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UNIFIED OPERATOR DESCRIPTION, NONLINEAR BUCKLING AND POST-

BUCKLING ANALYSIS OF THIN ELASTIC SHELLS

H. Stumpf

Lehrstuhl fiir Mechanik II, Ruhr-Universitit Bochum, West-Germany

Summary: A nonlinear stability and post-buckling analysis based on energy
considerations is performed for nonlinear elastic thin shells with moderate
rotations. A unified operator description is introduced to formulate the non-
linear shell boundary value problem and to derive in a compact form the equa-
tions of critical equilibrium and the equations for a nonlinear post-buckling
analysis with singular and multiple buckling modes. All equations are given with
associated boundary conditions. The proposed operator description allows to out-
line the relations between the governing equations of the nonlinear shell boundary

value problem and the buckling and post-buckling equations.

Ubersicht: Ausgehend von energetischen Uberlegungen wird eine nichtlineare
Stabilitdts- und Nachbeulberechnung fiir dinne elastische Schalen mit moderaten
Rotationen durchgefihrt. Eine vereinfachende Operatorschreibweise des nicht-
linearen Schalenrandwertproblems wird vorgeschlagen, die eine kompakte Herleitung
der Gleichungen fir kritisches Gleichgewicht sowie fir eine nichtlineare Nach-
beulberechnung mit einfachen und mehrfachen Beulformen ermdglicht. Alle Gleichun-
gen werden unter EinschluB der zugehdrigen Randbedingungen angegeben. Der vorge-
schlagene Schalenoperator zeigt in einfacher Weise die Beziehungen zwischen

den nichtlinearen Gleichungen des Schalenrandwertproblems und den Beul- sowie

Nachbeulgleichungen.
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1. INTRODUCTION

The presented paper continues investigations, outlined in [1 -5], on the
subject of nonlinear eiastic thin shells with moderate rotations. It is well-
known that the so-called "moderate rotation shell theory" yields an adequate
description for a very large range of nonlinear elastic shell problems of
engineering interest. This theory, which is defined by the assumptions of small
strains and moderate rotations, had been completed only recently by deriving
the associated nonlinear boundary conditions [6 -8]. The small strain restric-
tion implies that "soft" materials are excluded. The governing equations of
the nonlinear shell boundary value problem form a set of three nonlinear equili-
brium equations together with four geometric and four nonlinear static boundary
conditions. An equivalent description can be obtained as weak solution of asso-

ciated variational principles [1 -3].

The singularities of the governing equations can lead to bifurcation points
with intersecting equilibrium paths and to points with snap-through phenomena
associated with possible loss of stability. A significant subject of a nonlinear
shell analysis is therefore the determination of critical points with bifurca-
tion or snap-through buckling and the calculation of the load carrying capacity
of the structure. Many investigations of shell stability are based on a linear
approach by neglecting the deformations that occur prior to buckling. For some
structures this procedure yields satisfactory results in predicting the critical
loads, for many other problems the prebuckling deformations cannot be neglected

and a linear approach leads to severe errors.

A more realistic approximation procedure than a linear stability analysis of
"perfect” structures had been obtained by the introduction of "initial imper-
fections" [9 - 11]. Their influence on the stability behaviour is similar to the

contribution of the nonlinear prebuckling deformations. For the moderate rotation



shell theory the stability equations with associated boundary conditions had

been derived by the author for linear and nonlinear prebuckling [4,5].

Using the total potential energy Koiter [9-11] developed an asymptotic
technique to approximate the initial post-buckling behaviour and the imper-
fection sensitivity of structures. This method is applicable to structures
with bifurcation type buckling. Sewell [12,13], Thompson [14], Thompson and
Bunt [15] applied the static perturbation method to buckling problems of discrete
systems and Budiansky [16] to the buckling of continuous systems. This perturba-
tion technique is an approp?iate procedure for bifurcation as well as snap-through
type buckling of elastic structures and had been applied to the post-buckling
analysis of frames [17 -22], plates [23] and spherical shells [24]. Finite element

procedures for the buckling analysis can be found in [25 -28].

In this paper the nonlinear stability and post-buckling analysis of elastic
shell structures is considered in the frame of the nonlinear shell theory with
moderate rotations. Variational approaches as well as full sets of Lagrangian
shell equations will be given to determine thé initial nonlinear fundamental
equilibrium path, the critical points of bifurcation or snap-through buckling
and alsq the post-buckling equilibrium paths. To obtain a unified description and
to clarify the relations between the prebuckling, buckling and post-buckling
analysis a nonlinear shell operator is introduced, representing the field equa-
tions as well as the boundary conditions of the shell. Then the stability equa-~
tions for nonlinear prebuckling can be obtained as differential of this shell
operator. Using the static perturbation technique a systematic approach to the
study of post-buckling paths with singular as well as multiple buckling modes is

considered.



2. BASIC SHELL RELATIONS

In this section we start with the basic shell relations, which are
outlined in more detail in [6 -8]. All considerations are based on the physi-
cal assumptions that the shell is elastic, homogeneous and isotropic and of
constant thickness h with (h/R) << 1, where R is the smallest principal
radius of curvature of the undeformed shell middle surface. All shell de-
formations are assumed to be such that (h/L)2 << 1, where L is the smallest
wave length of deformation pattern of the shell middle sunface. Furthermore
we presume that the strains are small everywhere in the shell, while the

strain~-displacement relations are nonlinear.

To obtain a Lagrangean description of the nonlinear shell theory all shell
deformations will be referred to the undeformed shell middle surface M. Let
”(6%), &« = 1,2 be the position vector from a fixed Cartesian coordinate
system to an arbitrary point of the reference shell middle surface as a
function of a set of curvilinear Gaussian coordinates 6%, a = 1,2. With 8%

we associate covariant base vectors ad =1 o and a unit normal vector n. The
’

covariant components of the surface metric tensor a , and of the surface curva-

aBf

t = . = .
ure tensor are given by the scalar products aaB aa aB and baB aa,B n,

where subscripts preceded by a comma indicate partial differentiation with

respect to the corresponding coordinate direction. Using Einstein's summation

of

convention the contravariant components a = of the metric tensor are defined

by the relations aala = Ga, where 8%

AB B B

all following formulas Greek indices take the values 1,2.

is the Kronecker symbol. Here and in

The deformation of the shell middle surface from the undeformed reference
configuration M into the deformed configuration M can be described by the

displacement field



u.=7i-)(.=uaaa+u n, (2.1)

3

where u® are the contravariant displacement components tangent to the
middle surface and ugy is the displacement component normal to the middle

surface.

With the deformed shell middle surface M are associated corresponding
covariant base vectors &a and a unit normal vector N defining the surface
metric tensor amB and the surface curvature tensor Sas of the deformed shell

middle surface.

Assuming that the state of stress is approximately plane and parallel to
the middle surface or equivalently that the Kirchhoff-Love hypothesis is wvalid,
the shell deformation can be described by the middle surface strain tensor YaB

and the change of curvature tensor Kas

) , k,=-(b, -b. ) . (2.2)

__1_(" -
=72 '8 a aB aB aB

YaB af af

Let eaB be the linearized middle surface strain tensor and mi"i =1,2,3

the linearized rotations defined by

-1 - =1 - =
eaB =3 (ualB + uB[a) baBuB W =32 (uBla ua[B) = €an3

(2.3)

0 1
2B - L
Yva |-1 o

and a = det(aa ). In the frame of a nonlinear shell theory with moderate rota-

B

tions the strain measures (2.2) can be approximated by [6]:



_ 1 1 2 1 A A
Yog = 8ap g_‘_"g‘fg 73,093 T 7 (9058 F 8guy,)
, (2.4)
_ A
KGB [(D | + (DB! + b (BAB )\B) + bB(e)‘ -w, )]

where a vertical stroke preceding a subscript indicates covariant differen-

tiation with respect to the corresponding coordinate direction.

With the modified tensor of elastic moduli

aBAiu _ Eh aX_Bu ou BA 2v _aB_Au
H = ETT:;T (a "a +a a T:;-a a ) (2.5)

af

. o .
the stress resultant tensor N~ and the stress couple tensor M 8 are given by

the constitutive relations:

af _ aBAp _ _ af af_A
(2.6)
of _ h% eBAu  _ Eh3 T aB A
M = > Kau = 120197 [(1 - vk " + va Kl] '

where E is Young's modulus and v Poisson's ratio.
Assuming that distributed surface loads per unit area of the undeformed middle
surface are given:

p = pgaa +pyn - (2.7)

the nonlinear equilibrium equations for the moderate rotation shell theory are

obtained in the following form [3,6,7]

af 1 o AB B. Ao o, AB B Ao 1 oA _ 1 ai B BA o
[ ..fbAM + bAM )y - (b M bk ) - 7 W Ny 2(m Ny + o NA)+
1 ar B _ a _ o AB AB -
+ 5 (07'N7 - o N ]| bg (M | j_(.[ik_---)+p 0 (2.8)
aB af aB a AB B
™M"| +@N )|B + baB[N - byM Nk] + Py

————m—— e e e




aB B

Expressing N and M and introducing then

by the strain measures YdB and Kas
the strain-displacement relations (2.3) - (2.4) the equilibrium equations (2.8)
yield a set of three nonlinear partial differential equations in the displacement

components U, Uy of the shell middle surface.

To complete the set of governing equations by the boundary conditions we intro-
duce an orthonormal vector system Vv, £, n at the line C bounding the undeformed

shell middle surface M:

LBy xa

5 o g ! (2.9)

_d}L—a . = =a = aB' =
’t'ds‘t“a' hY Ixn va, eBata' i R

where s is the length parameter of C. A cross indicates the usual vector product.

= uav , u,_ = uata and ug the displacement

With the physical components u, . €

vector U at the boundary can be expressed by

u= “v'\" + utt + u3n . (2.10)

As a fourth independent geometric quantity at the boundary the rotation about the

tangent to the boundary line Bv =-¢hva will be used.

To describe the static boundary conditions the resultant stress vector Tv and

the resultant stress couple vector Mv at the boundary are introduced, defined by

T =TBv =T v+ T, £+T n

v B Ve tv nv
(2.11)
B, - _
Mv =M vB = Mtvx + MUUI
with:
B_rn®B_1 o AB Byro, 1 a AB B Aa, 1 aB A 1  ar B BA
TP =[N 2(13.,\M+b)\M) -_(biM— bM™T) -5 0 Ny -5 (0 Ny o N)\) +
+% e NB - oBAy Dla + (o B|a + (paNaB)n (2.12)
MB = € Mdsa)\ .

aA



_ LaB _ 4B
' Tnv and Mtv =M tavB' Mvv M

ties of the resultant stress and stress couple vector at the boundary.

In (2.11) Tvv’ T vavs are phys;cal quanti-

tv

Let us assume that on a part Cu of the boundary line C geometrical quantities
and on a part Cf statical quantities are prescribed. If geometrical and statical
quantities are given on the same part of the boundary line, they must be comple-

mentary to each other [1]. Then we have the geometrical boundary conditions on

B. = Bt ;u,. = u*j y 3= 1,...,1\1u (2.13)

and the statical boundary conditions on Cf [3,6,7]:

aB _ Lo AR al B _ - ok _ * — pk
vavB[N bAM ] bvtMtv Tvv bvtMtv Pv
oB a AR B Aa 1 o AB B Aa 1 aB A 1 B BA o
ta\)B[N - (bM +byMT) - 5 (b)M bM™) = F 0 N -7 (0 N)\-Hn Ny) +
1 028 = k- = p¥
tg BN N, ety = Tev T PeMey T B
(2.14)
B ag, . 4 * 4+ 3 gk - px
VB(M |a * ?gg__) *as My Ty I My TR
aB Lk
vavBM Mvv
- -0) = M* - M* - = i =
Mtv(sfj+o) Mtv(sfj 0) Mtv(sfj+0) Mtv(sfj 0) F; r 3= 10N,
.o B . . , _ .o B _
where bvt = VvV baB is the geometric torsion and btt =tt baB the normal curva

ture of C. Given values are indicated by an asterisk. If on the part Cu discrete

corner points are located at s = suj rJ = 1,...,Nu and if on the part Cf discrete

corner points are located at s sfj 3 =1,..., Nf, then (2.13)5 and (2.14)5 are

the geometrical and statical corner conditions. For all further considerations

it will be presumed that external loads and boundary forces are of dead-load type.



The equilibrium equations (2.8) expressed as functions of the middle sur-
face displacement field U form together with the geometric boundary conditions
(2.13) and the static boundary conditions (2.14) the full set of ndnlinear par-
tial differential equations describing the nonlinear boundary value problemof ela-
stic shells with moderate rotations. The solution.of this boundary value.problem

yields the displacement field u depending nonlinearly on the given external loads.

3. SIMPLIFIED NQNLINEAR SHELL THEORIES

As outlined in more details in [3] the governing equations of the moderate
rotation shell theory include the equations of many well-known nonlinear and
linear theories as special cases, which are obtained by omitting underlined

quantities in the equations of section 2:

Omission of terms marked by

(additional restriction) yields the theory
— Leonard [30]
secee Sanders [31]: "moderately small rotations"

Koiter [32]: "small finite deflections"

® 6000 = & cotum ¢ ——— PietraszkieWicz {1]

|

s — o — 0 — Sanders [31]: "moderately small rotations

|

about tangents and small rotations about
normals to the middle surface"

Koiter [32] |

= serrs — e — o — Donnell-Marguerre~-Vlasov [33-35]: "quasi-
(wa = ug a) . 1
14 ”n p— — "

shallow shells (Yas-—ea8-+2 u3lau3,6,

K

aB _u3|a8)

e



- — — von Karman [36] : nonlinear plate theory

- Naghdi [37] : linear shell theory

|
|

—— — — sssee Budiansky and Sanders [38]: linear

shell theory

Table 1

By omission of marked terms according to table 1 all results of the following

sections are valid also for these reduced shell theories.

4. APPROPRIATE OPERATOR FORM OF THE LINEAR SHELL THEORY

In order to derive the equations defining the critical points of bifurcation
or snap-through buckling and to determine the post-buckling equilibrium paths of
shell structures in a unified and compact fofm we introduce an appropriate opera-
tor description of the shell theory. In this section we start with the linear
shell theory and define linear shell operators with associated bilinear functionals
which allow to investigate important properties of the shell operator as symmetry,
positivity or positive definiteness. They are of special interest for the construc-
tion of numerical approximation procedures like finite element methods. It should
be mentioned here that the structure of consistent linear shell theories have been

considered also in [39,40].

From the relations of section 2 the linear shell equations are obtained by
neglecting all nonlinear terms. Assuming that the displacements U € Hu are ele-
ments of a Hilbert-space Hu and that the middle surface forces p € Hp are elements

of a Hilbert-space Hp' we can put them into duality by a bilinear form

- Q
(u,p) = JJ(uap + u3p3)dS . (4.1)
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representing the work of the middle surface forces p applied .to the displace-

ment field u.

Furthermore we define elements € € HE representing the state of strains

and 0 € Hc representing the state of stresses of the shell:

(014 ‘ , N}_l W
922 sz
12
¢ = 212 "l | H o, o= :{‘1 €H_ . (4.2)
11
‘" 22
| “12 " f21 LM12J

The spaces He and H_can be put into duality by the bilinear form:

ag
_ aB aB
<g,0> = If(easqe + KaBM )das (4.3)
M

with the linear stress resultant tensor:

af _ . aBAu
Ny~ = H exu . (4.4)

The bilinear féfm(4.3)is the interaction energy of two linear shell deforma-

tions described by e and o.

We define now an operator | mapping elements u € DT c Hu into HE by

's 3\

911(“)

8., W)

22

6,,(W) + 0., (W)
Tu 12 21 ’ (4.5)
Kll(u)

Kpp (W)

Kig(W) + Kgy (u)

L J
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where in the subset UT c Hu sufficient differentiability conditions have to be

satisfied and rigid body motions are excluded.

The constitutive equations of the linear shell theory can be expressed by

using an operator H: HE - Hc

(N @)
N ()
Néz(s)
He = i1 (4.6)
M " (g)
M>2 (e)
M12(e)
~ J
where N“B(e ) and MGB(K ) are given by (4.4) and (2.6),:
'e Au Au g y . . 2-
Furthermore an operator T* : Ho > HP is introduced by
Y 1 o AB B, Ac 1 o AB B, Ac a AB
[ny 5 (ByM° + biM™) = = (byM" - biM )”B beM N
T*o = - | €H,  (4.7)
of aB _ .o AB
M |mﬁ+bm‘3u~x£ b M"") J

which will be used to formulate the linear shell equilibrium equations in operato
form. It is shown in equation (4.16) that the operator T* is formally adjoint to

the operator T.

The given definitions of linear shell operators and bilinear forms are repre-

sented graphically in the following scheme (fig. 1):
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PG

Fig. 1

According to fig. 1 we can define an operator A with the domain UA.C DT

and with the range HP by

3
[N,Z () - 365 w68 W) - (b“mw (Wb () 1| -b“m"B(u) A
Au=T*HTu = - , €H
aB aB a AB
\ (u)IuB m£ (w - bAM (u)) J

(4.8)
which allows to formulate the linear equilibrium equations of the shell theory

in the operator form:

Au = p (4.9)

In anext step we have to introduce appropriate boundary operators. In the
frame of the considered linear and nonlinear, respectively, shell theory we de-

fine a geometric boundary vector U, representing the three physical components

b
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of the displacements vector U and the rotation Bv around the boundary line C

together with the normal displacement u_,., at the discrete corner points j=1,....

33
Correspondingly we define a static boundary vector Pb collecting the three com-
ponents Pv' Pt’ P3, the boundary stress couple Mvv and the corner forces Fj at .

the discrete corner points:

( uy 3 ( Pv )
Ye Pe
T ™ ' Po= | P3 . (4.10)
S\) M\)V
Lu3j,]=1,...J | Py 3= L

We put these geometric and static boundary vectors into duality by the

line integral:

N

lu,  P) = J(uvPv +wP +uP,+ B M )ds + E Uy Fy (4.11)
C j=1

With (4.10) we define the following boundary operators:

\ .
( vaua vavB(N%B - b;‘M}‘B) - b M )
£ u* £,V [N%B - %(b:M}‘B+b§M)‘a ) - %(b‘;m)‘e-bgm)‘“)] by My
= u, , po= vBMaB[a+ gdg M (4.12)
_vu(u3'a+b;uk) vavBMaB
Lqu,j=1,... J tMt\’(sfj+0) -Mtv(sfj -0) , §=1,..., N, J

Corresponding to the operator A of the linear shell equilibrium equations

we obtain a boundary operator a
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r

aB

a, AB
n bM (w)) -

A

w8 () b5 @) -

....................

v v (N, (w) - bvtMtv(u)

B Ao

au = pHTu=

(u) (s

Mtv(u) (sfj +0) - Mtv

which will allow to present the static boundary conditions in operator form.

fj_o) r 17

1 AB
2 (b (u) b

B..Aa
(u)) - b M

1,...,Nf

(w)

» (4.13)

The bilinear form (4.3) defines an energy product for linear shell deforma-

tions. For a strain field e(U) and a stress field o(v) (4.3) yields the interaction

energy of the two shell deformations U and V:

(wym*

- o
<e(U) , a(v)> = JI[GaB(u)NE (v) + K8

M
= [[geBre h?
= JH [eaB(u)eAu (v) + K
M

B(v)]ds =

13 aB(u)KAu(U)]dS ' (4.14)
which, under certain restrictions, allows to define an energy norm
2
2 - = | |geBru h” -

Muwlllz = <cw , ow> UH [0, W8, W) + T3 K oWk, (W ]ds

= <HTw,Tu> >0 for u+*o0 , (4.15)
because the operator H is positive definite for well-chosen elastic coefficients
of (2.5).

With (4.1) and -(4.14) it can be shown by partial integration that the operator

T*, given by (4.7) is formally adjoined to the operator T according to (4.5):

<TU.,O'> = (u,T*qg) + [U,b,po'].

(4.16)
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It can be proved also that the operator A of the linear shell boundary value

problem is symmetric in a formal sense:
(Au,v) = (u,Av) - [pHTu,ub] + [pHTv,ub] . (4.17)

With the operators, introduced in this section, we formulate the linear

shell boundary value problem in the following compact form:

Au=p in M
T = u; on Cu ’ (4.18)
au = P; on Cf

where P are the given middle surface forces, u; the given geometrical boundary
datas on Cu and P; the given statical boundary datas on Cf. As solution of the
boundary value problem (4.18) the displacement field U of the shell middle surface

has to be determined.

5. NONLINEAR SHELL BOUNDARY VALUE PROBLEM IN OPERATOR DESCRIPTION

For the nonlinear elastic shell theory with moderate rotations the middle

surface strains YaB depend nonlinearly on the displacement field 4. For further

considerations we split the stress resultants NGB in a linear part N%B and a
nonlinear part N;B
of _ a8 oB
N =Npm + N, (5.1)
with
N%B = HaBAueA.
" (5.2)
ag afiy !l 2 K K
= H 5 + - +
Nn 3 wlwu aku¢3 \SAmKu equA)].
B

With the nonlinear part N; of the stress resultant tensor we introduce a non-

linear operator C(u) by defining:
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T 1 af, A 1, ar . B BA, . 1,0\, B |
[N, (W) =5 0™ NG (@)= (™ (WINy W)+ WIN; (@) +5 (877 (LN, ()~
- _ aBA o _w AB
Cw) = ] (u.)N)\(u)][B b, (WIN"" () (5.3)
aB B aX, B
[0, N g + b g~ (@ - o™ Ny W] J

Associated with the operator C(u) we introduce a nonlinear boundary operator

c(u) éiven by:

( 3

af X B
vavB[Nn (w - o (u)NA(u)]

1 aB

tauB[‘NZB wy -5 w (u)N;‘(u) —%(w"*(u)us

A

B

u) + w A(u)Ni(u)) +

Losad 3By o aBr %
+5(8 (u)NA(u.) 9 (u.)NA(u,))]

c(u) = (5.4)

o
vswh(u)N (w)

With the linear operators of section 4 and the nonlinear operators (5.3) and
(5.4) we formulate the nonlinear shell boundary value problem of section 2 in

operator description:

Au + C(u) =p in M

w = u; on C (5.5)
au + c(u) = P;

- where (5.5)1 are the nonlinear equilibrium equations (2.8) expressed in displace-
ments, (5.5)2 are the geometric boundary conditions (2.13) and (5.5)3 are the

nonlinear static boundary conditions (2.14) in displacements.
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To derive the governing equations of the buckling and post-buckling analysis

in a unified and compact form we introduce a nonlinear row operator P(u)defined

by:
Au + C(u) in M
Pu) = |au + c(uw) on Cu . ' (5.6)
au + c(u) on Cf

The given middle surface forces p and the given statical boundary variables

P; are contracted to a given row vector F

on Cu (5.7)

Furthermore we introduce a bilinear form {u,p} by
Au,p} = wp) + uy Pl (5.8)

It will be shown in the following section that with (5.6) - (5.8) the non-
linear shell boundary value problem (5.5) can be given in a variational formu-

. . _ o
lation of the type {P(u) - F,i} =0, VU € Hu'

6. VARIATIONAL PRINCIPLE OF TOTAL POTENTIAL ENERGY FOR THE NON-

LINEAR SHELL BOUNDARY VALUE PROBLEM

As solution of the nonlinear shell boundary value problem (5.5) displacement
fields u are obtained, which, as function of a one-parametric load (5.7), form
a nonlinear equilibrium path, where points of bifurcation or limit load points
can occur. At bifurcation points the fundamental equilibrium path is inter-
sected by a bifurcated path which can be stable or unstable. At limit load

points the deformation of the shell structure becomes unstable. In this
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section a generalized Taylor expansion of the total potential energy of the
shell is considered, which leads to a variational formulation of the non-

linear shell boundary value problem.

Let I denote the displacement field from a configuration U to an adjacent

configuration & + U:
w=u+da, (6.1)

where it is assumed that U satisfies the geometric boundary conditions (5.5)2
and that { satisfies the homogeneous geometric boundary conditions n&b =0

on Cu. All quantities will be referred to the known undeformed shell middle
surface, which allows to derive the shell equations in a Lagrangean descrip-
tion. For the linearized field variables (2.3) and (2.4)2 of the adjacent

state we have by superposition:

- -

eaB = eaB + eaB P Wyg = Wog + W.g i 9, =9, +O Keg = o + Kog® (6.2)

Inserting (6.2)1 and (6.2)2 into (2.4)1 the middle surface strain tensor

YaB is obtained in the following form:
Y =Y a (@ B+ BB ta BBy +T (8%, +8 0w, +B0e, +Bhm ) (6.3)
oB B 2 Fa'B a B aB7 373 oB 2 a AB a AB B Aa B Aa

where ;aB and ?ae are given by (2.4)1 with corresponding indications.

The total potential energy qp(u) of the moderate rotation shell theory is

described by the functional [2,3]

Ng
= - . - . * - K c
Jp(u) ”{fhas(“) ' Kas(u)] p - ulds [(P* w + Mk g )ds E F% uy, (6.4)
M C j=1

£
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where f[Ya (W), «_,W)] is the strain energy density per unit area of the unde-

B oB

formed shell middle surface, given by:

_ 1 _aBin ‘h?
flu) = 5 H [YGB(u)Ylu(u') +13 KdB(U.)KAu(U.)] . (6.5)

The first integral of (6.4) is taken over the undeformed shell middle surface M,
the second integral along the boundary line Cf, and the third term is the contri-

bution of all corner points of Cg.

The energy increment AJP(E;&) from a fundamental state U to an adjacent state
U + @ is a measure for the behaviour of the shell structure at U. It can be derived
by using a generalized Taylor expansion of the functional (6.4) leading to the
series:
A_(u;i) =J_(u + @) - J_(w
p P P

- - 1 - -~ 1 |
— ] - — " - — L] - 1 —_— " .
=4 (u,u)-i-2 JU(u;u u)-+6 J" (u;u u u.)-+24JP (w;a @ a) , (6.6)

where Jé, J;, J;‘, J;' denote the first, second, third and fourth Giteaux differen-
tials of the total potential energy Jp. They can be expressed in the following form

by using the differentials of the strain energy density (6.5):

Ng
Ly = | IDF (G.dy - b _ Lo amk B - -

Jp(u.,u.) JJ (u;u) p - ulds J(P’s u\’+M\NBV)ds Z F’g u3j

C j=1

£
JU(u;a 4y = “f"(a;a a)ds = J;(a;az)

(6.7)

@D - Uf @i @ dras = I @5 @)

- A e oA o~ - A A A oA

J;‘(u;u 0aau) = j[fm'(u;u a4 duyas = Jg'(ﬁ ;&4)

All higher order differentials disappear.
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To calculate the first differential f'(a;&), we have to consider the expression

f + ta) - fw

lim €

t+o

= f'(u;u) (6.8)

and if this limes is linear in a, it is called the first Gateaux differential of
the strain enérgyfdénéi£§ f).
Let & and X be two different displacement fields superimposed upon the funda-

mental displacement field U. The second differential of (6.5) is then defined by

the limes:

L (6.9)

T V.“ - n.n _
friu + tasu) - F*u;d) _ PR

t

lim
t+o

Differentials of the third and fourth order -have to be calculated anangously.

(4) and the change of curvature tensor k__ (W)

Introducing the strain tensor YaB B
according to (2.4) into (6.5), the differentials of f(U) can be determined:
fra = BTy @i + Bk R 1 -

! aBAp 12 "aB Au
— —GB [ 7.0 _aB‘
= N YGB(u'u) + M KaB
-V aBAu -V - . - V o~ hZvy -
"(u; = ! ; : ; ¥ . = -
fru;u d) = H [yaB(u “)qu(“ a)y + YaBYAu(u a) + 3 KGBKAU] (6.10)
weo g YN oAy aBAu v Yy (¥on Vol dem T (Y
M (u;u 4 @) = H [2yaB(u,u)yku(u,u) * Yig (“'u)YAu(“'“)]
em @yl 4 Y@ = 3By Ly AL
+ aB ’ AU ’ ’
where the following differentials of the strain tensor YGB(u) are used:
Yo @) =B+ 2 @B, + B +a b6, -+ (%, + 8 )
af oB 2 Ta'B o B B33 2 "o kB a kB
1 =k= K=
= 6.11
> (eBwKG + eswka) ( )
w VA1 V- -~V v =~ 1 Ve~ aK 1 Ve~ acY
YaB(u,u) = 5-(¢5w8 + waws) + aan3 3 = 5-(eawKB+ wKB) 2(OBwKa-i-GBmKa)
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With -(6.7), (6.10) and (6.11) the Taylor expansion (6.6) of the energy incre-

ment AJP(&;a) in the neighbourhood of a fundamental state U is given.

The principle of total potential energy yields the following statement.
For all geometrically admissible displacement fields U, satisfying the
geometric boundary conditions (5.5)2 the total potential energy (6.4) attains

its stationary value
I R g . »
u-;u- = H = *
P( ) o vyu € a T @b (6.12)

at the solution 4 = U. With ﬁu we denote a Hilbert-space of sufficiently
differentiable displacement fields satisfying homogeneous geometric boundary

conditions on Cu’

To derive the Euler-Lagrange equations associated with the variational state-
ment (6.12), we introduce (6.10)1 into (6.7)1 and transform Jé(u;a) by partial

integration leading to the expression:

Ve = - a1 o AB Byray, 1 . a AB . B Ac 1 oaB.A
Jp(u,u) ”{[(N 3 (pAM +by M) 2(p>‘M byM™) -5 w Ny
_ 1 ax B BA a 1 o B BA .o
> Ny + W) o (87N - e NA))IB
0 AB AR oq~
bg (M 'A“"AN ) +p lu
aB oB of o AB oA B -
+[ (M la + ?9?._1'3 +b g (N - by M - w M) + pilujlds
aB_ V) AB_ oA B _ -
+ J{[vavB(N bAM ) NA) .- bvtMtv Pt]uv
c -----
af 1. a AB BAa, 1 a AB B e, 1 aB A
+[tavB(N z(b)‘M +b>‘M ) 2(b)‘M b)\M ) 3 N)\
1 a):B BA o 1 ad B _ . BALC -
> (w N+ ow N)\) + 507N, -0 N.)) —bttMtv-Pz]ut
v, 8]+ o) + L m - pxIa, 4+ (M - M )E Jds
B8 a o ds tv 3173 vV VTR
N -
- - - L 3
+ EE [Mtv(sfj + 0) Mtv(sfj 0) Fj]u3 , (6.13)

3=1
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where sufficient differentiability of # is assumed. Introducing (6.13) into the
stationarity condition (6.12) yields the nonlinear equilibrium equations (2.8) and

the nonlinear static boundary conditions (2.14) as Euler-Lagrange equations.

To derive the Euler-Lagrange equations in the form (5.5) the membrane stress

B B and the nonlinear part NzB with

tensor N°P is splitted into the linear part Nz
(5.1) and (5.2). Using the bilinear forms and operators of section 4 and 5, the

first differential of the total potential energy (6.13) can be expressed by:

Jé(u;u) (Au + Cu) - p,a) + [au + c(u),ub]1 + [au + c(u)--P;;,ub]2

{P(u) - F,a} . (6.14)

With (6.14) the stationarity condition (6.12) is obtained in the compact

from:
- - o
{Pu) - F,wl=0 VuEHu ; 1ru.=u1"; (6.15)
with the associated Euler-Lagrange equations:

Au + C(u) in M

]
o

(6.16)

]
-3

*
0
=}
(g}

au + c(u)
defining the nonlinear elastic shell boundary value problem.

In the following sections it will be shown that the equations of critical
equilibrium, defining snap-through and bifurcation buckling, and also the post-
buckling equations can be given in a compact form by using the differentials of
the operators P and A, C, a, ¢, respectively. All differentials of these opera-.
tors are given in the appendix for the nonlinear elastic shell theory with

moderate rotations.
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To solve nonlinear shell boundary value problems by using the stationary
principle of total potential energy we can proceed as follows. Let W denote
geometrically admissible displacement fields of the shell middle surface, satis-
fying the geometric boundary conditions (2.13). If we choose any geometrically

admissible displacement d:, we obtain by superposition:

i€ f
u € a ! (6.17)

=
]
=
+
I~
8
o
]
UF*

-~ o]
where the elements U of the infinite dimensional space Hu satisfy homogeneous
~ Q
geometric boundary conditions. For arbitrary U € Hu the total potential energy
Jp(u) = Jp(u;'+ i) attains its stationary value at the solution point uo==d:+-ﬁ°

of the corresponding nonlinear shell boundary value problem.

For a numerical application the infinite dimensional probleﬁ cén.be reduced to
a finite dimensional problem by discretization using approximation procedures
as a Rayleigh-Ritz or equivalent finite element method. They enable to construct
a finite dimensional subset of ﬁu by choosing n lineariy independent coordinate
functions with unknown coefficients qyr is= 1,...,n,'where the coordinate func-
tions have to be complete in ﬁu to assure convergence of the approximation pro-
cedure. The stationarity condition for the functional Jp(qi), i=1,...,n yields
a system of n inhoﬁogeneous nonlinear equations in the unknown coefficients q;-
The solution of these equations leads to an approximated displacement field of

the shell middle surface, converging for n + ® towards the exact solution of

the nonlinear shell boundary value problem.
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7. APPROACHE BY A SEQUENCE OF LINEAR SHELL BOUNDARY VALUE PROBLEMS

The total potential energy Jp(a,F) is a functional of the displacement field
u and of the external load F according to (5.7), where F may depend on various
load parameters Aj,j =1,...,m. In the special case of a nonlinear elastic plate,
loaded by two independent compressive boundary forces, P1 and P2, F depends
linearly on two load parameters‘k1 and A,. This problem is investigated in (231,
where also a prescribed relationship between‘k1 and A2 and another load para-

meter A is assumed.

For many stability problems of engineering interest we can restrict our con-
siderations to the study of shell deformations along a fundamental equilibrium

path, described by a one-parameter dependency

Xj = Aj(k) 7 j = 1,...,!11 r (7-1)

where the external load F depends linearly on the load parameter A
F =26 (7.2)1

with 4§ denoting a unit load system:

P in M
*
§=1o0 onC_ | . (7.2),
Pb* on cf

Using (6.12) and (6.15) the stationarity condition for the fundamental path

can be given in the two alternative forms:

[o]
Jr@am ;) =o vi € fl
P u (7.3)

{P@)) - Af,d} =0 VaE€

c:EO

We consider now the problem of solving (7.3) in the neighbourhood of a solu-

tion point O with known displacement field uo by a linear analysis.
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Introducing a parameter t with t = O at O, it is assumed that the solution of

(7.3) can be expressed by the parametric expénsion

u(t)

v
u + Uu(t)

. 2,
U, + g, +zu, *

€3
6

LN 4
u"" o+ o(t") (7.4)

where adot indicates differentiation with respect to the parameter t.

An expansion of the same type is used to represent the load parameter A(t):

. tz LR ] tz L N ] 4
ME) = Ay + EA + S AST = A2+ o(t)) . (7.5)

With (7.4) the governing shell operator P(u(A)) according to (5.6) can be

expanded in a Taylor series:

P@(t)) =P, + d(e))

— [} . t2 1 e " '2
=Pu) + tP'wul + 5 [P uul® + P )u ]

t3 1 o e " * L] ({1} '3 4
+ 5 [P wul"" + 3P (wuu’® + P (udu’ 1] +0(t) . (7.6)

Introducing (7.5) and (7.6) into the stationarity condition (7.3)2 the

following sequential variational statements are obtained:

{P(uo) - Ao'ﬁ,u} =0 vu
{Pruu; - xéﬁ,&} =0 Vi
L) " 02 ee -~ -
Prwjul + P (uu ™ = A g.ut =0 Yu
] ese " e, 00 " .3 - oo " = 7
{P (wyusse + 3P (w yusw’: + P (w e’ A g.u} =0 Yu
. (7.7)

The sequential stationarity conditions (7.7) define a sequence of shell
boundary value problems, which allow to determine the unknown coefficients of

expansion (7.4). The Euler-Lagrange equations correspondingto(7.7)1arethenonlinee
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equilibrium equations and the nonlinear static boundary conditions

Au_+ Cw) = Ap in M
o) o o' *x (7.8)

auo + c(uo) AP on Cf

O bx
with the solution uo.

We assume that the solution point O is a regular point with a unique solution

uo of (7.8). Then (7.7)2 yields the linear equations:

Aué + C'(uo)u; AP, in M

(7.9)

]

L ] ] L] * ‘
aao + C (uo)uo Aon* on,Cf

depending nonlinearly on u,- The solution of this linear boundary value problem

is the displacement field u;.

The variational statement (7.7)3 leads to the equations

2

Au® + C'(u)iu*" = A°°'p - C"(u lu’ in M
o o © O "% o O (7.10)
LI J ] LN ) — LN ] - " .2

aul” + ct(udult = Ag Pb* c*(uul on Cf

with the solution u;'. Correspondingly the variational statements (7.7)4,

(7.7)g,... define linear shell boundary value problems with the solutions uy"",

o

u r ..., the coefficients of expansion (7.4). If this approximation procedure
is stopped after n terms the equilibrium error can be calculated, what will not

be considered here because of lack of space.

8. CRITICAL POINTS OF THE FUNDAMENTAL PATH

The determination of the critical points of the fundamental path can be
performed by considering the behaviour of the total potential energy Jp(u(t),
A(t)) in the vicinity of a solution point uM'»lM along every possible one-para-

meter deformation &(t)
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u(t) = uM + ?f.(t)
2 3
Yie) = tu + %u" + %u“' + oth (8.1)
A=A =
(t) AM

superimposed upon the deformation uM' where the load parameter A retains the

constant value AM'

The energy increment (6.6) at the solution point uM can be obtained as

Taylor expansion:

o2

AL 3 8(E)) = 5 0% G # 20w, utut) + I
PLLM:U, 2 p(LM:U. ) 3 PU.M,U.U. P(U.M:U.

t’+ " " e oo " . 002 " R
+ 24[JP(uM,u. u°) + 3Jp(u.M,u ) + 6‘]P (wy 70wt )+
I w suthlvowS . (8.2)
P M
It will be shown that at critical points the first term on the right side of

(8.2) will wvanish.

We have to investigate whether the one-parameter deformation (8.1) can be
also an equilibrium deformation, such that the sequential stationarity conditions
(7.7) are satisfied for constant A - values. In this case all derivatives of A

vanish and (7.7) yields:

{P(uM) - Amﬁ,u} =0 Yu

{P'(uM)u' ,u} =0 via

: ] ¢ " '2 rd _ -~

{P (uM)u +P (wy)u ,ul =0 vYu (8.3)
3

I~y
[a——
1]
(@]
<
=

P (u.M)u.“' + 3p* (uM)u'u" + pm™ (wu’",

*



- 29 -

The variational statement (8.3)1 is the stationarity condition for the

solution point U AM' which is also the trivial solution of (8.3)2, (8.3)3,...

MI

for u* = u** = ... = 0.

If we compare (8.3)2 with (7.7)2 it is obvious that (8.3)2 has no solution
in the non-critical case and therefore also (8.3)3, ... cannot be satisfied.

Only in the critical case, denoted by

A=A s u, =Uu | (8.4),
and satisfying the stationarity condition

Py - A, §d}=0 Vi (8.4),
there may be one or more solutions of the variational statement:

{P*(ugdul ,ul =0 Vi (8.5)

with the restriction that ué has to satisfy some normalizing condition.

The solution equations of (8.5) yield the conditions for critical equili-

brium, the equations of snap-through or bifurcation buckling of shells:

0 in M

Aué + C'(uc)u;
(8.6)

o on Cf

aué + c'(uc)u;
with the linear operators A and a, defined by (4.8) and (4.13), and the non-
linear operators C' and €', given in the appendix by (A.7) and (A.10). The
linear equation (8.6)1 represents three homoggneous field equations of the shell
middle surface and (8.6)2 four associated static boundary conditions. They define
a homogeneous eigenvalue problem depending nonlinearly on the critical pre-
buckling deformation uc(lc), where uc(lc) has to satisfy the stationarity condi-
tion (8.4)2. The solution of the eigenvalue problem (8.5) and (8.6), respective-

ly, yields the buckling mode ué with the associated buckling load Ac.



- 30 -

To normalize the buckling mode 4. we choose a normalization according to

the strain energy of linear shell deformations by setting:
' | ] L ‘. =
{(Proyul ,ull =1 . (8.7)

Here P'(0) denotes the derivative of the operator P(u) at u = O. Using defini-
tion (5.6) of the operator P(u) and definition (5.8) of the bilinear form {.,.},
expression (8.7) represents the double elastic shell energy for the small deforma-

tion u':
c

{P'(o)u.; cull = (Aul ul) + (au; ,ul')c] =

aBAur 0B . . h2 . .
IIH [6 (uc)elu(uc) + 13 KaB(uc)Kxu(uc)]ds . (8.8)

Using ué to define shell buckling modes, higher order contributions of ex-
pansion (8.1)2 are not considered and the question, whether or not (8.3)3,...

are satisfied, is not discussed.

Using formula (A.13)2 expression (8.5) can be transformed by partial inte-
- o
gration. Choosing then U = u; € Hu we obtain:

1 L] L ] -— n . l2 —
(P (uc)uc ,uc} = Jp(uc P U ) =0, (8.9)

leading to the result that the first term of the energy expansion (8.2) vanishes.
This corresponds to the energy criterion of stability that for critical deforma-

tions the second differential of the total potential energy must disappear.

If we compare the stability equations (8.6) with the governing equations (5.5)1
and (5.5)3 of the nonlinear shell boundary value problem, it is obvious that (8.6)
is the differential of (5.5)1 and (5.5)3 for A(t) = Ac. This gives a very general
form of the so-called adjacent equilibrium criterion well-known in the engineering

literature [411].
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9. BIFURCATION AND POST-BUCKLING ANALYSIS FOR SINGLE BUCKLING MODES

Let us assume that, at A = kc, a new equilibrium path ub(A) bifurcates from

the fundamental path () :
b -
W(A) = @A) + v(n) . (9.1)

With v(A) we denote the differential displacement field from the fundamental to
the bifurcated path. Under suitable regularity conditions the fundamental equili-
brium path 4(\) can be expressed by the Taylor expansion near the bifurcation
point uc ,Ac:

B0 =ugr - aud 2 -k s Lk oca-a0Y 0 0.2
where the symbol ( )¢ indicates differentiation with resprect to the load para-

a()
ai

meter A, ( )°== . The index ¢ refers to the bifurcation point.

For the differential displacement V(A(t)) we use the parametric representation
with (t = 0) at the bifurcation point:

2 3
— . t e t LI N ) 4
v(it) = tvc + v F 3 vt o(t™) . (9.3)

The corresponding expansion of the load parameter A(t) near t = O yields:

AE) = A 4+ tr + B e+ E aeer 1 0eh (9.4)
c c 2 "¢ 6 ‘¢ : :

The coefficients of the parameter expansion (9.3) may be normalized according

to the bilinear form {P'(0).,.}:

1
-

{P*v’ ,v’}
¢ ¢ (9.5)

{P'(O)U;,v(‘:'}={P'(o)ué,vé“} = ...=0.

Assuming that the bifurcated path ub(A) is an equilibrium path the stationari-

ty condition (7.3)2 must be satisfied:

(PwWP)) - 24,4 =0 va . (9.6)
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With (9.1) we use the Taylor expansion of the operator P(ub(l)):
PWP(n)) = P@ + Pr@v + % P (@yv? + % P (@)’ (9.7)
yielding the two stationarity conditions:

{P@) -2, dl =o0 va
. (9.8)

{Pr@)v + %P“(tl)u2 + % P (v ,it=0 V&
Relation (9.8)1 is the stationarity condition for the fundamental path and
(9.8)2 the stationarity condition to define the bifurcated path. For furtherx
considerations it is presupposed that the solution of (9.8)1, the fundamental

path (9.2), is known.

The operators of (9.8),, P'(u) ,P"(u) and P™ (i) will be expanded at the bi-

furcation point. With (9.2) and (9.4) we obtain the series:

.

Pr(u(xr(t)))

[ ] . n o _‘t_z .2 " oo LS 11
Prw,) + EAZP (U Jul + 5 D\c P uul’ + AL P (uc)ug +

o2 062 3
+ AP (u )u’"] + o)
C C C (9'9)

Wy " “pDm ¢ 2
P"(u(r(t))) =P () + txcP (wdu’ + o(t")

P" (@w(r(t))) = P™ (u) = P™

We introduce the operators (9.9) into the stationarity condition (9.8)2. Re-
placing v by (9.3) and collécting the various terms with respect to the powers

of t, the following result can be derived:

{P'(uc)vé,u} =0 vu
(] o0 1] 02 [} n ° -~ - -
{P (LLc)uc + P (wIv " + 2ACP (uc)ucuc ,ul =0 vu
{Pr(u_ v +3P"(u )vv** +P™ (u )u'3-+3l’[P“(u )uov"-+P"'(u )uou'Z] +
C C (o4 Cc C (o] C Cc C Cc C C c C

+

.2 (1] 00 . w ()2 . o ® Py, 0 . -~ = bod
32, [P (w u’ uc+P (] vc]+3AcP(uc)ucuc,u} o Vvua

. . (9.10)
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representing a sequence of stationarity conditions to determine the bifurcated

path (9.1).

The first variational statement (9.10)1 describes together with the normali-
zation condition (9.5)1 the homogeneous eigenvalue problem of bifurcation buck-
ling of thin shells. With definition (5.8) of the bilinear form {.,.} and with

the operator P'(uc) according to (A.4) the solution equations of (9.10)1

in M

]
o

Av® + C'(u v’
C o] [
(9.11)

on C

1° + ! * =
avy + C'(u v £

|
(o]

are the stability equations, depending nonlinearly on the prebuckling deforma-
tion uc(lc). Equation (9.11)1 represents the field equations and (9.11)2 the
associated static boundary conditions. The solution of the eigenvalue problem
(9.11) yields the buckling mode Vé together with the bifurcation load parameter

Ac. In this section it is assumed that Ac is a singular eigenvalue.

Because of (9.1) the increment of the bifurcated deformation at the bifurca-

tion point is:

(9.12)

To determine the coefficient A; of series (9.4), we choose in (9.10)2
- o
u = v; € Hu. Using the symmetry of the operator P'(uc), given by (A.13)2, we

obtain with (9.10)1:

{P'(uc)vc ,vc} = {v;‘ ,P'(uc)u;} =0 (9.13)

.

Then (9.10)2 vields for a4 = uc :

" 02 .
(P v 2y}

>
L]
]
}
=

’ (9.14)
{P (uc)ucuc ,uc}

: : " o . .
where it is assumed that {P (uc)uc v ,vc} £0 .
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With known Ué and A; (9.10)2 is a variational statement to determine the

coefficient v;’. The associated solution equations

2

]

o T oo - 1 . — . " o L]
Avc +C (uc)vc C (uc)vc 2Ac C (uc)ucuc
) (9.15)

oo N (] - " 4 - b " 0,
av "+ clu v, ctu v, 2x cM(u Jutv

form a set of linear nonhomogeneous partial differential equations, describing
a linear shell boundary value problem yielding the displacement vé‘. The first
line in (9.15) represents the field equations, the second line the associated

static boundary conditions.

The solution of (9.15) is not unique, because any multiple of Uc can be added
to a particular solution of (9.15), which we denote by U;;. To satisfy the norma-

lizing condition (9.5)2 the unique solution U;' is given by:

v;' = v;; - {P'(o)u;; ,v;}vé ' (9.16)

which can be shown by introducing (9.16) into (9.5)2.

-~ . o
Continuing the procedure we choose in (9.10)3 u = vceHu such that

{P'(uc)v; ,U;} disappears because of the symmetry of P'(uc) and because
of (9.10),. Then the load coefficient lé' can be determined from (9.10), yield-
ing:

" gt l oy *3 ‘rpw O e " 0,2 «2rpn 00y, ¢
{P (w v v, +3 P w v, -+AC[P (w ulv’ +P (wJulv ]+Ac [P (wulv: +

m 02, .
P yulvil, vl

{P“(uc)ucvc ,vc}

(9.17)

For many shell buckling problems the bifurcation is symmetric. In this case
the coefficient Aé of the load parameter expansion (9.4) vanishes leading to a

considerably simplified expression for Aé':
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' 11} . LI} u l " .3 £
{P (uc)ucvc * 3 P (uc)vc ,vc}

l.c. - - > . (9.18)
{P wyulve , u;}

With known A;, A:; U;, vé' expression (9.10); is a variational statement to
determine the displacement field v;". The associated solution equations define

a linear shell boundary value problem, which allows to determine Uc . Analogous-

ly the further variational statements of (9.10) yield the higher order terms of

the series (9.3) and (9.4) describing the bifurcated equilibrium path.

10. POST-BUCKLING ANALYSIS FOR MULTIPLE BUCKLING MODES

The homogeneous eigenvalue problem of shell buckling, described by the

variational formulation (9.10)1 or by the stability equations (9.11), may have

N linearly independent solutions, the eigenmodes vé(l) ,i=1,...,N, associated
with a multiple buckling load Ac:
(1) _ ,(2) _ (N) < (1) | -(2) « (N)
AC = Ac = L. = Ac = Ac ; vc ; Uc Poees 0 Vg . (10.1)
We define a multiple buckling mode by
N N
. ; . (1) 2
vi = ) av ;oD a =1 .
c & ie &1 (10.2)
The eigenmodes V;(l) will be normalized according to:
1 i=3j
« (1) « (3)
! v vV =
{Prioyv =0, v o) (10.3)
0 i%3

A particular bifurcated path can be defined by the parameter expansion:

WP(t) = LA(E)) + viE)
J(1) g2 £3
v(e) = taue't + Sunt Sy 4 ot (10.4)
- . t_ X i e e 4
Alt) ~>\c+tAC+ 3 Ac+ 3 Ac + O(t™)
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where the summation convention is used for i = 1,...,N. Analog to (9.5)2 the
coefficients of (10.4)2 have to satisfy the orthogonality conditions:
(1)

) 3 ee _- ' .(i) oo - = . .
{P (O)aivc Vg } = (P (0)aivc PV }=...=0 . (10.5)

If the bifurcated path (10.4) is an equilibrium path, the stationarity condi-
tion (9.6) must be satisfied. Following the procedure of the last section and ex-
presssing P(ubﬁl)f as Taylor expansion along the bifurcated path (10.4) the follow-

ing sequence of stationarity conditions is obtained:

. (i) -~ -~

azi{P'(uc)uc LU =0 vu
] L ] * (i) . (J) . " Oy (i) - - -
{P (w vy +aiajP (u.c)uc v, +2AcaiP (u‘:)uc\fc ,u} =0 vu

f see " .(i) L] t O(i) '(j) .(k)
{P (uc)uc +3aiP (uc)uc Ve +aiajakP (uc)uC v, uc +

+ 30 [P () uPu+a,a P (u yufy By ) 4
¢ c cc 173 c"ce c

. (i)

+33"%[a P )u v 02, ()7,
c h cC ¢ c c

4—aiP"%uc)uc

oo " o
4-3Ac aiP (uc)uc v

(10.6)
The statement (10.6)1 is the variational formulation of the eigenvalue
problem of shell buckling for multiple buckling modes:

{P'(uc)v;(l) ,ul =0 vu i=1,...,N (10.7)
with the eigenmodes V;(l) associated to the multiple buckling load Ac. Statement
(10.7) yields the stability equations of shell buckling:

Au;(l) + C' (uc)v;(l) =0 in M

(1) i=1,...,N. (10.8)

« (1) . _
avc + C (uc)uc =0 on (Zf
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To obtain a bifurcated path of the form (10.4) the coefficients ai,i= 1,...,N

of expanssion (10.4) must be determined such that the stationarity conditions

. (1) -(2) -(N)‘

(10.6) are satisfied. In (10.6), we set successively a = v v T vy

Then the first term of (10.6)2 vanishes because of (10.7) and the following set

of N nonlinear equations can be derived:

" 1) L3k . (pm Oy (1) e (k) _ -
aiaj{P (uc)vc Ve ,uc}+ zxcai{P (l,:.c)u.cvc PV, } =0, k=1,...,N,

(10.9)

which has to be solved together with equation (10.2)2 yielding the coefficients

al,...,aN and A°. The load coefficient A®* is obtained as:
c c

;(i)vé(j) ,ué(k)}
(10.10)

warn 2O e (1) . (3) :
2aiaj{P (uc)ucvc ', }

aiajak{P“ (u.c)v

A = -

There may be many different sets of solutions corresponding to different bi-
furcated paths. For each set (10.6)2 is a variational statement to determine the

displacement field Vé' of expansion (10.4). The associated differential equations

arxe:
.o ' .e . (1) o (3) . o (1)
Av** +C'(u )v:® ==-a.a.C"(u_)v v -2x%a,C"(u )udv
c c' ¢ i7j c' ¢ c ci ¢ cc , (10.11)
n e - n ‘(i) '(J) - . n o o(i)
avc +C (uc)vc = aiajc (uc)vc vc 2Acaic (u.c)acuC

where the solution vé' has to satisfy also the orthogonality condition (10.5).

" ‘i)" «(k . .
If now {P (uc)Uc( VC(J) 'Uc( )} =0 for all i,j,k =1,...,N, then 1] =0

and we have symmetric bifurcations. In this case the variational statement (10.6)3

yields:

'(i) .

T e " O(i) O(j) .(k)
{P w v +3aiP (w v " o v +

(o] (o]

‘4 aiajakP'"(uc)u

(1)

: ,u} =0 va . (10.12)

LN 3 [{] 0
+-3Ac aiP (uc)ucu
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-~ - 02 .N N
Setting successively U = vc(l) ,vc( ),...,v (N) and with

' e e .(1) _‘ ' cee 0(2) - _' v eoe .(N) =
{Priu v " v 7T = P v v T = s = PVt v T =0 (10.13)

(10.12) yields a set of N equations. The load coefficients Aé' for symmetric bi-

furcations is obtained as:

e C C N o
2= . (10.14)
¢ ala {P“(u )uou'(i),u'(J)}

If in the stationarity condition (10.6), we choose u U;’, it follows for

Ac = 0 and with (A.13)3:

= a3, {P“(u )U.(l) 'v.(J)}

- (1) . (3) ..
,vc}

ala {P“(u )u v

—{P'(uc)u;’,v;'} (10.15)

yielding the coefficient‘lé' for symmetric bifurcations in the form:

”"e ' ® (i) ] (j) [ ] (k) 3 (l) - ' L ] .0
.. aiajakal{P (uc)vC vitvl T vl } - 3{P w vz, }
A= IR ' (10.16)
3a,a, {Pr(u, )u v; I3y

To define the stability behaviour of the shell structure at bifurcation
points, we have to determine the energy increment AJp(uc ;ub) according to (6.6)
for all possible paths (10.4). It can be shown that a necessary condition for
stability is

(1)) Ry g

{P“(u)u v, 'V, i,j.k=1,...,N (10.17)

or, equivalently, Aé = 0.
A further necessary condition for stability is

vo
(o4

(i)u,(]) (k) ,U'(l)}
C C

aiajakal{P“'(uc)ué - 3{P'(uc)v&',vé‘} >0 (10.18)

for which the increment AJp(uc ;ub) is positive. The stability conditions (10.17)
and (10.18) correspond to results of Koiter given in [10] for an unspecified func-

tional.
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APPENDIX

The governing shell operator P(u) according to (5.6) is defined by:

Au + C(u) in M
Pw) = | au + c(u) on Cu ’ (A.1)
au + c(u) on Cf

. where the first row of (A.l1) describes the left side of the nonlinear equilibrium
equations (2.8) and the second and third row the left side of the nonlinear

static boundary conditions (2.14).

To determine the differential of P(u) at a point u in the direction of (&,
where U is a small deformation superimposed upon the deformation U, let us con-

sider the expression:

P + tid) - P(u)

- =Pr@;a . (a.2)

lim
t-+0

If this limes is linear in & with P'(u ;@) = P'(U)d then expression (A.2) is
called the Gateaux differential of the nonlinear operator P (i) with the first

Gateaux derivative P' (U).
~ v -
Let U4 and U be two different displacement fields superimposed upon 4, the

second differential is defined by

Pr(d +U;d) - P ;)
t

lim

=P @da - (A.3)
t=>0 ’

The third differential has to be calculated analgously. All higher order

differentials disappear identically.

With definition (A.1) the differentials of P(u) are the row operators:
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AL+ C'(@)d in M Cr@mda in M
al + ¢ on Cu ; P"(L-L)l‘ia = C“(a)&a on Cu ;
aZ + c'(@a on C, cr@mda on C,
(0 L\{-IYLLZ in M
VVa
= c"muuu on Cu (a.4)
vV.
cruuu on C

£

(A.2) and (A.3) the differenti

als of the nonlinear

operator C(u) according to (5.3) can be calculated. Using the following differ-

entials of the stress resultant tensor (5.1) and (5.2)

N8

NGB"( &

C'wmya=-

(u;

=P a2 an s
@) = e, @)
;) = H"“s"“éMJ ; NP, @D =0
P ) = H“““[ax@u + 2y 0.0, - (85, + BB )] (2.6)
Ju) = Hamu[(\f}fu * ahut\63'53 - (\e'iaw * éi‘\‘l’nu)]
(v @, - L @ @ + a5 - 1
- % (B‘”Ng' @ ; i) +a°‘)‘ﬁ§) -% (Ex“n‘;' (@ ; @) +a37‘ﬁ§)+
+ 3 @@ @) + 8 -5 @ @ @ 8D 1 -
- i@ @@ + 8,5
885 @ ) +§ 81| b I o -3 @ @ -3V a7




f‘ 1] -~ [1] - - -~ | I 1
8", @ -+ (@8 A &, @+ @ ot @) -
n 2 A A
%(QMN?'( ,u.)+w N?\ @ ; @) +a™*n B @ ;&) -
-% (GB)‘N‘;\‘"(u,u) +MB)‘N§ ;@) +w8)‘N§ @; L) +
. +% (§°‘>‘N§"(u,u) + 8%y g (@ ; @) +§0MN§'((Z;L\{)) -
Criuda= -
1 =BA .av,yv =~ Br ot = Vv ~BA ot =V -
5 (8N W&, Q) +0 Ny (@;h) +8 AN)\ (u.,u.)]|§_
- " -~ v $ - -~ -~ t -
-2, NB" Y, @)+ B (ws;a) +¢ N (@0
B™TA A A
[®, N“B"(u i) +@ o B @ ; ) +$QN°’B'(E;?1)]|
ap" v - -a) B vai B! ~0A, B!*
\ +baB[Nn (w,uw) - (w Nl (u a)+w)\N a ; ) +o N}\ (u; u))]
(A.8)
(-8, @ -2 6%, ) -8B, @ -1 3PN B ‘
2 A 2 X
VBA an 1 ~BA._an ar B vV o~ 1 2ad Bu vV V.
SCIRTIE e Lt % +8 N, @+ 8L U
midi = - BA ar _l aBAan T -
cmddd Ny &, o 5 87N, (u.,u)]lﬁ
-b [2v ML a) + G)ANAB" W, Ul
vV _afr,Vv . -~ afv Vv Vv VoA Bn - ~QA R V V
{[ZQGN (,a) +@N (u'u)]|8+ba8[ 207Ny W, d)-a Ny (a,u)l J
(A.9)

Analogously we calculate the differentials of the nonlinear boundary operator

c(u) according to (5.4):

(y 1= & ~ad=B _ -GA Bt = -
aB[N a; u) © Ny - w Nx w;a)
aBr = = 1 ~aBf=d | —aB At = o
tavB[Nn @) -5 (@ N +w N (@;a)
__~aAB oA B! SBAGY 4 ~BAE' (= ey
(w A (u ;u) ta NA-+ A (u ;u))
cr (@i = -(e“N}f\’ + e“"NB (i ; i) - 63"1\1‘; - em‘l\r‘;l @ ;)]
v [w N8 4 éaNaB'(ﬁ ;)]
o)
(e

(A.10)




- 42 -

GB" -~ oA B VoA B .0y - -aA Bun vV 3
\Ja\)B[Nn &, @ - Ny @;d) - Ny (w;d) -~w N, a)]
v ~ 1 aB A Vog At -G _An TR
tavB[Nn u,u)-2 (® Ny  ; u)+w NA m;a) +o Ny (u,u))
- % (a"‘)‘nf'(&;c‘i) +¢‘S°"‘Ng @ ; ) +m°"‘NB W, @ +wBAN>\ @ ; h+
+ UBAy : @;a) + mBAN: oA ,EL))+
cr@da = +— (e"”‘nB (@ ; u)+e°‘)‘ni (@; Q) +8 Ani a,a -
BB)‘N; @; % - emi (w;a) - BB)‘NO‘" &, @]
vyl B Es Y o™ @) + QN BT, D]
a o
o}
. O )
(a.11)
. ~aA_Bu vV vo\ Bu ¥ o )
Vo'g [-@ N, a, u) - 20 N, (@, a)]
1 ~aB Anv v Vv vaB Avw Y e
tavs[- 7 W NA (w,ua) - NA ( , W)
1 ~ar B" V V _ VoA _Bu Vv _
-z N (@, a) - o N (@, a)
v. T O IR A T
cuau = (a.12)
1 zar B v v Yol B" Ay
+2e"n)\ @, % + oW, @
1 sBrar v Vv _VBAa"v -
-26 Ny a, u) ] Ny (@, u)l
vy [ o, b + 2%, B, @]
L © )

If the differentials of the total potential energy of the nonlinear elastic shell

(6.7) are integrated by part, the following relations can be proved:

%(a;a) = {P@) - F, a}

Jn @ sl = {Pra@d,ar = U, P @al
Jg @;dda) = (Pra@dd,ar = Pranda,d}
g @;euuia) = (P Udy, @

where the bilinear form {.,.} is defined by (5.8).

(A.13)
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