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Abstract

The kinematics of elastoplastic bodies containing continuously distributed
dislocations is developed based on the multiplicative decomposition of the
total deformation and the concept of crystal reference. The problem of de-
termining the crystal reference from the given elastic strain and dislocation
density is considered. The analysis shows that the latter quantities should
be referred to as the state variables, and they should be the arguments
in the free energy density of the body. It is shown that the free energy
density satisfies the principles of frame indifference and initial scaling in-
difference. Within the framework of mechanics of generalized continua, the
principle of virtual work and the set of static equations are formulated for
a body of this type at finite strain. The internal dynamics of dislocations
is shown to be described by the model of oriented media. Governing and
constitutive equations consistent with the entropy production inequality
are proposed with respect to the initial and current description. A lin-
earization procedure is carried out and a comparison with Kroner’s theory
is provided. Special attention is focused to the link with the macroscopic
finite elastoplasticity.
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Chapter 0

Introduction

It is well known that in the conventional elastoplasticity the elastic and
plastic rotations are not determined uniquely. There are alternative ways
to overcome this difficulty. Several authors prefer to introduce an additional
constitutive equation for the so-called plastic spin (see, e.g., Mandel 1971;
Dafalias 1983; Loret 1983; Onat 1984). In contrary, Stumpf & Badur (1990)
and independently Nemat-Nasser (1990) proved that the plastic spin is a
function depending on the plastic strain rate and, therefore, no additional
constitutive equation for it can be introduced. As about an appropriate
choice of a corotational rate which should enter the constitutive equations
various propositions can be found in the literature (Dienes 1979; Atluri
1984; Haupt 1985; Bruhns 1991; Xia & Ellyin 1993; Schieck & Stumpf
1993,1994). An alternative way that we propose in this report is to take into
account the microscopic feature of plastically deformed crystals, namely the
dislocation motion, and to construct a continuum model of elastoplastic
bodies at finite strain, in which the elastic and plastic rotations can be
determined uniquely (see also Konde 1952; Bilby, Bullough & Smith 1955;
Bilby, Gardner & Stroh 1957; Kroner 1958,1960; Noll 1967; Wang 1967;
Sedov & Berdichevsky 1967; Epstein & Maugin 1990; Le & Stumpf 1994).
Two notions play a crucial role in a theory of this type: the presence of
couple stresses due to the dislocation density and of driving force acting on
dislocations and causing their motion.

In the theory of inelastic material behavior perhaps the most difficult
and controversial concept is that of the crystal reference and the associ-
ated local relaxed intermediate configuration of an elastoplastic body (see
Eckart 1948; Kondo 1952; Bilby et al. 1955; Bilby et al. 1957; Kroner
1958,1960; Noll 1967; Wang 1967; Lee 1969; Epstein & Maugin 1990; Le &
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4 CHAPTER 0. INTRODUCTION

Stumpf 1993a). According to Kroner (1958), to unstress the body undergo-
ing nonhomogeneous plastic flow it must be considered cut into infinitesimal
elements. Intuitively, one can expect that after such a thought operation
elements as crystal grains should be isomorphic to each other in some sense.
Noll (1967) was the first who succeeded in translating this idea into the ex-
act mathematical language by introducing the concept of body manifolds,
local configuration, uniform reference, and material isomorphism (see also
Wang 1967). Although Noll’s framework is sound and rigorous, it is im-
possible to put the dynamic theory of continuously distributed dislocations
into it because of the two following reasons. First, the uniform reference in
Noll’s theory is considered as a characteristics of the material, so that the
internal dynamics of dislocations cannot be taken into account. Second, the
presence of dislocations brings a contribution to the stored energy of the
body via eigenenergy, and this leads immediately to the presence of couple
stresses (Kréner 1981,1993). A possible way to overcome these difficulties
is to suppose that the material to be dealt with belongs to the class of
oriented media according to Toupin’s definition (Toupin 1964), and conse-
quently Noll’s uniform reference defining the material isomorphism should
be softened to that defining only the crystal parallelism.

Although physical motivations leading to the concept of crystal refer-
ence are different, one can observe the common geometric structure follow-
ing from its existence. Namely, due to the crystal parallelism there exists
a uniquely defined crystal connection, the torsion of which can be iden-
tified with the dislocation density (or the inhomogeneity, in Noll-Wang’s
terminology). Further, associated with the crystal reference there is also
a Riemannian structure of the body with the induced metric and the Rie-
mannian connection. The representation of the metric relative to the ini-
tial description can be identified with the plastic strain. The difference
between the Riemannian connection and the crystal connection is defined
as the contortion. Torsion and contortion determine each other.

In this report we develop a kinematical model which allows one to de-
fine appropriate strain and dislocation density measures on the body tan-
gent bundles and on the physical translation space. Of special interest is
the definition of material time derivative, and the associated relative time
derivatives for spatial tensors with respect to the crystal and current ref-
erences (Stumpf 1993; Le & Stumpf 1993a). It is interesting to note that
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the time derivative relative to the current reference coincides with the Lie
derivative with respect to the spatial velocity field.

From what is said above it should be clear that the problem of deter-
mining the crystal reference from the given metric and torsion is important
for the finite elastoplasticity. This problem is a purely kinematical one
and similar to that of determining the displacement field from the given
strain field in nonlinear elasticity, with the essential difference that here
the unknown is a second rank tensor field. A system of first order differ-
ential equations for the inverse elastic deformation field is derived. The
integrability condition of the obtained system of equations expresses the
well-known property of the crystal connection, namely, that the curvature
of this connection should vanish. If this condition is fulfilled, one can in-
tegrate the system of equations along any path connecting two arbitrary
points of the body which allows one to determine the inverse elastic defor-
mation field, and then the crystal reference, provided the current reference
is known. A formula is derived, which is analogous to those of Cesaro
(1906) for the displacement field in linear elasticity and Pietraszkiewicz
(1982) and Pietraszkiewicz & Badur (1983) in nonlinear elasticity. One
may prefer to use the polar decomposition theorem to represent the elastic
deformation field as the composition of rotation and stretch fields. The
latter one can then be calculated from the elastic strain field with the use
of linear algebra. Then the inverse elastic rotation field should satisfy a
system of first order differential equations. The integrability condition of
this system is examined and its solution is given in form of a tensor series.
Since representations of metric and torsion relative to the initial descrip-
tion yield the plastic strain and the dislocation density, respectively, the
problem of determining the plastic deformation and the plastic rotation
from those fields is a dual one to that considered above and can be solved
in a similar manner.

It is interesting to compare the linearized kinematics provided here with
the well-known Kréner theory (Kréner 1958,1960). Such a linearization
procedure is carried out, and the comparison shows that our linearized
formulae correspond to those of Kroner.

The results obtained can be used to decide about the minimal number of
state variables in finite elastoplasticity with the crystal reference subject to

variation (cf. Kréner 1958,1960, Sedov & Berdichevsky 1967, Le & Stumpf
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1994). In fact, since the metric and connection associated with the crystal
reference are its complete characteristics, they should, therefore, play the
role of the state variables and can be introduced as the arguments of the
free energy density of the body. We show that the free energy density,
as a function of the elastic strain and the dislocation density, satisfies the
principle of frame indifference and also the principle of initial scaling in-
difference introduced in this report. Our development of the statics of a
nonlinear body containing dislocations is based on a principle of virtual
work and on this ansatz of the free energy per unit crystal volume (cf.
with Sedov & Berdichevsky 1967; Kréner 1992). The classical Kroner the-
ory (1960,1981) dealt primarily with small elastic and plastic strains. In
Kroéner (1992) some propositions were made concerning the dependency
of the free energy density on the elastic deformation and the dislocation
density, while in Krdner (1993) the balance equations of micromomentum
are investigated. By using the multiplicative decomposition of the defor-
mation gradient into elastic and plastic parts we account for all degrees of
freedom of macro- and micro-motion. The material containing dislocations
can be considered as the one belonging to the class of oriented continua in
Toupin’s sense (Toupin 1964, see also the somewhat similar continuum with
internal degrees of freedom proposed by Sedov & Berdichevsky 1967). But
in one aspect our theory differs essentially from that of Toupin, namely our
stored energy density enjoys an additional invariance with respect to the
rescaling group. This leads to the balance equations of micromomentum
and moment of micromomentum. The microstresses should be balanced
by the internal driving force acting on the dislocations. The latter one
is shown to be the sum of Eshelby’s force on dislocations due to the sur-
rounding elastic field (Eshelby 1951, Epstein & Maugin 1990) and of an
additional term characterizing the interaction between dislocations. This
driving force is familiar for specialists working in phase transition theory
(Truskinovsky 1987; Knowles & Abeyaratne 1990) and nonlinear fracture
mechanics (Stumpf & Le 1990,1992; Le & Stumpf 1993b; Maugin & Tri-
marco 1992).

Within the framework of mechanics of generalized continua (Toupin
1964; Sedov & Berdichevsky 1967) we formulate a set of balance equa-
tions and entropy production inequality in integral form for an arbitrary
volume of the initial configuration. Equivalent sets of equations relative to
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the current reference for a body with continuously distributed dislocations
at finite strain are obtained. The entropy production inequality formulated
relative to the initial reference is used to derive new constitutive equations.
Equivalent sets of constitutive equations relative to the current reference
are presented. We analyze special cases and show that our theory reduces
to that of Noll (1967) and Wang (1967) if the crystal reference is not sub-
ject to variation. The linearized theory is shown to coincide with that of
Kréner (1958, 1960). Special attention is focused to outline the connec-
tion of our theory with engineering elastoplasticity, (see, e.g., Le & Stumpf
1993a). In this special case our stored energy density does not depend
on the dislocation density and, therefore, the couple stresses are shown to
vanish.




Chapter 1

Kinematics

1.1 Preliminaries and conventions

We shall denote the three-dimensional Euclidean space by €. Elements
z,Yy, ... of € are called spatial points. The translation space of € is denoted
by V; it is a three-dimensional vector space. Elements u,v,... of V are
called spatial vectors. The inner product of two spatial vectors u,v € V
is denoted by g(u,v) (sometimes by u-v). One can say that g is the
spatial metric defined on V. The dual space of V is denoted by V*. The
metric g establishes an isomorphism from V to V*, but we do not use this
isomorphism to identify V* with V. The vector product of two spatial
vectors u, v is denoted by u x v.

The tensor space on V, contravariant of rank r and covariant of rank
s is denoted by T7(V); its elements are denoted by boldface letters. In
particular, T} (V) is the set of linear transformations of V into itself. The
identity transformation on V is denoted by 1. In some cases we represent
tensors also in component form, using for simplicity rectangular Cartesian
co-ordinates. Unless otherwise specified, upper, lower and Greek indices
take the values 1,2,3; the Einstein summation convention over repeated
indices is used.

Let U be some open subset of £&. A map t : U — T;(V) is called a
tensor field (contravariant of rank r and covariant of rank s) defined on
U. The tensor field t is said to be of class C! if there is a tensor field
dt : U — T7, (V) such that

t(z + u) = t(z) + (dt(z))u+ e(z,u), ze€UueV,

8
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where
.1
lim —
[a|—0 |U|
holds for all z € U. The tensor field dt, if it exists, is uniquely determined
by t and is called the derivative of t.

We assume the reader is familiar with the tensor analysis on manifolds
(standard texbooks such as Abraham, Marsden & Ratiu 1988, or Stern-
berg 1983 could be recommended). Let M be a differentiable manifold.
The tangent space attached to the point X € M is denoted by TxM and
the tangent bundle on M by TM. Let N be another differentiable manifold,
and ¢ : M — N be a differentiable map. The tangent of the map ¢ is the
linear transformation from T'M to T'N denoted by T'¢ : TM — TN. Let
E, F be two vector spaces and ¢ : E — F a linear transformation. The
transpose of ¢, denoted 7, is the linear map between dual spaces F*, E*,
of 1 F* — E*, defined by < ¢7(8),u >=< B,¢(u) >, where 8 € F*,
u € F, and < .,. > denotes the pairing between dual tensors. Throughout
this paper we shall use boldface letters for vectors and tensors defined on
the space 'V, gothic boldface letters for vectors and tensors defined on the
body manifold, and letters like K, H,... for two-point tensors. Although
it is not absolutely necessary, we shall nevertheless distinguish tensors de-
fined on € by ascribing upper case letters to those defined on the initial
configuration, lower case ones to those on the current configuration, and
lower case letters with a superposed bar to those defined on the current re-
laxed intermediate configuration (see the subsequent sections). The space
V* will not be identified with V, for the pull-back operation applied to co-
variant and contravariant spatial tensors leads to different tensors on the
body manifold (see Abraham et al. 1983).

e(z,u) =0

1.2 Bodies, motions and references

In order to model elastoplastic bodies containing dislocations we shall use
the concept of manifolds. We begin by identifying a body with a differ-
entiable manifold B (of dimension 3). Material points in B are denoted
X,Y,... A motion of ‘B is a one-parameter family of placements or maps
¢: : B — € specified by

z=¢(X,t), X €B,zek. (2.1)
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The map ¢ is supposed to be one-to-one and as many times continuously
differentiable as required. The tangent of ¢ at X, denoted by Kx =T¢ |x
and called the distortion, is the linear transformation from TxB to V. Of
central importance is Noll’s concept of a local configuration at X (Noll
1967), which can be defined as an equivalence class of placements with the
same distortion at X. The distortion Kx can be considered as a representa-
tive of this class. A function K on B whose values are local configurations
is called a reference for B. If there exists a global placement ¢ such that
the reference K can be identified with T¢, we call K a description for B.
In the opposite case K will be called an anholonomic reference.

Two important examples of descriptions are: K; = T¢; (current or
Eulerian description) and Ky = T'¢ (initial or Lagrangian description).
The relation between them is

K, = FK,, (2.2)

where F is the total deformation of the body. Since ¢ is supposed to be
one-to-one, the deformation F is invertible. Moreover, we assume that

J=detF >0,

so that F is the orientation preserving deformation field.

The specific feature of an elastoplastic body is that the total deforma-
tion F cannot fully characterize its stress state. In fact, let us consider a
body undergoing nonhomogeneous plastic deformation, and let us imagine
the following thought experiment (Gedankenexperiment): cut the deformed
body into infinitesimal elements and reduce the stresses to zero via elastic
deformations. If the plastic deformation were absent, after such a thought
experiment the elements would form an unloaded initial configuration. In
this case the total deformation F would characterize fully the stress state
of the deformed body. Due to the plastic deformation the elements would
not, in general, come back to the unloaded initial state, but rather to some
intermediate relaxed state. Two remarks should be said about this relaxed
state. First, the relaxed state depends strongly on how the elements are
plastically deformed. Second, the elements after comming to the relaxed
state will no longer form any viable configuration. One can speak about
incompatibility due to the inhomogenous plastic deformation.

From the microscopical point of view, the relaxed state can be realized
only if atoms in the Bravais crystal are in correspondance with points
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of a perfect lattice (except for small thermal vibrations of atoms about
these positions). Figure 1 depicts a perfect lattice (without defects) in the
two-dimensional case, where the lattice points (atoms) are related by the
translation vector me; + ney, with m,n =1,2,... One can assign the zero
level of free energy to this state.. Due to the defect-free arrangement of the
atoms one can also translate parallelly vectors in a natural way. Therefore,
one expects that equal loadings applied to the elements in the relaxed state
should lead to equal deviations from it.

—o—6—=6 T &—

d\ J\ L FanY Vs Vany Va
Y ( \.( 4 \J

—o—H— G—5——O
) {L D FanY o Va )

S( 7 L A 74 A4 J \]

e
2 !
O——6—6—6—6—0

Figure 1.1: A perfect lattice

From what is said above one can see the necessity of knowing the re-
laxed states of the elements in order to be able to characterize fully their
behaviour. This is the physical motivation for us to introduce now an
(instantaneous) crystal reference K; !, which is anholonomic and time-
dependent in general, with the property that ®(X,Y) = K;{(X)K(Y)
defines a crystal parallelism (some authors prefer the word teleparallelism)
of Ty'B onto TxB for any X,Y € B. Equivalently saying, ¢ = K;!c is a
crystallographically constant vector field for every constant vector ¢ € V.
We assume the following relations between the references (see Fig.2)

K, = F°K,, (2.3)
Kt - FpKo, (2.4)

where F¢, F? are the elastic and plastic deformation, respectively 2. These
tensor fields are supposed to be as many times continuously differentiable

'In engineering language, the local configuration X¢x is called the local current relaxed intermediate
configuration.

28trictly speaking, we should have K; = FYK o, Ko = F5Ky, with FJ being the initial plastic deformation,
and F? = F/F}. Because F} should be given a priori, without loss of generality we can assume that F§ = 1.
The elastic and plastic deformations, as well as the crystal reference itself, may in general depend on the
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as required. Furthermore, they should satisfy the following natural require-
ments

JP=detF? >0, J®=detF°¢>0.
This means that F? and F¢ are orientation preserving deformation fields.
Consequently, they have inverse deformation fields, denoted by F?~! and
Fe~1 respectively. From (2.2)-(2.4) the multiplicative decomposition of the
total deformation follows (see Figure 2)

F = F°F?, (2.5)

Figure 1.2: Schematic sketch of the body manifold B, initial g, crystal I,, and current
K, references and the associated multiplicative decomposition of the total deformation.

The decomposition (2.5) was first introduced by Bilby et al. (1957) as a
basic assumption to derive the kinematics of dislocations. In that paper
(Bilby et al. 1957) F,F¢, F? were called the shape deformation, the lattice
deformation, and the dislocation deformation, respectively. We adopt here
the terminology used by Kroner (1958,1960) and Lee (1969), who required
also the independency of the free energy density from the plastic defor-
mation in order to derive adequate constitutive equations for elastoplastic
bodies at finite strain.

temperature. Since the dynamics and thermodynamics will be considered later in Chapters 4 and 5, here
and in Chapters 2 and 3 we restrict ourself to isothermal processes.
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1.3 Connection, torsion and curvature

Let t : B — T;(V) be a mapping from B to the tensor space T (V) on V
(contravariant of rank r and covariant of rank s), and let K = d¢ for some
¢. Given a description K = T'¢ we can then introduce

dict : B — T7,y(V),
called the derivative of t relative to K, which is defined by
dxt = d(t o ¢71) 0 ¢, (3.1)

with d being the standard derivative for tensor fields on the vector space
V. If K is anholonomic, then the derivative relative to IK can be defined as
follows

dgt = dt(KK™), (3.2)

where K is an arbitrary description. Of course this definition is independent
of the choice of K.

In order to make the report self-contained we recall some facts from
the differential geometry (see Sternberg 1983, Abraham et al. 1988). Let
to € T'B be a vector field and f be a function on B. The derivative of f in
the direction tv is defined as follows

1o[f] = (dxf)(Kro). (33)

It is easy to prove the following properties

w[f +g] = wo[f] +o[g], to[fg] = fro[g] + gro[f]. (3.4)

Actually, any vector field tu can be identified with a mapping f — to[f]
satisfying (3.4). Let tv; and tus be two vector fields on B. The Lie bracket
of tu; and to, is defined by means of the commutator:

[toy, vos] [f] = toy[t0s[ f]] — voa[tos [£]]. (3.5)

The Lie bracket of two vector fields can be identified with the vector field
given by

[ml, tn2] = K“l[dK(Km2)Km1 - dK(Kml)ng],
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where KK is an arbitrary description. The Lie bracket satisfies the identities
[to1, toy] = —[toy, t04],

[to), frog] = ftoy, 10y + to;[f]to,,
[to1, tos], tos] + [[tog, toy], toy] + [[tog, tog],t0;] =0  (Jacobi).

Let us define a connection on B as an operation V : TBx TB — TB
that associates to each pair of vector fields toy, toy on B a third vector field
denoted Vi, t0, and called the covariant derivative of tvy along to;, such
that

1. Vi, 10, is linear in each of to; and g,
2. Vfp, 102 = fVy, 10y for any scalar function f,
3. Vi, (f1og) = Vi, 103 + (t01]f])10,.

Note that the third rule is analogous to the product rule for differentiation.
The Cartan torsion of a connection V is a (1,2)-tensor t : TBxTB — T'B

defined by
t(voy, m2) = Vi, 102 — Vi, 101 — [ml, mz]. (36)

From this definition it is obvious that ¢ is skew-symmetric in the sense that
t(ml, mz) = —f(mg, ml).

We call a connection torsion-free, when'its torsion tensor vanishes.
The curvature tensor of a connection V is a (1,3)-tensor v: TB x T'B x
TB — TB , where

t(to, t0g, 103) = Vi, Vi, 103 — Vi, Vi 103 — Vg, 1o 1103. (3.7)
It is obvious that v is skew-symmetric as well in the sense that
t(tog, toy, to3) = —t(toy, oy, tog).

There is an important relation between the torsion and the curvature of
a connection. Namely, they satisfy Bianchi’s identity

3= { Vi, (t(toy, 103)) + £(t0y, [t03, t0;]) — t(to;, toy, t03)} = 0. (3.8)

eyelice
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To see this, let us apply Vi, to (3.6) which gives
Vs (§(101,103)) — Vg, Vi, 103 + Vi, Vi, 101 + Vi, [t07, t05] = 0.

The cyclic sum of the left-hand side of this equation remains unchanged
if the third term is changed by one and the fourth term by two cyclic
permutations of tu;, to9, tu;. Hence, we have

Y- Vi (H(101,102)) — Vi, Vi, 103 + Vi, Vig, 101 + Vi, [t01, t05]}

cyclic

= Z {vma(t(mla mz)) - [vmaa le]mz + vm2[m3, ml]} =0.

eyclie

Using the definitions (3.6) and (3.7) we obtain

2 {Vioy(£(101, 102)) — (101, 10, t03)

eyclic

+t(to, [t03, t01]) + [to2, [to3, tu;]]} = 0.

Due to the Jacobi identity the last term gives no contribution and (3.8)
results.

Let V and V* be two connections on B. From the definition of connection
it is easy to see that the difference

d=V-V*

can be identified with a (1,2)-tensor field on B. We shall see later that this
difference depends only on the Christoffel symbols of the connections.

1.4 Crystal connection and the dislocation
density

Let us consider again the crystal reference K;. We say that a vector field
c on B is crystallographically constant with respect to K; if

K;c =c =const with ce V.

This vector field is the pull back of the constant spatial vector ¢ by K1
at some point Y followed by the parallel translation K;}(X)K(Y) to all
points of the body manifold (teleparallelism). We are looking now for a
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connection V such that V¢ = 0 holds for an arbitrary constant vector
field ¢ and an arbitrary vector field tv. Such a connection is called a crystal
connection. We show that it is uniquely determined by K; according to
(Noll 1967; Wang 1967)

Vi, 102 = K; ldg, (Kitog) Koy, (4.1)

for arbitrary vector fields tv; and tv3 on B. First of all, we show that this
definition has all the necessary properties. It is easy to see that Viye =0
when ¢ is constant, because K;¢ = ¢ = const. The linearity in to; and
tu, is also obvious, and the product rules follow from the validity of the
analogous rules for the relative derivative.

To prove the uniqueness, let us assume that V' is another crystal con-
nection. Putting 9y = Vi — V'm, we then have 0,¢ = 0 for all constant
vector fields ¢. We have seen at the end of the previous section that 0y
can be identified with a tensor field. Since ¢ is arbitrary, we conclude that
D = 0 for an arbitrary tv, and therefore V = V.

We show now that the curvature of the crystal connection V vanishes
(Noll 1967), i.e. it satisfies the relation

¥(toy, tog, tog) = ?mﬁm,mg — ?mﬁmlmg - @[ml,mﬂm = 0. (4.2)

Indeed, let ¢ be an arbitrary constant vector field on B. Since V is the
crystal connection we have Vi, ¢ = 0 for all vo; € T'B. Hence, the definition
(3.7) shows that v(tvy,tog, ¢) = 0 for all 1oy, 09 € T'B. From this it is easy
to see that the equation (4.2) must hold. It has to be emphasized that in
our continuum model we are dealing only with translational dislocations.
In a more general framework incorporating also disclinations the curvature
need not be zero (see Anthony 1970; Maugin 1993).

Of special interest in finite elastoplasticity with microstructure is the
Cartan torsion of the crystal connection

(101, 10y) = Vi, 10y — Vi, 107 — [toy, 104). (4.3)

Let us derive now spatial representations of the crystal connection (4.1) and
of the Cartan torsion (4.3) relative to the different references. Substituting
(2.4) into (4.1) we can express the covariant derivative (4.1) in the form

Vi 102 = Ky [DW, 4+ FP~1(DFP)W,o W, (4.4)
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where W7 = Kjto, Wy = Kjytog, and D denotes the derivative relative
to Ko, D = dg,. The expression in the square brackets represents a (1,1)
tensor field on V and can be written in components as follows

(W2)(p = (Wa)5 + Tc(W2)C, (4.5)
where
T3 = (FP 1A (FP)3, 5. (4.6)

Here the comma preceding indices is used to denote the partial derivative
with respect to the corresponding co-ordinate 3. According to (4.5) and
(4.6), T4 can be called the Christoffel symbols of the crystal connection
relative to the initial reference. With the formula for the Lie bracket

[to;, 10y] = K ' [(DW4) W — (DW) W)
and with (4.4) the torsion tensor (4.3) can be written as

t(tv1, tog) = K [TP(W1, Wa)],

TP (W1, W3) = FF[((DFP)W2)W; — ((DFP)W )W, (4.7)
or in components-
(T?)5c = T5c —Tép = (FP)a[(F")E 5 — (F)Ecl- (4.8)

It is easy to see that T? is skew-symmetric with respect to the covariant
indices. It is obtained as the push-forward of € to the initial configuration.

Similarly, with (2.3) the same covariant derivative (4.1) on B can also
be represented in the form

vmlt'OQ = K;l[dWQ + Fe(dFe_l)Wz]Wl, (49)

with wy; = Ko, wy = Ktuy, and d denoting the derivative relative to
K, d = dx,. In component form the expression in brackets in (4.9) can be
written as follows

(Wa)y = (W2)% + Vhe(W2)°, (4.10)
with the Christoffel symbols defined by
Yie = (F)a (T2 (4.11)

3We refer upper case indices to coordinates in By, lower case indices to coordinates in By, and Greek
indices to the anholonomic basis introduced by K.
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Consequently, the torsion tensor (4.3) has the following representation rel-
ative to the current description

H(roy, ) = K [t°(wy, wa)),

t°(wy, wa) = FE[((dF* N wy)w; — ((dF°*~)w;)wy), (4.12)
or in components
(£)5e = Vhe ~ v = (F(F)e, — (F5 - (4.13)

Thus, the tensor t¢ can be intepreted as the push-forward of £ to the current
configuration (Bilby et al 1955). '

Substituting W; = FP~1w;, Wy = FP~lW, into (4.7) and using the defi-
nition (3.2) we can represent the torsion tensor £ relative to the anholonomic
crystal reference as follows

(o, tog) = K [£2 (w1, W),
fp(v_vl, Wg) = Fp[(((in_l)Wl)Wg - ((JFP—I)W2)W1], ) (4:14)
)3y = (FP)ZLEFP )5, — (FF)74l-
In a similar way, from (4.12) we have
(101, 102) = Ki ' [t°(W1, W2)),
B, %) = P (dF)Wws — (dF)wo)w],  (4.15)
)5y = FSIE®)5, ~ ()34,
with wy = Kitoy, Wy = Koy, and d denoting the derivative relative to K,
(in components it is denoted by the comma preceding Greek indices). We.
shall ascribe to t = t° = t? the physical meaning of the dislocation density,
which is not a given characteristics of the material, but should be defined
by the internal dynamics of the plastic flow (cf. Noll 1967; Wang 1967).
From (4.7), (4.12),(4.14),(4.15) the following relations can be derived
Ep(v‘vl, V—Vg) = Fpr(Wl, Wg),
)5, = (F)A(T") (P F(FPH), (4.16)
t°(Wy, W) = Flte(wy, wy),

()5, = (F ()5 (F)p(F°)5. (4.17)
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We see that t is the push-forward (by F?) of T? and the pull-back (by F¢)
of t°.

Let us consider the geometric interpretation of the tensor t¢ (Bilby et al
1955, Kroner 1960). Take the closed contour ¢(s) in the current configura-
tion and consider the integral

(b)* = — §(F)g da®. (4.18)
If this integral would vanish for all closed contours, (4.18) would mean
the compatibility of the elastic deformation. But as it was mentioned in
Section 2, it is not so, in general, and this integral measures the degree
of incompatibility of the elastic deformation. One can show that (4.18)
coincides with Burger’s vector in the limiting case of continuum model (if-

we let the lattice constant approach zero). The microscopic picture would
look like Fig.3.

o O O O o O (o]
11 0o 9 8

o @ % o——C W 7 O

o122 O O O @6 O

O 130 0 O o ®5 O

0 1ubt—d»o—06—0—8 O
U S 5

a) b)

Figure 1.3: Definition of Burger’s vector. a)current configuration; b)crystal reference.

Now let us apply Stokes’ theorem to the contour integral (4.18)

(B) = 5 [10F)%, — ()5 ] da? A do, (419
A

where A denotes a surface with boundary ¢ and dz® A dz° the oriented
surface element. For infinitesimal contours ¢ we get from (4.19)

(B) = S[(F)g, — (F)g ) da? Ao (4.20)
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Pushing Burger’s vector forward to the current configuration gives

(b)* = ()2, — ()5, da A do

1
= (£ dz® A da®. (4.21)

This result provides the precise geometric interpretation of the dislocation
density tensor.

1.5 Riemannian structures, strain measures
and contortion

We define inner products and metrics on J induced by the following three
references: K, = dg, K; = dey, and K; as follows

&(toy, toy) = g(Koto;, Kotoy), ¢ = Kl gKj,

g(tw1, w2) = g(Kitoy, Kitu,), g = Kl gK,, (5.1)
8(tvy, toy) = g(Kito;, Kitoy), § = Kl gKK;.

These metric tensors define three Riemannian structures on B relative to
the above mentioned references. One can say that &, g, and g are obtained
from the metric g on V by using pull-back operations with K, K;, and K;,
respectively (see Abraham, Marsden & Ratiu 1983; Marsden & Hughes
1983). From (5.1) it follows that

g =KICK,, C=FTgF, (5.2)

with C being the right Cauchy-Green deformation tensor. Analogously, we

can prove that
& =KlcK;, c=FTgF,

¢ = KIePK,, & =FrTgFrl, (5.3)
g= Kitl‘éeKt, ¢t = FeTgFe-
By using pull-back and push-forward operations we can also obtain the
following elastic and plastic deformation tensors

ﬁ = KECPKO) C? = FpTng7 (5'4)
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§=KIc’K;,  c®=F¢TgFel, (5.5)
The formulae (5.2)-(5.5) give representations of different metrics relative
to the initial and current description. From (5.2) and (5.3) we have
¢t = FPTCFrl, (5.6)
or in components
(&)ap = (C)an(F* ) (F1)5. (5.7)

One can also define uniquely torsion-free connections V°,V, and V*
associated with the respective metric tensors @, g, and g whose parallel
translations preserve inner products (the fundamental theorem of Rieman-
nian geometry). It is easy to show that the curvatures of V° and V vanish
(due to the compatibility of the total deformation), while the curvature of
V* in general does not (see Noll 1967).

To find the relation between V and V*, let us consider the expression

O = Vip — Vi, = dto. (5.8)

The (1,2)-tensor field d is called the contortion of the crystal reference K;.
In the initial description it has the following components

Dje =T%¢ — {5} (5.9)

where {’gc} are the Christoffel symbols of the Riemannian connection

Bo) = Cp— 4P [(CP)pp,c + (CP)ep,p — (CP)ep] - (5.10)

It is easy to see that { BC} are symmetric with respect to the covariant
indices, so that the Riemannian connection is torsion-free. The equation
(5.8) written relative to the current description yields

I?c = 7gc - {gc} 3 (511)
with

{5} = (C” D (cbae + (€%)edp — (€)so,d] - (5.12)

Using the properties of the crystal reference K; one can show that (see Noll
1967)
2g(toy, (0tog)toy) = §(tos, (tho)toy)
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—8(roy, (troz)to3) — g(to,, (frog)to;). (5.13)

Relative to the initial description it is equivalent to

2(C?)48D8p = (CP)45(T?)Ep — (CP)ca(TP) D4

~(C")pp(T?)4c- (5.14)
Similarly, relative to the current description we have
2(c*)abdes = (€)ab()bg = (€°)eb(t°)a — (€°)an(t)ec- (5.15)

According to the formula (5.14) contortion and torsion determine one an-
other. It is also worth noting that V@ = 0, and consequently the index
raising and lowering operations with g can be interchanged with the co-
variant derivative V.

1.6 Velocity and relative rates

The velocity and acceleration of the material point X at time ¢ are the
following spatial vectors

) 0

X = EQS(X, t), (6.1)
. 0. %
X = ax = ————atqu(X, t). (6.2)

Here and in what follows the dot is used to denote the partial time deriva-
tive with X kept fixed. Assuming the motion to be regular, we can express
X as X = ¢;!(z) and substitute it into the equations (6.1),(6.2) to get the
velocity and acceleration in the current description

v(z,t) = x(¢7(), ¥, (6.3)
a(a, ) = %(¢71(x),1). (6.4)

The following relation between a and v holds
a= 63_: + v - gradv. (6.5)

We assume the existence of a mass form dm on T'B. The mass of a
submanifold U of B is defined as m(U) = f;dm. We can pull back the
volume form dv on V by Ko, K;, and K; to obtain the respective volume
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forms dug, do and db on T'B. We define mass densities tg, v, and T relative
to the respective references Ky, K;, and K; as follow

todby = tdo = tdb = dm  (conservation of mass). (6.6)
From these definitions and from (2.2)-(2.4) it follows at once that
o =1tJ =¢J". (6.7)

Denoting p(z,t) = v(X, t) and taking the partial time derivative of the first
equation in (6.7) we get the conservation of mass in the current description

8p ..
e + divpv = 0. (6.7)

Let us consider now the rates of deformation and dislocation density. If
some tensor is given on the body manifold B, one can easily define its rate
by taking the material time derivative (the partial time derivative with X
kept fixed). Examples of such rates are the following tensors

;. L

8= ot (X, t) |X=const= 2K$th: d= i(ng + gl), (6-8)
) d _ T AP K 14 1
8= EG(X, t) |x=const= 2K; K, 4" = _2_(1PTg +8F), (6.9)
t(toy, 10) = R7122(%, Wa), Wi =Kitw;, ¥o=Kitwy,  (6.10)

2Z(W1, W2) = [((d )W), — ((d17)W1) W), (6.11)
with 1 = FF-1 T = FPFI"I, the tensors d and d? denoting the total and
plastic deformation rates, respectively, and the tensor z to be called the
dislocation drift rate.

This definition leads naturally to the so-called time derivative relative to
the reference K for spatial tensors, calculated by pulling them back to the
body manifold by K, taking the partial time derivative with X kept fixed
and pushing the result forward to the spatial configuration by the same K.
We shall denote this derivative by £x. It is easy to prove that

Lt = Lot (6.12)

for every spatial tensor t, with £, denoting the Lie derivative with respect
to the velocity field v. Note that the relative time derivative of scalar
functions coincide with their material time derivative

%
Lk, [ = ?3% +v-dg,f = D, f.
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Directly from the definition of the time derivative relative to the reference
K and from (5.5)-(5.7),(4.11) it can be proved that

1
Lx,c =0, iﬂmg =d, %Sxtce = d?, (6.13)
- 1 ~ 1. . -
- Lg,cf =0, 53&3 = d?, EEH‘QCG =d, (6.14)
1, - 1 .
ESth =12z, ESK‘t =2, (6.15)
z(Wy, Wy) = %Fe[((di”)Fe"IWQ)wl — ((dIP)F'w)wy], . (6.16)

with d? = F¢-TdrFe-! d = FTdF®. The tensor z is called the (spatial)
dislocation drift rate. The properties (6.13)-(6.16) will play an essential
role in the subsequent study of the constitutive equations.




Chapter 2

Determination of the crystal reference

2.1 Differential equations for the inverse elastic de-
formation.

From the first chapter we have seen that the basic kinematic quantities
such as the metric (strain) and the torsion (dislocation density) are defined
through the crystal reference. Now let us consider the inverse problem of
determining the crystal reference from its metric and torsion considered as
the given tensor fields. Relative to the current description the problem can
be formulated as follows: determine F¢~! from given ¢® and t°, provided
the current configuration is known. There are six independent components
of the symmetric tensor ¢® and nine independent components of the skew-
symmetric tensor t¢, from which nine components of the tensor F¢~! should
be determined. It is clear that some constraints should be imposed on the
problem to make it well-posed.

To solve this problem, let us derive the differential equation for Fé~1,
Taking the derivative of Fe-1 relative to K; we have

dFe~l = pely, (1.1)

or in commponents,
(F e = (F)57a (1.2)
In the subsequence we will work out some formulae explicitly in commpo-
nents. According to (1.4.11), +;, are the Christoffel symbols of the crystal
connection relative to the current reference. Since ¢® and t® are supposed

to be given, ¥{, can be expressed through (c®)s and (t°)§, with the help of
(1.5.11) and (1.5.15) according to

Yoe = {be} T e

25
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= %(Cﬂ)ad [(c)sa,c + (€%)eap — (€ )bed]

3 (698 — (@I - (al@Wele™ ). (13)

Eqgn. (1.2) can then be considered as a system of partial differential
equations for the nine components of F¢~!. The existence of the solution
of (1.2) is ensured if the following integrability conditions are fulfilled

(F e — (F)fea = 0. (1.4)

Let us calculate the second derivative of F¢~! taking (1.2) into account to
obtain

(Fe—l)gt,dc = (Fe—l)g [’)’gi/ycilb + 72b,c] . (15)
Therefore, the integrability conditions (1.4) can be rewritten in the form
(F)artea = 0, (1.6)
with .
Thed = Yo Yab = YaiYeb + Yabe — Yeb.d- (1.7)

Eqn. (1.7) expresses nothing else but the component representation of
the curvature tensor ¥ of (1.4.2) relative to the current reference (cf. any
standard texbook on differential geometry, e.g. Sternberg 1983). Thus, the
integrability conditions (1.6) require the curvature tensor (1.7) to vanish.
If the integrability conditions (1.6) are fulfilled, one can integrate Eqn.
(1.2) to determine F¢~!. Let us fix some arbitrary point Xj of the body.
Let ¢(s) be a curve connecting X, with another arbitrary point X such
that c(0) = Xj. Relative to the current description this curve is described
by the equations
z® = z%(s), z%0) = z}. (1.8)

Multiplying both sides of Eqn. (1.2) by the tangent vector z' of the curve
(the prime denotes here the derivative with respect to s) we get

dopy o
—Fel = Flp, (1.9)

with the tensor p having the components

P = 75", (1.10)
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Thus, the system of partial differential equations for F¢~! is transformed
into the linear ordinary differential equation for F¢~! along the curve c(s)
with the tensor p as given function of s. Additionally, the following initial
condition for F¢~! at s = 0 (at the point X;) should be prescribed

F (X)) = Fe L. (1.11)

Since the left stretch tensor v following from the polar decomposition
theorem applied to ¢ can be calculated from the metric ¢, only three

components of the rotation tensor should be prescribed at this point. The
solution of (1.9), (1.11) has the form (see Gantmacher 1960)

Fol = Felw,, (1.12)

where w; is the matricant of (1.9) defined by the tensor series

we=i+ ['p(r)dr+ ['|[ p(n)dn]p(r)dr + ... (1.13)

Here i denotes the identity tensor. Due to the integrability conditions
(1.4) the solution F¢~! does not depend on the choice of the curve c(s).
Therefore, if the body is simply connected the solution presented by (1.12)-
(1.13) is unique. Egs. (1.12), (1.13) valid for the nonlinear dislocation
theory are analogous to those of Cesaro (1906) for the displacement field in
linear elasticity and of Pietraszkiewicz (1982) and Pietraszkiewicz & Badur
(1983) in nonlinear elasticity.

2.2 Differential equations for the inverse elastic rota-
tion.

To determine the inverse elastic rotation let us consider the left polar de-
composition
Fé = veRe’ Fe-—l — Re—lve—l, (21)

with R® being the proper orthogonal elastic rotation tensor and v® the left
elastic stretch tensor. The equation (2.1)9 in components take the form

(F)f = RHI(v 5. (2.2)

Since the stretch tensor v¢~! can be determined from c¢ with the help of
linear algebra, the problem of determining F¢~! from c® and t¢ reduces to
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that of determining R®~! from those two tensor fields. We derive now the
corresponding differential equation. Taking the derivative of both sides of
(2.2) we obtain

(PN = R v + (RS (ve (2.3)
Substituting (2.3) into (1.2) we get
(REfe = (RTINS, (2.4)
with
b= (v Devea = (vHg (v)i (2.5)

Since v*~! and 4 can be expressed through the tensor fields ¢® and t° (cf.
(1.3)) we can refer to (2.4) as the system of partial differential equations
for R°~! with the coefficients )¢, considered as the known functions of X.
Note that due to the proper orthogonality of R¢~! these coefficients A,
must be skew-symmetric with respect to the covariant indices.

The integrability conditions for (2.4) read

(R*)ja, = (R*)5q = 0. (2.6)

Performing analogous transformations as in Section 1 we can rewrite (2.6)

in the form
(R*1)ekig =0, (2.7)

with
Kbae = Acedap — AdePob T Adbe — Aeba- (2.8)

Thus, the integrability conditions (2.6) require the tensor kf,; of (2.8) to
vanish. To show the equivalence of (2.7) and (1.6) let us establish the
relationship between the curvature tensor rj,; and the tensor kf.;. Using
the definition (2.5) of A\{, to express 7{ in terms of A\f, and (v®~!)¢, and
substituting them into the expression (1.7) we can prove that

rhea = (VT)3(ve {k;cd' (2.9)

Since v¢ is positive definite, the curvature tensor rf,; vanishes if and only if
the tensor kf,; vanishes. Thus, the equivalence of (2.7) and (1.6) is proved.

If the integrability conditions (2.7) are fulfilled, one can integrate Egs.
(2.4) in a manner similar to that in Section 1. Let ¢(s) be the curve
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connecting Xy with another arbitrary point X. Multiplying both sides of
Egs. (2.4) with the tangent vector z'° of the curve we get

d
ERe—l — Re—lq’ (210)

with )
g = )\‘c‘,,a:’c. (2.11)

The solution of (2.10) has the form
R = Ri Mo, (2.12)

where v, is the matricant of (2.10) defined by the series

vo=i+ [la(rydr+ [ [ a(r)dr]a(r)dr+...  (213)

2.3 Dual problems for the plastic deformation and
plastic rotation.

Since C? and T? are dual representations of the metric and torsion with
respect to the initial description, the dual problem of determining ¥? and
R? from the given C? and T? can be solved in a similar manner. Not going
into details we simply enumerate formulae without proof.

The system of partial differential equations for ¥? reads

(F")%.c = (F7)alEs, (3.1)

where I'4 are the Christoffel symbols of the crystal connection relative to
the initial reference. Since C? and TP are assumed to be given, ['4, can
be expressed through them with the help of (1.5.9) and (1.5.14). Namely,

Psc = {Bc} + Dhc
1
= 5((3” AP [(CP)pp,c + (CP)op, — (CP) B¢, ]

5 (1946 — (C7)an(T7)Be(CP)

~(C")en(T?)pe(CP)™]. (3-2)
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‘The integrability conditions for (3.1) are
(F*)5Rcp =0, (33)
with
Ricp =T6sTBs — Toelen + o — Tén,p- (3.4)
Eq. (3.4) expresses nothing else but the component representation of the
curvature tensor ¥ of (1.4.2) relative to the initial reference.
If the conditions (3.3) are fulfilled, the solution of (3.1) can be given in

the form
F? = Fi02,, (3.5)

with F} denoting the prescribed value of F? at the point Xy and §2, defined
by the following matricant
.Qs=i+/0 P(T)dT-I—fU [/0 P(Tl)dTl]P(T)dT—I-.... (3.6)
‘The tensor P in (3.6) has the components
PA=T%,X'°, (3.7)

with X'C the tangent vector of the curve c¢(s) in the initial description.
Due to the integrability conditions (3.3) the solution F? does not depend
on the choice of the curve ¢(s). Therefore if the body is simply connected
the solution presented by (3.5)-(3.6) is unique.
To determine the plastic rotation let us consider the right polar decom-
position
F? = RPU?, (3.8)

with R? denoting the proper orthogonal plastic rotation tensor and U? the
plastic stretch tensor. The equation (3.8) in component form reads

(F")3 = (R?)5(UP)5. (3.9)
The differential equation for R? is given by
(R3¢ = (R))5AGs, (3.10)

with
Agp = [(UP)3TEp — (UP)p o] (UP )3 (3.11)
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The integrability condition for (3.10) requires that

(RP)%K cp =0, (3.12)
where
Kfpc = AepAlp — AppAés+ Appc — Abp . (3.13)
It can be checked that
RGep = (UP)5(UP ) LK Fep. (3.14)

The analogous formula in nonlinear elasticity derived by Shield (1973) con-
tains a printing error. Because U? is positive definite the curvature tensor
. Rf.p vanishes if and only if the tensor K§., vanishes. Thus, the equiva-
lence between (3.3) and (3.12) is proved.
If the integrability conditions (3.12) are fulfilled, one can integrate Eqs.
(3.10) in the same manner as before. The solution of (3.10) has the form

R? = RY ;, (3.15)
where X', is the matricant of (3.10) defined by the series
Y, = i+/:Q(T) dr + /: [/(;TQ(TI) dTl] Q(r)dr+.... (3.16)
The tensor Q in (3.16) is given by
4= AApXx'©. (3.17)

2.4 Linearization.

It is interesting to carry out the linearization of the equations derived in
Chapters 1 and 2 in order to compare them with the well-known Kréner the-
ory (Kroner 1958,1960). Let us assume that the deformation fields F, F?, Fe

have the following form

F=1+§8,
FP =1+ 7, (4.1)
Fe. — 1 +[86,

where 3, 8P, 3° are small compared with 1. In this case the references
Ko, K, and K; differ from each other by small distorsions, so that they can
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be identified. Therefore, there is no need to distinguish between upper case,
lower case and Greek indices. We also can choose the metric g to coincide
with 1 and we can identify the tangent and cotangent spaces. Thus, there is
no need to distinguish between co- and contravariant tensors. Substituting
(4.1) into (1.2.5) and neglecting higher order terms we obtain the additive
decomposition

B=p+p" (4.2)
As a consequence, the symmetric and skew-symmetric parts of 3 decompose
also additively into

= %(ﬁ +87) =€+ ¢, (4.3)

w = %(w —wh) = w® + WP, (4.4)

where €°, €? and w®, wP are the symmetric and skew-symmetric parts of 3°
and 3%, respectively. The metric tensors C? and c® are approximated by

C? = FPFTF? x 1 4 2€%, (4.5)
cc=FTP a1 - 26, (4.6)

One can see that in the linearized theory it is more convenient to use the
small strain tensors € and € instead of CP and c®.

Let us consider now the dislocation density tensors T? and t°. Lineariz-
ing (1.5.6) and (1.5.7) we get

(Tp)abc ~ (:Bp)ac,b - (,Bp)ab,ca (47)
(%) abe = —~[(B)ac = (B%)ab,c]- (4.8)

Subtracting (4.8) from (4.7) we obtain
(Tp)abc - (te)abc ~ ()G)ac,b - (ﬂ)ab,m (49)

Since T? is'the “pull-back” of t¢, in the linearized theory they become
approximately equal. Relation (4.9) then reads

(la)ac,b - (ﬂ)ab,c =0. (410)

This simply means that the total distortion 3 must be compatible, or
equivalently, there exists a displacement field w such that

(B)ab = (W)ap- (4.11)
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As in the case of strain measures, in the linearized theory it is more con-
venient to use the second rank tensor «, which is related to T? as follows

1

Ogp = 'iebcd(Tp)acda (412)

with £,4p. denoting the permutation symbols. Eqn. (4.7) in terms of « takes
the following classical form (Kréner, 1958)

a=curlff, (a=VxgP). (4.13)

The tensor « is called the dislocation density tensor of the linearized theory.
Eqn. (4.8) has the form

curlf®* = —a, (V x f°=-a). (4.14)

The differential equations for the inverse elastic deformation (1.1) after
linearization takes the form

“'(ﬂe)ac,b = _[(Ee)ba,c + (ee)ca,b - (ee)bc,a]

() = (€ — (8 (4.15)

The linearized integrability conditions (1.6) reduce to

Tabed = [—(ee)da,bc + (ee)db,ac + (ee)ca,bd - (ee)cb,ad]
510 )at ~ (6 — (6)sael

16t ()b = (el = 0, (4.16)

Multiplying (4.16) by %eiabejcd and taking its symmetric and skew-symme-
tric parts, we reduce it to the following two conditions:

Q5 = 0, (diva = 0), (4.17)
and

1
Eiab€jcd(€°)db,ac + 'Z"(Eiababj,a + €jap@iq) =0,

or, in Kroner’s notation,

ince® — (a X V)gym = 0. (4.18)
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These equations were first obtained by Kroner (1958).
In a similar manner one can show that the linearized equation (2.4) for
the elastic rotation tensor is equivalent to

curlw® = —curle® — a. (4.19)

[t is easy to see that the linearized equations for the plastic deformation
and plastic rotation are equivalent to (4.15) and (4.19). This kind of duality
is due to the additive decomposition of the total compatible displacement
gradient B according to (4.2).



Chapter 3

Statics

3.1 Free energy density and principle of frame indif-
ference '

Let us consider an elastoplastic body with continuously distributed dis-
locations under the condition of constant temperature. We postulate the
existence of a free energy per unit crystal volume of such a body. Relative
to the crystal reference, which is assumed at the moment to be given, this
free energy is supposed to depend on the elastic deformation F¢ as well as
on its derivative d Fe,

r = (X, F¢, dF°). (1.1)

The stress state arising within elastoplastic bodies is produced as a result of
elastic deformation leading to the energy stored in these bodies. Therefore,
if we superpose a rigid-body motion onto the actual motion of the body we
must also expect the energy to remain unchanged. Such a scalar function
is called frame indifferent.

Consider two motions ¢(X,t) and ¢*(X,t) of a body. Neither of them
will be assumed rigid in general. These motions are regarded as differing
from one another by a rigid-body motion if at any instant they are related
by

¢"(X, 1) = ct) + Q) [$(X, 1) — =], (1.2)

where ¢(t) is a time-dependent point, Q(?) is a time-dependent orthogonal
tensor, and z; is a fixed point. A scalar function is said to be frame
indifferent, if it does not change its value when a rigid-body motion (1.2)
is superposed. Now we want to show that if the free energy density (1.1)
is frame indifferent, it can depend only on X, c° and t.

35
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First of all, when the rigid-body motion (1.2) is superposed, the current
reference becomes

K! = QK,. (1.3)

The crystal reference is assumed to be the same for both motions. There-
fore, according to (1.2.3) the elastic deformation is transformed by the rule

F°* = QF°. (1.4)

Since the derivative d is calculated with respect to the same crystal refer-
ence K;, we have

dF** = QdF". (1.5)
Using the definitions (1.4.15) and (1.5.3)3 one can see that
cot = Fe*TgFe* — FeTQTgQFe — &° (16)

and
(W1, Wy) = F&* L ((dF*)Wo) Wy — ((dF™)W1)Wy)
= F'Q((QAF)Wa) W1 — (QAF™)W1)Wy] = ¥(W1, W) (L.7)
hold. Hence, any function depending on X, ¢¢ and t¢ is frame indifferent.
Now let us consider two motions ¢(X,t) and ¢*(X,t) with the same
elastic strain ¢® = ¢®* and the same dislocation density t = t*. We want to
show that these motions differ from one another by a rigid-body motion.
Let K, and K} be the current references of these motions, respectively, and
let
K} =Q(X,1)K;, F*=Q(X,t)F° (1.8)
with Q(X,t) denoting a deformation field. We have to show that Q is

orthogonal and depends only on ¢. In fact, from the condition €® = ¢** and
(1.8) we have

FTgR* = FTQT(X,1)gQ(X, t)F° = FgFe. (1.9)
Hence, Q(X,t) satisfies the identity
Q'(X,1)gQ(X,t) =&, (1.10)

or, equivalently saying, Q(X, ) is orthogonal. Substituting (1.8), into the
definition (1.4.15) and using the identity t = t* we have

F[(dF)Wa) Wy — (dF)W1) %]
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=F1Q7[((QAF*)Wo) Wy — ((QdF¢)W) W
FFLQ(d QUF W))W — (d Q(FW1))W))
= Fe_l[(((ZFe)Wg)Wl ((JF )Wl)Wg] (111) ’
From (1.11) follows the identity
FeolQ 7 [(d Q(F*¥n))W1 — (d Q(F*W1))W,] = 0. (1.12)

Replacing the derivative d in (1.12) by d according to (1.3.2), we can show
that

Q' [((dQ)wa)w1 — ((dQ)w1)ws] = 0. (1.13)

Egs. (1.10) and (1.13) lead to the problem of determining the deformation
field Q, when its metric is g and its torsion vanishes (cf. with the problem
of determining F? from CP and T? in Section 2.3). It is easy to see that the
Christoffel symbols associated with Q are equal to zero, and the equation
for Q reads

dQ =0. (1.14)

The solution of (1.14) is Q = Qq(t) (Q does not depend on X). Thus,
according to the principle of frame indifference the energy of these motions
should be the same and we can write

ro = (X, &, t). (1.15)

This result is in agreement with Kroner’s requirement stating that the free
energy density can depend only on the elastic strain and on the dislocation
density (Kréner 1992).

It is also worth noting the difference between (1.15) and the formula
for the free energy density in the model of defective crystals proposed by
Davini (1986). Davini’s approach is not based on the multiplicative de-
composition of the total deformation into elastic and plastic parts. Addi-
tionally, it excludes the total deformation from the constitutive list. The
free energy in Davini’s theory depends on the metric induced by the lat-
tice vector fields (directors) and on the measures of defects (dislocation
and vacancy densities). Since the inelastic deformations can change the
directors, and therefore the metric tensor, it follows that the free energy
density in Davini’s theory does not depend on the metric induced by the
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elastic deformation and on the dislocation density alone. This seems to be
in conflict with the above mentioned Kréner’s requirement.

When the plastic deformation is absent so that F? = 1, and F¢ = F is
compatible, then € = C, and t = 0. The formula (1.15) reduces in this
case to the classical one for hyperelastic bodies

W =W (X, C). (1.16)

Since ¢° and t are the pull-backs of the metric g and the torsion t¢,
respectively, we can regard them as functions of the point values of F¢, g,
and t° (cf. with formulae (1.4.18) and (1.5.3)). Therefore, fo becomes
a function of X, F¢, g, and t°>. We can say that relative to the current
reference KK; the free energy per unit volume of the current configuration
takes the form

w = J (X, e(F, g), t(F%, t9)) = w(X,F, g, t%, (1.17)
where
Jol = det F*~ L. (1.18)

Note that t° is an objective third rank tensor, which under the superposed
rigid-body motion is transformed according to

t*(wi, wj) = Qté(wi, wy),

where wi = Qwy, wj; = Qw,. The function @ may, in general, depend
on F° explicitly. Only in special cases (isotropic materials, for instance) w
depends on F° through c®. Under the superposed rigid-body motion the
energy density @ must be frame indifferent, so that

W(X,QF°, g, t) = b(X, F°, g, t°). (1.19)

Analogously, when referred to the initial description K the free energy per
unit volume of the initial configuration takes the form

W = JPw(X,&(F?, C), (F?, T?)) = W(X,F?,C, T?), (1.20)

with

JP? = det FP, (1.21)
in full agreement with the covariance principle. Thus, we can see the duality
and the equivalence between the initial and current descriptions (see e.g.
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Green & Naghdi 1965; Sedov 1965; Lee 1969; Le & Stumpf 1993a). If the
body is made of the same material at all points then W does not depend
on X explicitly, so that

W = JPto(c(F?, C), t(F?, T?)) = W(F?, C, T?). (1.22)

For simplicity we shall further consider only homogeneous materials whose
free energy is given by (1.22).

The formula (1.1) satisfies still another important criterium. The free
energy of an elastoplastic body per unit crystal volume defined in this way
_ depends only on the current and relaxed states, and it is insensitive to
the change of the initial reference. This means that if we superpose an
arbitrary initial deformation on the initial reference and keep the crystal
and current references fixed, the energy tv will remain unchanged. We shall
call this property the principle of initial scaling indifference.

Let X be the position vector of an arbitrary point X in a chosen co-
ordinate system. The superposed initial deformation transform X into the
new position X* given by

X* = &(X). (1.23)

Under (1.23) the initial reference will change according to
K§ = FoK,, (1.24)
where F is the following initial deformation
Fo=D9o. (1.25)

Since the crystal and current references remain the same, the formulae
(1.1.2)-(1.1.4) yield the following transformation rules

F* = FF;!, F"=F’F;', F*=F" (1.26)

For simplicity, we show the transformation rule for DF? directly in com-
ponents

S((FP)%(F7NB) _ 8((F7)3(FgHB) (F))E
8X*C - 6XE 0/¢
D pXE

(DF?)pe =

= (F?)% z(FeH)3(FFNE + (F?) (Fohé. (1.27)
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According to the principle of initial scaling indifference the free energy
density per unit crystal volume to(&¢,t) should remain unchanged under
the transformations (1.23), (1.26) and (1.27). The group of transformations
associated with (1.23) will be called the rescaling group. Thus, up to the
factor J?, the energy (1.22) is invariant with respect to the rescaling group
(1.23). This has far reaching consequences, which will be discussed later.

3.2 Principle of virtual work

Let K be chosen as the fixed reference, and let X and x be position vectors
of the point X in the initial and current configuration, respectively. Then
it is immediate that F = Dx. Now the energy of an arbitrary sub-body U
can be expressed in the form

I= /uo W(F,F?, DF?) dv, (2.1)

with Uy = ¢o(U), W denoting the free energy density relative to the initial
reference, which is, in general, a function of F, F? and DF?. We shall first
analyze the general situation, postponing the consideration of the energy
density given by (1.22) for later.

Let us consider now a one-parameter family of configurations x(X, €) and
plastic deformations F?(X,€). We define a virtual displacement (6x, 6F?)
as follows

ox oF?

(6x,6F7) = (E =0 5 |e=0)- (2.2)

Assuming the external macro- and microforce to be zero, we postulate the
following principle of virtual work

§I = /w (P,-6x+ < P4 6F? >)da (2.3)

to hold for an arbitrary sub-body U, with P, denoting the macrotraction,
P4 the microtraction ! (the small index d of this (1,1)-tensor indicates the

IThe prescription of the microtraction on the boundary means that we are on the next to Cauchy’s
level of detailed description of the continuum (the level of Mikrostrukturmechanik, in Kréner’s terminology,
Kroner 1992). Therefore one should not treate F? as the internal variable in Kestin’s sense (cf. Kestin
1987), but should rather consider it as the microscopical degrees of freedom which can be measured and
controlled in principle. Of course, the method of practical measurement of the microtraction is still far from
being settled, and this is a field of future work for experimentists.



3.2. PRINCIPLE OF VIRTUAL WORK 41

action on dislocations), da the area form in V. Here the variation of I is
defined as follows

51 = d%I[x(X, &), F?(X, €)] |ozo - (2.4)

A somewhat different point of view on admissible variations and thermo-
dynamics when dislocations and plasticity are concerned is discussed by
Ericksen (1983).

We calculate now the variation of I (see e.g. Berdichevsky 1983)

oW W L\, ) W ,
= L (o) (e (om0

Introducing the relations 6F = Déx and 6DF? = DSF? into (2.5) and
integrating it by parts we obtain

6= ( <D1v 5x>—|— <gﬁv‘v ,5FP> - <Div B%H];p,aw» dv

oW oW
+ - ! P
(< oF X > <8DFPN’5F >) da, (2.6)

where N is the outer normal to 90Uy, the boundary of Uy. Substituting
(2.6) into (2.3), one arrives at the following equilibrium equations

DivP=0, P=g! %I],{/’ (2.7)
DivP!-J=0, P¢= %, (2.8)

with Div denoting the divergence operator associated with D, and J defined
by ow

J= SF" (2.9)
We call P the (first Piola-Kirchhoff) macrostress tensor, P¢ the microstress
(2,1)-tensor (contravariant of rank 2 and covariant of rank 1, with compo-
nents (P9)48), and J the internal microforce ((1,1)-tensor). The boundary

conditions for P and P¢ are
PN =P,, (2.10)
PN = P, (2.11)
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Let us calculate P, P4, J using the stored energy density given by (1.22).
It can be directly seen that

P=FS, S= 2‘?% = JPFP-lgFr-T, (2.12)
§ = 2%, (2.13)
Pl=_FrTg?  gi= 2%, (2.14)
SUW) = JFFP~ 158 (w)FP T, (2.15)

5 = 2%. (2.16)

The tensor S is symmetric and corresponds to the second Piola-Kirchhoff
stress tensor in elasticity and elastoplasticity. The (2,1)-tensor S¢ is skew-
symmetric with respect to its contravariant components, and can be called
the microcouple with reference to Kyg. We demonstrate the calculation of
J in components using (2.9) and (1.22)

(4= OV _oI L, O 0w

a = o (44 o ~e 1+
G(FP)A F,DFr 8(FP)A B(C )75 B(FP)A F
, O 9(E)5
3(13)55 o(Fr)j DF?
First of all, from the definition of determinant it is easy to show that

(2.17)

aJp
= JP(FP~1)2. 2.
e = TE (2.18)
Let us calculate now the second term in (2.17). Differentiating (1.5.7) we
have 5(&) H(E1)C
c* v6 — Y C Fp—l D
B~ og)g o
_ O(Fr-1)p
P~10(C)op—prmil-. 2.1
+(F )7( )CD 3(Fp)i ( 9)
Using the identity FP~!F? = 1 one can show that
o(Fr1)7 ~I\C(pp-114
O )y _(Erhyg(Er-iys. (2.20)

o(Fr)%
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Substituting (2.19), and (2.20) into the second term of (2.17) and using the
formula (2.12) we obtain

oo 5((_18)75

JP—
85 O(F?)5

= —(FP1¢(C)ep(S)PA. (2.21)

To calculate the last term in (2.17) we note that according to (1.4.7) and
(1.4.16) (or (1.4.14))

(®)5s = [(FP)p,c — (F")G,pl(FP)F (BP)3. - (222

Differentiating (2.22) in a similar manner as before, with the use of (2.20),
we get

ray:)
;gi}; T (©)5a(FP) + ®)as(F7 )5 (2.23)

Substituting this into the last term of (2.17) and recalling (2.15) and (2.16)
we have

» a_tﬁ a(t)?s
a(t)gs a(Fr);
= (F~1)5(T)gn(s)3" (2.24)
Finally, combining (2.18), (2.21) and (2.24) we obtain

= (8)2s(8NF (F* 1)
DF»

(1) = (Fr S [~(C)en(S)PA + Wed +(TDEL(SDBY] . (2.25)

Thus, the microforce is the pull-back (by one leg) to the crystal of the ten-
sor in the square brackets, which, in turn, is the sum of Eshelby’s tensor
—CS + W1 and of the tensor with components (T?)2,(S%)24. The phys-
ical meaning of the former is to account for the action of the surrounding
elastic field on dislocations (Eshelby 1951; Epstein & Maugin 1990), the
latter tensor can be interpreted as representing the interaction between
dislocations.

According to (2.14) the microstress tensor P? is skew-symmetric with
respect to the contravariant components. Therefore, applying the Div op-
erator to (2.8) once more, one should get the identity

DivJ = 0. (2.26)



44 CHAPTER 3. STATICS

We check (2.26) directly in components. First, we rewrite (2.25) in terms
of P and P?
(Na = F 7 {(Wég — gu(P)(F)p

—<Pd>ﬂA[<FP>C,B — (F")hcl}- (2.27)
Applying the Div operator to (2.27) we have
(Daa = F"N2 4 (W5 — gu(P)*(F)}
~(POGAEYE 5 — (F7)5 0]}
+HEFPHE (W 5 — gu(PL(F) — gun(P)(F)5 4
—(PHGAIFN)E 5 — (FP)5 6]

—(PYGAEVE pa — (B 0al} (2.28)
Using the identity FP~!F? = 1 one can derive the following formula
(FP- l)aA —(Fr 1§ (F”)é,A(Fp"l)f?- (2.29)

Substituting (2.29) into (2.28) and taking (2.7) and (2.8) into account, one
can see that the right-hand side of (2.28) vanishes. Note that in the case of
nonvanishing body macroforce the microforce must also be assumed to be
nonvanishing in order to keep the theory consistent. We restrict ourselves
to the case of zero body force for simplicity.

3.3 Invariant properties and balance laws

In Section 1 the energy density of an elastoplastic body with dislocations is
postulated to be frame indifferent with respect to the groups of translations
and rotations of the Euclidean space €. This means, under the superposed
rigid-body motions
t=z+c (3.1)

and

t=z+Qz (3.2)
the energy functional (2.1) remains unchanged. Consequently, the variation
of the energy 81 vanishes for the following families of infinitesimal virtual
displacements and plastic deformations

sx=d, SF° =0, (3.3)
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0x = wx, OF? =0, (3.4)

with d € V denoting an arbitrary constant vector, and w an arbitrary con-
stant tensor satisfying the identity (gw)T = —gw (infinitesimal generators
of the transformations). Substituting (3.3) and (3.4) into the equation (2.3)
and using the identity 61 = 0 we arrive at the following balance equations
for the stationary points

/wo P,da =0, (3.5)

/wox x P,da = 0. (3.6)

The equations (3.5) and (3.6) correspond to the balance of macromomen-
tum and moment of macromomentum in integral form, respectively.

We derive now other balance equations associated with the invariant
property of the energy density o (or W, up to the factor JP) with repect
to the rescaling group (1.23). Here and in what follows we shall work
in components explicitly. Consider the following one-parameter family of
homogeneous initial deformation

X4 = (Fo)4X8, Fy= const. (3.7)

The homogeneous deformation Fy(c) depends on the parameter « in such
a way that Fy(0) = 1. Hence, (3.7) is the subgroup of the rescaling group
(1.23) and the transformation rules (1.26) and (1.27) hold. Since the free

energy density tv is initial scaling indifferent, we have the identity
W (F*, F?* (DF?)*) = det F** o (F, F?, DF?) (3.8)

with F* FP* and (DF?)* given by (1.26) and (1.27). We differentiate (3.8)
with respect to a at = 0, and use the rule of differentiation of composite
functions and the following formulae

Ly = G0

=

= (F")3(Go)4, (3.9)

a=0

d
_ DR\
(g

d .
%(FP)B,C

= (F))5,c(Go)5 + (F?)5,p(Go)g,

a=
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where

(3.10)

a=0

Taking into account (2.7), (2.8), (2.9) and (2.18) we get
9an(P)(F)3(Go)3 + (3):1(Go)}
+PZC [(F")5,0(Go)B + (FP)5 p(Go)é] = WE5(Go)5. (3-11)
Due to the arbitrariness of Gy it folows from (3.11) that
ga(P)4(F)g + (1) + (P2 [(F)5 5 — (F")5p] = Wé5.  (3.12)

It is easy to see that (3.12) is equivalent to (2.25). Thus, the invariance
of o with respect to (1.23) leads to the balance of micromomentum (2.8),
which can be written in integral form as follows

d g _
_ /uo Jdv+ /wa Péda=0. (3.13)

Let us choose now a family of inhomogeneous initial deformations such
that
(Fe1)4 = (Ag)scXC 4+ (By)s, Ao, By = const, (3.14)

(Ao)fic = (Ao)Gs.
Differentiating (3.8) again with respect to « at oz = 0, then taking the rule
(1.27) and the balance of micromomentum (3.12) into account we have

(P93 (F*)5(Ho)pc =0, (3.15)
where p
H, = EAO Ly (3.16)
Since F? and Hj are arbitrary, from (3.16) and (3.14)3 it follows that
(P9)2C = (PSP, (3.17)

The equation (3.17) is called the balance of moment of micromomentum.
In integral form it reads

J [(BHZC - ®HP av =o. (3.18)

The balance equations (3.13) and (3.18) can also be derived directly from
the principle of virtual work (2.3).
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3.4 Equilibrium equations relative to the current and
crystal references

Let us write down the balance equations (3.5) and (3.6) relative to the
current reference, using the well-known Euler and Piola identities

[ ovda=0, (4.1)
dg(U)
/6¢('u) XX o,da=0, (4.2)
where o, = on, o being the Cauchy stress tensor related to P by
o=J'PFT, (4.3)
In localized form the equations (4.1) and (4.2) read
dive = 0, (4.4)
o’ =a. (4.5)

Let us consider the remaining balance equations for the micromomentum
and moment of micromomentum. We introduce the tensors p? and j, which
are related to P4 and J as follows

(P = T PHIC(F)s(F)E, (4.6)
j=JJIFT, (4.7)

Expressing P¢ through p?, then substituting it into (2.8) and using the
Piola identity, we get the equation

divp? —j=0. (4.8)
In a similar manner, from (4.6) and (3.17) we get
(PY)a = —(P")%- (4.9)

From the definitions (1.17), (4.3) and (4.6) the expression for the microforce
j follows

(B2 = (F)g [=(8)eald)® + 8] + (t°)2(e)e] , (4.10)
where o is the couple stress tensor, which is related to p? by
o = -FTpl gd= 2911)—. (4.11)
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It is also possible to express the balance equations relative to the crystal
reference. First of all, we shall prove the following identity

div(J'FT) = Jo 7, (4.12)
with the vector T given by

(F)p = ()5 = F)2I(F)f0 — (F)asl (4.13)
The formula (4.12) generalizes the well-known Piola identity to the ax-
holonomic case (if F¢ were compatible, the right-hand side of (4.12) would

vanish, so that it would become the Piola identity). We show (4.12) directly
in components, using the definitions of determinant and relative derivative

(T F))p = T ESE )G (F) + T (),
= I [(FVAE ) (B (PN
= 7 @)Y + EI )] = T )
We define the stress tensor p as follows
p=JoFT, (4.14)
(I—))aa — Je(a_)ab(Fe—l)f'
This tensor plays the same role with respect to the crystal reference as the
first Piola-Kirchhoff stress tensor does with respect to the initial configura-

tion. Using (4.14) to express o through p and substituting the result into
the balance of macromomentum (4.4) we have

(B)% + (B)* ()5 =0, (4.15)
or in absolute notation
divg,p + pT = 0. (4.16)

In deriving (4.15) we have used only the identity (4.12). The equation
(4.15) was first obtained by Noll (1967) and Wang (1967). The balance of

moment of momentum now becomes

sF =5 5=F"'p. (4.17)

Let us now introduce the following couple stress tensor relative to the
crystal reference

(895 = =T (@@L (4.18)
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Substituting p? expressed as function of 8¢ into the balance equation (4.8)
and using the identity (4.12), one can see that

(e = (e = =771 [(BM)aL(F)p + ()27 (F)p,,

+(E)2T(F)p(7)] = (i)e = 0. (4.19)
Multiplying this equation by J¢(F°~1){ and using the definition of the tor-
sion tensor (1.4.15) we obtain

(89 + B ®)p, + (8927(7)y ~ ()2 =0, (4.20)
where
(o = T@)a® (4.21)
Using (1.17), (4.14), (4.17) and (4.18) it is easy to show that
(1)a = —(&)ap(8) + 1063 + ()2, (4.22)

The balance of moment of micromomentum results now from (4.9) and

(4.18) to be
) = 7. (4.23)



Chapter 4

Dynamics

4.1 Principle of stationary action

One can generalize to dynamics the results obtained in Chapter 3 in a
straightforward manner by introducing the kinetic energy and formulating
the variational principle of stationary action. We assume the existence of
an action functional of an elastoplastic body with microstructure which is
given in the form

T e
I[x, F?] = /0 /3 L(%,F7; F, F?, DF?) dv dt, (1.1)
where ) _
L(x,F?; F,F?, DF?) = py[K (%, F?) — E(F,F?, DF?)]. (1.2)
The function £, called the Lagrangian, is the difference of the kinetic en-
ergy density poK and the internal energy density poE(F, F?, DF?) per unit

initial volume, where po(X) = vo(X) is the mass density. The kinetic energy
density per unit mass can be specified by

. 1o 1 pe
K(x,F?) = Sgai i + §9aﬂ:AB(FP)A(FP)g, (1.3)

where 248 is a, constant symmetric tensor of second rank. The first term of
(1.3) corresponds to the kinetic energy of the macromotion, while its second
term corresponds to the kinetic energy of the dislocation motion. As about
the internal energy density per unit initial volume, we shall assume, as we
did in Chapter 3, that it depends on FP, C and T? in such a way that

poE = poE(F?, C, T?) = JPe(c¢(FP, C), t(F?, T?)), (1.4)
where ¢(c¢,t) is the internal energy per unit crystal volume which is the

function of ¢¢ and t alone (cf. formula (3.1.20) for the free energy density).

50
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This means that the internal energy density is invariant with respect to
the superposed rigid-body motion, and also with respect to the rescaling
group (3.1.23) (up to the factor JP).

Assuming the absence of external body forces and surface tractions we
formulate the principle of stationary action as follows

51x, F¥] = 0. (1.5)

Here the variation of the functional I is defined analogously as in (3.4.2).
We calculate now the variation of the action functional (1.1)

sT= [ M - 63 M, 57 P.5D
“-/(;/'BO[PO rox+pp < M, 0FT > — < gl o0x >

— < J,6F? > — < P%,6DF? >| dvdt. (1.6)
In (1.6) the following fields are introduced
oK
=g 1| =g 1.
M? = ai
OFP %’
(M%) = gupB P (BP)5, (1.8)
oFE
P=pg'— , 1.9
P08 OF |pv pps (1.9)
oF
J=po = 1.10
Pa OF? ¥ DE? 3 ( )
OFE
4= : 1.11
7 3D e g (1.11)

We call M the momentum of macromotion (the macromomentum), M¢? the
momentum of dislocation motion (the micromomentum, for short), P the
macrostress tensor, J the internal microforce tensor, and P¢ the microstress
tensor.

Integrating (1.6) by parts and assuming that the variations on the bound-
ary OUg and at t = 0,T vanish we obtain

T . .
5T = /0 /B [(—poM + DivP) - 6x
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+ < (—poM* + DivP¢ — 1), §F? >| dv dt = 0. (1.12)

Since 6x and 8F? are arbitrary, from (1.12) we get the following equations
of motion .
poM = DivP  (macromotion), (1.13)

poM? = DivP? — J (dislocation motion). (1.14)

From (1.4) and the definitions (1.9)-(1.11) one can derive the following
constitutive relations

P=FS, S§S= 2pog—(E3 = JPFP-1gFr T, (1.15)
55

5= 20—;’ (1.16)

Pd=_FrTgd gl 2p0%-, (1.17)

SYW) = JPFr- 154 (w)FP 7, (1.18)

5 = 2%, (1.19)

(D)2 = (B [~(C)on(8)PA + poBéh + (T)EHSHPA].  (1.20)

The equations (1.13)-(1.19) constitute the complete system of relations
with respect to the unknown functions x and F?. In order to make the
problem well-posed we must additionally specify the boundary and initial
conditions in a similar way as in classical elasticity.

As about the internal energy density, the action functional (1.1) is in-
variant with respect to the groups of translation and rotation of the Eu-
clidean space €. Therefore, applying Noether’s theorem (see, e.g., Marsden
& Hughes 1983) we can derive again (1.13) and the following equation

PFT = FPT| (1.21)

which represent the balance laws of macromomentum and moment of macro-
momentum for the stationary points. Besides, the internal energy density
¢(c®, 1) is invariant with respect to the rescaling group (3.1.23). Therefore,
repeating the same procedure as in Section 3.3, one can derive the equa-
tions (3.3.12) and (3.3.17). The equation (3.3.12) can be referred to as
either the balance of micromomentum, or the definition of the microforce.
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The equation (3.3.17) corresponds to the balance of moment of micromo-
mentum.
All these balance laws can be formulated in integral form as follows

d
T _/uo pocMdv = /auo P,da (macromomentum), (1.22)

%/u pOXXMd”=/au x x P, da
0 0
(moment of macromomentum), (1.23)
d
dt -/Uo poMedv = — fu . Jdv+ -/6'110 Pdda (micromomentum),  (1.24)

/u [(PHEC 4 PHCB]dy =0, (moment of micromomentum),  (1.25)
0

for an arbitrary sub-body U, with the microforce J given by (1.20). Fi-
nally, using the equations of motion (1.13) and (1.14) one can establish the
balance of energy

:iit-/ po( K + E) dv —/ [P, %+ < PLFP >]da  (energy).  (1.26)

The right-hand side of (1.26) corresponds to the power done by the external
forces. One can see that the internal microforce does not contribute to this
power. To prove (1.26) let us expand its left-hand side

d o oy
= / po(K + E) dv _/ (poM - X+ < poM%, F? >) dv
1 Uy

+ [ (< gP,F >+ < I,F? > + < P%, DF? >) do, (1.27)
0

then use the equations of motions (1.13) and (1.14) to replace the first
integral in (1.27) by

d . . . -
EEA(O pK dv = /uO(DIVP %+ < =J + DivP4, F? >) dv. (1.28)

Substituting now (1.28) into (1.27), canceling equal terms and integrating
by parts one gets the right-hand side of (1.26).
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4.2 Balance equations in the initial description

In the previous Section we dealt only with the purely mechanical theory.
In general, the plastic deformation may be accompanied by the heat flux
and the change of temperature. In such cases the principle of stationary
action formulated above is no more adequate. We shall generalize now the
balance equations so that the heat flux and the Clausius-Duhem inequality
can be included in a natural manner.

Let po(X) = to(X,0) be the mass density, x(X, t) the velocity, M(X, ¢)
the macromomentum,M%X, ¢) the micromomentum, P(X, ¢) the first Piola-
Kirchhoff stress tensor, J(X, t) the driving force , P4(X, t) the microstress,
K(X,t) the kinetic energy density and E(X,t) the internal energy density,
both per unit mass, Q(X, t) the heat flux vector, ©(X,t) the temperature,
and N(X,t) the entropy density per unit initial volume. Now we postulate
the following balance equations

d
p /uo podv =0 (mass), (2.1)
% ./u ] poM dv = /auo P,da (macromomentum), (2.2)

d
E_/uopgxdev=/6uoxxP,,da

(moment of macromomentum), (2.3)

% _/un poM4dy = — ./u ) Jdv+ _/(mo P;‘f da (micromomentum), (2.4)

./u [(PHEC + PHCBldy =0 (moment of micromomentum), (2.5)
0
d . .
afun po(K + E)dv = /wo[Pu-x+ <PLE?> —Q,da
(energy), (2.6)
d Q
7 ./u 0 polN dv > — -/3110 —e—da (entropy), (2.7)

for an arbitrary sub-body U. In comparison with (1.26) the balance of
energy is generalized to account for the heat flux. The inequality (2.7)
is new and corresponds to the entropy production inequality in integral
form. Standard procedures enable one to pass to the localized form of the
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balance equations. The localized equations of (2.1)-(2.5) can be written
immediately

po = const (mass), (2.8)

poM = DivP  (macromomentum), (2.9)

S=87, P=FS (momentof macromomentum), (2.10)
poM¢ = DivP? — J  (micromomentum), (2.11)
(PHBC = _(PYY8  (moment of micromomentum). (2.12)

We show now how the balance of energy and the entropy inequality in
localized form can be obtained. Integrating (2.6) by parts we obtain

jt/ po(K + E) dv—-/ [DivP - %+ < gP,F >

+ < DivP%, FP > + < P4, DF? > —DivQ] da. (2.13)

Using the equation (1.28) to subtract the rate of the kinetic energy from
(2.13), we have

d . .
d—tAopoEdv=/uO[<gP,F>+<J,F”>

+ < P, DF? > —DivQ] da. (2.14)
Since (2.14) should hold for an arbitrary subbody Uy, the localized form of
the balance of energy follows
poE + DivQ =< gP,F > + < J,F* >

+ < P! DF? > (energy). (2.15)

In (2.15) we regard the internal energy per unit mass as the function of
F,F?, DF? and the entropy N. This balance equation can also be written
in a slightly different form. We note that

D= %c’: = %(FTgF + Flgk), (2.16)
. 1 .
B(W), Wa) = ST (Wi, Wa) = — S PP BP[T(W), W]

3PP (DEYY W)W, — (DE?)W, )W) (2.17)
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We replace now P and P? in the right-hand side of (2.15) by S and S¢
according to (1.15); and (1.17);. Using (2.16) and (2.17) we transform the
balance of energy to

pE + DivQ =<S8,D>+<J,F?>+<84Z> (energy), (2.18)
where 1
J=J+ 5FP—T (S T7),
. 1.
(Na = Dz + 5(F° NE8HE"(T?)3p)- (2.19)

The interpretation of J can be given in the context of the balance of energy
(2.18), where the internal energy per unit mass is regarded as the function
of F?,C, T? and N

E = E(F?,C,T?, N) = J%(&*(F?, C), ¥(F?, T?), 7). (2.20)
We shall show in the next Chapter that
< O
J= PO .
oFr C,T?,N

In a similar way, from (2.7) we obtain the localized entropy production

inequality
DivQ Grad®

poN > — o t< gz Q> (2.21)
We introduce the free energy per unit mass as follows
¥=F-NO. (2.22)

This is regarded as a function of F, F?, DF? and the temperature ©. The
time derivative of (2.22) gives

¥ =E—-NO-NO,
Or . . a -

ON=E-NO - V. (2.23)
Combining (2.23) with (2.21) and noting that © is positive we have

Grad®
@ ’

po(B — NO© — ¥) > -DivQ+ < Q>. (2.24)
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Substitution of E from (2.15) into (2.24) gives
po(NO +¥)— < gP,.F > — < J,F? >

Grad©
C)
The inequality (2.25) is referred to as the localized form of the entropy
production inequality, which can and should restrict the possible functional
form of the constitutive equations. Using (2.18) we can rewrite (2.25) in a

sightly different form

— <P¢ DF? > 4 < ,Q ><0. (2.25)

po(NO+T)— <8,D>-< J F?>

Grad®
Q)

with J given by (2.19). The free energy per unit mass in (2.26) is regarded
as a function of F?, C, T? and ©

- <8NZ>+<

? Q >S 03 (226)

¥ = §(F?,C,T?, ©) = JPi(c*(F?, C), ¥(F?, T?), ). (2.27)

4.3 Balance equations in the current description

For numerical implementations, the formulation of the balance laws and
of the entropy production inequality relative to the current reference is
of major importance. Let p(x,t) = v(X,t) be the mass density, v(x,t)
the spatial velocity field and o(x,t) the Cauchy stress tensor. Standard
procedures with the use of the Euler and Piola identities enable one to
transform (2.8)-(2.10) to the following balance equations

Dip+ p divv =0 (mass), (3.1)
pDyv = pb + dive (macromomentum), (3.2)
ol = o (moment of macromomentum). (3.3)

with D; the material time derivative. The Cauchy stress tensor is related
to the first Piola-Kichhoff stress tensor by (3.4.3).

We consider now the balance of micromomentum and moment of micro-
momentum. Introducing the microstress tensor p? and the driving force
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tensor j as in (3.4.6) and (3.4.7) and using the Piola identity, we reduce
(2.11) to

poM¢? = J(divp®)F~T — JjF-T (3.4)
Multiplying (3.4) by J~'F7 gives
pp = divp? —j (micromomentum), (3.5)
where
p = MFZ. (3.6)

It is easy to see that the balance of moment of micromomentum becomes

(p?)¥ = —(p9)® (moment of micromomentum). (3.7)

Let us consider now the balance of energy. We use e to denote the
internal energy per unit mass, which is regarded as a function of F¢!, g, t¢

and the entropy 7
e = 8(F°, g, 7). (3.8)

Since e is a scalar, it should not change its values under the change of
reference. Therefore the material time derivative of e should equal E

Die = E. (3.9)
We introduce the tensors o, 0%, and q given by (3.4.3), (3.4.11) and
\a wa , Limever, e\a
(e = (2 + 5FNRLe) )5, (3.10)
q=J"'FQ. (3.11)

Multiplying the balance of energy (2.18) by J~! and taking into account
(3.9)-(3.11) we can transform (2.18) to

pDie+ divq =< o,d > + < j,PF! >
+ <a%z> (energy), (3.12)

with d denoting the total strain rate tensor and z the dislocation drift rate

tensor.
We introduce the free energy per unit mass as follows

Y =e—nb, (3.13)
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with 6 denoting the temperature field. We can rewrite the entropy produc-
tion inequality (2.26) in the following form

p(nD6 + Dp)— < 0,d > — <, PF >

- <ad,z>+<—gr2—d€,q >< 0. (3.14)

In the next Chapter we shall derive the constitutive equations consistent
with (3.14).




Chapter 5

Constitutive equations: general theory and
special cases

5.1 Thermodynamic considerations

In this Section we investigate the consequences of the entropy production
inequality written relative to the initial reference according to (3.2.25)

po(NO + )= < gP,F > — < I, F? >
Grad®
©
where P,P¢, and J are the first Piola-Kirchhoff stress tensor, the mi-
crostress tensor, and the driving force tensor, respectively. We assume that
the entropy production inequality (1.1) holds for any regular motion of the

body with dislocations. Furthermore, according to (4.1.4) and (4.2.22) the
free energy W per unit mass should have the following functional form

¥ = I(F,F?, DF?, ©). (1.2)

—<PLDI? > + < ,Q ><0, (1.1)

Let us calculate the rate of the free energy

- ov . ov . . ov .

= S —_— p 14 i
¥ =< aF’F>+<an’F >+<6DFP’DF >+a®®, (1.3)
where 9¥ /OF is the partial derivative of ¥ with respect to F. Substituting
the formula (1.3) into the entropy production inequality (1.1) gives

ov . ov :
— e — —_— P
< (pan gP),F>+< (pgan J),F? >
ov PR
+<(,006DFP—P),DF >

60
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Grad®
IZ) ,Q ><0. (1.4)

Now we apply a procedure due to Coleman and Noll (1963) to derive the
following constitutive equations

+po(— +N)O+ <

P gg ] (L5)
1= po% F.DF?0 (1.6)
pd _ poag‘lb:p o (1.7)
N=- g_g F.Fr DF? (18)

By assumption, (1.1) holds for all processes (¢, F?, DF?, ©). First of all,
choose ¢; and F? independent of time; then we must have

Grad@
C)

Suppose (0¥ /00 + N)@ did not vanish for some ¢, F? and all (X, 1).
Then we can alter © to a new one @' so that O(X, %) = 0'(X,t) and
O(X, 1) = a®'(X,ty), where o is any prescribed constant. We can then
choose the constant o to violate the assumed inequality. Therefore, we
deduce the relation (1.8). Fixing F? and © and altering ¢; we can derive the
equation (1.5). Now fixing © and choosing F? homogeneous and arbitrary
so that DF? = 0, we get (1.6). The equation (1.7) can be deduced now by
fixing © and altering F? in an arbitrary manner.
By (1.5)-(1.8) we reduce the entropy inequality (1.1) to

< Grgd@,q <0. (1.10)
This inequality can be satisfied, for example, by the Fourier law
Q = —k Grado®, (1.11)

with « denoting a symmetric tensor of second rank, which is positive defi-
nite. After (1.5)-(1.8) the balance of energy reduces to

00ON + DivQ = poR. (1.12)
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Eqn. (1.12) can be considered as a nonlinear heat conduction equation.
In the finite elastoplasticity with microstructure the free energy has but
a more specific form

¥ = py' JPo(e*(F?, C), §(F?, T?), ©) = ¥(F?, C, T?, ), (1.13)

with t(e¢,t) the free energy per unit volume of the crystal reference sat-
isfying the principles of frame indifference and initial scaling indifference.
Repeating the calculations like those in Section 3.2 one can show that
(1.5)-(1.7) are equivalent to

, (1.14)

@) = (F S [~(C)on(8)P4 + ol 64 + (TP)EL(SHBA],  (1.15)

b
§¢ = 2,00—6——

e (1.16)

Fr,C,O

One can show that the tensor J given by (4.2.19) can be calculated as
follows

. o |-

C, 7,0
We prove (1.17) directly in components. Applying the rule of differentiation
for the composite function ¥ from (1.13) we have

v o
Do =10 57epa = 00 Arrena
( B(FP)A F,DFr 0O B(FP)A C,Tr 0
oW H(TP)E,
o0 | el 1.18
BTVl o O o (118)
Using the formulae (1.4.8) and (3.2.20) it is easy to see that
&(T*)ep _1\B/mp\A
A~ Jep|  _ _(pr-1)B(Tr)4,. 1.19
S =~ (1.19)

Substituting (1.19) into (1.18) and recalling (4.2.19) and (1.16) we get
(1.17).
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By using push-forward operations with F we can get the following con-
stitutive equations relative to the current reference.

Y = P(F, g, 1%, 0) = py' T d((F, 8), §(F, £9),6),  (1.20)

o= 2p% , (1.21)
og Fe-1 e g '
@)2 = (F)S [~(@)ea(@)® + i 6L + (£)84(@DE],  (1.22)
)
d
o’ = 2p— , (1.23)
ot Fe-lg g
- (1.24)
69 Fe—l’g te

The tensor j from (3.3.10) can be shown to be given by

- A

j= pW (1.25)

g.te,0

The constitutive equations (1.21)-(1.25) can also be derived directly by
considering the balance of energy (3.3.12) and the entropy production in-
equality (3.3.14) written relative to the current reference.

5.2 Noll-Wang’s theory

Let us suppose that the plastic deformation F? does not change with time,
and consequently the crystal reference K is given and should not be sub-
ject to variation (Noll-Wang’s theory). This means, we are considering a
simple body with frozen dislocations and the motion of this body is gov-
erned by Cauchy’s equation of balance of macromomentum and moment
of macromomentum alone. Restricting ourselves to isothermal processes,
we assume also that the stored energy does not depend on the dislocation
density t !

W = W(F,F?) = W(F?,C) = JPio(c*(F?, C)). (2.1)

1In engineering language we can say: the eigenenergy of dislocations is neglected in comparison with the
stored energy due to the elastic deformation.
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The principle of initial scaling indifference is still valid for v, but, due
to the absence of ¢ in the stored energy density, we have the following
consequence

oW

~ OFrlpe
In this model there are no balance equations for micromomentum and the
driving force J need not be zero. However, in the absence of the body
macroforce we can prove that

=FrT(—F7gP + W1). (2.2)

Div] = 0. (2.3)
Indeed, applying the Div operator to J from (2.2) we get

(Naa = )2 (~ga(P)A(F)5 — gar(P)*(F)j 4 + W,5)

+HEP )2 A(D)F(EF)E. (2.4)
We calculate now the partial derivative of W according to (2.1)
Ws = ga(P)*(F)y 5 + (3)a(FP) 5- (2.5)

Substituting (2.5) into (2.4) and taking the static equation (3.2.7) into
account, one can see that (2.3) is valid. We denote by B the following
tensor

B=CS-Wi1, J=-F7"B. (2.6)
Then B satisfies the following equation
(B)5,4+ (B)E(FP)5(FF~1)2 4 = 0. (2.7)

From the balance of moment of momentum it follows that B is symmetric
with respect to the tensor C

BC = CB”. (2.8)
Egs. (2.7), (2.8) were first obtained by Epstein & Maugin (1990).

5.3 Linearized theory

We assume again that the deformation fields F', F?  F° are given by (241)
In this case the references Ko, K; and K; differ from each other by small
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distorsions, so that they can be identified. Therefore, there is no need to
distinguish between upper case, lower case and Greek indices. We also
can choose the metric g to coincide with the identity map 1 and we can
identify tangent and cotangent spaces. Thus, there is no need to distinguish
between co- and contravariant tensors. All formulae obtained in Section
2.4 can now be applied. Especially we have the additive decomposition of
the total (small) strain tensor into its elastic and plastic parts. The finite
dislocation density measure T? can be replaced by the linearized one given
by (2.4.13). Restricting ourselves again to statics under the condition of
constant temperature we can express the stored energy density per unit
volume in the form

w = W(e®, ) = w(e — €, curlB?). (3.1)

The equilibrium equations (3.4.4),(3.4.5) remain unchanged after lin-
earization

dive =0, (3.2)

ol =o. (3.3)

We show now how to linearized the equations (3.4.8), (3.4.9) and (3.4.10).

Choosing the skew-symmetric microstress tensor p? to satisfy the equation

(3.4.9), we can introduce the following second rank tensor T with compo-

nents
1

Tab = —§€bcd(pd)acd- (34)

This tensor is uniquely defined by p? due to the associate representation
of skew-symmetric tensors. We also call T the couple stress tensor. Sub-
stituting (P%)ae = —EdpeTaq into the equation (3.4.8) we have

curlt +j=0. (3.5)

or in components

EbedTad,e + Jab = 0. (3.5)
Linearizing (3.4.10) one can show that the driving force is approximated
by the Cauchy stress taken with minus sign

J=-0, jua=—0a. (3.6)
Therefore, the balance of micromomentum (3.5) reduces to

curlt —o = 0. (3.7)
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According to (3.1) we have the following constitutive equations

ow Ow
7= 9~ e (38)
ow
T = %. (39)
The linearized driving force tensor is given by
Ow

The linearized equations (3.2), (3.3) and (3.7) are not identical with
those postulated by Kroner. In Kroner’s theory the equations correspond-
ing to (3.2) and (3.7) can be written in our notation as follows (see Kréner,
1980, Egs. (41),(42))

045 = 0, (3.11)

Tijj — €Eijk Ok = 0, (3-12)

with 0;; denoting an unsymmetric stress tensor. The existence of the un-
symmetric stress tensor is due to the fact that Kroner did not postulate
any balance law for the moment of macromomentum, or equivalently say-
ing, his energy density is assumed as a function of 3° and a (see Kroner,
1980, formula (40)). Eliminating the skew-symmetric part of 8° in his en-
ergy density and applying the principle of virtual work, one can derive the
equations identical with (3.2), (3.3) and (3.7). It is also worth noting that
in his applications to concrete problems Kroner always used the symmetric
stress tensor satisfying the equilibrium equations (3.2) and (3.3).

Since the elastic strain and the dislocation density are small, we can
approximate the stored energy density by a quadratic form of €° and o

1

1
w = ECabcd(ee)ab(ee)cd =+ EAabcd(a)ab(a)cd- (313)

In (3.13) we assume explicitly that there is no cross-term between € and
o. The constants Cgpeq and Agpeq should satisfy the following symmetry

properties
Cabcd = Cbacd = Clabdc = Ccdaba (314)

and
Aabcd = Acdab- (315)



5.4. LINK TO THE MACROSCOPIC ELASTOPLASTICITY 67

Eqgs. (3.14) and (3.15) reduce the number of independent constants from

81 to 21 for Cypy and to 45 for Agpeq in the general case of anisotropy. A

further reduction is possible for special types of crystal symmetry.
According to (3.13) the stress and couple stress tensors are given by

0as = Cabed(€°)cas (3.16)

Tab = Aabcd(a)cd- (317)

Due to (3.16) one can determine first the stress field inside the body, pro-
vided the dislocation density « is prescribed. Following Kréner, we intro-
duce the tensor field of stress functions x such that

o =incy. (3.18)
It is easy to prove the identities
divinc=0, incdef=0, (3.19)

which are similar to those classical formulae with div, grad and curl in
vector analysis (see Kroner 1958,1980). Therefore the stress field given by
(3.17) satisfies the equilibrium equation (3.2) and (3.3) identically. Now
using Hooke’s law (3.15) to express € through o and then through the
tensor field x via (3.17), we can substitute the result into the incompati-
bility equation (2.4.18) to derive the field equations for x. The latter can
be solved for many special problems (Kroner 1958,1980).

5.4 Link to the macroscopic elastoplasticity

It is more difficult to see the link of the theory proposed in this paper
with the macroscopic elastoplasticity (cf. Lee 1969 and a cycle of our
works Stumpf & Badur 1990; Stumpf 1993; Le & Stumpf 1993a; Schieck &
Stumpf 1993,1994). First of all we should point out the striking difference
between the constitutive equations of these two theories: while the former
is reversible, the latter is not. There are two possible ways of making
them connected. The first way is associated with an assumption of non-
convexity of the stored energy leading to the co-existence of phases and the
formation of microstructure (see, for example, Ericksen 1975; Ball & James
1987; Knowles 1991). The dissipation is then defined as the rate of work



68 CHAPTER 5. CONSTITUTIVE EQUATIONS

done by the Eshelby driving force acting on moving interphases. In the
case of 1-D elasticity Knowles has shown that a nucleation criterion and a
kinetic law are needed to make the problem well-posed. This way is very
attractive and promising but not yet finished. The second way is direct.
We assume again that the free energy density per unit crystal volume does
not depend on the dislocation density so that

¥ = ¥(F?, C,0) = py L JP(c(F?, C),0). (4.1)

In constrast to Noll-Wang’s theory, here the plastic deformation can change
with time. However it cannot be varied in an arbitrary manner, but should
be subject to some anholonomic constraint. We introduce the tensor field
k as follows

k =g le's — gl (4.2)
We call k the plastic stress tensor (Le & Stumpf 1993a). Note that k is
symmetric, what is the consequence of the symmetry of B with respect
to C (see Section 5.2). As an example of constraint we can propose the
following: the plastic deformation rate d? is zero as long as the plastic
stress tensor k is inside a convex yield surface

f(R) < 0= =0, (4.3)

Due to the constraint (4.3), the plastic deformation cannot be varied arbi-
trarily as long as the plastic stress tensor is inside the yield surface, and
Cauchy’s balance of macromomentum and moment of macromomentum
alone governs the motion of the body. The microstress and couple stress
tensors vanish. Therefore the entropy production inequality relative to the
initial reference takes the form (Le & Stumpf 1993a)

e . Grad
po(NO+¥)—- < gP,F >+ < rg e,Q >< 0. (4.4)
Taking the time derivative of ¥ given by (4.1) we have
SN, ov . 0¥,
=< ——,F? — —O. 4.
1Y <6FP’F >+<6F’F>+a®e (4.5)

Substituting (4.5) into (4.4), we can transform (4.4) to (see Le & Stumpf

1993a)

ov . ov, .
< (pogy —8P), F > +po(N + 55)0
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ov . Grad®©
— —— TP -
<3FP,F >4+ < 5 ,Q ><0. (4.6)

A procedure similar to that presented in Section 5.1 leads to the constitutive
equations

ov
P=pg'—| |, 4.7
R (4.7)
ov
N=-_— 4.8
00O |y ¥ (4.8)
Due to (4.1) the constitutive equation (4.8) can be rewritten also as follows
o
S = 2/)0— . (49)
OC g o
The inequality (4.4) reduces to the dissipation inequality
. d
<IFP> 4 < Grz) © as><o, (4.10)
where .
I= 2% FP-T(—CS + p¥1) (4.11)
= Po an co - Po . .

Multiplying (4.10) by JP~! we can transform it to the dissipation inequality
relative to the crystal reference (Le & Stumpf 1993a)

gradg, 0

~<kd?*>+< ,q><0. (4.12)

We show the derivation of (4.12) directly in components. Multiplying the
first term on the right-hand side of (4.10) by J?~! and recalling (4.11), we
get

U< 3, 5= S EYE[—(C)pa(S)7 + po B8Rl (BD). (4.13)
Replacing C, S and po¥ by &, § and f according to (1.5.7), (3.2.12) and
(4.1), respectively, we can transform (4.13) in the following way

TP BB 5= [—(€)ay(8) + LN (4.14)

where 1P = FPFP-1, Raising the index o of the tensor in the brackets and
lowering the same index of 17 with the help of g and using the symmetry
of k as well as the definition (1.6.9), we obtain

J<IFP>= - <k, d?>. (4.15)
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In order to transform the second term on the right-hand side of (4.10) we
recall that
Q)" = P(F)s@", ©=48 (4.16)

Substitution of (4.16) into the second term of (4.10) followed by the mul-
tiplication by J?~! gives

_ Grad® 1- _ e 0o\
T < o, Q= S0 4(FT(@)° = F@) (4.17)

In the last step of (4.17) the definition of the relative derivative (1.3.2) was
used. Combination of (4.15) and (4.17) leads to (4.12)

Let us assume that there is no coupling between heat exchange and
plastic flow, and let —gradkté_/é be denoted by f. Then we formulate
the generalized normality rule or, equivalently, the principle of maximum
dissipation rate (von Mises 1928; Hill 1948; Drucker 1951; Ziegler 1958)
relative to the crystal reference in the form

k =05D?, f=v3D", v=D"5;D"a)7", (4.18)
with
D? = Dr(d?,6) >0, D"=D"q,d) >o0. (4.19)

The dissipation functions D? and D" are supposed to be positive definite,
convex and lower-semi-continuous with respect to their arguments d? and
q, respectively. The symbol 8 is used to denote the sub-differential of
convex functions (Moreau 1970, consult also Maugin 1992, Appendix 2).
An example of the dissipation functions can be given for the case of isotropic
materials with a generalization of von Mises’ and Fourier’s laws referred to
the crystal reference

@ ~af JP
N2(AP ) — 00(2/3)1/2[9 7gﬂ's¢z§,ﬂ¢z§6]”23 g ﬁdaﬂ =0
Dd",0) = { +00: otherwise (4.20)
- - 1
D"(q,0) = ﬁgaﬂ(?at_?ﬂ- (4.21)

Here oy is the yield stress in uniaxial tension experiment and x the thermal
conductivity. From (4.21) it follows that v = 1/2 and (4.18)3 reduces to
Fourier’s equation

q = —xgradg,0. (4.22)
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Further, it is convenient (but not necessary) to suppose that no volume
change occurs in the plastic low so that

p=po, tr(g”'d?)=0. (4.23)

This condition excludes automatically the case, in which the dissipation
function of (4.19) is equal to infinity. Note that while D" is a quadratic form
of @ (Onsager’s principle), D? is only a homogeneous function of first degree
with respect to d?. This can be explained by comparing the mechanism
of heat exchange with the nature of plastic low. In the latter case a
certain amount of the plastic stress tensor (dissipative) should be reached
to initiate the plastic flow (similar to the mechanism of dry friction). This
is in agreement with our constraint (4.3). From the other side it can be
shown that the equation (4.18); is equivalent to the conventional yield
condition (4.3) (with the convex yield surface) and the associated flow rule
if and only if the dissipation function is homogeneous of first degree with
respect to d?. The equation (4.18); then establishes the (nonsingle-valued)
connection between k and d?. However, it is worthwhile to emphasize that
the dissipation itself is uniquely determined by d?. To rewrite (4.18); in a
more usual form, we apply the Fenchel transformation (Moreau 1970) to
the dissipation function D? to obtain the so-called plastic potential @(k, 8).
Then the constitutive equation (4.18); is equivalent to the flow rule

d? = 5;¢(k, 6). (4.24)
For the dissipation function (4.19) the plastic potential has the form

5 { 0: [(gargss — 39059+ kP K] < 09(2/3)'/? (4.25)
+00: otherwise

Eqgs. (4.18) and (4.24) and their equivalent versions in the initial and
current description were first obtained in our paper (Le & Stumpf 1993a).
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