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Zusammenfassung

Flir die Verformung ebener Biegungstridger unter Berlicksichtigung grofier Dehnungen
wird eine neue Theorie vorgestellt. Das zugrunde liegende kinematische Modell
berlicksichtigt Langsdehnung, Biegung sowie Schubverformung des Tragers. Die her-
geleiteten Feldgleichungéh und Randbedingungen besitzen eine mathematische
Struktur, die als ein-dimensionales Gegenstlick zu der sogenannten nichteinfachen
Theorie der Kontinuumsmechanik betrachtet werden kann. Zum Zwecke der Illustra-
tion wird die dargestellte Theorie zur Beulberechnung gerader Biegungstridger aus
gummiartigem Material herangezogen.

Summary

A new theory is presented for finite strain deformation of planar rods. The
adapted kinematical model is rich enough to accommodate extension, flexure,
transverse shear and transverse normal shear of the rod. The field equations and
boundary conditions derived here enjoy the mathematical structure that may be
viewed as the one-dimensional counterpart of a non-simple theory known in
continuum mechanics. For purpose of illustration the presented theory is applied
to the buckling analysis of straight rods made of rubber-like material.
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1. Introduction

In [18] we have formulated a fairly general theory of finite strain
deformation of shells made of an incompressible hyperelastic material. The basic
equations of this theory were derived from three-dimensional finite elasticity
under the single assumption: material fibres | initially normal to the shell
reference surface remain straight in the process of an isochoric deformation. The
resulting two-dimensional model for the shell is rich enough to accommodate not
only flexure, extension and shear but also higher order effects incorporated in
the dependency of the two-dimensional constitutive equations on the gradient of
suitable strain measures. In this sense the shell theory developed in [18] (cf.
also [23]) may be viewed as the two-dimensional counterpart of the non-simple
material in continuum mechanics (cf. [25], Sect. 28 and Sect. 98).

In this paper we present a detailed exposition of this theory for the
particular case of the cylindrical deformation of shells. The cylindrical
deformation of shells is understood here in the sense of [15-17]. It is readily
shown that the corresponding equations enjoy the same mathematical structure as
that for plane deformation of rods. Accordingly, we shall speak of the theory of
planar rods.

We begin in Chapter 2 by summerizing the basic equations for the plane strain
problem of finite elasticity. In consistence with our interepretation of the
planar rods, the basic relations summerized in Chapter 2 constitute the
convenient starting point for the construction of the rod theory. Following [18]
we next assume that: I) material fibres initially normal to the reference curve
of the rod remain straight during the deformation, II) deformation of the rod is
isochoric. We then show (Chapter 3) that the two-dimensional plane deformation of
the rod consistent with the introduced assumptions is completely specified by the
displacement field of the reference curve and the finite rotation wvector
characterizing the rotations of the initially normal fibres (rod cross-sections).
Accordingly, the resulting one-dimensional kinematical model for the rod is
identical to that in Reissner's theory [22] (cf. also [4-7,15-17]). However, the
associated dynamical structure of the rod theory implied by the assumptions I)
and II) is richer than previously has been examined in the relevant literature.
Namely, as we show in Chapter 4 the one-dimensional strain energy function for
the rod made of an incompressible hyperelastic material depends not only on the

suitable strain measures but also on the derivative of strains.

The complete set of equations for the rod that are consistent with the under-
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lying assumptions are derived in Chapter 5. Reduction of the general theory to
special cases including the theory in which the shear deformation is constrained
to vanish as well as the theory with the conventional dynamical structure is
carried out in Chapter 6 and 7. We also exploit there the simplifying assumptions
that are often not mentioned in the development of those types of the rod
theories.

The explicit form of the constitutive relations for the general theory
developed in this work are derived in Chapter 8. Finally, the buckling problem of
the straight rods under axial compression is examined in Chapter 9. The
comparison of the solutions to the problem obtained within general theory and its
special cases provides insight into the relevance of various simplifications
usually adopted in the literature.

The constitutive equations of the generality derived here, together with field
equations governing finite strain deformation of rods provide thé new theory
which has been heretofore unavailable. In this respect our work generalizes many
previous contributions in the literature on finite deformation of rods. In
particular, in our development no assumptions concerning the magnitude of
strains, rotations and even thickness of the rod are invoked except those that
are implicit in the assumption I). Our objective in this paper was partly
motivated by a desire to lay a fundation for eventual solutions to the problems
like buckling of thick rods, short wave deformation of rods or necking and

drawing in polymeric fibres under tension (cf. [11]).

Acknowledgement. The author wish to express their sincere gratitude to Frau
Fromme for her excellent work done in typewriting this and related papers.
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2. General cylindrical deformation of shells

Let {Xk} = {XB' 2z} be a fixed, right-handed Cartesian coordinate system in the

space and let {1 = {iB .k} denote the associated set of orthonormal base

}
vectors. We adopt }::he convention that lower-case Latin indices have range 1,2,3,
and that lower-case Greek indices have range 1,2, i.e. i,j,... = 1,2,3 and
a«.B,... = 1,2. Such diagonally repeated indices are summed over the-ir range.
Vectors and tensors in the Euclidean space are denoted by bold-face letters. The
inner product and the cross product of two vectors a and b are denoted by a*b and
a x b, respectively. The value of the (second order) tensor T at the vector u is

denoted by Tu. The determinant detT and the trace trT of T are defined asusual.

In this chapter we summarize the basic relations describing a general
cylindrical deformation of a shell, i.e. a deformation of a cylindrical shell
into another cylindrical shell such that all equations are independent of the
coordinate along the generators of the shell. This is Jjust a plane strain
problem. We assume that the generators of the cylindrical shell are parallel to
the coordinate z and thus (x1 .x2) is the plane of the deformation. Accordingly,
the undeformed configuration of the shell may be defined by

Y(eY) = X(e%) + zk | (2.1)

where {gi} = {e;a,z}, z € [~-a, +a], are material (convected) coordinates in the
shell space and X is the position vector in the plane of the deformation, X<k =
0. If a = » we shall speak of the infinite cylindrical shell. The natural base
vectors and the components of the metric tensor for the coordinate system {gi}

are defined as usual

i i
gl = Yli . g 'gJ = 6j ’
(2.2)
. ij _ i,J ik gt

Here 613? is the Kronecker symbol and a comma followed by the index i indicates
partial differentiation with respect to F,l. In view of (2.1) we have



B

[ 9 O g g 0
g].] = g =

[ 0o 1 o 1

(2.3)

oA _ g0
9 g =% -
g = det gij = det gaB > 0.

Clearly, all quantities defined in (2.3) are functions of the coordinates g®
only.

We next assume that external 1loadings, boundary conditions, and material
properties are independent of the coordinate z. If, in addition, a is sufficient-
ly large then the resulting deformation of the cylindrical shell will consist of
a uniform stretch in the directions of the generators at the most. This is
certainly the case for the infinite cylindrical shell (panel). Accordingly, -the
position vector of the particle whose the initial place was Y is of the form

y(gi) = x(g%) + r,zk (2.4)

where A 7= const. is the out-of-plane stretch and X is the position vector of the
particle with initial position X, X+k = 0. Following Libai and Simmonds [15] we
call (2.4) the cylindrical deformation of the shell. The natural base vectors and

the components of the metric tensor associated with (2.4) are

- - - o
ga - xia . g gB - 6B ’
- =3 -1
g; = Azk . g = lz k,
auB 0 50.8 0
g.. = , g = (2.5)
1J 2 -2
0 A 0 A
z 2
g = det gij = Az det Iug °
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Then the deformation gradient takes the form

ay _ = i = o
F(g") = g;®g =g, &g + rka ko, (2.6)
and —
/det g
J(E*) = det F = A, —gﬁ . (2.7)

In (2.6) a @ b denotes the tensor product of two vectors a and b. The transposi-
tion of F is given by"FT = g; @ ai and hence the right Cauchy-Green deformation
-tensor C takes the form

T -

C(e*) = FF = gij gl @ gJ = aaB g“ ® gB + xi kak. (2.8)

Consequently, the principal invariants of C are

I, = trC = g*® 3. +A§ ,
I, =5 [0 - &C®] = (g, 3 +270) 15 . (2.9)
I3 =det C = g-: ié_f;i:iﬂi_
The invariants Ik are not, however, independent for
9 3P 13=229% G, . | (2.10)

This can be shown by elementary tensor calculation [13]. We also observe that in
the equations governing the cylindrical deformation of the shells the
out-of-plane stretch Az plays solely a role of a parameter. Thus without loss in
generality we may assume that Az = 1. This is indeed the case for the infinite
cylindrical shell.

The main objective of this paper is to develop a theory of finite strain
cylindrical deformatiton of shells made of a hyperelastic incompressible
material. Accordingly, we shall assume that the deformation takes place without
change in volume (isochoric deformation), i.e. J(E¥) = 1. In view of (2.7) this
assumption implies that det éaB = g. Moreover, from (2.9) and (2.10) we find out
that



I,(e%) = Iz(g"‘) = (2.11)

I

-
+
H

¢y _ af =
I(g) =g Yup >2. (2.12)
and, clearly, I3 = 1. It is to be noted that in (2.11) the assumption Az = 1 has
been incorporated. The incompressibility assumption is best satisfied by
rubber-like materials which in turn are commonly assumed to be isotropic [2]. The
mechanical response of such materials (hyperelastic, isotropic, incompressible)

is governed by a strain energy density (per unit volume)
W= WL .I,) = cW(I) (2.13)

where C is a positive constant of Young's modulus type. For late use we list
below some proposals of W that accurately represent the response of rubber-like

materials throughout the entire range of deformations [2,12]:

Mooney-Rivlin material (C1. C2 - material constants)

W= C1(I1 -3) + CZ(IZ -3)=C(I -2),C= C1 + C2 (2.14)

Hart-Smith material (C, k1. k2 - material constants)

-3)2 I

k, (L 2
W=C {I e ar, + k,ln(z2)} =

k, (I-2)° .
=c {j e aI + kln(1Eh)} (2.15)

Biomaterial (a, B - material constants)

a(I,=3)
27 _11=c {% eI-2)_ 933, c=1g (2.16)

_B
W-—z[e )



3. Nonlinear rod model

In this chapter we clearly state the assumptions that play a central role to
the subsequent analysis. These assumptions enable to reduce the two-dimensional
problem of the plane deformation of rods to the one-dimensional theory with an
underlaying kinematical structure identical to that in the theories developed by
different means by Antman [4,5], Reissner [22), Libai and Simmonds [16,17] and

others. The basic notation use here are shown in Fig. 1.

It is convenient and desirable for analitical simplicity to take the material
coordinate system % = {s, g} to be normal one in the undeformed configuration
of the rod. Then the position vector X takes the form

- +
X(s,g) = r(s) + gez(s), ge[-—ho. +ho] . (3.1)
Here

r(s) = X(s,0) = X1(s)i1 + Xz(s)i2 ] (3.2)

is the position vector of a reference curve c of the rod and s, s¢[0,1], denotes
the arc length parameter along c¢. The initial rod thickness (possibly variable)
is defined by ho = h; + h; . The specific choice of the reference curve ¢ may be
dictated by a problem at the hands. In particular, for relatively thick rod or in
the analysis of contact problems either the upper xT(s) = X(s, h:) or lower X (s)
= X(s, -h;) rod face may be choosen as the reference curve. In general considera-
tions, however, it is preferable to leave it unspecified. The unit vectors
tangent and normal to ¢ are given by

e1(s) = r' = Cosg i1 + sing 12 .
(3.3)

ez(s) k x e, = -sing i, + cose i, .

where a prime indicates the differentiation with respect to the are length para-
meter and the angle ¢(s) is defined in Fig. 1. The curvature of ¢ is

K(s) = r"-e2 =9' , (3.4)
so that
ei = Ke2 ) eé = - Ke1 . (3.5)
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Fig. 1 Geometry of planar rod, a) planar rod as a
section of unit width of a cylindrical shell,
b) coordinate system and base vectors
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From (3.1), (3.5), (2.2) and (2.3) we obtain the known formulae

gy =X'"=ue, . gy=X, =¢,.
1 _ -1 e 2 _ o
g =u 1 g = 2
(3.6)
w? 0 TR
_ af _ 2
gOlB ’ g - ’ g H
0 1 0 1
where ( )'E stands for the partial derivative with respect to the normal

coordinate g and

ui(s,g) =1 -Kg . (3.7)
The image ¢ of ¢ in the deformed configuration of the rod is a material curve
specified by its position vector

r(s) = x(s,0) = x1(s) i, + xz(s) i (3.8)

2 .

The unit vectors tangent and normal to ¢ , respectively, and the curvature of

are given by

51(5) = A" I = cosg i, + sing i, .
(3.9)
ez(s) =k x e =- sing i, + cose i, .
K(s) = A'Z r-e, = A—1$' , (3.10)
so that
e =21k e, . e, ==-2e . (3.11)
where

A(s) = JT'-r

, (3.12)
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denotes the stretch of the reference curve. By virtue of the obvious regularity
conditions, 0 < A < + = ,

With each point of the deformed reference curve ¢ we next associate an ortho-
normal base {AB} that rigidly rotates during the rod deformation and coincides
with {eB} in the undeformed configuration (see Fig. 1)

A1(s) = Qe, = Cosp e, - sing e, .
(3.13)
Az(s) = Qe, = sing e, + cosp e, ,
where
| Q(s) = Aiee +A, @e, . (3.14)

is the proper orthogonal tensor, i.e. the element of the Lie group S0(2). The
geometric meaning of the basis {AB} will become clear later on. Introducing the

shear angle y(s) = Azoéz . v (s)| <—;- . the vectors A, can alternatively be ex-
pressed in the form
A1 = cosy e, - siny e, , A2 = siny e, + COsY e, . (3.15)

The differentiation of (3.15) with the use of (3.11) gives

A1' = KA2 . Aé = - KA1 ) (3.16)
where
R(s) =AK -y'=8'"=¢"' = v' . (3.17)

In this work we intend to formulate a finite strain theory of rods which
consists of the displacement field u of the reference curve and the finite rota-

tion vector ¢ corresponding to Q as the only independent kinematical variables:
u(s) =r-r= u(s)i1 + wis)i,, ¢(s) = - ¢(s)k . (3.18)

The suitable strain measures for this rod model have been introduced in
[5,16,22]. Our derivation given below slightly differes from that in those
papers. We first note that since Q is the orthogonal tensor, Q'QrII must be
skew-symmetric one. Indeed, from (3.16), (3.5) and (3.14) one gets
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Q" =- (R-K A AB, . (3.19)

Here a A b = a @ b - b @ a denotes the exterior product of two vectors a and b.
We also recall that the axial vector, w say, of the skew-symmetric tensor a A b
is defined by

(aaAblv=wx v for any vector v. (3.20)

It can be shown that w = - a x b. The strain measures are now defined from

(3.9)1 and (3.19). They consist of the stretching vector

e(s) = ' - A, = A +nd, (3.21)
and the bending vector

x(s) = - a(s)k , (3.22)

defined as the axial vector of the skew-symmetric tensor Q'QT. From (3.9)1.
(3.15) and (3.19) it follows that

e(s)

Acosy - 1, n(s) = Asiny ,
(3.23)

-~

w(s) == (R-K) == (AK - y' = K) .

According to Fig. 1 we have ¢ = ¢ - ¢ + ¥ and hence using (3.18), (3.13) and

(3.17) we obtain the associated strain-displacement relations

e(s) = f'-A1 - 1 =x; coslep - ¢) +x; sinlp - ¢) - 1 =

u‘cos(ep - ¢) + w'sin(e - ¢) + cos¢ - 1,
n(s) = E'-AZ = - xisin(e - ¢) + xjcos(e - ¢) = (3.24)
= - u'sin(¢ - ¢) + w'cos(p - ¢) + sin¢ ,

x(s)

]

$' .
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In passing it is worthwhile to note that alternative sets of strain measures may
also be defined (cf. [15,16]).

We emphasize that the rod mcdel with u and ¢ as the only independent kine-
matical variables may be given different two-dimensional interpretation. In other
words, virtually different assumptions may lead to the same one-dimensional kine-

matical model for the rod. The underlying assumptions in our analysis are:

I) material fibres initially normal to the reference curve remain straight

(but not necessarily normal) during the rod deformation,

II) deformation of the rod is isochoric, J(s,g) = 1.

Of these two only the first assumption is of approximate nature while the second
one reflects merely the real property of many materials capable to undergo finite
deformation. We shall not attempt to legitimate reliability of the above assump-
tions (see discussion given in chapter 9). Our aim is rather to investigate in
full details their implications.

According to the assumption I) the current position vector of the particle
whose initial place was X may be expressed in the form

x(s,g) = r(s) + ¢(s,£) Az(s) , (3.25)

where a scalar-valued function §(s,E) must satisfy the condition Z(s,0) = 0. The
geometric meaning of (3.25) is obvious. The unit vector Az(s) or, equivalently,
the angle ¢(s) characterize the rotation of the initially normal fibres (rod
cross-sections), while &(s,E) accommodates an arbitrary transverse normal
deformation of the rod. According to (3.21)

r' = VA, + nA, . v(s) = 1 + € = Acosy , (3.26)

and hence the differentiation of (3.25) with the use of (3.26) and (3.16) yields

g, =x' = (v - R;)A1 + (n + C')A2 .
(3.27)

g2=x,E=C,€ AZ .

Solving next the system of equations 5“-68 = ﬁg we obtain
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§ = -k A
(3.28)
F - ) v-&) (n+za -al)
9 ‘€ 17 B -
From (3.27) and (3.28) the components of the metric tensor follow
.= -k s+’
3, = (¢, )? (3.29)
22 'g .
512 =§21 = (n +C')C,E .
g = v -k)?,
§ = v -k + z% 411,  (3.30)
§%=" - @ w-kF e,
and hence
- - = 2 2
g = det Iop = (v - Kg)™ (g,.)" . (3.31)

3

In. order to complete the kinematical considerations it remains to specify the
function Z(s,E). To this end we firt note that in view of (3.31), (3.6) and (2.7)

J(s,£) = (v - Kg)z, €(1 - Kg)'1 and hence the assumption II) implies the following
first order differential equations for g

(v - RZ) % =1 - KE. (3.32)

The integration of (3.32) with the use of the initial condition Z(s,0) = 0
yields

Re? - 2v0 + 26 - KE2 = 0 . (3.33)
If K = 0 it immediately follows that

g(s,g) = v-1(€ -%-ng). (3.34)
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However, this is a very special case and we shall assume henceforth that K # 0.
Then the solution of the quadratic algebraic egquation (3.34) satisfying the
condition ¢(s,0) = 0 is

&=1

g(s,g) = vk = {1 - J/1 - vZK(ZE - KEZ)} , (3.35)

or, written in more compact form

£(s.6) =R (v =¥ 1) , (3.36)
where
2 - =1, 2 .
A(s,E) =vT + KK (u° - 1) if K# 0, (3.37)
2 - 2 .
A(S,E) =v™ = 2KE = v~ + 2 ifK=0. (3.38)

Introducing now (3.36) into (3.29) and (3.30) and making use of (3.32) we finally
obtain '

1+(negn? wln+g’)
) Vi
g&B = 2 - (3.39)
pln +C*) o
"y A
1 _n+g
A uJA-
5&3 = (3.40)
_h+3%' T_[a+ (n+cH)?

uvA u?

with €' to be evaluated from (3.36).

In this way we have shown that the two-dimensional (plane) deformation of the
rod is completely specified by the displacement field u(s) of the rod reference
curve and the rotation vector ¢(s) specifying the rotations of the rod cross-sec-
tions. The only assumptions made here are those I) and II). This result
represents a substantial generalization of many earlier investigations on the
subject [9,10,15]. Moreover, our detailed treatment of the problem reveals that
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the one-dimensional kinematical structure for the rod implied by the assumptions
I) and II) is identical to that in Reissner's theory [22]. However, the resulting
dynamical structure is richer than in the rod theories previously investigated
[5-7,16,17,22,24]. In order to see this we now examine the form of the one-dimen-
sional strain energy function for the rod.
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4. Strain energy function

The one-dimenional strain energy function (per unit length of the undeformed
reference curve) is simply obtained by integration the strain energy density
(2.13) through the rod thickness

+
® = Ch_ I W(I) péE . (4.1)

| —+
m
A|~_~"$+

where we have introduced the dimensionless normal coordinate

al
o

+

. . h_
E=f €[, +w'l, 2<1. (4.2)
o] ho

We also define the dimensionless thickness parameter

h -1

€, (s) =-hK=R—°-, R(s) = - K, (4.3)

@]

with R being the radious of curvature of the undeformed reference curve. Clearly,
if K= 0 then € = 0. From (3.39), (3.6), (2.12) and (3.36) we find out that

h
I(s,é) = u"zA + uzA—1 + u'z(n + ;')2 . (4.4)
where
Ms,E) =+’ + s Thw -1, (4.5)
u(s,E) =1+ 6E (4.6)
ts.8) =h (e +h 0 (h-e-1, (4.7)
if K # 0, and
Ms.E) =+ €. =1, (4.8)
2(s,6) = h_(h_n”' (- e -1, (4.9)

if K = 0. The basic conclusion that we can read off from (4.4) is that the strain
energy (4.1) is the function not only of the strains e, n and x but also of the
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gradient of £ and x, that is
®=0(e, n, x, €', x'). (4.10)

The detailed examination of the strain energy function (4.10) and the associated
constitutive equations for the rod we postpone until the Chapter 8. Here we only
note that the rod whose mechanical response is governed by the strain energy
function of the form (4.10) may be viewed as the one-dimensional counterpart of
the non-simple material in the finite elasticity (cf. [25], Sects. 28,98).
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5. Governing equations

The field equations and boundary conditions that are consistent with the
introduced assumptions may now be obtained from the two-dimensional principle of
virtual work. Let f£(s.g), p"—'(s) and t*(g) denote the body force, the external
forces acting on the rod faces and the external force applied to the rod ends,
respectively, all measured with respect to the undeformed configuration. For the
hyperelastic rod the two-dimensional principle of virtual work takes the form

1+ 1 +
6 H WdE = I (J £-6mdE +p peox’ + uTp e6x )ds +
0- 0 -
(5.1)
+
+ [I t*'éxdglé‘ .

where x(s) = x(s,+ l'%) and ui(s) =u(s,+ hg). From (3.13) and (3.18) we have

6AB = 6¢ X AB , (5.2)

and hence the virtual change of the position vector (3.25) is
6X = 6r + C6¢ X AZ + (Ceée +,Cn6n) A2 (5.3)
Here and henceforth a subscript indicates the differentiation with respect to the

underlying strains. Introducing (5.3) into (5.1) and making use of (4.1) the
reduced one-dimensional principle of virtual work takes the form

1 1
I 60ds = I (p*6r + 1-6¢ + £6e + ké6x)ds +
0 0

(5.4)

* - * * *
+ [N -6r+M~6¢+nae+m6x](J)'.

where



- 19 -

+
p(s) = I f1GE +uTp +uTp = PiA; + PyA, . ~ (5.5)
+
1(s) = A, x (J chde +petpt + 0 TTTp) = - 1k, (5.6)
+
£(s) = AZ-(I C_fade + u*c:p” +u7Cp), (5.7)
+
k(s) = AZ-(I g fudk +u'c’p 4T, (5.8)
+
N* = I t*dg = N*A1 + Q*Az ) (5.9)
+
M = A, X I Tt dE = - Mk, (5.10)
+
n o= AZ-(I ;Et*dg), (5.11)
+ . , ] .
n = Azo(j Cnt*dg), (5.12)

are the resulting external distributed and end loadings. Furthermore, according
to (4.10)

60 = N6e + Qb6n + M6x + née' + mbéx' , (5.13)
where the resulting internal forces and couples are defined by

N = oe(e), Q

o (e), M=20(p) (5.14)
n x

n=¢el(e), m=@n'(2), (5.15)
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with 2 = (e, n, x, €', »'). Introducing (5.13) into (5.4) and applying sub-
sequently integration by parts we obtain

1

j {(N-n'-£)6c +06n + (M =m' = k)&x}ds -

0
1

- ] (pe6r + 1+6¢)ds - (5.16)
0

+ [~ N*-6T - M*-é(b + (n - n_*)és + (m - m*)én]é = 0.
Next, from (3.21), (3.22) and (5.2) we have
=6 ~6¢ X =6 -6 XTI,

6eA, + 6nA

1 2

(5.17)
-~ 6xk = 6x = 6¢'.

With the use of (5.17) the principle of virtual work (5.16) may finally be
expressed in the form

1
- I {(N' + p)+6T + (M' + ' X N + 1)+6¢}ds +
0
. * - *
+ [(N-N)6r+ (M -M)*6¢ + (5.18)
+ (n - n*)be + (m - m*)éu]é' =0,
where the resultant force and couple vectors are defined by

N(s)

(N - n' - f)A1 + QA2 .
(5.19)

M(s) == (M-m -k)k.

i

From (5.18) we read of the local equilibrium equations
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N'+p=0,
(5.20)
M+ xN+1=0,
and the associated boundary conditions at s = 0,1
N=N" or T=1 ,
M=M* or ¢=¢* .
(5.21)
% *
n=n or e =g |,
* *
m=m or x=x .

Here the asterisk stands for the quantity prescribed at the rod ends. We next
note that on making use of (5.17) the boundary terms in (5.18) may alternatively
be expressed in the form

[(N=-N) 6T+ {M-T x(n-n)-Ml}op+
(5.22)
+(n-n)6T + (m~ m*)-éqa']é .

where

n= »nA1 ) m=-mk . . (5.23)

From (5.22) different though equivalent form of the boundary conditions follows.

The equilibrium equations (5.20) and boundary conditions (5.21) written in the
component form are

I
o

(N-n'-f)'-(K-n)Q+p1—

]
o

Q' + (K- x)(N-n' -£)+p, (5.24)

M-m -k)' -(1+€e)Q+n(N-n'"-£)+1=0,
and

* .
N-n -f=N or (x1 - x1)cose + (x2 - x2)51n6 =0,
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* * . *
Q=0Q or - (x1 - x1)51ne + (x2 - xz)cose =0,
M-m"-Kk= M* or ¢ = ¢* , (5.25)
* *
n=n or e =e |,
% %
m=m or x=2x |,
where
X, = x1 + u, X, = X2 + w, =9 -¢ . (5.26)

Using the strain-displacement relations (3.24)the geometric boundary conditions
(5.25)4 5 may equivalently be expressed in terms of the displacements

xi cose + xé sin@ - 1 =¢ ,
(5.27)

¢' = x

If the rod has a closed form (e.g. circular ring) the boundary conditions must be
replaced by suitable periodicity conditions.

The governing equations for our rod model consist of the equilibrium equations
(5.24), the constitutive equations (5.14) and (5.15), the kinematical relations
(3.24) and the boundary conditions (5.25). We note that the kinematical relations
(3.24) may be inverted to yield

xi(s) = (1 + ¢) cos(p - ¢) - n sin(e - ¢) ,

[}

xé(s) (1 + €) sin(eg - ¢) + n cosl(p - ¢) , (5.28)

¢'(s)

"
b

The equilibrium equations (5.24) and the constitutive relations (5.14), (5.15)
constitute the determinated system of equations for the strains e, n and ». If
these equations could be solved for the strains then the displacements may be
found by integration of the relations (5.28).
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6. Non-simple unshearable rod model

A particular version of the rod theory developed in the previous chapters is
obtained if the shear is constrained to vanish, i.e. vy = 0. This is equivalent to

replacing the assumption I) by more restrictive assumption:

Ia) material fibres initially normal to the reference curve remain normal to

it after deformation.

Then

A =-¢e, . $=B=9¢ -9, n=20, (6.1)
what implies the following form of the strain measures

e(s) =21 -1, x(s) = - (AK -K) =8"' . (6.2)
All kinematical relations for this particular case follow immediately from that

derived in the chapter 3 and 4 by introducing the constraints (6.1). In
particular, the expression (4.3) for I takes now the form

I(s.E) =2 +p2a +u 2% . (6.3)

with ¢(s.g) and A(s,E) given by (4.7) and (4.5) if K # 0 and by (4.9) and (4.8)
if K = 0. As a result the one-dimensional strain energy function is of the form

¢ =0(e, x, €', »') , ' (6.4)

and, consequently, the constitutive equations are

=2
Il

o (e), M=290(e), (6.5)
€ "

n= @e,(e), m = ¢n,(e) , (6.6)
with 2= (e, x», €', »'). The transverse shear force Q is no longer determined by
the constitutive relation but it plays the role of a Lagrange multiplier in the
equations in which it appears. The vector form (5.20) of the equilibrium equa-
tions and of the boundary conditions (5.21) remain valid. However, the component
form (5.24) of the equilibrium equations reduces now to the form
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(N-n' -=£)' - (K= xQ+p, =0,
Q + (K- n(N-n" -£) +p, =0, (6.7)
M=-m =k)'-(1+e)Q+1=0.

These equations may be reduced to two in number or, what means precisely the
same, the two vector equilibrium equations (5.20) may be reduced to one vector
equation. This is obvious, since the finite rotation vector ¢ = B8 = - Bk is no
longer the independent kinematical variable. It may be expressed as a function of
the position vector r. Indeed, from (3.11) we have

cosB = A-1E'°e1. A=Y Irer . (6.8)

Thus for the unshearable rod model the position vector r (or the displacement
field u) is the only independent kinematical variable.



- 25 =

7. Simple rod models

The another particular versions of the general theory with either shear defor-
mation accounted for or not may be obtained if in addition to the previous

assumptions we suppose that:

III) deformation of the rod is sufficiently smooth in the sense that the
contribution to the strain energy function ¢ of all terms containing &'
is negligible.

For the isotropic material being of primary interest to us this simply means that
the expression (4.3) for I may be assumed in the simplified form

I(s.€) = p=2a + 2 40722 . (7.1)

The most important implication of this assumption is this that the resulting
one-dimensional strain energy function takes the conventional form

o =0ao(e, n, ») . (7.2)

The field equations and boundary conditions for this version of the rod theory
can again be obtained by the reduction of the two-dimensional principle of
virtual work. However, if this is done exactly we encounter some difficulties.
Indeed, the resulting one-dimensional principle of virtual work takes again the
form (5.4) only now 6¢ is given by

60 = Nde + Q6n + M6x , (7.3)
where
N = d)e(e), Q= ¢n(e), M= ¢n(e) ) (7.4)

with 2 = (e, n, »). The local equilibrium equations and boundary conditions may
next be obtained as in chapter 5. Their compoment form would be (5.24) and
(5.25), respectively, with n = m = 0 in consistence with the form (7.2) of the
strain energy function. However, the order of the resulting equilibrium equations
precludes to satisfy five boundary conditions (5.25). In order to exclude this
inconsistency we must assume that the end foces n* and m* are sufficienty small
to be neglected (and this is the additional assumption). If so, then also the
distributed forces f and k may also be disregarded. As a result the one-dimen-
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sional principle of virtual work consistent with the strain energy function (7.2)

is
1 1
- * - * 1
I 60ds = I (p*6r + 1+6¢)ds + [N <6r + M '6¢]0 . (7.5)
0 0 ‘

Then the equilibrium equations and boundary conditions take the form

N'+p=20,
(7.6)
M+ xN+1=0,
and
* - -
N=N or r=r |,
(7.7)
* *
M=M or ¢=4¢ ,
or, written in the component form
N'-(K-n)Q+p1=O,
Q' + (K - »)N + P, = 0, (7.8)
M' - (1+e)Q+nN+1=0,
and
* * * .
N=N or (x1 - x1) cose + (x2 - xz) sine = 0 ,
Q= Q* or —(x1 - xT) sine + (x2 - x;) cose =0 , (7.9)
* ®
M=M or b=¢ .

In this way we arrive at the conventional structure of the rod theory (we call it
simple shearable model) developed in [5-7,22] within the direct approach and in
[16,17] by the mixed approach based on a weighted reference curve. The complete
set of equations for this theory consists of the equilibrium equations (7.8), the
constitutive equations (7.4), the kinematical relations (3.24) and the boundary



- 27 -

conditions (7.9). Clearly, the independent kinematical variables are r (or u) and
¢.

In passing it is worthwhile to observe that this version of the rod theory
though mathematically consistent involves a physical discrepancy. It lies in this
that the transverse normal deformation is suitably accounted for in the deter-
mination of the strain energy function and thus constitutive equations but no
change in thickness and the associated effects find their reflection in the form
of boundary conditions. In other words, no change in thickness can be specified
at the rod ends within this version of the theory.

We call the rod theory described by the equations (7.4) - (7.9) simple
shearable rod model. These equations may easily be modified to the case when the
shear deformation is constrained to vanish, i.e. ¥y = n = 0. The resulting theory

we shall call simple unshearable rod model.
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8. Constitutive relations

In the theory under consideration the stress resultants and couples are
defined as partial derivatives of the strain energy function with respect to its
arguments. We now derive the corresponding formulae. Here we again consider

general case, i.e. non-simple shearable rod model.

We define the following quantities

) - W

" _ oW o _ azw = __n

WD) =25, W (I)=>% . EB(I)==— , (8.1)
oI Wy

where it is assumed that Wor # 0 for the admissible values of the invariant I. In
fact, for real matrials we have W(I) > 0. This ensures that a material has
positive shear modulus [1]. Let further

e=(e,n, »,e', ') . (8.2)
Then differentiation of (4.1) yields

+
0 (2, 5) = Chy J W TpcE (8.3)

where a subscript p indicates partial differentiation with respect to the
arguments of ¢, i.e. p=¢, n, x», €' or »'. In the analysis of buckling problems
we shall also need second partial derivatives of the strain energy function. From

(8.3) we easily obtain

+
<bpq(e,s) = ChonI(Ipq + IpIq)udg . (8.4)

According to (4.4) we have

2

I(e;é) = u'zA +u A'1 + u'z(n + v)2 s (8.5)

where v = §'. Assuming now that K O from (4.7) one gets
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vie, n, €', n';é) = - (ae' + bx' + cK') ,
ale, x; é) =& _ .
J-E (8.6)
ble, n; £) = —=— |
2 ¥r
- 1 2 . 2
cle, »; §) =—1{C + > [Ku® - 1) + Kw - 1)1} ,
K 2K° VA
with A defined by (4.5) and
- -1
E=K-uxn=- (Gh + hox), K= - ho €y - (8.7)
Next, from (8.5), (8.6) and (4.5) we readily find
-1 . -1
Ie: =2 [(1 +e)G+pn (n +V)ve] ,
I =2uz(r| + V)
n
o=y (- K62 = 1) + 22" n + v i, (8.8)
-2
I.=~2% "alh+v),
-2
In, =- 21 by +v),
where
G=p-1 -p.BA—Z R (8.9)

Subsequent differentiation of (8.8) yields

-1 2 3-3  -1.2
IEE =2 {G+4(1 + &) p A~ +p [ve + (n + v)vee]} '
-1
Isn = Ve !
-1 -1 3,-3, =2 -1
Iex =2 {-2(1 +e)K p A " (p°=1) +4 [vevn + (n + v)vex]} ,
I = - Zu'z[av +a(n+v)]
ee’ E (] ’
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-2

Ien, = - 2u [ave + be(“ +wv)],

-2
I = 2
nn "
I =0,
nx
I, =-2"%, (8.10)
ne

-2

Inn, =-2n b,

-1 -2 3. -3, 2 2 -1..2
I’m = 2u {K A (0" =1)"+np [vn+(n+v)vm]},
I = - 2p'2 [av + a (ﬁ + v)]
x' - x ] ’
I = - 2u'2 [bv + b (n + v)]
axn' x X '

-2_2
Ie's' =2u "a ,

-2
IE'%' = 2“ ab ’

-2, 2
I, =27 .

The formulae (8.1) - (8.10) provide explicit form of the constitutive relations
for the rod made of an arbitrary hyperelastic material. We emphasize that the
constitutive equations derived above are exact within the assumptions I) and
II).

The formulae (8.1) - (8.10) may easily be reduced to the special cases of the
general theory discussed in Chapters 6 and 7 as well as to the case of the
iniatially straight rod, i.e. when K = 0.
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9. Buckling of straight rods
9.1 Formulation of the problem

Consider a straight rod compressed along its axis by forces P applied through
rigid plates at the rod ends (Fig. 2). The plates are assumed to be
well-lubricated and constrained such that they remain perpendicular to the axis.
Let a material of the rod be hyperelastic, isotropic, and incompressible so that
its mechanical properties are determined by a strain energy density (2.13). In
the three-dimensional sense the rod we are concerned with here is to be viewed as
the infinite rectangular strip. This is consistent with our interpretation of the
planar deformation of rods.

For sufficiently small values of the forces P the deformation of the rod will
be homogenous with the rod axis remaining straight. The strains in this state are
uniquely determined by the axial stretch A ==L/Lo, where Lo and L denote the
initial and current length of the rod. The buckling problem is then formulated
as: determine the critical values Pc of_the load and the critical stretches Ac
for which the deformation ceases to be homogeneous. This problem has been studied
by many authors within the three-dimensional finite elasticity under the
plane-strain assumption (cf. [14,20,21]). It was shown there that the buckling
phenomena is not necessarity associated with the slenderness of the rod and may
occur in very thick one. Moreover, the asymmetric (flexural) as well as symmetric
(bulging) instability has been observed.

In this chapter we reconsider the problem employing the rod theory developed
in this paper. The analysis is carried out within general theory (non-simple
shearable rod model) as well as within particular cases of this theory. In this
way we shall illustrate the significance of various implifications usually made
in the derivation of the basic rod equations.

9.2 Non-simple shearable model

In the absence of the distributed loads the equilibrium equations (5.24) take
the form

I
o

(N-n")'" + xQ ,

]
o

Q' - »(N - n') , (9.1)
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Fig. 2 Straight rod under axial compression, initial

and pre-buckling state
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M-m)" -(1+e)Q+ niN-n")=0.

Moreover, since the rod may freely expand in the direction normal to the axis the
associated boundary conditions are

4

N-n"=-P, Q=¢=n=m=0, s=0,L. (9.2)

The equilibrium equations (9.1) and the boundary conditions (9.2) supplemented by
the constitutive equations (5.14), (5.15) and the kinematical relations (3.24)
constitute the non-linear boundary value problem to be analized. This boundary
value problem admit a trivial solution €= A - 1, v = b, = 0 and hence n o= %"

o o)
€ (') = n"3 = 0 corresponding to a straight unsheared state of the rod. With g
defined by (8.2) we shall denote the trivial solution by R = (» -1,0, 0, 0, 0).
Moreover, we take the reference curve of the rod to be the middle one so that £€

[-17 .+ -;-]. Then from (8.5), (8.8), (8.3) and (5.14), (5.15) we have

I() = I(g: e ) = 22 e a2 ' (9.3)
and

N = 6%0) = 0_(e)) = 2en WA - A7) (9.4)

Q®=m°=n=n=0, (9.5)
where

W2 = WO(A) = W (T_) (9.6)

Introducing now (9.4) and (9.5) into (9.1) and making use of the boundary condi-
tions (9.2) we find out that the eguilibrium equations reduce to the single
algebraic equation for the axial stretch A

o

05(1) +P=0. (9.7)

This equation may be rewritten in the form

(9.8)

WI(x - 3 +p =0, pF=

Moreover, from (4.9) we easily obtain that the initial and current rod thickness
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are related by h = A-1h°. It is to be noted that the obtained trivial solution
contains no approximation and thus it is exact in the sense of the three-dimen-
sional finite elasticity (cf. [14,20]).

In order to determine possible buckling states of the rod we now set

e =g +eg . (n, », €', »n') = (n1. x . €7. ni) , (9.9)

N=NC+N, . (Q M n, m= (Q1. M

1 1°

where 31(5),...,m1(s) denote the increments of the respective quantities that
take the rod from the trivial solution to the adjacent equilibrium state (they
can be taken as small as we wish). Substitution of (9.9) into (9.1) and sub-
sequent linearization about the trivial solution yields the following buckling
equations

(N1 - ni)' =0,
Q - yN” = 0, (9.10)

1y o o
(M'I - m1) AQ.] + r|1N

=0 .
The corresponding linearized boundary conditions obtained from (9.2) are

Ny-n=0, Q =¢,=n,=m =0 at s=0,L. (9.11)

Furthermore, straightforward though rather lenghy calculations with the use of
(8.4) - (8.10) and employing de l'Hospital rule yield

¢° = 2ch_ W° [1 + nt42z°%0 - A'3)2] ,
ee o I
(o] "0
onn = ZCho WI s
o) 2 3.0 (.=-6 1 .0 -4.2
an =—3-Ch° I[A +§'... (1 - a )],
(9.12)
o 1 30 -4

oe'e' 6 "ol ’
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o 1 S o .-6
‘pn'n' ~ 16 Cho I A d
o) 1 30 . -3
Cnt =T 17 B W A

with remaining second partial derivatives of ¢ vanishing at the trivial solution.
Here ¢° o™ o) and =° = E(Io), where E is defined by (8.1). According to

]

(9.12) the linearized constitutive relations about the trivial solution are given
by

O (¢]

e} \ _
Ny =% € - Q = q>r|r'| Ny °nx' Moo M=%
(9.13)
o . _ .0 o ,
Ny =0 & - M = ¢n'r| N1 T lx ¥
In turn, the linearization of the kinematical relations (3.24) yields
e1(s) =u. n1(s) =Wy o+ M. x1(s) =4 - (9.14)

In consequence the linearized egquilibrium equations (9.10) and the associated
boundary conditions (9.11) reduce to the form

N1 - ni =0

Q -8 ¢, =0, selo, L] (9.15)
Mj - mit - AQ + 8 n, =0,

Q1=¢1=n1=m1=0 at s = 0, Lo (9.16)

Finally, upon making use of the constitutive equations (9.13) the buckling
problem (9.15), (9.16) may be reduced to two separate nonlinear eigenvalue
problems for the axial stretch A

r -2 —
ey’ - ho j"(}\)e.l =0, s €[0, Lo]
(9.17)
e.‘l(_O) = e.i(Lo) =0,

and
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v -2 -4 _
¢y - hg k(l)d;,l - ho h(l)¢1 =0, s [0, Lo]
(9.18)
¢1(0) = "’1(Lo) = q,]"(o) = ‘l'i'(Lo) =0,
where
FOO =1203 + 2%+ 2272 %1 -aH? (9.19)
k() =5 () =603 + 2%+ 2272 °(1 -aH? (9.20)
4
r(A) = 72001 = a%h (9.21)

A number Ae for which (9.18), respectively (9.17), has non-trivial solution is an
eigenvalue (critical stretch) of the problem and the corresponding solution. is an
eigenfunction (bucklirig mode). We note that once the critical stretch is
determined the corresponding critical force Pc may easily be found from (9.8).
The existance of the non-trivial solutions to the problems (9.17) and (9.18)
critically depends on the behavior of a material the rod is made of. In order to
ensure that a material is well-behaved physically we adapt the ellipticity condi-
tion as a constitutive restriction (see [1] for the implications of loss of
ellipticity). Abeyaratne [1] has show that for the plane strain problem

1+ 2(I -2)E(I) >0, (9.20)

is the necessary and sufficient condition for ellipticity (as before we also
assume that T;II(I) > 0). From (9.12)1 and (9.3) we find that the ellipticity
condition (9.20) implies that QZE(A) > 0. Thus @z(l) is the monotonous increasing
function of the axial stretch A. In consequence of this result we find that A < 1
for the compression of the rod and A > 1 for its tension. Furthermore, the
ellipticity condition (9.20) implies that f(A) defined by (9.19) is positive,

F(x) > 0. Consequently the only solution of the problem (9.17) is the trivial

solution €4 (s) = 0. Hence there are no eigenvalues of this problem.

In turn, for the compression of the rod, i.e. for A < 1, the ellipticity
condition (9.20) implies that Ao is an eigenvalue of the problem (9.18) if

h
2 2.2,70,2
‘/k (AC) + 4 h(}\c) - k(lc) =2n"=n (L—) R ' (9.21)

o

for n = 1,2,... . The corresponding eigenfunctions (flexural buckling modes) are
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¢,(s) = sin (%::).

The results of a numerical solution of (9.21) are shown in Fig. 3 and 4. The
comparison with the three-dimensional solution [20] shows that the rod theory
developed in this paper provides correct solution to the problem even for
relatively thick rod. However, there exists fundamental divergence in the solu-
tions when the slenderness parameter L.o/ho tends to zero, i.e. when the rod
becomes a thin wafer. Also, the rod theory does not reveal the existance of the
symmetric type of buckling. Moreover, as it is evident from Fig. 4 the experimen-
tal results (8] show generally poor agreement with either the three-dimensional

or rod theory solutions whenever L o/ho is smaller than 2.0 .

9.3 Alternative rod models

Following the same way we can now obtain the solutions to the problem
employing particular versions of the general rod theory discussed in Chapters 6
and 7. The representative results are shown in Fig. 5. As it is seen from this
Fig. the shear deformation has great influence on the buckling behaviour of
rods.
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