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SUMMARY

The paper contains the formulation of basic relations of the geometri-
cally non-linear plastic shell theory illustrated by simple examples of

application.

The theory is developed within the framework of simplifying assump-
tions which are less restrictive than the assumptions of the Donnell-

Mushtari-Vlasov theory.

A classification of non-linear shell theories with regard to the initial
shape of the shell and the deformation mode is proposed. The method of
simplifying the geometrical relations is presented and a number of appro-

ximate theories are formulated.

Yield surfaces for uniform and sandwich shells are considered using

the Huber-Mises and the Tresca conditions.

The influence of geometric changes on the load carrying capacity is
illustrated with the examples of cylindrical and shallow sperical shells.

The attention is focused on the behaviour at moderately large deflections.

The elaboration contains a number of original results, particularly

in the chapters five and ten.

ZUSAMMENFASSUNG

Die Arbeit beinhaltet die Formulierung grundlegender Beziehungen der
geometrisch nicht-linearen plastischen Schalentheorie, veranschaulicht
durch einfache Anwendungsbeispiele. Die Theorie ist in einem Rahmen ent-
wickelt, dessen vereinfachende Annahmen weniger einschrénkend sind als

die Voraussetzungen der Donnell-Mushtari-Vlasov-Theorie.

Eine Klassifizierung nicht-linearer Schalentheorien unter Bezug auf
die ursprilingliche Form der Schale sowie des Verformungscharakters wird
vorgeschlagen. Die Vereinfachungsmethode fir die geometrischen Beziehungen

wird vorgestellt und eine Anzahl von Approximationstheorien wird formuliert.
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FlieBfldchen fir uniforme sowie Sandwich-Schalen werden unter

Benutzung der Huber-Mises- und der Tresca-Bedingungen betrachtet.

Der EinfluB von Geometrie&dnderungen auf die Tragféhigkeit wird
durch die Beispiele zylinderischer und flacher sphérischer Schalen
illustriert. Hauptaugenmerk wird auf das Verhalten bei moderierten

Durchbiegungen gelegt.

Die Ausarbeitung enth&lt eine Anzahl originaler Ergebnisse, ins-

besondere in den Kapiteln finf und zehn.
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1. INTRODUCTION

Over the recent years the study of the plastic behaviour of thin-
walled structures has become an area of increasing importance. There are
numerous practical situations in which shells are stressed beyond the
elastic limit of the material. The elastic strains remain usually infini-
tesimal (though elastic deflections may be finite) so the elastic-plastic
or rigid-plastic models of material can be applied. Such structures will
generally undergo large plastic deformations prior to failure. Therefore
the influence of geometry changes on their ultimate load carrying capa-

city must be taken into consideration.

A geometrically nonlinear behaviour can be studied employing either
the material or the spatial description, thus refering the process of
deformation to the initial or to the actual configuration, respectively.
The first alternative, i. e. the Lagrangian description seems to be pre-
ferable, as applied to the thin-walled structures, since the boundary
conditions are usually referred to the undeformed configuration of the
structure and because the material rate of change of stress and strain

rate tensors are invariant with respect to the rigid body motion.

An important problem in the theory of plastic structures is that
of the criterion of yielding. In the theory of plasticity the yield
criteria are usually written in terms of the true stress components
referred to the actual configuration; whereas the shell theory is
formulated in terms of the stress resultants rather than the stress
components themselves. A necessity thus arises to transform the yield
condition into the space of stress resultants in the suitably chosen

reference configuration.

The behaviour of a plastic shell is governed by the following system

of equations:

a) kinematical relations specifying the deformation (extension and
curvature) of the middle surface in terms of the displacements and

displacement gradients,

b) motion equations expressed in terms of the stress resultants and

stress couples,



c) boundary conditions,

d) a yield criterion saying at what combination of stress resultants

the shell wall cross-section may yield,

e) a flow law specifying the relationship between the stress result-
tants and the strain rates, to predict how an element of a shell struc-

ture will deform when the yield condition is reached.

The load-carrying capacity assessed by the tools of limit analysis
simply indicates a load intensity at which plastic deformations begin
to develop. If changes in geometry could be neglected, the plastic
deformations of a perfectly plastic structure would develop under con-
stant loads. If, however, those changes are taken into account, it may
be found that plastic deformation continues to develop under either
increasing or constant or decreasing loads. In the last two cases the
load-carxrying capacity represents a critical load intensity which must not
be exceeded if the structure is to survive. Therefore, full appreciation
of the physical significance of the load-carrying capacity furnished by
limit analysis usually requires the analysis of the behaviour of the

structure after the yield-point load has been reached.

The limit analysis methods of determination of the load-carrying
capacity and investigation of the post yield behaviour of plastic shells
will be presented and discussed. Attention will be focused on the geo-
metrically non-linear behaviour of thin shells made of rigid-perfectly

plastic material.

Examples of cylindrical and spherical shells will be given.



2. GEOMETRIC PRELIMINARIES

In order to make the present paper reasonably self-contained, let us

start with a brief summary of the description of a surface.

Let R denotes the radius vector from a fixed origin O, in the Eucli-
dean 3-space, to a generic point M on the reference surface "S" (Fig. 2.1).
The radius R will be treated as a vector function of the pair of Gaussian
coordinates (xl, XZ). The parametric lines XD = const. form a net on the
reference surface, and X3 stands for a coordinate along the outward nor-

mal to the reference surface.

A3

9

x1

Fig.2.1



Greek indices will always refer to the Gaussian coordinates and run
over 1,2 (A,T,a,B = 1,2); and Latin indices will refer to the spatial

coordinates and run over 1,2,3 (K, L, i, j =1,2,3).

To distinguish between the initial and the deformed configurations,
capital letters will be used for the former and lower case letters for

the latter.

The position vector to the point M' on the deformed reference sur-
face "s" will be denoted by £jxa) (Fig. 2.1).
The covariant base vectors QA’ 2y at the generic points M, M' with

. A a | 5 . .
coordinates X and x in undeformed and deformed configurations, respec-

tively, are defined by

b
n
i

r (2.1)

a
» A ! ~, /0

where comma followed by A or o indicates partial differentiation with

respect to XA or xa, respectively.

The systems of the base vectors in the initial and in the deformed
configurations are completed by the vectors 53 and 2s- For the normal
coordinate systems the vectors ﬁe and 23 coincide with the unit vectors
N and n normal to the undeformed and deformed reference surfaces, res-

pectively, so that

Ay- BAy3=0 , Aj-By=1, (2.2)
Ea - 83 = 0 , 33 a3 = 1. (2.3)

The metric tensor (or the first fundamental tensor) of the unde-
formed and the deformed surfaces are defined by the scalar products of
the respective base vectors

A = A R a = . a . . (2.4)

AT - Ra 7 Ep

The determinants of the metric tensors are denoted, respectively,

by A and a



A=z IAAI" , a= (2.5)

. . A
The reciprocal (contravariant) base vectors A, E? and the con-

AT o

jugate tensors A™ , a are defined by

abla =6d . ABT o ablalT (2.6)
E? "3 = Gg ! a®® = 3? 'EB (2.7)

o

8 stand for the Kronecker delta.

where 6? and ¢
The curvature (or second fundamental) tensors of the undeformed

and the deformed surfaces can be defined by the scalar products

Bar = Bra T A3By = Ry pBp T Ry pc Ry (2.8)
Pag = Paa * %37 %,8 7 23,0 2 T R3,8 32 - (2.9)

The third fundamental tensors of the undeformed and the deformed

surfaces are defined, respectively, by

B¢B

CAF = ABor (2.10)
S bAb (2.11)
CoB T ToAB C :
A point of a shell may be identified by the components XK referred

to the normal coordinate system in the Euclidean 3-space. The equation

3
X" = O specifies the middle surface. The regions |x3| £ H, where 2H

is the thickness of the shell, will be referred to as the shell space.

The position vectors P of points of the shell, Fig. 2.1 assume the

form

R(XK) = g(xA) + XBAB(XA) (2.12)

Thus, for the space of normal coordinates defined by (2.2), the base

vectors and the components of the metric tensors are, respectively

(2.13)



G G =G, -G, =0 ' G =G,G, =1 (2.14)

ar = 8 Sr -

With the help of (2.6) and (2.8) the equ. (2.13) becomes

r
gﬂ 5% X BAQF = ”Aﬁr (2.15)
where
T T 3.T
My = SA-—X BA (2.16)

is called shifter tensor.

Values of any vector V can be represented by their components either

in the basis gﬁ' g3 or in the basis Em, 53 as follows

A 3. _ =A 3.
X =V GA + Vv G3 =V ﬂﬂ + Vv A3 =
(2.17)
b 3_ - A 3
= VAg + V3§ = VAé + V3é

-A -
where barred quantities V , VA denote surface representation of v and are

the shifted components of this tensor.

It follows from (2.15) that the space and the surface components of

the same vector are related to each other in the following manner
ve=u vV, Vo= () V (2.18)

-1 A
where (u 1)P is defined by the relation

A 3.A 3,2
r= 6? + X 6¢

B? + (X)) Lo A

ooy plu ) =80 . (2.19)

¢
BgB s

A 3]
¢ T

It should be remembered that the Christoffel symbols of the first
and the second kind defined by

SEN (2.20)

1
9}
=

1
= = + -
nNKL 2 (GNK,L GLN,K GKL,N) o n



may, in view of relation (2.14)1 and EK L= G , be also expressed as

. ~L,K
N
1-'NKL_5~3‘1\1'«§'}1<,L d nI;L“E "S,L (2.21)
and hence
N N
= =TT . .
Sk, L ke KL (2.22)

The covariant spatial differentiation of a vector U can be expressed

as follows:

= - + =
Bp = 0% ,0 T Ukt U
K KﬂN K NnK
= + = =
U,DVK v KLEN (U,L +U NL)EK
K
= - G 2.23
U”LNK ( )

where by double strokes is denoted the covariant spatial differentiation

UT{L = Ul’(L + ot (2.24)
Similarly
U= UK“LgK (2.25)
where
Ul = UI;’L - o - (2.26)

For the undeformed middle surface the Christoffel symbols will be

N
denoted by FNKL' PKL

N
r =T , o= (2.27)
NKL ~ NKL| 3 _ KL KL|X3 - o
For a normal coordinate system GA3 = 0, G33 = 1 and in view of (2.15)1,

(2.20) the Christoffel symbols with two or three indices 3 vanish identi-
cally whereas the symbols with a single index 3 may be expressed in terms

of the second fundamental tensor



3
Tar = Taar ® “Tars = “Tasr = Bar - (2.28)
A A A

rop = o3 = -Bp i (2.29)

The covariant surface derivative (with respect to the surface metric)

will be denoted by a stroke (l) and when applied to a surface representa-

tion of such tensors as ﬁA, GA' 5?, reads
=K _ =K K =¢
UlL = U'L + F¢LU ' ) (2.30)
= _ = _ b
UK|L UK,L T U¢ ’ (2.31)
TR AR Ly LA LY S

Toim = To,m * Poun ~ TomTo

Finally, for further use, the rules connecting the covariant spatial
derivatives of space vectors and the covariant surface derivatives of

the surface representation of these vectors are given as follows:

A -1 A ¢ _ ¢ 3

U”P_ (]J )¢(U[P BFU ) ’ (2-33)
U?I3= (u'l)gﬁ‘f3 , (2.34)
3 3 ~T

U||A= UlA +BAI'U (2.35)
UA“I' IJA(U(”].. B¢FU3) P (2.36)
U =u¢6 (2.37)
all3 " TaTe,3 7 :

Uy . =0, +B%G (2.38)
3||a ~T3|a T TATe .

3 .3 .3

U||3 --U3”3 —U|3—U3|3—U,3_U3,3 . (2.39)



3. ASSUMPTIONS

In this chapter we shall discuss the foundations of the geometrically
non-linear theory of thin elastic-plastic shells on the basis of a modi-

fied version of the Kircchoff-Love hypothesis.

The basic kinematic assumption of the classical Kirchhoff-Love theory
of shells is that the material fibres which are rectilinear and ortho-
gonal to the undeformed middle surface S remain, after an arbitrary
deformation, rectilinear and orthogonal to the deformed middle surface

s, and do not change their length.

This kinematical assumption of the K-L theory is in contradiction
with the statical assumption of the plane stress state for an elastic

shell, and with the incompressibility condition for plastic materials.

For the theory of small strains and small displacements, the incon-
sistency of the K-L theory leads to errors which are found to be neg-
ligibly small. The K-L approximation becomes, however, debatable if

large elastic-plastic deformations are considered.

A great number of existing analytical solutions in the geometrically
non-linear plastic shell theory refer to a narrow class of shallow
shells undergoing moderately large deflections and infinitesimal tan-
gential displacements. The geometrical non-~linearity enters into the
strain~displacement relations in the form of an additional term invol-
ving the square of a gradient of deflection vector. The geometrical
relations of this type have first been derived by Karman [1] for thin
plates and then geheralized to cover shallow shells by Donnell [2],

Mushtari [3] and vlasov [4].

When applying Donnell-Mushtari-Vlasov theory, the restrictions imposed
on the initial shell curvature and on the magnitude of the displacements
result in the elimination of numerous interesting shell structures from

the considerations.

The purpose of the paper is to present the plastic shell theory which

avoids those restrictions, that is the theory which allows for

- the extension of the class of the considered shells to cover

non-shallow shells,
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- the extension of the class of the considered deformations to

account for large displacements and large strains,

- the reformulation of the K-L assumptions in order to eliminate
certain inconsistencies which can no longer be accepted if large

plastic deformations are considered.

The present theory will be developped within the framework of the

following set of simpifying assumptions:

(i) The shell is thin, i. e. the ratio of the thickness to the
smallest radius of curvature is negligible as compared with

unity,

2H

= <<1 , (3.1)
min.
(ii) The components of the displacement vector UK are analytic func-

tions of x3 - the coordinate normal to the shell middle sur-

face. Then they may be written in the form

_ 3 3,2
UF = VF + X BF + (X7) YF + ... (3.2)
U, = W+ X8, + (X%, + ... (3.3)
3 3 3
where
VF s W - denote the displacements in the tangential and
the normal directions, respectively, of a point
on the middle surface,
BF ’ YF - stand for the inclination of the normal to the
middle surface.
83 ’ Y3 - describe the normal strain distribution.

(iii) Transverse shearing strains are negligibly small,

o~ 3 (3.4)
EA3 o~ 0 for every X-.
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(iv) No volume changes take place during the plastic deformation.
This requirement is known as the incompressbility condition

and after linearization can be written in the form
(3.5)

The influence of higher order terms may be proved to be

small in the considered theory.
(v) The elastic strains are small.

One of the difficulties in any theory of shells, especially in the
presence of finite strains, lies in the derivation of the strain-dis-
placement relations. Since a shell is defined as a three-dimensional
body with one of the dimensions being much smaller than the others,
the deformation of a shell may be either described within the frame-
work of surface theory, or derived from the general case of a 3-dimen-

sional body. The latter approach will be applied in what follows.

Another problem to be faced when formulating the finite deforma-
tion shell theory is the suitable choice of description. The most
commonly used in the shell theory are the total Lagrangian and the con-

vected (sometimes called the Eulerian) descriptions.

In the total Lagrangian description all tensors and functions are
referred to the initial frame of reference whereas in the convected
(Eulerian) description to the reference system deforming together with

the shell.

In the presented theory the total Lagrangian description will be
applied, i. e. all quantities will be referred to the undeformed con-
figuration of the shell. The stress state is thus described by the
symmetric Piola-Kirchhoff stress tensor S whereas the strain is speci-
fied by the Green strain tensor E. They constitute a conjugate pair of
stress and strain measures since, as defined in [5], the rate of defor-
mation energy per unit initial volume is given by the scalar product of

these stress and strain rate tensors

& =§‘. (3.6)

e h
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4. KINEMATICS

The spatial components of the Green strain tensor EKL can be expressed

in the terms of the spatial components of the displacement vector Uk in

the following manner

M
ZEKL = UK”L + UL”K + UM”KU”L . (4\.1)
This relation can be rewritten to become
_ 3
ZEAF—UAHF +UF||A +U¢||AUT|I.. +U3||AU”I. ’ (4.2)
E _=U + U + U uT FUL LU (4.3)
a3~ T3]la T Call3 T Teli3 (e T3([37|a
2. = 20 +u b ruLgLud. . (4.4)
33 313 7 Tell37][3 T 3|3 7|3
With the aid of (2.33) - (2.39) the Green strain tensor (4.2) -
(4.4) takes the form
2E, = ¢ B U ) + u¢(U - B U ) +
AT Gy |r = r'ela
- ¢ -
+@f, - BJu) @y |p - B0y +
+ (U + 8% ) (u + %G ) (4.5)
3j]a T CATe VU3|r T e’ ! )
.9z o= =6 6. =
2EA3 = “AU¢,3 + U3|A + BAU¢ + (UIA BAU3)U¢,3 +
+ (U + B ﬁ¢)U (4.6)
3)a Y 3,3 ' :
2E.. = 2U + 505 + (o, )2 (4.7)
33 3,3 34,3 3,3 : ’

Let us restrict further considerations to thin shells. In view of

assumption (i)

W as (4.8)
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and

UA = UA . (4.9)

Substituting (4.8), (4.9) (3.2), (3.3) into (4.5) - (4.7) and
omitting nonlinear terms with respect to X3 (which, again, in view

of the assumption (i) are negligibly small), we obtain

_ 3
2EAr = AAr + X KAF ’ (4.10)
2E.. = A.. + XK (4.11)
A3 = a3 A3 ! .
2E.. = A.. + XK (4.12)
33 33 33 '
where
A =v -B_ W+t (w.w.+8% w o+  (4.13)
AT (a|m AT 2 VATt T Faer

¢.0 ¢ gt
+ VT(AV¢|F)-rBABrv6v¢r+B(Av¢w|P) B(Av¢|r)w

-1 ) ¢ ¢
AA3 =3 (BA + W|A + BAV¢ + leB¢ + BAB¢W + (4.14)
+ W, B, + B¢V B,)
[aF3 A o3
s w Loy, g2
A33 = 33 t 3 (B BA + 33) ' (4.15)
- _ _gt
Kyr = Bealmy BAPB3'*VT(AB¢|F) B a8y )" * (4.16)

) _at ¢
* BB B3 T B Ve m B3 TV (aP3 |y TR V6Bt

¢ ¢ L0
+ B(leA)B¢ + B(ABF)VGB¢

1
K,, = 513

0 6
.3 +8%8 +BTAB¢ 8%8 8. +8

3]a " Baby ABoB3 B3 a3 ¥ (4.17)

¢ ¢ _on? r
+BAB¢83)+Y¢VIA+YA 2BAY¢W+Y3W|A+BAY3VP'
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r

K = 2Y3 - B¢

¢ ¢
33 BpB" + 27¢B + 2y5B5 - (4.18)

The bracketed indices denote symmetrization.

In order to describe the strain state solely by means of the dis-
placement components of the middle surface, the functions BA' 83, YA
and Y3 should be expressed in terms of W and V . To this end we make

use of the assumptions (iii) and (iv).

The condition (3.4) of vanishing transverse strains yields two
equations:

AA3 =0 (4.19)

KA3 =0 (4.20)
whereas the incompressibility condition (3.5) to be satisfied for an
arbitrary X3 gives two more requirements

A, =-A GAF (4.21)

K,,=-K, G (4.22)

if nonlinear terms with respect to X3 are neglected.

The equations (4.19) - (4.22) constitute the set of four equations

in four unknown quantities BA’ 83, Ypr Y3e

It may be shown, [6], that the influence of Y and Y3 terms on the
dissipation of energy is of the order of magnitude of (2H/R)2 or (2H/L)2
as compared with unity and thus, in view of the assumption (i), is

negligible.
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5. CLASSIFICATION AND SIMPLIFICATIONS

The general relations (4.13) - (4.18) for the extension and for the
change of curvature of the middle surface of a shell are rather invol-
ved. They become even more complicated if all quantities are written
explicitly in terms of the displacement components and their deriva-

tives.

Numerous attempts have been made to simplify and classify the
basic relations for shells subject to large deformations. Important
contributions in the field are due to Chien [6], Donnell [7], Reissner
[ 8], Koiter [9], John [10], Naghdi [11], Sanders [12, 13] , Danielson
[14], Simmonds and Danielson [15], and Pietraszkiewicz [16]. These
papers are concerned, however, with the analysis of elastic shells and
the proposed geometric relations are not fully adequate for the des-
cription of plastic shells. The need thus arises to formulate geometri-
cally non-linear shell theory to satisfy the requirements and speci-

fications of plasticity.

To fulfil this need, we shall present a number of approximated geo-
metrically non-linear theories formulated on the basis of the assump-

tions made in chapter 4.

To obtain a consistently simplified theory, all approximations used
in the basic relations have to be made to with in the same degree of
accuracy. To this end, we first establish the order of magnitude of
each individual term in the geometrical relations and next, we omit
all terms which are smaller than, or equal to a small number €2 as
compared with the largest term. This small number 82 is chosen as the
order of magnitude of the ratio of shell thickness to the smallest

radius of curvature,

€ o( R ) . (5.1)

min.

In the shell theory we usually assume that € = 10_1.

If the external surface loads do not vary rapidly over the middle

surface, it may be assumed that the deformation wave length 2L is of
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the same order of magnitude as characteristic dimension of a shell (for
instance the length in the case of a cylindrical shell or the diameter

of a cap shell, Fig. 5.1).

a) b

deformed

_____/shape

-

Fig.5.1

The above assumptions enable us to estimate the order of magnitude of
the covariant derivatives of the displacement components, namely

\

W A
wiplso@ o vy <o - (5.2)

L

Therefore, in order to select appropriately all the terms in the geo-
metrical relations (4.13) - (4.18) (and subsequently in the equilibrium
equations), we should introduce parameters characterizing not only the
plastic deformations but also the initial shape of the shell. The
following classification of the shapes of shells with respect to their

shallowness is proposed.

1. Shallow shells

L/R, <0(e) , or L<O,1R,
min, ~ min.

2. Quasi-shallow shells

L/R = =
/ min . o) , or L Rmin.
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3. Deep shells

/R . Y 120(), or L>10R_,
min min.

Now, we attempt to classify the deformations. Since, in view of
the assumptions i - iv, the deformation of a shell is determined by the

normal W and the tangential V, components of the displacement vector

A
of the middle surface, it is useful to introduce the following classi-

fication of the deformation mode.

a) Small W and small VA

W Va
max.(aﬁ-) < 0(e) , max. (Eﬁo < 0(e) .

b) Moderately large W and small V

A
v
W A
— ) = — ) <
max. (2H ) o(1l), max. (2H ) £ 0(e) .
c) Large W and small VA
v
W -1 A
A = = <
max. (2H ) O(e "), max. (2H ) £ 0(e) .

The more detailed classification of the initial shape and the de-

formation mode of a shell is presented in [50].

Once the initial shape of a considered shell is given and the de-
formation mode is predicted or assumed, the order of magnitude of each

term in the expression for extension AAP can be established.

Next, neglecting those terms which for the given theory are con-
sidered to be small (smaller than, or egqual to, 32 as compared with the
largest term), we obtain, for different degrees of shallowness (deep-
ness) and different deformation modes, various sets of geometrical rela-

tions, as listed in Table 5.1.

As a result we obtain an effective method of simplifying the geo-
metrical relations. There can arise, however, a situation which must

not be overlooked. The greates terms (of the lowest order of magnitude)
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with which the remaining terms are compared, can cancel mutually so that
the neglected terms are not in fact small as compared with the algebraic
sum of the remaining terms. Having this in view, we retain in the rela-

tions for AAF also all the linear terms.

On the derivation of the geometrically non-linear theory for elastic
shells, the linearized formula for the change of curvature has been
generally agreed. When defining a measure of the change of curvature
for plastic shells, we have to consider a contribution of bending
terms in the expression for the energy dissipation during the plastic
flow. For a stable deformation process in a shell there usually takes
place a gradual transition from a flexural to a membrane state, so
that the contribution of bending in the energy dissipation diminishes
as the deformation process goes on (see e.g. [25] - [27]).Therefore,
in a nonlinear formulation, we complement a linear expression for the
change of curvature by such nonlinear terms which are of the same order
of magnitude as the greatest linear term and, moreover, we neglect

linear terms which are sufficiently small.

When considering buckling problems as well as the postbuckling be-
haviour, the relations for the change of curvature should be construc-

ted even more carefully.

We shall present now the simplified geometrical relations, listed
in the Table 5.1., for various geometrically non-linear shell theor-
ries classified with respect to their initial shape and deformation

mode.

The first column identifies the respective theory according to the
assumed classification. The first symbol in the column 1 refers to the
type of inital shell geometry specified in columns 2,3,4 by parameters
2H/R and L/R. The second symbol refers to the type of deformation mode,
specified in columns 5,6 and 7 by parameters W/2H and VA/ZH. The last
two columns provide expressions for the approximate kinematic relations,

appropriate for the given theory.

The cases la, 2a, 3a describe the geometrically linear theory of
infinitesimal strains and displacements. The expressions for the strain

tensor AAP are then identical whereas the change of curvature KAP for
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shallow shells can be simplified by neglecting the term BAngw. This
term causes that, when considering e. gq. cylindrical shells, we have
to take into account the changes of circumferential curvature even for

rotationally symmetric deformation.

It is seen that the cases la and 1b for shallow shells, 2a and 2b
for quasi-shallow shells and 3a, 3b for deep shells all correspond to
small strains (max AAF < 22 << 1). In the remaining cases the middle

. . 2
surface extension tensor remains no longer small (max AAF > e’).

The relations obtained in the case 1lb, i.e. for shallow shells
subject to moderately large deflections and small tangential displace-
ments, were extensively studied in the literature and are referred to

as the Donnel-Vlasov equations.

This case is interesting in that the strains are infinitesimal and

yet the strain displacement relations involve a nonlinear terms.

However, for the quasi~shallow and deep shells at the moderately
large deflections (cases 2b and 3b in the Table 5.1), the geometri-

cally non-linear terms in the relations for the strain tensor AAF

are of the order of magnitude 52 as compared with the term BAPW and

can thus be neglected. Therefore the geometrically linear theory is

in these cases sufficiently accurate.

For large deflections (the cases 1¢, 2c¢, 3c in the Table 5.1),

the strain tensors AAF comprise different non-linear terms for the

shells characterized by different shallowness parameter L/R.

For the shallow shells at large displacements the expression des-

cribing the change of curvature KAF involves the non-linear term

W[APW|¢WI¢ which is of the same order of magnitude as the linear

term WlAr.
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6. STRESS RESULTANTS

In the analysis of thin structures such as shells or plates it is
convenient to deal with stress resultants rather than with the stresses

themselves.

In order to get a consistent set of stress resultants and strain
rates the virtual energy principle will be used. The rate of strain
energy per unit reference volume, specified in terms of the Lagrangian

variables, is given by the expression (3.6):

+ S E,.+S E . (6.1)

Making use of the assumptions (iii) and (iv), chapter (3), i. e.

equations (3.4) and (3.5), the equation (6.1) can be rewritten in the

form:

a= sAFEAF - s33éM,GAr = (s - s33GAP)éAr (6.2)
or

a= §Aréar , (6.3)
where

0T _ AT _ 33AT 6.4)

Therefore the stress measure §AF can be treated as conjugate with

the strain measure EAF'

If we define the strain energy per unit area of the middle surface

by
+H

=Jp&dx3 (6.5)
~H

jo) [

A
det ur

of (6.3) we may write

where U then, under the assumption (4.8), p = 1 and in view

+H

= AT - 3
4 = J S EAFdx . (6.6)

-H
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Substituting (4.10) into (6.6),we obtain

+H +H

= R ~AT 3 . 3.AT 3

d = AAF J S ax~ + KAF J X"S dax~ . (6.7)
-H -H

Next, introducing stress resultants and stress couples by the de-

finitions
+H
Nl - J &Tax3 (6.8)
-H
+H
MAT J x5 ax3 , (6.9)
-H

the equation (6.7) becomes

AT AT

d =N AAT + M K (6.10)

AT °

The relation (6.10) indicates that NAP and MAF as defined by equations
(6.8) and (6.9) are the generalized stress measures conjugate with the

generalized strain measures AAF' KAT'

In most of the examples to follow, it is convenient to deal with
dimensionless quantities. We denote by No the maximum direct stress
which the shell can withstand in uniaxial tension, by Mo the maximum
pure bending moment, and define the dimensionless stress resultants as

follows:

n = — ' m =—_-— . (6.11)

For a shell of uniform thickness 2H and the tensile yield stress 00 we
have
N = 2Ho ’ M =o0 H2 . (6.12)
o o [} o
The conjugate dimensionless kinematical variables, viz., the exten-

sion and curvature reates, are
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AAF = AAP Kap KAP (6.13)

Hi
o=

so that the dissipation density per unit area of the reference surface

is
AT . AT, YN ) : (6.14)

d = (n AAF + m KAP o
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7. EQUILIBRIUM EQUATIONS

There are two approaches to the derivation of two-dimensional equili-

brium conditions for shells in the Lagrangian description.

In the first one we start with the relations describing equilibrium
of a material point in a three-dimensional spatial position as referred
to the undeformed configuration. Next, we refer all the qguantities to a
base on the middle surface, integrate across the shell thickness and intro-
duce the stress and couple resultants (per unit length of curves on the

middle surface).

The other approach consists in derivation of the equilibrium equations
and the natural boundary conditions from the two-dimensional virtual work
principle. For any exact theory both approaches lead obviously to the same
results. For approxmate theories the simplifications made when deriving

particular groups of relations can cause certain differences.

In the present problem, we insist on making the approximations in such
a way that the principle of virtual work, as a fundamental law of conti-
nuum mechanics, be satisfied completely. To this end the second approach

to the derivation of equilibrium conditions will be employed.

The principle of the rate of virtual work reads

Dext = Dint (7.1)

where ﬁext denotes the rate of virtual work of the external forces
(loading and boundary forces), whereas éint stands for the rate of the

work done by internal forces.

We consider a shell under external loads P applied to its middle

surface

2

I
o
b
+
Lv)
fid

(7.2)

and under external forces EJ é, g applied on the boundary C with the

normal N.
~5

The rate of external virtual energy is then given by the integrals taken



- 25 =

over the middle surface S and the boundary curve C:

. A 3.
Dext. = J(P VA-PP w)ds +
S

=AT. =T. ~AT -
+ J(N vA + QW+ M BA)NPdC (7.3)

where BA is the rotation vector at the boundary and can be calculated

by means of the equation (4.19).

The rate of internal virtual energy is obtained on integrating (6.10)
over the middle surface S.
AT

. AT
Dint. = J(N AAF + M KAT)dS . (7.4)
S

As examples we shall derive the equilibrium equations for the shells

defined in Table 5.1 in the cases 1.b and 2.c.

Case 1.b. - shallow shell at moderately large W and small VA

According to the Table 5.1, the strain rate and the curvature rate

tensors of the middle surface are

Aar = Vialmy " Bar™ WA o (7.5)
KAF = —WIAP . (7.6)
Substitution of (7.5) and (7.6) into (7.4) furnishes
D e -B W+W - v, las . (7.7)
int.” |r AT IA ) |ar

S

We now eliminate the derivatives of the velocities by using the Green-Gauss

theorem. Hence

J[-NAF v -8B W - Tw ) w- 8T Wlas
|T"a AT la |T |ar
s
AT, AT, . _ AT. AT .
- . 7.8
+ J(N + N WIAW M W|A + M IAW)NFdC (7.8)
c
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Employing the principle of virtual energy (7.1) to the rate of ex-
ternal and internal energy given respectively by (7.3) and (7.8) we

obtain

J{(PA + NAT F)OA + 123 + 8B+ Tw

AT -
AT + M |AF]W}ds +

|a’ T
S

<AT AT, - =T AT AT
+ J[(N -N )V, + (@ -N W|A - M |a

Cc

)W+ (ﬁAr-MAF)éA]NPdC=O. (7.9)

If the equation (7.9) holds for all virtual velocity fields which satis-
fy geometriéal relations (7.5), (7.6) and the displacement and slope
boundary conditions, then the generalized stresses must satisfy the
following relations:

NATP +pd =0 (7.10)

AT AT AT 3
N BAr + (N W|A)|F + M IAP + PT =0 (7.11)

for any point of the middle surface S and

AT AT

Nr = N NF p (7.12)
_AT AT

NI1 =M NF ’ (7.13)
=T AT AT
Q NP = (N W|A + M IA)NF (7.14)

for any point of the boundary curve C. Hence, the equations (7.10) -
(7.11) constitute the equilibrium conditions and the equations (7.12)- (7.14)

form the natural boundary conditions.

As we can see the shear forces QA do not appear in the equilibrium
equations (7.10), (7.11) and may therefore be treated not as generalized
stresses but as reactions. This is the consequence of neglecting the
shear strains, so that shear forces take no part in the internal virtual

energy.

Case 2.c. - quasi-shallow shell at large W and small V,

According to the Table 5.1, the strain rate and the curvature rate

[}

tensors are:
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+ BB, _WW , (7.15)

K,.=-W - B, B%. (7.16)

Applying the same procedure as before, i. e. substituting (7.15)-(7.16) into
(7.4), using Green's theorem to eliminate velocity gradients and
employing the principle of virtual energy, we obtain the equilibrium

equations and the boundary conditions in the following form:

M+t oo (7.1%)
by

NMBAr + (NAPWIA)IP - NAPBZB¢PW + MATAF,+ '
+ MAPBAFB$ +pl -0 (7.18)
ITIAFN], = NArNF . (7.19)
ﬁAFNF = MMNP , (7.20)
QPNP = (NMW‘A + MATA)NF i (7.21)
Comparison of equs. (7.10) - (7.14) with (7.17) - (7.21) shows that

in the case 2c¢ two additional terms appear in the equilibrium equation

(7.18).
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8. YIELD CONDITIONS FOR SHELLS

8.1. General remarks

As we could see from the preceding chapters the kinematics and
statics of thin shells are formulated in terms of quantities which are
referred to the middle surface of a shell. Therefore the constitutive
equations which define the shell material by relationships between
stresses and strains should be replaced by corresponding relationships
between the generalized stresses (moments and membrane forces) and the

deformation of the middle surface.

Neglecting the contribution of the shear forces to the yielding
of the section of the shell, a yield condition can be expressed as a

closed, convex hypersurface in the space of generalized stresses,
F(M,N) = O (8.1)

The shape of such a yield surface depends on the shell cross-
section (e. g. sandwich, uniform) and on the yield properties of the
material. A given section of the shell becomes plastic when the gene-

ralized stresses are represented by a point on the yield surface.
Yield conditions for shells can be either

i) formulated directly in terms of stress resultants and
stress couples defined on the middle surface of a shell

F(ﬂﬂﬂ) = 0, or

ii) derived through appropriate transformation of a yield condi-
tion given in terms of Cauchy (true) stress tensor to the
form involving the stress resultants and stress couples,

[18] - [20].

The second approach seems to be preferable since the yield criterion
(criterion of transition into a plastic state) has the physical sense
when considered in an actual configuration in terms of the Cauchy stress
tensor g. Accepting this approach, the derivations given in [19], [20]

will be mainly followed here.
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If the material (total Lagrangian)description is employed the yield
condition has to be first transformed to be expressed in terms of the
second Piola-Kirchhoff stress tensor § and then to the form involving
the stress resultants and stress couples defined by the egs.(6.8) and

(6.9).

8.2. Huber-Mises yield condition for uniform shell

8.2.1. General form

M. T. Huber suggested [21] that there is a certain critical value
of the shear energy in an elastic body responsible for the onset of
yielding irrespective of the type of stress state. Huber's idea was
independently expressed by R. von Mises [22] in a different form. He
assumed that yielding of the material begins when the stress intensity

o, = V3! (where J, is the second invariant of the deviatoric part of

2 2
the stress tensor) reaches a critical value k. Thus the Huber-Mises

yield condition assumes a particularly simple form, namely

2 .
J, = k (8.2)
where
- _1 k ij 1 1.ij
J2 (oij 3 okgij)(o 30,9 ) (8.3)
1
k = — oo R (8.4)
V3

g is the metric tensor in the spatial reference system and oo denotes

the yield stress in uniaxial tension.

Substituting (8.3) and (8.4) into (8.2), the Huber-Mises yield

criterion can be rewritten in the form

ij mn ij 2 2
3 - =
gimgjnc g (o gij) 200 . (8.5)
. : ij _Po KL i 3
Making use of the transformation rule o = — 8 x KXJL (where for
P 2.9

incompressible material we put Py = p) the yield condition (8.5) can be

expressed as follows
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j m m _KL MN i J KL, 2 2

3gimgjnfox,Lx,Mx,Ns; S B (gijx,Kx,LS )= 20o . (8.6)
Since the Green strain tensor is defined as
2, = gklexfo - G (8.7)
the following relation can be written:
gklx]'{Kx],'L =G + 2B (8.8)

Substituting (8.8) into (8.6), we obtain the yield condition in
the form

F = 3(GKM + 2EKM)(GLN + 2ELN)S S

KL12 | 962 20 . (8.9)

oN

[(G.. + 2E,)S

KL

It is seen that the yield condition, if transformed to the undeformed
configuration, depends on deformation and takes quite an involved form.
Imposing, however, the requirement that the maximum component of the

strain tensor E is small in comparison with unity

max. EKL << 1 , (8.10)

the condition (8.9) can be simplified to become

KL _MN KL, 2 2
F = 3GKMGLNS S (GKLS Yo - 200 =0 . (8.11)
Therefore considering shells in the Lagrangian description at small
deformations, the yield’condition is usually taken in the same form as
in the Eulerian description. The simplified yield condition can not be
applied, however, when deriving loading criterion, because the rate of

change of the yield functions before and after simplification may differ

significantly even at the yield point load (for EKL = 0).

Let us discuss this problem for the considered case of the Huber-

Mises yield condition.
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The loading criterion

-

F=0and F =0 (8.12)
for the simplified yield condition (8.11) leads to the relation

- KL, MN MN KL,
dSKL [ = (6GKMGLNS -2 GMNS GKL)S =0 (8.13)

e
It

whereas for the exact yield condition (8.9) we have

F=—=8"+ E_ =
BSKL aEKL KL,
MN MN . KL
= [6(GKM + 2EKM) (c;LN + 2ELN)S - 2(GMN + 21:MN)s (GKL+ ZEKL)]S +
KL_MN_ MN _KL-
+12(<;KM + ZEKM)S STE - 4(GMN + 2EMN)S ST By =0 - (8.14)

The assumption (8.10) that the components of the strain tensor E

are small in comparison with unity (or even E__ = O) when applied to

KL
(8.14) gives:
. MN MN, -KL KL _MN. MN_KL
F = (GGKMGLNS 2GMNGKLS )S +12GKMS S ELN 4GMNS S EKL =
= 6(GLNS + 28 ELN)GKMS -2(GKLS + 28 EKL)GMNS =0 (8.15)

Comparison of (8.13) with (8.15) shows that the application of the
simplified yield condition (8.11) changes the loading criterion in such
a way that the term ZSKLéLN is neglected in the sum GLN§KL + ZSKLéLN.
This canbe done only if 2SKLﬁ:LN << GLNéxL. However, for perfectly plastic
material it can be shown [23], [24] that both terms are of the same

order of magnitude. Therefore, such a simplification affecting the
loading criterion may change the behaviour of the material after yield-
ing. The predicted behaviour of shell structure after reaching the yield
point load may be changed completely as a result of such an improper
simplification if material of the shell is assumed to be perfectly
plastic. Therefore the existing solutions for perfectly plastic shells

at large deflections and small strains [25], [26] must not be accepted

without caution and, sometimes, suitable verification.
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The detailed analysis of this problem exceeds the scope of the

paper.

Let us now consider the transformation of the yield condition
(8.11) into the space of generalized stresses defined by the equations
(6.8), (6.9). To this end, we first transform the yield condition (8.11)
to be expressed in terms of the modified stress tensor §Ar defined by

eq. (6.4). Then we obtain the yield condition in the form

_ ~AT-~0¢ s4T 2 2 _
F"3GA¢GPOS S (GAFS ) 200 =0 (8.16)
which coincides with (8.11) provided S33 = 0.

To perform further transformation a relation between stresses and
strain rates is needed. Assuming the plastic potential flow law as asso-

ciated with the yield condition (8.16), the strain rate EKL is defined

by the relation

F L ~$0
= 2v(3G,,Gp.oS G yoCarS

EAT =v 3 ) (8.17)
AT

where the flow multiplier v 2 O.

The relation (8.17) can be inversed to obtain the stresses,

206 _ 1 - oA BT _ -A 48
§%W = 5 (B 606 +EGT) . (8.18)

Substitution of the stress from (8.18) into the yield condition

(8.16) allows to evaluate the flow mulitplier

1
y /2 (8.19)

Let us notice that, in view of (8.19), the stress components (8.18)
are fully determined by the deformation mode and are homogeneous of
degree zero with respect to the strain rates, thus also with respect to
time. This rate (or time) independence is one of the specific features

of the plastic deformation process.
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In order to obtain the yield condition (8.16) in terms of stress
resultants it is necessary to integrate the stress components (8.18)

over the shell thickness.

To this end, substituting (4.10) into (8.18), we express
~$0
the stress tensor S by means of the deformation rates of the middle

surface

598 _ é%-[(A¢e + xk% ) + (A + XK )G¢e] . (8.20)

Putting (8.20) into the definition (6.8), (6.9) of the stress

resultants in a shell, the following expressions are obtained:

+H
AT _ 1 AT +:¢ AT ¢ AT
N -J&)[(A +A¢G )+x (K ¢ )]dx ' (8.21)
-H
+H
AT _ AF ¢ AT 3 2 ¢ AT
M = I n [x +A¢ ) + (X7) ¢ )]dx . (8.22)
-H
Under the assumption (3.1) u? = 6? and GAr = AAF, then the integrals

in (8.21) and (8.22) can be evaluated and the stress resultants NAr

MAr rewritten in the form:

AT sAT

_ -¢ - -
N = (A + A¢A )Il + (K + K¢A )12 ' (8.23)
T o (AT ¢ A%fTy1. ¢ (&AT 4 k%271 (8.24)
o) 2 ¢ 3
where
+H 1
1 [ 3 L
=< J Bl e’ i=1,23 . (8.25) .
-H

The integrals Ii can be easily evaluated since in view of (8.19) and

(4.10) - (4.12) they reduce to the algebraic integrals of the type
-1

f(x y 1 a3 ? 4 e3¢ 01772 ax’.



- 34 -

Since all the terms in (8.23), (8.24) are homogeneous of order zero
. . A AT
with respect to the strain rates, the set of six functions N P' M
depends on five independent parameters only and thus represents a para-

metric form of the Huber-Mises yield condition for uniform shells.

The strain rates AAF' RAF can be determined from the relations (8.23),

(8.24) . However, they are specified uniquely only if the determinant

)2 0 . (8.26)

>3
1}

I.I, - (I

173 2

Whenever A = O the singular points or lines exist on the yield surface.

In general, the shell geometry enters the yield equations (8.23),
AT .
(8.24) through the metric A . In the simplest approximations, however,
we consider a shell to be locally flat. Then the yield surface does not

depend on the shell geometry.

The above explained procedure of derivation of the yield condition

for shells is essentially due to Ilyushin [17], [27].

8.2.2. Huber-Mises condition for cylindrical shell

The yield condition in the general form (8.23), (8.24) is highly
nonlinear and involved. However, for specific geometry of a shell the
yield condition may be considerably simplified as the result of pro-

jection or intersection of the general form.

Let us illustrate this fact by an example of a cylindrical shell
subjected to rotationally symmetric deformation process. The principal
stress and strain rate directions coincide then with the lines of prin-
cipal curvatures and therefore the following components vanish:

N2=m?-4 =k._.=o0 . (8.27)

For short cylindrical shells the circumferential rate of curvature

may also be considered as negligibly small

R
(@]

29 = (8.28)
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If the cylindrical shell is simply supported and transmits no end
laods in the axial direction then in view of equilibrium eq. (7.10)

we have

nloo . (8.29)

Vanishing of the axial force and the circumferential rate of curva-
ture applied into (8.23) results in the condition

«11

[A 1

]I1 + (K + KlA )12 =0 . (8.30)

.1 .2
+ (A1-+A2)A
In the cylindrical frame of reference the nonvanishing components
of the first and the second fundamental forms of cylindrical surface of
radius R are:
11 2 22

1
A = A =1 ’ A = R . A =E2_' ’(8.31)

B = =R ’ B = - - (8-32)

22

In view of (8.31) and (8.25), the equation (8.30) leads to the

requirements
2ht! & R2A22)11 =0 , (8.33)
21&1112 =0 (8.34)
and therefore
jtt o _ RZ ;22 I. =0 (8.35)
) T2 : .

Using (8.27), (8.28), (8.31) and (8.35) in (8.23) and (8.24),

the generalized stresses are found to be

22 3 .22
N2 2%, (8.36)
mit - &', (8.37)
VR SESVLL (8.38)
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Making use of (8.28) and (8.35)1 in (8.19), the flow parameter may be

expressed in the form

. . o]
v = ————1——-[(E1)2 + (Eé)z + EiEgl /2 -
2/3'6
(o]
. oot
- —L @k« 4(x3)2(1<i)2] /2, (8.39)
2/3'00

Using (8.39) in (8.25), the integrals I, and I, can be evaluated and

1 3
next substituted into (8.36) - (8.37). This leads to the following dimen-

sionless stress resultants.

1 Y1+n2+1
n, =5 nln ——— , (8.40)
/1+n2-1
2 VA
m = _2- (,/1 + n2 _n- 1n _an__i_l. ), (8.41)
1 /-1 2 /_—2‘
3 1+nc-1
m. = +m (8.42)
2°2™ .
where
2 1 2
.2 m = ! .5 (8.43)
Ny =% 8 ' 1~ o 82 ' My =5 B2 ' .
(o) (o]
2
3 A
ne3 2 (8.44)

The equations (8.40) - (8.42) constitute the parametric form of the
Huber-Mises yield condition for a cylindrical uniform shell. The ob-
tained condition is an intersection of the general yield locus (8.23),

=0, M =0, N = O projected orthogo-

12 11
) due to the kinematical requirements

(8.24) by the hyperplanes N12

nally onto the plane (Mll' N22

=0, A12 =0, K = 0. The interaction curve on the plane m - n,

K2 22
is plotted by solid line in the Fig. 8.1. It is close to an ellipse with

semi axes (1, ii—) marked by broken line.
3
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Fig. 8.1

A detailed derivation of the Huber-Mises yield condition for rotationally

symmetric uniform shells is given in [19], [201, [291, [30].

8.3. Tresca yield condition for uniform shell

8.3.1. General form

The Tresca yield condition for a uniform shell was first obtained by
Onat and Prager [31]. The procedure can effectively be applied to any
yield condition which is piece-wise linear in terms of the principal

stresses.

The Tresca yield condition states that the maximum shearing is equal
to or less than half of the tensile yield stress. In the multiaxial

stress state with the principal stresses Gyr Oyr Og the Tresca yield
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condition can be written as follows
max. (lo, - o3l ' |02 - 03| . |o1 -o,) S0 . (8.45)

The transformation of the yield condition (8.45) into the space of the
modified second Piola-Kirchhoff stress tensor §KL can be done similarly
as in the section 8.2 for Huber-Mises yield condition. Analogous simpli-
fications lead, as before, to the yield condition in the same form

max. (|§1| ' Ié , |§1 - §2|) <o_ . (8.46)

2| o

The condition (8.46) , visualized in Fig. 8.2, can be rewritten in

the explicit form, convenient in further considerations.

F4=§1+0 =0 , F_ =S8 +0 =0 , F, =8, -85 +0_=0. (8.47)

Fig. 8.2
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In order to specify the stress distribution over the shell thick-
ness and hence to find the interaction of stress resultant at yielding
of a cross-section, let us perform the mapping of stress regimes repre-
sented by the sides of the hexagon ABCDEF (Fig. 8.2) onto the principal
strain rate plane. To this end we make use of the plastic potential flow

law which can be expressed as

E, =v, — , vw=20 , A=1,2 , X=1,2...6. (8.48)

It follows from (8.48) that for the side AB, analytically described

by the equation
F, =S8, -0 _=0 , (8.49)

we have

E, =v, 20 , E,=0 . (8.50)

The equations (8.50) are represented, on the strain rate plane, by the

coordinate line E, shown in Fig. 8.3.

1
R E
co) 20 e
) §,=6, [BC)
A N
A S,=5S,:=6
/S\1:-Go 1 2 (4]
Sz=0 c
(DE) D \| B (AB)
A E
E E 1
$1-65
A A S,=0
§,=8,=-6, §,=0 2
S, =-6
2= "o FA)
(EF)
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For the stress state §1 = §2 = oo represented by the corner B, the
= O and F2 = O must be satisfied simultaneously. Hence,

equations F1

in view of (8.47) and (8.48), we have
(8.51)

The corner B is mapped, therefore, into the quadrant of positive
on the {El, éz} plane (Fig. 8.3). Similarly, the remaining sides

é1' F.‘"2
and corners of the hexagon are mapped as straight lines and regions

shown in the Fig. 8.3.
In view of (4.10) and (3.5) the strain rate distribution over the

thickness of a shell is

E1 = Al + EHKI '
E2 = A2 + EHK2 R (8.52)
E3 = —(Al + A2) - ﬁH(Kl + KZ)

3
where £ = — is a dimensionless normal coordinate. For points belonging

<E<1.

to a shell we clearly have -1

Denoting 51, &2, £3 the dimensionless normal coordinates for which
z F £ are respectively equal to zero, we obtain from

strain rates El’ E2, E3
(8.52) the following relations
A A -A, - A
1 2 1 2
£, = - —— , £, = - —— , £, = ———— . (8.53)
1 HKl 2 sz 3 H(K1+K2)

A typical distribution of strain rates is shown in Fig. 8.4.
For definiteness, let us consider the case when
(8.54)

- 12§ <E;<E, S
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Fig. 8.4

Then, for 525£Sl the strainrates E, and 1::2 are positive and from the mapping

1

given in the Fig. 8.3 we have §1 = 82 = 04 Analogous considerations

applied to the remaining values of § lead to the results listed in the

Table 8.1

Table 8.1
- . - = point B
<E<L > > = =
Ep=t=1 E} >0, E,20 Sy =85,=9, in Fig. 8.2
) . E . .
E4SESE, E, >0, E2SO,-]-§-Z-Z—1 §, =0, 5,=0 point A
1
. ) E ) )
g, s6<g; | B 20, E2<O,E-2—S—1 §, =0, §,=-0_| point F
1
-1< E < E < S =8 = - i
1_5551 E:1 <0, E2 0 S1 52 00 point E

The stress distribution in the considered case is shown in Fig. 8.5.
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In view of (6.8),

ants and bending moments are:

1

n=-3 (€, + &5)

Fig. 8.5

1
ny = - (& v 83

=]
I

(]

1 2 2
_1-5(2':24-&3) .

(6.9) and (6.11) the dimensionless stress result-

(8.55)

In particular situations any of the parameters 51, 52, 53 can be

an intermediate one and then each of the others can be the largest

(or the smallest). There are clearly six possible arrangements of these

points corresponding to six yield hypersurfaces. Equations of these

hypersurfaces are assembled in Table 8.2.

Table 8.2

Intermediate Hyper- Stress resultants

parameter surface n; n, my m,
3 R N R I N CIET R R TE AT P L E S ST
£, P, | Ty (B E T3 (6,4 ey (2 1T L (60 4 £) 1R (g2 +ED)
£, F, | T3 (Ey-E) [T (g, rEy) |2 5 (67— [e1FpE+ED)




- 43 -

Since all the parameters 51, 52, £3 should be within the interval (-1,1),
hence if one or more is greater than 1, then that parameter must be re-
placed by 1 in the Tabel 8.2; similarly, if a parameter is less than -1
it must be replaced by -1. Such replacements do not change the stress

distribution in the cross-section. For example, for 52 >1, 0% £3 <1

I
—

in Fig. 8.4 the stress distribution in Fig. 8.5 is the same as for £2 =
0 < £3 £ 1. Kinematically it means that the flow mechanism is not
unigquely.specified. Such situations occur at singular points of the

yield hypersurface.

If any of the parameters El, 52, 53 becomes indeterminate as compu-
ted from eqgs (8.53), then the others must be equal to each other.
Consider, for example, the stress regimes AB and DE of the yield hexa-

" gon shown in the Fig. 8.2.

Then

éz = A2 + EHK, = 0 for any ¢ from the interval (-1, +1) (8.56)

and therefore
A,=0 , kK, =0. (8.57)

Substitution of (8.57) into (8.53) yields él = £3 and 52 is indeter-
minate. The appropriate yield hypersurface is obtained when 51 is set

equal to 53 in either of the first two lines of Table 8.2.
n, = *§ m, = 17 (g,)° (8.58)
IS T 1 - 1 : )

Eliminating gl from egs (8.58), we obtain

H

- 14

:omp = (1 - nf) (8.59)

which is represented by hypercylinders parallel to the directions n,

and m, in the space n,, n,

the last two lines of the Table 8.2 leads to

, ml, m, . Similarly, if &2 = 53, either of

+ _ 2
Hy : my = £(1 - n) (8.60)

Finally, if El = £ the first and the third lines show that

2.'
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H : m, - m, = +[1 - (n1 - n2)2] . (8.61)

All six hypercylindrical parts of the yield locus are written in

Table 8.3.

Table 8.3

Coincidence Deformation mode Hypersurface Yield condition
A,=0,K,=0 u £ (1 - n

El B E3 2 P2 T 1 m == (1 - nl)
A, = -h, . K, = K * +[ 21

8155 g = 7Ry Ky =Ky Hp my ~my=%l1-(n; = ny)
i\" . * +(1 2

82 = %3 =0 K =0 Hy my = (1 - ny)

E I T .
The yield hypersurfaces Fl' F12' F2, Hl’ le, H2 bound a convex region

in the four-dimensional space (nl, Ny, My, m2) which contains all the

statically admissible states of stress resultants.

If one of the generalized stresses (nl, ny, my, m2) or generalized

strain rates (Al, AZ' K,' kz) is equal to zero, the yield condition can

1
be visualized either by its intersection with a hyperplane or by its
projection onto the specified subspace. The yield condition is then an

ordinary surface in the three-dimensional space.

8.3.2. Particular cases

Two important particular situations occur when either one of the

axial forces or one of the bending moments can be eliminated.

10. Consider first the case when n

5 = O, then from the Table 8.3 we have

Table 8.4

+ _ _ .2
gl - 5»3 Hl m1 =4+ (1 nl)

+ _ 2
£y = &2 12 mommy =2l -y

E: - i1
£, = &y H, m, = %
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Putting n2 = 0 in the Table 8.2 we have 52 = £_. and, eliminating 53

3
and 51 from the remaining relations, we obtain

/1= i~
F..: m =1-2[(n, + i )2 4 i ]
12 1 1 2 4 )
(8.62)
‘/1 —_ —
P m, = 2[(n, + 5 )2 - " ]
2 1 1 2 4
The yield surface for n, = O is visualized in the Fig. 8.€.
ny
n2= O
m2
+
F+ F12

~tl}-
my
A
r 4
7
4

Fig.8.6

20. Another interesting case occurs when k2 = 0. Then m2 may be
treated as a reaction. Such a situation takes place when a short cy-
lindrical shell is considered under axisymmetrical loading (Kz denotes

here the circumferential rate of curvature).

In view of (8.53) we have £, »+=. Setting 52‘= +1 in Table 8.2 and

2

eliminating m,., we obtain the yield surface described by the equations:

2
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n, =1 (planes) ,

n, - n; = + 1 (planes) ,

(8.63)
m, = (1 - nf)(parablolic cylinders) ,

m, = % %-[2 - (2n2 - 1)2 - (2n2 - 2n1 - 1)2] (paraboloids) .

yield surface for K, = O is visualized in Fig. 8.7.

2
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8.4. Sandwich shells

To simplify the yield condition a uniform cross-section shell can
be approximated by an idealized sandwich cross-section shell with the

same resistance to pure tension and pure bending.

An ideal sandwich shell is composed of two thin sheets, each of
thickness T and the tensile yield stress cé, separated by a core of
thickness 2H' and no tensile strength. The sheets are so thin that the
stress variation across each sheet can be neglected. Under these assump-

tions the yield constraints of a sandwich cross-section shell are

N = 20'T ' M = 20'H'T . (8.64)
o o o o

The corresponding values for a uniform shell of thickness 2H are

N = 20 H , M =o0H . (8.65)
o (o} o) o

Thus the sandwich shell is equivalent to the uniform shell if
o'T = o H H' =+ H (8.66)
5 ' > . .

AT

+ =AT
Denoting by S and S the stresses in the outer and inner sheets

of the sandwich shell, the stress resultants become:

+ - + =
NOT = (88T 4 88Ty |, MAT o (38T _ 58Tyqwr . (8.67)

Solving Egs (8.67) for the stresses and introducing the dimension-
less stress resultants from Eq. (6.11) (where No' Mo are given by (8.64),

we obtain
+
SAP - AT AT

(8.68)
§AF AT Yy

[}
Q
)
+
=]
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8.4.1. Huber-Mises yield condition for rotationally symmetric sandwich

shells

The Huber-Mises yield condition (8.11) written in terms of the

-

principal stresses S1 and 52 takes form

=g (8.69)

For a sandwich cross-section two yield conditions have to be
considered, each corresponding to yielding of a single layer. Two
cases are possible: either both sheets are plastic or only one yields.
In the first case two plasticity conditions, obtained by substitution

of (8.68) into (8.69), are satisfied simultaneously:

2 2_, _
(n1 + ml) - (n1 + ml)(n2 + m2) + (n2 + m2) -1=0

ol
]

(8.70)
F = (n, -m)% - (n, - m)(n, -m) + (n, - m)>-1=0
R T ny Tmping Tl Ry =™ =
The stress point is then on the intersection of the two hypersurfaces
(8.70), and the strain rate vector may be any linear combination with

positive coefficient of the two vectors normal to each of the hyper-

surfaces (Fig. 8.8)

i oo raE - aE
A anA anA
(8.71)
+ -
. . + JF - JF
K, ZHK, = Vv —+ Vv —— .
A A BmA amA

In the other case, the eguality sign must hold in one of the equations

(8.70) and the other becomes an inequality.

For a rotationally symmetric deformation of cylindrical shells the
change of circumferential curvature can be neglected, Rz = 0, and the
circumferential moment m2 can be eliminated from (8.70). Geometrically,
this operation may be regarded as a projection of the four-dimensional

region onto the hyperplane m, = const. Then yield condition (8.70) can
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Fig. 8.8

be written in the three-dimensional space in the form

2
2 2 3my
(nl—n1n2+n2) [1+-('2n‘—2—_———nl)2]-1=0 R
(8.72)
o ml(nz-2n1)
2 2n2—‘n1

For a particular case of no axial load, we have n, = O and the Egs

1
(8.72) reduce to the form

ng + %—mf -1=0,
(8.73)
m, = ~m .
2 21

The equation-(8.73)1 describes the ellipse wnich is shown in Fig. 8.1 by

broken line.

8.4.2. Tresca yield condition for rotationally symmetric sandwich shells

In terms of the principal stresses §1 and §2 the Tresca yield condi-
tion takes the form (8.47). The six equalities must be satisfied by the
stresses in the outer and inner sheets. Therefore, the Tresca yield

condition for the sandwich shell consists of twelve expressions obtained
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by introducing in (8.47) the stresses expressed in terms of the stress

resultants as given in (8.68).

The resulting expressions are listed in Table 8.5 as derived by

Hodge [19].

Table 8.5

H - i f h -
ypexr Equation o YPexr Range of validity
plane plane
Fh -m, =1 o< <1

1 2e) 1 - i T T
F+ n, -~m, =1 0 < -m, £1

2 2 2 =N 1=

+

- - = < - < < - <

F3 n1-+m1-+n2 m2 1 0 < n2 m2 <1 oro=s n1 + m1 <1
Fr -n, +m, = 1 0<-n, +m, <1

4 ny+tmy = =Ty tmy =
F+ -n,+m, =1 0=~ + <1

5 Ny *tHy = =Ty Tm =

+ .

- - = < - < < -

F6 n, m1 n2+m2 1 0 < n, m1 €1 oro= n2 + m2 <1

= = < <
F1 n1 + m1 1 0 < n2 + m2 <1
F2 n2 + m2 1 0O =< n1 + m1 <1

- -n - = < < < - - <
F3 n m1-+n2-+m2 1 0 = n2 + m2 <1 or o0& n1 m1 <1

- - - = < - - <
F4 n, m, 1 0 =< n, m2 <1

- -n. - = < -pn - <
F5 n2 m2 1 0O =< n1 m1 <1

- - - = < < < -n. - <
F6 n1+m1 n2 m2 1 0 =< n1 + m1 <1 oro=s n, m2 <1
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9. THEORY OF LIMIT ANALYSIS

9.1. Statement of the problem

Let us consider a shell subjected to a system of loads that increase
quastistatically and in proportion. The term in proportion indicates
that the ratio of intensities of any two loads remains constant during
the loading process, so the load is fully prescribed over the shell by

a single loading parameter p which is called an intensity of loading.

As p slowly increases starting from zero, it will first reach a
value P, for which the yield condition is satisfied (F = O) at some
points of the shell; for p > p, 2 region will develop in which F = O.
However, the plastic domain is not, in general, free to deform since
the enclosing rigid (or elastic) portion of the shell is strong enough
to restrain it from plastic motion. As p is further increased, the
plastic region will continue to grow until for p = P, the rigid portion
becomes insufficient to restrain the plastic region from motion and the
shell starts to deform plastically. Such a load is called a yield-point

load or limit load.

It can be shown [33] that the yield-point load P, for an idealized
rigid plastic shell has the same value as for elastic-plastic shell,

provided the effects due to geometry changes are ignored.

9.2. Theorems of limit analysis

A solution to a limit analysis problem is termed complete when it

provides:

1°. intensity of limit load Py

20. resulting stress distribution at the limit load,
o

3

. mechanism of motion at the limit load
and is such that the following relations are statisfied:

o
1. vyield condition,

2°. equilibrium equations,

3°. geometrical relations (strain rates-velocities),
4

flow law (normality condition),
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50. stress and velocity boundary conditions,

6°. non-negativity of the internal dissipation energy.

In many shell problems it is difficult to find a complete solution
of the limit analysis. In such cases the two theorems of limit analysis
provide very convenient tool to obtain solutions that satisfy only some
of the requirements 1° - 6° and give the bounds on P, from below and

above.

The statement of the lower and the upper bound theorems will be
more convenient after defining statically and kinematically admissible

states.

A statically admissible stress field is, by definition, a field of

generalized stresses Q : {n;F' m;F} such that

~

o g . L
1. the equilibrium equations and the stress boundary conditions are

satisfied, and

2°. the yield condition is not violated, i. e. F(Q ) < O.

Each of the fields Q_ corresponds to a certain intensity of loading

which will be denoted by p_.

A kinematically admissible strain rate field is a field of genera-

lized strain rates g*: {i*r, k*_} such that

A AT
1°. it can be derived from a velocity field xf which satisfies the
velocity boundary conditions,
2°.  the external energy rate ﬁ:xt caused by the applied loads p on

the assumed velocities v* is positive,
~o

D* = -v*¥ds_ > .
S
p

where SP is a part of the surface S where external load is applied.

The kinematically admissible stress field Q% is determined by the

kinematically admissible strain rate vector g* by means of the flow

~

law. Finally, a load p* is assessed from the requirement

~



- 53 -

Jg“ . .Y.*dsp = Jg* . g*dS (9.2)
S S
p

Lower-bound theorem says that the limit load P, is the largest of
all loads p corresponding to statically admissible stress fields

P =p (9.3)

To prove the lower-bound theorem we consider the actual stress tensor
Q as a vector from the origin to the point on the yield surface F = 0O

in the stress space. Then the actual strain rate vector q is directed

along a normal to the yield surface at that point (Fig. 9.1)

Fig. 9.1

Since Q_ is a statically admissible stress vector, its point lies

~

on or within the yield surface, and the vector (Q- - Q) makes an angle

equal to or greater than 90° with the strain rate vector g. Therefore
(Q - Q-gs0 . (9.4)

Finally, since (9.4) must be satisfied at each point of the shell,

we may write

~ ~s

S S

JQ- .qds < Jg-gds . (9.5)
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By principle of virtual power we have

JQ_.qu= [p—-.vdsp (9.6)
s s
p
and
-.qds_=|p .vas
Jg 2% J}i’o,‘l, p (9.7)
S S
P

where x'is the actual velocity field.

Substitution of (9.6) and (9.7) into (9.5) leads to the inequality

IR". vdSPs I.Eo';‘f,dsp . (9.8)
S S
p p

Since the systems of loads differ only by a positive scalar factor,

the inequality (9.8) furnishes (9.3).

Upper-bound theorem says, that the limit load P, s the smallest of

all loads p* corresponding to a kinematically admissible mechanisms,
p*2p_ . (9.9)

Similarly as before we can show (Fig. 9.2) that the following

inequality takes place

(Q-9¥)-qg* <0 . (9.10)

~ o~

Next, since (9.10) must be satisfied at each point of the shell we

may write

JQf.g*ds < J'Q*"- q*ds . (9.11)
s S

By the principle of virtual power we have

- * = . * - .
[g;g ds Jfo v¥as (9.12)

S S
P



- 58 -

Fig.9.2
Substitution of (9.2) and (9.12) into (9.11) leads to the inequality

-v¥ < *, gk . -
Igb hA dsp._Jg v¥ds, } (9.13)
S S
P p
Again, since the systems of loads differ only by positive scalar

factor, the inequality (9.13) furnishes (9.9).

The inequalities (9.3) and (9.9) may be combined to yield the upper
and the lower bounds on the actual yield point load,

p Sp_ <p* . (9.14)

In terms of the introduced definitions we can state that a solution
18 complete if and only <if it is both statically and kinematically
admissible.

Since the fundamental theorems of limit analysis are based exclusive-
ly on the concept of statically admissible stress fields and kinemati-
cally admissible strain rate fields, they are valid for both idealiza-
tions of the material; rigid-plastic and elastic-plastic. In the case
of elastic-plastic material, however, the assumption on small elastic and

elastic-plastic strains has to be remembered.

The lower- and the upper-bound theorems of limit analysis were first
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given by Gwozdew [33], and later independently proved by Drucker,
Greenberg and Prager [35], [34] and Hill [36].

9.3. Bounding surface lemma

As we have seen in the chapter 8, the actual yield conditions for
shells are nonlinear and, therefore, lead to considerable mathematical
difficulties. Various approximate yield loci are known in the literature
[19], [20], [32]. One method of simplifying the problem is to linearize

the yield condition.

Suppose that the smooth curve in Fig. 9.3 represents an exact

yield condition F = O.

-n
]
o

Fig. 9.3

It can be approximated in many ways. However, using an inscribed

- . . + . . .
F = 0 and a circumscribed F = O yield criterion, we are able, by
means of the limit analysis theorems, to bound the error introduced

by the approximation.

Let us denote p;, Py p: the yield-point loads of the complete
solutions corresponding, respectively, to the yield conditions
F =0, F=0, F+ = 0. Then the stress distribution corresponding to
the complete solution according to the yield condition F = 0 will be
only statically admissible according to the exact curve F = O. Similarly,

the stress distribution corresponding to the exact curve F = O will be
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only statically admissible according to the yield condition F+ = 0.
Hence, by the lower-bound theorem
p.<p, ., P <p_ - (9.15)

These inequalities may be combined to yield the upper and the lower

bounds on the actual yield-point load P,

P Sp =p . (9.16)

If the outer and inner approximating surfaces are geometrically similar,
as shown in Fig. 9.4, then the corresponding yield-point loads are

similarly related as the surfaces themselves

p <p_ < ap where o 2 1 (9.17)
(o]

Fig.9.4

Sometimes it may be impossible to find a complete solution even of
the approximate problem. In these cases the lower bound theorem can be
applied to the interior yield surface and the upper bound theorem to the
exterior surface. Then

+ *
- < < < + .
(po) =P, =P, S p, S (py) - (9.18)
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When the two approximating curves are similar, (9.18) becomes

- < < < (ap- * .
(po) Sp =p_ = ap S (ap ) (9.19)

Finally, it is worth noting that for a chosen yield criterion (e.q.
Tresca or Huber-Mises) the yield surface for a sandwich cross-section

shell lies inside the yield surface for an equivalent uniform shell.
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10. PLASTIC ANALYSIS OF SHELLS AT LARGE DEFLECTIONS.

SIMPLE EXAMLES

10.1. Statement of the problem

The deformation process of rigid-plastic or elastic-plastic shells

may be roughly divided into three stages.

The first one is that of strains and displacements remaining small.
The limit load theory furnishes a solution of the problem giving infor-
mation about value of the yield-point load and the stress and strain

rate fields if the complete solution is found.

At the second stage of the deformation process the moderate and
large deflections develop, though strains usually remain small. The
simplified, geometrically non-linear theories, presented in chapter 3,

furnish the suitable strain-displacement relations.

At the third stage of the plastic deformation process large and
unrestricted strains and displacements are encountered. Then, in view
of a highly non-linear and involved form of fundamental relations, there
are only numerical solutions that can be found. However, for some
particular situations the simplifying assumptions can be made. For
example, if during the deformation process the membrane forces only
are essential, the influence of bending moments being neglected, the

well developed membrane theory provides the required solution.

The approximate solutions known from the literature [25], [26],
[39] - [41] indicate that in most of the practical cases the shallow
shells reach the membrane state at the deflections of the order of
magnitude of the shell thickness, whereas the quasi-shallow shells do

so at the deflection ten times greater.

The analysis of the first stage of plastic deformation process
and the third one in the case of membrane state are well developed in
the literature [19], [30]1 - [381, [42] - [44]. The obtained solutions
lead to the linear relationship between load and displacements. There-
fore, presenting the analysis of deformation process of cylindrical

and spherical shells attention will mainly be paid to the second stage
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of plastic deformation i. e. the deformation at moderately large and large

deflections.

10.2. cCylindrical shell, rigid-plastic solution

10.2.1. Basic equations

Let us consider the behaviour of a rigid-perfectly plastic cylindri-
cal shell closed at either end by arigid plate and subjected to uniformly
distributed internal dead load P (Fig. 10.1).

Fig.10.1

The origin of cylindrical coordinate system (X, ¢, R) will be conveniently

placed at the centre of the shell.

The stress state in the wall is described by the stress resultants
Nxx’ NqJLp and stress couples Mxx' M(Flp in the axial and circumferential
directions, respectively.

The kinematic behaviour of the shell, under the actual rotationally
symmetric conditions of loading and deformation, is described by two
components of the displacement vector: W in the radial direction and U

in the X-direction .

Let us introduce the following dimensionless quantities:
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2
W U X L 2H
wW=g ¢« WSy ¢ X=poo, as=opg 0 R=T%ro (10.1)
X () P
= = , = HK = HK® , (10.2)
Ax Ax ’ Aw mp Kx ' Kw 0
N; N$ M:
= = = —X = = 10.3
TR BTN T , ( )
[e] (o} O
PR
p = 5 (10.4)
(o]

where R, 2L, 2H are the shell radius, length and thickness, respectively,

as indicated in Fig. 10.1.

Let us first consider the case of a short cylindrical shell (L/R =
= O(e)) at moderately large deflection W and small axial displacement
U. We can use the Donnell-Vlasov geometrical relations as shown in the

Table 5.1, case 1lb:

1
Aar = Valr = Bar" t 2 Ve
(10.5)
Kar = "lar -
For the cylindrical coordinate system we have:
_ XX _ 52 wp 1 _ ¢ _ _ 1
Axx =A" =1, Atpr =R , A" = vl wa = -R , Bw = - R (10.6)

Making use of (10.1), (10.2) and (10.6) in (10.5), the geometrical rela-
tions for rotationally symmetric deformation of a cylindrical shell can

be written in the form:

A =au' + %-( % w')2 , A= -w ,

(10.7)

where prime denotes partial differentiation with respect to x.

The equilibrium equations for the Donnell-Vlasov strain-displace-

ments equations have been derived in the chapter 7, by means of the
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principle of virtual energy, in the form:

N?g +2% =0
(10.8)
AT AT AT 3
N BAI,"' (N WIA)II‘+MIAF+P =0 .

In view of (10.3), (10.4), (10.6) and rotational symmetry (10.8) can be

rewritten:
n; =0,
(10.9)
T N
nw (L)nxw +2mmx p=0.

In the considered case of the closed cylinder subject to uniform
2 . . .
pressure P, the axial force is equal to 7R P. This force is carried by
the shell in a uniform manner, so in view of (10.4) the value of the

axial force at the edge is

2 N
x _ MRTP o
Nx = SR = P - (10.10)

and, nondimensionally

n =
X

=B
5 (10.11)

oz|x2§

Since the axial equilibrium (10.9)1 requires n to be constant along

the shell, n, = %-applies over the entire length of the shell and, therefore,

the equilibrium equations (10.9) may be written in the form:

R S - R2PR o _ o
2 "kt ) (L) 2 v p=0 .
(10.12)
- P
n =5 .

We assume one of the simplest, the Tresca-sandwich yield condition
shown in the Table 8.5. Since éw = 0, mw is reduced to the status of a
reaction and may be eliminated from the twelve equations of the Table
8.5. Geometrically, this operation is regarded as projecting the four-
dimensional region onto the hyperplane m(p = const., thus obtaining a

yield surface in the three-dimensional space consisting of twelve planes
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as illustrated in Fig. 10.2:

It +1
n(p = %
IIi +
: n(p - nx ==*1, (10.13)
* +
III t - N + m, = % 1,
(10.13)
IV-: :-n_-m =4+1,
X X
+
v 2n - n,-m =t 2,
VI :2n -~ n +m = 2.
() X X
Ny
' B
A_A 7
I
//
- n
m X
Py
J -
Mx

Fig. 10.2
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The constancy of n, along the shell means that the entire stress
profile lies on an intersection of the yield surface with the plane

nx = % . Let us assume tentatively that p 2 1; then

1
=< <
> Sn,. s 1 . (10.14)

Finally, for internal pressure, n(p is expected to be positive. Thus the

entire stress profile must be on the face I+,
I : n =1 (10.15)

represented by the segment OA parallel to the m axis (Fig. 10.2).

10.2.2. Limit load solution

Since w = 0 at the yield-point load, eq. (10.12)1 reduces to

——-m; +n -p=20 (10.16)

Substituting (10.15) into (10.16), the equilibrium equation takes

the form

1 [1} —
5o m + 1 p=0 (10.17)

This equation must be solved under the boundary conditions:

mx( 1) = O at the simply supported ends, if diaphragms (10.18)
%
are attached by means of hinged joints ) ’

m; (0) = 0 at the centre. (10.19)
The solution is provided by

mo=alp-1&:-1) . (10.20)

%
) The case of clamped diaphragms is considered in [25], then

mx(il) =1—nx .
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The flow law associated with the yield condition (10.15) gives:
Kk =0 . (10.21)

Differentiating (10.7)3 with respect to time and then substituting
(10.22)

the result into (10.21)3, we obtain

Therefore, the slope is constant in each half of the shell and a hinge

circle develops at the centre x = O. Hence, the centre must be on the

intersections of faces 1" and 1II° (point A in Fig. 10.2)
I+ : n_ =1 ,
()]
(10.23)
111 n_ -m =1
X pe
Substituting n = %-into (10.23), we get
m =E_- for x = 0 (10.24)
x 2 : -

O determine the yield point

The equations (10.24) and (10.20) for x
(10.25)

load
p

Post yield behaviour
Whereas at the yield-point load the stress state is represented by
10.2), the simplest hypothesis regarding

10.2.3.
the points on the segment AO (Fig.
the stress profile during the continuation of the yielding process is

to assume that two zones can be distinguished in the shell:

2 x 2 £ where
(10.26)

1. Boundary zone 1
n_ = const.
X

The stress profile is then represented by a segment A'O' parallel to

the mx axis.
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2. Central zone £ 2 x 2 O where
n =1, nx =const. , n -m =1, (10.27)

The stress profile is represented by a point A' on the segment AB

(Fig. 10.2).

At the yield-point load the central zone is concentrated in the
hinge circle in the middle of cylinder, hence £ = O. As the load in-
creases, the central zone expands and £ - 1. The segment A'O' trans-

lates until point B is reached and the membrane state is attained.

In the boundary zone the fundamental relations are essentially the
same as for the limit load analysis. However, since the boundary zone
does not involve the centre of the shell, the boundary condition for
x =+ 1 can be applied solely to determine the constants of integration.
Therefore, integration of eq. (10.17) with the boundary condition

(10.18) furnishes

m = alp - 1)(x% - 1) + B(E) (x - 1) (10.28)
X(1)

where B(t) is the constant of integration.

Similarly, integrating the eq. (10.22) with respect to time and x,

and making use of the boundary and initial conditions:

w =0 for Xx = *1 ,
(10.29)
w =20 for t=0 ,
we obtain the relations:
w(l) =0 ,
(10.30)
w = A(t) (1 - x)

(1)

where A(t) is the integration constant.
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In the central zone the yield condition(the segment AB in Fig. 10.2)
is given by the set of equations (10.23). The corresponding strain rate

field obtained from the plastic flow law has the form

A =v,20 , A =v,20 , K, = =V, - (10.31)

These relations do not determine uniquely the direction of the

strain rate vector. As the result of (10.31)2 and (10.31)3 we obtain

A o=-x (10.32)

Substitution of (10.7)1 and (10.7)3 differentiated with respect to

time into (10.32) leads to the relation

7! = - _R_ 2 ' Wil i'_"_
%(2) @ iy * 2 - (10.33)
Equation (10.33) with the boundary conditions u(2)(0) = 0 and
u(l)(g) = u(z)(E) constitute a Picard problem for a hyperbolic equation
the solution of which is
£ x
uo=u (6) + (1= Rwr ramwt o (yam) + 5 n (et (y,m ldydn .
(2) (1) a  (2) (2) o X (2)

Xo (10.34)

From the equilibrium condition (10.9)1 and the yield condition

(10.27)3 it follows that

m" =0 (10.35)

in the central zone.

Making use of (10.35) and the yield condition (10.27)1 in the

equilibrium equation (10.12)1, we obtain

‘

1 R2 .
1 5 (L) pw P

(10.36)

il
o]

Integrating this equation twice with respect to x and making use

of the boundary conditions:
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(0) =w ’ w'(z) (0)

Y(2) o

=O'

(10.37)

we obtain the following relation for the deflection in the central

zone of the shell:

L2 -p)x?

w = ( + w

(2) R p °

-

(10.38)

The relation (10.38) indicates that the generator of shell has, in

the deformed state, the shape of a parabola. The bending moment m

(2)

in the central zone is determined by the yield condition (10.27)3.

Now, let us summarize the obtained results. The deflection and

generalized stress fields are determined by the following set of equa-

tions:
Y1) = A(t) (1 - x)
_ (L2 (d-p) 2
w(z) = (R) D X" 4+ w
2
m =o(p - 1)(x~ - 1) + B(t)(x - 1)
X
(1)
_B_,
X(2) 2
- - P
Oy =32 ¢
=1
&)

for

for

for

for

v

v

v

v

(10.39)

In order to solve the problem, four quantities A(t), B(t), LA £ must

be determined in terms of p and x. To this end we use the continuity

conditions for x = &:

w =W

(1) =Yy 0 Yy T Y My

’ m

The resulting equations have the form:

ml
*(1)

X(2)
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!

_ oy2 (p-1) -
w = 2(3) 5 E(1 - x)

w _ (_1._)2 (1 -p) (x2

2
2 = G S 26 + %),

alp - DIx% -1 - 28(x - D],

X(1)
=R _

m = ’

x(2) 2

(10.40)
= 2

Ny =2

n =1,

©

= _e/__2-p - 1
& =1 VZa(p-l) or p=l+T 5092

2 [p(1+2a) -2(1+a)]
2ap

L
o (E)

Setting W, = O in eq. (10.40)8 we clearly return to the relation
(10.25) obtained as the solution of limit load problem. In view of
relation (10.40)5, increase of load p is accompanied by an increase of ‘

the axial force n_. The membrane state is reached when
n =n_ =1 ’ m =0 . (10.41)

The stress profile reduces then to the point B in Fig. 10.2. Making
use of (20.41) in (10.40), we obtain

20-%% ., £=1 (10.42)

1 L
p=2 , w= 5‘(§0
for which the membrane state is reached in the shell. The way in which
the shell deforms at successive stages of plastic deformation until the
membrane state is reached for £ = 1 is shown in Fig. 10.3, illustrating
the equations (10.40%, and (10.40)2 for (%?2 = 0,! and h = %?—= 0,02.

As it follows from Fig. 10.3 the membrane state is reached when the
deflection w0 at the centre is 2,5 times greater than the shell thick-

ness. In the case of longer shells, the attainment of membrane state
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is accompanied by a plastic deflection considerably greater. Then, the
accuracy of the geometric relations and the equilibrium equations assumed
in the present theory becomes insufficient and the theory of quasi-
shallow shells at large defelctions has to be applied. The correct form
of simplified geometrical relations is shown in the line 2c of Table

5.1 and proper equilibrium relations are derived in the chapter 7,

eqs (7.17) - (7.18).

In such a formulation the considered problem was solved by M. Mitow
and M. Duszek [41]. The procedure was analogous to the presented above,
and therefore only the load - deflection relations are plotted in Fig.
10.4. by broken lines. For the sake of comparison, the resulting load-
deflection relations given by Eqg. (10.40)8 are shown in the same figure

by solid lines.

The difference between the deflections W obtained above according
to the theory of shallow shells at moderately large deflections and
obtained in [41] according to the theory of quasi-shallow shells at
large deflections are roughly 5 % for %% = 0,1 and roughly 15 % for

.2
R_2 = 0,4.
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10.2.4. Membrane solution

By substituting m = O and n, = nm = 1 into the equilibrium equation
(10.9)2 we obtain the relation between the load and the second derivative

of the deflection at the assumption of the membrane state,
L
W= %0 - p) . (10.43)

Integrating this equation twice with respect to x and making use
of the boundary conditions w(*1) = O, w'(0) = O in order to determine the
integration constants, we obtain the following relation between the

load p and the deflection W, in the membrane state
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p=1+ 2(%)2wo . (10.44)

The membrane solutions (10.44) are shown in Fig. 10.4 by the straight

lines.

10.3. Cylindrical shell, approximate elastic-plastic solution

A solution of the elastic-plastic shell problem, in general, involves
several different regimes and the determination of the regime boundaries
and the integration constants becomes very complicated. Therefore, the
solution can be obtained using either numerical techniques or approxi-

mate approach.

Here, we shall limit ourselves to a discussion of an approximate
solution of the elastic-plastic cylindrical shell problem, suggested

by Paul and Hodge [45].

To this end we make use of the solution of the corresponding rigid-

plastic problem.

The elastic relations between generalized stresses and generalized

strains are easily computed from the Hooke's law, the results being:

o
e__©° _

Ax =3 (nx vnw) '

e 0o

Aw= z (ntp - vnx) ’ (10.45)
Ke = i(.)g (1 - 2)

X 4E v mx

The elastic changes in the shape of the shell are assumed to be
sufficiently small so that the stress profile at the yield point load
'is the same as for the rigid plastic shell. Therefore, for the example of
cylindrical shell considered in the Sec. 10.2, in view of (10.15), the
plastic rate of curvature ﬁi is equal zero. Thus, making use of the assump-
tion of additive decomposition of the total strain into elastic and plastic

parts and (10.45)3 in (10.7)3 we get

w' = =2a(k€ + «P) =’20K§ = - == (f-v Yam, .
X X (10.46)
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Substitution of eq. (10.46) and nLp = +1 into the equilibrium equation

(10.12)1 leads to

" 2 _ _
mx + B mX = 2a(p 1) (10.47)
where
2 3p 06 2. R 22
B =5 E (1 - v )(f) o . (10.48)

Integrating the eq. (10.47) with respect to x and making use of the

boundary conditions (10.18) and .(10.19), we obtain

_ 2a(1-p) (Sos Bx T (10.49)

m =
X B2 cos B

Finally, the condition of plastic state at the centre of the shell

- - - - P
mx(O) = -1 +nx = -1 + 5 (10.50)

enables to determine the elastic collapse load Pg as

- 82 cos B
Pg ~ 1+ B2cos B + 4a (1 - cos B) (10.51)

Equation (10.51) is an implicit representation since B, defined by eq.

(10.48) , depends on p.

Fig. 10.5, taken from the paper [45], shows the collapse load as a

function of a parameter

o
_1-v¢ R 2 0
c = (L) ) (10.52)

for various values of a.

The solution (10.51) is not an exact one, since the flow law is not
ensured to be satisfied. However, as it was shown in [45], at least for
3
short shells (a < 7} ) the load P determined by eq. (10.51) is the exact

load for which the displacements become infinite.
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10.4. Shallow spherical shells, rigid-plastic solution

As the next example let us consider a shallow spherical cap loaded
by a uniformly distributed internal dead load P (Fig. 10.6). The pres-

sented solution was obtained by M. Duszek [26]

2H
r
LF — . e -
-l 1 R e P\' ur

iZ

Fig. 10.6

The shell of radius A and constant thickness 2H is made of rigid,
perfectly plastic material, obeying the Tresca yield condition and the
associated flow rule. The cross-section of the shell is assumed to be
uniform. The problem is formulated in the spherical coordinate system

(9, 8, B). For further convenience we introduce the following dimemsion-

less quantities:
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N$ Ng M$ Mg
n = — ’ n = — ’ m = — ’ m = w— ’ (10.53)
© N 6 N © M 6 M
\" M R
v - _® - o - =1
w=2 R uLp =2 ' h = ANO ' c = sina = A ! (10.54)
: _R _ - HK® _ PA
r = sinQ = 2 ! Kw = HK R Ke = HKe :, P = N (10.55)

whose meaning is evident from Fig. 10.6.

It will be shown that, within the framework of the theory of shallow
shells at moderately large deflections, the transition from the yield
point load state to purely membrane state is possible. Employing the
geometrical relations listed in Table 5.1, case 1.b for the rotationally

symretric deformation of a spherical shell, we obtain

Aw = u¢ - w + %—(w')2 ’ Ae = Qpcth)— w o,

(10.56)

=-hw' ctg @

—_ n
ﬂp- hw ’ Ke

where prime indicates differentiation with respect to the variable @.

Transforming Eqs. (10.56), expressed in terms of the components
w, u_ of the displacement vector in the spherical coordinate system,
into the cylindrical coordinate system (z, r, 8), and neglecting terms
of the order of magnitude higher than 82, the strain-displacement

relations take the form:

1 2 ur
=1u' ' = ' = —
Aw =uy + wzr + 2 (wz) ’ Ae el
(10.57)
= —hw" __h
Kw—- hwz ' Ke— - wz .

Now prime indicates differentiation with respect to the radius.
d d
Since for shallow shells cos¢ & 1, we eventually have 56 = ar - The

differentiation of (10.57) with respect to time provides the following

expressions for the strain rates:



- 77 -

u
A =u' + w'r+ww' , A= —=
® r z 6 r
(10.58)
o s on > ,__E'l
K ---hwZ ’ Ke-— T wz .

The equations of equilibrium (7.10), (7.11) obtained by means of
the principle of virtual work take, for the considered case of shallow

spherical cap, the form (cf. [261),

(rnw)' - ng = o . (10.59)

h[(rmw) - m I’ +[rn@(r +w)]' +rp=o0. (10.60)

The general form of the Tresca yield condition for uniform shells
was derived (after Onat and Prager) in chapter 8. In terms of three
parameters El’ 52, £3 defined by Egs (8.53) it is presented in Tables
8.2 and 8.3. The yield surface for ne = 0 is visualized in Fig. 8.6.

Now, let us consider a spherical cap with simply supported.edge re-
stricted from any motion, and subjected to the dead load uniformly

distributed over the plane (Fig. 10.6).

We assume that, at the yield point load, the membrane state is
reached at the centre of the shell. Next, we suppose that the membrane
zone propagates in the course of plastic deformations to cover a certain
zone with radius z. Therefore, it is reasonable to suppose that (simi-

larly to the cylindrical shell) two zones can be distinguished:

I. Central zone O £ r £ Z.

According to the introduced assumption the membrane state in the

central zone is specified by
n =n, =1 ’ m =m, =0 . (10f61)

Substituting (10.61) into the equation of equilibrium (10.60), we

obtain

(r? + rw!)' +rp =0 . (10.62)
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After integration and calculation of the integration constants from the
boundary conditions: wz(O) = wo, w;(o) = O; the following formula for

the shell deflection in the central zone is obtained

2

= - P
W, = - (L5 + g (10.63)

II. Boundary zone Z < r < c.

The plastic stress state in the boundary zone is supposed to be
represented by the yield hypersurface H;(Fig.8.6) described, according to the
Table 8.3, by the equation

n, -m, =1. (10.64)

The range of validity of this hypothesis will be discussed later.

The associated strain-rate vector is

A =0 , A.=2vn. , k. =0 , R,=-v . (10.65)

w" = O R

z

a' +w'r +ww =0 , (10.66)
r 4 zZ z

a = 2 8.

ur ne h wz

The relations (10.64) and (10.66) furnish a system of four equations
in the four unknowns: Wor U, ng and me. This system has an elementary
solution. Using the boundary conditions: ‘

w =0 , u =0 for r = ¢ , (10.67)

w'l=0 , ul=o0 for r (10.68)
z r

I
N
-
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and the initial conditions:

W =u_ =20 for t = 0O (10.69

the solution is found to be

wo= (1 4+ %)(c -z, (10.70)
u =% 1 +Br-za+H1-2L 0+ Ble-za + B, o
ng = % [% (2 -2 ¥ z(x -1 + %)] , ‘ (10.72)
mg = :ﬁll— [% (¢ - x%) + z2(x - ) (1 + %)]2 -1 . (10.73)

The remaining functions n(p and mw can be determined from the equilibrium
equations. Therefore, substituting (10.70), (10.72) and (10.73) into
(10.59) and (10.60), integrating and making use of continuity conditions

m]=0 , nl]=0 for r = z , (10.74)

we obtain:

1 2 c? P r
ncp"2h[6_2+(1+2)(°'3)21+
2 2
2zt _ L P _z z
+2hr[ 3 5+ (1 + 3 ) (c 2)z]+r , (10.75)
_ 7 4 7 3 P
Mo = Z2a0nZ° asnZ ¥ (1 +3) +

2 2
+{—6%7(1+%)2+%2-[c2(1+%) -%—]—%}r2+

2 2
2- _c” b _Z
c + (1 +3)( 2)z]+

(32 -l
2h ~ 4h 2

Zc P yr_ B c
+ o5 (1 + 5 y[-z(1 + 5 ) + 2] }r +
| - (10.76)
z? P z? p .22 2 )3 z
+ {7T (1 + ) ) + 355'(1 + 3 )[75-- 5>+ (1 + 5 ) (¢ > yz] +



2
=i p €q2.
+ anak z(1 +5) + 351 1} +
+{.Z..’:[..1__.i.(1+£)+L(1+E)2]_
h 80 16 2 12 2
- EEE.[_L.+ L 1 +By)- [Ei -2 1+ B2, 11 2
h “12 " 2p 2 4h ~ 2h 2 r °

To find the complete solution, we have to determine the deflection
in the centre of the shell Wy and the radius of the membrane zone Z.

Making use of the continuity and boundary conditions

wz] =0 for r = z , (10.77)

m =0 for r (10.78)

©

]
Q

we finally obtain:
= b _z
W, (1 + 5 ) (c 2 Yz |, (10.79)

where Z being the function of p is determined by the following equation

7 4 7 3 P
sgonz © " agnz ettt
+ {iéi (1 + E-)2 . [cz(1 + By - EE-]— Byc?y
6h2 2 4h2 2 2 6éh
2 2
S S (S - )22 -2
+{2h mz L g >+ (L + 35 5z ]+

Zc Ryr- e <
+2h2(1+2)[2(1+2)+2]}c+

(10.80)

z2 P z? p 22 2 P z
+{'TT (1 + 5 )y + nZ (1 + 5 )[7;-— 5+ (1 + 3 y(c - 5-)2] +

c? p Cq2
+-‘E_[-Z(1+2)+5] -1} +

(Zipl L 2, , L P2y _
Hgglgg 16 W +3) + 13 37
_2_22.[_1__,_.}_(1.'_.2)]_[C_z._c_z(1+2)]2+1}£_0

h 12 2p 2 4h 2h 2 c -
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An illustration of the above solution for two particular cases of

the shells is shown in Fig. 10.7 by solid line.

o

-0.02

Fig. 10.7

A purely membrane solution, readily available from the equation

of equilibrium (10.60), provides the following load-deflection relation

2w
p_ = 2( -2 _ 1) . (10.81)

m c2

This solution is visualized in Fig. 10.7 as straight, broken lines.

The results plotted clearly show a gradual transition from a bending
to the membrane state where purely membrane state is reached asympto-
tically for w » «». However, it should be remembered that the solution
for shallow caps represented by the solid line is valid for deflections
of the order of magnitude of shell thickness. For larger deflections, both
equilibrium equations and geometrical relations become insufficiently
accurate and therefore suitable strain-displacement relations from the

Tabel 5.1 should be applied.
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The propagation of the membrane zone as a function of the deflection

wo = wo(z), computed from (10.79) and (10.80), is shown in Fig. 10.8

5@*

10

c =01 h=0.005

08
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0.2

c=02 h=001

]

0 0002 001 002 Wo

Fig.10.8

The magnitude of yield-point load can be computed from (10.80) by
putting Z = O. The result is found to be

P  H o (10.82)
pO_ EZ' ’ h . -

Equation (10.72), (10.73), (10.75) and (10.76) show that the values
of generalized stresses on the edge r = c are ne = 0, m9 =-lm =0,
n(p ¥ 0. This stress field exceeds the limit hypersurface of Fig. 8.6.
Therefore, the obtained formulae provide only an upper estimate of the
complete solution at the instant of yielding and an approximate solution
for advanced plastic deformations. This solution can be, however, treated
as an exact one for a suitably altered yield surface, for example a

small outward parallel shifting of hypersurfaces ut and p; satisfies
this requirement.
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The complete solution would involve additional zones corresponding

to the relevant equations of the yield surfaces. However, such attempts

cannot be more promising than the attempts to find the closed complete

solution to the limit analysis problem, where the exact solution is

still unknown.

Assuming ¢ -+ O and Ac > R1 a limit transition to the plate with the

radius R, is obtained. In the notation used in [46]

1

PR1 Wo

= 60 H2 ! 2H ! &
(o]

4
q =z (10.83)

(10.79) and (10.80) in the limiting case yield (Fig. 10.9, solid

line)

3

6=’§'q€(1—5) I

4

. : (10.84)
2 %e2 e - 3% 436 - 1) +q-2e 4387 -1 -1 +E =0 .
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The membrane solution for the plate can be obtained from (10.84)1 by

putting £ = 1. The result is (Fig. 10.9, straight line).
q = g-é . (10.85)

The broken line in Fig. 10.9 corresponds to the solution for circular

plates at moderately large deflections obtained by U. Lepik [46].

The curves in Fig. 10.8 indicate that the central membrane zone
propagates very rapidly as deflections increase. The thinner the shell
the faster the membrane zone propagates. Ath = 0.01 and h = 0.005 for
deflections equal to the shell thickness, the central zone extends over
the major part of the shell, z = 0.90c i. e. only a narrow region adja-
cent to the support is subjected to bending. The plot of the limit load
versus the deflection LS tends asymptotically to the membrane solution,
as it was shown in Fig. 10.7.For the shell deflections equal to the wall
thickness, the difference between the present solution p and the membrane
solution P, amounts approximately to one per cent as far as the value
of the load-carrying capacity is concerned. Hence it can be concluded
that the pure membrane state in the shell is practically reached at de-

flections of the order of the wall thickness.

10.5. Concluding remarks

The solutions presented in this chapter confirm the results known
from literature [25], [39 - 411, [46 - 49], obtained when analysing

plastic shells and plates at large deflections.

A general conclusion can now be drawn that the changes in geometry
constitute an essential factor governing the response of structures
within a plastic regime leading to the so called "geometrical streng-
thening". The opposite situation can also arise when the effect of
"weakening" may be noticed [49]. Similarly as for plates [48] "unstable"

load-deflection relations are then obtained.

In both cases, however, accounting for the deformed shape of a
rigid-perfectly structure yields the load values differing significantly

from the classical limit analysis solutions.
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