RUHR-UNIVERSITAT BOCHUM

Khanh Chau Le, Helmut Stumpf
Dieter Weichert

Variational principles of
fracture mechanics

Heft Nr. 64

Mitteilungen

aus dem
Institut fur Mechanik



RUHR-UNIVERSITAT BOCHUM

INSTITUT FUR MECHANIK

K. CH. Le, H. StumPF AND D. WEICHERT

VARIATIONAL PRINCIPLES OF

FRACTURE MECHANICS

MITTEILUNGEN AUS DEM INSTITUT FUR MECHANIK NR. 64

JUNI 1889



Herausgeber:

Institut fir Mechanik der Ruhr-Universitit Bochum

® 1989 Prof. Dr.-Ing. H. Stumpf, Dr. Khanh Chau Le, Dr.-Ing. D. Weichert
Lehrstuhl fiir Allgemeine Mechanik der Ruhr-Universitit Bochum

Alle Rechte vorbehalten. Auch die fotomechanische Vervielfdltigung des Werkes
(Fotokopie, Mikrokopie) oder von Teilen daraus bedarf der vorherigen

Zustimmung des Autors.



VARIATIONAL PRINCIPLES OF FRACTURE MECHANICS
Summary

This report presents the principle of total energy for statics of a
geometrically nonlinear elastic body whose initial configuration contains a
gap. From this principle statical equations and boundary conditions for the
body with the gap are derived by calculating the variation of the energy
functional on a set of admissible configurations which is not a linear space.
The equilibrium condition at a gap tip is associated with the well-known
J-integrals. The method of generalization of this variational principle to
quasistatics of a geometrically nonlinear elastic-plastic body with a crack is
developed by introducing the concept of internal degrees of freedom. As a
result the condition of gap fixation or crack - propagation for an
elastic-plastic body is obtained. By including the reaction of inertia the
principle of total energy is transformed to the variational inequality of
evolution expressing the principle of virtual work. However,'it is shown by
analysis of the equation of energy balance that in the inequality of evolution
the flux of kinetic energy entering into the crack tip must be taken into
account.By combining the consequences of the inequality of evolution and the
equation of energy balance a closed system of dynamical equations, boundary
conditions and additional conditions on the unknown contact crack surfaces and
crack tip for both kinds of elastic and elastic-plastic bodies is obtained.
The variants of the geometrically linear theory of fracture mechanics are
considered. Finally, to illustrate the theory, the solutioqs of two statical

problems are presented.
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1. Introduction.

Let us consider a deformable body whose initial configuration contains a
gap. By a gap we mean a two-dimensional surface of material discontinuity
which is obtained as a result of a structural defect or a deformation history.
Let this body be- deformed by external forces and tractions. Under which
condition of loadings will the gapped body be in the state of equilibrium, and
when does the gap become the crack propagating throughout the body? The aim of
fracture mechanics is to construct a system of basic equations governing such
a response of a gapped body to applied external forces and tractions.

In the present report we shall follow this aim starting from the principle
of total energy. For statics of a geometrically nonlinear elastic body this
principle states: an equilibrium criterion for a geometrically nonlinear
elastic body with a gap is that the variation of its total energy at the
actual configuration is non-negative for an arbitrary family of admissible
comparison configurations . The peculiarity of this ;ariational principle is
that it allows for comparison configurations to have surfaces of discontinuity
containing the initial gap but differing from it.

If the body does not contain a gap, then the above stated variational
principle 1is reduced to the classical principle of stationary energy
(Kirchhoff, Gibbs [1,2]; see also the recent papers in [3-5]). Gibbs also
presented interesting applications of the energy principle to other theories,
such as the theory of heterogeneous media, the theory of capillarity, and the
theory of phase transition. The first step of generalization of the principle
of stationary energy to fracture mechanics was made in the pioneer works of
Griffith [6-7] . For determining a critical size of an equilibrium gap (in a
case of plane deformation) Griffith differentiated the total body energy
expressed in terms of the gap size and equated it to zero. This fundamental

idea has then been developed into the theory of brittle fracture by various



authors (Irwin, Orowan, Cherepanov, Rice,and others [8-16]). The fact that all
basic equations for an elastic body with a gap, including the equilibrium
condition at the gap tip, can be dequced from the principle of total energy as
a variational inequality was established in [17-19]. This variational
inequality is non-classical in the sense that the set of admissible
configurations, containing functions with one-side restrictions and different
regions of definition, is not a linear space. It is possible, nevertheless, to
introduce the concept of continuity and differentiability of the energy
functional on this set of admissible configurations and to calculate its
variation. Due to the singularity of the déformation gradients stipulating
also the singularity of the stress field at the gap tip [20-23], a non-zero
vector of flux of energy entering into the gap tip during the deformation
process is formed. This flux of energy can be calculated by J-integrals, the
origin of which can be found in Eshelby’s work [24]. With the help of the
J-integrals Cherepanov and Rice have derived different variants of the
equilibrium condition at the gap tip [10,11]. The gap tip condition, obtained
from the variational principle of total energy, in the case of geometrically
linear theory coincides with that of Cherepanov [17-18] and has the following
physical sense: in the equilibrium configuration the module of the flux of
energy entering into the gap tip should be less than, or equal to, the double
surface energy density.

For a real material a plastic deformation occurs when the stress attains
some surface in a stress space. Consequently, the stress singularity near the
gap tip described by the elasticity theory is never realized, and for
obtaining the more adequate local distribution of stress and deformation
gradients a model of an elastic-plastic body has to be involved. By an
elastic-plastic body we mean a body whose mechanical state includes an
additional measure of plastic deformation, refered to as internal degrees of

freedom [3,25-27] These internal degrees of freedom should satisfy the yield



condition and the nonholonomical generalized associate law [27-32]. For the
external degrees of freedom - the actual configuration of the body- the
following variational principle 1is valid: the variation of the energy
functional of a geometrically nonlinear elastic-plastic body taken at the
actual configuration relative to arbitrary family of admissible comparison
configurations vanishes for every time. The quasistatical equations derived
from this principle, the yield condition, and the associate law compose the
closed system of equations for determining all the unknown functions of the
theory. It is shown that the variational equation will be transformed to the
equation of energy balance if an arbitrary family of admissible configurations
is replaced by the real motion of the body. Generalizing this variational
principle to quasistatics éf an elasﬁic—plastic body with a crack in a manner
analogical to that which was used before in the elasticity theory, we obtain
the mathematical formulation of the boundary-value crack problem. The
condition at the crack tip is associated again with the J-integrals, but now
the contour of integration should lie in the plastic zone. Because of the
yield condition there is a redistribution of the stress gradients near the
crack tip [33-37]. Therefore, the J-integrals depend upon characteristics of
this redistribution. For an elastic-perfectly-plastic body with a crack the
J-integrals, generally speaking, are not defined [38]. However, if we consider
this body as a 1limit case of an elastic-plastic body with hardening
coefficient tending toward zero, the limit values of the J-integrals can be
well-defined. The condition ;t the crack tip associated with these integrals
is distinguished from the well-known K1c’ J , 8 and other criteria (see
[39-431). '

If the statical or quasistatical crack problem has no stable solutions the
crack will quickly propagate throughout the body and the account of dynamical
factors is then necessary. This account is non-trivial and can be made within

the framework of a variational inequality of evolution (Lion, Stampachia,



Duvaut [44-46]). It will be shown that in the variational inequality of
fracture dynamics one must include both the usual d’Alembert’s force of
inertia, and the flux of kinetic energy entering into a crack tip [17;19L
This fact follows from analysis of the equation of energy balance. Combining
consequences of the inequality of evolution and the equation of energy
balance, one obtains the closed system of dynamical equations, boundary
conditions and additional conditions on the unknown contact surfaces and crack
tip for both kinds of elastic and elastic-plastic bodies. The dynamical
condition at a crack tip, associated with I-integrals [17-19], determines the
location as well as the direction of propagation of the crack.

We shall also consider the simple variants of the geometrically linear
theory of fracture and their variational formulation. Particular attention is
focused on the fact that here the crack problem as a whole remains nonlinear.
This fact plays a very important role in the application of the method of
homogenization [47-48].

To 1illustrate the constructed theory we consider two examples: a) a
statical problem of a neo-Hookean incompressible infinite slab containing a
gap under a simple shear at infinity [49], and b) a statical plane problem of
a geometrically linear elastic slab containing an angled gap under a tensile
stress at infinity . In both problems the calculation of J-integrals is
available and the equilibrium condition at a gap tip is written in an explicit

form. -
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2. Statics of a geometrically nonlinear elastic body with a gap.

Let an initial configuration of a geometrically nonlinear elastic body
contain a gap which is modeled‘by a smooth surface Q with a smooth boundary
8Q. This configuration, occupying the region VQ=V\(QU89) of Euclidean
three-dimensional space with the exterior boundary 48V and the interior
boundary QU38Q, is chosen to be a reference configuration. The Cartesian
co-ordinates of a typical point of the initial configuration is denoted by Xa,
a=1,2,3. In a deformed configuration this material point has new co-ordinates

X, given by

X, = xi(Xl,Xz,X3) , i=1,2,3, X, € v (2.1)

The co-ordinates X, Tun over the region v of the deformed configuration. If
the deformed body is in an equilibrium state, then the functions xl(Xa)
perform a one-to-one continuously-differentiable transformation of VQ into v,

satisfying the condition

0 < det|:—2| <o , VXeVg (2.2)
At points Xae QUAR the functions X, need not be defined. The limit values
(the traces) of x1 on two sides of Q are denoted by x: and x: . They describe
two surfaces of the gap in the deformed configuration (Fig.1). 'It is obvious
that x: and x; may differ from each other. In other words the functions xi(xa)
may have the jump on Q. Therefore we shall sometimes call the surface Q a
singular surface of the configuration xl(Xa). We shall suppose, furthermore,
that the deformation gradients axl/éJXa may have a singularity at points of a9Q
in the sense that axi/ax:m when Xa=>6$2. This kind of singularity is due to
purely geometrical factor; and may occur in bodies with different physical
behaviour.
According to the variational principle of total energy stated in the

Introduction, the mathematical formulation of a statical problem for a body

with a gap requires three definitions: a) a set of admissible comparison



configurations, b) a total energy functional on this set, and ¢) a variation
of this functional. These definitions will be given in the following
paragraph.

The set & of admissible configurations, compared with an equilibrium
configuration, consists of all one-to-one continuous piecewise differentiable
transformations yl(Xa) of regions V2=V\(ZU62) into open regions of the
Euclidean space, where £ is an arbitrary two-dimensional surface containing Q.
The continuity and smoothness of £ are assumed, except at points of 8Q, where
the surface £ may, generally speaking, have a non-smooth continuation of Q
(Fig.2). This assumption is adopted here in order to compare the energy among
configurations with singular surfaces continuing Q along all non-tangential
directions. It is also assumed that the deformation gradieﬁts ayi/axa may have
singularities at points of 8Z. The admissible configurations yi(Xa) should
also satisfy the kinematical condition yi(Xa)=ri(Xa) on that part an of the
exterior bdﬁndary, where kinematical boundary conditions are prescribed.

By generalizing Griffith’s idea [6-7], we postulate the following
expression for the total energy functional of a homogenééus elastic body with
a gap on arbitrary configuration yi(Xa) with a surface of discontinuity

gly, (X )] = J Pof(y, ,+0) dX + I 2y dA + J pBly,) dX - I Tyds  (2.3)
v s v oV,

P> P
In the formula (2.3) Py denotes the mass density of the material in its
initial state, f(yi’a,z‘)) and y are the free energy per unit mass and the
surface energy per unit area respectively, and Q(yi) is the botential of the
mass force. The tensor yha= ay'l/axa corresponds to the deformation gradients,
while ¢ is the given temperature. The temperature remains constant, therefore,
it is not necessary to list it among the variables of the function f.On the
remaining part 6V'T=6V\6Vx of the exterior boundary 8V the "dead" traction T1

is prescribed . Throughout the text the Latin indices run from 1 to 3 , the

comma is used to denote partial differentiation with respect to Xa and the



repeated suffix is used to denote summation.

For the definition of variation let us consider a one-parameter family of
admissible configuration y1=yi(Xa,e) continuously depending on € 'with surfaces
of discontinuity of (a generalized curve in the set € of admissible -
configurations). We shall suppose that

Qe 2 Qe 2 Q for €’>e>0, Qea Q when €=0

A (Xa.O) = xl(Xa), yi(Xa,e)= ri(Xa) for Xae avx

Then the variation of the functional (2.3) can be defined as follows

d

58 = dele=0

€[yi(Xa,e)] (2.4)

According to the principle of total energy, the variation &8& should be
non-negative for all families of admissible configurations if the actual

configuration xi(Xa) is in a state of equilibrium [17-19]
8&€=0, V¥ yi(Xa,e)e € - (2.5)

It should be noted that the variational problem (é.S)-is nﬁn-classicai in the
sense that the set € of admissible configurations is not a linear space. In
fact, due to the impenetrability condition (2.2) and the different regions of
definition, one can not add two admissible configurations to obtain a new one.

In order to derive consequences from (2.5) one must calculate 86 according
to the definition (2.4). The difficulty of this calculation is associated with
the changable regions Vge and surfaces Qe of integration. To fix these regions
and surfaces we shall introduce a family of one-to-one continuous piecewise

differentiable autotransformations of V into itself according to a rule

Y =Y (X ,e) so that here
a a a

Y (X,e) =X when £=0 or X e 8V
a a a a

As a kind of "change of variables", Ya(xa,e) will conveniently be called a



parametrization of medium. By using this parametrization, one can calculate

the variation of free energy

dy aY
E) I P fly, JdX =& f pof[ ayl]det|—aT°'dX =
VQe VQ & e
ay
=I [poaf + pf 8 det| ax:| ] dX =
Va

6y1
=J' [Tla 3 [W] + pf (ava)’a] dx
v a
Q

Here and henceforth the symbol & under the integral sign is used to denote
partial differentiation with respect to £ for fixed Xa and €=0. For example

_ 8
aYa - %l xa=const, 8=0Ya (xa’ 2

The first stress tensor of Piola-Kirchhoff is given by the formula

_ of

1a - Po TBx -
i,a

It is easy to show, that

6y1 :
o [ aY ] = 6yi,a T X (ayb],a

6y1 = %lxa=const,e=oy1 (Ya(xa’e)’E)
Therefore
5 I o f dX =I (T 8y, . +m, oY ) X (2.6)
Vne VQ

where the tensor

uab = _lexi,a + pof aab

is the tensor of Eshelby [24], which closely resembles the tensor of chemical
potential in the theory of phase transition [53-54], and aab is the Kronecker
symbol. Since the functions xi(X;)'and other quantiﬁies may have the jump on Q
and singularity at points of 8, in order to transform the integral (2.6) we

shall do the following operation. We will replace the region of integration VQ



by region Vh with the interior boundary Qh , located a small distance h from
8Q (Fig.3). Taking the integral (2.6) over the region Vh by part and then
letting h approach zero, we obtain

8 J pof dX = I ( —Tia’aayi N

Vge VQ

Y ) dX +
b a

+ + - - + -
'+ J [ ( -Tiaayl * Tlaayi ) Na + ( -pab * uab ) Nb SYa ] dX
Q

- J J Y ds + J T Ny dA (2.7)
a a ia a i
aQ av
T
Here dS is the element of length, the indexes +,- indicate the limit values of
quantities on two sides of Q and Na is the outward unit normal vector on the

surfaces (on Q it is in the direction +). Finally, Ja is the vector of the

energy flux entering into the tip of the gap to be calculated by

J = lim I gk dS = lim I (-T x «k +p fk ) dS (2.8)
a ab b ib i,a b 0o a
IT|=0 T [T|=0 r

where the closed contour T', settling on the transversal to Q plane surface,
surrounds the point Xae 8Q and shrinks to it when the contour length |I'| tends
toward zero, and where K is the outward unit normal vector on TI. The
integrals (2.8) resemble the J-integrals in the geometrically linear fracture
mechanics [10,11,24]. Note fhat when deriving (2.8) the following asymptotic

formula is assumed to be valid

lim I T,k dS=0 (2.9)
ITIs0 1 2 °.

The property (2.9) means that the generalized force constricting the gap tip
vahishes. It takes place if the singularity degree of the stress éield Tia is
less than r'1 where r is the radius from I' to the point Xae aqQ.

To calculate the second term of the energy functional (2.3), we will
suppose at first that Qe is smooth. Using a curvilinear, two-dimensional

coordinate system "a (a=1,2) on the surface Q, we write
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P J 29y dA = & I 25 V A a2y = I 27 & A d%y (2.10)
of Q Q

Where

_ £ e _
Ae = detIAaBI , AaB Ya,aYa,B

It is easy to show, that

sVa_ =V A%y sy (2.11)

a, a)B

Here the Greek indices run from 1 to 2, A=det|A _|, A =X X corresponds

o a,a a,f
a3

oB

to the metric tensor of the initial surface 2, and A is transverse tensor

relative to AaB' The comma preceeding the Greek index denotes the covariant
derivative on the surface Q. Using (2.11) and taking the integral (2.10) by
part we obtain the formula for the variation of surface energy
dA = - I 4HN 5Y dA + J 2y v &Y dS  (2.12)
a a a a
Q a0

s 24 aa= I 2y A%Bx sy
a,a a,fB
£ Q

Q

where Na is the unit normal vector on Q, H=l‘ AaBX is the average

2 Y
curvature of Q , apd va is the surface vector, normal with respect to the
boundary 8Q. One can show that (2.12) remains valid in the case of non-smooth
continuation from Q to Qa. However, now va is no longer the tangential vector
on Q and should be interpreted as the unit normal vector on 38Q denoting the
transversal direction of continuation from Q to ° (Fig.4). The variation of
potential of mass force and traction can be calculated in analogical manner

o [pgax= fop oy ox, gy yax- foqetewar an

V.e V' Q

Q Q (2.13)

s I Ty, dA = I T 3y, dA
av, av_

where F1=-a¢/axi is the mass force. Combining the formulae (2.7), (2.12), (2.13)

one obtains the final expression of the variation of total energy [17-19]

3& = ,[ [ (T ,a PF IO, * oy ot poplx!,a)aya] dX +
\'/

Q

+ _t + - - _r - _ - +_ -
I { ( T!aayi + Tlaayi)Na * [( ”éb+ “éb)Nb 47HNa p0(° ® )Na]SY; }dA *
Q
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+ I ( 2yv - J)8Y dS + J (T N - T )oy dA (2.14)
a a a ia a i i

aQ av

T
We shall now analyze the variational inequality (2.5) taking into account
the formula (2.14). It is obvious that 6yi and SYa can be arbitrary in the
region VQ as well as 6yi on avT. Therefore, by choosing the different signs of
8yi and SYa in a neighbourhood of an arbitrary point of VQ and 6VT, from (2.5)

and (2.14) it follows

= =p, go— | 2.15
ia,a+ poF1 o, Tla P, ax1 - in VQ ( )
Mot polei’a =0, p, = -'1‘“:’xi’a * P, S, (2.16)
X=T (X ) on 8V . T N =T on 8V (2.17)

i i a x ia a i T

Note, however, that the equations (2.16) become identities by virtue of the
statical equations (2.15). The cause of that is the invariance of the energy
functional relative to the choice of parametrization Ya[Xa,e) inside the
region Vg.

With the precision of the free energy density f(xha) the equations (2.15)
result in three statical equations concerning three unknown functions xl(Xa).

Usually f depends upon xia via the Green’s strain tensor eab

= =1 -
f= f(eab) » fap T2 (xi,axi,b aab)
In this case for T‘a we have
T =0 X o = i
ia ab" i,b ab _ Po aeab

‘The tensor T is called the second Piola=Kirchhof stress tensor.

To derive the rest of the relations, let us find the restrictions which
must be satisfied by 6yi and aYa on Q and Q. The variation 6yi can obviously
have arbitrary values on Q if the banks of the gap are not in contact with
each other in the deformed configuration. If this is not the case we will
denote sub-areas of Q whose points after deformation will be in contact with

each other by Q* and @
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+ - + ~ _
xl('na) = xi(fpa) » M€ Q , @€ Q , a=1,2
For those points one can show that
* - 8y = 2.18
[Syi(na) <Sy1(em)]ni z0 ( )

where n is the common unit normal vector on _the deformed contact surfaces '
in the direction + (Fig.5). The formula (2.18) can be interpreted as the
condition of impenetrability of the gap banks for every admissible
configuration. Simultaneously, SyTxi,a can have arbitrary value; -on Q;, where
X = 8xl/ana . On éupposing of20 we have the following restrictions for aYa

i,

3Y N =0 on
a a

8Yv 20, 8Ym =0, 8Y T - arbitrary on 8Q (2.19)
a a a a a a

where T, is the tangential vector on 8Q and where the vectors TV T, form
the orthonormal base at the point Xae aQ.
Taking into account all above restrictions, one can easily show that

(2.5), (2.14) and (2.15)-(2.19) lead to

T'N =0 on O\Q" (2.20)
ia a
+ - C
TlaNa/A/a l"a =T N /A/a |9a = -pn_, p20 on Q (2.21)
-u' N = 2.2
( B, * uab) Nbxa,a 0 on Q (2.22)
J 1 =v3JJ =2y, J=J T =0 on aQ (2.23)
4 aa 3 a a
where )
A= detletB-I , AaB = xa’axa’ﬁ
a=det|aa8| , a.‘x8=xa’°‘xa,‘3

The tensors A 8 and a B correspond to the metrics of the initial and deformed

surfaces of the gap respectively. If we use the Cauchy’s stress tensor tU

instead of Tu and the relation [52-53]
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t nva =T NV A
i) ia a
the condition (2.21) takes the simple form

+

, +
n
1y 3

= -p’nl , pP 20 onw

;Jnj
It is easy to see that the condition (2.22) becomes an identity by virtue of
other conditions. In fact, using the definition of H and the conditions
(2.20), (2.21) we have

* =-T"'x NX +pfNX =-T°N
0 a a,o

N X X =0
ab b a, ib"i,a b a,a ib b i,

u

The cause of the last identity is again the invariance of the energy
functional relative to the choice of parametrization Ya[Xa,e), which
transforms the surface Q into itself. We shall prove that the condition J3=0
is also the consequence of the other conditions of (2.15)-(2.23). Let us
consider the equilibrium configuration as a comparison configuration relative.
to itself. Then &86=0 by definition of the variation. We then construct a
family of parametrizations Ya(Xa,e) transforming V apd Q into themselves. From
the formulae (2.14)-(2.23), which hold for the equilibrium configuration, one
has
56 = - I J,8Y T dS =0
aQ -

Therefore, due to the arbitrariness of aYara on‘aQ, this relations leads to
Jaao.

Thus, the relations (2.15), (2.17), (2.20), (2.21), (2.23) compose the
system of statical equations and boundary conditions which should be satisfied
by any equilibrium configuration. It is of interest to note that the condition
(2.23) is separated from the rest of the relations. Therefore, in practice one
can first solve the system (2.15), (2.17), (2.20), (2.21) to find the deformed
configuration xl(X;) and the stress field Tia. Then, by using (2.9), we
calculate the J-integrals and verify the inequality (2.23). It can be easily

shown that the system (2.15), (2.17), (2.20), (2.21) follows from the
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variational inequality

3 =z 0 (2.24)

which holds for arbitrary family of admissible configurations with the fixed -
surface of discontinuity Q. To prove this we need only the choice Ya(Xa,s)EXa
and the formula (2.14) with 6YaEO in V., , on Q and on 8Q. From the inequality

(2.24) one can directly go to discretization for the numerical approach of

concrete problems [54].
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3. Quasistatics of a geometrically nonlinear elastic-plastic body with a crack

As it was noted in the Introduction, the stress singularity described by
the elasticity theory cannot be realized in the neighbourhood of the gap tip
because of the yield condition. Therefore, for a more adequate description of
the material behaviour in this zone one should use the model of an elastic-
plastic body. Our aim is to generalize the variational principle of total
energy to quasistatics of an elastic-plastic body with a singular surface
propagating throughout the body. Such a propagating surface of material
discontinuity will be called a crack.

Let us first study the mathematical model of a geometrically nonlinear
elastic-plastic body without crack and the variational formulation of the
quasistatical boundary value problem in the plasticity theory [26-27]. Let the
}nitial configuration of the body occupying the regioﬁ V of the Euclidean
three-dimensional space be chosen for a referen&e configuration. We denote the
Cartesian c¢o-ordinates of a typical point of this. configuration by Xa,
a=1,2,3. At a time 7, this material point_has the Cartesian co-ordinates X,

given by

X, = xitxi.xa,xs,r) R Xae \' (3.1)

The co-ordinates X, run over the region vt.of the deformed configurations. At
an arbitrary instant of time the functions xi(Xa,T) perform a one-to-one
continuously- differentiable transformation of V into Ve which is called a
deformation. A one-parameter family of deformation xi(Xa,t) perform a motion
of the body. We shall suppose that the kind of motion to be considered in ‘this
chapter is quasistatical in the sense that the velocity and acceleration of
particles of the body are negligibly small compared with other quantities., The
general éase of dynamics will be consider in the next chapter. Such a

quasistatical motion of an elastic-plastic body is charaterized along with the
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functions xl(Xa,r) by an additional measure of plastic strain £§b(Xa,t) and
hardening parameters xA(Xa.t), A=1,...,N (see [25-27]). Note immediately that
the plastic strain tensor 855 does not in general satisfy the equation of
compatibility. The functions e:b(xa,r) and xA(Xa,t) are referred to as
internal degrees of freedom [3]. With the introduced internal degrees of
freedom the free energy per unit mass of an elastic-plastic body is given by

the formula

= _P .
f = f(eab eab,xA,ﬁ) (3.2)

-1 -
€ab ~ 2 (xi,axi,b aab)

Here eab is the symmetric Green’s strain tensor, X, correspond to the
hardening parameters, while 9 denotes the fixed temperature. The temperature
is assumed to remain constant, therefore, it is not necessary to list it among
the variables of the fﬁnction f. The model of an elastic-plastic body will be
established £y constructing the closed system of equations concerning
xl(Xa,t), e:b(Xa,t), and xA(X ,T). For this purpose let us introduce the

following notations

P _ P
e (e, ,-%,)
_ of __ of :
8 ( PO? ’ pov ) (3.3)
ab A

All of these objects have 6+N components, among which the first six are of a
symmetric tensor, while the rest are of a generalized vector. The generalized

x . The motive of these

tensor s depends upon the variables €. e? A

ab’
notations will become clear in the next paragraph.
We will now postulate the yield condition and the generalized associated

law [27-32] for the internal degrees of freedom e’
F(s) s 0 (3.4)

8-8):e=0, va8, B =o0 (3.5)
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Here ¥ is the convex function depending on 6+N variables of the generalized
tensor s , F:R°*Ms R (see Fig.6), § is the following generalized tensor
Q=(éab,QA). The two dots in the right-hand expression of the inequality (3.5)
are used to denote the inner product of two generalized tensors

A LLP (A af °p
(5 -8):e = @ poaeab) €ab

A af .
+ (ﬁA + Pogiz—) xA
The quantities é:b and iA correspond to the plastic strain rate and the rate
of hardening parameters

P 98 P s =9
€ab - 3T eab(xa't) » Xy T 3T xA(Xa'T)

It should be noted that all the restrictions (3.4), (3.5) are referred to as
the category of non-holonomical constraints [3]. Therefore, the plasticity
theory has evident irreversibility.

For the determination of xl(Xa,t), let us consider at an arbitrary fixed
time t the set Gt of a}l admissible configurations yi(Xa,t) of the body

satisfying the kinematical condition
yi(Xa,t) = ri(XaJ , Xae 6Vx c av

On this set of admissible configurations we define the energy functional of

the elastic-plastic body by the expression

= -oP - .6
8[y!(Xa)] I pof(eab eah,xA)dX + J poO(xl) dX J T ,x dA (3.6)
v v av

T
. _ _ 1 _
In the energy functional (3.6) aV-aV’TUBVx v S T 3 (yi’ayi’b aab) denotes

the Green’s strain tensor, e:b(xa,t) and 1k(xa,t) should be considered as the
fixed functions. The other symbols, such as Py ¢(yi). T1 have the same sense

as before (cf. the functional (2.3)). In comparison with the elasticity theory

p

there are two modifications: a) the internal degrees of freedom €.,

and xA are
contained in the free energy density as the given function, b) there is an
implicit time dependence of the energy functional. For simplicity, we shall

suppose that the potential of mass force Q(yl). the position radius-vector
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rl(Xa) and the "dead" traction Ti(Xa) do not depend explicitly on time.
The variation of the energy functional at the actual configuration
xl(Xa,t) with respect to an arbitrary family of admissible configurations

yl(Xa,t,e)e ﬁt will be defined as follows

_d
axg - E|8=0

€[yi(Xa,t.e)] (3.7)
Here , as before, a one-parameter family of admissible configurations
yl(Xa,t,e)e Gt is supposed to be continuously differentiable, satisfying at

the same time the condition
yl(Xa,t,O) = xl(Xa,t)

The index x in axe indicates that only the external degrees of freedom in the
energy functional are subject to variation. In contrast, the internal degrees
of freedom should be considered as the fixed functions.

Now we will postulate the fo}lowing variational principle: at the actual
configuration of an elastic—plastié body the variation of the energy
functional ‘vanishes for arbitrary family of admissible comparison

configurations at arbitrary time t
6x€ =0 , Vv yi(Xa,t,e)e ﬁt : (3.8)

It is easy to show that (3.8) is equivalent to

36 = -j (T, , * p,F,) oy, d&X +J (T, N_ - T) 8y dA =0 (3.9)
\'"A avT
where
__of _ _ 8%
ta- Poge %1 0 F1 T T (3.10)
ab
8y = 9—] y (X,t,e)
1 de Xa,t=const,8=0 i a”

By choosing arbitrary values of Sy1 in V and on aVT , from the variational
equation (3.9) one derives the quasistatical system of equations and boundary

conditions
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+pF =0 in V (3.11)
ia,a 0 i

X = ri(Xa) ondgv , T N=T on av_
With the precision of the free energy f(eab-e:b,xA) and the yield function
F(s), the relations (3.4), (3.5), (3.10), (3.11) become closed for the

determination of 9+N unknown functions xi(Xa,t), ezb(Xa,r), xA(Xa,T). In the

case of small elastic strain [27], the free energy density is approximated by

_1 _P _aP 1
pof -2 [ Cabcd(eab eab)(ecd ecd) * ZABxAxB ] (3.12)

We might also suppose that there is an interaction between the strain and the

hardening effect so that the following formula is valid

1 _P _.P _.P
Pof =3 [ Cabcd(sab eab)(ecd 8cd) * ZHabA(eab eab)xA * 2, 5%\ % ] (3.13)

With the acception of (3.12) we rewrite all the basic equations of the

plasticity theory in the form

= = 3.14
la,a+ pOFi o . Tia abxl,b ( )
€ = 1 x x =8 ) | (3.15)
ab 2 i,a i,b ab
= -eP = - 3.16
Tab Cabcd(ecd ecd) LN ZABxB< ( )
F(eo ,m) =0 (3.17)
ab A

A P A _ : A A A A
(vab-oab)eab * ("A "A)xn =0, Vv (0ab'nA)’ ?(0ab’nA) =0 (3.18)
= = 3.19
X, rl(Xa) on an , TlaNa Tl on 6VT ( )

The sense of the variational equation (3.8),(3.9) becomes clear if we

choose the real motion of the body for comparison configurations
yl(Xa,t,e) = xi(Xa,t) = xi(Xa,t+e)
In this case the variation 6yi in (3.9) will be replaced by i! , where

ax ax
i i

X = 0 = —
i de xa=const,8=0 de Ixa:--const,‘t':t
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Therefore, from (3.9) we obtain the equality
-1 Y - x = 3.20
J (T, *+ BF,) X, X +I (T, N_ = T) % dA =0 (3.20)
\' av
T
Using the Gauss-Ostrogradski’s theorem, we transform (3.20) to
I ¢ o E.p X - I pF,x, dX - I Tx dA= 0 (3.21)
v \'} avT

P

Substracting and adding o £
ab ab

and nAiA , we can rewrite (3.21) in the form

d

_ . _ . .p . _
a;lt=t J pof dX J pole1 dX I Tix1 dA + J (vabeab+nAxA) dX =0 (3.22)

\J V' av \'
T

The equality (3.22) is evidently the equation of energy balance for the whole

p

region of the body at the time t=t. The terms oabéab

+ nAiA correspond to the
non-negative dissipation of energy [27].

Consider now the elastic-plastic body whose initial configuration contains
a gap. This gap is supposed to settle on the smooth surface Qb with the
boundary 690. The initial configuration occupies the regioﬁ V6=V\(QOU890). The
co-ordinates of a typical point are denoted by Xa, XaeVo. At some time T, due -

to the slow propagation of the crack and the deformation, the co¥ordinates of

this particle point are given by
x =x(X,7t), XeV_=W(QU3) (3.23)
i i a a T T T

where Qr is the surface of material discontinuity at the time T, satisfying

the restriction

QT 2 Qt , T>t

The "material” configuration of the body oecupying the region Vt, will be
chosen for a reference configuration at the time T. Thus, the peculiarity of
the quasistatical crack problem is that even in a material description one has
a changable interior boundary, which is not specified a priori. Our aim is to
construct a closed system of basic equations concerning the law of motion

xi(Xa,t), the internal degrees of freedom e:b(xa,t), xA(Xa ,T) and also the
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unknown interior boundary QTUBQT.

For this purpose, we introduce a set Qt of all admissible configurations
yx(Xa,t), compared with the actual configuration xl(Xa,t) at some arbitrary
time t. Every admissible configuration should have a surface of discontinuity
Zt containing Qt. As before, the smoothness of Zt is assumed, except at points
of Qt, where Zt may have non-smooth continuation of Qt. The singularity of
the deformation gradients 6yi/8Xa at EJZ,c is accepted and the kinematical

condition
yi(Xa,t) = ri(Xa) , Xae avx c 8v
is supposed to be satisfied.
On the arbitrary admissible comparison configuration yi(Xa,t)EEt. the
total energy functional of an elastic-plastic cracked body can be defined as
follows

- _.P [ 1
€[yi(xa.t)1—f PoE (e, (v, ) eab,xA)dX*-I 29d+[ p 8y, )dX J TydA  (3.24)

Vz Zt Vz VT
t t

where

= - 1 -
Vzt_ V\(ztuazt) ’ eab(yi,a) -2 (yl,ayi,b aab)

The tensor e:bog,t) corresponds to the symmetric tensor of plastic strain,

P
ab

while xA(Xa,t) are the hardening parameters. The quantities &  and X, should
be considered as the given functions in the total energy functional. The other
symbols, such as po, £f, 7, &, Ti are explained above.

To define a variation of the functional (3.24), consider a fémily of
admissible comparison configurations yl(Xa,t,e)eﬁt , with surfaces of

discontinuity Qf . As before, this family should satisfy the following

conditions

ne'z Qe 2 Q , £'5e>0 ; Qe > Q when £20
t t t ‘ t t
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Y,(Xa»t’O)'= xi(Xa,t)

The variation of the total energy functional at the actual configuration with
respect to an arbitrary family of admissible comparison configurations will be

defined as follows

s6 =29

&= 33'::0 Q[yl(Xa,t,e)] (3.25)

Now we postulate the following inequalities which hold for the real

quasistatical motion of an elastic-plastic cracked body

F(s) =0 (3.26)
B-s):e=0, V8, FE) =0 (3.27)
6x€ =0 , V yi(Xa,t,e)e €t ,Vt (3.28)

where the symbols e®, s and 8 denote the generalized tensors defined by (3.3).
Futhermore, we shall demand the exact equality from (3.28) as an equation of
energy balance, if the real motion xi(Xa,t) = xi(Xa,t+e) is considered as the
family of admissible configurations in comparison with the actual
configuration xi(xa,t].

As in the second chapter, it is convenient to introduce a family of
parametrizations of medium Ya(Xa,t) for the calculation of 6x8, so that

Y ' Y
a & _ € € a €
Vt > Vt -V\(Qtuaﬂt) , Qt > Qt

Y (X,t,e) =X when =0 or X edV
a a a a

By these parametrizations, one can show that

= - - - P -
ng I [ (Tia,a+p0Fi )6yi+( “ab,b o.bcebc > a nAXA s a+p0Fixi,a)6Ya] dx +
\'

t
+ + - - +* - + -
+ I {( Tla6y1+Tia6yi)Na+ [(-"5b+“ab)Nb'47HNa'po(° -® )]ava} dA +
Q .

t
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+ I (2yv -1 )8Y dS + J (T N-T)dydA =0 (3.29)
a a a iaa i i
aQ av
t t
Here the symbol & under the integral sign denotes the derivative with respect

to £ when Xa,t are held constant

3

ay1 = % (Ya(Xa,t,e),t,e)

| Xa, t=const, €=Oyl

sy =2 Y (X, t,€)
a de Xa,t.=const,8=0 a a

The tensor Tai, Co and B, are given by the formulae

b A
T =0 X o = E__
ia ab“1,b ' - ab Po 3e
ab
= - 9 = -
T, =P 3%, v Hap T Tibxl,a * Pfd,

The flux of potential energy entering into the crack tip is calculated by the

J-integrals

J_ = lin J (T X, K, * pofK, )dS
IT |=20
t r
t
where the contour I‘t , settling on the transversal to 6!2t plane
surface, surrounds the point XaeaQt and shrinks to it wheh the contour length
IFtI tends towards zero, and where K is the outward unit normal vector on
Ft.The other symbols in (3.29) have the same meaning as before (cf. the
formulae (2.7)-(2.14)). It is easy to show that 6y1 and 6Ya should satisfy the

following constraints
+ - + -
3y, (n,) - 8y (6 )In =0 , 7eQ, ¢c€Q

Y N =0 onQ (3.31)
a a t

8Yv 20, 8Ymw =0, &Y T - arbitrary on 8Q
a a a a a a t

Here Q: and Q; denote sub-areas of Qt whose points at time t are in contact
+ - + — _ . .
with each other.xi(na) = xl(wa)  ME Q , PoE Q , a=1,2; n, is the unit

+*
normal vector on the common deformed contact surfaces w . The vectors ta, va,
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m_ compose the orthonormal base at the point Xae agt, where T, is the
tangential vector of BQU

The inequality (3.29) with the constraints (3.31) lead to

af
Tia,q+ pOFi =0, Tla %%, 7 ap ~ Po de_ in Vt
x=r(X)ondv , T N =T on 8V
i 1 a X ia a i T
T" N =0 on Q\@" (3.32)
ia a t t

+ - +
T N /A7a l"a =T, N /A2 |ea = -pn, , p=0 on Q
|J|=mszar, J.=J T =0 on 4Q

o a a 3 a a t

Now let the real motion of the cracked body xi(Xa,'t) = xi(Xa.t*'e), XaEVt
be taken for the family of admissible configurations. Accordingly, the family
of parametrizations Ya(Xa,t,e) will be replaced by the functions X;(Xa,tﬂ:)

mapping Qt into Qt+e and Vt into Vt+e and satisfying the condition
X-(X ,t+e) = X when £=0 or X edV
a a a a

With the changes

=9 ,
o, * dX =z Ixa=const,1.'=t xl(Xa(Xa,t),t)

5 =» X 8

a a - 5? Xa=const,T=

’

t:Xa(xa,'nr)

the inequality (3.29) should turn into the exact equality expressing the

equation of energy balance. With the account of (3.32) from (3.29) we obtain

+ + = - ) -

I (-Tlaatxt-& Taaatxa)NadA + I (Z'na—.la)xads =0 (3.33)
Q a0
t t

where Aa denotes the normal direction of crack propagation from Qt into Que'

The equation (3.33) leads to the following additional conditions

]
o

LY -
p>0 = [xl(wpm)—xl(em)]ni
on Q

v
o

) o -
P=0 » [x(n)x(6)In (3.34)
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IJaI <2y » X =0 (no propagation)
e on 89,

IJ |l =2y » XA =20, 2yx =1J

o a a a a

where the velocity of particles ii is given by

. 8
X = — x (X ,T
i ot ng:const,‘L':t. 1( a )

Note that the last condition of (3.34) defines the direction of crack
propagation by way of Ja. Thus, the crack will propagate along the direction
with the maximum module of the flux of energy which is equal to 27%.

The relations (3.26), (3.27), (3.32), (3.34) compose the closed system of
equations and boundary conditions, which must be used to find xi(Xa,r),
e:b(xa,r), xA(Xa,T) and the surface Qt . We can also consider the limit case
of an elastic-perfectly-plastic cracked body as a body with the hardening

coefficient 2AB tending toward zero. Naturally we expect the following limit

relations
?(oab,o) s0
@, -0c, )& s0, Vv ¢ .. ¥ .0 =0
ima+ pOFl =0, Tia = abxi,b ! ab = po giab in Vt
X = rl(Xa) on an . TiaNa = T1 on avr
T N =0 on Q\Q" (3.35)
ia a tt

+ - e
TlaNa/A/a |na = TiaNa/A/a |ea = -pn, , p=0 on Q

J1l=v3JJ =2y, J.=J T =0 on 8Q
2 a a 3 a a t

.. .-
p>0 = [xi(na)-xi(ea)]ni 0

+

on

v

: LS * -
p=0 = [xi(na)-xi(ea)]n1 0
lJaI <2y » X =0 (no propagation)
_° on BQt
|J ]l =2y = XA 20, 2yA =1J
o a a a a
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By Ja we mean the following limit J-integrals

J = lim lim (-T2 %% k. + p £2 Kk ) dS (3.36)
a 1b 1,a b 0 a

2 =20IT |=0

AB t Ft

where the index Z indicates the solution of the elastic-plastic crack problem
with the small hardening coefficients ZAB. Note that we cannot write the

following limit formula for J,

Ja = lim I (—T}bxh K * P, fK )ds
IFt|¢0 F

because of the fact, that the deformation gradients cannot be uniquely defined

in the limit problem (3.35).
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4. Dynamical theory of fracture.

Consider now the situation, when the equilibrium or quasistatical motion
of a cracked body is not possible, and the crack will quickly propagate
throughout the body until its separation into pieces. Obviously, the account
of dynamical factors is then necessary. It will be shown in this chapter that
this account can be made w}thinhthe framework of a variational inequality of
evolution [17,19,46-48]. We shall study first a motion of an elastic body with

a propagating crack. Such the motion is described by the following law
x =x X,T1), X e V_ = W(Q U8 ) (4.1)
1 1 a a T T T

where Q.r is the surface of discontinuity at the time t. At arbitrary time the
functions xi(xa,t) compose a one-to-one continﬁously d;fferentiable
transformation of VT into some open region, say Vo Note that the material
configuration VT , which is chosen to be a reference configuration at the time
T, depeﬁds upon the time. Therefore, even in the material description the
dynamical crack problem is the problem with the unknown interior boundary QT ,
which has to be found along with other quantities,.éuch as the stress, the
deformation gradients, etc. As before, we allow the jump of xi(Xa,r) on Qt and
the singularity of the deformation gradients axi/axa at points of BQT . We
allow also the singularity of the particle velocity ii at points of agt ,
where the dot over a function denotes its time derivative, when Xa are held
constant

X

_ 8
i 8t xa=constxi (xa’r)

We shall analyze now the equation of energy balance for an elastic body

with a crack, which obviously has the form
d (g+7)=0 (4.2)
dt

where
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€ = J pou(eab,s) dX + J 27dA + I poé(xi)dx - I TixidA (4.3)
\'/ Q A av
T T T T
1 .
=] = 4.4
g J 5 poxixidX (4.4)
\")
T

The functional & corresponds to the total potential energy of the body plus
the surface energy of the crack, while the functional ¥ describes the kinetic
energy of the body. Here u(eab.s) is the internal energy of the body per unit
mass, eab=1/2(xi'axi,b-aabl is the Green’'s strain tensor, s denotes the
entropy, which is supposed to be constant within the process of motion under
consideration. Because the entropy remains constant, it is not necessary to
list it among the variables of the function u. The other symbols, such as Py >
7, ¢(xi), T1 , ii are explained above. Because of the changable regions V_ and

surfaces Qr of integration, in order to calculate €& and 7 at the time 7=t it

is convenient to introduce a family of parametrization X;=X;(Xa,r) so that
X’ X’

v v, a 2* @
t T

X'(X ,7) =X when T=t or X eaV
a a a a

Note, that 'the functional & of (4.3) depends upon T in the same way as & of

(2.3) upon e£. Therefore, it is easy to see that

&= ,[ [-(Tia.a+p0Fi)6tx1+(-uab,6+pOF1x1,a)xa]dx *
\/

t
+ + - - + - LA
+ I [(-quatxi+Tiaatxi]Na+ (_“ab+“ab)NbXa]dA + (4.5)
a ;
t

+ I (2v -3 )X.dS + I (T N -T )8 x dA

Bﬂt BVT .
When writing (4.5) the property R;Na=o on Qt was taken into account. In the
equation (4.5) the stress tensor T1a and the Eshelby’s tensor M, are given by

T =0 x , = bu

o‘ —————
ta ab i,b ab po de
ab
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“ab = -Tibxi,a * pouaab
The flux of potential energy entering into the crack tip is calculated by the

contour integrals

J = lim (-T. x. k + puk )dS
a ib i,a b 0o a
T |=0
t Ft

where the contour Ft , settling on the transversal to ant plane surface,
surrounds the point Xaeaﬁt and shrinks to it when the contour length |Ft|
tends towards zero. The symbol Stxi denotes partial derivative of the
composite function with respect to T where X; are held constant

=8 ’
atx B 3_1.' IXa=const,‘t=t. Xi (xa(xa'r)’T)

It should be emphasized that atxi and the particle velocity *1 are

distinguished from each other. Let occupy ourself now with the calculation of

g
5 - [ X
dt T-t 2 0171
V
, 3
J 6 [ Py x X det|aX J;ch =
1 .« e \
= J [ poxlatxi *5 poxixlxa’a J dx (4.6)
It is easy to see that
atxi = xl * xl,axa ? atxi = x! * xi,a-xa (4.7)

where §i is the acceleration of particles. Substituting Stit from (4.7) into

(4.6) and using the Gauss-Ostrogradski’s theorem one obtains

g = J.p X (6 X =X X’) dX - I Q X’ ds (4.8)
i, a a a
Q-
t
where
oy 1
Q, = lim J - poxlxixadS (4.9)
IT, 1=0 +
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The vector Qa can be interpreted as the flux of kinetic energy entering into
the tip of the crack. If the velocity field has no singularity at points of
6Qt , then Qa vanishes. But in general case we shall suppose that Qa is
non-triQial.
Thus, from (4.5)-(4.9) one obtains the equation of energy balance for the
cracked body in the form
d

Tl &)= | [(poxi-Tia’a-poFi)atxi+(-ﬁa

v
t

- %? +
b,b+pOFixl,a pOXixi,a)Xa]dX
+ AR - - + - R
* ,[ [(-Tlaatxl+Tia6txi)Na+ (_p'ab+“ab]NbXa]dA *
Q
t
-1)X’ - = 4.10
+ f (29v -1 )X:dsS + I (T, N.-T )5 xdA =0 (4.10)
oQ av
t t
where the vector Ia denotes the total flux of energy entering into the crack

tip to be calculated by

) 1 - .
Ia = lim I [—Tibxi’anb + po(u+ 5 xixl)na]ds (4.11)
IFt|:0
t

Let us begin the consideration of the variational inequality of evolution
of fracture mechanicsa For this purpose, we shall introduce two sets. The"
first set is the set of admissible comparison configurations €t » Which
consists of all one-to-one continuously piecewise differentiable
transformations having singular surfaces Eta Qt and satisfying the kinematical

condition
yi(Xa,t) = rl(Xa) . xaeavx

The second set denoted by ?t is the set of all parametrizations Ya(Xa,t)

satisfying the following conditions
Y Y

a - a
V; = v:t-V\(ztuazt) N Qt 2 Zt

Y (X ,t) =X when X €8V
a a a a

On the set €t we define the energy functional as follows
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8ly, (X ,t)] = J' poule, (v, )) dX + I 29dA + J' p,B(y, JaX - J' Ty dA

Vz Zt VZ BVT
t t

~ 1 ' -
v, J) = 2 (yi,ayi,b 6ab)

Now we postulate the following variational principle: at the actual
configuration of the elastic cracked body the variational inequality of
evolution

X - - S 4.12
56 + Ipox‘(ayi x, 3Y,) dX J Q8Y_dS = 0 (4.12)
\') aQ
t t
holds at arbitrary time t for arbitrary variations of comparison
configurations 6y1 and parametrizations 6Ya. Moreover, this variational
principle demands the absolute equality from (4.12) as an energy balance

equation, if 6yi and SYa are replaced by 6txi and X;. The variation in the

inequality (4.12) should be defined as follows

56 = 4

= aE|€=o $[yi(xa,t,s)]

8
yi(Ya(Xa,t,e),t,e)

Fo) =
yi de xa, t=const., £=0

3Y = g— Y (X,t,e)
a de xa,t=const,€=0 a a

Here yi(Xa,t,e)e Et and Ya(Xa,t,e)e ?t are arbitrary generalized curves in the

corresponding sets ,satisfying the conditions

yl(Xa,t,O) = xi(Xa,t)

Y (X,t,0) =X
a a a

In the inequality (4.12) the second term correspond to the virtual work of the
usual d’'Alembert’s force of inertia. It should be noted that this term does
not depend upon the parametrizations Y;(Xa,t,e). In fact, from the definition
of variations we have

_9a
’aSYa = — | yl(Xa.t,e)

3 - X
yi de Xa,t=const,e=0

i

The last term of (4.12) is non-classical. The cause of its appearance can be
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explained by comparing (4.12) with (4.8), (4.10). However, the analysis of the
energy balance equation is only the heuristic argument for the acceptance of

the postulate (4.12).

Analogically with the variational calculation done before, from (4.12) we

have

I [(poxi-Tia,a-pOFl)ayi+(_uab,b+pOFixi,a_p0xlx!,a)syé]dx *

v
t
+ + - - + -
* J [(_Tiaay1+Tlaayi]Na+ (-“ab+uab)Nb6Ya]dA *
Q
t
+ I (2yv -1 )8Y dS + I (T N-T )dydA =0 (4.13)
a a a iaa i i
aQ av
t t

The inequality (4.13) with the kinematical constraints on 6yl and 6Ya (cf.

the formula (3.31)) leads to the relations

+pF =px , T =p

X inV
01 01

i,b t

fa,a
x=r(X)onav , T N=T on'aVT
T N=0 on Q\Q" (4.14)
ia a t t
T:aNa\/A/_a—In =T, NV aal = -pn,, p=0 on Q;
[+ 4

IIal = VIaIa s 2y , 13=Iara=0 on 8Q,

The last condition of (4.14) on ant has the following physical sense: the
module of the transversal total flux of energy entering into the crack tip
should be less than, or equal to, the doubled surface energy density.
Obviously, this condition is not enough for the definition of the direction of
crack propagation. To obtain more information we use the second part of the

formulated postulate. By replacing ay1 and 6Ya by atx1 and X; in (4.13) and

taking (4.14) into account, we reduce (4.13) to

+ + - - 7 =
J ( Tlaatx‘+ Tlaatxl)NadA + I (tha-la)XadS =0 (4.15)

Qt ant
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Here the vector Aa indicates the transversal direction of crack propagation,
and, correspondingly, Ahk; is the transversal velocity of the crack front.

Thus, the equality (4.15) leads to the following relationship

+
on §
t

p>0 = [*;(na)_*;(ea)]ni =0
) -
P=0 = I[x(n)-x(6)In =0 (4.16)

ITI | <2y » X =0 (no propagation)
o a :

. ' on 69t

[I ] =2y = XA 20, 2yA =1 .

24 a a a a

The last condition of (4.16) determines the direction of crack propagation
that coincides with the direction of the vector Ia. The crack will therefore
propggate along the direction with the maximum module of energy flux, which is
equal to the doubled surface energy density.

The relations (4.14),(4.16) together compose the closed boundary value
crack problems, which must be used to find the motion of the cracked body as
well as the contact surfaces and the crack front.

All of.this construction can easily be generaiized to fracture dynamics of
an elastic-plastic cracked body. Let the actual configuration of such the body

be described by

= = ' .17
X, xi(Xa,t) , Xae Vt V\(QtUBQt) (4 )

The goal is to find these functions and also the internal degrees of freedom
e:b(xa,t) and xA(Xa.t) corresponding to the symmetric plastic strain tensor
and the hardening parameters respectively. For this purpose we shall now
introduce the set of admissible comparison configurations 8; and
parametrizations ?t as it has been done before. On the set Et we define the
energy functional of an elastic-plastic body as follows

- P -
8[yl(Xa.t)]—I pou(eab(yi’a) sab,xA)dX+ 27dA+I poé(yi)dx I leidA (4.18)

VZ zt Vz Vr
t t

where eib(xa,t) and xA(Xa,t) must be considered as the fixed functions. The

theory 1is characterized also by the following convex function
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9:IR6+N=>R

which is called the yield function.
Consider arbitrary one-parameter families of comparison configurations

yi(Xa,t,e) € @t and parametrizations Ya(xa,t,e) € ?t with the conditions

yi(Xa,t.O) = xi(Xa,t)

Y(X,t,0) =X
a a a

Then the principle of dynamics of an elastic-plastic cracked body states : at

the real process of motion of an elastic-plastic cracked body the following

inequalities
du 8u
g[ pO? y P W ] =0 (4. 19)
ab A
8 -p e +[2 +o%% )z =0 v& 2 (4.20)
ab 08¢ ab A 09y A ab ’ A
ab A
A A, o
9(oab,nA) =0 . (4.21)
5x€ + I pox‘(ayi - xi’aaYa) dX - I Qaa‘{a ds =0 (4.22)
v aQ
t t

take place at arbitrary time and for all yieﬁt and Y;e?t. Here the variation
of energy functional is defined by the following formula

d

€ = EE|e=o

8[yi(xa,t,e)] (4.23)

We demand also the absolute equality from (4.22) as the energy balance
equation, if 8y, and 8Y will be replaced by 8 x, and )'(’a.
From (4.19)-(4.22) we obtain the following system of basic equations for

the elastic-plastic cracked body

‘e

Tla,a+ poF1 = po 1’ Tia= o'abxi,b in V£
ab poaeab ' A poax

?(0ab.nA) =0
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_ p A . A A
(0ab c b) e+ (7 nA) X, = o, Vv (0ab.nA)
F6 ,M)so0
ab A
x=r(X)ondv , T N=T on 8V (4.24)
i i a x ia a i T

TF N=0 on Q\QF
ia a t t

T"NvVA/a | =T NV Asal = -pn, p20 on Q
ia a 'na ia a (pa i t

IT | =vI1I = 27 , I =I1t=0 on 38Q
o a a 3 aa t
. .
p>0 = [xi(na)-xi(ea)]n =0 .
- . on Qt
p=0 = [xi(na)-xi(ea)]n1 =0
I | <2y » X =0 (no propagation)
o a
on ant

II | =2y = XA 20, 292 =1
o a a Toa a

Here the I-integrals are defined by the formula (4.11) as in the
elastodynamical -crack problem. ‘

From (4.24) one can also obtain the 1limit problem of an elastic-
perfectly-plastic cracked body by letting the hardeniné coefficient approach
zero. We do not write the limit relations and I-integrals in view of the

analogical formulae (3.35)-(3.36).
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.5. Geometrically linear theory of fracture.

In this chapter the geometrically linear variants of the constructed
fracture mechanics are presented.
1. Geometrically linear statics of an elastic gapped body.

Let us consider a gapped body occupying the region VQ=V\(QUBQ) in the
natural configuration. We shall suppose that under the influence of external
forces and tractions material points of the body will have a small

displacement wa(Xa) given by

wiX)=x(X)-X , XeV (5.1)
a a a a a a £

The goal is to construct a system of basic equations for the equilibrium
dispacement field. According to the principle of total energy, at the
equilibrium displacement field the variation of the total energy functional of
an elastic gapped body should be non-negative for an arbitrary family of
admissible comparison displacements. We will now define the set of admissible
comparison displacements, the total energy functional of an elastic gapped
body and its variation.

Let us introduce the Sobolev vector space (Hé)3 consisting of all square
integrable displacement fields with square integrable derivatives on Vz and

the kinematical constraints on avx

1,3 _ 1 -
(Hz) = { v, | v, and Vab € Lz , valavx 0}

The norm of a displacement field v, on this space can be defined as follows

2—
Ivil® = I (vava + va’bva,b) dX
Vt
Note that due to the non-smoothness of the region VZ the condition of square
integrability of v, and Vo, on Vz permits the singularity of Vi at points

of 3Z.

Let us consider the following set €zc[H§)3
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1,3 + -
= - = 5.2
82 { v, | v_e (Hz] , [va va)Na =0, Xae z} ( )
Here the indices + and - indicate the limit values (traces) of quantities on
two sides of the singular surface, Na is the unit normal vector taken outer to
a side + of Z. It is easy to see that ﬁz is convex. Now the set € of

admissible comparison displacements can be defined as the union of 82 with Z2Q

€= 62 : (5.3)
z2Q
For an arbitrary admissible displacement field va(Xa)e 6 with a singular
surface £ we define the total energy functional of an elastic gapped body as
follows
glv,(x)1 = [ potte ), 0)ax + [ 2y an + [ pFv ax - [Tvar (5.0

Vz z Vz BVT

‘Here the strain tensor eab has the following linear form

1
> (va,b + vb’a) (5.5)

eab(va) =

The other .symbols, such as Py f, 9, 7, Fa, Ta have the same meaning as
before.

Consider a one-parameter family of admissible comparison displacements

va(X;,e)e €, with the singular surfaces Q%, satisfying the following

conditions

2 Qe 2Q for £ >e>0, Qes Q when &0

v(X,0) =wi(X)
a a a a
The variation of the total energy functional at the actual displacement field

with relation to the family va(Xa,e)e € is defined as follows

_d
8¢ = 33'3:0

€lv (X ,e)] (5.6)
a a
The variatioﬁal principle of total energy states
88 =20 , v va(Xa,e)e 6 (5.7)

if w;(Xa) is the equilibrium displacement field.
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For the calculation of &8, we construct a family of parametrizations

Ya(Xa,e)e? transforming VQ into VQE: , Q into Qf and satisfying the conditions

Y (X,e) =X when £=0 or X e 8V
a a . a a
By this family of parametrizations one can show that

58 = I [ -(o;b,b+ pOFa)ava * (-“ab,b * pOFbwb,a)aY;] dX +

Yo

+ + - - + - + + - -
+ I { (—ogbéva + d;bava)Nb + [(-uab+ uab)Nb—47HNa—po(Fbwb Fbwb)Na]aYh }dA +

+ I (2yv» - J )8Y dS + J (o N - T)évdA (5.8)
a a a ab b a a
o0 avT

Here b is the symmetric stress tensor defined by

of
= - .9
Tab Py e (5.9)
ab
The Eshelby’s tensor Mo, has the form
= - .10
Mab ccbwc,a * pof 8ab (5 10)

Accordinly, the J-integrals should be calculated by the formula

Ja = lim J B, e, dS = lim I (—wcbwc’anb + pofx.a ) ds (5.11)
IT|=0 T IT|=20 r

The other symbols in (5.8) can be interpreted as before.

From (5.7), (5.8) and (5.2) follows

w=0 ondvV , oo N =T on 8V
a x a a T
(W -w)N 20 ongQ (5.12)
a a a
a‘abNb = a;bNb = -pNa , p=0 on Q

W -w)N >0 » p=20
a a a
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J 1l =vJJ =27, J =J t =0 on 8Q
o a a 3 a a
If the free energy density is approximated by the quadratic form

=1
pof =5 C

€ €
abcd ab cd
then (5.12) is reduced to the classical crack problem [10] with the linear

constitutive relation

e =C (5.13)

€
ab abecd cd
where c;mm is the fourth-rank tensor of elastic constants. We shall admit -

that they satisfy the symmetry and positivity properties

Cc =C =C = C
abecd bacd abdc cdab

>

= > tri
xe €., « 0, Ve, (symmetric)

Cabcdeabecd
It should be emphasized that even in the case of the linear relationship
(5;13) the problem (5.12) as a whole remains non-linear. The cause of that is.
the boundary conditions on Q and aQ expresged by inequalities. This fact plays
a very important role in the application of the method of homogenization [48].
Note also, that the last boundary condition of (5.12) is separated from
other relations. Therefore in practice one can first solve the problem (S.12)
without this condition and then, by calculating the J-integrals, verify its
validity. Without the last condition the problem (5.12) can be formulated as
the following extremal problem: |

Find we 82 such that

€ =86 [w] = inf & [v] (5.14)
vei?Q

One can also rewrite the problem (5.14) with the acception of (5.13) in terms
of variational inequality:

Find we@z such that

a(w,v-w) 2 I poFa(va - wa) dX - I Ta(va - wa) dA " (5.15)

VZ BVT
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where the bilinear form a(w,v) on 89 is given by

alw,v) = I CopeaMy o * My )V, 4 *+ v, ) &X (5. 16)
Vs
Using the Korn’s inequality [46] which holds for the region V., , one can prove

Q

the existence and uniqueness theorem for the variational problem (5.14). One
can also apply the finite element method to (5.14) to go to the diécrete
formulation of the crack problen.

2. Geometrically linear quasistatics of an e{astic-plastic cracked body.

The law of quasistatical motion of the cracked body is given by
x =X +w (X,7) , XeV_ =W(QU)
a a a a a T T T

The goal is to construct a system of basic equations concerning the
displacement field wa(Xa,tJ , the internal degrees of freedom e:b[Xa,t) and
xA(Xa,tJ, and also the unknown interior boundary QTUGQT. We suppose that eib

is symmetric and ezb and x, are square-integrable functions on VT:

8

P 2,6 pp2
eab(Xa,t) € (Lt) , e’ h ab b

x, (X ,T) e (Li)“ . Men®

V
Ixx dx
V

Let us define the total energy functional of an elastic-plastic cracked
body on an arbitrary admissible comparison displacement field va(Xa,t)eﬁt with

a singular surface ZT as follows

= p -
8[Va(Xa,T)] = I pof(eab(v)-eab,xA)dX + I 27dA+I pF v, dX I T v dA (5.17)

Vz z, Vz VT
T T

where

1

eab(v) = E

(v +v ) , ve®
a,b b,a a T

In the functional (5.17) the quantities e:b and X, should be considered as the
fixed functions. The set ﬁt' of all admissible comparison displacement

fields va(Xa,t) at the time T is defined as follows
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T T

The other symbols, such as po, f, 7, Fa, Ta are explained above.
Now we formulate the quasistatical cracked problem for an elastic-plastic
cracked body in the following way
< P 2,6 2,\N
Find w e Et , €, € (Lt) » X, € (Lt) such that

af of

g( pOF N "poW ) =0 (5- 18)
ab A
A _ _of °p A of ’ A A
( ab poﬁ) e, * (1:A + poW) X, = o , V (cab,nA) (5.19)
ab A

F(& _,A) =0 : (5.20)

ab A

- d .
88 = 3|, Elv.(X t,e)l 20 , Vv (X,tc¢)eb, (5.21)

Moreover, the last inequality (5.21) should turn into the absolute equality
expressing the equation of energy balance, if the real displacement field
wa(Xa.T) = wa(Xa;t+e) is chosen for the family of admissible comparison
displacements. Here 5‘:IR6+N=> R is the convex yield function, the family of
admissible comparison displacements va(Xa,t,e) € €t should satisfy the

condition
v (X ,t,O) =W (X vt)
a a a a

From the above formulation of the crack problem one can obtain the

following rglations
9(¢ab,nA) =0

‘p A __ - A A A A
(¢ —0ab)eab + (uA nA)xA =0 , V (¢ab,nA), ?(wab,nA) s0

ab,b 0 a

. af x =-p &

ab _ Po 3e ’ A Po ax
ab A



42

w=0 on 8V , ¢ N =T on 8V
a X ab b a T
(W -w)IN 20 on@ (5.22)
a a a t
+ -
¢abNb - o‘abNb B -pNa » P20 on Qt

(w" - w)N >0 » p=0

a a’ a :
J1=vJJ =27y, J=J Tt =0 on 8
o a a 3 a a .t

p>0 = [w ~wlN =0
a a a

. . on Qt
p=0 = w -wI1N 20
a a a

IJaI <2y » X' =0 (no propagation)
e on 89,

1J |l =2y » XA 20, 292 =]
o a a a a

where the vector .Ja is given by the formula

J = lim I (-wcbwc,axb *+ p K, ) ds
IT |20
t Ft

.At every fixed time t the problem (5.22) without the boundary conditions at

the crack tip can be obtained from the inequalities (5.18)-(5.20) and the

following variational inequality

sg =2

E=Fl  Blv.(X,t,e)l 20 , Vv (X,te)e8 (5.23)

t

One can also pass to the limit case of an elastic-perfectly-plastic cracked
body by letting the hardening coefficients approach zero.
3. Geometrically linear dynamics of an elastic cracked body.

The law of motion of an elastic cracked body is given by
x =X +w((X,r) , XeV_=W(QUN) (5.24)
a a a a a T T T
_ 1,3 +_ -
We suppose that we ﬁnt— { v, I v, and v;’b € (Ht) , (va va)Na 2 0 on Qt },
Qae(L:J3. The dot over quantities denotes their time derivative with Xa held

constant. Let €t be the set of admissible comparison displacements
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On €t we define the energy functional of an elastic cracked body by the
formula

stv,x,.01 = [ pute, (vax + [ 27 an + [ pFv, ax - [Tvar  (5.25)

Vz Et Vz avT
t t

We introduce also the set ?t of parametrizations Y;(Xa,t) transforming VQ
t

into V

s Qt into £ and satisfying the condition

Y(X,t) =X when Xe 8V
a a a a

The geometrically linear dynamical crack problem is formulated in the
following way:
Find w;e@t such that the inequality

86 + J pW (v -w &8Y) dX - J Q3dY ds =0 (5.26)
0 a a a,b b a a
\ aQ
t t
holds for arbitrary families of admissible comparison displacements
Va(Xa,t,e)e €t and parametrizations Y;(Xa,t,e]e ?t. The definition of

variation is exactly the same with that of the chapter 4. The vector Qa is

given by

We demand also the absolute equality from (5.26), if the real displacement
field wa(Xa,r) = wa(Xa,t+e) is chosen for the family of admissible comparison
displacements.

From this formulation one obtains the following consequences

o + pF =pﬁ o =pau_
ab,b "0 a oa '’ ab o 3¢
ab
1
eab T2 (wa.b * wb,a)
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(W -w)IN 20 onQ (5.27)
a a a t

+ -
oabNb = c;bNb = -pNa , p=0 on Qt

(W -wIN >0 » p=0
a a a

I | =v 11 =2y, I =I T =0 on 32
o a a 3 a a t
p>0 » [w -wlN =0

a a a onQ
p=0 » [W -w]lN =0 t
a a a

II | <2y = X =0 (no propagation)
o a

. on BQt

II | =2y » XA =20, 292 =1

o a a a a

where the flux of total energy entering into the crack tip is given by

_ as _ l..
I =lin J [ O oo * po(u+ 5 wbwb)na]ds (5.28)
IFtI¢O
t

4. Geometrically linear dynamics of an elastic-plastic cracked body.

In this theory one should determine the displacement field wa(Xa,t)e 89
t

of (5.24), the internal degrees of freedom e:b(xa,t)e[L:)6 ,
xA(Xa,r)e(Li)" and the unknown interior boundary Qtant.

We define the energy functional of an elastic-plastic cracked body on the
set €t of admissible comparison displacements as follows

- P -
glv (X ,7)] = J' pyule, (v)-eP ,x JdX + J' 27dA+J pFvax-[ Tvda (529

VZ zr VZ Vr
T T

Now we can formulate the geometrically linear dynamical problem for an elastie

-plastic cracked body:

p 2,6 2.N .
Findwe® , ¢ e (L))", x, € (L))" such that the inequalities
du du
FPyge—+ Pozg— ) =0
ab A
A _ _0du P A du . A A
( ab _ Pode ) sab * (KA * poax ) N =0, V (wab’nA) (5.30)
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6x8 + J.powa(ava— wa’bavb) dX - ‘[ O,ac.SYa dS =z0

\' aQ

t t
hold for arbitrary va(Xa,t,e)e et and Ya(Xa,t,e)e fPt . Moreover, the last
inequality of (5.30) should‘ turn into the absolute equality if the real
displacement field wa(Xa,r) = wa(Xa,t+e) is chosen for the family of

admissible comparison displacements.

From this formulation one obtains the folowing consequences

?(0ab,nA) =0

A - p A _ : A A A A
(0ab'0ab)€ab + (1tA nA)xA =0 , V (o'ab,nA), ?(oab,nA) =0
ab,b+ pOFa = pO a

- p -

ab Po 3 o T, Po ax

ab A

=1
ab 2 (wa,b * wb,a)
w=0 onddv , o N =T on dv
a x ab b a T
(W -w)N 20 onQ (5.31)
a a a t

+

o;bNb = u;bNb = —pNa , p=0 on Qt

(W -w)IN >0 = p=0
a a a

111 =v1I =2y, I =I Tt =0 on 8Q
a a a 3 a a t

P>0 = [wW -wIN =0
a a a

.Y . on Qt
p=0 > [w -w]l]N 20
a a a

II| <2y = X =0 (no propagation)
a a
. on agt
I 1l =2y = XA 20, 292 =1
a a a a a

where the vector Ia is given by the formula (5.28).
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6. Examples.

We shall now consider some simple applications of the developed theory.
1. The finite anti-plane shear of an infinite incompressible elastic slab with
a flat gap.

Suppose an isotropic homogeneous incompressible elastic slab occupies the
2xR= (R™\@)xR in the initial state, where Q is a

line-segment of length 2a (Fig.7). Consider the deformation

infinite cylindrical region R

2
= 6.1
X, xi(Xa) . Xae RQxR ( )

Incompressibility condition requires that

det|Fl= 1, F =x , VXe lex[R (6.2)

fa |§,a

Supposing the simplest case of neo-Hookean materials [S55], one has

pf =pe = % (x, x -3) (6.3)

o aa i,a i,a

where u>0 is the (constant) shear modulus. From (6.3) and (6.2) follows
T =wux -q6 . G= (F)* (6.4)
fa i,a ita

In the absence of mass force, the basic equations of equilibrium for such the

infinite slab are (cf. the formulae (2.15), (2.20)-(2.23))

ia,a =0, Tia = p'xl,a - qua (6.5)
det|x, | =1 (6.6)
i,a . S
T°N =0 on (2\Q")xR (6.7)
ia a

T: [A73 Iy = T, /A3 |y =-pn , P20 on QxR (6.8)
(4 4 o
IJaI =V JaJa = 2y on xR (6.9)

Here the J-integrals are given by

3= ln J' (T, g%, g + PofK, ) dS (6. 10)
IT|=20 T
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The contour of integration should lie in the plane R2 , surrounding the points
(¥a,0). For the exterior boundary condition instead of (2.17) one has to
specify the asymptotic displacement field at infinity. We suppose, that the
diéplacemeﬁt field approaches that of a simple shear parallel to the gap

surface
2 2
x =X, x.=X_ , x_.=X_+kX asX +X s o (6.11)
: 3 3 2 1 2
Due to this condition, one may seek the solution of (6.5)-(6.9) in the form

x =X , %x. =X » X, = X3 + w(Xl,Xz) (6.12)

0 0 1 0 -w
X = 0 1 0 , G = 0 1 -w (6.13)
i,a ia 2 -
W W 0 0 1
» 1 »2

One can see that the incompressibility condition (6.6) 1is automatically

" satisfied. It then folloys from (6.5),(6.11) that the components Tla are given

by

TQB = (u’q)saﬁ » T = qw

a3 y &

= = y- - 6.14
3¢ “w,a ! T33 H=a ( )

Substitution from (6.14) into the equilibrium equations (6.5) reduces these to

I T e PVl (6.15)

Since the left hand side of the second equation in (6.15) is independent of
X, it follows that q is linear in X,. The first of (6.15) then requires that

q, be independent of Xa’ so that
q(Xl,Xz,Xa) = d.ox3 + ql(xi,xa) (6.16)
Substitution from (6.16) into the first of (6.15) gives

= 6.17
q =p+dw+ d1 ( )

where d1 is an arbitrary constant.

The first Piola-Kirchhoff stress tensor in (6.14) may be reduced with the
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help of (6.16), (6.17) to

T,, = -[do(X3+w) + d1]
= =  (6.18)
Taa P Taa [ + dO(X3+w) +d1] LI ( )
T“B = -[do(X3+w) + d1] 8«3

The only remaining differential equation of equilibrium is the second of
(6.15), which is now
2 2
WV.Vw=d , V.V= 9-3 + 9-3 (6.19)
)4 X
1 2
Now we intend to determine d0 . d1 from boundary conditions. In the case
of simple shear, the contact of the gap banks takes place and Q'=Q"=Q. But one
can show that p=0 on Q, so the gap surfaces are traction-free

¥ +
= = = = < 6.20
T12 T22 T32 0 for X2 o, IX1| a ( ")

Reference to (6.18) shows that the first condition in (6.20) is automatically.

satisfied, while the second requires that
d =d =0 (6.21)

Because of (6.21), one can ;educe the first Piola-Kichhoff stress tensor to

the form -

T " Tga =MW, » Tg=0, T, =0 : (6.22)

The third of the conditions (6.20) leads to S

Ww_ =0 atX =0, |X|<a (6.23)
s 2 2 1

In view of (6.21), the differential equation (6.19) for w is

V.Vw=0 inR>3

2 (6.24)

According to (6.11), at infinity w should satisfy the following asymptotic

condition

w=KkK +o(l) as xf + xz > o (6.25)
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The linear boundary-value problem (6.23)-(6-25) is mathematically identical to
the problem of steady irrotational flow of an inviscid, incompressible fluid
past a flat plate of width 2a at an angle of attack of 90°. By this analogy,
one can immediately find the solution w and the shear stregs Taa' If r, 9 are

polar co-ordinates at the right gap tip (see Fig.7), so that
- X1 =a +r cos® , X2 = r sin® (6.26)

one can readily show that the asymptotic behaviour of w and Taz near the gap
tip;is given by

172 ¢

w =k (2ar)  “sin 5 (6.27)
T _ 1/2 9 _ _ 172 9
T13 = T31 = -pka (2ar) sin 5 T23 = T32 = puka (2ar) " “cos 5

as r » 0.
déing the formulae (6.10), (6.27) one can easily calculate Ja' At the right

gapitiﬁ‘Ja is given by

I T T, =0  X-= '
J, =3z uk"ar , J =0 for X =0, X =a ) (6.28)

Due to the symmetry, one has

__1 2 _ _ _ | _
Jy=-zuk’am , J =0 for X=0, X =-a (6.29)

From (6.9) and (6.28), (6.29) one concludes that only slabs, containing a gap

of width less than, or equal to, 87/(pk2n) can be in the state of equilibrium

under an anti-plane shear.

2. The small plane deformation of an infinite elastic body with an angled gap.
Suppose an isotropic homogeneous elastic body occupies the infinite

2¢R in the initial state, where Q is a line segment of

Q

lenéth 2a, oriented at an angle B to the direction of the tensile stress P

cylindrical region R

(Fig.8). On supposing the small plane deformation, one seeks the equilibrium

displacement field in the form

(6.30)

m

o

>
own

w =w (X ,X) , w € R
a a 1’72 o

3
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The free energy density and the constitutive relation are-given by

1 2
pOf T2 A (ecc) tu e.nbeab

3 = 6.31)
wab A eccsab 2 H ez'.ib (

Taking into account (6.30), (6.31) and the absence of mass force, we reduce the

system of equations (5.12) to

c =0 , o =A e & + 2 €
af Yy o H €

w' -w )N 20 on@ (6.32)
o 24
o' N, =o¢ _ N =-pN , pz0 onQ
* = ' —
(wa - wa) Na >0 =» p=0 onQ
[J 1l =vJJ =2y ondQ
o [» A 2
Here

= { (Xl,Xa) | X1 =tg B X2 , IXals acosB }

Na = { -cosB , sinB }

= lim I (- -, w K, + pfk ) dS
IT|=0 e B 0 «

In the case of tensile stress (¢ > 0), one can easily show that p=0, so the

gap surface Q' are traction free. One seeks the solution of (6.32) in the form

g = ¢ 6«2832 + o (6.33)
] ;_ ’
Yo A+2u 6azxz * Y

Due to the linearity the equations for ¢’

«B wa take the form
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o‘aB’B-O, oaB 7‘975043*2“8«3
4 _-1_ ’ ’
eaB =3 (won,B + wﬁ’a) (6.34)

' 2
e =0 aSXf+X2=>ca

af

o:x,‘; Ng = 0pp Ng = -osing 8, on Q

The problem (6.34) itself can be decomposed into two problem as it is shown in
Fig.9. Usiné the method of complex potential [21], one can obtain the solution
of (6.34). If r,® are polar co-ordinates at the right gap tip (see Fig.7),

then the asymptotic behaviour of w"x and o’ _ near the gap tip is given by

o
K K
, 1 0[ 4 . 3 ] 2 . a[ 9 3 ]
¢ = ——— cosz|1l-sin=sin=®| - ———— sin=|2+coszcosz?
11 (an)ua 2 2 2 (?_m_)uz 2 272
K K
y _ 1 9 9 . 3 2 4 8 3
0'22- 75 cos—z[1+sin§sn.n§19] + — 1 sinzcoszcos—@2
(2nr) (2nr)
K K
1 .9 8 3 2 9 .9 .. 3
¢’ = —— sin-cosscos=9§ - ——= cos—[l-mn—sm—'&] (6.35)
12 (an)i/z 2 2 2 (an)uz 2 2 2

K 172 K 172
W “—1[%] 0052[1-2v+sin22] + —2[—5] sind [2-2v+coszg]

1 2 2 u \2rn 2 2
K { 1/2 K 1/2

» = _1[_T in2lo-2p-cos??| - _3[_C o PYD.

w2 = m [Zn] sm2 [2 2V-Ccos 2] m [21:] cosz[z 2v-sin 2]

where v is the Poisson’s coefficient : v = A/2(A+p). The stress intencity

factors K1 , Kz are (see for example [40])

K1 =¢ vV ma sin®’8 , K2 =¢ vV nma sinB cosB (6.36)

" 'Let us find the flux of energy J, - Denote by i and j the unit vectors of
theclocal system of co-ordinates associated with the gap

i={sinB, cosB} , j=4{ -cosB, sin8 }

By long but elementary calculations of trigonometric functions of the form

(6.35), one can show that (see also [56])
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_ 1-v 2 2,. _ s 7y
J = e [(K1 + K2)1 2K1K2J] (6.37)

By using (6.36) and (6.37) we rewrite explicitly the equilibrium condi@}qp in

. .}.

the form A
_1-v 2 2,2 2,2.172 _
1J| = w [(Kl + Kz) + 4K1K2] =

= 1-v E;na sinZB (1+sin228)1/2 =27 Co ‘f

2u

e
R R

In Fig.10 the region of dimensionless stress P = E/Z[(l—v)na/uy]ilz for
which the equilibrium state is possible is shown in dependence with the angle
B.It is interesting to note, that the critical tensile stress will havé thé>
minimum value not for the angle B=90°, but for the angle B=71°, for wpichnj
P=0, 976. | I

One can also calculate the angle a of initial crack propagation defined by
tg a = JZ/J1 = -gin 28

The graphic of a in dependence of B is shown in the Fig.11.
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Fig.l: Deformation of gapped body.
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Fig.2: Discontinuity surface of admissible comparison configuration
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Fig.3: Region V, and interior boundary Qh .

Fig.4: Vector Vv .
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Fig.6: Yield function.
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Fig.7: Geometry of first problem.
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Fig.8: Geometry of second problem.
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