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ON STATICAL SHAKEDOWN THEOREMS
FOR NON-LINEAR PROBLEMS

Summary

The quasistatical approach to the non-linear shakedown problems for
elastic-plastic materials with hardening is presented.. A given new statical
shakedown theorem is a generalization of Gross-Weege’s one. It contains known

formulations of the literature as special cases.

Zusammenfassung

Es wird die quasistatische Niherung des nichtlinearen Einspielproblems fiir
elastisch-plastisches Material mit Verfestigung untersucht. Ein hergeleitetes
statisches Shakedown Theorem stellt eine Verallgemeinerung des Theorems von
GroB-Weege dar. Es enthidlt dariiber hinaus viele aus der Literatur bekannte

Formulierungen als Spezialfille.
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Introduction

In many .engineering situations, machines and structures are often
subjected to loads and temperatures that act mostly repetitive and vary within
given limits. The essence of the shakedown analysis is concerned with the
limiting behaviour of a structure under such type of loading. In this study, a
convex loading domain is considered and any load within this domain is assumed
to be applied an infinite number of times during the 1lifetime of the
structure.

The significance of such analysis is obvious. It allows to release our
calculations from necessity regarding a real, as a rule, a priori an unknown
loading history of the structure or its elements.

The theory of shakedown is based, in principle, on the assumption of
geometrical linearity, so that the influence of progressive changes of the
shape of the structure during the deformation process cannot be taken into
account. In many practical applications, however, especially for mechanical
structures, unserviceability may occur only beyond the range of the
applicability of the geometrically linear theories. Examples are shell-like
structures, where the conventional theories already fail when the
displacements are of the order of the thickness of the wall structures.
Moreover, the classical shakedown approach will not be adequate at finite
deformations because the shakedown limits of loads must be path—dépendent in
this case. Nevertheless, in some special cases, exists a few partial results
concerning such approach. The first was MAIER [5:1973] who has extended the
classical approach taking into account the so-called ’second order’ effects
and using piecewise linear yield conditions. The influence of geometrical
effects on the stability of the deformation process for particular structures
was investigated by KONIG [2:1980]. NGUYEN and GARY [7:1983] studied the
possibility of destabilization of the shakedown process due to successive
plastic deformation. WEICHERT [8,9:1986; 11:1988] and GROSS-WEGGE [12:1989]
investigated the geometrically non-linear shakedown problem for some
restricted classes of non-linearities and gave an extension of MELAN’s theorem
for shell-like bodies undergoing moderate rotation at small strains. The
influence of material hardening of the shakedown behaviour has been studied by
several authors, among others, by MANDEL [20:1976], WEICHERT and GROSS-WEGGE
[10:1988].

In the paper an extension of the Gross-Weege’s shakedown theorem to more



general non-linear problems is proposed. The requirement of an additive
decomposition of the strain tensor into a purely elastic part and a purely
plastic part restricts the proposed theory to moderate deformations. According
to the classical shakedown theory the proposed theorem presumes the existence
of a convex yield surface and the validity of the normality rule for the
plastic strain rates. Considerations for elastic-plastic materials with
hardening are given. Moreover, the given shakedown theorem for the generalized

standard material is reformulated.

Notations
R - a field of real numbers;
B - an elastic-plastic body (continuum of class C°, p = 1);
'c - an initial configuration of B;
*C - an actual configuration of B;
¢ - a reference configuration of B;
°c .- a fictitlous configuration of B;
9° - an Euclidean tensor field of the valence S;
S . _ oS .
¥ =9 |T=TT’ s z 2;
S - S .
4 =9 IT‘:-TT’ s = 2,
— s .
T =7 |detT=0’
+
T = 7 get >0}

V - a volume element of the body B;
S = 8B - a surface element of the body B;

L)
1

3
VX[T1’TZ] <R xR+,

VB - a class of all load paths on V;

For objects S € T by trS and detS we denote their trace and determinant,
respectively. 8D means a boundary of a subset D of a vector space. When 8B is
a boundary of a body B, we assume 9B to be also an orientable and measurable
surface.

In the work bold-faced letters denote tensors of valence 1, at least. We
adopt here, as far as possible, an absolute tensor notation and, if it is
necessary, we use the index tensor notation. If necessary the summation

convention is used.

1. Formulation of the problem



The purpose of this chapter is to point out the elementary aspects of the
problem. We will present mathematical process necessary to describe the

shakedown of the structure.

1.1. Kinematic-static equations of the problem

In the formulation of continuum mechanics the configuration of the body B
is described by the continuous mathematical model whose geometric points are
identified with places of material particles of the given body B. By the body
B we shall understand, further on, an elastic-plastic body.

Let the body B occupies the region Q = Vx['tl,‘tz], where V is a simply
connected subset in R3 and [11,12] is the time-interval in R+.

Let 'C and “C denote two different configurations of the body B, X and x -
places in 'c and 'C of the same particle X of the B.

Let the mapping x: 1C — tC, called a deformation function, be a

continuous deformation process defined by
(1.1) x=x(X,T), XeV, Te€ [1:1,1:2].

We consider only deformation processes x in which displacements u = yx(X,7t) -
X, and the deformation gradient F = Grady := Vyx € g* are continuous functions
in Vx[Ti,TZ].

The knowledge of the deformation gradient tensor F at the point X implies
the knowledge of a deformation of the first order in a certain neighbourhood
of this point.

A division of sufficiently smooth surface S = 8B of the body B on two
disjoint parts Su and St where static and kinematic boundary conditions are
given, respectively, it can be various for different components of external
loads given. We consider volume forces b# in V, surface tractions t# on S and
surface displacements u# on Su. It is assumed that suitable components t1 and
u? are complementary. The body force b# is prescribed in the volume V in such
a way that the entire body is in equilibrium.

Under this assumptions the boundary value problem refered to the initial

undeformed configuration is represented by:

(1) Kinematic equations



(i) the compatibility conditions for displacement vector field

F

G + Vu in Vv,
(1.2)

E

% (F'gF - G) inV,

where G and g are the metric tensors of the undeformed and deformed
configurations, respectively.

(ii) the kinematic boundary conditions

(1.3) u = u# on S.

u

(2) Static equations

(1) the equations of internal equilibrium

(1.4)  Div(T) = -b* in vV,

(ii) the boundafy conditions for surface tractions

(1.5) Tn = t# on St,

T = FS.

Here T 1is the first Piola-Kirchhoff stress tensor, S 1is the second
Piola-Kirchhoff stress tensor, t# is the given traction vector field and n

. I
represents the unit normal vector in C.

The kinematic equations, the static ones and the constitutive relations

(Section 1.2.) should be satisfied for every T > 0 together with

(4) initial conditions

(1.5a) S
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1.2. Constitutive relations for the elastic-plastic

material with hardening

The proper formulation of elastic-plastic constitutive laws at finite

strains is of great importance in engineering problems for large-scale



computation. One of the methods, of which this is adopted, is based on the
multiplicative decomposition as the basic kinematic assumption (LEE [28:1969],
LUBARDA and LEE [34:1981], SIMO [31:1988]). In practice it is assumed

(1.6) F = F°FP

to be satisfied in any neighbourhood of a body. From the definition FP
designates the plastic part of the deformation process and the elastic one F°
is obtained by unloading all infinitesimal neighbourhoods of the body, In
general, F° and FP are incompatible point functions. !

Starting from (1.6) the following Lagrangian strain measures can be

defined

E=- (FgF - G)

N =

(1.7)
EP = % [(F)T6F - g1,

where G, g and O are the metric tensors of the undeformed, deformed and
intermediate configurations. As a consequence of the definitions (1.7) the
elastic part of the total strain tensor E° admits the following definition,

i.e.,

(1.8) E° = E - EP.

The definitions (1.7) and (1.8) are suitable for general classes of
deformation processes. In spite of it, the statement (1.8) is of no practical
value for the present shakedown analysis because of the coupling between E, F°
and E°. In this instance, we need a representation of E° in a form appropriate
for a shakedown analysis. Here we will follow CASEY [18:1985] who considered
simplified expressions valid for restricted —classes of geometrical
non-linearities.

In our exposition we restrict ourselves to quasi-statical deformation
process. At present, attention is focused on the pure mechanical theory of
elastic-plastic materials. From the requirements of objectivity of the
intermediate configuration and of the spatial covariance (cf. GREEN and NAGHDI
[27:1965], SIMO and ORTIZ [23:1985], SIMO [31:1988]) it follows that the free
energy potential of the elastic-plastic body should have the form

(1.9) W = W(E,E’,Q),

where Q designates a set of internal plastic variables, that characterizes the
plastic response. The nature of these variables depends on the particular

plastic model under consideration.



Now we confine ourselves to the theory of the hyperelastic elastic
stress-strain relations and a postulated yield condition. Without 1loss of

generality we assume an uncoupled free energy in the form (cf. SIMO [31:1988])
(1.10)  W(E,E,Q) = W(E,EP) - @(Q).

Based on the hyperelastic response we get the following constitutive equation
for the second Plola-Kirchhoff stress tensor
8w (E, EP)

(1.11) S=p —,
°  BE

where W denotes the free energy potential of the elastic-plastic body and p°

is the initial mass density.
To describe the plastic part of the material law first we postulate the
form of a yield condition in the strain space (SIMO [31:1988])

(1.12)  f(E,E’,Q) = 0

In the stress space the above condition has the form (cf. also SHRIVASTAVA,
MROZ and DUBEY [21:1973])

W (E,E®, Q)

~ p _
(1.13)  f(E,E"Q) = flp =5

,E,Q) = 0.
In practice the last form of the yield condition (for instance, the

Huber-Mises yield condition) is reduced to

(1.14) f(S,k) =0,

in which k denotes a time-independent scalar. In the general case k can be
dependent on the temperature. It is assumed f to be a regular (continuously
differentiable) function of its variables.

The evolution of the internal plastic variable vector Q has the following
form (SIMO [31:1988])

(1.15) Q = yH(E,E°,Q).

Here, H € 72 is the generalized plastic hardening moduli, and é denotes the
plastic parameter given by (1.32).

The associative flow rule compatible with the kinematic decomposition
(1.6) along with appropriate loading/unloading criterion can be derived as
Kuhn-Tucker optimality conditions ensuing from the principle of maximum
plastic dissipation (SIMO [31:1988]). At the thermodynamic state characterized
by the variables {E,EP.Q} the plastic dissipation is defined as

10



o w  aw
(1.16)  D°(E,E°,Q;E%, Q) = - —E° - —.Q.
8E® aQ
Taking into account a free energy in the form (1.10) the principle of maximum
" dissipation can be formulated as follows:

there exists a closed convex set P = {E : f(E,EP,Q) s 0} such that
(1.17)  D°(E,EP,Q;EP,Q) = DP(E,EP, Q;EP, Q)

or, equivalently, using (1.10)

8W(E,EP) oW (E,E)
(1.18) -— P2 - . pP
8EP 8EP

for any E e P '
Now, maximum plastic dissipation implies that the actual strain tensor E

is the argument of the maximum principle:
| aW(E,EP)
(1.19) E = arg{ min [- ———EP|}.
~ 8EP
EeP
As a result we obtain the following flow rule:

, _ Of (E,EP,Q)
(1.20) MEP = = o — |
3E

¥=0, f(EEPQ) =0 (loading),

(1.21)
yf(E,EP,Q) = 0 (unloading),
where
8% (E, EP) .
(1.22) M=p ——, MeT.
°  BEGEP

The relation (1.20) defines the normality rule of the elasto-plasticity at
finite strains in the strain space. However, the statical shakedown theory
requires the normality rule in the stress space formulation. Let us now define
it. To do this, let us first rewrite the equation (1.20) in the form

(1.23) EE=AM"N, a=zo0,

where N designates a tensor proportional to the normal to the loading surface.

11



Then, using (1.10), (1.13) and the chain rule, we have (LUBLINER [41:1984])

8W(E, EP)
af [po——BT—IE=E’ EI Q]
N=oa =
a'f: |E—E
(1.24)
_ ,8f(S,E,Q)
= e N7 |5=p BH(EE)
P, 3E
for some a = 0, where
8%W(E,EP) \
(1.25) N=p —m8—, Ne T,
°  BEBE

and the strain tensor E is defined by the loading function

aW(E, EP)
f[po—’ EvQ] =0

in the stress space.
Introducing (1.24)2 to (1.23) we get the following form of the normality

rule in the stress space:

-1N'af(S.E,Q)

p
(1.26) E" =AM 35 ,

Az 0.

The above normality rule reduces to the classical one

=p _ , 9f(S,E,Q)

(1.27) E" =2 —3s
. - 4
which is well known in the classical plasticity theory, if M 'n= 1 e 75

Likewise, this result is obtained also if the free energy potential W in

(1.10) is assumed to have the form
(1.28) W(E,EP) = W (E - E),

as in GREEN and NAGHDI’s theory [27:1965]. In this case, as well as within the
framework of infinitesimal theory, the maximum dissipation energy implies the

following inequality

(1.29) (s - $)-EP = 0,

where

12



., oW _(E-E")
S= —mm 8 .
8EP E=E
The deficiencies of (1.28) are discussed, among others, by SIMO [31:1988].
In turn, (1.29) and (1.27) lead to the following inequality (LUBLINER

[41:1984])

_9f(S,E, Q)
—as

(1.30) (s - ) =0

with f(S,E,Q) = 0. In other words, df/8S is the strain state associated with
the stress state S and S is an arbitrary stress state such that f(S,E,Q) = 0.
We now turn to define the plastic parameter & in (1.15). It is determined

from the consistency condition

d % P -
(1.31) T f(E,E,Q) =0

which is required for plastic loading to be % > 0. In order to define % first,
we differentiate with respect to time the constitutive equation (1.11) and use
the flow rule (1.20), next, obtained result we substitute to (1.31). In effect
we get the following expression for the plastic parameter (SIMO [31:1988])

of |

—E

8E

(1.32) ¥ = — ~ -
of _ of af
_.|M e - _.H
8E® 8E 89

On the basis of the above results the rate form of the stress-strain relation

for elastic-plastic materials we can write as (SIMO [31:1988])

af af
2 — & —
. %W 8E 8E )
(1.33) S=|p — - — - — ‘E,
° 8EGE af af af
—_— MY - _H

3EP 3E 48Q

or in the compact form
(1.34) § = L-E,

where

13



of of

2 —® —
a°w 8E &E
(1.35) L=1|p - — = =
° BEGE of _ of af
—_ M e— - —.H
8E® 3E 8Q

The above form of the constitutive equation includes a wide class of material
models with time-independent properties, namely, general anisotropic
elastic~plastic materials, materials with a general shape of the plasticity
surface, general work-hardening and work-softening materials, etc. (HILL
[13:1959], HILL and RICE [19:1973]).

1.3. Residual stress distribution in the body B
Our kinematical idea is focused on a specific conception of an evolution
of the body B (Fig.1) (WEICHERT [8:1988], GROSS-WEEGE [12:1989]). Observe that

such conception of the evolution of the body B enables to define a residual

stress distribution in the body B as required by the shakedown theorem.

14
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Let VB denotes r-dimensional space of load paths Bs which defines the
range of possible variations of the loads acting upon the structure. The
loading, generally in the classical approach, are defined in such a way that
every load type is a constant loading system multiplied by an appropriate load

factor, for example

t#(x,r)

B_(1)t**(x),
(1.37) XeV, T € [rl,tzl,

b#(x,t)

Bs(t)bs#(x).

In our case we assume that at a fixed time =~ the body B has already
undergone deformations with finite displacements with respect to the initial
configuration 'C at time T = O so that B is at time t° in the reference
configuration Rc in quasi static and stable equilibrium with the external

R _ #RrR ,#R

agencies a (b"",t"), consisting of the prescribed loads and surface

displacements. For times 7 > ¥ the body is submitted to additional variable
loads a” = (b"",t*) such that

(1.38)  a(X,T) = a"(X) + a"(X, 1),

and B occupies the actual configuration *C. Since *C should also be an

equilibrium configuration the following equations hold:

Fl=G + K,

(1.39) F

]
(]

+ H,

F=FF =G+H inV,
where displacement gradients

H = Vy,

(1.40) H® = w,

are defined on the initial configuration Ic and the reference configuration
RC, respectively. The tensors G and GY in (1.39) are the metric tensors (Fig.
2) in the initial configuration !c and the reference configuration RC,
respectively. It is useful, in the context of R3, to think of G, GR, é, and g

16



(for tensors &, g, see below) by making no notational distinction between
them. In practice, it makes the identification G = G»R =& = g. For conceptual
clarity it convenient here to maintain the notational distinction between
these metric tensors.

The geometrical boundary conditions are:

(1.41) u=u +u onS.

For the Green strain tensors we have:

(1.42) E=E'+E inV,
where

E = % (F'gF - G),

*

E =2 (£ = FOEF,
(1.43)

E = % LFYTGRFR - 6],

E = L 1) TeF - GRl.

2

Here, and further on, E' = xR*(Er) denotes the pull back operation of the
strain measure E' through the motion xR (cf. MARSDEN and HUGHES [32:1983], and
g is the metric tensor in an actual configuration ‘c.

The equilibrium conditions in the configuration tC, therefore, have a

form:

Div(FS) = -b™ - p™  in v,

(1.44)
#r #r

FSn = t + t on St,

where F is given by (1.39)3 and the second Piola-Kirchhoff stress tensor S is
calculated from (1.34) (for the part of the stress in RC see (1.46)) for the
strain tensor (1.42).

Let us go to another group of relations important in the shakedown
analysis. Especially important for our purposes is the connectlion between the
stress state in the reference configuration RC and the actual stress state §
(and a stress distribution S postulated by the shakedown theorem as well). The
stress state S is any time-independent stress distribution with the property
that superposition of S with any possible elastic stress distribution in a

structure is everywhere less than the fully plastic stress. First, let us

17



define equilibrium conditions in Re.

Having defined the strain tensor ER (1.43]3 we can define the stress
tensor S*. To this end, let us consider the constituive equation (1.34). Since
the strain tensor E" is time-independent, the relation (1.34) reduces to

(1.45) S = L-E.

REMARK 1.1. Notice that the equation (1.45), for simplicity, is identified

with the form AS = L-AE, where A(:) denotes the tensor increment.

Substituting E in (1.45) by E" from (1.43) we find

(1.46)  s° = L-EN
By assumption, the body B in the reference configuration ¢ is in equilibrium
under loads aR. Hence, the equilibrium conditions in RC take the form
Div(F’s®) = -b™  in v,
(1.47)
#R

Fisth = t on S,.

We proceed now to define the time-dependent residual stress distribution
in the body B in the reference configuration RC. To do this we impose some
constraints on the deformation process xr in the following way.

First, let us restrict ourselves to a class of deformations P(H,H"), where
P is a permutation of {0(e),0(e?)}
and Hr, respectively. Here, the displacement gradient H is defined by (1.40)3

, and O(:) denotes order of magnitude of i

and the displacement gradient H'is equal (cf. Fig.1)

(1.48) H= VR1°1.

Next, we will consider loading histories characterized by the motion of a
fictitious comparison body B°, having at " the same field quantities as B but
reacting in contrast to B purely elastically to the additiénal external loads
ar, superimposed on aR for T > TR. Moreover, it is assumed that the state of
deformation and the state of stress in B are subjected to variations in time
(Fig. 1).

Then, in accordance with Fig.1, we have
(1.49) F° = FF,

where

18



(1.50) F=¢6"+#

is, by assumption, the time-dependent purely elastic deformation gradient, and
its displacement gradient (1.48) is defined on the reference configuration RC;
in turn, the § is also the time-dependent deformation gradient defined as
follows.

Let

(1.51) uw=u -4 inV,

be the displacement field such that

(1.52) u=0 ons§S.

u

At a level of accuracy of the assumed class of deformations P(H,H"), it
follows from (1.49) that '

~

(1.53) F=G +H
where
(1.54) H=H -8

denotes the desired displacement gradient.

In a standard way, using (1.54), we get the strain tensor

~ * A ~
(1.55) E =" (E) = (F)TEFY,
where
(1.56) E = % (H + BT + HH).

Proceeding analogically as in (1.76), for the assumed class of deformations,

the strain tensor (1.55) can be split into

(1.57) E =E° + E° + 0(e¥9)

where E° and E° can be expressed by one of the formulae (1.77), (1.79) or
(1.80).

To obtain the time-dependent stress tensor § we start from the
constitutive relation in the rate form (1.34). Hence, taking the derivative of

E with respect to time, we have

(1.58) S = L-E.

19



After integrating (1.58) with respect to time, we get

- A T 2
(1.59)  S(t) - S(=™) =I S(t)dt
TR
under condition

(1.60) S(t%) =s® inv,

where S® is given by (1.46).

We see therefore that the stress tensor é represents the time-dependent
residual second Piola-Kirchhoff stress distribution in the structure reffred
to the reference configuration Rc. 1t is noteworthy that the stress state S is
calculated from kinematical requirements, oposite to that used in literature.

Since the time-dependent residual stress field § superimposed on the
stress field S* must be an equilibrium configuration the following equations

are satisfied:

DivIFFR(S® + §)] = -b™®  in vV,

(1.61)
FFR(S® + S)n = ™ on S,

According to (1.53), the equations (1.61) are equivalent (1.47) and

Div(T) =0 in V,
(1.62)

A

Tn=0 on St’

where
(1.63) T = HF'S® + FF'S

is the time-dependent residual first Piola-Kirchhoff stress distribution in
the body B.

1.4, Stress distribution for purely elastic body B°

In this section all quantities describing a purely elastic behaviour of
the body are indicated additionally by mark "o".

For a given structure and a given domain of loads the necessary condition
for shakedown is the existence of a steady residual stress field (called the

shakedown stress field) such that

20



(1.64) f[§(x,r) + S(X),E(X,T) + E(x),Q(x,r)] <0

for all loads defined by the domain and all points of the body volume. Here $
denotes any elastic stress destribution which is obtainable under the given
loading conditions.

Inequality (1.64) is sufficient for ideal case. However, for a real
structure, some plastic flow may occur locally of a section without the entire
section becoming plastic. Hence, in practice, the condition (1.64) is
equivalent to (cf. KONIG [1:1987])

(1.65) max  max f[u[§(X) + S(X)],B(X) + ﬁ(x),otx)] = 0,

XeVv BseVb

where i > 1 denotes a safety factor.

Let us now turn to our task. Based on the multiplicative decomposition of
a deformation gradient (1.6), we will define the elastic part of the strain
tensor E for xR and xr, respectively.

From (1.7]2 and (1.8), in relation to (1.43)3 and (1.43)2, respectively,
follow (Fig.2) that

E¥ = 2 [E™)'GF™ - cl,
(1.66) .

EC = £ - E® = 2 [PV - R

*

Erp - XR (Erp) = (FR)TErpFR’
(1.67)

E® =F - EP = % (FR)T[(Fr)TgFr _ (Frp)TngPp]FR’
where
(1.68) EP = % [(FP)T6"FP - GF.

In the above 6" and 6" denote the metric tensors in the interhediate
configurations R& and r& for deformations xR and xr, respectively. The
intermediate configuration is defined as the collection of all unloaded local
neighbourhoods. This situation is graphically shown in Fig. 2. In general, the
local unloading process is an abstract idea, since it does not take place in

reality.

21



Fig.2.
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For our immediate purposes we need a definition of the elastic part of
strain tensor, say E°, not of the difference E - E°. To utilize formulae
(1.66) further, let us introduce simplifications to it. Here, we will go more
deeply into the differenfial—geometric structure of these definitions. We
shall now sketch how ideas demanded might be defined.

To this end we introduce a measure € of smallness defined by

(1.69) € = max {supﬂHeg, supﬂﬂ?ﬂ}.

iC ic

where, f.e. "-l1 = v tr(-)z.

Let H be any tensor-valued function of (HS,HP) defined in a neighbourhood
of (0,0). If H satisfies the condition

(1.70) Ini < ke as £ — 0,
where K is a nonnegative real constant and n is positive number, then we write
(1.71)  H = 0(e").

In the light of (1.69) and (1.71) let us assume each of He, H® to have
order of magnitude O(e) or 0(81/2). The magnitude o(e!’?)
moderate deformations with respect to & (CASEY [18:1985]).

To simplify the relations (1.66) we will use the following identities:

corresponds to

- 1 2 - - 2

.72 E= g+ 3 [@f g, -, - @3],
where

1 T

(H)s =3 (H+H),

(1.73)

=1 - uN.
and

(1.74) H=H +H + 1"
which follows from (1.6), (1.39)3 and the definitions

H® = F° - 6,
(1.75)
H =F -G

In order to express E® and E in (1.78) explicitly, it 1is possible,
following CASEY [18:1985], to distinguish three physically possible cases of
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such decomposition. In particularly, the following types of deformations are

of special interest:
(i) small plastic deformations, moderate elastic deformations:

Then, from (1.74) follows:

e
H )g

o(e'?), (H“e)A = 0(e'?),

(1.76)

(H“")s o(e), (HRP)A=0(€).

Moreover, with the aid of (1.76), we deduced from (1.72) that

Re _ e 1 e,2 e ey _ e ey _
£ = @)+ 3 [a™Z a0, - @), e,
(1.77) - (H‘“)i],

ET = (HF)_ + 0(e™®).
Under these assumptions (1.66) reduces to

R

(1.78) ER = E*®

+ E + 0(e¥?).

Expressions complementary to (1.77) may now be readily deduced by the same
type of arguments. As a result, one can obtain for:
(ii) small elastic deformations, moderate plastic deformations:

E° = ), + 0(e7?),

(1.79)
Rp _ p 1 P2 p Rp, _ p Py
£ = ™)+ L [(n“ 2+ @) @), - @) @)

- Py2].
s )A].
(iii) small strains, moderate rotations:

e e 1 e, 2 372
B [HR)S-E(HR)A+O(9 ),

|1}

(1.80)
EP

™), - % H®)? + 0(e¥?) ,

where (H)s and (HJA are defined by (1.73).
To obtain the stress tensor of the elastic process we can use the equation

(1.34) which reduces, when E and S are time-independent, to the form (cf.

Remark 1.1)
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(1.81) S =D-E,
where

2
(1.82) D= aW_

LE=E® = P, FEGE

is the time independent and positive definite tensor of the elastic

coefficients with the symmetries

3_-1_'4 1;2 3;4 1;3 2_}4
(1.83) D=0D =D =D

Substituting E by E® from (1.78) in (1.81) we obtain the stress tensor
Re

(1.84) S =D-E

The same analysls is also true for the strain tensor E. Here, however, we
can utilize the introduced assumption, namely, that the body B° deformes as a
perfectly elastic body B. From this, using the definition (1.48), follows

(1.85) B =3 = EHTER,

where

(1.86) E

% i+ & + 8.

The motion iR in the pull back operation (1.85) denotes the completely elastic
motion of the body B under the given loads a". According to (1.74), for the
assumed class of deformations, the deformation gradient fn can easily be

defined. With these tools, in the spirit of (1.59), we conclude

T -
(1.87)  &(1) - §(=") = I &(t)at.
R
T
The natural condition under which the stress distribution § can be calculated

is the following

(1.88) $(z) =8 inv,

where §* is given by (1.84).
To summ up, the elastic stress distribution can be computed by any

standard elastic technique for any combination of allowable loads.

1.5. Definition of shakedown
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We assume the program of loading and the basic configuration of the body

(structure) to be settled.

DEFINITION 1.2. It is said that the structure will shake down over any
programme of loading if the total plastic energy dissipated WP is bounded

during the deformation process, i.e.,

00
(1.89) WP = I I S-EPdtaV < o,
Wo

where S € ?2 denotes the second Piola-Kirchhoff stress appearing in the

elastic-plastic structure and EP is the plastic part of strain tensor.
Shakedown of a structure represents a safe occurrence. This implies that,

after some time, plastic strains cease to develop further and response to

subsequent loading cycles is purely elastic.

2. Shakedown theorem for non-linear cases

The aim of the present section is to construct the non-linear shakedown
theorem being sufficiently simple so as to be incorporated into effective
methods of the shakedown structural analysis.

In order to define the problem, it will be assumed that the points or
regions of applications of all loads are known and that loads may vary
completely arbitrarily between prescribed limits. The problem is to determine
the safety factor for which shakedown will occur. Since the loading is not
specified, we cannot attack this problem directly. Instead, we must make use
of the shakedown theorem. In essence, in the 1light of definition 1.2, a
structure is safe if only a limited amount of plastic work can be done on the
structure by any allowable application of the loads.

Keeping the notations of Section 1, the problem can be formulated as
follows:

Let an elastic-plastic body B be in the reference configuration RC at the
time T = T equilibrium with time- independent external loads a". Will the
body B shake down under the action of additional variable loads a'?

Under assumptions explained in Section 1 the following theorem can be

formulated.

SHAKEDOWN THEOREM 2.1. If there exists a time-independent state of residual

stresses S, such that the following relations hold:
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(1) Div(Fs®) = -b¥  in v,

FsPh = t¥  on S,»

FR

G +va®  inV, (2.1)

R #R
u =u on Su,

d Ry _ 8 Ry _ q.
57 (8) =3 (W) =0

(11) T = #F°S® + FF'S,
Div(T) = 0 in V,

Tn=0 on S,
t

H=vu 1nv, (2.2)
u=20 on S,
u
E=g (P + 8 + AMF in v,
8 =y _ 8 =y _ A
—6_1: (S) = -a; (U) = 0,
(111) f[§R +8(1) + S, B + B(n) + E,q] <0 (2.3)

for all T > T" in V, then the body B will shake down under given programme of

loading.

The follbwing points about the shakedown theorem may be noted:

1. The postulated shakedown stress field S need not be the same as the actual
residual stress field S - S* (here S means an actual elastic-plastic stress
tensor, and S* is a stress tensor for perfectly elastic body) which would
actually exist in the structure after it had shaken down.

2. The presence of some initial self-equilbrated stresses has no influence on
the shakedown.

3. The order in which loads are applied (during each xR and ¥ deformation
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process separately) has no effect on whether a structure can shake down.
4. The elastic stress fields may include changes of stress induced by

varlations of temperature.

Proof: Let § and E be the actual residual stress and residual strain in
the structure at any instant. Next, a shakedown stress distribution § is
defined as a residual stress state which satisfies (2.2) and (2.3) for all §
and § which are obtainable under the given loading (formulae (1.84) and
(1.87)).

We proof the shakedown theorem considering the quadratic form T defined by

(2.4) T(t) = % I {m"[§]-§ + (?FR)TFF“-SR}dv,
\"

where
S=s-8§
(2.5) F=G+H-H
fi=va, H=vau
R R

We shall show that I(:) is constant when there is no plastic flow and

decreases when plastic flow occurs.

REMARK 2.2. The restriction (25) used in GROSS-WEGGE’s paper [12:1989] is

superfluous. It suffices to notice that

(2.6) J'{D“’[§]-§ + (FF“)TFFR-s“}dv = IT-FdV
Vv Vv

where

(2.7)

T = FFA(s® + §).

As is well known, the right hand side of (2.6) represents the strain energy of

the present stress and the displacement fields.

By the definition (2.2)8 S does not change with time, hence the derivative
of T is
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2.8y a0 _ I pls - §1-9.(S)av + [ FFs®- L ()FRav.
dt v dt v dt

Substituting the time-derivative of the equation (1.57) into equation
(2.8) we obtain

.99 . _[ s - §)-9(E - EP)av + [ FFS®- L ()FRav.
dt v dt v dt

Using (1.63) and (2.2)1 the equation (2.9) can be further transformed to

d
dt

dl _ [ (s - §y.9 (gP r - 7.9 (g
(2.100 = Jv(s §)-S_(EP)av +IV(T T) dr(n)r“dv.

Using the Gauss’ theorem the second term on the right hand side of the

equation (2.10) can be written as follows:

= =y d S R., _ - =y d (SApRio
I (T - - v = J' (T - Dn-$(uFas
\'4 St
(2.11)

- _[ [Div(T) - Div(i‘)]-g—(ﬁ)r“dv.
v T

In view of equations (1.62), (2.2)2 R and (1.52) it follows that the right

hand side of (2.11) is equal to zero. Therefore, equation (2.10) reduces to

dil _ _ - _a “(i_ P
(2.12)  § = J’V(s 5)-S_(EP)av.

Inequality (2.3) assures that
2.13) & +8§+5=5"

being a "safe" state of stress fulfills the inequality (1.13). Inserting
equations (2.13) into (2.12) we get

dm _ _ _ 8y.d 2p
(2.10) = IV(S $°) - (EP)av,

where S denotes the true state of total stresses and d/dt(ﬁp) is the true
state of residual plastic strain rates. In view of inequality (1.30) dll/dt is
always non-positive and moreover, dll/dt is equal to zero for d/dr(ﬁp) = 0.
Thus dIll/dt < 0 as long as d/dt(ﬁp) = 0.

Since T is non-negative one can conclude that
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mo) = m(x) fort >0
and

gg —>» 0, TM(r) — const for T — o.
It means that the residual stresses will no longer change with time, and the
body will experience only elastic deformations as the loads are varied.

To prove the boundedness of the total energy dissipated we use the
condition (2.12). Let p > 1 be the safety factor of the structure against
failure due to non-shakedown. Then the stress state u(gR + 8§ + 8) is inside

the elastic domain, i.e.,

(2.15) i + §+8),8" + B + E,q =0,
or with the help of equation (2.13)

(2.16)  f(us®,B® + £ + E,Q) = 0.

From the convexity of the yield surface and the validity of the normality rule

follows

d

“p
dt(E ) 2 0.

(2.17) (S - us®).

Transformation of equation (2.17) and integration over V gives

- 1) ~
d p _ oS .d p
(2.18) S a;(E ) = ;:I (s S7) a;(E ).

After integrating (2.18), first over the body volume, next with respect to

time, we obtain

(2.19) I I S-a;(Ep)dVdr = — T(0),
o'V p-1

where we have used (2.12). In the presence of the definition (2.4), the above
inequality implies the boundedness of the total energy dissipated. o

3. Comparison with Gross-Weege’s paper

Our task is the following:
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(1) Define a residual stress distribution on the equilibrium configuration
C.
(2) Formulate a shakedown theorem for the elastic-plastic body with respect

R

to the configuration Re.
Assumptions restricted to that used in [12]:
(1) The body is in an equlibrium under both loads a" and a" + a".
(ii) It is assumed that a deformation process xR is a moderate and a

deformation process xr is an infinitesimal one.

Before coming to technical details, it is worth recalling that the
existing shakedown theories deal with a very simplified material model and its
practical applicability is still unsatisfactory. The boundedness of the total
energy dissipated, as required the shakedown definition, without specifying
any definite bound for this energy is a considerable simplification. In spit
of this all new viewpoint on the shakedown analysis are desirable. Now, let us
turn to our task.

The assumption (i) implies that the equations (13) and (14) in [12] are

exact. In the present work them correspond.equations (1.39) + (1.44).

REMARK 3.1. The relations (15)1 in [12] does not result from kinematics of
the problem. One should distinguish between a time-independent stress state sk

and a time dependent stress state S'.

REMARK 3.2. All relations given by (16), (17) and (18) in [12] are

superfluous.

If we wish to construct a residual stress distribution § in the class of
deformation (ii) it is suffices to assume (19)1. Analogical relations (1.51)
have been used to obtain, first, the residual strain tensor (1.56), next, the
residual stress distribution (1.59).

The assumed relation (19)1 enables to define remaining equations exactly

in the sense of (ii).

The definition (20)2 should result from (19)1 (cf. (1.55)). In turn, the
defintion (21)3 should come from the equilibrium conditions, as explained in
(1.61) + (1.63). The relations (1.55) and (1.63) oposite to (29)2 and (21)2
are exact in the assumed class of deformations. Observe that such relations do

not require any simplification.
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REMARK 3.3. The equations (22)2 do not result from kinematics of the

problem.

REMARK 3.4. The tensor S® in the conditon (24) is qual to &®. Moreover, the
condition (25) is superfluous (cf. Remark 2.2).

" Consistently with what we have said so far, the shakedown theorem reduces
to the theorem 2.1. One can easily conclude that if
s > o0
and
R
F > G

then the shakedown theorem 2.1 is exactly the original Melan’'s theorem.

REMARK 3.5. In the equation (34) S" should be substituted by §%. By

assumption s® can be on the yield surface.

4. The generalized standard material model

The present section is devoted to the study of the shakedown problems for
the generalized standard material. The used concept of internal parameters in
the framework of the generalized standard material model assumes at each
instant of the deformation process the actual state of hardening in an
elastic-plastic material to be locally described by a finite number of
process-dependent internal parametres. A practical form of this description
was introduced by HALPHEN and NGUYEN [33:1975] and in the sequel developed and
applied by several authors (e.g. MANDEL [20 :1976], RAFALSKI [29:1977],
WEICHERT [11:1988], WEICHERT and GROSS-WEEGE [10:1988]). In this approach,
generalized elastic and plastic strains, e® and ep. respectively, and

generalized stresses s are introduced, defined by the sets

e = [E,E]t
(4.1) e’ = [E° €°], e’ = [EP, €],
s = [S,c].

The quantities ee, e’ and ¢ are the r-dimensional vectors of internal

("hidden") elastic and plastic parameters and "back-stresses", respectively.

The dimension r depends upon the particular choice of hardening model.
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Note that in the context of shakedown theory, kinematical hardening has
first been discussed by MELAN [35:1938]. He used Prager’s hardening rule and
gave a criterion for shakedown under the assumption of unlimited hardening.
This concept has been used by PONTER [39:1975], GOKHELD and CHERNIAVSKI
[40:1980]. The wused assumption of wunlimited hardening implies that
time-independent residual stress fields have not to fulfill any requirement of
static admissibility. From physical point of view, it seems to be more
realistic to consider an upper limit for hardening, as otherwise certain
loading cases would lead to an unbounded loading capacity and only failure due
to alternating plasticity can be detected (KONIG [1:1987]). This problem can
be tackled by checking for limited ductility and imposing limitations on
relevant parameters of plastic deformation (KONIG and SIEMASZKO [43:1988]).
Such approach requires the computation of strains, say, by a step-by-step
method. It 1is possible to use the method which includes the 1limitation of
hardening by imposing limits on the internal parameters ¢. Practically it can
be interpreted as simple two-surface model for plastic behaviour (MROZ
[36:1967), KRIEG [37:1975], where the limitation of internal parameters ¢ is
equivalent to the assumption of a fixed loading surface (MROZ [36:1967], KRIEG
[37:1975], WEICHERT and GROSS-WEEGE [10:1988]) and the calculation of strains

can be avoided.

4.1, Plastic part of the material law

The yileld condition given by (1.13) can be reduced to that in the
(6+r)-dimensional space of generalized stresses s with the property, that all
admissible states of observable stresses S and internal parameters o are such
that

(4.2) F(s,e) s 0.

Then, Jjust like for ideal plastic behaviour, F is time-independent. The motion
of the yield surface in the space of observable stresses S is represented by a
change of values of the internal parameters ¢. It was proved by HALPHEN and
NGUYEN [33:1975] that the properties of convexity and validity of normality
rule are preserved in the space of generalized strains and stresses. Then, the

normality rule can be given in the form (cf. (1.30))
(4.3) (s - s)-e® 20,

where s characterizes arbitrary admissible fields fulfilling inequality (4.2).
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For 1instance, in the
hardening rule (PRAGER
parametres € is linked

(4.4) e = -EP
a i)

case of kinematical hardening following Prager’s
[34:1959]) the evolution of the internal plastic
to the plastic strain rates EP by

for a = % (i+j) if 1 = j, and a = i+j+1 if 1 # j, i, =1,2,3.

The evolution if internal elastic parameters € is in general given by

(4.5) e = —ép, a
a a

=1,2,...,r

so that for initially virgin material we have

(4.6) e = -¢f a=
a a

for all times (WEICHERT

1,2,...,r,

[38:1987]1, RAFALSKI [29:1977]).

4.2. The shakedown theorem

Using the material
2.1. given in Section
material. From now on

satisfied. We also use

description given in Section 1 the shakedown theorem
2 can be reformulated for the generalized standard
we assume all conditions given in Section 1 to be

a fact that the internal parameteres to describe the

state of hardening in the material vanish for the purely elastic reference

problem.
Let the generalized
by

eR - [ER,ER],

(4.7)  e® = (R, R,

R

s [SR,UB].

strains and stresses in the configuration Ic are given

R R R
eP= [EP,EP],

Analogously, in the configuration RC, the generalized residual stresses are

equal to
e = IE,el,
(4.8)  e° = [E%e°],
s = [S,0]
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We also assume that the solution of a reference problem is given, i.e. the
solution of the purely elastic problem under originally given loads. All
quantities refering to this reference problem will be indicated by upper index

lloll .

SHAKEDOWN THEOREM 4.1. If there exists a time-independent state of

generalized residual stresses s = [§,;], such that the following relations
hold:
(1) Div (F°s®) = -b™ in v,
Fisfn = -t™  on S, ]
FP=G+v inV, (4.9)
o = u#R on S,
u
8 R a R, _
6_1: (S ) 'a—_r (u ) = 0,

(11) T = AF°S® + FF's,

Div (T) = 0 in Vv,

H=9%u inV, (4.10)

E=g @+ & + ADF  1nv,
0 (ay -9 =y _ A
7 8) == @ =0
(111) FIs" + 8(z) + 5,87 + & + &) < 0 (4.11)

for all T > T" in V, then the body B will shake down under given programme of
loading.
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Pr oo f: The proof is exactly the same as in the preceding theorem. The

quadratic form M in this case is defined by

n(t) = % I {@'1[§]-§ + (fFB)TfFR-sR}dV =
v
(4.12) = % J {ID" [S1-S + (?FR)TF'F“-SR}dv +
v
+ % I {z" [o] -0 + (Er“)Ti?'F“-c“}dv,
v
where
5=(,6) =5 -85,
§==5 -5,

(4.13) c=c -0,

g
n
Q
+
m
1
=

v u.
R

- -3
(1]
=-1]
]

Y u,
R

It is assumed in (4.12) that the generalized elastic strains e are related

to s by
(4.14) s = G-e,

where

(4.15) G = (D,2).

Here D is the tensor of elastic moduli and the tensor Z represents a tensor of

T

internal elastic moduli with the symmetries Z = Z . For ideal plastic material

Z is equal to zero.

Next, proceeding as in the theorem 2.1. we obtain
g—g = I (s - §)-§—T(E")dv + I (T - "I")'g—_;(H]FRdV +
v \'

(4.16)

+ [ -3+ [ @ -o)lmray,
dt ° o’ dT
\"2 \"
where
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(4.17) Eosé -0 =FF

In relation to the Gauss’ theorem equation (4.16) reduces to

dn
dt

s - mrvar - [ o 3).9 2Py =
jv(s §)-$-(E")av J‘vw 5)-$-(Prav

(4.18)

- [ (s - 57.9_(oP
Iv(s s) d,':(e Jdv.

Inequality (4.11) assures that

(4.19) f+8+8= s®,

being a "safe" state of stress fulfills the inequality (4.2). Hence, using
(4.19) we get

(4.20) % = - I (s - ss)-g—_r(;p)dv,
v

where s denotes the true state of total stresses and d/dt(e®) is the true
state of residual plastic strain rates. In view of inequality (4.3) dil/dr is
always non-positive and moreover, dll/dt is equal to zero for dsdt(e?) = 0.
Since NI is non-negative one can conclude that
mo) zm0(t) forT>0

and

dn

w 0, M(t) — const for T — o.

Now, we prove the boundedness of the total energy dissipated. Let p > 1 be
the safety factor of the structure against failure due to non-shakedown. Then
the condition (4.2) holds

(4.21) Flp® + 8 + 5),e" + @ + e] = F(us®, 8" + e + e) = 0.

for the stress state u(%R + 8 + 8). From the convexity of the yield surface

and the validity of the normality rule follows
(4.22) (s - psP)ed () = 0
. iz .

Transformation of equation (4.22) and integration over V gives
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~ [ ~
_d P _ s.d p
(4.23) s a?(e ) =— (s -58) E?(E ).
u-1
After integrating (4.23), first over the body volume, next with respect to
time, we finally get

T d .~ M
(4.24) I I s-S-()avar = — M),
o'V u-1

and this proves our theorem. o

Conclusions

Collecting our results we can formulate conditions under which they agreed
with the conditions given by Gross-Weege (cf. GROSS-WEEGE [12:1989]). If the
additional following assumptions hold:

(i) it is restricted to linear relations between variables;

(ii) it is restricted to elastic-perfectly plastic material;
(iii) all metric tensors in the specified configurations are identified, i.e.
G=G=8=g=6=6"=6"=8-=1;

(iv) it is assumed the deformation process x" to be an infinitesimal one,

then considerations presented agree with the Gross-Weege’s ones.

Moreover, the following special cases can be cited:

1) The shakedown theorem 2.1. reduces to the Gross-Weege’s shakedown theorem
(GROSS-WEEGE [{12:1989]) if the above assumptions hold;

2) If (1) holds and moreover we additionally neglect all mixed terms, i.e.
between quantities describing state RC and those ones describing the residual
or the shakedown state, respectively, we get the extension of Melan’s theorem
(WEICHERT [8:19861);

3) If in addition to the simiplifications in (2) we put St = 0, F* = G, we
get the original geometrically linear Melan’s theorem.

4) If (2) holds and it is used the concept of "generalized standard
material" (RAFALSKI [29:1977]), we obtain the extended shakedown theorem
(WEICHERT [30:1987, 11:1988]);

5) Under condition S* = 0, it 1is possible to use F' to consider the
influence of initial deformations or imperfections on the shakedown of the

structure.
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