s)Y). 17
On the other hand, using the relations
E(t)=0@)k(®), K(t)=0@)K(@), (L.18)

N@®=QUNGE), M(@E)=0(M(),

between the shell stress and strain measures in the two representations, and taking
O(1) to coincide with Q(¢), we find that the constitutive relations (1.15) remain
unchanged under the change of frame of reference.

The three principles stated above are implied by corresponding principles
underlying the general theory of constitutive equations in classical continuum
mechanics. The constitutive equations for shells must obey two additional
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requirements: they must be invariant under the change of orientation of the shell
reference surface M, and they must be regular in the limit H# =0 and X =0, where
H and X denote the mean curvature and Gaussian curvature of M, respectively.
The shell constitutive relations can be delimited further by possible material
symmetries and suitable constitutive restrictions. However, neither the symmetry
of constitutive relations nor the constitutive restrictions are easy to define for
shells, and we shall not consider them here. We shall also not discuss here many
other possible classes of shells, which can-be defined by special constitutive
relations. All such classes can be introduced in the same way as in continuum
mechanics.

1.5 Consistency conditions. The above considerations provide the general
framework for the theory of constitutive relations for shells. The constitutive
relations, which can be formulated in this way, take the most general form which
is consistent with the-formal mathematical structure of the shell theory. In other
words, nothing more general can be included into the two-dimensional
constitutive relations than this what has been shown above. In this context an
important question arises about possible interrelations between constitutive
relations formulated within purely two-dimensional considerations as above, and
constitutive relations for shells, which can be derived from constitutive laws of
continuum mechanics.

Let us recall that the stress power density (per unit volume of the reference
configuration) of the body B is given by (see Chapt. 1.4)

Z(X,t)=T(X,t)-F"(X,t)=%S(X,t)-C(X,t)=S(X,t)-E(X,t), (1.19)

where T and S denote the first and second Piola-Kirchhoff stress tensors,
.respectively, F is the deformation gradient and C denotes the right Cauchy-Green
strain tensor. As usual, the superimposed dot stands for the material time
derivative. We can then define a through-the-thickness resultant stress power
(measured per unit area of the shell reference surface M) in a natural way:

[ZX . nav=[[ Z¥,ndA » ZXn)={"3%X,ud.  (1.20)
On the other hand, it follows from considerations of Chapt. II1.4 that the stress
power density for the shell is given by

o(Y;t)=N¥;t)+0,KX;t)+ MY ;1) 6, K(¥ ;1)

=N ;1) EQ ;) +MY;0) <KX ;1). (1.21)
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Assuming that the material is simple, the- constitutive law for the body can be
expressed in either of the two forms (Chapt. 1.5)

TX,)=h(F'(X,1;X), S(X,1)=g-(C'(X,1); X). (1.22)

Substituting (1.22) into the definition (1.20), the resultant stress - power for the
shell made of a simple material is obtained in the form

S, 6)= [ Geo(F'(5))* F()udt =2 giea(C'(s))* eIt . (1.23)

On the other hand, substituting the general constitutive relation (1.9) into (1.21)
we have

o(Y;t)=8(y(¥,s—1),Y)d,e(Y .1). (1.24)

Now it becomes clear that the difference between the resultant stress power (1.23)
and the stress power (1.24),

rY;0y=2F;t)—o;t), (1.25)

provides a measure, how good the two-dimensional constitutive relations (1.9)
approximate the constitutive relations, which can be derived ffom corresponding
constitutive laws of continuum mechanics. In particular, if we could show that the
difference (1.25) vanishes in some special cases, then the two-dimensional
constitutive relations would be completely equivalent to those derived from
corresponding three-dimensional ones. These remarks also indicate the way of
deriving the constitutive laws for shells from the three-dimensional theory. A few
other points-should be noted here.

In the special case of simple shells, whose constitutive relations are given by
(1.14) or (1.15), we have

o(Y;)=nZo(e'(s))* SE(t) + mo(e'(s))* 6.K(1)

. . 1.26
=Mo(e'(s)) * E(t) +meo(e'(5))* E(r). (1.2

It must be pointed out, however, that even if the shell-like body is made of a
simple material, we cannot expect the resultant constitutive relations to have the
form (1.13). In other wosds, the stress power (1.26) may not be equal to the
resultant stress power (1.23), in general. The reduction of the three-dimensional
problem of continuum mechanics to its two-dimensional form will, in general,
give rise to some non-local effects.
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It should be also clear that our approach to the shell constitutive relations is not
restricted to shells made of a single material, but applies equally well to multi-
layered shells. In such cases the definition (1.23) of the resultant stress power must
be modified in order to take into account that materials of different layers are
governed by their own constitutive laws.

2. Elastic shells

2.1 General constitutive relations. In agreement with the definition of an elastic
material (Chapt. [.5), the shell is said to be elastic, if its mechanical response
depends only on the actual strain state and not on the history of strains.
Accordingly, for an elastic shell the constitutive equations can depend only on the
strains and their gradients of any order. For simple shells they take the form

NY.)=mEQX,0),K¥,Y), MQY.,)=mEY,)K{Y,)Y). (2.1)

Here # and # are response functions (not functionals). An equivalent form of the
constitutive equations (2.1) is given by

NE,)=nEY,)KQT,);Y), MY, )=mEY,)KT,1);Y). (22)

The constitutive equations (2.1) and (2.2) can also be expressed in terms of stress
and strain vectors instead of stress and strain tensors:

nA(Y,t)=n*(er(Y,0),kr (Y ,1);Y),

mA® 1) = (er(V, 0, kr (¥, £)Y), @3
and |
AII:(Y,t) =nt(er(Y,t),kr(Y,1);Y), 2.4)
mAY 1) = mA(er (¥, 1), Kr (¥, 1Y),
respectivel-y.

In general, the constitutive relations (2.1)-(2.4) are delimited solely by the
principle of frame-indifference. As a simple implication of (1.17) we have

n’(er,kr;Y)=0"n"(Oer,0kr;Y),

. 2.
A (er,krsY ) = O mH(Oer, OkrsY ), (2)
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while the equations (2.4) remain unchanged. This principle is satisfied identically,
if we express the constitutive laws for elastic shells in the component form.
Moreover, since components of stress and strain vectors and tensors in the two
representations are identical, the general constitutive equations for a simple elastic
shell can be written in the following component form:

NTA =0 (Epy,Ep,Kow,Ks,Y),
0" =4 (Epw,Eo, Kow,K0;Y),
M™ =m™ (Epp, Ep, Kow, Ko3Y ),
M2 =m"(Epy,Ep,Kpw,Ko;Y)-

(2.6)

It should be noted that the drilling couples M* do not appear in any known shell
theory derived from elasticity theory by classical methods. However, the exact
approach presented in this work shows that they have to be taken into account in
the general shell theory.

2.2 Hyperelastic shells. Using the general consititutive equation (2.1) or (2.2) the
stress power density (1.21) for a simple elastic shell takes the form

oc=u(E,K)*d,E+m(E,K)*6,K =n(E,K)*E+m(E,K)*K. 2.7)

It can happen that (2.7) is anexact differential, i.e. there exists a function

DY, t)=DEY,t),K{Y 1), Y)=DEY,t),KYT,1);Y) (2.8)
such that-ts differential
D =(35D)* 6,E +(3xD)* 6,K = (3¢D) * E + (3xD) * K (2.9)

is given by (2.7). In this case, the shell is called hyperelastic and the function (2.8)
is called the strain emergy function. It then follows that the constitutive relations
for hyperelastic shells takesthe form

#(E,K;Y)=0sP(E,K}Y) m(EKY)=0P(EKY),  (210)
or, equivalently,
n(E KY)=0DPEKY) mMEKY)=kPEKY). (2.11)

It is obvious that both forms of the constitutive relations are completely equivalent
and they can be obtained from each other by simple transformation.
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Taking further into account (1.23) we find that the resultant stress power for the
shell made of hyperelastic material is given by

2@.0=4 ["WEpds =1 [TW(Cpds. 2.12)

However, it has to be noted that even if the shell-like body is made of hyperelastic
material we cannot expect that the resultant two-dimensional constitutive relations
will have the form (2.10) or (2.11).

2.3 Linearly elastic shells. An elastic shell is said to be linearly elastic, if the
constitutive functions are linear with respect to the strains. The general
constitutive relations take thus the form

N=C[E]+C.,[K], M=CiE]+C,K], (2.13)
where
C.Y)EL(E®Ty; M), k=1234 2.14)

are elasticity tensors. If the elasticity tensors (2.14) satisfy the following symmetry
conditions

C,=Cf, C,=Ct, C,=C7%, (2.15)
then there exists a strain energy function given in the form
D =E +C|[E]+2E* C,[K]+ K+ C,[K]. (2.16)
If the elasticity tensors are invertible, their inverses
H.X)=C.X)?!, k=1234 (2.17)

are called the compliance tensors, and the constitutive relations can be solved for
strains

E=0HiN]+H,M],  K=MH,[N]+H.M]. (2.18)
The components of the elasticity tensors are defined by
C.=CHM“Dy® A, @D, ® As. (2.19)



126 Chapter IV. Constitutive relations and other topics

2.5 Thin shells. For thin shells undergoing small strain deformation the
constitutive equations can be assumed in a simpler, uncoupled form

NAZ — CdM’F.‘.'Ew , QA — GAEES ,

MAE = DPA¥E Kow , M4 = HZK, (2.20)

which for an isotropic material réduce to the form (here written in terms of
physical components)

N(l 1y — C( E(l " +‘VE(22)) , N(22) = C( E(n) +‘VE(1 1)) ’
N =C(1-v) Eyy, N® =c1- V)Epy ,
0 =Lg ci- @ =La.ca-

0¥ =7a.00-MEy,  09=5a001-vEy. @21)
MO = D(K(u) +‘VK(22)) , M® = D(K(zz) + ‘VK(u)) s
M = D(1-v) K » M = D(1—v)Kyy ,

M® =a,D(1-v)Ky, M® =a,D(A~v)Kp ,

where
__En —_ER _
C 1 — v2 ’ D 12(1 - v2) M (2.22)

Here E denotes the Young modulus, v the Poisson ration, &; and «,-stand for the
shear and torsional coefficients, respectively. The constitutive equations (2.21)
may be viewed as a simplest generalization of the classical ones. In particular,
upon symmetrization and omitting the constitutive relations for drilling couples,
they reduce to the form generally accepted in the Mindlin-Reissner type shell
theory. Moreover, it can be shown that for smooth, relatively thin shells
undergoing small strain deformation the contribution of strains £y, £ to the two-
dimensional strain energy function is of higher order small and can be neglected
(taking a, =0). However, from the computational point of view it is convenient to
retain this small contribution and thus to preserve the complete structure of the
general shell theory.
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3. Approximations in shell theory

3.1 General and special theories. The formulation of the complete set of shell
governing equations presented in this work clearly shows that no simplifying
assumptions are needed to reduce the three-dimensional problems of continuum
mechanics to the two-dimensional form appropriate for shell-like bodies. In this
sense the derived shell theory can be called “exact” or “general theory”. It is also
important to note that while our approach has not been based on some a priori
adopted assumptions, it also does not exclude any. The resulting shell theory
enjoys thus a full generality, and it provides a convenient starting point for the
examination of various special cases.

The terms “exact®, “general“ or “special shell theories are used throughout the
literature in various contexts and with different meaning assigned to them. For
example*, any shell theory formulated by the direct approach can be called
“exact”. In our case we shall use the term “exact” or “general” shell theory to
mean that the shell governing equations are derived directly (static equilibrium
equations and side conditions) or indirectly (kinematic relations and kinematic
side conditions) from general principles of continuum mechanics without any
restrictions imposed on the deformation of the shell-like body. Let us further note
that our formulation shows in effect that the exact reduction of the three-
dimensional problem of classical continuum mechanics (based on the concept of
Cauchy’s continuum) leads to the concept of two-dimensional continuum with
internal microstructure but not richer than the classical two-dimensional Cossert
continuum. In this context it is interesting to see, how the shell theory formulated
in this work is related to various shell theories which use more kinematical
variables, and which are generally supposed to give a more accurate description of
the shell problem. The possible relationships between various shell theories is a
somewhat controversial subject’ and a detailed discussion of these relations would
require a separate work, but a few points are worth to be noted here.

3.2 Successive approximations. While a more general case can be considered,®
for our purpose it will suffice to assume here that the three-dimensional
deformation x =7(X) of the shell-like body is constrained in such a way that the

current position vector x can be expressed in the form

4 Cf. NAGHDI [1972].
5 Cf. GREEN AND NAGHDI [1974].
See ANTMAN [1976].
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X(EE) =M E ) = JE)+ S AE EXAER). @3.1)

Here, like in the general shell theory, y = x(Y) denotes the position vector of the
deformed shell reference surface y(M), the vectors

d (M) =d(x(E"), A=12..,N, (3.2)

can be called generalized displacements.(or directors), and z* =z*(£4,&) are
given functions of all three spatial coordinates. For increasing values of N we can
formulate higher-order theories, and with N - o« we may view (3.1) as providing
successive approximations to a three-dimensional deformation x =9(X) of the

shell-like body.

The functions z* =z*(£%,£) can be determined by any method known in the
approximation theory. For example, assuming that x(&4,8) =9(X(§4,£)) is an
. analytical function with respect to the through-the-thickness coordinate &, standard
power expansion yields

A A
=g, dA(E")=9—x—;§,,—’g—)|§=o, A=12,.... (3.3)
Let us make clear that £* denotes here the A-th power of through-the-thickness
coordinate § and not the A-th spatial coordinate. The other possible way of
determining the functions z* and the generalized displacements d, can be based
on the interpolation theory. For example, piecewise linear interpolation can be
applied to layered shells.”. But this problem need not be our concern here. Our
aim is to show, how the shell theory based on-the assumption (3.1) is related to the
general theory presented in this work.

3.3 Static equations and boundary conditions. The complete set of shell
governing equations consistent with the assumption (3.1) can now be derived
using a standard variational procedure. This is the classical way of deriving shell
governing equations, and it will suffice to outline here only the main points. For
simplicity, we shall restrict our discussion to the case of a regular shell-like body
in the sense of Chapt. II.1. In this case, the three-dimensional principle of virtual
work (see Chapt. 1.4) can be written in the form

7 See PINSKY AND KM {1986].
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[,TV(6x)dV = [ febxdV+[,  t;e0x*dA*—[ tyedox dA

. o 34
+f6B} ty OxdA°. ( )

Here 0x(£4,£) denotes the three-dimensional virtual displacement field, which in
consistency with (3.1) is given by
Ox(EA,E)=0p(EM+ Y. zA(EAE)0dA(ER). (35)

The term on the left-hand side of (3.4) represents the internal virtual work, which
for the regular shell-like body can be written in the form

[;TeV(x)av = [f wdA, (3.6)

where the through-the-thickness resultant virtual work density is defined by -

w=[TTeV(0x)pudf = ["(t*+dx,s + '+ Ox,3) udk . (3.7)
By virtue of (3.5) we have
6x9A = 6)’,/1 + ZA,A 6dA + ZAadAvA ) 6x’3 = ZA,S 6dA . (3‘8)

Here and in the sequel summation with respect to A over the range {1,2,..., N} has
to be applied. Substituting (3.8) into (3.7) we obtain

w=nedv,,+medd,+m*1+5d,,,, (3.9)

where the resultant stress vectors and the resultant stress couple vectors are
defined by
nt = [Tthudk,
m = ["(z* s tA 4245 O, (3:10)
mh =f_+ZAtA‘ud§.
Exactly in the same manner, with the use of (3.5) and relevant geometric relations,
we can reduce the right-hand side of the principle of virtual work (3.4) to its two-

dimensional form. As a result, we obtain the following form of the two-
dimensional principle of virtual work: '

[l wdA=[{, (p+dy+1*+6d,)dA+ [, (w"+dy+m™+3d)dS. (3.11)
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Here the resultant surface and line force and couple vectors are defined by
p=["tudi+a'th—a'ty,
14 = ["2MudE +a*(24) th —a ()t (3.12)
nt —_-f:-t.a‘@, mniA =f:'zAt¢a¢d§.

Under usual regularity assumptions we can easily derive from (3.11) the following
equilibrium equations

n‘4+p=0, mA ~mA+14=0, A=12,...,N. (3.13)
together with the static boundary conditions
nvy=n", mv,=m". (3.14)

An additional equation can be derived from the three-dimensional balance law of
angular momentum, which in the local form reads

XxXxti=x ,xti+x,;xt?=0. (3.15)
According to (3.1) we have
X, A= y!A + ZAdAsA + zA9A dA ’ X,3= ZA,S dA . (3‘16)

Substituting (3.16)- into (3.15), multiplying by the invariant #, and integrating
through the shell thickness we obtain

Yoax [THAudE+duax [T2MAudE+dyx T2 X udE=0. (3.17)
Taking into account the definitions (3.10), the equation (3.17) takes the form
yoaxnt+d,xm* +dpxm*t =0. (3.18)

These are exactly the basic shell equations, which can be derived from the three-
dimensional principle of virtual work using the assumption (3.1) or within the
direct approach.

3.4 Kinematical and constitutive relations. Within the assumption (3.1) the
kinematics of the shell is entirely determined by the deformation y = x%(Y) of the
shell reference surface and the set of N generalized displacements (directors)
d,=d,Y), A=12,...,N. Moreover, it is a simple matter to obtain the
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corresponding two-dimensional constitutive relations from three-dimensional
constitutive equations of continuum mechanics. For example, assuming that the
material of the shell is hyperelastic we define the two-dimensional strain energy
function by

D(y,a,d,d,0)= [TW(x,0,%,5) pdk . (3.19)

The two-dimensional constitutive equations follow at once in the form®

pA = 0P ’
ay’A

mA — 6¢ mAA —_— 6d5 (3.20)

~od*’ “odi .’

3.5 Reduction of the general shell theory. Our aim now is to show how the
governing equations of the general shell theory can be reduced to the form which
is consistent with the kinematical hypothesis (3.1). We note first that the
assumption (3.1) does not affect the definition of the resultant stress vectors n#
(aside a reactive force). Thus, in the theory consistent with this hypothesis, like
within the general theory, the resultant stress vectors are defined by

nt = ["tAudt . ' (3.21)

Comparing next the kinematic- assumption (3.1) with the formal representation
xY,5)=yXY)+&{X,) of the shell deformation, which we have used in our
derivation of the resultant balance laws, one can see that in this case

;(gAs§)= ZA(EAag)dA(gA) . . (3*22)

Substituting (3.22) into the definition of the resultant stress couple vectors m4
(see Chapt. I1.2) we obtain

m* =ff§xt/1ﬂd§=d,1 x[ffz‘t"ydé‘) =d,xm4 (3.23)
where the resultant stress couple vectors m*4 are defined by

m* = [Tt dE (3.24)

¥ Constitutive equations of the type (3.20) have been discussed by NAGHDI [1972] within a purely
direct approach.
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In the same way the resultant surface and boundary couple vectors ! and m” can be
obtained in the form

I=d,xl*, m'=d,xm™. (3.25)

Using (3.23) and (3.25) the exact equilibrium equations of Chapt. I.4 can now be
rewritten in the form

nYs+p=0,

dAme|A+dA|AxmAA+y;Aan'I'dAXIA=0. (3-26)

With the help of (3.18) the equilibrium equations (3.26) can be reduced to the
form

nfu+p=0, d,xm*y-m*+1)=0,  A=12.,N. (3.27)

In the same manner, the static boundary conditions of the exact shell theory take
the form

niv,—n'=0, d,x(m*v,—m")=0. (3.28)

Insisting the moment equilibrium equation (3.27), and the moment boundary.
condition (3.28), to hold for any choice of the vectors d,, the terms enclosed in
the bracket must vanish for every A =1,2,...,N. By this argument, the equilibrium
equations and the static boundary conditions of the general shell theory reduce to
the form (3.13) and (3.14), respectively.
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4. General five parameter theory

4.1 Generalized Mindlin-Reissner hypothesis. In the context of the finite element
analysis of shells much effort has been devoted to formulate a shell theory taking
as starting point the classical Mindlin-Reissner hypothesis.” According to this
hypothesis the current position vector is given by

x(§4,E) =X (E",6))=yE")+Ed(E"), 4.1)

where y(£*)=yx(Y(£*)) and d(E*)=d(x(Y(E*))) is a field of unit vectors
defined over the deformed shell reference surface. It is clear that (4.1) is just a
very special case of (3.1), and the basic shell equations follow from those derived
in the previous subchapter by taking N =1. It is then interesting to see that the
shell theory having the same mathematical structure can also be formulated under
a'much less restrictive assumption. '

Instead of (4.1), let us assume that the three-dimensional deformation of the shell-
like body is constrained in such a way that the current position vector is given in
the form

X(ENE) =4 X (E1,8) = y(EN) +EEN EMED), @2)

where y and d have the same meaning as in (4.1), and {=¢(E%,&) is an arbitrary
scalar function of all three spatial coordinates. It is obvious that (4.2) implies that
through-the-thickness fibres remain straight during deformation. However, they
can undergo an arbitrary extension/contraction defined by the function &(&4,8),
which has to be specified by some additional conditions. In fact, there are four
possible ways in which we can treat the hypothesis (4.2).

The simplest way is to assume that {={g(£*,£) is a given function of all three
coordinates, and it does not depend on the shell deformation. For example, taking
¢ =& we obtain the classical Mindlin-Reissner hypothesis (4.1).

Another way is to assume that £=¢(&*,&) is a given function but containing
scalar variables which enrich the kinematical model of the shell. For example, we
can take ‘

%See e.g. SIMO [1993].
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G(EAE)=EA(ED), 4.3)

where A(£4) represents a homogenous through-the-thickness stretch of the shell
fibres. The assumption (4.3) is equivalent to the assumption of linear variation of
displacements across the shell thickness.' More generally, we can take

(A, E)=EMEN)+E2k(EY), (4.4)

allowing a quadratic distribution of the through-the-thickness stretch with A(£4)
and «(§4) to be regarded as additional independent variables of the theory.

Within an entirely different approach, we can assume that &=g(&4,£) is
completely determined in terms of y and d and their surface derivatives. For
example, it can be shown that this is the case, whenever the shell undergoes an
isochoric deformation (this is the case for rubber-like materials, for example). The
complete shell theory within this setting was formulated in our earlier papers."

Within a still more general approach we can admit that {(£4,£) describes an
arbitrary but unspecified through-the-thickness deformation of the shell. This is
much the same approach as we have applied in order to derive our general shell
theory, where instead of (4.2) we have used a formal representation of the shell
deformation in the form x(&4,&)=y(§4)+&(&4,E) of which (4.2) is a special
case. This is the point of view we adopt here.

4.2 Equilibrium equations. Now, it is a rather simple task to reduce our general
shell theory to the form, which is consistent with the kinematic hypothesis (4.2).
When the hypothesis (4.2) is introduced into the definitions of the resultant stress
couples, they take the form

mt=dx ([t pdE)=dxmt,  mt=[Totudk. 4.5)
In the same way the surface couple vector [ is obtained to be
I=dxl, [I=["tudt+a*Cti—alty, (4.6)

where we write §*(§4)={(E4,+h5(E4)). With the use of (4.5) and (4.6) the
equilibrium equations of the general shell theory can be expressed in the form

10gee PIETRASZKIEWICZ [1977].
"1 MAKOWSKI AND STUMPF [1986], and in STUMPF AND MAKOWSKI [1986].
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~

AYA+p=0, miu—-m+I=0, 4.7)
together with an additional set of three scalar equations
YoaX it +d xm+d,, xm* =0, (4.8)

where
- mEA) = [C6,,t udt . 4.9)

This set of equations can be derived applying the approach of Sect. 3.3. Eqns (4.8)
play the role of constitutive restrictions, and they should be satisfied identically
for any properly invariant constitutive equations.

As an obvious implication of (4.3) and (4.4) we have
dem*=0, d-+I=0, (4.10)

showing that the drilling couples are ruled out by the kinematical assumption (4.2)
entirely independently of the particular form of the function . It must be pointed
out here that the absence of the drilling couples is not a property of a rigorously
formulated shell theory, but becomes the obvious implication. of the fairly
restrictive kinematic hypothesis (4.2).

The external boundary couple vectors can also be obtained in this manner, but we
shall not discuss here the complete theory.

4.3 Kinematical considerations. Next, the virtual work identity and kinematics of
the shell can be constructed applying the approach of Chapt. II1.2 and Chapt. IIL.3.
The shell theory formulated in this way has the formal structure identical with the

"one derived under the classical Mindlin-Reissner hypothesis (4.1). However, it has
to be noted that (4.2) is a far weaker assumption than the Mindlin-Reissner one,
and that it admits a highly nonlinear through-the-thickness deformation. In any
case, the only independent kinematical variables are the position vector y of the
deformed shell reference surface and the field of unit vectors d.

Since d is a field of unit vectors with only two independent components, the
corresponding virtual field dd satisfies the constraint

d+dd =0. (4.11)
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Therefore, there is no drilling component here, what is a consistent implication of
4.2). '

The above considerations illustrate how the general shell theory presented in the
previous sections can be reduced to special shell theories consistent with some
adopted kinematical hypotheses. It is trivial to say that the reverse construction is
by no way unique: starting with the hypothesis (4.2) or with the more restrictive
Mindlin-Reissner hypothesis (4.1) it is not possible to obtain the governing
equations of the general shell theory. For the field of unit vectors d the condition
d + d =0 makes it possible to express dd in the form dd = w xd. Here @ denotes
the associated virtual rotation satisfying the condition d-w =0. The equation
d - w =0 has the general solution

w=dxdd+wd, 4.11)

where @ is an undetermined scalar parameter (virtual drilling rotation). Then it is
clearly seen that within the shell theory formulated under the hypothesis (4.2), and
especially within the Mindlin-Reissner assumption (4.1), the (virtual) drilling
rotation @ remains undetermined. This does not mean that we can set @ =0.
Overlooking the obvious fact that this is a special choice for @ it can lead to the
erroneous claim that the general shell theory incorporating drilling couples and
drilling rotation can be derived form the Mindlin-Reissner hypothesis.
Misconceptions can also arise, if one uses, on the one side, the general kinematics
including the rotation tensor @ as independent variable, while, on the other side,
the static considerations are based on the Mindlin-Reissner hypothesis. As it is
" apparent from the above considerations the Mindlin-Reissner hypothesis rules out
the drilling couples and leaves the drilling rotation undetermined. Consequently,
in this case the kinematics does not fit for the statics and artifices are needed to
build the complete theory:
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Vectors, tensors and tensor fields

This appendix contains a collection of results on tensor algebra and analysis
to the extent which makes the work essentially self-contained. Various
symbols used here should not be identified with any quantity denoted by the
same symbol in the main part of this work.
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Appendix A

Operations on vectors and tensors

Euclidean vector spaces. In its most classical sense, vectors are represented by
directed line segments with definite direction and length, and for-which the
parallelogram law of addition is valid. This geometric interpretation of vectors is
advantageous, but we shall rather emphasize on the mathematical content of
various vector operations. In the abstract approach, a real vector space is a set E,
whose elements are called vectors but otherwise unspecified, together with two
binary operations,

ExXE-E, @v)=>u+v,

RxE->E, (A4,v)-> Au, (A1)

‘called addition and scalar multiplication, respectively, with the same properties as
in the most classical case. The zero vector will be invariably denoted by 0.

In the geometric presentation, a vector is characterized by its magnitude (Iength)
and direction, and there is the concept of an angle between two vectors. All three
notions derive from the concept of inner product of vectors; the inner product of
two vectors is a map

ExE->R, u,v) >usv, (A.2)

which assigns a real number to each pair of vectors with the properties of
symmetry, bilinearity and positive definiteness. It is the inner product of vectors,
which justifies the name of Euclidean vector space. The cosine of the angle
between two vectors is defined by

—_u°*v
<0S0= v (A-3)
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In view of Schwartz’s inequality this definition is meaningful indeed. A unit
vector is one for which [lull=1. The two vectors are said to be mutually orthogonal

ifuev=0.

All vector spaces, which are considered in this and the subsequent appendices, are
assumed to be real (i.e. over the field of real numbers R), finite dimensional, and
equipped with an inner product. We denote vector spaces by E, F, E’, etc., vectors
by lower case bold letters, and we write u v for the inner product of two vectors
regardless of the vector space in question. The induced Euclidean norm is denoted

by llzll, i.e. lull=vu<+u >0.

Basis. A basis for a vector space E is any linearly independent system of vectors
of maximum order, i.e. equal to the dimension of the space. In general, any set
{g:} of n linearly independent vectors constitute a basis for the vector space E.

. These vectors need not be of unit length nor mutually orthogonal. Then there
exists the unique reciprocal basis, denoted by {g‘}, such that

giog,=0% (Kronecker delta). (A4)

Associated with these bases are the so-called components of the metric tensor
which are defined by '

gi=8-+8, g =g'g’, g=detg;>0. (A.5)
From these definitions it follows that'
g'=8";, g=gg, gug"=0l. (A.6)

A distinct feature of the Euclidean vector space is the existence of an orthonormal
basis, that is the one of n vectors each of unit length and any two vectors are
mutually orthogonal, e;*e; =J;. Given any basis the orthonormal basis can be
constructed by a method known as Gram-Schmidt orthogonalization procedure.

L ff in a term an index occurs twice, in which case it is called a summation index, then the term is
to be summed with respect to this index over the range of its admissible values. When working
with the three-dimensional vector space and unless stated otherwise, the following convention is
adopted: Lower-case Latin indices i, j, etc. have range 1,2,3, lower-case Greek indices, etc. have
range 1,2, and such diagonally repeated indices are summed over their range.
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Components of vectors. Since the base vectors are linearly independent, every
vector can be expressed as linear combination of the ‘base vectors, i.e. it has the
following component representations

u=u'g;=ug'. (A.7)
The real numbers
u,-=u°g,-=g,;,-uj, uf=u°gi=gﬁuj, (A.S)

are often called the covariant and contravariant components of the vector,
respectively. However, the names are somewhat arbitrary, since the underlying
bases are mutually reciprocal and there is no way to choose.one over the other. It
should be obvious that a vector does not depend on any basis even though its
components do.

A substantial part of the usefulness of the orthonormal bases is their self-
reciprocities. Hence contravariant and covariant components of vectors coincide.

Lie bracket. Given a vector space E, a map
[,.. EXE->E, (u,v)—>[u,v] (A9)

with the following three properties

[u,v]=—v,u],
[Au+v,w]=Alu,w]+[v,w], (A.10)
[u,[v,w]]+[w,[u,v]]+[v,[w,ul]=0,

is called Lie bracket on E. The first and second of the properties (A.10) say that
the Lie bracket is skew-symmetric and bilinear. The third property is called the
Jacobi identity.

The vector space E taken together with the Lie bracket is called the Lie algebra.

Cross product of vectors. In the case of the three dimensional Euclidean vector
space, the cross product of vectors is denoted by # x v. In geometric interpretation,
the area spanned by two vectors @ and b is given by the formula absind, where a
and b are the length of the two vectors and 0 is the angle between them. This can
be taken as motivation to define a vector area with the help of the cross product of
vectors. In this sense the cross product of two vectors @ and b is another vector,
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whose length is absin@. This definition is confined to the three dimensional space
and even then it requires a conventional choice of the direction, into which the
product vector points.

Formally, the cross product of vectors is a binary internal operation (u,v) > uxv,
which is completely determined by the properties of skew-symmetry, bilinearity,
and Jacobi identity

ax(bxec)tex(@xbh)+bx(cxa)=0. (A.11)

The vector space E taken together with the operation of cross product of vectors is
the Lie algebra.

In the case of the three-dimensional Euclidean space with base vectors we can
associate the so-called permutation symbols, which are defined by

€x=(gi°g)xg, €*=(g'og)xgt. (A2

The properties of the vector product of vectors imply that the permutation symbols
are totally. skew-symmetric with the cyclic property. The permutation symbols
defined by (A.12) are related through important identities

gixg=€pgt, g'xgi=€e%g,

1

o ) (A.13)
8t =%fwcg' xg',  g'=gpc gixg;.

Tensors and linear maps. A map A: E - F of a vector space E into a vector space
F is said to be linear, if the following two axioms hold:

A(Au)=AA®), Alu+v)=A@)+A®Y), VAeER, u,veE. (A.14)

To emphasize the linearity one writes Au = A(u) for the image of a vector u under
a map A. The set L(E,F) of all linear maps of E into F becomes a vector space
with the scalar multiplication and addition defined by

(AA)u = AAu, (A+B)u=Au+Bu, YueE, (A.15)

for any two linear maps A,B € L(E,F) and every real number A €R. The zero
linear map 0 € L(E, F) is one, which maps every vector of E into the zero vector
of F,i.e. Ou =0 for all u € E. Moreover, dimL(E, F) =(dimE)(dimF).
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Following the standard practice in continuum mechanics, we use the term tensor
as a synonym of a linear map. Thus, given any two vector spaces E and F, we
write F ® E = L(E, F) for the vector space of all linear maps of E into F.

The two vector spaces E and F are called isomorphic, if there exists a bijective
(one-to-one and onto) linear map L:E - F. The most important fact about

isomorphic vector spaces is that they are in a sense indistinguishable.

Dual vector space. The vector space E‘ = L(E,R) of all linear maps of E into the
set of real numbers R is called the (algebraic) dual of a given vector space E. The
elements of E* are called co-vectors or 1-forms.

If E is an inner product vector space, then for every co-vector 8 € E* there exists
exactly one vector ¢ € E such that @(u)=t-u, for all u € E. In this way the dual
space E* becomes canonically isomorphic with the spaces E itself and the two
vector spaces can be identified. This fact also justifies the identification of the two
vector spaces F ® E and L(E, F), which are canonically isomorphic.

Composition of tensors. Given any three vector spaces E, F and F', the
composition of two tensors A€ F'® F and BEFQ®E is a tensor ABEF'QE
defined by (whenever domains and codomains coincide)

(AB)u = A(Bu), VuekE. (A.16)
The composition of linear maps is distributive, _
C(B+A)=CB+CA, VABEF®E, CEFQF, (A.17)
and associative
C(BA)=(CB)A=CBA, VA€FQE,BEF®F,CeF'®F . (A18)
Moreover, for every real number 1 €R,

B(AA)=(AB)A=A(BA), VA€eFQ®E,BEF'QF. (A.19)

Transpose of a tensor. The transpose of a given tensor A € F®E is the unique
tensor A" € E® F such that

Auev=u+A"v, VYueE,veF. (A.20)
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In effect, the transposition is a linearmap FR E->EQ®F, i.e.
(AA+B)Y' =AAT+B", VABEFQE, AcR. (A.21)
Moreover, we have
(AB)Y =B"AT, VAe€eFQ®F,BeFQ®E. (A.22)

Algebra of tensors. The vector space E® E of linear maps of a vector space E
into itself, taken together with the composition of tensors, constitutes the
associative but not commutative, in general, algebra. The unit tensor (identity
map) 1€ EQ E is defined by lu=u forallu € E.

The trace assigns to every tensor A€ E ® E a real number, denoted by #rA, i.e. it
maps the vector space EQ® E into the set of real numbers with the following
properties

trAT =1A tr(lA)= AtrA , VAEEQE,AeR,

tr(AB)=1tr(BA), tr(A+B)=wA+tB, VY ABEEQE. (A.23)

The determinant assigns to every tensor A€ E® E a real number, denoted by
detA, with the following properties

detAT = detA, det(AAB)= A"detAdetB, @V A_BEEQE,AcR, (A.24)

where 7 is the dimension of the vector space E.

In the case of the vector space, for which the cross product of vectors is defined,
the determinant and trace of any tensor can be defined by
(detA) (uxv)ew) =(AuX Av)* Aw,

(A.25)
(trAY (wxv)e w) =(AuXv)ew+@XAv)*w +(uXv)* Aw,

for all vectors. It must be noted that the above definitions relay on the cross
product of vectors and they are valid only for the three-dimensional Euclidean
vector space.

General linear group. A tensor A€ F®E is called invertible or nonsingular, if
there exists a tensor A~! € E® F, called the inverse of A, such that

AA™ =1, A'A=1,, (A.26)
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where 1z € A(E) and 1€ A(F) are the identity maps. The inverse tensor is
unique whenever it exists, and if it exists the linear equation Au=v has the
unique solution = A"y,

For invertible tensors the following rules hold:

(ATY''=(A""Y', VAEFQ®E,
(M) '=1"'4"'", VAEF®E,AcR,ix0, (A.27)
(BAY'=A"'B'!, VAeF®E,BEFQF.

The set of all invertible tensors is closed with respect to the composition of
tensors, and hence it forms a group, denoted by GL(E) and called general linear
group. It is known that A € A(E) is invertible if and only if det A # 0.

det(A")=(detA)". (A.28)

Inner product of tensors. For any two tensors A,BEF®E, we have
ABT€ E®E and ATBe F® F, so that their traces are well defined and they are
equal. This makes it possible to define the inner groduct of A and B by

A*B=1tr(A"B)=1tr(AB"). (A.29)

It can be verified that (A.29) defines the inner product indeed. This makes the
vector space F® E into the inner product vector space. Directly from the
definition of the inner product of tensors we can derive the following formulae,
which are valid for all tensors:

A*B=AT+BT,
AB+C=A+CB"=B+A'C, (A.30)
A*BC=ACT+B=B"TAC.

The inner product (A.29) induces the Euclidean norm of a tensor A€ F®E
defined by llAll=+A+A. The Euclidean norm must be distinguished from the
operator norm llAll,. For example, for the identity tensor we have l1ll=+/z and
lI1ll. =1. Nevertheless both norms are equivalent (this is true for all finite
dimensional vector spaces). For all tensors and vectors the following properties
can be proved
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NATII=1Al,
lAul<IAlllell, A3l
IABI<IANIBI, (A3D)
|A«B|<IAllBI.

Tensor product bf vectors. The tensor product of two vectors a€ F and b€ E is
defined to be the tensor (i.e. the linear map) a ® b € F ® E such that

@®bu=(bua, VYuekE. (A.32)

Tensors of the form @ ® b are called simple or decomposable. For simple tensors
we then have the classical rules:
@®b)(c®d)=(b+claxd, VaeF',bceF.deE,

(@®b)e(c ®d)=(a-c)(b-d)', VaceF,bdeE (A.33)

and
@a®b)Y =bQa, VYaeF, beE, (A.34)

for any three vector spaces E, F and F'. By the linearity of the tensor product of
vectors, these rules extend to all tensors.

Tensor basis. Not every tensor can be represented as the tensor product of two
vectors. For example the unit tensor is not a simple one. On the other hand, the
simple tensors span the tensor product space. In particular, if {g,} and {Ah,} are any
bases for the vector spaces E and F, respectively, then the following sets of simple
tensors

(hog), {F*eg), (hog'), {Fog}, (A.35)

form the basis for the space F® E. Thus every tensor T € F® E _has the
following component representations

T=t®@g;=Th,Qg;=T;/h*Qg;

: . A.36
=ti®gj =qu_ha®gj =T_‘;.hn®g',a ( )

where
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t'=Tg' =T, =T/h*, t;=Tg;=T;h*=Trh,,

TY=het/ =h*+Tg!, Ty=h,ot;=h,+Tg,. (A.37)

The various operations on tensors like the transposition, composition and trace
follow from the definitions for general inner product vector spaces.

Special tensors. A tensor S € EQ® E is said to be symmetric if § =87 and a tensor
WEEQE is said to be skew-symmetric (skew in short) if WT=-W. The
symmetric and skew-symmetric tensors constitute the subspaces EQE and EAE,
respectively, of the vector space E® E. A tensor Q € F ® E is orthogonal if

Qu<Qv=usv, VuyveE. (A.38)

An orthogonal tensor Q€ E®E is said to be proper orthogonal or a rotation
tensor, if det@ =1. The rotation tensors form the Lie group, called the special
orthogonal group (the rotation group), denoted by SO(E) or SO(n), where
n=dimE.

Let vectors u € F and v € E be given. Then we have

Au®v=Au®yv), VAEFQ®F,

u®Bv=u®v)B", VBEE®E, (A4.39)
and
Ac(u®v)=ATuevy=u-+ Ay, VAceFQ®E. (A.40)
Moreover, if two vectors u and v belong to the same space, then we have
det(1+u®v)=1+u-v. (A41)

If in addition u+v# —1, then the tensor 1+u® v is invertible and its inverse is
given by

A+u@v)'=1-(+u*v)'u®v. (A42)

In the three-dimensional case, if T is a non-singular tensor, the following formula
is valid

TuxTv=(detTYT ) (uxv), YuvekE. (A.43)
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Appendix B

Skew-symmetric and rotation tensors

Lie algebra of skew-symmetric tensors. In the remaining part of the appendix

(like throughout the main part of this work) E will always denote the three- -

dimensional Euclidean vector space, and we denote by uxv the usual cross
product of two vectors.

Let us recall that a tensor W € E® E is said to be skew-symmetric (skew, in short)
if : .

Wuev=—uWy, VuvekE. {B.1)
By direct implication we have
W =0, detW=0, IWIP=-tW?), (B.2)

for any skew tensor. It then follows that a tensor W is skew, if and only if
WT=—W. Accordingly, we define the vector space of all skew tensors by '

ENE={WEEQE |W+WT=0}. (B.3)

For any two skew tensors V and W, the commutator [V,W]=VW —-WV is
necessarily a skew tensor. Accordingly, E A E is also an example of the Lie
algebra with the commutator taken as the Lie bracket.

Let us also recall that the exterior product of any two vectors v and w is the skew
tensor v AW defined by A

PAW=VPRW—WRYV. (B4)

Axial vector of a skew-symmetric tensor. The vector space E taken together with
the cross product as the Lie bracket, [u,v]=ux v for all vectors u,v € E, is the Lie
algebra, which is isomorphic with the Lie algebra EAE of skew tensors.
However, it must be stressed here that the dimension three is the basic fact in this
case.
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For every vector w € E there exists a unique skew tensor W € E A E, such that

Wu=wxu, VuceE. (B.5)
Equivalently, the skew tensor W associated with a given vector w can be defined
by

- o(w xu)

L4 ou ’

VueE. (B.6)

The vector w is then called the axial vector of the skew tensor W. The converse
assertion is also true, i.e. for every skew tensor W there exists only one vector w
such that (B.5), equivalently (B.6), holds. In fact, the map

ad:E->EANE, w-W=adw, (B.7)

which assigns to each vector the associated skew tensor is linear and it preserves
the Lie bracket, i.e. for all skew tensors and the associated axial vectors we have

ad(Av +w)=AV +W,

adyxw)=[V,Wl=—vaw. ®B-8)

Moreover, the correspondence between vectors and skew tensors is invertible, i.e.
the map (B.7) is invertible. These properties can easily be derived using standard
vector identities. Thus the two vector spaces E and E A E are isomorphic not only
as the vector spaces but also as the Lie algebras.

For any two vectors v and w and the associated skew tensors V and W we have

VW =y@w-—(vew)l,

VuxWu'=(v@w)uxu'). (B.9)

Note that VW need not be a skew tensor even though V and W are. For any skew
tensors we have

rVW)==V e W ==2(vew). (B.10)
Moreover, for every nonsingular tensor T the following holds

ad(Tw)=(detT)(T"")"WT'. (B.11)
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Basis. Given any mutually reciprocal bases {g:} and {g'} for the vector space E,
each of the two families of skew tensors

Gi=adg,=-€cng'ng’, Gt=adgt=—¢etgrg,, (B.12)

are linearly independent and they also form the basis for the space EAE.
Moreover, from the properties (A.13).and (B.8) we have

2Gi d Gk =63 , Gk = fﬁk[Gi,Gj] s [G]‘,GJ'] =_€,:,'ka s - (B.13)
together with the associated relations that can be obtained by rising and lowering
the indices. :

Given a vector and the associated skew tensor-we have

w=w,g", W =adw=W, ié i,
8 ) e ugk g (B.14)
Wk=—8ykW" y W; S—Epw,
and in matrix notation
0 ‘ Wiy Wy |- - -
wil=-L|w 0 -wm| .- @B.I5)
- _ g —W, W 0 ) ’

Rotation tensors. A tensor as a linear map of an inner product vector space E into
itself is called orthogonal, if it preserves the inner product of vectors and hence the
Euclidean norm of a vector:

Qu-Qv=u-v, ||Qu||.=||u_ll,_ VuvekE. (B.16)

The second condition is obviously.the implication of the first one. From the
definition of the transposition of a tensor we have

0'0=00"=1 & Q'=07". (B.17)

The set of all orthogonal tensors . forms an orthogonal group O(3) with the
composition as the group operation. k

A proper orthogonal tensor is a linear isometric map preserving the orientation of
the vector space, i.e. a linear map satisfying the following two axioms:
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RusRv=u-v, Ru+(RvxRw)=u+(yxw), VYuv,weE. (B.18)

The first condition implies that proper orthogonal tensors preserve the inner
product and hence the norm of vectors. The second condition ensures that proper
orthogonal tensors preserve the orientation.

It is clear that proper orthogonal tensors are non-singular and hence invertible.
The inverse of a proper orthogonal tensor is again a proper orthogonal tensor and
the unit tensor 1 is proper orthogonal in obvious way. Thus the set

SO3)={ Qe E®EIQQ =070 =1, detQ=1} (B.19)

of all proper orthogonal tensors together with the compositon of tensors forms the
group, called special orthogonal group. The group is non-commutative (non-
Abelian). Proper orthogonal tensors are also called rotation tensors or simply
rotations, and SO(3) is sometimes called the rotation group. This group is a
connected subgroup of the group O(3) of orthogonal tensors.

The rotation group SO(3) is a ﬂlree—dimensiqnal Lie group. Hence, for any smooth
curve on the rotation group, the derivative Q(t) is an element of the tangent space
to SO(3) at the “point” Q(r), that is an element of the vector space

T,SO3)={ VEE®E | VQT+QVT =0} . (B.20)

The tangeni space (B.20) is isomorphic in two ways with the tangent space at the
identity, which is the vector space of skew-symmetric tensors:

[iSO(3)=ENE=] WGE®E1W+WT=0]. (B.21)

The two isomorphisms of the vector spaces (B.20) and (B.21) are determined by
the left and right translation on the group defined by

L,:503)~>S0(3), R-ILyR) =Qk :

Ry:S0(3)>S0(3), R->Ry(R)=RQ. (8.22)
These maps are differentiable and the tangent maps are
Trlp : ToSO(3) > T1y;ySOQR), V »Trle(V)=0V, (B.23)

TaRp : TeSO(3) > TyS0B3),  V >TxRy(V)=V0.
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Using these well known facts we easily find that the derivative of a curve
Q:R - SO(3) is given by

Q) =W ()Q(N=Q("W(), (B.24)
where the two tensors

wW=00", W=070, (B.25)
are necessarily skew-symmetric. We shall denote by

w=ad"'W, w=ad'W, (B.26)

their axial vectors. These two vectors, equivalently the skew tensors (B.25),
represent the amgular virtual motion or the angular velocity fields. This
terminology is justified by the dynamics of the rigid body motion. As simple
implications we have the following relations

W=0WQ", w=0w. (B.27)

The first of these relations is a direct implication of (B.25), the second one follows
at from the property (B.11) of the map ad.
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Appendix C
Mappings and fields

Euclidean point space. In this appendix we shall be concerned with fields on
subsets of the n-dimensional Buclidean point space ". By its very definition, 6"
is the affine space modelled on the n-dimensional Euclidean vector space E”. The
elements of 6", called points or places, will be denoted by x, z, etc. The elements
of -E", called vectors, are denoted by u, v, etc. Mathematically, the spaces 6" and
E", as well as the real space R" with its natural vector space structure, are in a
sense the same. They are isomorphic. However, 6" is not merely a fixed copy of
E" or R,

Let 0 € 6™ be a fixed point. Then by virtue of the definition of the affine space
every other point x €6" can be represented in the form x=o+r, where the
unique vector r € E” is called the position vector of x relative to a point 0. Given
any two points o and x in the space 6", we can draw an arrow which begins at o
and ends at x. This arrow represents a vector r which is denoted by r=x—o.
Moreover, let further {e,} be an orthonormal basis for E”. Then we may write
(here and in the sequeal, ¥=12,...,n, and the usuval summation convention
applies)

x=0+r=o0+xe;. (C.1)

The n-triple of real numbers (x,) € R” are then called the Cartesian coordinates of
the place x. Since the representation (C.1) of a point x €™ is unique, we have the
sequence isomorphisms:

& fixed point > E" fixed basis >[R”, x=>r—=>(x). (C.2)

However, the first isomorphism depends on the choice of a point in 6". The vector
space E” has a distinguished element, the zero vector. In contrast, the space "
has no naturally distinguished point. The second isomorphism depends on a choice
of the basis for E". Hence they are not canonical. Accordingly, whenever a
particular choice of a point in the Euclidean point space is important for some
reasons, the identification of 6" and E" cannot be made. On the other hand, once a
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point in &" has been fixed and we have chosen a basis for E”, then such
identification is legitimate.

Topology of the Euclidean space. The inner product on the translation space E
together with the induced norm makes it possible to define the distance between
points of the space & Thedistance d(x,z) between two point x and z is defined to
be the length of the vector that translates one point into another, d(x,z)=Ilz—xIl.
The distance function (metric) d makes & into a metric space:

space § —="<L s metric space (6,d).

In turn, the metric gives rise to a topology on &in a natural way and 6 becomes
the topological space:

induced topolog T

metric space (6,d) > topological space (6,5 ).

A topology on & consists of a family J of subsets of &, called open sets, satisfying
certain axioms. The notion of a topology gives sense to the intuitive ideas of
nearness and continuity. Fundamental concepts of a topology are open and closed
sets and the interior, closure and boundary of a set. Referring to the mathematical |
literature' for all details, here we only give a very short review of those concepts
which are needed in the subsequent considerations.

Closed and open sets. An open ball with center at a point x € 6 and radius 6 >0
is the set

By(x)={z€6|d(z,x)<0d}. (C.3)

A set AC & is open, if for every point x € A there exists a ball Bs(x) such that
Bs(x)C A. Clearly, an open ball is an open set. A point x€ A is said to be an
interior point of a set ACé&, if there exists an open ball B;(x) such that
Bs(x) C A. The collection of all interior points of a set AC é is called its interior
and its is denoted by inrA. It can be shown that the interior of a given set A is the
largest open set contained in A. Moreover, it is easy to see that a set AC & is open
if and only if intA=A. A set AC & is said to be closed if its complement 6\ A
in & is open. Given a set AC &, we write cl€2 for its closure, which is a largest
closed set containing A. Clearly there are subsets of 6 which are neither open nor
closed (see Fig. 1).

! R. ENGELKING [1989].
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subsets of the two-dimensional Euclidean space (plane)

open closed neither open nor closed

Fig. 1

The collection of all open sets is called the topology induced by the metric
d(x,2)=llz—x|l. The topology turns out to be independent of the choice of the
metric. This fact is a direct consequence of the equivalence of the norms on the
finite dimensional vector spaces. The Euclidean topology has many important
properties. In particular, it is Hausdorff and it has a countable basis.

Fig. 2

A set-topological boundary (a set-topological boundary need to be distinguished
from the measure theoretic boundary of a given set) dA of a given set AC§ is
defined by (Fig. 2)

dA=clAncl(6\ A). (C.4)
Sequences. The notion of distance (metric) can be used to define limits,
convergence, continuity, etc. in the customary manner. For example (Fig. 3), we
say that a series {x,1,2,..} of points converges to a point x€é if
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Eﬂ d(x,,x)=0. While the metric depends on the norm of the translation space E,

the convergence is independent of the particular norm. A set is <losed, if it
contains the limits of all convergent sequences.

Fig. 3

Connected sets. A subset Q C & is connected if any two points in £ can be
connected by a curve in £. A subset £ C & is simply connected if any closed
curve in £ can be continuously deformed to a point without leaving €2 (see
Fig. 4). A domain is an open connected (but not necessarily simply connected) set.

subsets of the two-dimensional Euclidean space (plane)

simply connected connected but not simply connected disconnected
Fig. 4
We shall also need to consider bounded domains with the so-called Lipschitz

boundary. The definition of this concept is rather complicated. Therefore, referring
to the literature, we only note that to the class of domains with Lipschitz boundary
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belong domains, whose boundary is smooth or piecewise smooth and has no
singularities such as cuspidal edges, etc.

Mappings between Euclidean spaces. Let & and ¥ be two Euclidean point spaces
modelled on the Euclidean vector space E and F, respectively. Let 2 C & be an
open set. A mapping ¢:Q - ¥ is a rule, which assigns to each point x € Q an
element ¢(x)E 5.

Let us note that every Euclidean vector space is an Euclidean point space
modelled on itself. Thus, we use the term field for a map ¢:Q - F having a
domain £ C & in the Euclidean point space and a range in a finite-dimensional
inner product-vectors space F. A scalar field ¢:£2 - R is an important special
case with F =R taken to be the set of real numbers (which is the one-dimensional
vector space). A vector field in the classical sense means a map u : €2 > E, where
E denotes the translation space of & More general, a tensor field of p-order is
again a special case with F =@®?”E taken to be the tensor product of p-copies of
the translation space E. Still another possible choice of the space F is the direct
sum &’ E of p-copies of the space E.

We shall be concerned with the differentiation-of mappings and fields having as
their domains open and connected, but not necessarily simply connected, subsets
of the space & Accordingly, for the remaining part of this appendix, 2 C & will
always denote such subset. ; '

Continuous mappings. A mapping ¢:£2 > ¥ is said to be continuous at a point

x € Q,.if for every £>0 there exists >0 such that for every point z€ Q the
following condition holds )

lz—xll<d = IlP@)—@(x)li<e. (C.5)

Though the two norms in (C.5) may be different, being defined on different spaces
E and F, we commonly use the same symbol, letting the context indicate which
norm is meant. In the case of finite-dimensional vector spaces, with which we are
concerned here, all norms are topological equivalent. Thus the continuity of a
given field is norm-independent.

A mapping ¢:Q - ¥ is said to be continuous on £, if it is continuous at each
point x € £2. We shall denote by C%(£2,.¥) the set of all continuous fields having
£ as the common domain and taking their values in the space %
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A mapping ¢:Q - ¥ is homeomorphic, if it is bijective (one-to-one and onto),
continuous, and if its inverse is continuous.

Differentiable mappings. The concept of a differentiation can be developed at
various levels of generality. The following definition will overcome the lack of
many desirable properties of weaker differentiability requirements: A mapping
@:6 - F is said to be differentiable at a point x € £2, if there-exists a linear map
(tensor) Vg(x) € F @ E such that

S(x +u)=P(x) +Pp(xu+o@), C6)

for every vectors u € E. If Vgp(x) exists, it is unique and it is called the gradient of
a mapping ¢ at the point x.

The definition (C.6) allows most of the usual properties of derivatives in one-
dimension to be carried out over the general case considered here. For example,
whenever the gradient exists, it can be computed according to the rule

V() =2p(x + Ay C.7)

Another way to compute the gradient of a differentiable field is the following one:
let x(¢), t € I CR, be a smooth parametrized curve in the region £2. Then

P(x(1))=PP(x(t)x(t). (C.8)

Many important properties of a differentiable field can be derived as consequences
of the following theorem: If a field ¢: 2 - ¥ is differentiable at a point x € £2,

then it is continuous at x. More precisely, there exist constants 6 >0 and ¢=0
* such that -

lzll<é = lg(x+u)—p(x)l<clull. (C.9)

The gradient of a given scalar field ¢:£2 >R is-the unique vector field V¢, in
which case the formula (C.8) takes the form

P(x()) =PP(x(1) (1) (C.10)

The gradient of the position vector is the unit tensor, Vx =1.
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Higher gradients. A field ¢:2 - F is said to be differentiable on 2, if the
gradient Pgp(x) exists at each point of £2. If ¢ is differentiable on €, then its
gradient is the field

Vgp.2->FQRE, x-=>Ve(x). (C.11)

We say that a field ¢ is of class'C' on £, if it is differentiable at each point of €2
and the mapping V¢(x): 2 - F ® E is continuous on £2.

Since F® E=L(E,F) is again a finite-dimensional inner product vector space,
we may apply the definition of differentiation to (C.11) in order to obtain the
second gradient of ¢. Continuing in this manner, we denote by

PG =gy, n=23..., (C.12)

the n-th gradient (if it exists) of a given field ¢:£2 - 7. If the n-th gradient of a
field ¢ : 2 - F exists, it is a field of the type

V"¢:Q->FQEQ..QF = L(EQ..QF, F). (C.13)

n—copies n—copies

A field @:£2 > F is said to be of class C", if it is differentiable at every point of £2
and its n-th gradient is continuous on £2. We shall denote by C"(£2, F) the set of
all fields of class C". The fields of class C° are just continuous fields on £2.

The basic theorems in the differential calculus assert that for any two fields
P YeEC(R,5) of class n=0 and every real number A€R, their linear
combination A¢p+ 1 is a field of the same class and

POAP+Y)=AFPP+7Py,  k=0]12,..n. (C.14)

An important property of the higher gradients of differentiable fields is their
symmetry: If a field ¢ : 2 - F is twice differentiable at a point x € €2, then

VO¢(x)unvl=0, VauveE. (C.15)
Analogously, if a field ¢ : £2 -» ¥ is n-times differentiable at a point x € &, then

17(")¢(x)[ua(l)A...Au,,(k)]=0, Vul,...uk ek, (C.16)
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for every permutation o € X', where X', denotes the permutation group.

Coordinate systems. The space & or any open subset of 6 may be parametrized by
a curvilinear coordinate system of which the Cartesian coordinate system is just a
special case. Formally, a coordinate system on an open set £2Cé is a
diffeomorphism of € onto an open set in the space R":

P:Q->U=p)cR", x->(E)=9p(x). (C.17)

The n-tuple of real numbers (£°) is then called the coordinates of the point x € 2.
A particular coordinate system can be determined by specifying functions of
Cartesian coordinates which have unique inverses. Then the position vector of any
point in the domain of the given coordinates can be expressed. as x(&') = x,(&")e;.
Then at every point x one defines the natural base vectors and the reciprocal base
vectors (Fig. 5):

g(x)=x,, g'(x)gix)=0j. (C.18)

Here a comma stands for partial derivative with respect to the coordinates . The
geometric meaning of the natural base vectors is simple: these are the vectors
tangent to the curvilinear coordinate lines and they vary from point to point.

real space R’ Euclidean point space &

Xy X,

Fig. 5

The natural base vectors defined by (C.18) are necessarily linearly independent.
Accordingly, they span at each point x € é the three-dimensional vector space,
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denoted by 7.6 and called the tangent space. The underlying Euclidean
parallelism of the ambient space allows to identify this space with the translation
space . In effect, 7.6 is just the space E attached to the underlying point.

Metric tensor. From (C.6) the differential line element and its length are obtained
in the form dx = g,d&' and ds® =dx + dx = g;d&'dE’, where the components of the
metric tensor are defined in the standard manner

gi=g°g;, g'=gg. (C.19)

In order to ensure that the underlying transformation of the coordinates is non-
singular and orientation preserving we require that g=detg; >0. All other
relevant relations follow from the above relations with the standard operation of
rising and lowering indices.

Partial derivatives. In a given coordinate system in a domain €2, a mapping
¢:2-F may be considered as a function of the curvilinear coordinates,
P(E)=@(x(E)). If ¢ is differentiable at a point x € £, we may define partial
derivatives in the directien of the natural base vectors:

d
dip(x)=(V(x))gi(x)= a—?,.(x) . (C.20)
It is afdmportance to note that the existence of all partial derivatives does not
imply that ¢ is differentiable. However, if partial derivatives exist and are
continuous at a point x, then the field ¢ is differentiable at this point and the
gradient can be computed pointwise according to the rule

Ph(x) =, (x)® g'(x), ¢,.-(x.)sf‘ﬂ%@. C21)

The partial derivatives obey the usual rule of differentiation, in particular, the
Leibnitz rule.

Christoffel symbols. Assuming that the position vector x(§) is twice
differentiable with respect to the curvilinear coordinates, the partial derivatives of
the natural base vectors can be expressed as linear combination of the vectors
themself:

gii=Tyg*=Ttg., g,=—T4g". (C.22)
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The coefficients in these expressions are called the Christoffel symbols of the first
and second kind, respectively. They are defined by

Fldi =8k 8isiT Xy Xjj I‘5=_gk ‘8= gux’l.x’('l' . (C23)

Since the order of partial differentiation satisfies the rule x,;=x,;, a suitable

combination of these relations makes it possible to express the Christoffel symbols
in terms of the partial derivatives of the components of the metric tensor

ry =%(gldd+glq"i_gij’k )s ri=g"Ty. (C24)

Moreover, it can be shown that

=ghl,, = J— a‘é,— . (C.25)

It is worth noting that the Christoffel symbols are not the components of a tensor.
If they were, such a tensor would vanish in Cartesian coordinates, since the base
vectors are constant. This is a contradlctlon since a tensor is independent of its
component representation.

Divergence of a ternisor field. In classical context the divergence of a differentiable
vector field u: 82 - E is defined pointwise to be the unique scalar Divu(x)€R

such that
Divu(x)=tr(Fu(x)). - (C.26)

With the help of (C.26) one then defines the divergence of a differentiable tensor
field T : 2 -» E® E to be the vector field, which is characterized pointwise by

(DivT(x))+k = Div(T(x)k), (C.27)
where k € E is any constant vector.

In general, let @: Q2 - F ® E be a field differentiable at a point x € . Then so is
the field &7 : Q2 > E® F. Moreover, for every constant vector k € F the field
@7k :Q - E is differentiable at the point x € Q and V(P'k)(x)€ E® E so that
its trace is well defined. With this in mind we introduce the following definition:
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The divergence of a field @: Q2> FQ®E at a point x € £2 is the unique element
Div®(x) € F of the vector space F, which satisfies the following condition

(Div®(x))sk =tr(F(®"k)(x)), VKkeEF. (C.28)

It is seen that for the divergence to exists it is enough that @ is a field of class C*,
k=1. Clearly, the definition (C.28) contains as special cases the two definitions
(C.27) and (C.26), the former case by setting F =R and taking into account that
R ® E = E, the latter case is obvious.

The divergence is the first order differential operator, i.e. it is a map of the space
of differentiable fields C*(Q,F® E), k=1, into the space of vector fields
C(Q,F) with the following property: for any differentiable fields
DY .Q - FQ®E and each real number AR,

Div(A® +W )= A Divid)+ Di/W . (C.29)
This rule holds for any linear combination of differentiable fields.

The product rule. It will be necessary to compute the derivative of a product of
two fields possibly of different kind. Various products have one property in
common, the bilinearity. Therefore, in order to establish a product rule, which is
valid in all cases of interest, we shall denote by

B:FXxE-F', (¢,u)-> p{p.u}, (C.30)

a bilinear map, i.e. linear in both arguments separately. For example the tensor
product of vectors, the inner product of vectors or the action of -a tensor on a
vector are all of the form (C.30).

Let ¢ € CX(£2, F) and u € C*(£2, E) be differentiable fields. Then their product

o(x) = p{¢(x),u(x)} (C.31)

is a field on Q of the same class, i.e. ¢ € C*(£2, F'). Moreover, at every point
x € Q the following rule of differentiation holds'

(Vo (x)k = p{@(x),Vu(x)k}+ p{rp(x )k, u(x)}, VkeE. (C32)

! Gurtin [1972].
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This theorem applied to the tensor product yields
F@Ru)k=908Fu)k+Fp)kQu. (C.33)

Covariant derivative. Every tensor field @ € C(£2,F ® E) can be represented in
the form

P=¢g'=¢'®g:. (C.34)

Assuming that this field is differentiable, its gradient can be-computed applying
the formula
VD =($©g'),,88" =(¢.,08' +$:®¢",;)®g’
=(p'®g), g’ =(¢',,02:.+¢'®g:,;)®g’.

Making use of the formulae for the partial derivatives of the base vectors the
gradient of the field (C.34) is obtained in the form

(C.35)

Vp=>D,8g' =¢;;08'®g' =9¢',;08®8’, (C.36)

where a semicolon stands for the so-called covariant derivative, which is defined
by the formulae

;=i ~ T, =9, +r§q¢k- (C.37)

The same considerations can be applied to fields of any kind. For subsequent
considerations it will suffice to consider the tensor field ¥ € C(2,F® EQ E),
which can be represented in the form :

V=9,08'08' =¢9'®2:®g,. (C.38)

‘ Assuming that this field is differentiable, its gradient can be obtained in the form
W=y,,8'®8' 08" =9":808,®8", (C.39)
where
Yo =vyu— Tl — Ty,  $lu=y'u+Tip! +Tiy". (C.fIO)

By direct calculation we find that the covariant derivatives of the natural base
vectors vanish identically
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gi§j=gj;i=0‘ (CA41)

By implication, the covariant derivatives of the components of the metric tensor
and the permutation tensor associated with the given coordinate system vanish
also identically:

giw=8" =0, ey =e%y=0. (C42)

When the above formulae are applied to the second order tensor field, which can
be represented in the form

T=t;,0g =T;g'®g’

i =figg,=Tig®g;, (C43)
we obtain the following form for the gradient
VT =t,@8 ®g" =T ¢g'®g' ®g* (C.44)
=t/,®g;®g"=T",g:0g,0¢8*, o
where
ti=t— ity ty=t, +Tit, (C45)
1:;;1;:1:1,1(_]1{11:;—1"1]]‘7; ’ Tu,k=TU’k+FiILle+I‘1’kT” . .

Formulae for divergence. The results of the previous section enable us to obtain
useful formulae for the calculation, of the divergence operator in a given
coordinate system. For a field @ € C(£2, F ® E) the following rules hold:

Divib = glgh; ;=" . (C.46)

Thus taking into account (C.37) we may express (C.46) in the form containing no
covariant differentiation

. 1 k
DivlD = ,/ g0 ). Cc4an
For a second order tensor field with the formulae for the covariant derivative given

by (C.45) we obtain

DiVT = gjktj;k=tj;j

: ] . (C48
=g*Tyug' =T",; 8. )
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Appendix D

Curves, surfaces and surface fields

In this appendix & denotes the three-dimensional Euclidean point space and E the three-
dimensional Euclidean vector space (translation space of & ). Moreover, we shall assume
that a particular Cartesian coordinate system in & has been fixed once and for all.

Preliminary remarks. There are several relevant concepts of curve and surface,
just as there are several concepts of line and surface integrals. These concepts are
not only related to one another, but they are also related to the solution of many
problems in mathematics and mechanics. Classically, in differential geometry one
considers only curves amd surfaces in the three-dimensional Euclidean space
defined as smooth mappings. Such curves and surfaces may be considered as
differentiable manifolds of dimension one and two, respectively. However, the
definition of curves and surfaces as smooth mappings has certain drawbacks. In
particular, there is an inevitable restriction on the types of singularities that can
occur, and there is an a priori restriction on the topological complexity. An
alternative to curves and surfaces as smooth mappings is provided by rectifiable
currents, one-dimensional and two-dimensional oriented curves and surfaces of
the geometric measure theory. The relevant functions need not be smooth but
merely Lipschitzian. Roughly speaking, a rectifiable set is arbitrarily close (in the
sense of measure) to being a differentiable manifold and yet may have a wide class
_of singularities, i.e. non-manifold points. For example, a subset of the space
illustrated in Fig. 1, resembling the familiar soap bubble, is not a surface in the
sense of classical differential geometry because of the singular circle, where three
spherical segments meet. However, it is a two-rectifiable set, because we can
remove an arbitrary small neighborhood of the singular set and have the three
segments of spherical surfaces left (two- dimensional manifolds).

There is also an essential difference between curve theory and surface theory. For
a given curve there is a natural parametrization and this parametrization can be
used to describe every point on the curve. For a surface there is no natural
geometric parametrization. In fact, often it is not possible to find a parametrization
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that describes the whole surface in a unique way. Accordingly, a general theory of
surfaces entails also a much deeper connection with topology and measure theory
than for curves.

Fig. 1

Parametric curves. A parametric curve in the space & is defined as a continuous,
not identically constant map y: I - & of an interval I =[a,b]C R. In other words,
a parametric curve is defined by a continuous vector-valued function of a real
argument (Fig. 2):

x()=x(y(®)=x(t)er, t€l=[ab]. (D.1)

In general, a map y: I+ & of a curve need not be one-to-one. It has to be noted
that a-parametric curve is defined as a map and not as a subset of the space &. A
curve as a set in & can be defined as the image set I'=y(I). In this case y: I = &
is called a-parametric representation of the curve I".

The curve I' can be a very complicated set, in fact, there are curves which fill out
a cube (such a curve is called a Peano curve or a space-filling curve). Moreover, it
is obvious there are infinitely many maps y:7/—+&, all of which should be
considered as representations of the same curve I'. This can be made precise in the
following way. Let two parametric curves y;:[a,b]=>& and y,:[a:,5]> & be
given and let 7 :[a;, ] > [a,, b,] be a topological map (homeomorphism). Then one
defines the distance between two parametric curves in the sense of Fréchet. Two
parametric curves with zero Fréchet distance are regarded as identical, being
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merely two representations of the same curve I'. In other words, a curve I is
defined to be a maximal class of Fréchet equivalent maps.

11’ real line R
1

Euclidean space

r/‘\

Fig. 2

Using the concept of equivalence, we can assign a precise mathematical meaning

to the intuitive idea of “transversing” a curve in a given direction. Two parametric

curves are said to have the same orientation in the sense of Fréchet, if there exists

an orientation preserving (i.e. strictly increasing) homeomorphic map 7 such that

¥2=71°T. An oriented curve is then precisely a maximal class of equally oriented

maps in the sense of Fréchet. A path or an oriented curve in the space &'is a class
. of parametric curves, any two of which are equivalent and orientation preserving.

A closed curve is a parametric curve y: I - é with the property that y(a) =y(b),
i.e. the terminal point of the curve coincides with the initial point. If y(a) # y(b), a
parametric curve is called an arc with endpoints y(a) and y(b).If y:I - & is one-
to-one, then the parametric curve is called a Jordan curve or a simple curve and it
is called a Jordan arc if y(a) #y(b) (Fig. 3).

A curve I is said to be of class C*, if there exits a parametric representation
y:1->& of class C* (k-times continuously differentiable with respect to the
parameter). A curve I is called regular of class C*, k=1, if there exits a
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parametric representation y:I - & of class C* and yp(¢)#0 for all 1 € I =[q,b].
Here and in the sequel a superimposed dot stands for the derivative with respect to
the parameter. The condition y(¢) # 0 ensures the existence of the tangent vector at

every point of the regular curve. A regular curve of class C' is called smooth. A
regular curve of class C*, k =2, is called a differential geometric curve.

two-dimensional Euclidean space (plane)

i arc Jordan arc Jordan curve

Xy
Fig. 3

A curve I' is called piecewise regular of class C*, if there exits its parametric
representation y : I - & and a partition A of the interval I =[a,b],

A:{a=H <y, <...<t,q<t,=b}, D.2)

such that the restriction of y to each subinterval (#,%.) is a function of class C*
and y(1)=0 for every t€(;,44). Thus the points #, € I are the only possible
points, where the k-th derivative might not exist or where it vanishes (Fig. 4).

Given a piecewise regular curve I" of class C*, k=1, with the parametric
representation y:I- &, the new parameter s along I', called the arc length
parameter, is defined by

s = [ JE@) (1) d. (D.3)

The function s=s(¢) is increasing except for at most finitely many points.
Accordingly, the inverse function is also monotonously increasing and piecewise
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of class C*. Using this function we obtain an equivalent parametric representation
of the curve I in the form x(¢(s)), called natural representation.

a=[t1 t}z { ‘tli tn—l b= tn real linéR
y / Euclidean space
X;
X3
X %2
Fig. 4

The path integral or the integral of a vector field u:& - E along the path (i.e. the
oriented curve I') is defined by

Jfou(x)ds= [Tu(x()ME@)lds. (D.4)

If a curve I is only piecewise smooth or a field u is piecewise continuous, we can
‘ still define the path integral by

Jruyds=Y [ u(x@Nk)ldr. (D.5)
The above two definitions apply also to tensor fields of any order.

Parametric surfaces. In the most general case, a parametric surface M in the space
& may be defined to be a map of some subset IT C[R? of the real plane into &

p:II-&, (E)>y=p(E), (D.6)
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or simply y = p(&), & =(&#). The set IT is then called the parameter domain. Let

us note that a parametric surface M is defined to be a map and not a point set
pUI)C &, which is the image of the parameter domain under the map p.

Moreover, to make it clear that the concept of a parametric surface M depends on
both the parameter domain I7 and the map p, one often writes M =(p, IT).

real space R’ Euclidean point space E

Fig. 5

It is also apparent that without some restrictions on both, the parameter domain 77
and the map p, the above definition would be useless. By imposing additional
conditions, we can make the shape of a surface defined by (D.6) to conform with
our intuition, at least locally. Even then, however, we cannot rule out self-
intersections (Fig. 5), self-tangencies (Fig.6), coverings and certain other
unexpected properties.

In general, the map (D.6) is assumed to be continuous, non-constant, and single
valued, but not necessarily one-to-one. That is, each point & € IT is mapped into
one and only one point y = p(&) of the image set p(II). However, any point of
Y € p(IT) may be the image of more than one point of I7, even infinitely many.
There are even more possibilities in choosing the parameter set. In general, it is
taken to be a connected subset of the real plane. Usually, a parameter set I7 is
taken to be a bounded domain (i.e. a bounded, open and connected set) or a
compact set bounded by a finite number of disjoint piecewise smooth Jordan
curves.
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real space R Euclidean point space E

Fig. 6

Equivalent parametrizations of a surface. The distance between two parametric
surfaces M =p(II) and M'=p'(Il") with topologically equivalent parameter
domains is defined in the same way as the distance between two curves. Two
parametric surfaces with zero Fréchet distance are merely two parametrizations of
the same surface and can be regarded as identical. In this sense, a surface is a
maximal class of Fréchet equivalent parametric surfaces. A necessary, but by no
means sufficient, condition for p:II-+é and p':II'>é to be two
parametrizations of the same surface is that the two parameter domains I and IT'
be topologically equivalent, i.e..there exists a homeomorphic map

111", E->E=¢&) D.7)

.of IT onto IT', and, in the case of compact parameter domains, that the images be
identical.

In spite of its appearance as a point set in space, a surface inherits its topological
properties from its parameter domain. This is indeed characteristic for the notion
of a parametric surface. Moreover, without some restrictions the intersections and
other types of singularities of surfaces in the space could be very complicated.

Boundary of a surface. Some-surfaces have boundaries and other do not. For
example, a hemisphere has a boundary consisting of its equatorial rim. An entire
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sphere, an ellipsoid, and the surface of a cube are examples of surfaces without
boundary.

Let a parametric surface M =(p,II) be given. If the parameter set I7 is taken to
be a bounded domain (i.e. a bounded, open and connected set), then M is called a
surface without boundary or an open surface (Fig. 7).

real space R*

52

Euclidean point space E

Fig. 7

If the parameter set IT is taken to be a compact set bounded by a finite number of
disjoint piecewise smooth Jordan curves y;, k =1,2,...,n, then the boundary of M
is said to consist of the images I'; = p(y;) of v, (Fig. 8).

real space R’

62

Euclidean point space E
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In general, the boundary of a parametric surface M =(p,IT) is defined to be the
set, denoted by oM, of accumulation points of all sequences {y.}, ¥. = p(&,),
n=12,..., where the sequences {£,} converge to the boundary oII of the
parameter set I7.

Tangent plane to a parametric surface. If the representation p:IT—>& of a
parametric surface M is a differentiable map at a point & € IT, then its differential
is the linear map Dp(§):R?-> E=T,6. The parametrization p of M is called
regular at a point & € IT, if the tangent map Dp(§) has maximal rank two. Let
& € IT be a regular point. We then define the tangent space T, M to the surface M
at a point y=p(E) to be the image of R? under the linear map Dp(E).
Geometrically, the tangent space T, M is represented by a tangent plane (Fig. 9). It
is also clear that T,M is the two-dimensional subspace of the translation space
E=T,& attached to the point y € M. Moreover, the inner product on E induces
the inner product on the tangent space 7, M, which is defined as the restriction of
the inner product on E to T, M . As a result we have the following decomposition
of the space E=T1,6:

E=T,6=T,M®T,M", (D.8)

where T, M* denotes the orthogonal complement of the tangent space.

real space R’ Euclidean point space E

62
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Assuming that the parametrization of M is fixed, we shall simply write y = y(&#).
Then at a regular point y € M one defines the natural base vectors and the
reciprocal base vectors by

a=ys, a*caz=0}. (D.9)

Since M is assumed to be regular the natural base vectors as well as the reciprocal
base vectors are linearly independent and they span the tangent space 7, M at each

point of M (Fig. 10).

real space R’ Euclidean point space E

52

X3

5 R

Fig. 10

In the following we shall usually assume that all considered surfaces are regular,
except possibly at isolated points.

Piecewise smooth surfaces. Let IT cR? be a simple regular region, i.e. an open
-connected and bounded set, whose boundary dI7 consists of a finite number of
piecewise smooth simple closed curves (of class C*, n=1), and let £ cR? be an
open domain such that JTUJII C Q. Let

p:R2->&, (EH>y=pE) (D.10)

be a one-to-one map of class C*, k=1. Then a set M = p(JIUJII)C & is called a

simple smooth surface element of class C* (Fig. 11). The boundary of M is taken
to be dM = p(dIT) and the map (D.10) is called a simple parametrization of the

surface M.
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real space R Euclidean point space E

Fig. 11

A regular surface may be taken to be a continuous surface which is piecewise
smooth. Roughly speaking, a piecewise smooth surface consists of portions of
smooth surfaces joined together. Such a surface may have sharp edges and
corners. The surface of a cube or other polyhedron is a simple example of a
piecewise smooth surface.

A piecewise smooth surface M C & is a union of a finite number of smooth
surface elements M, k =1,2,...,n, provided that (Fig. 12):

(i) No two distinct M;, have common interior points, int M, nint My, =@
forall k#1.

(ii) The intersection dMyndM,, k#! of the boundaries of two distinct
elements M, and My, is either empty or a single point, which is a vertex
for both, or a piecewise smooth arc I ;) =My NOM(;, which is an edge
for both.

(iii) The boundaries of any three or more distinct elements M, have at most
one point in common, which is the vertex for all elements.

(iv) Any two points of M can be joined by a path in M.

(v) The union of all arcs, each of which is on the boundary of only one of the
M, forms a finite number of disjoint, piecewise smooth, simple closed
curves.
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The set of points in (v) constitutes the boundary M of M. If this set is empty, then
M is called a piecewise smooth surface without boundary.

Fig. 12

The term edge here refers to one of the finite number of regular arcs comprising
the boundary of a regular surface element. The term vertex is a point, at which two
edges meet. If all the edges of a regular surface belong each to two of its surface
elements, the surface is a closed regular surface. Note that a regular surface (and
hence a closed regular surface) is necessarily both connected and bounded.

Orientation of a surface. Let M be a smooth surface. Then at each point of M the
tangent space 7,M, geometrically represented by the tangent plane, is well
defined. A smooth surface M is called orientable, if there exists a continuous field
n: M - E of unit vectors such that n(y) € T,M* is the normal vector at each point
y € M. Each smooth orientable surface possesses exactly two orientations, n(y)
or —n(y), each of which is the negative of the other (Fig. 13). It is intuitively clear
that smooth surfaces such as spheres, ellipsoids, tori, etc. are all orientable.
However, there are smooth surfaces, for which there is no way to choose a
continuous unit normal over the entire surface. The orientation of the surface is
definitely not a local property. Locally, every smooth surface is orientable.

A piecewise smooth surface has edges, and so a continuous unit normal vector
field cannot be defined over the entirety of such a surface. However, a piecewise
smooth surface M admits a partition into a finite number of smooth surface
elements M. Each M, can be oriented and to each boundary dM,, can be given
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a positive orientation. Suppose that I';,, =dMy) N oMy, is a smooth arc which is
the common boundary of two surface elements M, and M. If the positive
direction of I'¢; as part of the boundary M, is the opposite of the positive
direction of I', as part of the boundary My, for all arcs I'(;y, we say that the

piecewise smooth surface M is an orientable one (Fig. 14). This condition ensures
the possibility of defining the unit normal vector on each smooth surface element.

Fig. 13

It can be shown that if a piecewise smooth surface M is orientable according to
one partition into smooth surface elements, then it is orientable according to any
other such partition.

Fig. 14
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Projection and inclusion operators. At each regular point for every ye M of a
given surface, the decomposition (D.8) makes it possible to define a canonical
injection I(y):T,M - E, called the inclusion operator, which maps every vector
u€T,M into itself considered as the element of E. Similiarly, the orthogonal
projection operator along the normal vector n(y) is defined to be a map
P(y):E—-T,M, which assigns to every spatial vector at y € M its tangential
component, i.e. P(y)u € T, M for every vectoru € E=T,6.

The inclusion map I(y)e E®T,M has to be distinguished from both the unit
tensor (identity map) Ky)€ T, M ® T,M and the unit tensor 1€ E® E. We have

uI(yyw=I(yYusv=P(yusv, ucE,veT,M. (D.11)
Moreover,

I =P(y), PYWI(y)=1(y). : (D.12)

Fields over a surface. Given a surface M C &, the term F-valued surface field will
generally signify a map ¢: M - F, which assigns to every point yE M an
element ¢(y) € F of a finite dimensional inner product vector space F (usually the
set R of real numbers or the translation space E of &). This term applies also for
surface fields with values in the Euclidean point space &, whose translation space
is E and for fields, whose domain is any subset of a given surface M. We shall
always assume that M is an oriented and connected surface (but not necessarily
simply connected) with or without boundary. In general, M need not be smooth.

We shall denote by C(M, F) a set of all F-valued fields over a given surface M. A
few special fields will be our main concern. A real function on M is a map
¢:M—->R, and u: M > E will be called a spatial vector field over the given
surface. The sets of all such fields will be denoted by C(M,R) and C(M,E),
respectively.

If M is an open (without boundary), smooth surface so that the tangent space T, M
is well defined at every point of M, we define a tangential vector field on M as a
map, which assigns to every point y € M an element v(y) € T,M of the tangent
space at that point (Fig. 15). We write C(T, M) for the set of all such fields. This
notation is not incidental. In the terminology of differential geometry, a tangential
vector field over a manifold is a cross section of the tangent bundle
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™ =|J,.,, T, M . Analogously, C(E ® T, M) will denote a set of all surface fields,

whose values at a point y € M is a tensor S(y)€ E®T, M, i.c. a linear map of the
tangent space 7, M at that point into the vector space E.

spatial vector field tangential vector field

Fig. 15

Differentiable surface fields. Our aim is now to introduce the concept of
continuity, differentiability and differential operators for surface fields. This is not
at all an easy task, since the domain of surface fields lack a vector space structure.
Moreover, it is intuitively clear that the regularity of surface fields can depend on
the regularity of a given surface itself. There are two main ways to introduce
appropriate concepts.

We shall first consider the case, when M is an open surface. Let us note that this
means the same as to consider a field over an open subsurface of M, not
necessarily an open one. If M is an open surface, then there exists a parametric
representation of M, i.e. a continuous map p:IT - &. Given a field ¢: M - F on
"M, the composed map (Fig. 16)

p=¢op:II>F, E->PE=¢(p®)). (D.13)

is called the representative of the given field ¢. With the help of (D.13) we can
tray to transfer the concept of continuity of fields over the surface to the well
defined concept of continuity of fields over domains in the real vector space R*.
And indeed this idea works well in the case of differential geometric surfaces:

Definition 1. Let M be a regular, open surface of class C’, r =1, so that there
exists a parametric representation p: IT - & of M, which is a diffeomorphism of
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class C'. A field ¢: M - F is said to be differentiable of class C*, k<r, at a
point y € M if the representative (D.13) of ¢ is differentiable of class C* at the
point p~!(y)e IT. A field ¢: M - F is said to be differentiable of class C* on M,
if the representative (D.13) of ¢ is differentiable of class C* at every point of IT.

inner product vector space F

.

2 RS
/RN
)

real space R’ Euclidean point space

Fig. 16

Definition 1. Let M be a regular, open surface of class C’, r =1, so that there
exists a parametric representation p:I7 - & of M, which is a diffeomorphism of
class C’. A field ¢: M - F is said to be differentiable of class C*, k<r, at a
point y € M if the representative (D.13) of ¢ is differentiable of class C* at the
point p~'(y)e IT. A field ¢ : M — F is said to be differentiable of class C* on M,
if the representative (D.13) of ¢ is differentiable of class C* at every point of IT.

Recalling that a regular surface M of class C’", r =1, is defined as an equivalence
class of diffeomorphic parametric representations of class C’, it becomes clear that
this definition is independent of the parametrization of M. Indeed, let p,: I, > M

and p,:IT,» M be two parametric representations of class C” of a given surface
M (see Fig. 17). Then there exists a diffeomorphism pi, = p3'o p,: I, -» IT, of
class C'. Denoting by a, :M - F and 9732: M - F , respectively, the representative
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of a given field ¢: M —»F, we have @,=@¢;0pri. Moreover, since the
composition of two diffeomorphisms of a given class is again a diffeomorphism of
the same class, we see that 51 : M - F is differentiable of a given class if and only
if ;ﬂ :M->F.

inner product vector space F

s S\
4\ NN

real space R

Fig. 17

A set of all differentiable fields of class C* on M will be denoted by C*(M,F).
Let us recall here that a field is said to be of class C*, if the derivatives up to and
including the order k—1 are differentiable and the k~th derivative is continuous.
In the same manner we define analytical fields and we write C*(M, F) for the sets
of all such fields. A differentiable field of class C° is just a continuous field. Note
that in this case the parametric representation of M is a homeomorphism.
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The concept of continuity and differentiability introduced above is very
convenient but too restrictive for many reasons. First of all, it applies only in the
case of differential geometric surfaces. In a more general case, it is not possible to
show that the continuity and differentiability of a surface field is independent of
the parametric representation of the given surface. Moreover, it is intuitively clear
that even if a surface M is not smooth, it may be possible to define a field on M in
a continuous manner (Fig. 18). Therefore as an alternative to the Definition 1 we
may introduce the following definition.

spatial vector field

Fig. 18

Definition 2. A field ¢ : M - F over a given surface M is said to be differentiable
of class C*, if there exists an open set £2C & containing M, i.e. M C 2, and a
differentiable field $ : Q- F of class C* on B such that ¢ is a restriction of ¢ to
M, that is ¢ =$m.

A continuous and analytical field in the sense of this definition is defined in the
same manner. Let us note that we do not require here that M is a differential
geometric surface, it need not be smooth nor even regular.

Certainly, it may be possible that if M is not smooth but piecewise smooth, there
can exist a field ¢: €2 F, whose restriction to M will be a continuous or even
differentiable field ¢: M > F.

The above definition, unlike- the previous one, has another important property: it
can be extended to rectifiable sets, i.e. to geometric measure surfaces.



Appendix D. Curves, surfaces and surface fields 183

Surface gradient. Let M be an open, regular surface of class C" with r =1 large
enough for any operation required. Thus the tangent space 7,M at each point
YE M is well defined. Let y: - M be a smooth curve on M, where I CR is an
open interval containing zero.

Given a differentiable field ¢p: M - F on M, the restriction of ¢ to the curve y
becomes a F-valued function of the real argument, ¢(y(z)), whose derivative with
respect to a parameter ¢ € I is well defined. Setting y = y(0), the tangent vector to
this curve is 7(y) =y(0). We define the directional derivative of a field ¢p: M - F
at the point yeM and in the direction of the vector z(y)eT,M by
P(y)=@(y(0)). A field ¢: M - F is said to be differentiable at a point ye M if
there exists a linear map (tensor) V/¢(y):T,M - F, called the surface gradient of
@, such that

() =Fp(y)xx(y), (D.14)

for every smooth curve y: 1> M. The surface gradient of a given field is unique
whenever it exists. Moreover, if ¢: M - F and ¢ : M - F are differentiable fields
- 80 is the field A¢ + 1 for every real number , and we have

R(Ap+y)= AV +Fp. " (D.15)

More general, if a scalar field ¢: M - R and a field ¢: M - F are differentiable,
then so is the field y¢: M - F and

R(pd)=yid +d BFp. (D.16)

The surface gradient of a scalar field ¢ is the unique tangential vector field F¢.

' Partial derivatives. Let M denote a regular surface of class C” with r large enough
for any operation required. Usually, we shall assume that r=3. Moreover,
assuming that the parametrization of M is fixed.

The inner product on each tangent space T,M gives rise to the metric on the
surface, i.e. the 2-covariant, symmetric, and proper non-degenerated tensor field,
that is a bilinear real-valued map a:T, M x T, M - R. The metric tensor makes the

surface M into a Riemannian manifold.
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The metric tensor a(y)eT,M @ T,M in the given parametrization of M can be
expressed in the classical form with components defined by

Gp=a,°as, a¥=a%a®, a=deta,;>0. (D.17)
Now the unit normal vector n can be expressed in the following form
n=%e"‘ﬁaaxaﬁ =%eaﬂa“xaﬂ. (D.18)

As simple implications of the definitions (D.9) and (D.17) we obtain the classical
formulae

a,=ama?, a*=a%ay, a%ap=06j. (D.19)

Given a parametric representation p:II -» M of M, we can use the natural base
vectors to define the directional derivatives along the coordinate curves:

3sp(y) = (P(y))as(y). (D.20)

Taking further into account that the representative of the given field is given by
?(E)=¢(p(E)), from the chain rule we have

6ﬂ¢(y)=a‘%£—). y=9p(&). (D.21)

Thus the directional derivatives along the coordinate curves are the partial
derivatives of the representative of the field. The partial derivatives obey the usual
rule of differentiation, in particular, the Liebnitz rule, i.e.

0(PRY)=(3) QY + P ®(3p¥), (D.22)
for any two differentiable fields ¢p: M > Fand ¢p: M - F.
If the partial derivatives (D.20) exist and are continuous at a point y € M, then the

field ¢: M - F is differentiable at this point and its gradient can be computed
according to

p=0,p®a’. (D.23)
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It must be stressed here that partial derivatives can exist, but a given field may not
be differentiable at a point. Therefore, the formula (D.23) cannot be taken as the
definition of the surface gradient.

Surface covariant derivative. A tangential vector field u € C(TM) over a regular
surface M of class C is said to be of C*-class, k=r=1, if the real-valued
component functions us and hence uf are of C*-class for some and hence every

parametrization of the surface M.

The surface gradient of a tangential vector field is defined as above. Let us note
that the surface gradient of a tangential vector field will be a spatial tensor field, in
general. The tangential derivative of a tangential vector field u € C(TM) is the
unique tangential tensor field Du € C(TM ® TM) defined by

Du=P(u). (D.24)

If the surface M is given in parametric form, the tangential field can be expressed
in the component form u = usa” and its tangential gradient is given by

Du=uyya*oa’. (D.25)

If M is of class C? or higher then the Gauss map n: M - S? is differentiable and
the curvature tensor b(y)€ T,M ® T, M is defined by

b=-Dn=-P{¥n). (D.26)

For the chosen parametrization of M the curvature tensor can be expressed in the
form b = bpa* ® a? with the components defined by

bap =dg,ptR=—a;*ny,, b§ = a"‘b,w = aa;,b‘ﬂ . (D27)

Divergence of a surface field. Given a differentiable tangential field ¥ € C*(TM),
the surface divergence is a scalar field Divu € C*'( M) defined pointwise by

Divau(y) =tr(Du(y)). (D.28)

Note that Due C*'(TM ® TM) is a tangential tensor field and hence the trace
operation is well defined.
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For all differentiable tangential fields ‘u,w € C*(TM) and every real number
A€R, we have

Div,(Au+w) = ADivu+ Div,w . (D.29)
Taking the trace of (D.25) we have
Divu=a"us =uby . (D.30)

The divergence of a differentiable field @ € C*(F ® TM) is the unique F-valued
field, Div,® € C*"'(M, F), defined pointwise by

(Div®(y))+ v =Div((D(y))'v), (D.31)
for every constant vector vE€ F.

Let us note that d(y)'veT,M at every point y so that dTve C*(TM) is a
differentiable tangential field of the same class. Thus the right-hand side of (D.31)
is well defined. As simple implication of the linear property of the surface gardient
operator we have

Div(AP+W)= ADiv® + DivW , (D.32)
for all differentiable fields @,% € C*(F ® TM) and every real number.

If the surface M is given in the parametric form, the field @ € C*(F ® TM) can be
expressed in the form @ =¢; ® @?. Then

D'v=(a’ @ Ps)v=a’(¢;°v) (D.33)
and
Div(P™v) =a”(Pap * v) =(a“ap)*v. (D.34)
Hence
Div® =a%pap = %5 . (D.35)

Differential identities. Let a scalar field ¢ € C*(M), spatial vector fields
u,y € C*(M,E) and a tensor field S € C*(E ® TM) be given, k 21. The following
identities hold:
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Vpy) =Ry +yhig,
V() = ¢Fu+u®p, (D.36)

Vaew)=Fu) ew+Fw) «u.

divi(pu) =g diviu+u-V¢,
divi(¢S) = pdiv.S + S ), (D.37)
divi(STu)=(div.S)eu+S+Vu.

Singular curves for surface fields. Let I" be a smooth (e.g. C'-class) curve on a
regular surface M of class C” with r 21 enough large (for example), which divides
M into two parts M and M™ having the common boundary along the curve I’
(Fig. 19). Let ¢: M > F be a continuous field on M except possibly at points
belonging to the curve I'. We also require that the field ¢ has finite limits,

¢U() =limp(z), zeM®, (D.38)

at all points y € I' taken from the positive and negative sides, that is from paths
entirely within M and M, respectively. Both limits ¢* are smooth fields
along the curve I'. The difference of the limits,

[oly)=9“(»)~ 9"y, (D.39)
is called jump along the curve I'.

Fig. 19
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If the field ¢ is continuous across the curve I', then [¢]=0. If a field ¢ together
with its surface gradients up to order k-1 suffer no jumps along the curve I', but
its partial derivatives of order k or higher have jumps across I', then the curve I' is
called a singular curve of order k for the field ¢. The strongest singularity is of
order zero, in which ¢ is discontinuous along the curve I.

The fundamental result, upon which the theory of singular curves rests, is known
as Hadamard's lemma, according to which the chain rule for the differentiation
holds on the singular curves:

a.[ol=[Nelyv, o.lol=[Ve¢lz. (D.40)

This asserts that the jump in the tangential derivative is the tangential derivative of
the jump. As simple implication we obtain

Vel=@.lo)®v+.lopl)®7. (D.41)

This result, which is known as Maxwell's theorem, expresses the fact that the jump
in the surface gradient of a continuous field is normal to the singular curve.

Repeated application of Hadamard’s lemma gives the same rule for the higher
derivatives. '
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Appendix E

Surface divergence theorems

Green’s theorem in the plane. The classical Green’s theorem is an extension to
the plane (i.e. the two-dimensional space R?) of the fundamental theorem of
integral calculus, which states that if [¢,b]CR is an interval and f :[a,b]>R is a
continuously differentiable function, then

[Lf'(x)dx=f(b)- f(a). E.1)

As extension of this theorem to the plane one considers a sufficently “nice” region
IT cR? with a positively oriented boundary 3J7. An example of such a “nice”
region is shown in Fig. 1. Let £,(§',8%) and £,(§',£?) be two real-valued functions
defined and continuous on clIT =ITUJII. Let us further assume that the partial
derivatives of both functions exist and are bounded in the interior of J1. Then

Ifn[a—ﬁ-a—ﬁ]dﬁ‘déz=fm(ﬁd€‘+fzd€2), (E.2)

whenever the double integral exists. This result is usually attributed to G. Green
and it is known as the classical Green’s theorem.

real space R* (plane)
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The proof of Green’s theorem presents no difficulties when I7 is a rectangle, since
then we can express the double integral and the line integral in (E.2) in terms of
Riemann integrals. This method works also for many other regions such as disks
or polygons. By a different approach Green’s theorem (E.2) can be proved for
every region in R* bounded by a rectifiable Jordan curve (such as shown in
Fig. 1).

In this appendix we state and outline the prove of a number of versions of the
surface divergence theorem relating the integral of the divergence of a surface
field on a given surface M to the line integral along its boundary. A surface
divergence theorem requires the use of surface integrals. A surface integral can be
thought of as a two-dimensional analogue of a line integral. However, before we
discuss surface integrals, we must come to some understanding as to what we
mean by a surface area.

Classical area formulae. Let M C & be an oriented simple surface element, i.e.
the image M = p(IT) of a simple region IT ¢ [R?* under a smooth one-to-one map

p :IT > &. Then the position vector y = p(£?) of M is continuously differentiable
in the parameter domain IT and p, xp,,#0 at every point €€ II, E=(&%).
Under this regularity condition the area of the surface element M is given by the
classical formula of differential geometry:

area(M)= [ _Ip,xp.lldE'dE" . (B3) -

In this context one defines the oriented and the scalar differential area elements da
and da, respectively, by the formulae

da=(p.xpn)dsdE®, da=lp.xp,lldE'ds*. (E4)

Recalling the definition of the unit normal vector n for a given parametric
representation of the surface M, we have

Ja =.[detag =(pyxp.n)en>0. (E.S)
Then the formula (E.3) can be written as
area(M)= [, Ja(E',E%) dE'dE* . (E.6)

If we write da(y)=da(p(§)) and da(y)=da(p(E)), then the classical area
formula (E.3) can be expressed in the form
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area(M)= ([, n(y)+da(y)= [f, da(y). (E.7)

The classical area formula (E.7) can be applied to compute the area of more
general, but not all, differential geometric surfaces.

Let M be a piecewise smooth regular surface and let a partition of M be given, i.e.
M is given as the union M =|_J, M, of a finite number of smooth surface
elements M;,. We then define the area of M to be given by

areaa(M)=3,_ ([, da(y), (E.8)

where the integrals on the right-hand side of (E.8) need to be computed according
to the classical formula (E.7).

Area of a general surface. While the definition (E.7) and the more general
definition (E.8) of the area of a given surface are entirely satisfactory as far as they
go, they are open to at least two fundamental objections:

1) The formula (E.7) should be rather proved on the basis of the previously
stated definition of a surface area than taken as definition.
2) More general surfaces need to be considered.

It is much more difficult to define the area of a general surface than the length of a
general curve. A thorough discussion of the theory of surface area would exceed
the scope of this work.

In the last century the general opinion was that, for a reasonable surface, the
supremum of the area of all inscribed elementary polyhedral surfaces is finite and
. that the area of the surface could then be defined as that supremum. This was
shown to be false by H.A. Schwarz (1880) and independently by G. Peano (1882).
The fundamental error was due to the unverified assumption thgt, for any three-
points on a surface converging to a common limit point, the planes passing
through the three points converge to the tangent plane of the surface at that limit

point.

Since the surfaces, considered in the last century, were always regular surfaces,
this fallacy in the definition of surface area never led to incorrect results for
specific cases. Schwarz’s discovery gave rise to extensive investigations of
surfaces and the notion of surface area. Of the many definitions of area, which
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have been proposed, two have been proved to be particularly useful: the definition
of the “Lebesgue content™ of a Fréchet surface and Hausdorff’s generalization of
Caratheodorys notion of the two-dimensional measure of a point set in space.

Let M =(p,IT) be a given parametric surface. If the position vector y = p(£?) of
M is continuously differentiable in the interior of the parameter domain 17, then
the area integral is defined by

IM)= [[, pax palldE'd’ E9)

In general, this formula must be used with great caution, even if the integral is
well defined. J.W.T. Youngs showed that every surface has a parametrization, for
which the components of the vector product exist almost everywhere and are
integrable, but for which the surface area integral has the value zero rather than the
correct value of the area.

Surface integral. The main idea of a surface integral is to transfer the concept of
integration of functions over surfaces to the integration of functions over domains
in the real space R?. This approach works particularly nicely for orientable
differential geometric surfaces.

Let M be an oriented simple surface, i.e. the image M = p(IT) of a simple region
IT cR? under a smooth one-to-one map p:IT->&.If ¢: M »R is a real-valued
continuous function on M, we define the integral of ¢ over M to be

I, 0 da(y)=[[ $(pE Ea(E',E) dE'dE® . (E.10)

It can be shown that this definition is independent of the parametrization of the
surface.

If M is a piecewise smooth surface M and ¢: M =R is a continuous function on
each smooth surface element M), then the integral of ¢ over M is defined by

[ eda=3_[[, ¢da. (B.11)

For example, the integral over the surface of the cube may be expressed as the sum
of the integrals over the six sides.
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In the same manner one defines the integral of a function ¢: M - R along a given
smooth curve I'" on the surface M.

[rondi) = [LeMamydt,  at)=\p@) po). E.12)

The formulae (E:11) and (E.12) apply also to vector-valued fields over a given
surface

If, 0y da(y) =[] P(E,E*)Ja(E',E*)dE A" . (E.13)

In the following, when considering integrals of fields over surfaces and curves in
the Euclidean point space & we shall write da and dl for the area measure and

length measure, respectively.

Basic properties of surface integrals. From the definition (E.13) of the surface
integral we can deduce some fundamental properties. These properties are
essentially the same as for the integrals of functions over regions in the plane. In
the following, F and F' will denote any finite dimensional inner product vector
spaces.

Let ¢,y : M - F be integrable fields over a surface M, and let A€R be any real
number. Then A¢ + 1 is a F-valued integrable field on M, and

[[,Gp+yp)da=Aff dda+[[, pda. (E.14)

The transposition is the linear map of the tensor space F'® F into the tensor space
F ® F'. The trace is the linear map of F ® F into the set of real numbers. Both are
continuous (they are algebraic functions). As a result we have the following useful
formulae.

If a field W: M- F'®F is integrable over a surface M, then so is the field
YT: M- F® F'. Moreover,

f1, 0" da=(ff,Ww da) . (E.15)

If a field W:M—>FQ®F is integréble over a surface M, then so is the field
tr¥ : M - R. Moreover,

Jf, ¥ da=v([f, ¥ da). (E.16)
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By the same arguments, if w € C(M,E) is an integrable vector field, so is the
skew tensor field W € C(M, E A E), whose axial vector is w, and

ad(ff wda)=[f Wda, W =adw. (E.17)
In particular, for any two integrable vector fields # and w we have

ad(ff uxwda)=—[[ uawda. (E.18)

Classical surface divergence theorem. In classical form the surface divergence
theorem is essentially a generalization of Green's theorem for simple regions to
smooth simple surfaces. It asserts that for a given tangential vector field
u € C(TM) over a surface M,

Jf, divada={, uevdl, (E.19)

where v(y)ET,M, y€oM, denote the outward unit normal vector to the
boundary curve lying in the tangent plane to the surface.

Let us note that the theorem (E.19) consists of two things, a surface and a surface
field, and both must bé sufficiently regular for the theorem to hold. However, it is
by no means an easy task to make precise under which regularity assumptions this
theorem holds. Fortunately, for a quite wider class of surfaces and fields this
problem has a definite answer.

Let M be a regular surface of class C", r=1, given in a parametric form
p:IT—+&, where ITCR? denotes a closed subset of the plane which is
homeomorphic to the disk and whose boundary 417 is a piecewise smooth closed
-curve (Fig. 2). If we consider 317 as a parametrized curve in the plane, then
p :dIT - & parametrizes a piecewise smooth curve oM, a consistently oriented
boundary of M. Let further u € C*(TM), k =r, be a tangential vector field on M,
admitting an extension of the same class to the closure of M. Then the theorem
(E.19) holds.

The proof is rather simple. Since the surface M is given in the parametric form, the
field u can be represented in the form u = ufa,. Taking further into account that

Divu=ufp and u «v =uPy,, the theorem (E.19) can be written as

[l Weda= [, vvpd. (E.20)



Appendix E. Surface divergence theorems 195

real space R’ Euclidean point space E

Fig. 2

Since da = /adE'dE? and the divergence of the field  is given by
Diva=up=—(Jau),, E21
vt =uf Ta («/Z u ).p (E.21)

the left-hand side of (E.20) is equal to

Tutodaff, WYy ave = 11, ) L0 e @y

by virtue of the definition (E.10) of the surface integral. The right-hand side of
(E.20) can be written in the form

A
Sy vtvedi= [, el dl= |, epu %ds = [y €aptt® dE”

(E.23)
= [in(Vards' —Jau'de?).
Setting
fi=Naw?, - fi=—+ad, (E24)

in (E.22) and (E.23) we see that the surface divergence theorem (E.19) holds by
virtue of the classical Green theorem (E.2) for two dimensions.
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The surface divergence theorem can be proved also for more general simple
smooth surfaces as well as for some, but not all, surfaces that are not simple.

real space R’ Euclidean point space E

Fig. 3

If a parameter set IT is multiply connected with a finite number of holes, then a
smooth one-to-one image M = p(IT) will contain the same number of holes as IT
(Fig. 3). In order to prove the theorem (E.19) for such surfaces we can use exactly
the same type of argument as in the previous section, except that we employ
Green’s theorem for multiply connected plane regions. For example, if II has n
holes and if the boundary curves I';, k=1,2,...,n, are transversed in the positive
directions, the theorem (E.19) still applies with the boundary integral given by

Joevdi=Y,_ [ uevdl. (E.25)

The sphere shown in Fig. 4 is an orientable smooth surface, which is not a simple
surface but the union of two simple parametric surfaces (hemispheres). In this
case, like for all orientable smooth surfaces without boundary, the theorem (E.19)
still can be proved. Moreover, in such cases the boundary term vanishes. This will
become clear from the theorem, which we shall prove later on.

There exists also a wide class of smooth surfaces, for which the theorem (E.19)
fails to hold. Two classes of such surfaces are shown in Fig. 5 and Fig. 6. Their
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common characteristic is the lack of suitable regularity properties at the
boundaries.

X1

Fig. 5

On the other hand, if an underlyirig surface satisfies the regularity assumptions of
the theorem (E.19), then this theorem can be extended to more general surface

fields.

Theorems. Let S be a field of class C¥, m=1, such that S(y)€ EQT,M at each
point y € M. Then

[y Svdi=[f, DivSda. (E.26)
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Fig. 6

More general, let F be any finite dimensional inner product vector space. Then for
every tensor field @ of class C*, m=1, such that @(y)e F ® T, M, we have

dvdl=|| Divda. (E.27)
oM M

Since the theorem (E.26) is just a special case of (E.27) upon taking F =E, we
need only to prove the latter theorem.

We first note that for every constant vector £ € F, @« is a tangential field of the
same class. Hence the theorem (E.19) can be applied

Jf, Divi(®"k)da= [, Dk-vdl= [, k-Pvdl. (E.28)

Recalling next that the divergence of the field is defined by
(Divs®)« k = Div,(P7 k), for every constant vector £ € F, we have

[f, Divi(@k)da= [f, x+(Divi®)da. (E.29)
Since & is a constant vector, we have
[,k @vdi=k-(f, Pvd). (E.30)

By virtue of (E.29) and (E.30) the theorem (E.27) follows.
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If the surface M is given in the parametric form, then the field @ can be
rerpresented in the form @ =¢” ®a; and Div,® = ¢?s. Then the theorem (E.27)
can be written as

S ®vsdi=[[, s da. (E.31)

Theorems. Let M be a regular surface of class C”, r=1. Let u€ C*(M,E) be a
spatial vector field and S€C*(E®TM) a tensor field, k=r, both having
extensions of the same class to the closure of M. Then

[, e ®Svdl= [, (u®(DivS)+¥u)S")da,

[ e Svdl=[[ ((DivS)su+S-Vu)da,

[, unsvdi=[{ (ur(DivS)+ u)ST—SFu)")da,

[, uxSvdi=[[ (ux(Div.S)—ad"(Gu)S" —SFu)"))da.

(E.32)

Again we can actually prove more general theorems, of which (E.32) are special
cases.

Proposition. Let ve C*(M,F) be a vector field and & € C*(F®TM) a tensor
-field, k = r, both having extensions of the same class to the closure of M. Then

[, v®Pvdl=[[ (v&(Div.®)+Fv)d")da,
Ve Pvdl=[[ ((Div®)ev+P+Fv)da, (E.33)
[, orPvdi=[[ (vA(Div.®)+Fv)D" — DFv) )da.

Let us note here that since v is a F-valued field, v(y)€ F, hence Kv(y)e F® T,M
at each point y € M. Moreover, @(y)€ F®T,M and hence D(yY eT,MQF.
"Thus

Zu(y)P(y)Y € F® F (E.34)

is well defined.

Taking the trace of both sides of (E.33), we obtain (E.33),. The transposntlon of
both sides of (E.31), yields

[, ®vevd = [[, (Div®)®v+dFv))da. (E.35)
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The difference of both sides of (E.33),; and (E.35) yields (E.33);. Moreover, both
sides of (E.33),; are necessarily skew-symmetric tensors. Hence, taking F to be the
three-dimensional Euclidean vector space E, we may compute the associated axial
vectors. Having in mind that

S unSvdi=—[, ad@xSv)di=—ad(f, uxSvdl) (E.36)
as implication of (E.36) we obtain (E.32),.

Piecewise smooth fields. In the previous section we have proved a number of
surface divergence theorems under the assumption that all fields are smoothly
differentiable over the entire surface M, which in furn was assumed to be a
smooth, regular surface.

Let M be a regular surface of class C’, r=1, with a boundary oM consistently
oriented with M. Let I'C M be a piecewise smooth curve, which divides M into
two parts M) and M. We give I' the orientation induced by aM, i.e. the
orientation I” inherits as part of the boundary of M (Fig. 7).

j|_
X, X2

Let us consider now a field @€ C(F®TM), which may have I' as a
discontinuous curve. Let us further assume that the field @ is differentiable in the
interior of M and M and has finite limits at the curve I'. Then the integral of
@ over the entire surface M is the sum of integrals over the two parts:

Fig. 7

[f, Div®da= [[, . ,Div®da+[f, ., Div®da. (E:37)
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By virtue of the surface divergence theorem (E.27) applied separately to M and
M, we have

[ o Divbda= [, Br it [, W,

38
([ o Divida= [, . Bvdl+ [ By dl, (E.38)
where the limits are defined by
¢£—) =PIy =Py , ¢$+) =PHy® = — Py . (E.39)

Adding the results of (E.38), we obtain

Jf, Div®@da=[[, ,Div®di+ [[ ., Div® da
= [, o, PVdl+ [ 6O dI+ [, o Pvdl—[ ¢"dl (E40)
= faM dvdl +fr(¢£-) - ¢‘,,+))dl )

The minus sign in the second line integral is due to the difference in the
orientation of I" taken as the boundary of M and M™. In this way we have
shown that

ffM\r Divi@® da = faM Dy dl—fr[[¢,]]dl , (E.41)

where the jump across the curve I is defined by

[[¢V]] =] ¢(V+) + ¢£,_) — ¢(+)v(+) + ¢(")v(‘)

—_— ¢(+)v + ¢(—)v _-— (¢(+) _ ¢(—))v , (E-42)

or

[¢,]=—[DPy. (E.43)

1

Exactly in the same way together with the use of standard differential identities,
we can prove a number of theorems for more general tensor fields. However, we
shall see below that the theorem (E.41) is a special case of a more general one.

Pachwork surface divergence theorems. Let M be a piecewise smooth surface.
Then the edge set I' is defined as the union of all smooth curves I'y on the

common boundary between two regular surface elements M, and M (see
Appendix D):
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M= U:=1 My, r= U:.z=1 Ly . (E.44)

At every point y € I' . ;, the two unit normals n®’ and n” are defined as limits of
the adjoining surface elements. Let ¥* and v denote the outward unit normal
vectors in the tangent planes T, M® and T, M®, respectively, as shown in Fig. 8.

\ 2=

oM

X1
Fig. 8

Let @ € C(F ® TM) be a field on M that may have I” as a discontinuous curve but
otherwise differentiable in the interior of each smooth surface element M(,, i.e it
is of class C", n=1, in the interior int My,. We shall also assume that the field @
has finite limits at the curve I":

PO(y)=PP(yw®(y)=_lim S()¥(z). (E.45)

>y, 2eMx)

Then the integral of @ over M can be expressed as sum of the integrals over all
regular parts:

[ Div®da=3,_ [[,  Divdda. (E.46)

Applying the surface divergence theorem (E.27) to each smooth surface element
we have

) e, DV P da= faw Dvdi+ [ dPvP dl. (E.47)
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Adding the results we obtain
[, ®vdi=[[  Div®da— [ [DPv]dl, (E.48)
where the jumps are defined by
[Dy]=PWp® +POp® (E.49)

It is seen now that if the surface M is smooth, but the field suffers jump
discontinuity across the curve I', then the theorem (E.48) reduces to the theorem
(E.39).
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