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Summary

Basic relations of the non-linear theory of thin elastic shells are reviewed.
Various sets of equilibrium equations and compatibility conditions as well as
corresponding work-conjugate static and geometric boundary and corner conditions
are derived in terms of displacements of the shell middle surface, in terms of
rotations and other fields as well as in terms of two-dimensional strain and/or
stress measures as independent variables. The final non-linear shell relations
are consistently simplified under assumption of small strains. Displacement shell
relations are simplifiéd further under the consistently restricted rotations,
while the intrinsic shell equations are consistently simplified for various
ratios of extensional and bending strains. In the case of conservative surface
and boundary loadings appropriate variational functionals are constructed for
displacement and rotational shell equations. Apart from the comprehensive review
of achievements in the field of derivation of various versions of the
first-approximation geometricalaly non-linear theory of thin elastic shells
several original contributions to the field are given as well.

Zusammenfassung

Eine Ubersicht iiber die grundlgenden Beziehungen der nichtlinearen Theorie
diinner elastischer Schalen wird zusammengestellt. Verschiedene Formen der Gleich-
gewichts- und Vertrdglichkeitsbedingungen sowie derén conjugierte statische und
geometrische Rand- und Eckbedinqungen werden hergeleitet, wobei entweder
Verschiebungen der Schalenmittelflache oder Rotationen zusammen mit anderen Feld-
gréfen oder zweidimensionale . Dehnungs- und/oder Spannungsgrofen als unabhangige
Variablen auftreten. Die resultierenden nichtlinearen Beziehungen werden unter
der Voraussetzung kleiner Dehnungen konsistent vereinfacht. Die Verschiebungs-
beziehungen der Schalentheorie werden durch konsistent begrenzte Rotationen
weiter vereinfacht. Die Schalengleichungen, in denen die Dehnungs- und/oder die
Spannungsgrofien als unabhdngige Variablen auftreten, werden fiir verschiedenen
Verhdltnisse der Membrandehnungen zu den Biegedehnungen ebenfalls vereinfacht.
Fir konservative Fldchen- und Randbelastungen werden geeignete Variationsfunk-
tionale in Verschiebungen oder Rotationen konstruiert. Neben einer umfassenden
Ubersicht ilber die Fortschritte auf dem Gebiet der Herleitung verschiedener Ver-
sionen der ersten Approximation der geometrisch nichtlinearen Theorie diinner
elastischer Schalen werden auch mehrere neue Beitrdge vorgestellt.
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PeswMe

JaHo obCyxneHHe OCHOBHBIX 33aBHUCHMOCTEH HEJHHEHHOH TeOpHH TOHKHMX YNPYIHMX O60-—
JIOYeK. PacCMOTpeHs [a3fIMYHNEEe BHIH YPaBHEHHI! PaBHOBECHA H YCJIOBHM COBMECTHOCTH redop-
MAlMK & Takxe COOTBETCTBEHHHE JHEPIeTHYECKH COIVIACOBaHHHE CTATHYECKHE H I'€OMETPHYeC—
KHe KpaeBhe YCJIOBHSA M YCJIOBHS B YIVIOBHX TOUKaxX Kpad OBQJIOWKM. DTH OCHOBHHE CHCTEMH
. 3aBHCHMOCTEH BHpaXeHH Yepe3 IEpeMelleHHsT CPeIMHHON NOBEPXHOCTH OGQNIOYKH WM Yepe3 Io—
BOpPOTH U IpYyrde IapaMeTrhl W Xe Yepes IBYMEPHHE MepH OeGorMALMM H/WHM HAINpsDYeHHH
KakK He3aBHCHMEE TepeMeHHEEe. Paspelaianye CHCTEMn HeJHMHENHHEIX YpaBHEeHHH TeOpHH O60JioueK
COOTBETCTBEHHO YNPOWESHH NPH NPeITIoNOXeHHH 4YTO mefopMali BCIy MaVH. YpaBHEeHHs1 060-—
JIOUEK B MEPEeMEeleHHsIX HOTNOIIHUTENBHO YTPOMEHH NP OIPAHHYEHHH BEJIMYMHE! ITOBOPOTOB, a
YPaBHEHMA O6QUIcYeK B Mepax medopMalpit H/WH HanpsDkeHWH OOTIOTHHTEHHO YIPOWeHs! TIPU
NPeToNIONeHA Pa3IMYHEX COOTHODSHHMN MeMOpaHHOM M H3TH6HON mepopmalpni. B Cyiydae KOH—
CepBaTHBHOA TIOBEPXHOCTHOH M KpaeBOM HArpy3KH IOCTPOSHH COOTBETCTBEHHEE BapHALMOHHHE
OYHKIMOHUH U1 TEOPMH OGQJIOVEeK B IepeMelleHHAX WM B INOBOPOTaxX M OPYTHX NapaMeTrpax.
Kpome 0O6CTOATENBHOIrO 0630pa OOCTHKeHH!E B OWIACTH NOCTPOSHHS PA3/IMUHEIX BApHAHTOB He-
JHMHEHHON TeOpHH NEPBONO IPHOIDYeHMA TOHKHMX YINPYTHX O6QioueK, B pafoTe IpelCcTaBJIeH
TaloKke pAn HOBEIX DPe3yJIbTaTOB aBTOpa B STOH OGNACTH.

Streszczenie

W pracy przedstawiono podstawowe zaleznos$ci nieliniowej teorii powlok sprezys-—
tych. Rozwazono rézne postacie réwnand réwnowagi i warunkéw ciagtosci odksztatcen
oraz odpowiednie energetycznie spéjne statyczne i geametryczne warunki na brzegu i
w narozach powtoki. Zaleznosci te wyprowadzono przyjmujgc jako zmienne niezalezne
albo przemieszczenia powierzchni $rodkowej powioki lub obroty i inne parametry lub
tez dwuwymiarowe miary odksztaicend i/lub naprezer. Koricowe nieliniowe zaleznosci
teorii powtok konsekwentnie uproszczono przy zatozeniu matych odksztalceri. Prze-
mieszczeniowe réwnania powlok sa dodatkowo upraszczane przy konsekwentnie ograniczo-
nych obrotach, podczas gdy réwnania powlok wyrazone przez miary odksztatcer i/lub
naprezeri sa dodatkowo upraszczane przy zatozeniu réznych stosunkéw odksztatcerl
gietnych i btonowych. W przypadku zachowawczych obcigzer powierzchniowych i brze-
gowych skonstruowano odpowiednie funkcjonaly wariacyjne nieliniowej teorii powiok
wyrazonej w przemieszczeniach lub w obrotach i innych parametrach. Oprdécz wyczerpu-
jacego przegladu w dziedzinie budowania réznych wariantéw geametrycznie nieliniowej
teorii pierwszego przyblizenia cienkich powlok sprezystych, praca zawiera réwniez
szereg nowych rezultatéw autora w tej dziedzinie.
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1. Introduction

Shell theory attempts to describe the mechanical behaviour of a thin
three-dimensional solid layer - the shell - by a finite number of fields defined
over its reference (usually middle) surface. Since this is not possible, in
general, the shell theory is an approximate one virtually by definition. It can
not provide a complete and exact information about all three-dimensional fields
describing the mechanical behaviour of the shell. However, the results which
follow from such two-dimensional approximate description of the shell are usually
sufficiently accurate for the majority of applications in science and technology.
At the same time, the two-dimensional problem resulting from an appropriate shell
theory is much easier to handle than the original three-dimensional one.

This report deals with one of the simplest formulations of the shell theory:
the geometrically non-linear first-approximation theory of thin elastic shells.
This theory is applicable when:

a) the shell is made of a homogeneous, isotropic and elastic material:

b) the shell is thin, i.e. h/R << 1 , where h is the constant thickness of
the undeformed shell and R 1is the smallest radius of curvature of its

reference surface o« :

c) the undeformed reference surface is smooth, i.e. (h/l)2 << 1 , where 1 is
the smallest wave length of geometric patterns of o

d) the shell deformation is smooth, i.e. (h/L.)2 << 1 , where L is the smallest

wave length of deformation patterns on o4 :

e) the strains are small everywhere, i.e. n << 1, where n is the largest
strain in the shell space.
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Under an additional restriction of rotations of material fibres to be also small
everywhere, the geomatrically non-linear theory reduces to the classical linear
first-approximation theory of shells, which was discussed in detail in many
papers and books, for example [135,296,79,83,175,275,75,39,158,85,228,26].

Within the assumptions given above the behaviour of an interior domain of the
shell can be described with a sufficient accuracy by the behaviour of the shell
reference surface. Already ARON [13] approximated the shell strain enerqgy density
by a sum of two quadratic functions describing the stretching and the bending of
the shell reference surface. LOVE [135] came to the same conclusion by the
application of two well known constraints, analogous to those used by KIRCHHOFF
(111,112] in plate theory (cf. NOVOZHILOV [175]). The accuracy of such so called
Kirchhoff-Love shell theory was &examined in a number of papers
(177,79,80,113,118,50,123,212,26]. In particular, NOVOZHILOV and FINKELSHTEIN
[177] and KOITER [113] pointed out explicitly that within the basic assumptions
the quadratic expression of LOVE [135] for the shell strain energy is a
consistent first approximation. Moreover [113], various versions of the shell
theory, which differ from the version given by LOVE [135] only by terms of the
order of n/R in the definition of the two-dimensional measure of change of
curvature, should be regarded as equivalent from the point of view of the first
approximation to the shell strain energy. Since the consistently approximated
strain energy of the shell is expressed entirely in terms of two-dimensional
strain measures of the reference surface, the conclusions are valid both for the

linear and for the geometrically non-linear theory of shells.

Although some geometric results about the non-linear deformation of the shell
space had been given already by LOVE [135,Ch.24], DONNELL [54,55] and MUSHTARI
[146,147] seem to be the first who proposed the simplest non-linear theory for
stability analysis of cylindrical shells. MARGUERRE [144], MUSHTARI (148,149] and
VLASOV [294] developed the non-linear theory of shallow shells which was applied
with a great success to a number of problems of flexible shells analysed for
strength, deformability and the loss of stability. In particular, applying
Marguerre's theory KARMAN and TSIEN [107] discovered that the axial compressive
forces applied to a cylindrical shell droo considerably in the post-buckling
range of deformation. This differed qualitatively from the behaviour of
compressed bars and plates, but was in a good agreement with the experimental
results for cylindrical shells. Many results obtained with the help of the
non-linear theory of shallow shells have been summarized in the books of VLASOV
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[(296], VOLMIR [297,298], MUSHTARI and GALIMOV [157], KORNISHIN [121], BRUSH and
ALMROTH [35], KANTOR [105] where further references may be found.

The foundations for the general geometrically non-linear theory of elastic
shells were laid down by CHIEN [44]. He expanded all three-dimensional fields
into series of the normal coordinate and applied order-of-magnitude estimates
valid under the assumption of small strains. As a result, three equilibrium
equations and three compatibility conditions were derived in [44] in an invariant
tensor notation, which were then expressed in the intrinsic form, in terms of
two-dimensional strains and changes of curvatures of the shell reference surface.
Under additional assumptions about the thinness of the shell and the smallness of
its curvature, 27 types of approximate versions of the intrinsic shell equations
were given. It was assumed in [44] that when h - 0 the limits of some functions
do not change their order upon the surface differentiation. This assumption was
criticized in [77,85] as to be applicable only to a limited class of shell
problems. It was also recognized that only special problems can be formulated and
solved directly in the intrinsic form. As a result, the very general approach of

[44] has gained little attention in the following papers.

Alternative two-dimensional formulations of the non-linear theory of shells
were given in an invariant tensor notation in the series of papers by MUSHTARI
- [150-154], GALIMOV [62-70] and ALUMAE [4-8]. It was assumed there from the outset
that the behaviour of the shell can be described with a sufficient accuracy by
the behaviohr of its middle surface. While Mushtari and Galimov presented several
forms of shell relations in the natural bases of the undeformed and of the
deformed surface, Alumde derived his non-linear shell relations in the
intermediate non-holonomic basis, which was obtained from the undeformed basis by
its rigid-body rotation. Unfortunately, some of these original results were
published in the local -journals which even today are hardly available outside the
Soviet Union. The monograph by MUSHTARI and GALIMOV [157] was written in the
classical notation, using initially orthogonal system of coordinates coinciding
with lines of principal curvatures of the undeformed surface. It provided well
documented sets of the shell relations for simplified non-linear theory of medium
berding and ‘for the one of shallow shells. However, not all of the general
results published in the original works of the authors were presented in their
monograph with a sufficien{: generality and accuracy. In the classical notation
some intermediate formulae became extremely complex and had to be simplified by
omitting some terms which were supposed to be small. This raised some doubts
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about the consistency and the range of applicability of the final relations of
the geometrically non-linear theory of shell, cf. [115].

Various equivalent forms of the non-linear relations for thin shells were
independently rederived and developed further by RUDIGER [211], LEONARD [128],
SANDERS [215], NAGHDI and NORDGREN [162], KOITER [115,116], WOZNIAK [299],
BUDIANSKY [36], SIMMONDS and DANIELSON [247,248], REISSNER [208] and
PIETRASZKIEWICZ [182-185]. In particular, concrete error estimates given by JOHN
[101,103] and BERGER [30] for the two-dimensional differential equations of the
geometrically non-linear theorv of elastic shells strengthened the foundations of
the theory and established more precise bounds of its applicability. DANIELSON
[49] and KOITER and SIMMONDS [120] worked out the refined intrinsic shell
equations which were expressed in terms of internal stress resultants and changes
of curvatures as independent field variables (cf. also [185,190]). SIMMONDS and
DANIELSON [247,248] proposed the set of non-linear shell equations in terms of
finite rotation and stress function vectors as independent variables and
constructed an appropriate variational principle. PIETRASZKIEWICZ and SZWABOWICZ
[201] derived entirely Langrangian non-linear shell equations in terms of
displacements as independent variables. In case of dead surface and boundary
loadings these equations were derivable as stationary conditions of the
Hu-Washizu functional (cf. also [197]). Theory of finite rotations in shells
developed by PIETRASZKIEWICZ [185,190] allowed then to work out the consistent
classification of approximate versions of displacement equations for shells
undergoing restricted rotations [195,197].

Various general theoretical aspects of the non-linear theory of thin shells
are discussed also in the books by KILCHEVSKII [110], TEREGULOV [273], NAGHDI
[159], GALIMOV [71), PIETRASZKIEWICZ [185,190], GRIGOLYUK and KABANOV [89], MASON
[145], WOZNIAK [300], WEMPNER [291], DIKMEN [S53], ZUBOV [304], BERDICHEVSKIY
[28], BASAR and KRATZIG [26], GALIMOV and PAIMUSHIN (73], CHERNYKH [42] and
AXELRAD [15,17] as well as in the reviews or extensive papers by GOLDENVEIZER
(78], KOITER (117], MUSHTARI [155,156], NOVOZHILOV [176], BASAR [20], LANGHAAR
[(127], PIETRASZKIEWICZ [187,191,193], KOITER and SIMMONDS [120], WOZNIAK [301],
SIMMONDS [243], NAGHDI [160,161], SCHMIDT and PIETRASZKIEWICZ (224], ATLURI [14],
LIBAI and SIMMONDS [133], SCHMIDT [222], STUMPF [263] and SZWABOWICZ [271], where
further references may be found. One-dimensional problems of the non-linear
theory of elastic shells are extensively treated by SHILKRUT [237], SHILKRUT and
VYRLAN [238], VALISHVILI [285], ANTMAN [10] and, in particular, by LIBAI and



SIMMONDS [134].

The behaviour of the shell near its lateral boundaries, i.e. in an edge zone
of depth of the order of the shell thickness, is nearly always essentially
three-dimensional. The physical explanation of this statement is quite simple.
The external (or reactive) stresses applied to the shell lateral boundary surface
are statically equivalent to the external force and moment resultants on the
reference boundary contour plus some self-equilibrated part of the stress
distribution over the lateral boundary surface. The resultants enter into the
boundary conditions of the basic boundary-value problem which describes correctly
the shell behaviour in its interior domain, far from its lateral boundary sur-
faces. The self-equilibrated part generates additional stresses in the shell
space which are localized in the edge zone. Within the linear shell theory these
additional stresses may be calculated approximately as some linear combinations
of solutions of the plane and anti-plane problems for a semi-infinite strip
[(82,83] and then may be added to the basic stress state associated with the
resultants, (cf. also [91]). An extension of this approximate method, based on a
superposition of elementary stress states, to the non-linear range of deformation
may not always be correct, in particular near the stress states associated with
the bifurcation or limit points of solutions of the basic boundary value problem.
Additionally, the exact stress distribution over the shell lateral boundary sur-
face is rarely known in the majority of engineering problems, except in the case
of a free edge. As a result, within the geometrically non-linear theory of shells
little has been achieved in better two-dimensional description of the shell be-
haviour in the edge zone. Some approximate results have been given by KOITER and
SIMMONDS [120] and NOVOTNY [172].

In this report basic relations of the non-linear theory of thin elastic shells
are reviewed. Various consistent sets of the non-linear shell equations in terms
of displacements, in terms of rotations and some other field variables as well as
in terms of two-dimensional strain and/or stress measures as independent
variables are discussed. The final non-linear relations are then consistently
simplified under the assumption that strains are small, while displacement equa-
tions are simplified further under consistently restricted rotations. For some
types of conservative surface and boundary loadings appropriate variational func-
tionals are constructed for displacement and rotational non-linear shell equa-

tions.

During preparation of this report it became necessary to clearize some
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theoretical problems which have not been fully treated in the literature. Among
those new results is a discussion of integrability of kinematic boundary condi-
tions, the construction of the general form of the work-conijugate static and geo-
metric boundary conditions for displacement shell equations, alternative deri-
vation of the rotation shell equations in the rotated and in the undeformed
basis, the construction of the variational functional in terms of rotations,
displacements and Lagrangian multipliers as well as an alternative derivation of

the refined intrinsic shell equations.

The literature on various aspects of the non-linear theory of shells is very
extensive and some kind of selection of references has to be made. The references
in this report are given primarily to those original papers and monographs which
deal with general aspects of the theory and are written in the invariant tensor
notation. Other original papers and monographs, which are written in classical
notation or which are dealing with special shell geometries, are referred on the
basis of their historical or informative value. Although it is believed that the
most important papers, which deal with the derivation of various invariant forms
of non-linear shell relations, are included into the list of references, no

attempt is made to provide the complete list of such references.

It is worthwhile to point out here once again that some of the two-dimensional
relations of the non-linear theory of thin shells are derived by taking a
difference between two groups of terms of the same order associated whith the de-
formed and undeformed reference surface. In the derivation process it often
happens that the principal terms of those groups cancell out and the seemingly
secondary terms are the only ones which appear in the final shell relations. In
the geometrically non-linear theory of shells, in which strains are assumed to be
always small, it is quite dangerous to simplify the intermediate relations by
droping terms of the order of strains relative to the unity, since then the final
relations may happen to be inconsistent or even incorrect. This has actually
happened in several early papers devoted to the derivation and simplification of
the geometrically non-linear theory of shells. In this report all two-dimensional
relations associated whith the reference surface are derived for unrestricted
strains. The small strain assumption is then used at the end of derivation

process to simplify the final set of non-linear shell relations.

Stability analysis of flexible shells is one of the most important possible
applications of the geometrically non-linear theory of shells discussed in this

report. The literature on various approximate versions of the stability equations
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for thin shells is extensive and has to be reviewed separately. The stability
equations are usually derived as a result of superposition of two or more
non-linear deformations of the shell. Since different types of approximation may
be used to describe the first (basic) deformation and the following (superposed)
deformations, a large variety of types of the shell stability equations for thin
elastic shells may be constructed. We only note here that problems of super-
postion of deformations and derivation of various types of stability equations
have been discussed, among others, by NOVOZHILOV [173], KOITER [114], MUSHTARI
(153], ALUMAE [5,6], MUSHTARI and GALIMOV [157], TIMOSHENKO and GERE [278],
DAREVSKII [52], VOLMIR [298], BOLOTIN [32,33], KOITER [116], BUDIANSKY [36],
DANIELSON and SIMMONDS [51], SEIDE [229], ABE [1], BASAR [21], BRUSH and ALMROTH
[35], zuBov [303], GRIGOLYUK and KABANOV [89], TALASLIDIS [272], van der HEIJDEN
[92), STUMPF [257-263), SRUBSHCHIK [358], BASAR and KRATZIG [22,26], KRATZIG et
al. [124,125], STEIN et al. [252,253], ECKSTEIN [59], ARBOCZ [11], NOLTE
[164,165], SCHMIDT and STUMPF [225] and PIETRASZKIEWICZ [197], where further

references are given.

It is not the aim of this report to review recent achievements in the
large-strain non-linear theory of thin shells. Suffice it to point out that many
two-dimensional relations collected here are applicable alsc to this more general
case of shell deformation, provided that the behaviour of the shell is still
approximated only by the behaviour of its reference surface. Such simple versions
of the large-strain K-L type theories of shells were proposed recently by
CHERNYKH [40,42], SIMMONDS [246] as well as by STUMPF and MAKOWSKI [264].
However, the change of, the shell thickness during deformation should then be
taken explicitly into account not only in the approximate form of the strain
energy density but also in definitions of the external force and couple re-
sultants applied to the shell reference surface and on its boundary contour.
Outside of this review are also the more advanced models of shells in which the
behaviour of the shell is described not only by the behaviour of its reference
surface but also by additional higher-order indepvendent parameters. We share the
view expressed by KOITER and SIMMONDS [120] that the rapid development of numeri- -
cal techniques in three-dimensional problems, in particular the finite element
technique, may obviate the need of (complicated) refined shell theories in the
near future.



2. Notation and geometric relations

The notation which will be used in this report follows that of KOITER [115]
and PIETRASZKIEWICZ [185,190,193,197]. In order to make the paper self-contained
we review here the notation and some basic geometric relations of the surface and

its non-linear deformation.

Let ¥ be the region of the three-dimensional Euclidean space & occupied by
the shell in its undeformed configuration. In ¢® we introduce the normal system of
2,C) such that - h/2 £ T < h/2 is the distance from
the middle surface o# of & and h is the undeformed shell thickness, assumed

here to be constant and small as compared to the smallest radius of curvature R

curvilinear coordinates (e1 ,0

of o/ and to the linear dimensions of & .

The surface ol is described by the position vector r = xk(ea)ik, k=1,2,3 ,
a=1,2, where ].k is an orthonormal basis attached to a point O €& . With each

point M ed we associate the natural covariant base vectors a = ar/ae" = L

the covariant components amB = am-aB of the surface metric tensor a with the

aB

determinant a = |a the contravariant components € of the permutation

ol
tensor such that e1 = - 321 = 1/Ya, 511 = 822 = 0 , the unit normal vector n =

%—euﬁaa X aB and the covariant components b w8 = a - n, B of the curvature tensor
b . Contravariant components amB of a , satisfying the relations a%a

By
6; , Where 6: = 6% =1, 612 = 6? =0 , are used to raise indices of the surface

vectors and tensors, for example a® = amﬁaB , b: = ambYB , etc.
The boundary contour & of o¥ consists of the finite set of piecewise smooth
curves given by r(s) = r[6®(s)] , where s is the arc length along . C . With

each regular point M e  we associate the unit tangent vector t = dr/ds = r' =

t%a and the outward unit normal vector v = ar/asvl a = r,,= txn= vaau , Vo=

a
eaBt

, Wwhere s, is the arc length of the coordinate line on e which is

orthogonal to C . curvature properties of C are described by the normal
curvature o, = buBtutB , the geodesic torsion T, o= - bm;vmtB and the geodesic

curvature x = tavaIBtB , where ( )lm denotes the covariant surface derivative
on ol . For other geometric definitions and relations on o« and O we refer to

PIETRASZKIEWICZ [185,190,193].

The deformed configuration ol of the surface o is described by the position
vector relative to the same Cartesian frame

T = i“(e“)ik =x(r) =r+u , (2.1)
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where 6% is the same surface curvilinear convected (material) coordinates and
u = umam + wn is the displacement field. Geometric quantities and relations,
which may be analogously defined on o and @ on a point M with the same

values of 6” or s, will be marked by an additional overbar: 5“, EGB, a, & B, n,
= = =0f - = 0 - =a = - -
basl bl a ’ ( )Ilaf S' t' t !’ vl ‘) ’ ot' Tt' nt etc'
For the base vectors on o the following relations hold
a =G =1 +on
A T T LA TR
(2.2)
- A
n =Gr=n a, +nn,
where
1«3’%5*%3"“«3 , °a=w'a+b“;. ,
(2.3)
9 =-1—(u +u,; ) -b w w =—1-(u -u ,)
o~ 7 al8 T Bla B ' "aB T 2 Bla ~ “al’ *
1 1 a
By =y . =g, d=Yg,
(2.4)
_ _aB A _1 aB A
mo=e E:quaml.B ;o M= ekul'al'B ’
G=5ana°‘+ﬁ@n, G'1=aaa5°+nuﬁ. (2.5)

Here G = 9x/dr is the deformation gradient tensor of the surface o/ while @
is the tensor product.

The Lagrangian surface strain tensor y and the tensor of change of surface
curvature x are defined by

1

‘Y="2-(GT

G-1) =vy_a" B

g ¥

(2.6)
B

x=- (GBG-b) =z ,a" @ a )
af



=l ca= & 5. -a
YaB 2 "aB oB 2 7'a T'B aB
(2.7)
1,.A
= 7(]'%1118 + 0.9 - aaB) ,
*p = " (baB - baB) =
(2.8)
= amon,B + bc‘B =-a ’B-n + baB
=1 (n"] -bln)+q>(n +Bn)+b (2.9)
Aa B B a ‘B B A oB -
A A A .
= = n(<p°|l|B + bglm) - nx(l'uIB - bBcpa) + baB , (2.10)

where 1 = a @ aa + nan is the metric tensor of the Euclidean space S .

According to [64] the strain-displacement relations (2.7)2 and (2.10) were
given first by MUSHTARI [150]. They were applied, among others, in the papers
[64,215,115,183,185,291,36,71,72]. The importance of an equivalent representation
(2.9) for xg Was recognized only recently by PIETRASZKIEWICZ and SZWABOWICZ
(20] and was applied, for example, in [197,198, 267,271,218-222,225,164,165,262,

263]. o

Note that Yo

derivatives while 8 are non-rational functions of u,,w and their first as

well as the second surface derivatives. The non-rationality is caused by the

are quadratic polynomials of u, v and their first surface
presence of the invariant d in the definitions of n, and n appearing in (2.9)
and (2.10), where

d2=

o

=1 e 2(7273 - 7;75) ) (2.11)

Components of the Lagrangian surface strain measures should satisfy the
compatibility conditions originally derived by CHIEN [44] and rederived by
GALIMOV [63,65] (with the sign error) and KOITER [115]. We present them in the

form given in [185]



o8 Au xv -
€ [ [,‘BAI + a (b A - XM)Y\,Bu] = 0 ’
(2.12)
% aB Ap 1 =X\ _
Ky +¢€ ¢ [YaulBl - buunBA +7(nauxsl + a YmvaB)«)] =0,
where K = |b;| = det b is the Gaussian curvature of o and
Yopu =~ YuBlu * Ywls T eulv - (2.13)

Alternative form of (2.12)2 is given in [270].

The deformation of the shell lateral boundary element may be described by two
vectors /

Uu=r-r=uwv+ut+wn
Y] t

(2.14)
B =ﬁ-n=n‘.v+ntt+ (n-1)n
which are subijected to two geometric constraints
MeE' =0, nen=1. (2.15)

These constraints imply that among six components of r (or u) and n (or 8)
on C only four are independent: three comoonents of r {or u), which determine
the translation of the boundary contour C , and a scalar function ¢ which
describes the rotational deformation of the shell lateral boundary element. Since
the rotational deformation may be described by various means, also various

definitions of ¢ may be used in the non-linear theory of shells.

If ¢ is identified with n, = n.v then n can be expressed entirely in
terms of u, u' and n , [201]

L [n a x(vx5)+f§2(1-n2)-c2vx5] (2.16)
\) t t Y] t 7

n = 2 t iy
t

C, +C

where



i
i
2]

+ t F G, T U, +FTW - xu o,
-— ' - - ' -
Cp = 1T +u + Wy -ow, C=w +0ou -Tu. ,
(2.17)
- - - - - o B - > 2
a = la | =V+2vi , 2v, = 2y gt t = (X7 .

The relation (2.16) is valid when the rotation of the boundarv element does not

exceed + 7/2 . For larger rotations the sign in front of the square root is not
unique and may change.

An equivalent description of n in terms of displacement derivatives at C
is given by

- 1= .
n=gr, xr, (2.18)
e a 1 - =
r,,=v+u, =av =_(dv+ 2y, B,
a
t
@ = (5, 0%@? - (%, .17, (2.19)
v A}
= aB _ = L
szt = Zyaav t" =x, er

Note that r, is not orthogonal to € due to the shear distortion of the surface
during deformation.

In what follows we shall use the following transformation

a =
a

(v v + 3 . t%D (2.20)
o af

m1|~

t

which holds at the deformed boundarv contour &
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3. Basic forms of shell equations

The two-dimensional equilibrium equations and the appropriate natural static
boundary conditions for the non-linear K-L type theory of shells may be derived
in several ways. The usual way is to integrate the corresponding three-dimen-
sional relations of a continua over the shell thickness. This leads to six
equilibrium equations and sikx static boundary conditions, expressed in terms of
two-dimensional non-symmetric internal force and couple resultants and the
shearing forces. Additional transformations allow then to reduce the relations to
three equilibrium equations and four static boundary conditions, which are
expressed in terms of two-dimensional symmetric internal force and couple resul-
tants. An alternative direct way is to postulate the two-dimensional virtual work
principle compatible with the basic assumptions of the shell theory, from which
follow at once the same three equilibrium equations and four static boundary con-
ditions. Internal force and couple resultants are symmetric here by definition,
since they appear as coefficients of the symmetric virtual surface strain
measures in the invariant virtual work expression. In this report we shall apply
the second direct approach, since it leads directly to the final shell equa-

tions.

A clear distinction should be made between the set of shell equations written
in the Bulerian description and the one written in the Lagrangian description. In
the Lagrangian description all quantities and equations are referred to the
known, natural basis of the undeformed reference surface. In the Eulerian
description they are referred to the natural basis of the deformed surface, the
geometry of which is not known in advance. If transformation formulae between de-
formed and undeformed surface are used to express components of the Eulerian
quantities in terms of corresponding Lagrangian ones, then the Eulerian shell
equations can be presented in the so called mixed form.

3.1. Eulerian shell equations

Let <4 be the reference surface of a thin shell in an equilibrium state, under
the surface force p = §u5a + pn and the surface static moment h = ﬁ“‘au + hn ,
both per unit area of ¢# , as well as under the boundary force T = ’T‘v\': + "I"tT: +
Tn and the boundary static moment H = ﬁvG + ﬁtf: + Hn , both per unit length of

€ . For an additional virtual displacement field 6u = Gﬁaia + 6wn , which is
subjected to geometric constraints, the internal virtual work performed by the
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internal stress and couple resultants on virtual strain measures is equal to the
external virtual work, performed by the external surface and boundary loads on

appropriate virtual displacement parameters:

j (Re67 + M-6%)dA =

AL
- I (p+6t + R6B)dA + j (T-60 + Ae6B)d5 (3.1)
C e
where N = N“BSQ @ 'a'B , M= Ui Sa @ 58 are symmetric (Cauchy type) internal

stress and couple resultant tensors and

S P - = -1 B
&y = [7(61.1“”3 + GuB”u) - ba.B6W]a ® ,
- - =X = X~ A = =A= -.-a _ =B
ox = [~ 6w||u8 - babu”'B - bBtSu}‘”m - bm”B(fou)t + babmbw]a & a ,
(3.2)
68 = - (6W, + -26-A)5° .

After elementary transformations (3.1) takes the form

. ” (|, + P -tk + j [(B-B*)+03 + (A-F")6B 15 + [(B-F})-68, = 0 ,

Z 3 (3.3)
oA 2
R A N C LS [ ST
a o
P=W5, +SF, B -%+L1F,
ds ds (3.4)
M=u%55 , ® =8,
a B v
F=n"® tq F =fn



F.=F(s. +0) -F(s. -0 68 = 6B 6u. = sul(s.) .
3 (sJ+) (SJ ), B Bev , uJ u(sJ)

For arbitrary 6u on ¢ and 6u , 65\, and bﬁj on Ef from (3.3) follow Eule-
rian equilibrium equations and corresponding static boundary conditions for the
free edge [197]

B, +D=0 in A,

P=pF M=0 on e, (3.5)

’

F, = F at each corner M, e 2. .
J J J f

The virtual rotation G'B'v on E’f , appearing in the boundary line integral
of (3.3), may also be given in alternative but equivalent forms

68 = veén = - ne6v ,
v
= - (6w, + B'60,)%" = - (h+6u) ,- + n,-*60 , (3.6)
a a A v \V

= - n-(6u),- .
Vv

Here ( ),\—) = af )/axvla such that r,;=v on ¢ , where x, is the arc

length of the coordinate line on o% which is orthogonal to & .

Using (3.6)2 the line integral of (3.3) may also be transformed into the

alternative form

f [(B, - B})esi - (F - ") (-08),21d5 |, (3.7)
éf
- B d = ==
P1 = \)B +'TF + Mn,; R (3.8)
ds
k - d =k ke
B, =F+<F +Mn,-,
1 v
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which leads to a modified static boundary condition 131 =P, on éf in (3.5)2

Tensor form of the Eulerian equilibrium equations, but expressed in terms of
non-symmetric stress and couple resultant tensors, was given first independently
by LURIE [136] and by SYNGE and CHIEN [266] while GALIMOV [63] derived static
boundary conditions for the smooth Ef . In terms of symmetric stress and couple

resultant tensors and for smooth (?f the relations (3.5) were given first by

GALIMOV [64] (cf. also [71]). The equilibrium equations (31.5:31 were rederived also
by SANDERS [215] and KOITER [115]. The final form of (3.5) without h was given by
the author [185]. The modified static boundary conditions on @f resulting from
(3.7) were given first by KOITER [115] and rederived by ZUBOV [304]. It was noted
already by LURIE [136] that the structure of Eulerian shell equations (3.5) is
exactly the same as the one of the classical linear theory of shells, only all
the quantities are referred now to the geometry of the deformed reference surface

o and of its boundary contour & .

As it has been mentioned above, the geometry of £ and @ is usually not
known in advance and should be determined as an outcome of the solution of the
non-linear shell problem. As a result, the simple Eulerian shell equations (3.5)
can not be used directly to analyse the shell problems, but they can serve as the
basis for derivation of other mixed forms of shell equations. The virtual dis-
placement parameters Gﬁa = Ea-éﬁ , 6w = neéu and 68, = v+én should not be
identified here with variations of displacement and rotation components, since
the respective bases 5«’ n and v, t, n of K and @ are themselves subjected
to the variation. In particular, 6§v should not be identified with the variation
of v-B . This is the reason why no work-conjugate geometric boundary conditions
expressed in terms of displacement parameters can be associated with the Eulerian
shell equations (3.5).

3.2. Lagrangian shell equations

Usually only the undeformed configuration of the shell is the one which is
know in advance, while the deformed configuration is the one which should be
determined in the process of solution. Therefore, it is desirable to construct
the equilibrium equations and corresponding boundary and corner conditions, which
are expressed entirely in the geometry of ¢¥ and €@ . such Lagrangian shell equa-
tions can be derived with the help of transformation rules between deformed and
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undeformed surface geometries [185]

AA=v&an , ds=3ds ,
a t
e (3.9)
Bds = —a-des, ths = (68 + ZYB)tads ,
PBas =2 (45B + 2¢ eB"'rl)vads , tfas = tfas.
a o al H

Let us introduce the symmetric (2nd Piola-Kirchhoff type) internal stress and
couple resultant tensors N = N"'Bam ] aB , M= M"‘Bam = aB , the Lagrangian
surface force p = p“aa + pn and the surface static moment h = h“aa+ hn ,
both per unit area of oM , as well as the Lagrangian boundary force T = Tvv +
T.t + Tn and the boundary static moment H = va + Htt + Hn , both per unit

t
length of & |, by the following relations

&6 , W=

Qs —

(3.10)

=
=)
]

l -t
=3
e 4}
1]

l Y

h

]
Q=
©

B -%

e
)

Let us also note that the virtual strain measures in (3.1) are transformed

according to

67 = G leyG | , 6% =G l6aG . (3.11)

With the help of (3.9), (3.10) and (3.11) the principle of virtual work (3.1)

is transformed into the Lagrangian principle of virtual displacements

4

J- (N+6y + Me6x)dA =
) (3.12)
= II (pe6u + h+6B)dA + I (T-6u + H-6B)ds ,
oA e
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where now
su=6ua +6wn , OB =26nv+oént+o6nn
a v t
(3.13)
_ o B - o B
67-67aBa @ a ’ Gn-bnuBa @ a ,
&y =1 -6u,, + 3, -6u, )
aB 2 "o ‘B B ‘o '
(3.14)
1,- - - - -
6"0:3 = 7(:1,‘Jl 6u,B +n, 6u, + a 6n,B + 3, 6n,u)

are variations of the displacement and strain rﬁeasures, since the bases a n
anld wv,t,n are fixed and not subjected to the variation during the shell

deformation.

After involved transformations given in [197], and taking into account that
68 =6n=- (3 & 6u,B)ﬁ in o , the principle (3.12) can be transformed into

- “’ ('IJSIB + p)-6udA +

M (3.15)
+ j [(P - P*)ebu + (M - M*)bnv]ds + ]y - F;)-ﬁujA ,
j
C
where now
™ - Tmal + ™o+ (h-SB)ﬁ
(3.16)

N3+ u%®h, + cov®a))| -3P1E + (mePa
o a x p

o
H

TB * 3
vg+F , P =T+F' ,

e o (B x 3 )evIM*By o =1 (5«3 ).3 MR
F = s [(nxaa) vIM vl M._a\’ (nxa) aM v,
(3.17)



1 = - 1 = oy =
F = - 3;-[(n x H)evln , M = 3:-(n x H) a,

¢ |
]

Fils, +0) - F(s. -0 su,
( 3 3 ),

y = 6u(sj) .

Here Ea, n are understood to be expressed in terms of a.,n and u, n,

what gives
B _ A B o B A, 0B -Bx
TJL = l.u(N - blMx ) + n"[M |a + a (ZYnllu - yxulx)uﬁ“] ,
(3.18)
_ of o oB, of Bx A
TB-cpa(N Bim™®) + nM*®| 4+ 3 CRANER Lo
F = (ngtv + rvRv)v + (gthv + rth)t + (gRtV + er)n ,
(3.19)
*
P = (gth + rvH)v + (gtHt + rtH)t + (gHt + rH)n ,
*
M= va + thv + kRv , M = Hv + th + kH ,
(3.20)
_ A aB WA of _ af
va—leuM vB , Rtv-tlAuM vB , Rv-tpaM vB ,

where g , g9,, 9, T, ft' r are complex functions of u, n  given in [197].

An alternative representation for TXB, ™ in (3.16)1 can also be derived
[197]

™8 -z 4 3% a1t M0t - o)+
H ‘a [+ ] a

Q=

+ 1 OB M (A1, -Ao) ,
Ba o

(3.21)

_ B, zoB ) af A
™ - [N + a (Aun + An)]¢a + M (n,u + b&“x) +

+ eaBemA 1 .
1 Aa

Q|-

’
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3% —1--2— [(1+2-Y:)amB - 2¢%8) .

Q

(3.22)

np xp
A = (M - M b
= luu)lp ®

xp Ay
A= (M ) +M71 b .
xup M) o

Yx p

For arbitrary 6u in o4 and 6u, én, and «‘51.1j on ef from (3.15) follow
now entirely Lagrangian equilibrium equations and corresponding static boundary
and corner conditions

'rB|B+p=o in o,

P=P*,M=M* on &, (3.23)

X o e
u=u ,n =n on C ,

(3.24)
u =u at each corner M, e e .

The equivalent entirely Lagrangian shell equations (3.23) and (3.24) (without
h) were first derived by PIETRASZKIEWICZ and SZWABOWICZ [201] using modified

tensor of change of curvature , which by definition is a third-degree

X

polynomial in displacements and th:!;.r surface derivatives (see also [267,271]).
Alternative equivalent formulations, in terms of the modified tensor of change of
curvature proposed by BUDIANSKY [36], were given in [218,97]. In terms of g
the Lagrangian shell relations were derived by the author [197,198] and in

[221,223,96].

Let us note that already GALIMOV [63] proposed a version of Lagrangian shell
equations by transforming the final Eulerian vector relations into the unde-
formed configuration and resolving them in components with respect to the
undeformed basis. Under such a transformation the fourth static boundary condi-
tion for the couple still remained to be defined with respect to the tangent of
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the deformed boundary contour & . In [67] it was shown that such a condition
appears as a multiplier of the kinematic parameter ve6n in the transformed
principle of virtual work (cf. (3.3) and (3.6)1). In order to construct the
corresponding geometric boundary conditions, the parameter called "rotation" was
defined formally as 0 = |ve6n , such that 60 = veén , and was extensively
used in [71,72] for the construction of variational principles. But it is obvious
that so defined 2 can not describe the total rotation of the boundary for an
arbitrary deformation of the shell and Galimov himself was apparently aware that
this representation is not consistent (see discussion on p. 14 of [67]). Various
forms of Lagrangian equilibrium equations, but without boundary conditions, were
also proposed by GLOCKNER [242], SANDERS [215] and BUDIANSKY [36].
PIETRASZKIEWICZ [183] derived the complete set of Lagrangian shell equations with
the fourth static boundary condition compatible with the kinematic parameter
(E-Gu),v and in [193] with the kinematic parameter Et-bnt , where @ is the
total finite rotation vector, but the corresponding work-conjugate geometric
boundary conditions were not constructed. In the section 4.4 below we shall prove
that the kinematic parameters ve<én , (ﬁ-bu),v and Et-bnt are not integrable,
in general, i. e. there exists no scalar function such that its variation would
give us the kinematic parameters veén, (ﬁ-6u),v or Stobot , even multiplied

by another scalar function.

The Eulerian and Lagrangian shell equations are equivalent within the basic
assumptions of the K-L type theory of shells. However, the procedures allowing
for a reduction to four the number of independent boundary conditions are
different in both descriptions. As a result, numerical values of the Eulerian
static boundary parameters F , F‘j and M may differ,in general, from the
numerical values of the corresponding Lagrangian static boundary parameters F ,
Fj and M , see [197].

3.3. Mixed shell equations

For some problems it is convenient to express the component form of the
Eulerian shell equations (3.5), written in the basis Sa, n and v,t,n of the
deformed reference surface, in terms of components of vectors and tensors

measured with respect to the undeformed surface geometry.

Let us introduce the symmetric (Kirchhoff type) internal stress and couple

M = M"'BEcl ® a, related to the Eulerian and

resultant tensors N = N“Bau @ a 8

B ’
Lagrangian resultant tensors by



N =di =6 , M =di-a ,
(3.25)
N = gRoP M8 = an® |

Note that in the convected system of coordinates used here components of the
Kirchhoff type resultant tensors N, , M in the deformed basis Ea @ EB are
exactly the same as components of the 2nd Piola-Kirchhoff type resultant tensors

N , M in the undeformed basis a, @ a

let p, h, T and H defined by (3.10) are supposed to be given through their
components in the deformed basis

p = q“ia +gn, h= kaﬁa + kn .
(3.26)

T=QVv+QEt+0h, H=KV+KE+K

Then it follows from (3.25) and (3.10)2 that the virtual work principle (3.1)
can be transformed into

” (NKoa»? + MK-ai)dA =
A (3.27)

- H (P68 + h-68)dA + [ (T+6G + H-68)ds .

* G

After additional transformations we obtain

- ” (NB|B + p)+6udA - ) (Hj - H;)ﬁj~6l.1j +

Y4 ) (3.28)

+ I {[NB\:B - (HR)' - T+ (H'R)'1+6G + (G - G*)S-6li}ds = 0 ,
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where now

N = (N8 E;MAB)EQ + (M°‘8|a + EB"Y"MMM)B + k%n ,
G = 1_— v % Masvava G =873, (3.29)
a
t
1 aBs A N
H=~ s M aalt vB , H = - gr-ﬂ t.
3 t

For arbitrary 6u , ve6n and Gﬁj from (3.28) follow the mixed equilibrium
equations and corresponding static boundary conditions for the free edge

NB|B +p=0 in oK,

thB —(EA)' =T - (HA)', G=G on e, . (3.30)
H.n H'h. at each corner M C

NN, = N. . € .

1] 713 J f

Since the mixed shell equations (3.30) are referred to the deformed basis

§a,ﬁ , their component form is
of —o B —ax AB =A nB
(N - BoM )|B + a3y g (N - buM" ) -

MMy 4 -B%P =0, (3.31)

=, AB -Bx
—bB(M |A+a'y "

xAn

af

aB =B A = —c xB By _
M |a8+(a M )|B+ba(N - bM )+q+k|B—0.

x
Yaru ]

The mixed shell equations (3.30) and their component form (3.31) were given
first by GALIMOV [64,67,70] and rederived by DANIELSON [49]. Since only
two-dimensional stress and strain measures appear explicity in (3.31), these
equilibrium equations are particularly useful if the shell problems are solved in
the intrinsic way, cf. [120,185,187].
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3.4. Constitutive equations

Within the first-approximation theory of thin isotropic elastic shells the
strain energy density, per unit area of H , 1s given by the sum of two
quadratic functions describing the stretching and the bending energies of the
shell reference surface. This conclusion was given already by ARON [13] and LOVE
[(135] within the classical linear theory of shells. The accuracy of such an
approximation was discussed, among others, by BASSET [27], LAMB [123], NOVOZHILOV
and FINKELSHTEIN [177], GOLDENVEIZER [79-81], KOITER [113,118], DANIELSON [50],
KRATZIG [122] and RYCHTER [212]. Within the geometrically non-linear theory,
according to JOHN [101] and KOITER [115], the strain energy density of the shell

is given by

2
_h aBa h 2.2
L= E-H (YaBYlu + Tf'xaﬁxku) + O(Ehn“e”) ,
(3.32)
ey _  E oA _Bup o _BA 2v aB_Au
H = 5057 (a"a” +aa + T2 a Y,

where E is the Young's modulus and v is the Poisson's ratio of the
linearly-elastic material. The error of I at any point of ¥ is expressed in
terms of the small parameter © defined in [101,115,119] to be

: %-.-fﬁi , Y, (3.33)

where b is the distance of the point from the lateral shell boundary and other
quantities are defined in the Introduction.

The modified elasticity tensor HBM  gefined by (3.32)2 takes implicity into
account the change of the shell thickness during deformation according to the
plane stress state in the shell, cf. [189].

Differentiating (3.32)1 with respect to the strain measures we obtain the

constitutive equations

NaB - az

=-—§E§ [(1—\:)7OtB + vaaax:] + O(Ehznez) )

oy
o v (3.34)
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o8 Bz Eh>

M = =
axaB 12(1-v2)

[(1-v)xa8 + vaasn:] + O(Ehznez) .

Inversion of (3.34) leads to

1 2
Tes = ER [(1+-\»)NmB - vaaBN:] + 0(ne%) ,
(3.35)
2
_12 A né
naB -—-E-h—z [(1+\))MaB - vauBMA] + O(T) .

In some variational principles it is convenient to apply the Legendre trans-
formation

C/yoB LoBy 0B af
(N ,M")=N Yo + M X = z(YuB'xaB) ) (3.36)

from which follow the complementary energy density of the shell

(o]

€ = (N*BNM™ 4 l%-M““M“") + 0(Ehn2e?)

h

’

1
E'EaBku
(3.37)

1+v 2v
Egrn =78 Carlry * 2ar ~ Ty 2a8?n

Now the inverse constitutive equations may also be defined in terms of =€ by

C C
az oz

It is worthwhile to note, that while the equilibrium equations and
compatibility conditions are exact on the reference surface (although incomplete
from the three-dimensional point of view) the constitutive equations are always
approximate. In general, the energy densities I and i€ are infinite series of

the two-dimensional strain and stress measures, respectively, and have to be
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consistently approximated for any type of two-dimensional theory of shells.

Within the error already introduced into X in (3.32)1 by the simplifying
assumptions of the first-approximation theory of shells, some alternative defini-
tions for the two-dimensional measure of change of curvature may be used, for

example
Pog = *op +17 (bz'fm +0Gr,,)
Ky = = (@B - b) +bgvs + 5 (Bwyy + by, ) (3.39)
Xqg = = (dBg - byg) +ba8-y: .

Each of the measures (3.39) can be expressed in terms of displacements either
using the formula (2.9) or (2.10). The measure '6a8 with (2.10) was introduced
by KOITER [115] and used in [183,187,190,97]. Without displacemental representa-
tion the measure “’SaB was applied by KOITER and SIMMONDS [120] to derive the
canonical intrinsic shell equations (cf. [187,190]). The measure KaB with
(2.10) was introduced by BUDIANSKY [36], while with (2.9) if was applied in
[218,225]. The measure Xog with (2.9) was introduced by PIETRASZKIEWICZ and

SZWABOWICZ [201] and then applied in [202,267,268,271,164,165,262].

The main advantage of using Km and Xop is that they are third-degree

8
polynomials in displacements and their first and second derivatives, while 'SaB
and KaB
to be the best one for the linear theory of shells according to BUDIANSKY and
SANDERS [37]. The disadvantage of using the modified measures (3.39) in the

general theory of shells is that their definitions are not invariant under the

when linearized reduce to the measure of change of curvature supposed

change of the reference configuration. With ¢y and x we can always associate

the equivalent Eulerian strain measures ¥y and x defined by [185]

~T ~1

la-6¢%"), x%=-(b-G6Tbs"

7= ) (3.40)

|

which satisfy the following transformation rules
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r=G36, x=G3x. (3.41)

No equivalent exact definitions of the modified measures (3.39) in the Eulerian
description can be given which would satisfy the transformation rule (3.41). This
becomes an important disadvantage of the modified measures (3.39) when exact
superposition of two arbitrary deformations is discussed, what is necessary in
correct incremental analysis of the highly non-linear shell problems [141,197].
An alternative symmetric measure Pop for the change of curvature, which is free
from such disadvantages and when linearized reduces to the best measure of the
linear shell theory, was introduced by ALUMAE (8] and will be used in the
chapters 5 and 6 of this report.
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4. Shell equations in terms of displacements

The majority of non-linear shell problems discussed in the literature has been
formulated and solved in terms of displacements as basic independent field
variables. The primary advantage of such displacement non-linear shell equations
is that their solution gives us the complete solution of the problem in terms of
well defined and easily interpretable fields. When displacements in # and on e

are determined from the shell equations, other field variables such as strain
measures, rotations, stress measures etc. are calculated by the prescribed

algebraic and differential procedures.

4.1. Lagrangian displacement shell equations

Since displacements and their surface derivatives appear explicity in the
definitions (3.21), the set (3.23) and (3.24) of the Lagrangian shell equations
can only be solved in terms of displacements as basic independent variables.
Component form of (3.23)1 in the undeformed basis a,n is given by

TAB'B-b;TB+pA+g}‘=O ,

(4.1)
AB _
TB|B+bABT +p+g=0 |,
where

A _ (AcByr A B (B A B

g —(nB)lB anB , g—(nB)|B+an)\B , |
(4.2)

BB = (h1® +he 3™,

o X N

and the relations (3.18) or (3.21) should be introduced.

The Lagrangian equilibrium equations (4.1) and the corresponding static

NGB, MaB but are non-linear

boundary conditions (3.23)2'3 are linear in
non-rational expressions in terms of displacements and their surface derivatives.
When the constitutive equations (3.34) together with the strain-displacement
relations (2.7)2, (2.9) are introduced into (4.1) we obtain three extremely

complex non-linear equations which are non-rational in terms of displacements and
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their surface derivatives. These complex displacement shell equations are
two-dimensionally exact for the shell reference surface.

Within the geometrically non-linear theory of shells, when strains are omitted
with respect to the unity, we have

= & % -y = =
d=1+y %1, n=mn (1 ya) m, n =m.,
~ A A A ”
8 ® 1,,(m |B - me) + tpa(m,B + mex) + ba8(1 +1,) (4.2)
As > [na x (vxa)+V1-n®-c® vxal.
1= vt t v Vv t

\Y

If (4.2)2 is used in the left-hand side of (3.12) it generates the following
reduced definitions of (3.21), [201,197], and of g

™ -1} 8, a““b M"") (] - oy ®BeMa1 ),
o o Ho ua
_ oB aBf np A aB. of A\
™ = o (N4 a b, M) + (m, o+ bim M4 BeMa 1 (4.3)
= {(haAB o )a + [h (l - aaBlfl) + hq>B]n}|B = gAaA .

Therefore, in the geometrically non-linear theory of shells the Lagrangian

equilibrium equations (4.1) with (4.3) are linear in Me8 , o8

and quadratic in
u, W and their surface derivatives, while the Lagrangian static boundary condi-
tlons (3.23)2'3 with (3.17), (4.3) and (4. 2) are linear in Nmﬁ M*®  put still
non-rational in u , n,, since in the reduced expression for n in (4.2)3

there still remains the square-root function of the displacement parameters.

It is interesting to note that when the reduced expression (4.2)3 for n is
used in the right-hand side of (3.12) then analytically derived expressions for
the generalized static boundary resultants P, M, Fj will not exactly coincide
with the ones which could be constructed by omitting in (3.17) some terms which
are small with respect to the unity. However, this discrepancy lies within the
error margin of the first-approximation theory described by the error of the
strain energy density (3.32)1. As a result, both ways of deriving the reduced
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Lagrangian shell equations in terms of displacements should be regarded as equi-

valent within the first-approximation geometrically non-linear theory of shells.

4.2. Variational principles

In many cases of practical importance it is more convenient to formulate the
Lagrangian non-linear theory of shells in the variational form, as the problem of
stationarity of some functional, which may be free or subjected to additional
subsidiary conditions. Stationarity conditions of such a functional are then

equivalent to some set of basic shell equations.

The possibility of the construction of such a functional depends upon the type
of external surface and boundary loads. In general, the vector fields p, h, T
and H may be assumed to depend arbitrarily upon the shell deformation. Such
loads may be non-conservative, in general, i.e. they may not be derivable as
gradients of some potentials. However, in several special cases of practical
importance the external loads can be given in terms of the scalar fields
o[u,B(vu)] and "I/[u,B(u,u',nv)] by

_ a0 _ o0 _ _ _ 8y
P=-33 r h=-35 » T=-z » H=-3 . (4.4)

When all the external loads do not depend upon the shell deformation, i.e.
they are dead, they can be derived using (4.4) from the following simple poten-
tials [201,197]

® = - peu - h<B8 , \IJ: - Tsu - HB . (4.5)

In case of uniformly distributed surface load of the pressure-type we may set
p(u) = pn , where p = const , but measured per unit area of ¢/ . Then the
existence of a potential depends upon the type of geometric boundary conditions.
When the shell is closed [116] or when two of three displacement components are
prescibed on (Qu [168,302] then the pressure load is derivable according to
(4.4)1 from the potential

_ = 1 aB ' 1 aB .
0--—p(n+7e a, xu,, +ge u,axu,s)u. (4.6)



- 31 -

Potentiality of different displacement-dependent surface loads is discussed in
[38,226,227,231,210]. Potentiality conditions for the boundary couple K=n x H
are discussed in [9,244,269,271]. General problems associated with potential
loads, treated as non-linear operators acting from the spaces of geometric

variables to the conjugate force spaces, are discussed in [285,231,210].

If the external loads are derivable from potentials then the principle of
virtual displacements (3.12) can be transformed into the variational principle
61 = 0 for the functional

I-= ”{2(1,1) + ¢[u,B(va)]}aa + [\l/[u,B(u,u',nv)]ds , (4.7)

M

ef
where the strain-displacement relations (2.7) 2 and (2.9) as well as the geometric
boundary conditions (3.24) have to be imposed as subsidiary conditions. The
variational principle 6I = 0 states that among all possible values of displace-~
ment and strain fields, which are subjected to the subsidiary conditions, the

actual solution renders the functional (4.7) stationary.

Let us introduce the subsidiary conditions (2.7)2, (2.9) and (3.24) into the
functional (4.7) by using the method of Lagrange multipliers. Then we obtain the

free functional

I, = IJ{Z(v,x) + oluB(w] - Ne[y - y(u)] - Me[x - x(u)]}dA +
1A (4.8)

+ qu[u,B(u,nv)]ds - [ [P-(u—u*) + M(nv—n:)]ds - ):l?'i-(ui - u;) .
i
& e

u

The functional I, is defined on three types of independent fields: displace-

1
ment measures u , strain measures e and Lagrangian multipliers o (stress

measures) defined by

uE{uinch:u,nvon e ;uiateachMi} ,
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= {y,xinell} |, (4.9)

m
1)

Q
"

= {N,M in e/ ; P,M on @u: Fi at each Mi} .

The associated Hu-Washizu (within the non-linear elasticity, for dead body and
surface forces, the principle was given by Teregulov [273], extending the
principles of Hu [93] and Washizu [288) of the linear elasticity) variational

principle 6I,= 0 states that among all possible values of displacement, strain

and stress fi1elds (u,e,0) which are not restricted by any subsidiary condi-
tions, the actual solution renders the functional (4.8) stationary. Stationarity
corditions of I, are: equilibrium equations (4.1), strain-displacement
relations (2.7)2 and (2.9), static boundary and corner conditions ( 3.23)2'3, geo-
metric boundary and corner conditions (3.24) and additional relations which
identify the Lagrange multipliers with the fields already described by their
symbolds in (4.8). These additional relations are constitutive equations (3.34),
definitions of the effective generalized boundary force and couple resultants

( 3.17)1 2 and definitions of the effective corner forces (3.17) 4

The free three-field functional I1 was originally constructed by

PIETRASZKIEWICZ and SZWABOWICZ [201,202] using the modified tensor of change of

curvature given by ( 3.39)3 and for dead-load type external surface and

8 defined by (3.39)2' , in

[197,198,221,223] using o8 and in [97] using ﬁaB defined by (3.39)1 . Each

of those formulations of I] , which are equivalent within the first-approxi-

mation theory, can be used as a starting point for derivation of various free or

X
aB
boundary loads. It was also given in [218] using Ka

constrained variational functionals, according to the general procedure discussed
in [48,179,289,2,276,277]. Various functionals defined on different three and two
fields as well as functionals defined on the displacement field alone were con-
structed by SZWABOWICZ [267,268] and SCHMIDT [217-219] for dead-load type
external surface and boundary loads and by SZWABOWICZ [271] for conservative p,
T and K=nxH .

Several variational functionals were also constructed by GALIMOV [67,71,72]
and MUSHTARI and GALIMOV [157] in terms of the formally defined geometric
boundary parameter Q such that 6R = v-6n . We shall prove in the section 4.4
that such a parameter does not exist, since the kinematic constraint v-6n = 0

is not integrable, in general. As a result, the functionals given in
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[67,71,72,157] in terms of 1 are meaningless within the general geometrically
non-linear theory of thin elastic shells expressed in terms of displacements as
basic independent variables.

4.3. Consistent classification of displacement equations for shells undergoing
restricted rotations

The set of Lagrangian non-linear shell equations expressed in displacements
given in section 4.1 is extremely complex even in tensor notation. This is caused
by generality of those relations, since no restrictions have been imposed on dis-
placements and/or rotations of the shell material elements. In many engineering
problems of the flexible shells displacements and/or rotations can not be
arbitrary, due to implicit constrains imposed by the shell geometry, limits of an
elastic behaviour of the material, types of external loadings, boundary condi-

tions etc.

Several approximation schemes leading to simplified sets of displacement shell
equations were proposed in the literature. In [157,71,128,215,115,186,187]
restrictions of components of the linearized rotation vector and of the displace-
ment gradients were used to derive several simplified versions of the non-linear
shell equations. Among the best known simplified versions obtained in this way
are displacement shell equations of medium bending given by MUSHTARI and GALIMOV
[157], for moderately small rotations proposed by SANDERS [215] and with small
finite deflections derived by KOITER [115], the special case of which are the
non-linear equations of shallow shells developed earlier in [144,148,295]. A
variety of simplified versions proposed by DUSZEK [56,57] followed from restric-
tions of displacements and their surface derivatives, while those given by
NOVOTNY [171] were obtained from three-dimensional equations by a formal
asymptotic procedure.

The deformation about a point of the shell middle surface can be exactly
decomposed into a rigid-body translation, a pure stretch along principal direc-
tions of strain and a rigid-body rotation [5,247,184,185]. Within the
first-approximation theory discussed in this report strains are already assumed
to be small, what leads to reduced shell relations (3.32)1, (3.34), (4.1) -
(4.3). Therefore, several consistently approximated versions of the non-linear
displacement shell equations were constructed in [185,190] by imposing additional

restrictions upon the finite rotations of the shell material elements.
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A finite rotation in the shell may be described by the angle of rotation w
about an axis of rotation described by the unit vector e . The rotations in
[185,190] were classified in terms of the small parameter © defined in (3.33)
as follows: a) w < 0(62) - small rotations, w = 0(8) - moderate rotations (cf.
[207]), w = 0(¥8) -~ large rotations, w 2 O(1) - finite rotations. This
classification restricts the magnitude of the rotation angle w®w . However, shell
structures are usually quite rigid for in-surface deformation being flexible for
out-of -surface deformation. In order to take this into account the finite rota-
tion vector @ = esinw may be defined. Since for |w| < ®x/2 , o(|a]) = O(sinw)
= O(w) the name "small, moderate, large or finite rotation" may be associated

with the particular component i = 2*n or QB = s‘z-a‘3 of @ .

Within small strains (but not small rotations) the vector 1 is expressed in
terms of displacements by [185,193]
A 1 oB
(em- wla)JaB tye w

. . Bo 1 1
Q= c [q>a(1+~2-0x) -5 n. (4.10)

B

For any restriction imposed on R estimates for ®, and w are given by

(4.10) and estimates for GGB follow from (2.7)2 with A" ZBO(n) . Then
simplified expressions for the strain measures YaB and "aB can be obtained
taking into account the accuracy of the strain energy density (3.32).I . In the
estimation procedure covariant surface derivatives are estimated by dividing

their maximal value by a large parameter A defined by

A =%= min(b, L, 1, ¥hR, —) . (4.11)
yn
n

Introducing such energetically consistent simplified expressions of the strain
measures into the Lagrangian principle of virtual displacements (3.12) one gets
the corresponding reduced expressions for the internal force vector '1'a and the
generalized static boundary parameters P, M and [-‘j , together with

consistently simplified expression for the geometric boundary parameter n, .

Simplified versions of the Lagrangian shell equations proposed in [183] were
discussed in [185,193]. Simplifications of the entirely Lagrangian shell
equations derived in [201] were given in detail in [195,197]. Let us remind here

some of those consistently approximated non-linear shell equations.

Within small rotations 9, = 0(92), w ., = 0(92), 94 = 0(92) and the strain

of B
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. 2 1
measures are approximated by Tog = eaB + 0(ne”), g =" 7F (q’uIB'HPBIu) + 0(ne/x)
, which describe the linear bending theory of shells treated extensively in many

monographs.

Within moderate rotations ?, = o(e), W = o(e), BGB = 0(92) and the

consistently simplified shell relations take the form [185,193,224]

1 1 A
Tog = eaB +5 00 t 3 W, Oyp ~ (0 eAB+ 08m ) + O(ne ),
(4.12)
_ - bl - BN ne
g =7 (q’a|8+ %o b w, g meM) +0(—) ,
TB _ [N -3 (b}‘MuB+ bB ax) _ j_kaNa . AuNB Ba l +
- 2 « a
1 A Ra, A aB  aB B
+ 5 0= 6PN a, + (9 8%+ *¥] )n 4 1P (4.13)
n=- a°'+n+0(62) n =-
=-09, , n,=-9,

If, additionally, rotations about the normal are assumed to be also small then
also o o8 = 0(92) . For such moderate/small rotation theory of shells the
relations (4.12) and (4.13) may be considerably simplified by omitting there the

underlined terms.

The set of non-linear relations (3.23), (3.24) with (4.13) and (4.12)
describes the consistently reduced Lagrangian non-linear theory of shells under-
going moderate rotations. The theory contains as special cases various simpler
versions of shell equations proposed in the literature. Among them are the theory
of medium bending [157], for moderately small rotations [215], with small finite
deflections [115] and the classical non-linear theory of shallow shells. A
detailed review of those simpler versions was presented by SCHMIDT and
PIETRASZKIEWICZ ([224], where also a set of sixteen basic free functionals and
several functionals with subsidiary conditions was constructed for conservative
dead-type surface and boundary loadings, (cf. [216]). These functionals and
associated with them variational principles extend to the moderate rotation range

of deformation earlier results on particular variational principles formulated
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for shallow shells [296,6,157,287,94,74,255,3,256,67,34,249,71] and for
simplified versions of the theory of shells undergoing moderate rotations
[258,259,251]. Stability equations for the moderate rotation theory of shells are
given in [139,260], which extend various simpler versions of stability equations
given in the literature. More complex moderate-rotation shell equations were
proposed in [23,26,163], where the expression for g contains also some
non-linear terms, whose contribution to the strain energy density (3.32)1 lies

within the indicated error of the first-approximation theory.

Within large rotations ¢ = o(¥e), Wg = o(ve), %p = 0(6) . Appropriately
simplified relations of the Lagrangian theory of [183] were discussed already in
[185,193]. It was found in [193] that the consistently simplified (but still
non-linear) expression for x of generated the boundary mtegral which contained
six (instead of four) independent variations: 6u and 6( . This did not
allow for a variational formulation of the shell problem even if the external
boundary forces were conservative. An explanation for this paradox was found in
the definition of the fourth geometric boundary parameter used in [183,185],
which was not entirely Lagrangian. As a result, an entirely Lagrangian non-linear
theory of shells was proposed in [201] where the new parameter n, was used on
the shell boundary. Appropriately simplified relations of [201] within the large
rotation range of deformation were discussed in detail in [195], various alter-
native results, within the prescribed accuracy of the strain energy density, were
presented also in [219-222,197,198,165,169,170,140,141].

The most interesting special case of the large rotation shell theory appears
when rotations about the normal are assumed to be always small, i.e. "’uB =
0(62). If, additionally, we allow for a greater error in the strain energy func-
tion (3.32)1 to be O(Ehnzev/é-) instead of O(EhnZBZ) then the set of shell equa-
tions for such simplified large/small rotation theory (without h ) is described

by the following relations [197,198]

1 1 )L
Yop = eaB + > (pach Vi de A8 " (0 wAB+ 0 CN ) + O0(neve) ,
_ 1 A LA A A A
"g =" 3 {l(6 + ea)qakls + (6B+ eB)q’lla] -9 (q’a°xls+ (pB,cpAla) +
— B (4.14)
+ (b8, _+ b8 ) + (Bo.+ ble Jg. - b } + o(¥B,
o ABT VB Aa o8t Pg%a’PA T Pug? ¢x X
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2 -
nv=-q>v+0(ea/§), n= —<pv—q>tt+(1 ?pt)n,
8 = 63+ ) INP- 2 N4 WP - TLohe oM M 4 Be o] ™My
o a o «

oB B 8, Aa Aa B A of

™ = o N 4+ (654 o0y g + (M%) 0 - o | oM -
A, 0B B, oA B, aA
- (baM b M ) + baxq) M,
(4.15)
R, = 1+ OW)MW + evtMtv , Rtv = atva + (1 + ettmtv ,
2

Rv = ‘PvM\N + q’tMtv ’ =0+ 0\)\.v"' q’v)Mvv + (th+ q’vq’t)Mtv ’
F =Fn F=(® +90¢, )M + (1 + 9 +q>2)M

’ vt vit vy tt L AVI

The relations (4.14) and (4.15) have the important property: for conservative
surface and boundary loadings they allow to contruct the functional (4.8), which
stationary conditions lead exactly to all shell equations described by (4.14) and
(4.15). Another such formulation was proposed in [197,221]. Alternative versions
of shell relations of the simplified large/small rotation theory discussed in
[195,220,165,170] are also energetically consistent, although some additional
transformations should be applied in order to derive the shell equations from the
variational functional (4.8). In particular, the version proposed by NOLTE and
STUMPF [170], in which o 3T quadratic polynomials in displacements and its
surface derivatives, was shown [165,169,140,141,166,167] to be numerically
efficient and leading to good results also far beyond the large rotation range of

shell deformation.

In some engineering applications the shell relations (4.14) and (4.15) may
still be simplified at the expence of a larger loss in accuracy of (3. 32) to be
O(Ehn 9) . Within this larger error the shell relations of such smplest
large/small rotation theory of shells [197] are described again by (4.14) and

(4.15), where underlined terms should be omitted and the term #'N*® in (4.15)1
. Alternative

AR, GBNQA)

energetically consistent versions were proposed in [ 193,195,196,165,1 70,218,221].

should be replaced by its symmetric part —( a

On the other hand, the comparative discussion given in [198] suggests that some
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known versions [115,23,71,235] of the non-linear theory of shells, which are
based on various quadratic expressions of "p can not be regarded as energe-
tically consistent within the large-rotation range of deformation, since some
energetically important terms 0(6v¥6/1) do not appear in the expressions for
"B used there. Verious simplified versions of the non-linear shell relations
were also proposed in [99,100,58,87,88,98,45,46,230,31].

When only rotations about the normal are assumed to be small, while other ones
are unrestricted, then ¢ = o(1), w, = 0(92), 9 = 0(1) . For such

aB aB
finite/small rotation theory of shells only few terms may be omitted in x

within the error O(Ehnzez) of (3.32)1 or even within the greater errgf'
O(Ehnzeﬁ ) . It seems, therefore, that considerably simplified shell relations
derived in [104,236] for such a theory cannot be justified within the assumed
error of the first-approximatioh theory.

An extensive comparative numerical analysis, based on energetically consistent
simplified versions of non-linear shell equations discussed above and on several
other simplified versions proposed in the literature, was carriéd out in the
series of papers [139-141,252,253,165-169,35,59,89,90,86,47] for a large number
of one- and two-dimensional problems of flexible shells. In order to provide a
reliable reference solution the full version of entirely Lagrangian shell eéqua-
tions [201] and in [47] also the refined three-dimensional NONSAP numerical code
were used. The results of the humerical analysis showed that all energetically
consistent versions of non-linear shell equations led to results which, within
the range of their applicability, wére always in a good agreement with the
reference solution. In some examples the agreement was adequate also far beyond
the range of applicability of those versions. On the other hand, some of the
simplified versions suggested in the literature, which were even more complex but
still energetically inconsistent, led to load-displacement paths which
occasionally diverged from the reference path already on an early stage of the
shell deformation.

4.4. Integrability of kinematic boundary constraints

In the entirely Lagrangian non-linear theory of shells discussed in section
3.2 the component n,6 = n'v has been used as the fourth independent boundary
parameter, in terms of which 6n can be given [201,197] by
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- 1 - s
én = E;{abGHv + v x n(neér')] . (4.16)

This has allowed to reduce (3.12) into (3.15) and to construct four
work-conjugate static (3.23)2 3 and geometric (3.24) boundary conditions.

In the derivation of the mixed shell equations in section 3.3 an alternative

expression for 6n has been used

6 = (Ve6R) - L' (Re6E") . (4.17)

A

This has allowed to reduce (3.27) into (3.28).

Still another expression for 6n results from a direct variation of (2.18)1
to be

. B == B = o=,
6n = - vga (n 6r,v) - tBa (nedr') ,
(4.18)
8 - 1= B _1 = 1 -
vgd =a, gV, tB —-g— (t - a-Zyvtv) .

t

When (4.18) is introduced into (3.12)2 the internal boundary integral transforms

into

I {['13\,8+ (Mvtﬁ)']'bf' - Mvvﬁ-ﬁf;v}ds + Z(Mvtﬁ)j'bf'j =
e ) | (4.19)

= I {['lﬁvB +M o+ (M n)]ér - M (n-6r), lds + g(Mvtﬁ)jvbfj .
c

The transformed line integral (4.19)2 was used in [183,304] while the simpler
integral (4.19)1 was not used in the literature.

Static boundary and corner conditions on C% have been constructed in (3.23)
and (3.30) by demanding that all the multipliers of ér , ij and of 6n  or

veén in the line integral should identically vanish. Using the transformation
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(4.18) and (4.19)1 we may construct alternative static boundary and corner condi-

f
ﬁ'éf,v should identically vanish. It is implicitly assumed that the

tions on €. again by demanding that all the multipliers of 6r , 6Ej and

work-conjugate geometric boundary conditions on eu should satisfy the kinematic
constraints 6r = 0 , bf'i =0 and 6n =0 , veén = 0 or ﬁ-ﬁr-:,v =0
,respectively. It is easy to note that from the kinematic constraints 6r = 0 ,

én =0 and ér-:i = 0 follow the geometric boundary conditions r = r , N, =
n: on @u and Ei = 1?: on each M, e C’u . It is not apparent, however, what
kind of a scalar parameter should be assumed to be given on @u in order to
satisfy the fourth kinematic constraints wve6n =0 or ﬁvéf,v = 0 . Therefore,
the question arises whether there exists a scalar parameter ¢ such that its
variation on ef would coincide with the variational expressions wv+é6n or
E-GE,V , possibly multiplied by some scalar function u . If such functions 4)
and u exist, the question arises how to construct them. This general problem
has been solved only recently by MAKOWSKI and PIETRASZKIEWICZ [142]. Here we

summarize some of the results given there.

The variational expressions v+6n |, ﬁ-bf,v or &n  discussed above are

particular cases of the following general variational expression
w = A-éf,v + BeSr' (4.20)

where A = A(i",v,f") and B = B(f‘,v,i:') are vector-valued functions of the

vector arguments.

Extending the method suggested in [304], it was shown in [142] that at each
point M e @ the variational expression (4.20) may be regarded as a differential

one-form on the six-dimensional manifold X with local coordinates t;i e X
i=1,2,...,6 defined by

Ei = (wr,v , tor,v , A, ver', ter' ner') . (4.21)

Let also components of (A,B) in the basis v,t,n be defined by

A, = (veA , t*A , n*A , v'B , t*B , n*B)

i , (4.22)
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6
so that w =i§1AiGEi .
The one-form (4.20) is said to be exact if there exists a primitive

scalar-valued function ¢(E,V,f') such that w = 6¢ . The necessary conditions

for w to be exact are

Aj,i - Ai,j =0 (4.23)
for any i,j e (1,2,...,6) . The one-form (4.20) is said to be integrable if
there exist scalar-valued functions u(f,v,f’) , called the integrating factor,

and ¢(r, ,r') such that uw = 6¢ . The necessary conditions for w to be
integrable are

Ai(Ak'j - Aj'k) + Aj(Ai,k - Ak,i) + Ak(Aj . -A, ) =0 (4.24)
for any i,j,ke (1,2,...,6).
Let us check the exactness and integrability of the one-form w = v-6n , for

which A and B are given by

n (4.25)

>
n
1
i
o —
a1
w
i
mtl—a
Q) —
N
-

Differentiation of (4.25) with respect to f,v and r' gives

oA =5§‘—2(;mﬁ+ﬁa;),
or, d
v
B _Jlten-l.2y Gen+nav) =BT
‘v (4.26)
B 1l sev+t 2y ¥Saen+nav) -
-, T2 =2 2 “Tut
or a a, d
t t
11 - - =
- :i'E'Zth(t ®n+nat).
3

Since (4.26)3 is not symmetric, the conditions (4.23) are not satisfied for
(i,3) = (4,5) , for example. Moreover, with (4.25) and (4.26) the integrability
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conditions (4.24) are not satisfied as well for (i,j,k) = (1,4,5) , for
example. As a result, the differential one-form veén is neither exact nor
integrable, in general. The discussion given in more detail in [142] provides the

proof for the same statement given by ZUBOV [305].

The variational expression v+6n , which has appeared originally in the paper
by GALIMOV [93], may be presented in several different but equivalent forms. Note
that in terms of the difference vector B given in (2.14)2 6n = 68 and vebn =
VeOB = 6§v , which was used in [185,214]. Here 6 should not be understood as
the variation of ﬁv , since so defined Gﬁv 4+ 6(V*B) . The rotation of the
boundary may also be described [185,188,192] by the total rotation tensor Rt =
vev+taet+naen such that n = Rtn . Then w; can int;Pduce axial vectors
6w, and 6wt of the scew-symmetric tensors 6Rth and RtGRt , respectively,

t
according to [138,198,199],

6w_ = R 6w . (4.27)

t ! t t 't

T T
6Rth = Gmt x 1, RtGRt =6w,_x 1

Since 6n = 6w, x n= Rt(GW' X n) it follows that we have veén = 6mt-E = 6w, ot

t t
. Here again 6 should not be understood as the symbol of variation of w_ or
L/ since the symbols w  or W alone have no geometric meaning here. The

expression Gmt-E was applied, among others, in [291,214,17] while 6w et was

used in [271].

According to the discussion given above and in (3.6) the variational
expressions bﬁv . 6wtoE , bw et , -neév , -6$v , -ﬁ-éﬁ,; which appeared in the
literature are all equivalent to the differential one-form veén , since they
have all the same representation (4.20) with (4.25) in terms of variations of
f,v and r' . As a result, neither of the one-forms is exact or integrable as
well. It is apparent from this discussion that the variational principles given
by GALIMOV [68,71] in terms of 0 such that 60 = veén are not correct, in
general, since such a function Q does not exist.

In [142] it was confirmed that the differential one-form w = ve6n = én  is
exact indeed and its primitive function is ¢ = n_ . It was also proved that the
one-form ﬁ-éf,v is neither exact nor integrable, since the conditions (4.24)
are not satisfied. Using the same method many other variational expressions of
the type (4.20) may be checked. On the other hand, similar direct discussion of

integrability of the variational expressions (ﬁ-bﬁ),; or (ﬁ-&f),v has to be
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performed with the help of a nine-dimensional manifold with local coordinates
identified with components of r, E,v, r' in the basis v,t,n . However, such a
discussion is not necessary, since those variational expressions can always be
transformed further by taking the partial derivative with respect to s, on e

Since 6r is exact on a three-dimensional manifold of positions r , the
problem can always be reduced to the integrability of the one-form of the type
(4.20) on X .

4.5. Work-conjugate boundary conditions

Each of the variational expressions of the type (4.20), which appear in the
boundary line integral and is connected with the boundary couple, may be trans-
formed further by multiplying (and dividing) it by a non-vanishing scalar func-
tion n(f,\’,r-:') and by adding (and subtracting) terms of the type c(f,v,
r')e6r' , since terms with 6r' can always be eliminated by integration by
parts. By such a transformation a non-integrable one-form may be transformed to

the exact one-form, for which a primitive may be constructed.

In [142] the following simple differential one-form on the six-dimensional
manifold X has been discussed

0=d6r, , d=dn=r, xr',
v v
B=Av+A.t+An=40.

4 5 6

It is easy to check that the one-form © is not integrable. In [142] it has been
proved that an arbitrary function ¢(r',a) , where a = A /A3= nv/n , is the

primitive of some transformed one-form ¢ such that
6 = ¢ = nde6T, + ceoI' ,

1 1
n=-—Ex . C=i+-—5Exd, (4.29)

A3 A3

lzi, x=%g.

3
ar'
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If we solve (4.29) for d-éf,v and introduce it into (4.18)1: then we obtain

still another general expression for 6m to be

- —a =9=B .=,
6n = v a fod - [vgfA + (vog + t,)nla 61
¢4.30)

2
f=2“—x,
t

m| m
THIN

C. n—-cn
1 v
a ct

‘|_n

( +2’yv).

g = t

7
t

Y

The expression (4’.30")1 is remarkable by the fact, that it is given directly in
terms of variation of an arbitrary function d)(f" ,0) . If now the expression
(4.30)1 for 6n is used to transform the Lagrangian principle of virtual dis-

placements (3.12) then it can take the form

- ” (‘IB|B+ p)-6rdA + } (FJ. - F;)vbf'j +
M ] (4.31)

+ I [('IﬁvB+ F'e T F ')6F' + (M - M’*)ad)]ds =0,

ef
where
F =fM A+ (gM _+M _)Jn, M=fM |,
Vv vV vt vv
(4.32)
* o =B - * 8
F = (Hea )[\:Bfl + (ng + tB)n], M = F(Hea )vB .

For arbitrary ér , 61?]. and 6¢ from (4.31) follow the equilibrium equations
(3.23)1 and static boundary conditions

®y +F =T+F' M=M onC
B ' £
(4.33)

F. = F. at each corner M, ¢ C,_ .
J J J f
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Corresponding work-conjugate geometric boundary conditions are

r=r , ¢=¢*on€u ,
(4.34)

- %
F. =T, at eachcorner M, ¢ € .
i i i u

The arbitrariness of ¢ allows for a wide freedom in choosing the form of
boundary conditions to be used in the shell theory. This enables one to choose
such definition of ¢ which would suit best to a particular shell problem. In
particular, it was shown in [142] that the parameters - n, , 6, used in [178] and

the total rotation angle w, of Rt are all special cases of ¢ .
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5. Shell relations in terms of rotations

Some shell problems are solved in a more convenient way if one uses finite
rotations together with other fields as basic independent variables of the
non-linear shell equations. Already REISSNER [206,207] proposed the set of
non-linear equations for an axisymmetric deformation of shells of revelution
written in terms of a rotation and a stress resultant (or a stress function) as
independent variables. This formulation led to a number of papers on axisymmetric
problems of shells of revolution the results of which have been summarized, among
others, in the books by SHILKRUT and VYRLAN [238] and LIBAI and SIMMONDS [104].

Within the general non-linear theory of thin shells ALUMAE [5] derived the
non-linear equilibrium equations and compatibility conditions in the intermediate
rotated basis while SIMMONDS and DANIELSON [247,248] proposed a set of non-linear
shell equations in terms of a finite rotation vector and a stress function vector
as independent variables and copstructed an appropriate variational principle.
The theory of finite rotations in shells developed by PIETRASZKIEWICZ [184,185]
led to several alternative forms of non-linear shell equations, boundary condi-
tions, consistently approximated shell relations and some new kinematic relations
which have been summarized in [186,188,190-194]. Contributions to the non-linear
theory of shells in terms of‘ pos:ations were given also by WEMPNER [290-293],
SHAMINA [233,234], VALID [281-284], SHKUTIN [240], REISSNER [208,209], LIBAI and
SIMMONDS [130], ATLURI [14], MAKOWSKI and STUMPF [143] and BADUR and
PIETRASZKIEWICZ [19] where further references are given.

The primary advantage of the non-lipear shell equations in terms of finite
rotations is that they cégtgip at most first derivatives of the independent field
variables. In the computerized apalysis of shells this allows to use the simplest
shape functions or the simplest difference schemes which assure the high
efficiency of the numerical analysis.

The non-linear theory of shells in terms of rotations is now in the process of
development and several qgg§tipg§ are still open. Only few two-dimensional
problems have been analysed [60,61] using this approach. Therefore, we found it
worthwhile to review here in more detail, in the unified notation, the most im-
portant results given in the literatyre and to supplement them with some new
results which are not available elswhere. It is hoped that it will stimulate
further research in the field.
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5.1. Additional geometric relations

Applying the polar decomposition theorem [279,280,139] the dJdeformation
gradient tensor G defined in (2.5) can be represented [184,185,190] in the

form
G=RU=VR, G =UR =RV ., (5.1)

Here U and V are the right and left stretch tensors, respectively, while R
is the finite rotation tensor. The tensors U and V are symmetric and positive
definite while R is the proper orthogonal, i.e. detR = +1 .

By (2.1) and (5.1) the deformation of a neighbourhood about a particle of the
shell middle surface has been decomposed into a rigid-body translation, a pure
stretch along principal directions of U (or V) and a rigid-body rotation. From
(2.2) and (5.1) it follows that there exist two intermediate non-holonomic bases,
the stretched basis s ,n and the rotated basis ra,ﬁ , which are defined by

s, =Ua =Ra |, S,'Sg = 3. . (5.2)
_1-
r,=Ra =V a , r Ty =a, - (5.3)

Within the shell theory the rotated basis ra,t—l was introduced first by
ALUMAE [5] and was used in [8,247,248,240,133,19]. The stretched basis s,.n was
introduced first by NOVOZHILOV and SHAMINA [178] and used in
[184,185,188,190-194,14]. In terms of the bases the following expressions for U,
V and R can be given [185,190]

(] ~1
U=saxa +nan, U =auas°‘+nﬂn,

-1 - - -

V=a ar*+nen, V (5.4)

fl
2
- ]
[V
+
=
]
=

- - a -
R-:aaﬂs +nﬂn=raua +nan.

Any rotation tensor R may be represented by
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R = coswl + sinw e x 1 + (1 - cosw)e x e . (5.5)

where the unit vector e describes the axis of rotation of R and w is the
angle of rotation of R about the axis of rotation.

Sometime it is more convenient to describe rotations by means of an equivalent
finite rotation vector, direction of which is e and the length is a function of
w . For example, the finite rotation vector 0 = sinwe was used in
[247,248,178,73,184-186,190-194), the vector © = 2tg%e was used in 1241,133,19]
while ®© = we was applied in [240]. As it was pointed out in [199], each of the
definitions has some advantages: @ is particularly convenient to be expressed
in terms of displacements (cf. [185,192]), @ leads to geometric relations which
do not contain trigonometric expressions while ® is the single-valued function
of w and can be defined in terms of the natural logarithm of R , cf. [199].
In [108,109] the rotations were described in terms of four Rodrigues parameters.
In the following part of this report we shall use primarily the finite rotation
vector © , in terms of which transformation rules for the basic vectors are

- 1 1 1
SB+?BX(SB+7QX'SB) , t=1+2780°9,

r =a8+%ex(as+%exa3), (5.6)

ﬁ=m=n+%ex(q+lﬂxn) .

2

Let us introduce the relative (symmetric) surface stretch tensors

n=0 1= “B @a , nB SB aB - qusa !
(5.7)
CV-1-¢ g =5 - 3
g_V—1—-€BG;,1' + % T3 ~ Fg T ngF .
- N (5.8)
’ B B * .

In terms of so defined
[185,190,193,199,19].

g many useful geometric relations may be derived,
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The corresponding relative (unsymmetric) surface bending tensors are defined
by

T B B o
g = (R n,g n,B) @a =w@a , Wy =ua ,
(5.9)
(= B B _ o
A-(mB RmB)mr _ABar ) AB—uwr ,
l=RuRT A, =Rp (5.10)
’ B B ° °

The relative surface strain measures were introduced first by

n u
af ' "af
ALUMAE [5]. They are related to the Lagrangian surface strain measures (2.7) and

(2.8) by

R I
(5.11)

1 A A A A 1,.A Py
*op =-§-[(6a+ "a)"AB + (6B+ “B)"Aa] - Eibhnxs + bb“xa) .

Since RTR,B and R,BRT are scew-symmetric they are expressible, according to
[199], by their respective axial vectors ks and 1,

of change of curvature of the coordinate lines [232,190], by the relations

, called also the vectors

T T
R R,8 = kB x 1, R'BR = 1B x 1, 1B = RkB . (5.12)
Then from (5.6), (5.11) and (5.12) we obtain
ug = kB xn, AB = 1B xn , (5.13)
_ =1 1
kB =€ W g3y + an =T (O,B + 79,3 x 0) , .
(5.14)
oA - 1 1
1B = € Mgl + an = -E-(e,B - 78’8 x 0) .

In components in the reference basis we have



oB of -
0 =c¢ eBau + 93n = € ,Bﬁrc,+ ,93n R
(5.15)
= + 0,, = ¢z + ¢
Tg = Tpd * Tl . Pig = ¢.p3 + ¥gh,
1 1 1 2
e =2 ~F (5ap%3 + 7 9% 7 226%3) -
r, =+ (@ +1e 0%.) | (5.16)
BT "8 *t7 %8 V3 ¢ :
A Ax A X
¢‘B € enls - bBGB , ¢B = 93’3 + bBeMe ,
A 1, A 1 aA _ 1 A
n ——T:' (e +—2-€ 6663) ’ n=1 --z—te el . (5.18)

Using (5.15) -~ (5.17) together with (2.2), (5.7)1, (5.9)1 and (5.14)1 the
relative symmetric surface strain measures may be expressed explicitly in terms -

of components of u and © according to

b
Nag = rm-aB - am'3 = rqu's + rqq:Bv - auB =

1 1 1 2
: [e 6, +=066, +=a .05 +
1+1Z (6A9A+ eg)v aB’3 " 2 aB 2 aBf 3
: (5.19)
1

+ (e 05+ 59,0 + =3, 03)(u Ig' bBw) - (g + ng,‘e 93)‘(W'B+ bsux)] ,

= uafB - bqu -

ad’'3" 2°Aa 2

1 1
Peg =7 (EuAkB"' emkq)-ax =5 (-quf. “&a_) =
1 S AL 1A 1
=57 [e,, g+ 3 e‘q,g)v + e, (4, + 3074 ) - 5 (b o+ 45,0031 = (5.20)
1 A, 1. 1%
= [qux O |ot %A(bgey 79703 g + 50 |s°3)] .

- T , X 2
2+—2- (9 9A+ 93)

Corresponding expressions for L and kB in terms of components of © follow

directly from (5.14)1 and (5.15)1. In compdnents of 0 the relations (5.20) were
given first by SIMMONDS and DANIELSON [247), while (5.19) by the author

[184,185]. Equivalent relations for Neg' Mo and k, 1in terms of components of

B B
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® were given by SHKUTIN [240]. Linearization of Pog given by (5.20) with
respect to displacements leads to the tensor of change of curvature which, accor-
ding to BUDIANSKY and SANDERS [37], is the best choice for the linear theory of
shells.

Rules of differentiation of the intermediate bases may be given with the help
of (5.12) in the form [190,199]

- =0
su”B = - kB x s, + buBn , n,B = - kB Xn- stu ,
(5.21)

- - o
rﬁlB = lB xr + baBn , n, =1 xn- bsr& .

Since 5& =a +u, wecan solve (5.6) and (5.14) for u, and O, , what
leads to

1 1 1 1
u, =n + ?-e p'e (sh+ 7—6 X sa) =€, - E-e x (ra— 7-9 X ra) s
(5.22)
0, =k +10xk+r(0k)®=1 -168x1 +=(6:1)8 .
a o t o 4 [} o t o 4 (]

of - aB
Up = 0 and ¢ e,aB

following two sets of vector equations

Integrability conditions € 0 of (5.22) give us the

(5.23)

]
R
®
=
o]
+
el
x
7]
H

aB 1
0, € (k(!|8+7kBXRC)

]
o

o 1
0. e (g +7 1, x 1)

1}
(=

(5.24)

+
)
»
a]
i

These two sets of equations constitute two alternative vector forms of com-
patibility conditions in the non-linear theory of thin shells. The second equa-
tion of (5.23) was derived independently by CHERNYKH and SHAMINA [43] and
PIETRASZKIEWICZ [184]. The vector equations (5.24) were derived first by SHKUTIN
[239,240] and independently by AXELRAD [16] and LIBAI and SIMMONDS [133]. In
component form the relations (5.24) were given already by ALUMAE [5,7) and in
orthogonal coordinates by REISSNER [208]. Since € = Rng and 18 = RkB , both
sets of compatibility conditions are transformable to each other. Several other
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equivalent vector or tensor forms of compatibility conditions may also be con-
structed from the ones given by PIETRASZKIEWICZ and BADUR [199,200] for the
three-dimensional deformation of a continuum. The three-dimensional compatibility
conditions of [199,200]1 should be written on the reference surfaces ¥ or o%
and Kirchhoff-Love constraints should be taken into account.

Within the K-L type shell theory finite rotations are .expressible in terms of
displacements by non-rational relations [185,190,192], expressed in the stretched
basis

N T =oB A A, 0 n
R=a &#s +naen=4 (§B+ QB)(ah+ u,u)~g a, + (n au+vnn) @n ,

Q= %—(s XxXa +nxn) = %LEQQ[(BQsa— ,q>u)sB + (u,a-sB)n] = (5.25)

eop (0= 3 (634 ndp 1a° + 3 (654 n)1% )
or in the rotated basis

R=r a a+nan=ra [(6 +n )r ~ﬁ,u] +n@ [maa (6 + nB)r + nnl ,
1

o - i
(aa XTr +nxan =3

Eqs;[ (u'a.rB)ﬁ + (na- n.:a)rsj = (5.26)

N —

Nl—‘

{[n - aA"(G + “A)Q ]r + aAu(G + nA lB n} .

The dependency of rotations upon displacements can be also expressed
implicitly, inthe form of three constraint conditions [19]

nee, = (Rn)-(a8+»u,89

L

Mg B
A
= nxl‘B + nogg = o,
(5.27)
af _ af . _ aB R _ oB N - -
€ N =€ acmg =€ rce =¢ (Ra ) (aB+ u., RaB) =
= B A =
=€ (rlal'B + raq’B) =0,
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where n,, n, r r, are given in terms of rotation components by (5.16),

Ac
(5.17) while lx 9 are expressed in terms of displacement components by

o’
(2.3)1 .

5.2. Decomposition of deformation at the boundary

During the shell deformation the orthogonal triad v, t, n of ( transforms
into the orthonormal triad 5\), St, n of & , where Sv = 5t x n . According to
the polar decomposition (5.1) we obtain

3, =at' =Rs_=Vr s, =U0, r_=rt =Rt
g =at =8 =V, t - t e '
(5.28)
a =Rs =Vr , s =Uv, r =rt®=Rv.
v Vv v v v

Since v and t do not coincide, in general, with the principal directions

of U , the actionof U on v and t consists of an extension by a factor

a, and a finite rotation about n . This rotation may be described by the

proper orthogonal tensor QU . Similarly, the action of V on r, and r,

consists of an extension by a factor a, and the finite rotation performed with

t
the help of the proper orthogonal tensor QV . Both rotations are defined by

(s mv+s_ @t)+nan,
v t
t (5.29)

QU=

mll—-

'_a

Q, = (a @r +a, e@r)+nan.
v v t

t

Q1

t

It is convenient to replace two subsequent rotations performed by QU and R
, or R and QV , by one total rotation performed by the proper orthogonal

tensor

1 - - -
R =RQU=QVR——S—(avav+atat)+nan,
t (5.30)

I
1)
e
<
)
{
|
=~
t
o
]
o
=]

Since R?;Rt'__ and R{:Rz are scew-symmetric along C , they are expressible in
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terms of their respective axial vectors kt and 1t , called the vectors of

change of curvature of the boundary contour [178,185], by the relations (cf.
[(1991])

T T _
RR =k x1, RR =1 x1, 1 =Rk . (5.31)

Now derivatives of a,_ and n along C can be given by

t

1

a = ath[jz— Ti b+ (pt+ kt) x t] ,
A (5.32)
n' = Rt[(pt+ k,c) x n] ,

where in components in the reference basis

il

Py otv + ‘l‘tt + xtn ,

(5.33)

~
"

- kttv + kvtt - kntn .

Exact expressions for components of kt in (5.33) , were given by NOVOZHILOV
and SHAMINA [178] and the author [184,185]. In terms of physical components of

the Lagrangian strain measures on C these expressions are [193]

1 -
Kep = -_[ot(at -1) + "tt] ,
a
t
[a - 1
k\)t = g [at(-rt+ lvt) + 5_ Zth(Ut" "tt)] = tt ’
t (5.34)
1 /'a' 1 a '
ke =% -z Y3 -2 ff—z*vt“’tt t2nry)
ay a, a

a . _
+ E [2‘7\),c (Ytt)'v + va'rvt + Znt('yw ytt)] .

Using (5.11) it is easy to express the components of kt also in terms of

physical components of the relative surface strain measures Nyp and Hog OO é
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During the shell deformation compatible with the K-L constraints the shell
bourdary surface p(s,t) = r(s) + Zn(s) deforms itself into the surface p(s,C)
= r(s) + n(s) . According to discussion presented in the section 4.5 the
boundary surface p(s,f) may be entirely described by assuming r = £ and ¢ =
¢* along C'u . These conditions constitute the basic (displacement) version of
geometric boundary conditions for the non-linear theory of shells.

The deformed boundary surface may also be described by the following differen-
tial equations [178]

(5.35)

=Y
"
u

p's = r' + cn' ’ plc =

Prgs = r'"+ tn" , Pirs = n, rr=a'. (5.36)

The set of equations (5.35) describes the surface p(s,Z) implicitly, with
the accuracy up to a translation in the space. According to (5.30)2 the

right-hand sides of (5.35) are established if Vet and Rt
K

*
. The geometric conditions ¥ A Rt = Rt on eu are called the kinematic

boundary conditions of the non-linear theory of shells.

are given along cu

Also the set of equations (5.36) describes the surface p(s,z) implicitly,
with the accuracy up to a translation and rotation in the space. According to
(5.32) the right-hand sides of (5.36) are established if Tips kt
given along C'u . However, since Rt can always be included into the descrip-

and Rt are

tion of the arbitrary rotation in the space, it is enough to assume only ¥ tt
; . o * *

and kt to be given on C’u . The geometric conditions Tee = Yot - kt = kt on

C’u are called the deformational boundary conditions of the non-linear theory of

shells.

In the case of the geometrically non-linear theory of shells we can simplify
the components of kt given in (5.34) by omitting small strains with respect to
the unity, what leads to [190,192]

tt © Mt %Mkt v

x, + 2(o, - (5.37)

vt %t t™ ") Vot T Vo

=
Q
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knt ® Zth - 7tt,v + vayvt - xt(Ytt - 7vv) *

In terms of the relative strain measures these approximate relations are

tr = Tee ¥ (Tt pu)nge o

1

1 1
vt © Put * iqt(ntt_ "vv) + 7‘30t- 5ptt)nvt - f‘ov_ pvv)nvt ’ (5.38)

k

1]

k

24

' - - -
nt ® e T Mepy T NG - 2 (-

These results were extended recently [41] to the large-strain theory of shells.

5.3. Shell equations in the rotated basis

Let us introduce the expressions (5.11) into the principle of virtual dis-

placements (3.12), what gives

aB aB _
H (s G"aB + G ﬁpuB)dA =

A (5.39)

= H (p*6u + h-6B8)dA + I (T*6u + H-68)ds ,

oM C’f

where the following stress and strain measures have been used

a8 0B 1 o AB B Aa 1 ol Lo, B BA . BA, @
S* =N +-2-(an + n,N )+-2-[(u -b )MA+(u -b )Mx],

(5.40)
B o8B 1 o AB. B Aa
G =M +7(an "'"AM ),
B, =p, + 1 p P, = l-(u +ug ) = % (5.41)
oB ~PeB T 7 %P ¢ Pag T7 Mgt MEa’r P TE Pug - .
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af

Note that both surface stress measures s, GmB

and both surface strain
n B’ Pop are symmetric here by definition. They have been introduced
first by ALUMAE [8] and independently by SIMMONDS and DANIELSON [248].

measures

Since 6RRT is scew-symmetric, we express it in terms of its axial vector
6w by [199,137]

6RR® = - R6R® = 6w x 1 , 6@:% L

(60--2—

60 x 0) , (5.42)
which together with (5.3)1 and (5.6)3 leads to
6r =6wxr , OB =6n=06wxn. (5.43)
o o

Taking variations of € and lB given in (5.7)2 and (5.9)2 and using (2.1),

(5.42) and (5.43) after transformations we also obtain

o

én _.r =6u,B+58x6m, ou_ I = 6w,, xn . (5.44)

o o B
If we take variations of the constraint conditions (5.27) and use (5.44) the

following relations for 6w in the rotated basis are established

A _ 1 aB A A=,
r 6w = a € (6U.+ na)n 6]1;8 ’
(5.45)
Ba
n-éw = € r °*6u, .
o 8

With the help of (5.43) - (5.45) the principle of virtual displacements can be

transformed into

Py ~ ~k
- H (NB|B+ p) *6udA + § (l"j - Fj)'égj +

ol
(5.46)

+ I [(B - B")e6u- (M- ﬁ*)ﬁ-éu,v]ds =0,
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where
= (s*+ L ®sir + fa
o
s =2 L R L PR it (5.47)
2+r|a
B _ 1 Bp,A, A ox L
Q=3¢ (6p+ np)[eul(G |x+ her’) G;kn] ,
B=v + B, P -T+F,
& 1 a, A A W = * 1 1 -
F=gxv (6u+ na)ele Vgl . F = . (Kt- 3 27vtKv)n , (5.48)
t
1 .0, A xB e |
ﬁ:—at (6.+ n e, G vy , M =a gK .

For arbitrary 6u, éuj and E-Gu,v from (5.46) follow the equilibrium equations
and corresponding static boundary conditions

ﬁB|B+p=0 in oM ,

P=p ,fi=H on C. . (5.49)
~ ak

F.=F. at each corner M. eC_ .

J J J f

It was shown in [142] that ﬁ-ﬁu,v is not integrable in terms of displacement
derivatives on C , 1.e. there exists no displacement boundary conditions which
would be work-conjugate to (5.49). In this chapter we shall use the relations
(5.49) to derive the set of shell equations in terms of rotations and other field
variables as independent variables. Therefore, there will be no need to use dis-
placement boundary conditions. However, if one would like to discuss such
work-conjugate static and geometric (displacement) boundary conditions, one
should apply the general formula (4.30) to transform the corresponding boundary
terms in (5.39). Then some modified static boundary parameters B, M, F could be
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calculated to which there would correspond some work-conjugate displacement para-
meters u, ¢§ . In this way one could construct an alternative form of the

af B

Lagrangian shell equations written in terms of S, G as given

' Mg+ Hopr Kp
functions of displacements and their derivatives. Here we are not interested in

such alternative displacement shell equations.

The equilibrium equations (5.49)1 can be presented in component form in the
rotated basis ru,ﬁ , what gives

aB al B 1 _of 1_aB Bpa a 1 _ad N
S IB-e Sky +3€ 5,5 + 73 SkB-Q(bB—pB-ia EABp)+p =0,
(5.51)

o8 1 B _
S" (bg-p.g) - 3 S0 +Q |B+q“°'

af

where ﬂ"___ p"ra and s,QB are functions of SaB, G given in (5.47).

The dependence of rotations upon displacements has been explicitly taken here
into account by applying (5.45) in the transformation of (5.39) into (5.46) and
using in (5.46) the variational expression ﬁ-éu,v . However, when we intend to
use rotations as independent variables, the dependence of R upon u should be
implicitly taken into account. According to [19] this implicit dependence can be
given by three constraint conditions (5.27) for the relative stretch vector €, =

B

nmsr:cl . In terms of variations these constraints in o4 are

of Ao

- a
€ r +6n,,r =0, n-én .r =0 . (5.52)

8

Let -126 and QB
straints (5.27) and (5.52). Then the left-hand side of (5.39) can be presented in
an alternative form

be Lagrange multipliers associated with the respective con-

” {[S“B+ 1 e“BS)ra + QBﬁ]'ﬁnmr’t +c*®

2
H
where 6n oB and 690!8 are given by (5.44) in terms of now independent 6u and
6w .

GpQB}dA , (5.53)

Similar constraint conditions (5.52) should also be applied at the shell
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boundary, only then (5.52)2 should be multiplied by P

the constraint (2.15)1. If now A and B are Lagrange multipliers associated
with the respective constraints (5.52) on ¢ then we should add to the
right-hand side of (5.39) the following line integral

, what corresponds to

I (Ae“Bra-bnmr)‘ + Bﬁ-bnusruta)ds . (5.54)
ef

Now the principle of virtual displacements (5.39), with (5.53) as the left-hand
side of (5.39) and (5.54) added to the right-hand side of (5.39), can be trans-
formed with the help of (5.44) into

- ” [(ﬁ‘ﬂ’3 + p)ebu + (ﬁB|B+ 3, x #+ 1 x h)-6wldA +
M

+ I {[ﬁBvB- T + (Arv+ Bn)']-6u + [ﬁsve- nx H+ Bav -

C’f (5.55)

P = B * * - [ ] —
- Alr, x 3, - r, x a;v")]+6w + Ar, +6u, lds + § (Ar + Bn)j buy = 0,

where is given by (5.47)1 in terms of SaB, S and QB as independent
variables and M =1 x Gmﬁrﬁl .

It follows from (5.55) that for an arbitrary rt-ﬁu,v on Cf we always have
A =0 , i.e. the constraint condition (5.27)2 is always satisfied on C

Taking this into account the line integral of (5.55) is reduced to

I {[ﬁsva- T + (Bn)'l+6u + [ﬁBvB- nxH+ Biv]-am}ds +

(,"]E (5.56)

+ § (Bn)j-éuj .
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Since 6u and 6w x n are now independent, from (5.55) and (5.56) follow vector
equilibrium equations and corresponding static boundary conditions

Bly+p=0, B, +3, x® +axh=0 in oA, (5.57)
b O aB - - Ra =

va-T+(Bn) =0, G rVg H Bat—O on cf, (5.58)

(Bﬁ)j = 0 at each corner M, e C% . (5.59)

Corresponding work-conjugate geometric boundary conditions follow from the kine-
matic constraints 6u=0, 6w x n=6n=0 on eﬁ and 6u; =0 on M « Gh .
For independent displacements and rotations these constraints have the solutions

u=u , Rn=Rn on ¢, . (5.60)
= u at each corner M, ¢ C (5.61)
ui = ui at eacn corne i € u . .

The second of (5.60) is still subjected to the two constraints: (5.27)1
multiplied by t®  ang (5.27)2. Therefore, in fact (5.60)2 describes implicitly

only one scalar condition.

In components in the rotated basis (5.57)2 takes the form

*®|, - ek, - o3+ ng1df + 8% =0,

(5.62)
1 a a AB aB A A 1 o
s(1 + Vi na) - eulnBS - £,,C (bB— pB) -5 Gp = 0,
while the boundary conditions (5.58)2 written relative to v, t are
1 x, _xn _aB - _
g_tn(6a+ na)G vg - K, -Ba, =0,
t (5.63)

1  x, A A af _
—t (6x+ nn)eulG v -K =0.

B v
a



- 62 -

Note that only two components appear in (5.63), since A has been eliminated.

The equilibrium equations (5.51) and (5.62) were derived by ALUMAE [8].
Equivalent forms of equilibrium equations are given in [5,248,240,19]. Boundary
and corner conditions were not discussed in [5,8], while the four static boundary
conditions derived in [248,19] would follow from our (5.58) after elimination of
the Lagrange multiplier B with the help of (5.63)1 . But then it is not apparent
how to construct the work-conjugate geometric boundary conditions corresponding
to the constraint veén = 0 on Cu used in [248] and to the equivalent con-
straint t6w = 0 used in [19]. Therefore, such work-conjugate geometric
boundary conditions were not discussed in [248,19]. On the other hand, the kine-
matic parameter 6[t:(we)] wused by SHKUTIN [240] cannot be regarded as to be
equivalent to the one which would appear during the elimination of B from
(5.58)2. It seems that the choice of such a parameter in [240] resulted from an
identification of the axial vector 6w defined by (5.42) with the variation of
the finite rotation vector we , what is correct only for infinitesimal rota-
tions.

5.4. Alternative shell equations in the undeformed basis

Sometime it may be more convenient to use an alternative form of non-linear
shell equations discussed in section 5.3, which is referred entirely to the unde-
formed basis of ¢ . Having this in mind, let us introduce the axial vector 6w
of the scew-symmetric tensor R6R in analogy to (5.42) by [199]

1
t

1

R6R=-6RR=6wx 1, 6w= (60 + =

60 x 9) (5.64)

in terms of which variations of the relative strain measures (5.7)1 and (5.9)1
are given by

(+3
GnB = dnasa = 6\1,B + kB X 6V + sB X 6w ,
(5.56)
o
GuB = G"asa = GW,B X n+ (kB X 6w) x n ,
6w = R6w , 6v=Roéu. (5.66)
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If the rotations are to be regarded as independent variables then the con-
straint conditions (5.52) are replaced by

aB

€ am°6nB =0, n°6r|B 0 in o4 ,

(5.67)

B .6n = on tP =
€ auénB_O,nénBt =0 on C.

Let again 17 S, QB are Lagrange multipliers asspciated with the respective
constraints (5.67)1 in o/ and A, B are Lagrangian multipliers associated with
the respective constraints (5.67)2 on ( . The constraint conditions (5.67)1
multiplied by S and O°
integral of the left-hand side of (5.39). Similarly, the constraint conditions
(5.67)2 multiplied by A and B , respectively, may be introduced into the line
integral of the right-hand side of (5.39). Then so modified principle of virtual

displacements can be transformed with the help of (5.65) and (5.66) into

, respectively, may be introduced into the surface

- II [(K’BIB+ kg X i+ RTp)eov + (ﬁB|B+ kg X s Sq X i+ n x RTh) -6wlda +

PYA
+ I [(ﬁBvB— R'iT + (Bn)' - Bn X kBtB]'Gv ds + (5.68)
c’f
n T Bq. v =
+J[HB”B' nx RH - Bn x th ] 6w ds + )J: (Bn)j évj =0,
ef
where now

(]

P = (S“B+ 17 e“Bs)aa + QBn = R ,

B
"

n x GaBaa = R#® , (5.69)
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tx(t‘:v'+ktB

6w, = R 6w, = B

x 6v) + (t-awf)t .

In the transformations leading to (5.68) we have taken into account that A = 0
on Cf for an arbitrary t-év, , in analogy to the reduction of (5.55) to
(5.56).

Since 6v and 6w are independent, from (5.68) follow vector equilibrium

equations and corresponding static boundary conditions

ﬁB|B+kaﬁB+RTp=0,

in o4, (5.70)
#| +k x® +s, x¥ +nxRh=0,
B B B
o T , B _
NBVB-RtT+(Bn) -ankBt =0,
on Bf ) (5.71)
aB T _
¢*av, - RH-Bs =0,
(Bn)j = 0 at each corner Mj e C’f . (5.72)

Component form of (5.70) in the undeformed basis a ,n coincides with (5.51) and
(5.62) while the components of (5.71) in the basis v, t are equivalent to those
given in (5.63).

Alternative forms of equilibrium equations written in the stretched basis
s, /n are given by the author [185,190,193] and in the rotated basis by KAYUK and
SAKHATZKII [109].

5.5. Static-geometric analogy

Between the equilibrium equations (5.57) and the compatibility conditions
(5.24) (or, equivalently, between (5.70) and (5.24)) an interesting
static-geometric analogy can be established. In order to show this analogy, let
us express compatibility conditions (5.24) in component form in the rotated
basis, what gives
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of af  ox x _
€ n}\a|~8+ € (6a + nc)eMkB =0,
p(1 +5n%) = e®nX(b =0 ) =0,
(5.73)
eaaehpmla + %ensp,s - euska(b;— p;) + -12— aankup =0,
of Ax 1 1 2 o _
e e (b - i'pla)pr ~zP tE kulB =0.
Let us introduce modified measures by the formal relations
Ba8= _ eaogBtPOt' ~oB_ + aneBt o ko= 4+ eaoko' b=-p,
(5.74)
~0T ~0T ~C -
Pap= = €ac®gt® ¢ Nap™ t Cao®s ¢ Ko™ = Eqgk 1 P =P«

In terms of those modified measures the compatibility conditions (5.73) can be

written in the form

~af 1 ar-B B _
n lB -5 € "Aks (68+7n3)k =0 ,
a1 @y 1. a-AB ~aB, A 1A 1 -a
P"*‘Z‘“a’ -7 fa"gP " (bb- 2 B) 7 NP 0,
(5.75)
~aB 1 _oA~B 1 oB-~ 1 _oB~ cBra 1 a 1 e _
p |8—7€ \Kg +3€ pg+7a pkﬁ-k(bB-?pB-?a epr)-—O,
<08 - Bl
P (byg '2“’«3”3""""'3 0.

If we compare (5.75) with the equilibrium equations (5.62) and (5.51) we note
that the homogeneous equilibrium equations can be transformed into the modified
compatibility conditions (5.75) if SuB, G“B, QB, S are replaced by EuB’ ﬁ“B,
EB, p , respectively, and all non-linear (quadratic) terms are multiplied by
1/2. This static-geometric analogy was noted by ALUMAE [7,8]. It extends to the
non-linear theory of shells the static-geometric analogy of the linear theory of

shells which was formulated in tensor form by GOLDENVEIZER [76].

The compatibility conditions (5.73)1 o can always be solved for km and p |,
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what gives

k =-+2 PN nl)n ,

(V] 3 a o lp|n

(5.76)
_ 1 aB A
p = - T x € nu(ka- plB) .
7 Mx

Similarly, the equilibrium equations (5.63) can be solved for QB, S what gives
the formulae (5.47) Then k_, p, QB and S may be eliminated from the

2,3° o’
remaining equilibrium equations (5.51) and the compatibility conditions

(5.73)3 40 which then are expressed entirely in terms of symmetric measures SaB,
G and
nuB' puB

the static-geometric analogy formulated above does not hold.

. Unfortunately, for such transformed set of 3+3 equations

5.6. Shell equations in terms of rotations, displacements and Lagrange
multipliers

Various non-linear shell relations discussed in the preceding sections allow
for some freedom in choosing independent field variables of an appropriate
boundary value problem.

An interesting version of the non-linear theory of shells can be given in
terms of finite rotations © , displacements u and Lagrange multipliers S,
QB as independent field variables [19].

In terms of corresponding stress and strain measures Suﬁ, GmB and Nag’ Pag

the strain energy density (3.32) and the constitutive equations (3.34) are

2
_h o8 h 2.2

I=3H ("aB“Au + Ti'puspxu) + O(Ehn“e™) , (5.77)
s%® - agz = CLO-vIn*®+ va®n’] + o(Enne?) , ¢C = Ehz ,

o8 1-v (5.78)
o8 oz B, _oB x 2 2 Eh3
G = 3 =D[(1-v)p "+ va pu] + O(Eh"n6“), D= —_— .

pGB 12(1-\’ )

Let the constitutive equations (5.78) together with (5.76) be introduced into
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the equilibrium equations (5.51), (5.62) and then n o’ Pop be expressed in
terms of wu, © with the help of geometric relations (5.19) and (5.20). As a
result, the problem is reduced to nine partial differential equations: six
equilibrium equations (5.19), (5.20) expressed in terms of O, u, S, QB and
three constraint conditions (5.27) containing only 6, u . Corresponding
work-conjugate static and geometric boundary and corner conditions are given by

(5.58), (5.60) and (5.59), (5.61), respectively.

The structure of the final set of nine equations is relatively simple. The
equilibrium equations (5.51), (5.62) are linear in S, QB and their first

derivatives, are quadratic in u but linear in u while rotations appear

'8 ‘aB

in them as polynomials which are quadratic in but again only linear in

e,
B
e, 8 - The constraint conditions (5.27) are polynomials in rotations but linear
in u,B .
This system of nine non-linear equations may be considerably simplified in the
case of small strains, when additionally we assume that the strains caused by
stretching and bending of the reference surface are of comparable order, i.e.

g = hp o8 Within the accuracy of the first-approximation theory from the

compatibility conditions (5.73) we obtain the estimates

2
ne_, ©(5.79)

2
- = o(ne_ @ _ e _o@
=0(n/r) , p =0 R ), paIB pBlc = O(hl

kB
which introduced together with (5.78) into (5.51), (5.62) lead to the following
consistently approximated equilibrium equations

B 8 o 62
C[(1—v)nalB + W‘Bla] + p = O(Eh n_k—) ,

2
c(b2- pa)[(1-v)n + v6b M ] + Q |, +qg = O(Eh2 nd —-) ,
B "B 8 AZ
(5.80)

2
ngl - 0% + B* = o(En? N "9 ,

2 2,2

S - eAB{an[(1-v)nuB+ vaaBn:] - D(b:—pz)[(1-v)pa8+ va® p = O(Eh“n~e“) .

Within this approximation S apears only in the last algebraic equation
(5.80) 4 and can be evaluated separately. The eguation (5.80) 3 can also be solved
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for @ and introduced into (5.80)2, which then takes the form

2 nez
) -

DpzlB + C(by -PB)[(I-v)n + v6 o ] +q+ ﬁal = o(Eh
A

(5.81)

If now (5.19) and (5.20) are introduced into (5.80)1 and (5.81) then we
obtain

ca“"[(1_v)(rm1’_‘p+r g + virglh o+ 749,01 ] + By= O(En ),

8
L2 1 B

DILe™ (4, + 5 0,4,) - 5 ¥, 3]}I

(5.82)
a 1 _ax Y Y Y 1.7 1
+ Clog- 2 Le (¢ gt -e bg) + EBY(¢‘N+ 50°¢,) - 3¢ o+ 45 1031} x
B B_x 2 ne?

x [(1-v)a p(r l ot To¥p ) + v6,a p(r l + L )l +q + ﬁa| = O(Eh "2 .

A

The equations (5.82) together with (5.27) give us six partial differential
equations for six components of ©, u to be solved.

Simplified static boundary and corner conditions on ef follow from the
corresponding reduction of (5.58) and (5.59), with the help of (5.78), (5.32) and
(5.38). In the right-hand sides only the principal terms, which have the same
structure as those in the approximate left-hand sides,are taken into account. As

a result,we obtain on cf
Cln +wvn,,) =0 + O(Ehnez)
wv tt v '

C(1-v)nvt =Q + O(Ehnez) ,

(5.83)

2
2 no ne-,

Dlp, + pyy) oyt (1-v)p {1 + ﬁ =Q + K' + O(Eh" =—) ,

D(pvv+ vptt) =K + O(Ehznez)

- - 2 .2
and D(1-v)[pvtn]j = [Ktn]j + O(Eh“n0“) on Mj € C% , (5.84)
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where the relative strain measures still have to be expressed in terms of
components of ©, u by (5.19) and (5.20). Corresponding work-conjugate geometric
boundary and corner conditions are given in (5.60) and (5.61), with (5.27)1
multiplied by t® ang (5.27)2 as the constraints.

Let us assume that the external loads p, h, T and H are derivable from the
potential functions ¢[u,B(R)] and ¢[u,B(R)] by the relations (4.4). Note that
now u and R may be treated as independent variables, what allows for some
flexibility in the definition of the conservative loads. If the external loads
are conservative the total potential energy of the shell is given by the func-

tional

1= [ Glng @R 0, (R + 5 ®on R +

oM

SnaB

+ QBnRTeB(u,R) + o[u,B(R)1}dA + (5.85)

+ J {#[u,8(R)] ~ BnRTeB(u,R)tB}ds
cf

with the geometric boundary (5.60) and corner (5.61) conditions and tl';e con-
straints (5.27) on C’u as subsidiary conditions. The variational principle 6I =
0 states that among all possible values of independent fields u, R, S, QB and
B , which are subjected to the conditions (5.60), (5.61) and (5.27) on Cu ,
the actual solution renders the functional I stationary. The stationarity
conditions of I are: the equilibrium equations (5.57) in o/ , the constraint
conditions (5.27) in e4 , the static boundary and corner conditions (5.58),
B

(5.59) on C’f and the constraint condition ﬁ-eBt =0 on Cf .

Note that the functional I defined by (5.85) is linear in S, QB, B ard is
rational in wu, R and their only first surface derivatives. The later property
is important for the computerized numerical analysis of the flexible shells based
on direct discretization of the functional (5.85). It allows to apply the
simplest shape functions in the finite-element analysis or the simplest

difference schemes in the finite-difference analysis, which assure high
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efficiency of numerical algorithms and better convergence to the accurate final
results.

In some applications it may be convenient to apply the more general free
functional

1 of B-
I, =H {z("aB'paB) tze S"as +QneB -
Y /A

- _;s“B[nQB— “as(“'R)] - G“B[pas— paB(R)] + ¢[u,8(R)1}aA +

(5.86)

+j olu,B(R))ds - J' BoR"-c, (u,R)t%ds - [ (BR), -(u - u) -

e i
cf

- I {[NBVB+ (BA)'1-(u - u) + [GaBrav
%

This free functional follows from (5.85) if we introduce into it the strain-dis-
placement-rotation relations (5.27), the geometric boundary conditions (5.60) and
the geometric corner conditions (5.61) multiplied by the respective Lagrange
multipliers PGB, K“B, P, K, S,i . Then some stationarity conditions of so de-
fined I, allow to identify the Lagrange multipliers to be SaB, GaB, ﬁBvB +
(Bn)', GmhrmvB - BSt and (Bﬁ)i , respectively, which have been already used in
(5.86). The functional I, in (5.86) is defined on the following free fields
subject to variation: u, R inof#, u, R on €, u, ateach M e : n p
o B B . o _af 8 i i u’ o’ TaB’
s ,G",8,Q ind,8",G",S8,Q",B on (‘,’u,B on c’f and B, on M e
C’u . The variational principle 611 = 0 is equivalent to the complete set of
non-linear shell equations: (5.57), (5.58), (5.59), (5.27), (5.19), (5.20),
(5.60), (5.61) and (5.78).

- K
B~ Bat]°(Rn - Rn)lds .
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5.7. Shell equations in terms of rotations and stress functions

If all the external forces are functions of the finite rotations alone the set
of non-linear shell equations can be expressed in terms of the finite rotation
vector © and the stress function vector F . Such equations were first
proposed by SIMMONDS and DANIELSON [247,248].

When rotations are taken as independent variables the rotational compatibility
conditions (5.24)2 or (5.73)3 4
equations (5.5‘7)1 can also be satisfied if we introduce the stress function

are identically satisfied. The force equilibrium
vector F = F“ra-t- Fn such that

]

& =cPp, +0F , PP- P"‘Brm + P°n , (5.87)

where P° is a particular solution of (5.34). Now it follows from (5.87)1 and
(5.47), that s*° p

,S and Q
satisfy the moment equilibrium equations (5.57) o the tangential compatibility

are prescribed functions of 6, F . It remains to

conditions (5.24)1 (since here u will not be regarded as an independent
variable) and to eliminate u and B from the boundary conditions.

Let conservative surface and boundary loads be defined in terms of potentials
o[r,n(e)], ¢Ir,n(6)] by

p=-— h=-2 T = - X H:--a-qf. (5.88)

Let us apply the Legendre transformation (3.36) only to the first part Zn of
the strain energy density given in (5.77), which contains squares of Neg * Let
us also introduce the tangential compatibility conditions (5.21‘4)1 into the func-
tional (5.86) with the help of the Lagrange multiplier F . If (5.19) is also a
priori satisfied then (5.86) can be written in the form

_ of C 0B 1 o 0B B-. e
J1- ‘” {s Neg = ZS(S ) + Zp(pas) + 5 Se Neg * Q'n Negl -
M
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+1 x ra)'F + o[r,n(0)]}dA +

of af
- [puB- paB(e)] + € (t:mlB 8

(5.89)

- = aB_ | A B-. A
+ J ¢lr,n(0)lds - I (Ae I, Nyl + B'n gl )ds -

Ce €

- I [L+(F - £) + M-[A(0) - a0")1}ds - | K «(F;- T})

i i
(o4

u

where A, BB and L, M, Ki are corresponding Lagrange multipliers associated

with the constraints (5.27) on € and with the geometric boundary and corner
conditions (5.60) and (5.61).

The variational principle 6J 1 = 0 allows us to find various stationarity

conditions of J1 , among which are relations which identify the Lagrange multi-
pliers A, Bv, L, M, Ki to be

L = PB\:B +F 4+ (BA)', M=6®rv, -B3 , (5.90)
Ki = E‘i + (Btn)i .

In order to eliminate the free field variables g G“B, Pag’ S“B, S, QB in
o, T on Cu and Ei at each M, e 6u let us assume that the following
stationarity conditions of J 1 are a priori satisfied

c
oz az
_ S aB _ _p _ o8 _ B B .
Nag g3 G = apaB ' Peg = puB(e), = mE',m+l=' in o4,
(5.91)
- =% - %
r=r on cu, r, =TI, oneach Mit-:l',’u .

If now (5.90) and (5.91) are used then the functional (5.89) is reduced to
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3, = H (P, + B¥)oc,(P.0) - 3(F,0) + I (6) +
ol

+ e*®le  (F,0) + 1,(8) x r_(0)]°F + pB|B-I- + £[A(8)1}dA +

alB
(5.92)

+ I {- Tt + g[n(®)]}ds - thﬁ(e)-eB(P,e)ths -

A ¢

- I [G"‘B(c-:nrm(a)vB - Btat(r,e)]-[ﬁ(e) - n(e")1ds ,

(4

u

where 0 = PB[B-E + £f[n(6)] and ¥ = -T-r + gln(8)] have been used.

Since aﬁlB = lB xr, + baBn + eulﬁ in oM , the second line of (5.92) can be

transformed further to the form

‘” [- (eB“F, +P%)ea, + £1aA +
o B
A (5.93)

+ I (BPyg - - F-E')ds + j (B - FeE¥1as .

cf eu

It follows from (5.92) and (5.93) that on Cf we still have to eliminate r

from the following line integral

I (PB\)B°1’-.' - Per' - Ter)ds =

cf (5.94)

B N .— .- - o—
= I (Pv, + F'= T)er - ): [P(sj+1—0) rj_'_1 F(sj+0) rj] .

B
J
cf
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It is easy to see that the values of r on each Mj € C’f are not known, in
general, and the out-of-integral terms in (5.94)2 can not be evaluated only in
terms of F and © . However, there are two special cases of the boundary
conditions when those terms are given. The first obvious case is when the
boundary contour C has no corner points. In this case those terms do not appear
at all. The second special case is when on € only (displacement) geometric
boundary conditions are prescribed, i.e. e = Cu , or € is divided by the
corner points into an even number m of intervals, on which alternately only
static (5.58)1. or only geometric r = i"* boundary conditions are prescribed. In
the last case all the corner points belong simultaneously to @f and to cu .

Intervals (Mj, Mj+i) € C’f, (M, M 1) e C, wher-e j ;-*1,3,5,..., m-1, i = j+
. Since deformation of C is continuous and r, =r, on each Mi € fu we
- -t
indeed obtain r, =r. for any M. ¢ é. .
J i-1 3 f

Let us assume that € is divided indeed into an even number of intervals on
which alternately only respective static or geometric quantities are prescribed,
as discussed above. Then in order to eliminate r from the line integral of
(5.94)2 the following functions are introduced on € £

= (65 +C))' (5.95)

S
6(s) =I (T - PBvB)ds , T—PBvB
S.

J

where Cj are constant vectors which should ensure F to approach €
—*

b

continuously. Taking further into account that- Gj(sj) = 0, f'(sj) =r, , = Ej'
- - —% .
r(sj_H) =r, = rj+1 we can transform (5.94)2 into
sj+1
m? { I[(G+ C.- F)*f'lds - [G.(s. )T, + C.(E" TH1} (5.96)
j=1,3 i3 s I & B & b B & )
’ "'é‘
J

where r' on Cf is understood to be expressed in terms of F, 6 by (5.7)2,
the inverse of (5.78)1, (5.47)1 and (5.87)1. As a result, the functional J, in
(5.92) can be transformed into the form
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c Ba B,. =
JZ(F,O,Bt,CJ.) = H {zp(e) - 24(F,8) - (e"F, + P") rB(e) + fln(8)]1}dA +

oM
Sj+1
m-1 _ _
+) (I {(G.+ C.- F)-r'(F,0) + gln(8)]}ds -
=1,3,...5 33
J (5.97)

é

....* = = - . B _
- [Gj(sj+1) Tig * Cj(rj+1 - rj)])- I Btn(e) eB(F,e)t ds
¢

- j {PE " - vaB-E* + [Gas(e)ru(e)vﬂ- B, (F,0)]-[d(e) - ne*)1} as .

C

u

The variational principle 6J 2 = 0 is equivalent to three tangential
compatibility conditions (5.24)1 in oM three moment equilibrium equations
(5.5'7)2 in ol , three constraint conditions (5.27) in o# , three force static
Mj+1) € ef,
j=1,3,...,m-1 , two relations (5.63) on @f (the first identifies B_ and the

t
second is the static boundary condition for the couple), one constraint condition

boundary conditions Gj+ Cj— F - Btﬁ = 0 on each interval (Mj,

ﬁ-eBtB =0 on (C and three geometric boundary conditions (5.60)2 on @u for

the rotations.

If we compare (5.97) with the analogous functional given by SIMMONDS and
DANIELSON [248, £.(76)] we note that, apart of some unimportant constant terms
and the extended potentials f and g which are included into (5.97), also the
line integral over C and the last term in the line integral over Cu in (5.97)
do not appear in the corresponding functional of [248]. Even if Bt is
eliminated from (5.97) with the help of (5.63)1 , those two line integrals do not
reduce themselves and have to be taken into account in the consistent non-linear
theory of shells, which is expressed in terms of stress functions and finite
rotations as independent variables.

Several functionals in terms of finite rotations were discussed also by ATLURI
[14], who used the undeformed as well as the rotated basis as a reference basis.
In the reduced forms of the functionals of [14] also the force static boundary
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conditions were supposed to be a priori satisfied. This means that corresponding
Cj should be constructed separately outside the variational problem. Term
analogous to the last one in (5.97) is taken into account in [14], but the line
integral over C of (5.97) still does not appear in the corresponding functional
of [14], what makes the solution even more difficult. In the functional proposed
recently by BASAR [24,25) the rotation vector has been defined as w=nxn =
easnaae, cf. [23]. So defined vector has different geometric meaning than the
finite rotation vector used here and, therefore, the functional of [25] can not
be compared with the functionals discussed here. Under K - L contraints the
functional of [25] becomes a particular case of the functional (4.8) of the dis-

placement shell theory developed in [201,197].

In the literature on computerized FE analysis of flexible shells rotations are
utilized explicitly and implicitly, exactly and approximately, on the level of an
element and in the global matarices. As a result, it is not apparent how to
compare the theoretical shell model discussed here with the numerical shell
models. Let us only note that rotations were used in the numerical shell models
proposed, among others, by RAMM [203], ARGYRIS et al. [12], PARISCH [181], HUGHES
and LIU [92], SURANA [265], OLIVER and ONATE [180], BERGAN and NYGARD [29], RECKE
and WUNDERLICH [204] and RECKE [205] where further references are given.
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6. Intrinsic shell equations

In some special problems of flexible shells, under particular types of
boundary conditions, the basic set of non-linear shell equations may be expressed
entirely in terms of two-dimensional strain and/or stress measures. Such
intrinsic shell equations and their approximate versions for the geometrically
non-linear bending theory of thin elastic shells were derived already by CHIEN
[44] in terms of the strain measures. Alternative sets of intrinsic shell equa-
tions and/or alternative schemes of their approximation were proposed by MUSHTARI
[152], ALUMAE [5], KOITER [115], JOHN [101-103], WESTBROOK [294], AXELRAD [15,17]
and VALID [283]. Intrinsic formulations of thin shell dynamics were discussed in
[84,130,131,304]. DANIELSON [49] selected stress resultants and changes of cur-
vatures as basic independent variables what allowed him to derive the refined set
of intrinsic shell equations. Those equations were then modified slightly by
KOITER an SIMMONDS [120] with the help of JOHN's [101] error estimates.
Alternative formulations and special cases of the refined intrinsic shell equa-
tions were discussed by PIETRASZKIEWICZ [185,190], SIMMONDS [244], LIBAI and
SIMMONDS [133] and KOITER [110].

The simplicity of the intrinsic shell equations is remarkable. Their solution
leads directly to the determination of stress and strain distributions in the
shell, without necessity to calculate displacements. However, displacements
and/or rotations may be calculated, if necessary, by an additional integration of
the kinematic relations (2.7), (2.10) or (5.19), (5.20).

6.1 Intrinsic bending shell equations

Let us note that the component form (3.31) of the mixed shell equations
(3.30)1 in the deformed basis Ea, n is already expressed entirely in terms of
two-dimensional strain and stress measures. Corresponding four static boundary
and three corner conditions ( 3.30)2'3, when written in components along v, t, n
, are also expressed in terms of the strain and stress measures. Appropriate
boundary conditions on Cu can also be expressed entirely in terms of the strain
measures by assuming (5.34) and Yit to be given on Cu . Therefore, the equi-
librium equations (3.31) and the compatibility conditions (2.12) constitute the
basic set of six non-linear equations with respect to arbitrarily chosensix compo-
nents of strain and/or stress measures which are connected by the constitutive
equations (3.34) and (3.35).
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Let us now assume that the small strains in the shell caused by stretching and
bending of its reference surface are of comparable order in the whole shell, i.e.
Yeg "~ h”aB . Then within the error of the first approximation to the strain
energy density (3.32)1 the equilibrium equations (3.31) and the compatibility
conditions (2.12) can be essentially reduced [185,193] to the form

2
Eh B B _ né
;::7 [(1-v)7u|8 + VYBIGJ + qa = O(Eh —x—) ’

3 2
Eh aB Eh o a 8 B.A ap 2 né
—— g + — (bB - uB)[(1—v)ym +v6 7,1 +q+k la = O(Eh” =)
12(1-v7) T-v A
(6.1)
2
B _ B oM
xale - nBI“ = O(hl ) ’
B[“ QIB (B2 - b2A0) + o0 - a8) = O(—rl-e-E
Yalp = Yalp = Pu’p a'B 2 7a"B a' B’ 12 :
Corresponding static boundary conditions on ef reduce to [193]
Eh 2
1.v2 (va + tht) + O(Ehn9“) = Q, .
Eh 2
2 (1—v)7vt + O(Ehne“) = Q
-V
—E-f— {n + vux +2(1-v)n', + (6.2)
12(1_\’2) Vv,V tt,v vt
2 .2
Eh™n0™, _
+(1-v)[nt(xvv - )+ vaxvt]} +0(——) =Q + K ,
B 4 wn.) + olendne?) = K
120105 Wt v
while at each corner point Mj € Cf we should assume
En> 2.2
—— (1-v)(x__ ).n. + O(Eh“ne“) = (K _).n. . (6.3)
12(1-v%) V3] £

Corresponding deformational quantities (5.34) can also be reduced in accordance
with the error already introduced into the reduced compatibility conditions
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(6.1) This gives us the deformational boundary conditions [193] on Cu :

3,4°
2 2
né *
Xep + o(——) = Kep » e O(—H—) =K, o
n93 *
Wop = Tep,v + 20Vyp + 2 (v = M) + O =k, (6.4)
*
Yer = Yet -

The resulting set of bending intrinsic shell relations (6.1) - (6.4) is very
simple. Four field equations (6.1 )1 3 are linear while two remaining ones

(6.1 )2 4 are quadratic in terms of Yo ard . All boundary conditions are

ab
linear in the strain measures.

6.2. Refined intrinsic shell equations
In many problems of flexible shells the small strains caused by membrane force
resultants may be of essentially different order (higher or smaller by the factor

92) from those caused by the couple resultants. In those cases the reduced

bending shell equations (6.1) should be approximated with a greater accuracy,

1,3

since within the accuracy indicated in (6.1) they contain only terms of one

1,3
kind: membrane strains or changes of curvatures, respectively.

The refinement of (6.1 )1 3 may be performed by selecting membrane stress
NmB and changes of curvatures o8 as the basic independent

variables of the shell theory. The estimation procedure presented in detail in
[49,120,185,193] leads then to the following refined intrinsic shell equations

resultants

NBI + 2A(N

B x |B A[(1-v)N N + vN N ]|

B—

A A B B x
- D{(ba - xa)[“—v)xA + vélun]}lB - B

xB)(Dnl +k, ) +
a | B

B A
+ 2A[(1+v)Nan - leqa] +q,= O(Eh I ) ,

2 n92

AZ ’

aB B
D"als + (b - x, )N +qg+Kk | = O(Eh (6.5)
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8 B A AL
Wols = Mala - AL - Ny B - Ry ]
n94
+ A\:(b - )N"| - 2A(1+v)(b - )qB = o),
al® 4 P- L - LEnE + aavgf —o(“ez)
alg ¥ Py 2% < T/ Mg t AVIVIG g = 2
3
1 Eh
A==, D= —m— . (6.6)
Eh 12(1-v%)

af
naB
as independent variables and with all the external surface forces d,: 9 taken

The refined intrinsic shell equations (6.5) expressed in terms of N

into account were given in [185]. Here we have additionally supplemented them
with the external surface moments k . DANIELSON [49] derived (6.5) in terms of
- Mg and a modified stress resultant tensor n""tB , with only g taken into
account. KOITER and SIMMONDS [120] expressed (6.5) in terms of n®® , - P o8

the absence of surface forces, while q,, 9 was taken into account in [190].

in

Associated with (6.5) boundary and corner conditions should also be refined.
1,2 and the
tangential deformational boundary conditions (6.4)1 need to be refined, since the
other boundary conditions (6.2)3'4, (6.3) and (6.4)2’3 of the bending shell
theory are accurate enough for the use with the intrinsic equations (6.5).

Note that only the tangential static boundary conditions (6.2)

Let us multiply (3.30)2 by v or t , apply the transformation rules (3.9)
to express v, or ta in terms of v, o°r ta , respectively, and use the
constitut;i.ve equations (3.34) o+ Then within the error O(Ehne4) the tangential
static boundary conditions (3.30) o on €. can be reduced to the consistently

£
approximated form

[1 + A(NW - tht)]NW- D(ov—xw)(nw+ \mtt) + 2D(1-v)(rt+ "vt)"vt =

_ 4
=Q, + (rt+ "vt)Kt+ O(Ehne") , (6.7)

(1 + A(Ntt— vav)]Nvt + 2A(1+\’)vaNvt + D('rt+ nvt)(xvv+ vntt) -

_ 4
- 2D(1-v)(ot- ntt)xvt = Qt - (Gt— xtt)Kt + O(Ehne~) .
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Corresponding deformational Boundary conditions qn CL can be constructed by
the consistent reduction, to within the error 0(2%—) , of the parameters ktt
and kvt given in (5.34)1'2 with the subsequent elimination of Yop with the
help of the constitutive equations (3.35)1. As a result, we obtain the following
consistently approximated deformational boundary conditions

4
= k¥ né
g + BlO = % NG = W) =k + OCF)
28(14v) ( N . - A( YN - wN,.) =k o<—"e4
ot t IO = X V0 — AV X PN W) S X t h ' ¢
2A(1+V)N")t - A(Ntt v \’va v) + 211§(1+\))7¢\,tN\"t + (6.8)

’ 14

3

* rle
+ A(1+V)7tt(N‘N— N,,) = knt + O(—h_ ’

tt

AN, - W ) =y
tt” Vw’ = Tee -

The static boundary conditions (6.7), (6.2)3 4 are equivalent to those given

by DANIELSON [49] in terms of naB, -xgo - The refined form (6.8) of defor-

mational boundary conditions has not been discussed in the literature.

6.3. Work-conjugate static boundary conditions

The consistently simplified static and deformational boundary conditions given
in sections 6.1 and 6.2 are not work-conjugate to each other, since the static
parameters in the line integral (3.28) work on virtual displacements and not on
variations of the deformational parameters ktt' kvt' knt' Tep - In order to
derive work-conjugate boundary conditions the line integral of (3.28) should be
transformed as it was suggested in [192,193].

According to (2.17)1 and (5.30)2, a =t+u's Etht . Taking the variation

of this expression with the help of (4.27) and using the identity éu'=(6u)' we

obtain

-, _1 = -
(6u)' = gﬁ'atGYtt + 6w x a_ , (6.9)



where by 6u. we understand the variation of displacement field on é , which is
referred then to the deformed basis v, t, n , i.e. the virtual displacement
field appearing in (3.28)

‘Let c be an arbitrary constant vector and ¢ =Rc . Then 6c = 6w _x c

t
and ¢'= 1, x ¢ , according to (4.27) and (5.31). Since again (6c)'= 6(c")

this leads to

(6w )'= 61 - 6w x 1 . (6.10)

t

Using (5.31) and (5.33 )2 the relation (6.10) can also be presented in the alter-

native form
. - z -
(bmt) = ﬁkttv + ékvtt ékntn .

Let A and B(O) be the vectors of the total force and the total couple with
respect to the origin 0 ¢ & of all the internal force and couple resultants
acting on a part of the deformed boundary ¢ . With the help of transformation
rule ( 3.9)1 these vectors are defined by

S
A=A0+IPds_, P=NBvB-(Hﬁ)' )
(6.12)
S0
S

B(0) = B,(0) + J' (r x P + Gt)ds ,

S0

where NB, H and G are given in (3.29) and B, B_O(O) are initial values of
A, B(O) . The total couple vector B = B(M) with respect to a current point M
of & is given by

B=B(0O) -rxA. (6.13)

Differentiating A and B along C we obtain
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A*=P, B' =Gt-a_ xA. (6.14)

t

Differential relations (6.9), (6.11) and (6.14) can be used to transform the
boundary terms in (3.28). Indeed, introducing A' for P into (3.28) and
integrating by parts, then again introducing B' for Gt - St x A ard again
integrating by parts we obtain

J' (P-su + Gt'dmt)ds - ): Hjnj-buj =

J
(6.15)
cf

J 1 n- - n . 3 .
- I [B (6mt) + -é-z- A ato-ytt]ds { [(Hjnj + Aj) 6uj + Bj tmtj] .

J
t
cf

Exactly the same transformations hold for the analogous external force and
couple resultant vectors, only in this case T, H , G* and H; appear in place
of Nﬁv , H, G and HJ , respectively, in analogous definitions of P ’ A*, B*,
Aj and BJ . As a result, with the help of (6.11), (6.15) and an analogous
transformed integral for the starred quantities the boundary terms of (3.28) can

be transformed into

%, - L - *. - 1 *, =
I [(B-B")-vek, , - (B-B')-tok , + (B-B")-mék . - —(A-A")-téy  Jds -
e t
£ (6.16)

*, - * - *
- H.-H.)n, + A, - A.1-6u. + (B,-B.) 6w,
§ {[( 578570y 5 J] u, ( 4 J) ”tj}

*
It is apparent from (6.16) that on c components of B - B in the basis
v, £, n and the component - 5;1 (A - A)-t work on variations of the defor-
mational parameters. Therefore, static boundary conditions which are work-con-

jugate to the deformational ones have the form



%
l_n
I-\

*

, At =—A-t on C_. (6.17)

t t

Wi
1h]

It follows from (6.16) that terms associated with the virtual work at the
corners Mj € Cf are not expressed in the intrinsic form, since the static para-
meters work there on 6u and 6w e respectively, but not on variations of de-
formational quantities. Therefore, in oder a shell problem be solvable in the
intrinsic way, entirely in terms of strain and/or stress measures, those
out-of-integral terms should identically vanish. It is easy to note that those
terms vanish identically in the case of the smooth boundary contour (i. e.
without corners) or when only geometric boundary conditions are assumed on the
entire € . Another special case is when € is divided by corners into an even
number of intervals, on which alternately only static or only geometric boundary
conditions are prescribed. In such a case all the corners belong simultaneously
to & and to Cu and, therefore, 6u and 6w

corner M e (.

N vanish identically at each

When the work-conjugate static boundary conditions (6.17) are used in
conjunction with the bending shell equations (6.1) or with the refined ones
(6.5), all the vectors A , B , _A* and B should be calculated from the
consistently reduced components of P , G , P"c and G* given in (6.2) and
(6.7), respectively.

6.4. Alternative form of the refined intrinsic shell equations

An alternative set of intrinsic shell equations was derived in chapter 5.
Indeed, six equilibrium equations (5.51), (5.62) and six compatibility conditions

oB o B

(5.73) are expressed entirely in terms of the stress measures S  , G Q, S

t i .
and the strain measures Nag’ Pop kB' P

When strains are small everywhere, the equilibrium equations (5.62), (5.51)
can be reduced within the error of the first approximation theory to the form

2
6*®| - o + 8% =o(mn® 1%, |
B A
a AB aB . A A, 4
S - eaAnBS - EaAG (bB- pB) = O(Ehne") ,
(6.18)
2
af ar B 1 _oB B a «a a0 no
S |B - € Sky+5e S,4-0Q (bB- pg) + P = O(Eh =) ,
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2 nBz
2 L]

s%(b4-p4) + Pl + b = 0N
o N

Similarly, the compatibility conditions (5.73) can be reduced into

aB _ (e
€ Mals * ky, =05,

4
p - ( by~ pB) = O( ,

(6.19)
4

aB _Ax 1 _xB aB x x MO
€ ka(bﬁ_ PB) —O(HX—) ’

€ € p1u|8+7e Pig =

of Ax 1 af
€ € (bla_fpla)pn +ek IB_O(T :

It should be noted that the static-geometric analogy formulated in section 5.5
holds also between the reduced sets of equations (6.18), (6.19).

Let us solve (6. 18)1 2 for Q“ S and (6. 19)1 2
and introduce them into the remaining equations (6. 18) (6.19) , what leads to

for k,, e , respectively,

af a). P B 1 of R AP M,.p P
ST g + e e S ng, 1o + 3¢ EpIny ST+ G (b= )],
- (@}, + B°) (05~ o5) + 8% = O(En 1 ), (6.20)
oB oB B 2 ne®
ST (bg- pg) + G |u8+ h |B = O(Eh )
eaBelxplaIB + -12- exBeal[n (bP- o)1 |
aB A x x 94

+ €€ pnallp(bB- pB) = O(L—) , (6.21)
o Ax 1 nez
€ € [(bla- Vi pla)pnB - nalle] O(AT :

Introducing the transformations (5.74) into the left-hand sides of (6.21) and
changing signs we obtain



~af 1 ol xp-B 1 oB 1 _x-Xp
P lB +tze e pAanlp +5e€ snp[i'nx +
~xk,.p 1 p ~BA a 1 o,
+ 77 (- -Z-px)lls n IA(bB 5 Pg) =0, (6.22)

-uB 1 ~aB
(b —-2— B)+n I

When (6.22) is compared with the homogeneous equations (6.20) it is seen that the
static-geometric analogy still holds between the reduced equations (6.20) and
(6.21), what was not the case for the exact sets 3+3 of the transformed intrinsic

shell equations (cf. section 5.5).

The measures Mg and GQlB can still be eliminated from (6.20) and (6.21)

with the help of constitutive equations

by 2
g = A[(1+v)SaB- vaaBSA] + O(ne°) ,
(6.23)
c*® - D[(1-v)p - vaaBp:] + O(Eh nBZ) ,

what after transformations gives us the following alternative form of the refined

intrinsic shell equations

B Ao

su|B+A[(1+v)s-vcs]| -Z-A[(1+v)ss-vss 1, -
1 B
- % D(1 —v) (B px p )I p )pllﬁ +
B By _

+ B, - (b - pa)BB = O(Eh X ) ,
D% |® + (bP-pP)s® 4+ B + A% = o(En? ne’ (6.24)
Palp o Po’"B +P+ o AZ ' :
o1 - phy, + 3 AT LN- p)sBo (B 0Byt

«|8 " Pl t Pa by- P51l -

4
8 B Bya _ MO
- A(ba o )SAIB - A(1+v)(ba- pm)p‘3 = O(Ff_) ,
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asS|B 4 (- 5 oapS - (B2 5 oo + ACIeIR® = O‘T

If we apply the identity [49,185)

AgB_ Bgh AgB_ B
(sa - S5.S )|B (sB - sBsA)|a (6.25)

the first two of the equilibrium equations (6.24)1 can be put into another equi-

valent forms

B A A B 1 AB
Sy|g + AL(1-v)S  + v8 S 1] .S - 7-A[(1-v)sas + vS S ]|

alB
1 B A B By A
+ = D(1-v) (byp - b pA)l - D(b - pa)pﬂB + (6.26)
B n94
+ 28v(S By~ S ﬁ ) + P - (b - Py )h = O(Eh =) ,
B A BT BoA
Safa * PSy|gSy - E'A(sts)la D(1 v)(blp b pl)l

B By A B . B. o B B\a
- D(bh- pu)pAIB + AV(SupB' SBpa) + B8, - (bu- pu)h = O(Eh & ) . (6.27)

The refined intrinsic shell equations (6.24) are fully equivalent to those
given by (6.5). This can be shown directly if we take into account the trans-
formation rules (5.11) and (5.40) written here in the appropriately approximated

forms

B B 1 A A, B B B,.A
Py = %, *+ 7-A(1+v)[(ba- xa)NA + (bx- xA)Na] -

o4 o2
Av(bs- ", )N + oM ) = nB + 0( ,
(6.28)
sP = n® & Al(1+uIN - vb*N”]N - —-D(1—v)(b X + b ) Ay -
o o a a X
- Dv(bg- xi)n: + D(1=v) ni + o(Enne?) = Ni + O(Ehne?) .
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In the comparison of (6.24) and (6.5) one should also take into account that the
tangential equilibrium eguations (6.24)1 are derived here from the components
(with the subsequently lowered index a) of the vector equations (5.49)1 in the
rotated basis r, . while the corresponding equations (6.5)1 have been derived
from the components (again with the subsequently lowered index «) of the vector
equations (3.30)1 in the deformed basis Su . Therefore, we should also take

into account the following transformation of the bases

B

ot O(nez)]EB

_Ja Bp A, A= B
r, —-/?;e Eal(6p+ np)ab = [Ga ¥
a (6.29)

= {62 - A[(1+V)N: - vsz;] + o(nez)}EB .

If now (6.28) are introduced into (6.26) and the effect of change of the basis is
taken into account according to (6.29) then, within the indicated accuracy, the
equations (6.26) can be transformed into the equations (6.5)1. Applying the same
arguments also the remaining equations of (6.24) can be transformed into the
corresponding equations of (6.5). Therefore, the sets of the refined intrinsic
shell equations (6.24) and (6.5) are fully equivalent indeed.

B

The corresponding set of refined static boundary conditions in terms of s®
Pug CaD be derived from (6.7) and (6.2)3 4 if we apply there the reversed trans-
’
formation rules (6.28). Then after appropriate estimates and transformations we

obtain on Cf
S - A(14+)S 2 + D=V (x +p do. =Q + (1.4 p_)K, + O(Ehne?)
v vt t vt vt v t vt t ’

1
S ., + A(1+V)vasvt + 7—D(1-v)(av- P

vt vv)pvt -

_%muww +%Nhﬂh€p )

t ptt)pvt vt Puv ~
(6.30)
- L D(1-v)(t,+ p.)p,, = 0O - (o,~ p,.)K, + O(Ehne?)
2 t vt Ttt t t tt't !
D{pvv'v + Wyt 2(1-\:)9\"t + (1-v)[nt(pvv— ptt) + Zanvt]} =

2
_ , 2 n®
=Q+ K+ O(Eh =)
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2 2
D(pvv+ vptt) =K, + O(Eh™ne~) ,
while at each corner point Mj € Cf we have

D(1-v) (p,,) A = (K,) iy + 0(En%ne?) . (6.31)

Similarly, the corresponding set of refined deformational boundary conditions
in terms of SuB, Pog CaN be derived from (6.8) again by applying the reversed
transformation rules (6.28). Then after appropriate estimates and transformations

we obtain on € u

4
* ne
Pep + A(1+v)(1:t+ pvt)Svt - A(ct- ptt)(Stt— vS\N) = knt + O(-h— ,
0 . -1 aeo-p IS - La(ev)(a.~p.)S . +
vt 2 v wu' Twv 2 t tt vt
1 a(-v)( (S +8,..) =k o(—""4
+ g AUV P IS Se) = Ko YOV

(6.32)

2A(1+V)S¢t - A(Stt v vva

’ 14

v) + 21\(14-\:);::“5\)t +

3

=k* +O(ﬂg— ,

+ A(1+V)ut(va° Ntt) nt

* 2
A(S - VS ) =7, + 0o(ne”) .

It should be noted that within the indicated error the homogeneous equations
(6.24) may be shown to be equivalent to the ones proposed by KOITER and SIMMONDS
[120]. In particular, when linearized, both sets of equations reduce to those of
the "best" linear theory of thin shells according to [37]. However, a) our equa-
tions (6.24) are expressed in terms of the measures SQB, Pup which appear
naturally in the non-linear theory of shells (cf. chapter 5) while the correspon-
ding equations of [120] are expressed in terms of some modified measures for
which no exact Eulerian counterparts can be defined (cf. discussion in section

3.4); b) our equations (6.24) take into account all the surface loads By -
Ehn/x, P ~ Ehzn/lz, ﬁu - Ehzn/l , while those of [120] are given for the case of
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zero surface loads (the loads p° and p have been included in [190,1191); ¢)
our equations (6.24) follow from the set of 3+3 reduced shell equations (6.20),
(6.21) which obey the static-geometric analogy in the non-linear range of defor-
mation, while such an analogy can not be established between the initial rela-
tions of [120]; d) our equations (6.24) are supplemented by appropriately simpli-
fied static and deformational boundary conditions, while no such boundary condi-

tions are given in [120].

6.5. Some special cases of intrinsic shell equations

As it was noted in the Introduction, already CHIEN [44] proposed a formal
classification of approximate versions of his intrinsic equations under the
assumption of a slowly varying geometry and slowly varying strain states of
plates and shells. MUSHTARI [152] applied less formal qualitative analysis and
constructed approximate versions of intrinsic equations for small and medium
bending of shells and plates. In [152] several sets of intrinsic equations of the
boundary layer type were also given. ALUMAE [5] introduced the notion of wave
length of deformation patterns and discussed 12 cases of intrinsic equations for
the buckling analysis of shells which are shallow or almost shallow relative to
deformation patterns. The solution of the most complete set of such equations was
then reduced to the solution of two equations expressed in terms of stress and
deformation functions F, W . Similar assumptions were applied independently by
LIBAI [130] and KOITER [115] to derive the equations for quasi-shallow shells.
However, no corresponding intrinsic boundary conditions were discussed in the
papers referred to above.

The derivation of refined equations [49] provided new possibilities in the
proper formulation of intrinsic equations for various types of shell problems. As
a starting point for further discussion, three different but equivalent versions
of the refined shell equations may be used: the one proposed by KOITER and
SIMMONDS [120] and supplemented by the surface forces in [190], which is ex-
pressed in terms of some modified stress arnd strain measures, the one derived in
terms of NQB, *og by the author [185,193] and summarized here as egs. (6.5) -
(6.8), as well as the one derived in terms of SQB, Pag

(6.24), (6.30) - (6.32). Referring to discussion after (6.32), the third version,

in this report, egs.

as the most complete, seems to be preferable.

Let us look more carefully into the structure of (6.24). Let Nyg = N and
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hpus ~ hp be the maximum extensional and bending strains, respectively. Let also
Ln and Lp be the wave lengths of deformat;on patterns assocﬁfted with the
extensional and bending strains, such that "ulv - n/Ln and pﬁl? - p/L% ,
respectively. Then dividing (6.24)1'2 by E and multiplying (6.24)3’4 by h™ ,
we obtain the following order estimates for magnitudes of individual terms in the

refined intrinsic shell equations (6.24):

. h. h_ 2 hh, hh . h 42
(6.24)1. ‘L—n ,'L_rl ,ﬁ-—l-hp ,-ﬁi—hp ,-E-—(hp) R
n n P P
. h 2. ho .
(6.24)2. (trJ he , gN . nche
e (6.33)

- h . ho_l_.l_‘ E._l'l_. h ey @ h_. .

. h,2. h, 2

Similar estimates can also be given for terms appearing in the static (6.30),
(6.31) and deformational (6.32) boundary conditions.

Various small parameters appearing in (6.33) describe quite different
phenomena. The parameters h/R and h/l describe the initial geometry of the
shell and its spatial variability, which should be supposed to be known in
advance. The parameters n, hp, h/Ln and h/lp describe the respective predic-
tions of orders of magnitudes of the extensional and bending strains as well as
their predicted spatial variability. These parameters are not known in advance,
for they strongly depend on the type of shell problem being solved, i.e. on the
geometry, external surface and boundary loads, boundary conditions etc. Within
the accuracy of the first approximation theory of shells it is already assumed
that terms of the order of h/R, (h/l)z, (h/Ln)z, (h/Lp)z, n and hp can be
omitted with respect to the unity. This gives us the upper bounds for estimates
of various small parameters. However, in different types of shell problems the

real magnitudes of some small terms may be far from their upper bounds.

For some shell problems it is possible to predict in advance the type of solu-
tion behaviour in the whole internal shell region. This prediction may then be
used to compare the orders of magnitudes of various terms appearing in the set of
equations (6.24), (6.30) - (6.32), what allows us to omit some terms which are of
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the order of error of the first approximation theory. Then the predicted solution
of the shell problem may be obtained from a considerably simplified set of
intrinsic shell equations. However, it is always advisable to check at the end
whether the solution calculated from the simplified ecquations represents indeed
the predicted type of solution of the shell problem. Note that the type of shell
problem is described in (6.33) by all six small parameters given above, whose
orders of magnitude are entirely independent. As a result, a large variety of
special cases of intrinsic shell equations may be generated from (6.24). In what
follows we shortly discuss only few special cases which seem to be most impor-
tant.

In the limit b e 0 (6.24) reduce to intrinsic equations of the geo-

metrically non-linear theory of plates (less error terms)

{sg + A[1+v)S - v6 S ]s -]

B x_A A X
Y T Aéu[(1+\))SASx - "stn] +

+ DL(e® - 7 63201} | + ALU+v)SPp, - vsbp 1 + B, + 2B, =0,

aB B |, - ap ¢
meIB - p.5g +p+A [a_o , (6.34)
pB -p A(1+\:)(pS -pS )l

afg T PBla T p ™

BoA B. _

+ ApmSM'5 + A(1+\))pmpB =0,

o B 1 B a 1 aB .Q -
ASuIB - 5 PPg 7 PPy + AL1+VID |y =

When the plate is loaded by edge forces only SIMMONDS [244,133] managed to reduce
the solution of equivalent to (6.34) set of plate equations of [120] into two
couple equations for the stress and deformation functions F, W , except in the
case in which rotations are O(1) and simultaneously the variability of defor-

mation is very large. These extended von Karman equations are [133]

A(aaF + W|%%) + ]
B a

741,W>=0

’

(6.35)

D{AAW + [%(AW)Z - <W,W>]JAW} - <W,F> =0
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where

:
(e% 4 Z14v)ePe BITHIMI|, = anar]®
(6.36)
8 A
<W,F> = €E xWIgF|n .

The (almost) inextensional bending theory of shells is usually defined as the

one in which the extensional strains are much smaller than the bending

n

strains hp B’ i.e. n/hp << 1 . Here weaBassume additionally that the spatial
variability of the bending strains is lower than in the general theory, h/l‘.,p <<
1 . Such slowly variable bending strain states are typical for the inextensional
bending deformation of the shell. If also L',) £ 1 then within the error of the
first-approximation theory (6.24) reduce to the following set of intrinsic equa-
tions of the geometrically non-linear inextensional bending theory of shells

(less error terms)
B A B B, A
{S - -2- D(1-v) (B p;l lpa) - D(b“ - pu)pl +

B, x X, A A B Byp _
+ D5 (b, - ;:~n)p}\}|B + B, - (b - pa)hs =0,

aB B R~ T

Dpa|B+(bu—pu)SB+p+ﬁ l,=0. (6.37)
B

(p, - GPA)I

B 1 B, « a 1 a _

(ba -5 pm)pB - (bm -3 pm)pB =0 .

In comparison to our previous inextensional bending shell equations [185,190]
derived from equivalent refined intrinsic equations the underlined terms in
(6.37) o are taken here into account, what results from the additional requirement
h/Lp << 1 used here. The presence of those therms allows for a smooth transi-
tion to the inextensional bending theory of plates, if the limit baB - 0 is
taken in (6.37). The set of equations (6.37) follows also quite formally from

(6.24) by taking the limit A - O , cf. [244,119].

Note that the reduced compatibility conditions (6.37) 3 4 Can be solved with

’
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respect to independently on the stress state in the shell. In this sense

p
oB
the inextensional bending problems of shells are geometrically determined. When
aB
S

Pog are calculated, follow from the reduced equilibrium equations

(6.37)1

and then the constitutive equations (6.23) allow to recover LIPS and
B
GG

,2
The (almost) membrane theory of shells in usually defined as the one in which
the bending strains are much smaller than the extensional strains, hp/n << 1 .
Here we assume additionally that the spatial variability of the extensional
strains is lower than in the general theory, h/Ln << 1 , what again is typical
for the membrane stress states in the shell. If also Lp £ 1 then within the
error of the first-approximation theory (6.24) reduce to the following set of

intrinsic equations (less error terms)

Dod |8 + (Bf - p)sy + 5+ B =0,

B B 1 AB B BA
Loy = 6,0, + zA(14v) (B S) - biS ) - AthA]|B +
(6.38)
B A B. _
+ Ao |45y - A(14v)b B, =0 ,

«|B B a a B N TR
AsulB + b pg = bpg + A(14+v)P |, =0 -

In comparison to our previous membrane shell equations [185,190], which followed
from equivalent refined intrinsic equations, the secondary non-linear terms are
omitted in (6.38)1 and the underlined terms in (6.38)2'4
what again results from the additional requirement h/Ln << 1 used here. It

are taken into account,

should be noted, in particular, that the equilibrium equations (6.38) can not

be solved here independently for SmB , Since in (6.38)2 we have the1ﬁiderlined
terms which provide the coupling between the equilibrium equations and the compa-
tibility conditions. As it was noted in [119], this coupling removes from the
non-linear membrane theory the degeneration prevalent in the linear theory,
[254]. In particular, the geometrically non-linear membrane theory of plates

follows from (6.38) in the limit b o ~ 0. At the same time, our equations (6.38)

B
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are considerably simpler than those which would follow formally from (6.24) by
taking the limit D - 0 , what was suggested in [244,119].

The bending theory of shells equivalent to the one discussed in the section
(6.1) follows from (6.24) if

L L L L
p h ph hp . 1l R p R p 1
max (Tﬁ ' qR) <<;—<< min (qﬁ ’ 'qh ’ qE) . (6.39)

Then (6.24) can be reduced to the set of equations (less error terms)

(6.40)

B B Ay
(pa - GGPA)‘B -

aB B 1 o a N T
ASaIB + (b, - 5p.)pg = (B =39 )pg + A(1+v)5 [,=0.

Let us introduce the stress function F and the deformation function W by

- PPRI} 4 6Mkm) 4 PP

= S : (6.41)
B _ B, B B L

pa_+W|u+5aKW, Puls"pa‘o'

The egquilibrium equations (6.40)1 are approximately satisfied by (6.41)1 and the
compatibility conditions (6.40)3 by (6.41)2 provided

Ln 2 Lp 2
-I—]Kan «< 1, 'I—IKILp «<1, (6.42)

respectively. Then the remaining equations (6.40) in terms of F, W take the

2,4
form

al

DA(AW + 2KW) + e™e B

(bP -
[+ 3

Bp & WI

B p P
GQKW)(FIA + 6,KF) +
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+ (08 - w|B - Pk +p 4+ R =0,
o a a B a
(6.43)

BA(AF + 2KF) — e (8- 1
Bp o 2

B_1 .8 P P
Wl - > 6 KW) (W|S + 6,KW) +

a Braq, _
+ AlaP ] - (1+v)Pa|s] =0 .

These are the non-linear bending equations for shells of slowly varying cur-
vature, which has been proposed recently by RYCHTER [213]. Under more restrictive
assumption |K|L2 <<1 , wher L = min(Ln, Lp, 1) , we can also omit in (6.43)
all terms with K , what leads to the non-linear equations of quasi-shallow
shells, given by ALUMAE [5] and KOITER [115].

The limited space of the paper does not permit to present here the explicit
reduced forms of intrinsic boundary conditions to be used with each of the
reduced sets of intrinsic equations discussed above. For each particular case
those boundary conditions follow immediately from (6.30) - (6.32) if correspon-
ding estimates are introduced and appropriate simplifications are made. The

reader can easily derive them himself, if necessary.

Other special cases of the intrinsic shell equations and some of their appli-
cations are discussed in [51,49,190,244,119,133,18], where further references are

given.
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7. Closing remarks

In this report we have reviewed some achievements associated with the deri-
vation, classification and simplification of various sets of equations of the
non-linear first-approximation theory of a thin shell, deformation of which is
expressible entirely by deformation of its reference surface. Basic sets of shell
equations, which govern static problems of a thin shell made of a
linearly-elastic homogeneous isotropic material undergoing small strains but
unrestricted rotations, and associated variational principles have been for-
mulated either in terms of displacements, or in terms of rotations and other
fields or in terms of strain and/or stress measures as independent variables.
References have been given primarily to those original papers and monographs
which deal with general aspects of the non-linear theory of thin elastic shells
and have been written in the invariant tensor notation. Apart from the uni-
fication of various partial results which are available in the literature the
report contains also some original results which have not been published els-

where.

The subject of this report is quite narrow and many important aspects of the
non-linear theory of shells have not been discussed. Among those associated sub-
jects let us mention, for example, stability analysis, dynamic behaviour,
large-strain theory, inelastic material behaviour, composite shells, interaction
problems, higher-order shell theories, Cosserat-type theories, existence and
uniqueness of solutions etc. Outside of this report are also specific problems of
shells with definite geometries as well as various analytic and numerical methods

of analysis of the flexible shells.
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