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SUMMARY

Starting from the formulation of the initial boundary value problem

and the rate boundary value problem for elasto-plastic bodies at finite
displacements and small deformations by means of the first Piola stress
tensor a couple of minimum principles are derived. The necessary restric-
tive aséumptions for constitutive relations, e.g. additivity of plastic
and elastic part of deformation and description of plastic behaviour

by means of the first Piola stress tensor are discussed in extension.
in the application of the derived principles to plate problems the
possibility of approximate description of arbitrary nonlinear stress
distribution over the thickness of the plate was a matter of special
interest. Several examples illustrate the numerical application of

the derived methods. Range of technical application could be those
elasto-plastic plate problems to which load history is known but no
predictions about development of stress distribution (namely propor-
tional development) can be made. Extension to shell problems seems to

be possible with high evidence.

Efficiency and practicability of the developped methods with view on
technical application depends in how far the existing computer pro-
gramms, up to now only valid for simple special cases, will be deve-

lopped.

ZUSAMMENFASSUNG

Ausgehend von der Formulierung des Anfangsrandwertproblems und des
Zuwachsrandwertproblems fir elasto-plastische K&rper bei endlichen
Verschiebungen und kleinen Deformationen unter Benutzung des ersten
Piola'schen Spannungstensors werden mehrere Minimalprinzipe herge-
leitet. Die notwendigen Annahmen fiir die konstitutiven Beziehungen
wie zum Beispiel die Additivitdt der plastischen und elastischen An-
teile der Deformation sowie die Beschreibung des plastischen Ver-
haltens mittels des ersten Piola'schen Spannungstensors werden aus-
fihrlich diskutiert. Bei der Anwendung der hergeleiteten Prinzipe auf
Plattenprobleme war die Mdglichkeit der approximativen Beschreibung
beliebig nichtlinearer Spannungsverteilungen iiber den Querschnitt der
Platte von besonderem Interesse. Mehrere Beispiele illustrieren die

numerische Anwendung der hergeleiteten Methoden. Technischer Anwendungs-



bereich kénnten jene Plattenprobleme sein, bei denen die Belastungs-
geschichte bekannt ist aber keine Voraussagen iber die Spannungsent-
wicklung (insbesondere proportionale Spannungsentwicklung) mdglich
sind. Die Ausweitung auf Schalenprobleme scheint mit hoher Wahr-

scheinlichkeit m&glich zu sein.

Effizienz und Praktikabilitdt der hergeleiteten Methoden im Hinblick
auf technische Anwendungen hdngen davon ab, in wie weit die bestehen-
den Rechenprogramme, bis jetzt nur glltig fir einfache Spezialfélle,

weiterentwickelt werden.
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NOTATION

Throughout the entire work we refer to fixed cartesian coordinates
using small and captial letters to distinguish between inital and de-
formed configuration resp.. Latin indices take the values 1,2,3, greek
indices the values 1,2. We use index notation and, for brevity, symbo-

lic notation parallely. Then the following expressions are equivalent:

()5 () = (D h (el 2 (D ()

(.) denote the measures of considered tensors.

ig ' (')IJ

We have to distinguish throughout the entire work between locally
defined vectors and tensors and vector- and tensorfields as well as be-
tween locally and globally defined potentials. As those quantities
are explicitly defined in each chapter we use for locally and globally
defined vectors and tensors the same symbol. Locally and globally de-

fined potentials are denoted by small and capital letters respectively.

In the rate problem lower index (.)o denotes quantities which refer
to reference state, denoted by (.)O. Upper index (.)o denotes elastic
part of the quantity under consideration. Lower index (.)s is applied

if only symmetric part of a tensor of second degree is used: (@) =)
2 %-(aij + aji)' Two-dimensional representations of three-dimensional

quantities are denoted by capital letters; upper index (.)P denotes
herein the order of defined representative according to (3.1). For
rate quantities we use three symbols: (.) ,(%), &8(.), which mean
derivation with respect to time ji—, finite difference of two neigh-

9T
boured configurations and infinitesimal increment respectively. In

application to infinitesimal rate problem (:) and §(.) are equivalent.

We introduce first Piola stress tensor L £ tiJ and second Piola-

Kirchhoff stress tensors g = OIJ as stress measures. As strain measures

serve deformationgradient F = FiJ' displacement gradient Grad Ejéui 3
4

=F,_ - 6,_ and Green's strain tensor € £ €__. Derivations with respect
igd ig ~ 1J

to coordinates of the undeformed reference system are denoted by (.) K’
’

where index K gives the direction of coordinates. We introduce symbols

of differentiation Divg;) = (.) Grad(.) =

Wi,a

If we consider only infinitesimal deformations, deformed and unde-

formed reference system coincide and we use the symbols g = Gij and

E = Eij as stress and strain measure respectively.



1. INTRODUCTION

Aim of the work and general assumptions

In this work extremum- and stationarity principles for the solution
of the initial boundary value problem and the rate boundary value pro-
blem of elastic-plastic bodies are investigated in general and in
application to plate problems. We restrict our considerations in many

aspects:

- Only quasistatic processes are regarded with external forces which

can be derived from potentials ("dead loads").

- All deformations are assumed to be so small that plastic and elastic
parts of deformation are additive. This allows to consider plates
with moderate rotations. However, when we discuss the rate boundary
value problem we assume only additivity of elastic and plastic part

of strain-rate (2.6.30-53), (3.4).

- In chapter (2.1.6) we shall assume that small plastic deformations
are superimposed on finite elastic deformations. Though usually, e.g.
in metal forming, limit-load-analysis [6-8], theory of stability of
plastic structures [9,10], elastic part of strain is assumed to be
neglectible with respect to plastic part, our approach is useful
for example if plates and shells perform large elastic deformations

before plastification starts.

~ We deal with adiabatic and isothermal processes [1], though plastic
dissipation causes always change of temperature and theory needs for
consistency a derivation of constitutive relations from thermodynamics
[14-15,17,20]. The influence of external change of temperature [11,12]

[20] is neglected in our approach also.

- We deal with "phenomenological plasticity". Though plastic behaviour

is a microscopic phenomena, we assume media to be continuous.

- We assume in the entire work isotropical and time-independent material
behaviour, though by introduction of internal parameters according
to [21] the relations in chapters (2.8, 3.2) could be extended to
viscous material behaviour. In chapters (2.1-4, 2.7 -8,3.3) we
assume elasto-idealplastic material behaviour with convex region of
admissible stress and validity of normality-rule. In (2.3 -4) we

discuss the differences in using the first Piola or second Piola-



Kirchhoff-stress tensor. In chapters (2.8,3.2), where we deal with
the theory of infinitesimal deformations [ 39] linear hardening
materiél behaviour is assumed, described by generalized stress and
strain measures [21]. - In chapﬁers (2.5-2.6) and (3.4) dealing
with the rate problem according to [53 - 54] we use a material law
given by [25] describing a broad class of hardening material be-

haviour by three parameters.

Some geometrical considerations

Always if finite displacements are considered where the history of
deformation during the loading-process has to be taken into account,
the question which stress and strain measure, connected with the
question of chosen reference-configuration is essential. On one hand
material properties have local nature, so that description by use of
Cauchy-stress tensor in Eulerian coordinates [22 - 23] and Almansi-
strain tensor is rather obvious. On the other hand equations of motion,
here degenerated to statical equilibrium conditions can only be re-
lated to a fixed system of coordinates. From this follows that either
equilibrium conditions or constitutive relations are submitted to
coordinate transformations if we want a unified description. In this
work attention is focussed on the solution of the boundary value
problem where only the bounds of the initial configuration are exactly
known. At best in case of the rate boundary value problem it may be
assumed that the bounds of the reference-configuration are known. Here
we refer all quantities to the initial configuration as the formulation
of the problem then becomes relatively easy. If more than that we use
first Piola stress tensor and displacementgradient as measures for
stress and strain then the problem becomes accessible to functional-
analytic considerations as there exists a linear differential relation
between displacements and deformations [88]. However then we need very
restrictive assumptions in formulating constitutive relations: We assume
not only convexity/strict 9onvexity of elastic strain energy density
(2.1-4,2.8) but also convexity of the region of admissible stresses
and validity of normality rule, expressed by the first Piola stress
tensor. As we restrict our considerations to small strains these

assumption are justified.



Splitting of deformation into elastic and plastic part is especially
for finite strains subject of continuous discussion [24]. Whilst in
[14 - 16] Green's strain tensor is additively splitted into a purely
plastic and a not purely elastic part, in [13, 18] a multiplicative
decomposition of deformationgradient into purely elastic and purely
plastic parts is proposed, where the second describes an unloaded
intermediate configuration, determined only up to an unknown rigid
rotation of the considered material element [18]. In [17,20] three
strain measures are derived from the comparison of the metrics of
the considered configurations. This way Green's strain tensor, Almansi's
strain tensor and the " natural " (logarithmic) strain tensor can be

derived.

Variational methods

Our comparably simple representation of material behaviour can only
be appreciated in connection with formulation and solution of the
boundary value problem. Previous propositions for the solution of the
initial boundary value problem where restricted (besides incremental
methods, which will be discussed in the following) to the special
case of proportionally loaded bodies [2,3]. In [4] variational methods
on the basis of deformation theory, comparable to nonlinear elasticity
[1]1, for the initial boundary value problem are given and applied in
[76] to plates. This method, however, lacks consistency for non-
proportional developing stresses which may occur also for proportionally

increasing external loads. Anyways this method is of practical importance.

A considerable progress in the development of solution techniques
was achieved by application of convex analysis [32,89] to elastic-
plastic problems [33 -44]. when beforehand inequalities in yield-
condition and derivation with respect to time in the flow-law could
only be governed for arbitrary loading processes by incremental
methods, now, briefly speaking by considering the four-dimensional
space-time continuum, the replacement of Legendre-transformation by
Fenchel-transformation and by a suitable transition from local to
global functionalanalytic formulation we may consider the initial
boundary value problem to be solved at least for a restricted class
of problems assuming infinitesimal deformations [41]: In linear theory

of elasticity duality of spaces of stresses and strains by the inner



product induced by energy-norm is well known. Legendre transformation
is in this case the equivalent representation of Hooke's law. Replacing
Legendre-transformation by Fenchel-transformation plastic flow-law

and yield-condition are described equivalently [35 -42]. For the first
time in [39] the general initial boundary value problem for infinitesi-
mal deformations for elasto-plastic bodies had been solved. This con-
cept was extended in [40] by introduction of internal parameters accor-
ding to [21] to linear hardening, linear viscous material behaviour.

In this paper we try for the first time to extend this concept to finite
deformations in chapter (2.8). In (3.3) we deal with the rate-problem
of the plate according to the von Karman theory in a similar way. An
application to the rate-problem at infinitesimal deformations has been
given in [79]. Here accordingly we treat the initial-value problem of
the plate for the first time in (3.2) and give numerical illustrations

in (4.1,4.2).

The incremental approach

In spite of the genuine difficulties of incremental methods (see
(2.7)) these are broadly and successfully used [56 - 59,61 -63,66]. In
[47 ~ 49] mixed functionals for the rate problem analogous to Reissner's
variational functional in elasticity [50] assuming a stationary value
for the solution are formulated, using material law according to [25].
Besides, duality of functionals expressed only by stresses and only
by strains are mentioned however without discussion of the conditions
for extremum properties (see 2.5-6, 3.4). In[55] variational functio-
nals are derived systematically from a generalized functional and their
applicability to finite element methods is discussed. In [53 - 54]
starting from the theory of adjoint operators a very general and complete
derivation of stationarity and extremum principles is given which we
use in (2.6,3.4) to formulate variational functionals for the von

Karmén plate applied in (4.3) to two illustrative numerical examples.

Plates

In opposition to elastic plates, for elasto-plastic plates no one-
to-one correspondence between strains and stresses exists and for arbi-
trary load history even under assumption of the Kirchhoff-Love hypothesis

the shape of stress-distribution over the crossection of the plate cannot



be predicted. This problem can be tackled in several ways:

In [49,80] the plate is devided into sheets and to each of them a plane
stress-state is attributed. In [81] Prager's normality-rule is used to
describe also hardening material behaviour in terms of moments and mem-
brane forces. However this proceeding is bound to proportional increasing
inner forces and moments; unloading states are not allowed for [81].
Similarly in [77] a linear approximation of yield-condition expressed
in moments and membrane forces is introduced assuming that beyond the
yield-limit the plate is fully plastified. Whereas in [81] variational
methods with subsidary conditions are used for the construction of the
solution, in [77] a method of finite differences is proposed. In [75]
starting from the Kirchhoff-Love hypothesis constitutive relations for
plates are formulated by introduction of rates of plastic curvature

and membrane strains and additional plastic parameters depending on the
coordinate orthogonal to the midspan of the plate. This description is
shown to be compatible with the concept of "generalized standard
material” [21]., In [78] a variational functional based on equilibrium
finite elements and description of material behaviour only by moments
is applied to the calculation of plate bending. In [29,30] the surfaces
seperating elastic and plastic regions of shells are determined by a
free parameter measuring their distance to the midsurface and the
unknown shape of stress-distribution over the crossection of the shell

is approximated by polynomical test-functions.

We discuss in (3.1) several possibilities of representation of stress-
and strain distribution over the crossection of the plate in view of
compability between two-dimensional representation with general three-
dimensional theory. In (3.2,3.3) we chose polynomial, in (3.4) sheet-
modell approach. Whereas in (3.2,3.3) the Kirchhoff-Love hypothesis
is not used as constraint inthe sense of [70,71] for the derivation
of the important conditions of statical admissibility, it has been
imposed in (3.4). However this choice is arbitrary and the derived
relations can be modified immediately by change of adjoint compatible

strain fields.

By this introduction of two-dimensional representatives for three-
dimensional fields and functional analytic considerations (2.7), we
derive in (3.2) a minimum principle for residual stresses in geometri-

cally linear plates for arbitrary load-history, numerically applied in



(4.1-2). - A first application of the methods developped in (2.1 -2.5)
for finite deformation is given in (3.3) by the formulation of the

rate problem for the von Karméan plate theory.

Outlook

The solution of the initial boundary value problem for more general
assumption seems to be of special interest for future works. Especially
hindering are the assumptions of convexity of the chosen potentials
in (2.1 -2.4) and assumption of independance of plastic and elastic
part of deformation from each other. In numerical application a large
field is open for coming works: Choice of test-functions of higher
order for stress-representatives defined in (3.2), consideration of
linear hardening, extension to viscous and nonlinear hardening material
behaviour are examples for future developments. An application of
finite-element technique could render the herein derived methods attrac-

tive to technical application.



2. THE THREEDIMENSIONAL BOUNDARY VALUE PROBLEM

As we established in the introduction we use the Lagrangean descrip-
tion of the problem referring all quantities to the initial state of

the considered body.

X3 ]Xs

<
T
A\ |

D

initial state reference state neighbour state

fig. 1

Herein V denotes volume, Bs and B, the parts of surface where statical

k
and kinematical conditions resp. are prescribed, n denotes outer normal
vector, B and £ prescribed volume- and surface forces resp., 5* prescribed
surfacedisplacements. u(x) is the displacementvector of an arbitrary
poeint in V from reference - to neighbour configuration, (7) denotes incre-
ments of quantities from reference - to neighbour state, not necessarily

infinitesimal.

Even if changes of field quantities from reference state to neighbour
state are finite, differential equations of equilibrium - and compatibili-
ty - condition are linear. We obtain the following descriptions of the

problem:



i) The initial boundary value problem as transition from initial state

to actual (neighbour) state.

A “~

Div '/,'{*t)+(,é+b) = 0 in v
a p (2.0.1)

p-(L+£) ’ff*f? =0 on B_

g'*g? - ?’D’/(£4‘£;) =0 inv
4 » A (2.0.2)

W+ L-u = W =0 on B
(2.0.3)

Constitutive relations, describing material behaviour
in the transition from initial to actual state
where t denotes the first Piola stress tensor and g

denotes displacementgradient.

Only for hyperelastic behaviour, i. e. if there exists some potential
wQE) allowing a one-to-one correspondence of stress and strain measure
of actual state independant of history of load with

D ¥it)

< = ’—5?:* , (2.0.4)
a direct solution of the initial boundary value problem is possible. For
special load-histories (proportional loading) [1,4] we can find a poten-
tial E even if a general potential Y (t) independant of load history does
not exist. Deformation theory, almost similar to‘theory of physically

nonlinear elasticity [1], is based on the assumption of such potentials

~

V.

In case of general loading however this method fails, such that nor-
mally an incremental formulation of the problem is used in order to con-
struct an approximate'solution of the initial boundary value problem
by a sequence of solution of the rate boundary value problem. For the
formulation of the rate boundary value problem one assumes that all
quantities determining the (mechanical) reference state are exactly known.

This leads to the

ii) Rate boundary value problem as transition from reference state to
actual state.

= O in Vv
(2.0.5)

on B
= ) s



A A
od- Grad 4 =0
(2.0.6)
A A ¥
&f - A = O
(2.0.7)

Constitutive relations describing material behaviour
in the transition from reference to actual state.

Instead of t and d4 we may also use g and g to formulate relations

(2.0.5-7). With

allowing for

+OO>DeL‘f > O

to assure that only deformations are taken into account which lead
to positive volume of every subregion of the considered body after

deformation, characterized by u.

- Using

t=r.¢ ; f =f-§+f-é +f}~é (2.0.8)
and

26=F F-1 . 25:1;.: + FTF +f,-r,[:' (2.0.9)

we obtain instead of (2.0.5.-7)

A A A A A
Divt = Div (f§+f§ +f.§) = ",é in vV
(2.0.10
f A /\ A A A
0.t = n.(F.G *£.G+F.G) = .2,[ on B
(2.0.11)
Q - ,‘:."* on Bk

constitutive relations (2.0.12)
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If we focus on infinitesimal neighbourhoods of reference state, we
replace (°) as arbitrary difference-state by first variation §(.),
and we obtain a linearized form of differentialequations. This means
that effects of higher order are neglected such that relations (2.0.13-

14) are valid only in the infinitesimal neighbourhood of ( )o.

Div (dF.6 +F.dG) + b =0 in v
(2.0.13)

n(dFG +£.I6) - df =0 on B,

JE - (jff J!?Js =0 in v
(2.0.14)

dJu - Ju” =0 on B,

2.1.Elastic behaviour

Assuming the existence of a lower semicontinuous convex elastic
strain energy density w(sf), bounded from below, the second Piola-
Kirchhoff stress tensor g € S R6 is an element of the subgradient

of ¥ (e

G e aw?(ge) (2.1.1)

~

So polar energy density w*qi) is defined by

V*(G) = sup [G..£%5- F(£Y] (2.1.2)
p |

~

6

if bilinear form g’..ge is used which puts spaces S € R~ and E® c R6

of stresses ¢ and elastic strains Ee into duality. @*(g) is convex
and bounded from below [33]. For differentiable Wgse) the Fenchel-

transformation (2.1.2) reduced to Legendre-transformation:

~

V(e + PC) =G.. £° (2.1.3)

Equivalently holds:



~ ~
PRI 5e=w (2.1.4)
dec 7 - 20
Assuming invariance of $g5e) with respect to change of coordinate system

we define:

Y(g®) = ¥ (2.1.5)

The assumption of existence of elastic strain energy density fb'(ge)
independant from plastic deformations is very restrictive: If the Green
strain g is described to be composed from elastic and plastic part of

displacement-gradient d, we obtain:

e e e e
25M3 (/(M'J + uJ,H + u'?,,] (,(?’ = c/JH +o/HJ + dgy déh + 2.1.6)
r P P P e P r e o
Lo * M7 * O@b‘j;n * aﬁw QZH * ;loin

Uncoupling of elastic and plastic part needs the additional assumption
that either elastic or plastic deformations are comparatively small so
that quadratic and coupled terms can be neglected. Whereas in metal
forming for example the assumption of infinitesimal elastic and finite
plastic displacements is usual, we assume that infinitesimal plastic
deformations are superimposed on moderately finite elastic displace-
ments. This assumption is specially reasonable if we consider thin-
walled structures which may undergo finite elastic deformations before

plastic deformation occurs.

Using bilinear form gé .. t we may now define polar elastic energy

density w*(E):
v (t) = 2. o - V(Y _ (2.1.7)

According to (2.1.4) hold equivalently:

LYY e YL

LA R (2.1.8)
Y P LR S o

Only for strictly convex functions polar function is identical with
complementary function [33]. In our case from strict convexity of $Qge)
does not follow convexity of wqge). According to [72] we shall assume

strict convexity of w(ge) though all excluded cases cannot be determined
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4 priori. Condition for strict convexity of w(gf) is that M— is

(Y gt (Y

= . = (2.1.9)
e e (#2774
D¢ Id J o5 D4,

?

Necessary and sufficient condition for hyperelastic behaviour is
-

-1 -
symmetry of M ~ [68]: Mi;u. = M&Lc‘]

2.2. Potentials of elastic rate quantities

Here we assume that elastic strain enery density w(g?) defined
in (2.1) is strictly convex and differentiable up to order n, just
like complementary energy-density y*(t). We expand ¢y and y* into Taylor-
series in the neighbourhood of reference state ( )0, for which all
quantities determining the mechanical state of the considered body are

assumed to be known. Here n denotes an arbitrary integer number.

Z
‘e e 9\/, e A 9 ‘% e Ye
Vg d) = YAVt S % G G 4

ny Ao :
Fon s :! ?92/8)"A7 (d)" + R, (2.2.1)

o * 3¢ Jt o
4 9“-)9* ) *
e o Y [ ).,/o (,,,/ * /?n*—f (2.2.2)

e

If we now introduce the quantltles d +d” and t + i from the neighbour-

hood to reference state ( )o into the Legendre-transformation (2.1.7) we

obtain:

A

A
t+di (223

A

ZQs

VLA )+ Pt +E) = St o

~ A
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Using Taylor-expansions (2.2.1-2) this becomes:

Vg, + ¥RE)] DX s Y

Do

n! (}Qggf/h o~ { ha
+ /?n+A ﬁc:w

holds:

JANTPOLICRE %)
fﬂq+4 ‘Eﬁi4 j?" é?e.

(2.2.4)

(2.2.5)

(2.2.6)

Neglecting in Taylor-expansion terms of order n > 2, we obtain the

Legendre-transformation for the rate quantities i and ée:

2
A <9 b e %e
— 7

N ~

P (I P* (%)

(2.2.7)
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P1 (&e) is strictly convex because of assumption of strict convexity of

w(gf). This implies that PT(E) is complementary to Pl(gf). We define

o)1 z W
(M°) 7 = g_g/%_e /, (2.2.8)

Then, equivalently to (2.1.8) holds:

f. 2609 _ (o) ge
D de
(2.2.9)

se_ 02*(2) Mo f
~ a’g’_ ~ ~

1 is possible if (ﬂ?)_l is positive definite, i. e.

Inversion of (g?)-
Pl(gf) is strictly convex. Spaces D € é? and T € t are tangent spaces
referring to reference state ( )o' dual to each other by bilinear form
E .- é?; D < Rg, T c Rg. We should emphasize that in.%? not only
material properties but also informations about the state of deforma-

tion of the reference state are included.

L
. , PI(E)
e ‘
/ /// 4 //
e 2 =e
d” .. t P, (d7)
~ 1'%
v / i
()
o]
N
Fig. 2 dg ac + ae
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As we are going to operate with nondifferentiable functions the intro-
duction of notion of the subdifferential as an extension of notion of
the differential is useful:

We consider x € X and y € Y as elements of dual spaces X and Y with
the bilinear form <x,y> and f(x) as a not necessarily differentiable
convex function over X. Then holds equivalently: f*(y)==£%235<x*,y:>-
- £f(x*)] and y € 3f(x), x € 3f*(y) [33]. In our example subdifferential
in (1) consists out of all elements y € A, such that equivalently
holds: y1 € 3f(x)|1 ﬁ>y1 € A, whereas in (2) subdifferential consists

of only one element identical with the differential at this point.

b £(x)

(2)
(1)
1
IR 1
N
\\ ’/y1u/// y1° -
\\—‘ y/‘/ - T X
-t 1 y :)’
A
Fig. 3a

Pq(ge) + (03)
|
() fo: -8
1
e € a€ ~
do o8

Fig.3b
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For linear elastic material behaviour tensor of constant elastic coeffi-
cients L defines for small strains the relation between‘g and’se [14].
These coefficients can be determined by experience so that formulation
of the rate problem by use of the second Piola-Kirchhoff stress tensor
is interesting. In infinitesimal neighbourhood of reference state

characterized by vanishing variations of order n > 1, we obtain the

following expression instead of (2.2.7) using the relation 6(3:g)..@§e=
= BE-g+E-8g)..88":
(IF.G+F.dG)..dd° = %[‘yo..J(ﬂg)]..cf{f‘,gj
-4
v L ()7L dAE) . S A
(2.2.10)

Appendix Al shows that

4 [ 1. (FQ)]..I(FG) = L[ (M F.F)..d5].. G

+ G .. Jd°+ (x..d6)../G (2.2.11)

with a = 0 for linear elastic material behaviour. With the definitions:

(2.2.12)

we obtain

I6..d¢°+ @ IF.dd® = L (L°..d6).. /& +

n

LA(L)7.. JEe). JEe + G.IF. I el

-~

(2.2.13)
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after cancelling
~ ~o1~A ~ ~
§6..d6° = 5 (L°..J6)..dG+ S L) JEYD). S 2210

Because of symmetry of Qg, qzé and zf in the first two terms may be

replaced by their symmetric parts:

dee = L (FJod® + Il F)

~

2.2.15
Lo = ° = LifLM ( !
MJNL JHNL J

We remember that from assumption of hyperelastic behaviour of elastic
. o o .
pirt of dzformatlon, symmetry LMJNL =L I is assured because of
MiJkL = MkLij' Considering in the third term of (2.2.14) only the symmetric

o-1 ~0
L t
part M of tensor LM

INL we obtain the Legendre transformation

JNL,
4G.. &€ = g—/%(orée/ + %f’;*/ofg/ (2.2.16)

with

P (Jg®

_Z_ ((£°)7". Je¢) .. d &°

(2.2.17)

P(IG) = A (L°..J6).. IO

4
2
(2.2.16) represents the rotation-invariant material law for linear
elastic behaviour for infinitesimal changes in the neighbourhood of
reference state. Herein condition of equilibrium of moments is in
advance assured by assumption of symmetry of ¢ and §g if destributed

moments in the volume vanish. Equivalently to (2.2.16) holds:

94 (o)
GS)

oy~ 1 e_ Qé{Cf,@e/
Ig = (L7 .. Je- 9 (J&%)

Je€ = L°..JG =

(2.2.18)
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Because of positive definiteness of k? this transformation is of un-
restricted validity. Then 5? is complementary to 3& over the entire
range of definition of 62. From (2.2.11-17) follows:

P (dt) - B (dG) = G. IF Jd° (2.2.19)

4

2.3. Plastic behaviour

Assuming the existence of an elastic region C describing the set
of all admissible stresé states in space T of stresses t of an infinite-
simal subregion dV of the considered body. This constraint on the set of
admissible stress states induced by assumption of a well defined yield-
limit of material is not independant of deformation of the body if we
use the first Piola stress tensor for description; in the definition
enters the change of geometry from initial up to actual configuration.
More adequate to local material behaviour is description of admissible
stress states by using the second Piola-Kirchhoff stress tensor g or
the Cauchy stress tensor. The herein chosen description, however, is
more convenient to formulate and solve the boundary value problem because
all quantities either for the rate or the initial boundary value pro-

blems are entirely referred to the initial configuration.

Starting from an equilibrium configuration we assume that additional
stresses produce always positive work on a closed cycle of loading and
unloading if plastic deformations occur and that for purely elastic
behaviour this work is equal to zero. For infintesimal deformations .
this assumption is known as "Drucker's postulate" and had been used

in [86] for finite deformations.

=

[f (t-2°..0l oAVodT = 0 (2.3.1)
c;(V7

with To and Tl as time limits of the cycle, (') as derivation with re-

spect to time g% and (.)o as indicator for initial state. Non hardening
may be called any material for which region C remains constant during
the entire history of deformation. In fig. 4 hardening is characterized

by transition of C to C'.



Fig. 4

Convexity of C and validity of normality rule are obtained in the
following as necessary but not sufficient condition for this global
stability-criterion [26]: In (2.3.1) part of the elastic work on the
considered closed cycle is equal to zero because of assumption of

strict convexity of wgge):

I
o

7
ff(g -9 .. AT AV AT (2.3.2)

o (v

Thus (2.3.1) becomes:

T4
[ [a-x2. ardvae

To (V]

Iy
o

(2.3.3)

Sufficient condition for (2.3.3) is non-negativity of

(t-t%..8°%dr 20 (2.3.4)

~
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If we expand (2.3.4) in the neighbourhood of an arbitrary stress state

EB € C into a Taylor series, then we obtain:

(t-t°]

Ll + £) L o o)
s~ Tty 7

(2.3.5)

3
(] .o 2 e ./, T.
(2-¢°) eyt &) . 4" Y s 0
-~ I ~ ~f < 2

8
As we consider only quasistatic processes all terms of order n > 2

are equal to zero and we obtain for arbitrary tB conditions of convexity

and normality as sufficient conditions for (2.3.3).

~

(£ -2°)..8 7t = (¢t-¢°)..dd” = O
(2.3.6)

t..d(dt)? = ft.Sd° =0

~ ~

The influence of change of geometry during deformation in using t
has to be checked in every considered problem because material behaviour
is usually described by the second Piola-Kirchhoff or by the Cauchy
stress tensor. Analogously to the theory of elasticity where assump-
tion of convexity of elastic strain energy in terms of displacement-
gradient constrains validity of complementary variational principles
[72], we shall exclude those cases where loss of convexity of C is
caused by geometrical effects. In appendix A2 we investigate how

geometrical effects enter in the case of von Karméan plate theory.

Using this concept we can define a plastic potential wQE) analogously

to [36-42]:

0 /f 'é €C
79(i7 — (2.3.7)
) f 4

From convexity of C follows immediately convexity of @(t) - ©(t) attains
its minimum in the 6rigin of T as C contains the origin. Using bilinear
form‘E..§g? to put T and DP into duality we may construct polar plastic
potential m*(§§?) by Fenchel-transformation:
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P ILD = sup [£.4d"- Pt)]

t<s T

Here DP is the space of all rates of plastic deformations qu,

to reference state ( )o' Then equivalently to (2.3.8) holds:

e ) Pld ol? . Jg”e JDP(t)

Taking
G=F1t ;o deT=(Fdd)

into consideration we obtain:

¢.dd” = g..dg"

Only for F - E? =0 + (02) follows immediately:

($-G°)..(F.dd?) = (6-6°..d¢">0

(2.3.8)

tangent

(2.3.9)

(2.3.10)

(2.3.11)

(2.3.12)

(2.3.13)

what expresses convexity of elastic region Ccs 3 g, Sc RG. Also

normality rule does not hold automatically in terms of 2,6 S: With

It = (£.JG +dF.G)

follows

dt..ddf = (£.46 +dF.G).. Jd =

Jg.. " + S.IF. 4d” 20

Questions of convexity and validity of normality rule

(2.3.14)

(2.3.15)

using either

t or g are investigated for von Karman plate theory in appendix A2.
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. GEP to put spaces S and EP into

If we now use bilinear form g .
duality, where g € S and Qgp € ﬁp, we can define polar plastic poten-

tial @*( 8¢ P):

B*(JF) = é:g) [G. dgp— @(,@)] (2.3.16)
with
0 it ge C
C,'b'(g) = . (2.3.17)
+ OO /f‘ §§ ﬁf C

where C © S expresses elastic region in terms of the second Piola-

Kirchhoff stress measure g-

Potentials of plastic rate quantities

2.4.
We define indicator-function P2(62P)<3fsubdifferential Sp(t) :

0 if ddfe 9 plt)
of Sod’é IPIE)

(2.4.1)

B (dd) =

+ 0O

P2(6§P) is convex and bounded from below under all assumptions made in

chapter (2.3). Using the definition
(2.4.2)

g2 = F. dd”

analogously to (2.2.12) we obtain equivalently:

(2.4.3)

B (d&"tda) = B (Jgd?

Using bilinear forms 8t .. Ggp and §g .. 65? we may determine those

functions which are conjugate to PZ(GQP) and $2(qu) by the Fenchel-

transformation:

BI(dt) = sup [dL.dd" - £ (I’ ]

(2.4.4)

Br8) = supld6.JE7~ B (4£7)]
JE
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From the definition of the Fenchel-transformation follows, that this

is equivalent to:
Jt € dB(JA7) Jdfe dR"(IL)

(2.4.5)

96 e 9P (dED S&EFe 9 R 7(4G)

If we compare (2.4.4a) with (2.4.4b), we obtain by using (2.3.14) the

following expression:

g*(cf’t) = sup [(JF. G +~F':J§)..JQ/'°- Eldod] <

&d”

< sup [96.. d"~ B (ST]+ sup[G.IF. I "] =
5&

=~ P
= £*(43) +jg(¢p[§.Jf.ofdJ

(2.4.6)

The difference

Pz*(of,g‘/ - é*(dg/ = jd‘j/’ [G.dF. "] (2.4.7)

corresponds to (2.2.19), where we compared the potentials of elastic

rate quantities.

2.5. Formulation of the elasto - plastic rate boundary value

problem

Assuming that all quantities which describe the mechanical state
of the considered body are given at time To, the following relations des-

cribe the rate boundary value problem for prescribed changes b€V,

65* € B, 6f € Bg:
Div dt +db = 0 in v
(2.5.1)
f7.cf - Cf = C) on B

~ ~ s
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Jg( = Grad J!:(. = Jf inv
(2.5.2)

Ju - Ju* = 0 on B

< < X

f _ (g€ _
dod -do = SofP = p ) (2.5.3)
d'de _ )@,"(J}") - O

" odt) (2.5.4)
Jd” e 2L (d¢t) > inv

PYACLY)

Jt - ====7 =

~ I A€) 9 (2.5.5)
Jt € 9B (dd") J

If potentials P, (8g7), P* (6g), F,(6¢P), Ph(Sg) are used, (2.4.1-2.4.5)
are substituted by:

.Dlvd(fg) +Jé

inv
(2.5.6)
n.Jd(£6) -Jf on 3,
Cﬁg _-dk(:f: JF} in Vv
. (2.5.7)
d"(‘/’( - J-lif on Bk
de - de€- J¢e” in V (2.5.8)
~ 1
~ olJdG)
Jéf‘ < &é*(d’,@) | (2.5.9)
‘5 _ 9/?(:&‘"/ >~inv
- d(dee)
I € I £ (de”)
J (2.5.10)
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2.6. Solutions of the rate boundary value problem

Rate boundary value problem 1

Let us assume that reference state ( )o of an elasto-plastic body
K is given by all quantities which determine the mechanical state of
the body. Moreover the reaction of an associated body K° to prescribed
external agencies §A = (8b, ¢&f, Qg*) is assumed to be known, where K° aif-
fers fromK only by the fact of purely elastic reaction to external

agencies 65.

Definitions:

Kinematically admissible stress-rate 65“(5) is every field QE for which

holds:

/jo.. Jj Grad dg. in V

(2.6.1)

Ju

O on B

Statically admissible stress-rate 65?(5) is every field QE for which
holds:

Dy J,é= O in v
(2.6.2)
f?.cfg = 0 on Bs

By partial integration and application of Green's formula orthogonality

of spaces T" T, 8t" € T and TP = T, 6t° € TP with respect to scalar-

product
4
(f"d@"z)M = ? go._fz o V (2.6.3)
~ ) ~~ ~°

v

can be proved (appendix A3).

We assume that the solution QE? of the associated purely elastic

boundary value problem is given with:



Dry J}fo +db= 0 in v
n. J:Zfo —JN = 0 on Bs
o (2.6.4)
[‘_10 Jdt =6rac{cfgt° inv
(f(/(o- Jg(* = 0 on Bk

§E? represents all external agencies GA.

Solution of boundary value problem 1

—— e e i i i B o e et e et G S B o e e it e e S e S

We use space C; of all smooth and bounded tensor fields , provided
with scalarproduct (:}, I?)ﬂo as unitary space. Completion of this space
with respect to the scalarproduct is Hilbert space H, provided with L2—
norm:

//fcfl/g0= -Z—f,’g”..,/f/o..de (2.6.5)

1%

Subspaces H" = H of kinematically admissible fields 65“ and H? < H of
statically admissible fields GEF are constructed by completion of the
unitary subspaces of kinematically and statically admissible fields with
respect to scalarproduct (2.6.3). From (A3) follows the orthogonality
of H" ana H°.
Plastic ratepotentiale(GgP) and polarpotentialpg(qg) had been defined
in (2.4) for tensors 6d° € RY. These definitions have to be extended
to elements of Hilbert space H if we want to solve boundary value pro-

blem 1. With

Bt = Lim fﬁ(f(gl}dV} o0 > o 3 O

K-> O

0 £ M%dd e aP(t)

(2.6.6) -

N0
~
?Qw
R
Il

+00 if M°.gd"¢ 00(2)
0 if ted

o f t¢d

Q8
iy
~+~
S
Il
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the problem can be formulated in the following way : Determine the

tensor fields QEP € HP ana GEP € HY such that:

g7 +dt° e D B (d¢°- 4¢°) (2.6.7)

for given GEP. Equivalent condition for the solution 6&? € H® and
st" € HY is:

Ri(de°-dt) - (o= dth, a7+ 52" )yo +

/?(J-t#_f_d"\z:?) = 0 (2.6.8)
with
*
/f (dt) 25:(‘,»/3 [(J}f/ Jg’P> - /f(cfg_{"/] (2.6.9)
using bilinear form
<d’j, Jd”) = [Jf(,{)..Jg’?g) of V (2.6.10)
v

Analogously to [41] we introduce the functional
»*
L, (025t = [Tt dt%) - (d2°-dt? dE5+d2") 0

"‘/Cz)(cfj?’fd_g"“} (2.6.11)

*
From the convexity of P2, P2,(6;p, GEP)M follows convexity of L, . From
(2.6.8) follows that L1 attains the value zero for the solution of the
problem. Uniqueness of solution however is not assured as L1 is not

strictly convex.

If we resign from determination of 63“, that means that plastic
part of displacement gradient qu cannot be evaluated, then we may de-

fine the functional
*
L1o (925 = Ky (5¢°- %) = (d£%-dE5 Ity

(2.6.12)

LR (dE3)
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with
F(z) o g-dt7e#”

f)”(z:) - (2.6.13)
+ 0o -t FF

<f£: +;%f9

Fig. 5

In appendix A4 is proved that L is strictly convex, attains the

10
minimum equal to zero for the solution 65? € H° and that Llo < Ll.So
uniqueness of solution follows from strict convexity of Llo' existence

of solution is assured if there exist QED € H° so that on < + o,

A? # ¢ exists a unique solution 65?.

AZ = @ exists no solution.

For (QE? +Hy na

For (§52 +H°y na
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Rate boundary value problem 2
If we use second Piola-Kirchhoff stress tensor 2'instead of
first Piola stress tensor t in order to solve the problem given in

(2.6), from the relation
dt = IF. G + £.JG (2.6.14)

the difficulty arises that not only stress tensor g and its rate Qg but
also F and Gg enter conditions of equilibrium such that notion of stati-
cally admissible stress field in itself loses its sense. Therefore in
this place we shall consider only the special case that after a finite
deformation incremental change of deformation remains small enough to

be neglected in equilibrium conditions. This procedure corresponds to
the "theory of second order" in civil engineering [84].

Kinematically admissible stress-rates 62“ are those fields 6263 for

which holds

L..d6 ~ (FISF)g =0 in v
(2.6.15)
J =0 on B,

statically admissible stress-rate 62? are those fields Qg € S for
which holds:
Div .5:; .JG = 0 in Vv

(2.6.16)
[7.(£% . } = 0 on B

~

S

Analogously to (A3) orthogonality of S* = S, S* 3 so" and SP c S,
sP 3 62? with respect to scalarproduct

(de”, J6%), = [IG%.L..dG"aV (2.6.17)
- W

can be shown: (appendix AS)

Similarly to (1.5) we assume that purely elastic solution of an asso-

ciated problem is given, satisfying the following relations:
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Div(fo.dG°) +db = 0 in v

(2.6.18)
n(F.d6°) —Jf =0 on B_
G@§° "(l€7: JCfr}s =0 in Vv

(2.6.19)
du® - J’(:c* = 0 on Bk
Je® - L..JG° =0 in v (2.6.20)

The rate boundary value problem 2 can then be formulated in the
following way: Determine those rates of stresses 62 and strains 65
for given stress and strain states go and Eo of reference configura-

tion ( )o' and known (Sgo which satisfy the following conditions:

JG °- Jg is statically admissible
FL—A, . o(§ - cf§ ° is kinematically admissible
(2.6.21)
J§P= JE - é— ..dG satisfy normality rule and
c Jo condition of plastic admissi-
= 3
C, X

ble (yield-condition)

Solution of boundary value problem 2

[+

6
duct (2.6.17) as unitary space, which defines by completion Hilbert

Analogously to (2.6.5) we use space C_, provided with scalarpro-

space H provided with L2-norm:

>

1xh = [Tl cdv (2.6.22)
” (7

Subspaces fiv ﬁ and ﬁp c ﬁ of kinematically and statically admissible

fields 6gu and Ggp respectively are determined by completion of unitary

spaces of smooth kinematically and statically admissible fields ana-

logously to construction of HY and HP. From (A5) follows orthogonality

of spaces 'f\iu and 'ﬁp.
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Plastic behaviour is now described by functionals P2(§§P) and

*
P> (89)

. (0] it d@?Pe é;QS(QS)
=F = g .0.
B (JE7) oo £ SE %38 (o) (2.6.23)
EJ*KJ,@/: ng[(CfNG..J;f‘P/— E(cf{f’o/] (2.6.24)
£
with
gg(g) = Lim ‘E:Q(g}) LV
{O if 6eC
(2.6.25)

5
6
Il
jod

i 6 &C O< X <+00

Analogously to (2.6.8) the solution of the rate boundary value problem
2 has to satisfy:

r~

JG8 +dat € 9 (ds°-dG%) " (2.6.26)

or, eguivalently

NR?
X

(§6°-dG®) ~(dG°- IG° JGP+dG ), +

é(dg“J@"/ _ 0 (2.6.27)

where §g° is prescribed and Qg“, qu are unkown. For von Karman plate
theory in appendix A2 the question has been investigated under which
conditions from convexity of elastic region C € T convexity of elastic
region E c S follows. In (2.3.6) normality of rate of plastic deforma-
tion 62? to yield surface was expressed; by transformations (2.3.11-13)

is shown, that (2.6.13) does not violate normality rule.

Solution is constructed in the same way as in (2.6.11-13):

First we define a functional
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&, (985 467) = E*(Jg"—dg”) ~(dG6°-dGf JGT» JC"),

lacd

+ ,’23 (dB° +dG") (2.6.28)

L2 is convex and attains value zero for the solution (62?,53“). However,

L2 is not strictly convex such that solution is not unique. At loss

of any statement about rate of plastic deformation we define a new

functional L2 strictly convex (appendix A6) with L__ < L2, L. =0

o' ~ 20 o 20
for the solution qu‘ If any 62? € H® exists such that on < +® then

existence and uniqueness of solution GgP is assured.

Loy (957 = P (95°-45°) - (46487 6%, +F (45%)

20 ~

2
4
oOR
X
—~
Z(\?
3
<
1))
QO
+
X
0

(2.6.29)

Basing on Hill's works, e.g. [45,46] a multitude of stationarity
and extremum principles have been formulated [55-67], which are the
foundation of broadly applied incremental methods in numerical calcu-
lations. In this paper we restrict our consideration to Mises-isotropic
hardening material behaviour [1], where rate of plastic strain can be
evaluated as gradient of a potential, though above mentioned principles
are formulated, e.g. by Maier [61], for more general material be-
haviour. Again we assume that mechanical state of reference configu-
ration ( )O just as incremental changes of external agencies 65 are
given. Then transition from reference state to actual state may be

described by the following set of relations:

Div(fF.d6+dF.6)+db = 0 in v
(2.6.30)
n. (F.d6 +dFf.6) -df =0 on B
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de - (FIdF), = o0
dE ~dE€-de” =0
JE¢ ~(FT dd9), = 0 Y e
IE"-(FT dg?), =0
Ju —du* =0 on B, (2.6.32)
pe_ 208)  _ 5
~ I(IG)
p_ RS _
JE - See T 0 in v (2.6.33)
so - QLB EEE)]
~ d(IE)

In [53,54] a method of systematical construction of stationarity and
minimum principles for the rate boundary value problem basing on intro-

duction of two linear spaces E and S with the elements

-(di m V,Jr on BJIJ-!: On BK)I‘JEGE9

w
)

(2.6.34)
(du in V, du on B, Su on Bk)) JE‘G’?3

/

184
il

is given. E and S are provided with scalarproducts

(It de'> = LSV ¢ S gHS - SEL It S

(dy’, du®)= du' dddv+ du' duidS+ dul fu?ds

(2.6.35)
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and define by completion Hilbert spaces HE and Hs with norms induced

by (2.6.35). By use of adjoint operators T and T*,HE and HS are

mapped onto each other.

(—-Div J;f,\ (Gra.d Jgﬁ in v
Tdt = o . Tdu = -n.du on B, (2.6.36)
~ ’ ~ -~ ~
\Q-Ji } : \ o / on B_

Adjointness of T and T* follows from
¥
(0, T'du) = {dy, TdL) (2.6.37)

Basing on the definition of a generating functional a Lagrangean func-

tional L(8t,80,8u,6d)

/g.cfg.(cfg-—Jg") ds — /Jf.Jg as (2.6.38)
(By) 18,)
is defined, which assumes a stationary value for the solution of
boundary value problem 3. For details we refer to [54]. Starting from
. (2.6.38) a couple of variational principles may be derived systemati-

cally. If e.g. we restrict the set of Qg on those elements satisfying

compatibility. condition
Jo = Grad du = Jf (2.6.39)
we obtain by use of

it =dF G +F.JGQ (2.6.40)

~

from (2.6.38)
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3,98, 9u) = [[96..(F14F),~G"dg) + 4 G-dF.5F

v/

tdb.du]dV +/(Jf.§).g. (Su™ S ) oA

8,)
(2.6.41)

~fJf. Ju oS
(&)

~S

GX(dg) = R(d90) + Bdg) = Q'tdt) + L B.dF.4F (2.6.42
(2.6.38) becomes

4,0z, Jg}=/[J§..Jf— Q(dt) +db.du]dV
(v)

+ /Jj.g.(dg*-Jg)dS -/Jf-c/g ds

(8,) (8, (2.6.43)

with the Legendre-transformation

QY (dt) + Q(IF) = dt.. L F (2.6.44)

~

and the restriction to kinematically admissible functions éu = Qg* on

Bk we get from (2.6.38):

Fo(d ) =/[Q(df} +J§-Jg]dV:/0ff- JudS  (2.6.45
v (8;)

Restriction to statically admissible function in the sense of

Divdt +d6 =0 ; p.dt-Jdf =0 (2.6.46)
léads to
Ja(df} _—_-/Q*(afj) dv +/Jj.g,o’3’ dSs (2.6.47)

(v}
4 (ELJ
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In order to obtain a physical interpretation of (2.6.45) and (2.6.47)

we transform JZ(QE) and J3(6£) by use of generalized stress- and strain

measures:
JE JG
£ = ; g = (2.6.48)
With the definitions 8w = 6F; 81 = g - dw we obtain:
-4
§(JE‘V)JQ,‘)) = GIJC(NIkJC‘)bJ = GIJ J’G/: Jﬂ;J
s (2.6.49)
- 6'4] T J’fg
*
s.e= Wle)+W (s) (2.6.50)

A

de.. L= dJe +%61JJ“%/;J%]

7 {]kL LA

X
N
(o)
v
N|;
0]
Fgl
oA
0
m[\

Wis)=Fs.. &5 =4d5,L,,d6,+ 36 I7, I7,

7 Zjut 2 k]
(2.6.51)
lekL
¥ = g (2.6.52)
0 Cry
With these definitions we obtain finally
Y =/[1,\/(§) +J,é.ch]dVi/Jf. du d$
v (8) (2.6.53)
3 (2,dt) =:/w*(.§) oV +/o’1-‘.z9- e ol S
v (8)

We emphasize that Legendre-transformation (2.6.50) is only possible
for strictly convex W(e), i.e. for positive definite L. In the special
case g = 2n£ is restricted to L (e.g. in the first step of incremental

calculation starting from unloaded state). If in any special case
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under consideration elements L vanish systematically (e.g. in case of
=0 for i,3,k,1 # 1 =0 fori,j#1 reduc

beam where Lijkl or i,j,k, , Gij i,3 ) we e

dimension of'E in such a way that L becomes positiv definite and no

subdeterminante of g vanishes identically.

Requirement of positive definiteness of‘£ requires positive de-
finite g, i.e. positive principle stresses as necessary condition for
extremum principles in context of this chapter. This has not been
taken into consideration in [47]. Stationarity properties of (2.6.41)
are not affected by these requirements. We see that the functionals
derived in this chapter by means of [54] correspond to those func-
tionals derived in [47].

.

A simple description for a class of hardening material behaviour

An example for material laws as used in formulation of boundary
value problem 3 is obtained by assumption of isotropic hardening and
existence of a Mises-dissipation potential P;(Go) [47]. Either elastic

and plastic part of strain-rate are then derivable from a potential:

NV

Brdc) p DE(d5)
= dJee+ Je° . J£e=9—2—~ \ & = =
de =deceden, = e s dE = s

PN VAC/ A AC ) I ICr)

D (de) = ol (2.6.54)
e _ QLEIG)+Etd5)] o)
” 9 (JT)  J(I0)
With
/é’*(dﬁ} = é-'- LIJRLJGT,] JG‘{L > Lfgm.: elastic coefficients
S ¥ A /
E(dg) = —IAI]KLJGIJ 46 - 3 A'rom: GIJ Gl;L (2.6.55)
0 C{£ ok G = ({6.. = ! = —-
Qdg) + Q(dg) = d¢..8G = d¢y, Jey, | G,, = Gy % O

and following definitions:



X -G’ / 4= /
0 o C[Z; = 0
3 A4
G = [ z _ A / (2.6.56
41, L& £ )
A = d 644 N .j_ —_— _.___0/ £'ff
Er d G ' £ d G,

ET is called "tangent modulus" determined by uniaxial tension test

and E is usual modulus of elasticity. Assuming that such unique

tension test describes material behaviour adequately, in [25] ex-

pression
K
o S
E = = =+ o [ 41 .6.57
14 z £, (2.6.57)

with parameters E, Eo’ K which have to be adapted to experimental
results is given as possibility of analytical description of material

behaviour. Herein definitions

0 it 624 < G
X = 65 : yield-limit (2.6.58)
1 /f Gal )'CE

are used. We then obtain ET by

_— = —— + X

(2.6.59)

From this G can be determined for every state of the body.

‘Though this description is rather practical real material behaviour
is only approximated by assumption that one unique uniaxeral tension-
test is sufficient to describe material for more complex situations.
Moreover this materiai law allows only for hardening material and

elastic-idealplastic behaviour is only included as limit case.

With (2.6.54 ~ 59) material coefficients describing behaviour in

an infinitesimal neighbourhood of reference state ( )o can be defined:
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/ li
=L+ Af-é ; Loq;kz== Ljykg * k’czy(zzl

(2.6.60)

Again we emphasize that inversion of 20 is only possible if Det £o

does not vanish.

Representation of hardening material behaviour following [25]

G |\

k
Eo

G

N S—

G se’ g€t
[ B
' €
G \ 6]
1 A
EO
G, |- G,
l = o £ - -
Changing of ¢ - e diagram

Changing of ¢ - ¢ diagram

for increasing Eo for increasing k

Fig. 6



2.7. Initial boundary value problem for finite displace-

ments and small strains

In general the initial boundary value problem is treated by in-
cremental methods. Starting from some given reference state a linear
system of algebraic equations is solved either directly or by means
of minimal or stationarity principles. Solution vector of this step
of calculation is then used to determine a new reference-configura-
tion leading to a modified system of linear equations. This procedure
is repeated as long as the final state of loading is not yet reached.
However these numerical methods as derived e.g. in (2.6) are basing
on rate-principles and are consequently only valid for infinitesimal
change of all field quantities. As in numerical calculation finite

steps have to be performed, some systematical errors cannot be avoided:

- The linearized system of equations approximates by neglection of
nonlinear terms in case of finite steps the original rate boundary
value problem and may lead to bad mistakes in the neighbourhood

of geometrical instabilities.

- Use of linearized rate equations for finite steps numerical errors
are introduced into calculation of the following reference states

which propagate in uncontrolled manner.

- Use of finite-dimensional trial-functions (polynomials finite ele-
ments) generates errors which do not only influence the solution of
the rate problem but the entire calculation via determination of

reference states.

We see that rate principles are well defined in theory of elasto-
plastic media, however that application to initial boundary value
problems is problematic in spite of many successful numerical appli-
cations. An extended listing and description of methods in order to
avoid at least non-equilibrium states of the body can be found in
[60,82].

These methods are formulated either for infinitesimal and for finite

displacements and applied to numerous examples [56-59].

A qualitative progress in dealing with the initial boundary value
problem for infinitesimal deformations has been made by a functional-

analytic formulation by use of convex analysis [33-38]. Moreover in
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[39] RAFALSKI introduced minimal principles for residual stresses in
elasto-plastic bodies; for a special class of material, "regular

material” [21], corresponding plastic strains can be evaluated [40-42].

In the following we use the concept of [39] for infinitesimal de-
formations and not necessarily quadratic elastic strain energy density
in order to formulate, basing on derivations (2.1 -2.4), minimum
principles for elasto-plastic bodies for finite displacements and
small strains. Subsequently we deal with the special case of infinite-
simal displacements with extension to hardening material as foundation

for treatment of the Kirchhoff-plate in chapter (3.3).

The initial boundary value problem at finite displacements

In dealing with this problem we base on derivations (2.1 -2.4). Our
proposition consists essentially in an extension of [42], where infinite-

simal displacements where discussed.

In opposition to the rate problem the herein treated body is con-
sidered as a region in four-dimensional space-time continuum including
his mechanical history with volume V =V x T, parts Bk = Bk x T and

Bs = Bs x T of entire surface, where T € [0,»). all field quantities

are although defined in V:
T, dlxt/) x=0(x, %, x) (2.7.1)

~

etc..

We assume that entire rate of energy

w = IT.. g/ (2.7.2)
may be split up additively in purely elastic and purely plastic parts:
w o= w€aw? (2.7.3)
with

We¢= t..d° wl= . d° (2.7.4)

?
14
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This assumption corresponds to assumption of additivity of elastic

and plastic part of rate of strain (2.4.4). With the assumption of
. . . e .

existence of an elastic strain energy density ¢(£,) according to

(2.1.5) follows:
we = ?‘-(; L) (2.7.5)
(&
and

t € ¥ () (2.7.6)

respectively for differentiable w(ge):

. LYY

From assumption of a convex region of admissible stresses t and defini-
tion of convex plastic potential (2.3.7) we obtain plastic rate of

energy (dissipation) wP:

. P *, 9P
wl=z2..d" = Pt) + C(d) (2.7.8)
with:

PX(A7 = supe [z..4" - wet)] (2.7.9)

~

so that equivalently holds:

,é(Pe 0 Pt) ; z 6990/.9.{7 (2.7.10)

Global formulation of the problem

Be H the space of all stress-tensor fields .5(551)' constructed

L]
as completion of C9 with respect to the norm ||£H, induced by scalar-

product

(t't¥ = [ 27,2 % (2.7.11)
(V)
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Be H* dqual to H with dx,1) € f*, d is called kinematically admissible
if there exists a displacement vector U(x,T) € V with ¥ = O on Bk

so that
2( - 6’“"(‘/,‘:6 =0 (2.7.12)

Kinematically admissible tensor fields g, will be denoted by gu.Hereby
subspace H*Y c H, @" € H*Y is defined. Statically admissible stress

fields EP will be called such tensor field t € H for which

(t,d) =0 ded™ , «) =0 (2.7.13)

B,

holds. (2.7.12-13) are equivalent with the satisfaction of compatibi-
lity condition, equilibrium condition and kinematical and statical

boundary conditions.

Just like for the rate problem we assume that an associated
elastic solution, i.e. the solutioﬁ of the initial boundary value
problem of a body X° with the same load history and geometry as the
herein treated body K, different only by the fact of purely elastic

behaviour, is given. This solution (index ( )o) statisfies following

conditions:
DI‘V ,Lfo ""é = 0 inV
nt” -f =o0 on B_
(2.7.14)
0 *
w - u = 0 on Bk

;éo € 19’Y’(£?§} in V

Following [42] global potentials W(de) and ¢(t) and their polar poten-
tials may be defined by local potentials w(de), PE(E), ©E), @*(dP):

F(d9 = | ¥(g9e dV

Vi (2.7.15)

bz Pct) e dV

V)
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Y and ¢ are lower-semi-continuous, convex and attain their minimum
in the origin [41].

New formulation of the problem

———— o ——— —— — ————— 2 = " >

/

o (x,t=0) = O t(x,t=0) =0 (2.7.16)

such that

A= d —d° e (2.7.17)

e Pt

Minimum principles

Above formulation leads directly to minimal principles if we use

Fenchel-transformation. We define two functionals F1 and F2:

E(t d?9 = W(dY) +¥t) -(z,d9 >0
(2.7.18)
Ew,d) = d(t) +P) -z, d% =0
Using definition (2.7.17) we get:
(245 = W(d) + it - (- %) 30
(2.7.19)

v
—
iry
~ N
Q.
~ X
R
N
0

G219+ (A 24T~ (%25 4" d%d%) > 0

The solution of the problem is then obtained by minimizing F = F1 + F2
for Ep € Hp, 2? € H and éu € H*Y, Vanishing of F is necessary con-
dition for the solution of the problem, as it indicates satisfaction

of the constitutive relations.
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Analogously to (2.4. - 2.5) we consider now the region AO, defined

by:

A [ttt +H " dom P N dom ¥ (2.7.20)

Herein dom(.) indicates: (.) <+ >,

Be 1 indicatorfunction of A with:
Ao o

0 f te Ao
T (t) = (2.7.21)

A + 00 if ﬁ ¢§/4o

If AO is not empty (otherwise solution of the problem does not exist),

we define:

It

¥ Ve) + 1, (%)

(2.7.22)

S = Ort) +I1,,(%)

and Wo, ¢o as corresponding polar functionals, obtained by Fenchel-

transformation.

From orthogonality of EP and gP and general properties of polar func-

tionals follows:

F,o () < £ (55

~

(2.7.23)
. M e
fo (25dS) = £ (545, d°)
for every é“ € H*Y, EP € E? - A ge € H* with
E. = (-1 — (220 )+ H(d) 20
(2.7.24)

F;o o

I
oa
~
(28
Q
!
o~k
©
~—
J
~
Ik

g%+ PE-d%) >0
(see appendix A7)

If there exists a solution of the problem, then Fo = Flo + F20 reaches
for this solution minimum equal to zero. If Ep and g? minimize Fo unique-
ly, then state of stress and elastic part of deformation are uniquely

determined for the initial boundary value problem.
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2.8. The initial boundary value problem at infinitesimal

deformations

The initial boundary value problem at infinitesimal deformations

is formulated by following relations:

DivG+b =0 in \/
(2.8.1)

Dg "’f =O onBs

é—(@rqu)S=O in{
(2.8.2)

x

- =0 on B,

constitutive relations in { (2.8.3)

g(x,7) and €(x,T) denote herein usual measures of stress and strain

in geometrically linear theory. Linearly hardening material behaviour
is described in this chapter by internal parameters [21]: gé==[£?,gjé
= lgfymmn]y &8 = [Pk 2 [l 10 g = [g,x] = (g, om ] denote gene-
ralized elastic and plastic strain and generalized stress, respective-
ly. Here, assumption of convex strain energy density W(g?) in (2.1)

is replaced by assumption of existence of a guadratic, convex strain
energy density w(gf):

- e -
e.G. &= ¢ el +vew 2., wn (2.8.4)

~mTE G Tkt

Flef)

w, k and T are internal kinematical and statical parameters [21,41],

with n,m = 1,...,h, where h denotes the number of components of
internal parameters. = L a =] iti fini
P L ikl nd Z Zmn are positive definite

matrices with constant coefficients.

Polar energy density w*(i) is defined by the Legendre-transforma-

tion:

'Y/?,{i) + ’Y’(@) = .§..§e = G{/. C;-J.c + T W, (2.8.5)

From quadratic -form of w(sf) follows generalized the Hooke's law:
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2 Y IEY A e, 7" ezt
= - ) e ,4"55 *g-&)‘ yéesz mn %
(2.8.6)
N
e _ 27(S)
o - 2L = Lg +Lm =Ll,,0,+2, T

Plastic behaviour is taken into account by generalized plastic poten-

tial (p(f‘) :

(ﬂ 0 it sek
Pls)= se S (2.8.7)
+C0 if SEE |

Here E denotes the region of admissible generalized stresses s which
is assumed to be convex. ng) is analogously to (2.3.7) convex,
lower semi-continuous and attains minimum equal to zero in the
origin of space S of all stress tensors s(x,7), S < rR&™ [41].
Validity of the normality rule can then be expressed also for non-

differentiable (9(5) by
ePe dfes) (2.8.8)

Polar plastic potential w*(é?) is constructed just like in (2.3) by

Fenchel-transformation:

Yiref) = sup [é° s - P(s)] (2.8.9)
Equivalently following relations hold:

gpe DY(s) s € dPED (2.8.10)

If we assume according to [41] that total rate of energy density is
given by E"é with & = ge +-EP and that rate of energy density can
only be produced by external forces acting on the volume element so

we have:

5..€ =6..¢& (2.8.11)
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If internal parameters vanish for 1 = O this relation follows from

W+ K = W,+ K, = 0 (2.8.12)

~

because of

. . . P . .
s. & = 5..(6%+87) =Q..(E+£)+ T (w+K) (2.8.13)

o«
We use the space of all smooth and bounded functions from C6+n
as unitary space and construct Hilbert space H by completion with

respect to norm i|.|[G, induced by scalarproduct

<g b> = ][cz&-[, b, v EnfB)E AV

a7

q :[Qlylo(h] é:[b‘/, ﬁﬂ]

Q%l

(2.8.14)

Statically admissible stress fields EP are then defined by:
§9 = [@fg{]:: {ge?{: D/'Vg =0 /n V, n.G =0 on 55/ (2.8.15)

Kinematically admissible stress fields‘f’u are defined by:

s“=[c" o]={s€i @ =L . Grady in V,

u =9 on BK }
(2.8.16)

By application of divergence theorem orthogonality of everylgpﬁg,r)
to every ff(z,r) with respect to scalarproduct <.,.> can be proved.
If we denote subspaces of all statically admissible fields ip and
kinematically admissible fields 5“ by HP and HY respectively, then
orthogonality of EP and iu induces that HP and H¥ are orthogonal
subspaces of H.
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Global plastic potential

By the definition

-
bis) = Lim lim /f( (s, (x.t))e dV (2.8.17)

o> 00 r=+00
WV

a global plastic potential is defined, satisfying conditions of con-
vexity and lower semi-continuity. It assume the value zero in the

origin of H [41]. According to (1.3.7) @, is defined by

0 if P(s)=o0

90 (5) — (2.8.18)
O( ~
ot if PrS) =+00 ; D<cox<c+ o0

Plastic flow-law is then globally formulated by:

Gl et = dPrs) (2.8.19)
Equivalently holds

H(s) + P &") = G éhs) (2.8.20)
with

BT e") = sup [KGTE, 80 - O8)] (2.8.21)

The initial boundary value problem may then be reformulated: Determine

those fields s° € H?' and gu € H*' for which

. . 0
£+ 3= 0P (s%-5%) . (2.8.22)

is satisfied. Here (.)' denotes restriction of subspaces H° ana H”

to time-differentiable fields because in the relevant relations func-

tions themselves and their differentiation with respect to time occur.
f?(i,r) describes herein the solution of an associated initial bounda-

ry value problem for purely elastic material behaviour, assumed to be

given. So then satisfies the following conditions: 4§°=.[§f oJ

~
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Div G" - b = 0 in VY
n.©° - f = 0 on B_
- (2.8.23)
Ango_,%}adgé = 0 in{
@ =0 on B,

By application of definition of subdifferential formulation (2.8.22)

may be equivalently réplaced by the condition:

AiS] éﬁ‘} =0 (2.8.24)

e W ste ! (2.8.25)
/ ~

A(sp,su) is convex and attains minimum equal to zero only if plastic

flow-law is satisfied [39].

A, however, is not strictly convex such that minimization of A does

not deliver a unique solution of the problem. If we introduce the

functional
N (59 = D, (5-5%) +P($D - <5™-55 %) (2.8.26)
with
bs) i osestx”
b (s) = (2.8.27)
+ 0o if s¢s+&”
and
>* ., .
950 (59) = sup [<2°%-S $% - ® (5°%-5)] (2.8.28)
se ™

then it is proved that A0 is strictly convex. If there exists a solu-
tion of the problem, then Ao attains uniquely for this solution the
minimum equal to zero. Moreover in case of "regular material" plastic

deformation can be uniquely determined [41].
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i e o . s S ot s o S e i s e

First of all we remember that following [21] region of admissible
stress states g does not change during any arbitrary loading process.

By this fact (2.2.26) can be replaced by:

A, (%) = sup <$-573%) (2.8.29)
s-sf*eE

AQ(EP) is then minimized on the set f? - E (see appendix AB). In case
of proportional loading, i.e. for proportional increase of external
loads and all field-quantities, é}r) may be replaced by E/T as material
behaviour itself is time-independent. History of loading is then pre-
scribed and factor e U in (2.8.14,17) may be replaced by unity without
loss of strict convexity of <sp,£p>

~e

-

With this modified functional A (s?) in (3.2) the problem of Kirchhoff
plate is dealt with. In numerical calculation elasto-idealplastic be-
haviour is assumed such that internal parameters vanish and S reduces

to ¢ with only six independent components.
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3. APPLICATION TO. PLATE PROBLEMS

Definitions
We consider a three-dimensional body of volume V in undeformed
state, given by a flat midsurface F, with boundary Z = Zk 1) ZS
sufficiently smooth and constant thickness 2h. Part Bg of surface B
of the body where forces Pi are prescribed, may consist of flat
surfaces F+ and F , parallel to F and the vertical surface, deter-
mined by boundary line Z_ and limitations +h and -h.PartB, of B where
displacements are prescribed is reduced to that vertical surface
which is determined by boundary line Zk and limitations +h and -h.
Vertical components of Pi are treated as if they act on midsurface
F, components of Pi lying in X, x2—plane are treated as volume forces,
continuously distributed over the thickness of the body. Such a body

will be called "plate" in the following chapters.

b )
F'

Fig. 7
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3.1. Two-dimensional representation of three-dimensional

quantities

As plates and shells made of non-hyperelastic material have to
be regarded as three-dimensional bodies if the general initial boundafy
value problem should be solved, we derive three methods for the
systematical representation of three-dimensional functions by two-
dimensional functions in this chapter. Allowing for the special pro-
perties of plates and shells these representations help us to apply
the results for three-dimensional bodies in a mathematically consis-

tent manner.

(i) Polynomial representation by Taylor-expansion

We consider three-dimensional functions

@ = alX, X, X) ged, cCy (3.1.1)

]

3
scalar, vectors or tensors. By Taylor-expansion of a with respect

with A3 as bounded region in C,, where these functions may be

to the plane (xl,xz,O) we obtain a set EP(XI,XZ) of two-dimen-
. . (k)
sional functions A :

~

( () ®
AP(X“XJ)"‘ Ir/.f‘.\d' ﬁuj'" A A f /(s/o;// (3.1.2)

with
c)&w
w Q
A (x,x,) = < g (Xu Xy, Xy ) (3.1.3)

(k-4)1 (dx, )"

Three-dimensional function 2,6 A3 is then represented by the set

é? of two-dimensional functions ﬁ}k).

The inverse relation is:

A

P
(] K- P
g(x,,x,,x,}=Z(/3 (X, %) Xy ) + R (X, 2,,X%) (3.1.4)
K=q
with the remainder 5?. In operator notation we say for brevity

that operator



(ii)
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K=-a .
= 4 J_(.) |
b= { (h-4)1 (9)(3)“-4/0 } ;= A2,e P (3.1.5)

defined by (2.1.3) maps uniquely every function E#xl,xz,x3) € A3

on a two-dimensional region A2 < C,. Operator SP(AB),

P
~ W y-4
DP(AP) := Z A X K=4,2,+ P (3.1.6)

U=

2

maps every set AP only on a subregion Aé c A3 only, so that he
can only be denoted as inverse operator to DP if we restrict
A3 to Aé from the beginning, i.e. we admit only such functions
for which the remainder vanishes. In this case DF¥ and D* define
a one-to-one mapping of Aé onto A2 and all operations defined
for three-dimensional functions may be expressed as two-dimen-

sional operations.

Polynomial rgggesentation_gz_integrals

p an integral operator JP may be used to

Instead of operator D
get a unique mapping of three-dimensional functions onto two-
dimensional space. Analogously to (3.1.2) we define the set

Bp(xl,xz) of two-dimensional representatives of a three-dimen-

sional function b(xj,x,,x;) by:
Jei
®)

I

K-A4
B O (XX, X) x, oy« keqzp (3.1.7)

4
where a and B denote the bounds of coordinate Xq in region A3,
where function b(x) is defined. This way of representation is
more general then the previous one as only the assumption of

integrability of function b is necessary. The set:

F ( (x/ 17
B (x,x,) := [@" 9(2’, B, B8/ | (3.1.8)

~s

is then called "integral representative of b".

The inverse relation is:

P P
0F] A R
bix,x, ,x3/=ZZ(!.3 M Xy )+ T (X Xy, X ) (3.1.9)

Uzq (=4
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with
p
- Kel-2 .
_ == h .1.
m, = /x3 0/,(3 oc= 3 (3.1.10)
o

Here h denotes half of the constant thickness of the considered

R
region. I‘(xl,xz,x3) satisfies:

B
R u=4
T(X, X Xy) Xg olx, =0 (3.1.11)

1
This way of representation had been used in [79].

Inverse relation (3.1.9), however, in this form is only valid

for p = 2.

"Finitely valued function" representation [69]

—— e et St o . U e . et St S e B et S P S T e o e (S . S S S S e St S S S S S S B

Besides the possibility to represent three-dimensional functions
equivalently by a set of two-dimensional polynomial represen-
tatives we may cut the considered region into a finite number
of subregions and assign to each region a constant finite value.
In order to represent a three-dimensional function ljxl,xz,x3)

we may write:

+h

(7d] . ‘
T (x,x) = | (Xyx,0)dx | K=az-.p
~h

1 if X é[&,, yN] (3.1.12)
0 ff X5 ¢l}2c'52~,]

n

-4, <
g’ yp*" s g (9/1’-4 <Zf <2(f4

The set

P 77 ) 00) (P
[ = {I ! Z- TR -Z- 7 ’Z_ j (3.1.13)
is then called "finitely valued function"-representant of order
p of three-dimensional function Xy Xy ,X )" [69]. Inversion

of (3.1.12) is defined by:
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G/
IE(X"I’\/"./X:) =/$(X3).I (Xalxzj +"L:P(’VAIX2/Y3)

A

—_— ff Xy € [ ,
Bxy) = s~ T y I g“'”] (3.1.14)

o) g lg.,g. ]

Here Is(ﬁ) satisfies:

+h

o( Z'R(x,,xz,xa) odx, = O (3.1.15)
-h
This method of replacing three-dimensional functions by sets
of two-dimensional functions is often applied to solve elasto-
plastic plate and shell problems, justified only be evidence
[80,82,48,49). We shall use it in chapters (3.4, 4.3) in order
to represent stress distribution in connection with polynomial

representation of strain- and displacement~functions.

Illustration of (3.1.4) and (3.1.14) for a one-dimensional

example:

) cw

o .
HEEEEEERY

V%
/

Polynomial representatives

4 x 3 Gw 'Gm Gi¥ G R

= — )

— — = ¥
A= a

"finitely-valued"-representatives

Fig. 8
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3.2. Application to elasto-plastic plates at infinitesimal

deformations and linear hardening

We substitute in (2.8) generalized tensor fields s=[g,1] and
2? = [E?,EJ by their two-dimensional representatives z(xl,xz,r) and

q(xl,xz,r) with:

n=LN 07,  4=[307

P 2] 12 e .
ly 2= { A/U' , A‘y , /Vb' j ',/ € 1.4,23.3]
Mo (0, % 0] nelngeed

P (v (z s (3.2.1)
Q = { Q,'J' ’ 0{'/'/ s Q,)'] P z 4

p' { ‘(2:3 Jt?:i ""-()”y]

=

Here r denotes the number of internal parameters (3.1) and p the
order of two-dimensional representatives. In the region, restricted
according to (3.1.6) by the requirement of vanishing remainder of
Taylor-expansion (3.1.3) we obtain the following representation of

scalarproduct, equivalent to (2.8.15):

P I P P -7
&p,g»= [ (N; m O,',' +1l m (2 ) e dxdxdv (3.2.2)
(F)
with
rF F
I P (W «
Ny mQf =D D Nymy, Q
/ / Us=A =4 / “ 4
g P . (3.2.3)
P / 7
w2 =D D 1 m, 12,
K=A (=4
+h
K+l-2
M =] X3 dx, (3.2.4)
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By this transformation the original three-dimensional problem is
reduced to a two-dimensional problem in the restricted region defined

by (3.1.4).

Relations for plates_and thin plates

If we split up expression (3.2.2) into those parts which contain

only tensor-components in direction of X, rX -plane and those containing

2
only tensor-components in vertical direction then we obtain:

&n,g»> = Ky, s Dt 2&Ny5, G W+ KN55, G5, .29

Following [83] we assume for plates:

<<'733,933» <2 <<n°(_3, chs» + <<n,,( , 9«/5» (3.2.6)
For thin plates we assume additionally:

24Ny, 9 << «”«/e,%(ﬁ» (3.2.7)

Both assumptions are compatible with the assumption of linear theory
of thin plates that all components of stress in x3—direction are
neglectible small [83]. In our procedure, however, well known contra-
diction of the assumption that either stresses and strains in X4
direction vanish is avoided. - Now three-dimensional theory developed
in (2.8) can be applied without any additional restriction to plate

problems.

If we want to apply relations fo chapter (2.8), definition of
statically and kinematically admissible stress representatives 2? and
n" is needed. Following (2.8.15-16) it holds that s" = [g",u] is

kinematically admissible if:

gf'= L. (Grad ), in V
u = 0O on Bk (3.2.8)
W = o) in V
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f? = [g?,i] is statically admissible if:
<shi s =0 (3.2.9)

This condition of orthogonality is equivalent with satisfying homo-

geneous equilibrium conditions

Div Q?p =0 in 'y

.G =0 - on B,

(3.2.10)

and condition that internal parameters do not contribute to mecha-

nical work.

In order to apply this condition in such a way that it can be used
for calculations of plates, including Kirchhoff plate as special
case, we define according to (3.1.2) the set UP of representatives

of displacement-functions:

Y- = { 0 m} U=A,2, < P (3.2.11)

~ oL

To this corresponds the set Ep of representatives of strain tensors:

,é—P": {(Czc;)s,(wu) ((769/) } (3.2.12)

o{/ S/ D(,P s

with the inverse relation:

~ 4y ~ (2 ~ (77} iK-A ~ P4 P'A
= =(U D S -
£ =&, ( “'P)S +((/°f,p).< X+ (Udlp)sx3+ (Uulﬁng (3.2.13)
according to (2.1.4). In addition we assume that:
~(2) 2/ ~ (1) a‘/ ) ’
Tin= Vs 5 =0 ceasp, 42 o

Ep satisfies condition of compatibility in V and U(z) can be inter-

preted as deflection w in special case of Kirchhoff plate.

If we insert (3.2.1) and (3.2.3) into condition of orthogonality
(3.2.9) then we obtain equilibrium condition in \/ and kinematical and

statical boundary conditions, orthogonal to each other:
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P A S
KNy, Gy » =»f/v(,(/3 2 Ly & olx oy, ol +
(F)

P P -
[T m() e dydxdvr =0 (3.2.15)
(Fr

Because of (3.2.8-9) second term vanishes. Matrix m is defined by:

L
N\l 71 2 13| 4| 516 P
243 2h°
1|2nl0 |F O |50
Ky ?
210 %ﬁ o|&|o %
- 7
2K 2n 2h?
m, = 4|0 150 |50 [5| (3.2.16)
25 247 2h° .
s|= |0 5|9 [%]0©
2h? 2h7 2h"
610|799 |0 |%7]
2177
P . .- . . FORNES Y [N, TR [ 2F-4

Using relations (3.2.3~7 ,15-16) we obtain e.g. for p = 4:

()

( (3; (3;3 «;2; U“;; N('r/ Ulz/ /\Q;U ¥ ]e-ro/X,dXz o/c—' =

3 () 2 (% 3 ;,
=_/[(2th +2;» N (Zh 2 h N, )(2/7 /V”’ 2h” “/3)
(F

(2N 2N )[4, Uz, ’fj "’] ox, dy, A

(3.2.17)
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Application of divergence-theorem leads to:

3 1 3
“oe> = / [(26 Mgy~ 57 M), (3 Ny 225 N5 ),
(F)

3 Zh‘; ¢ (2) 2h7 yq 1 -T
(2 N+ ) (2 Nty + 2 Mg )1 [0 02 U G & Sl bl

[(Zh L 24 N(/i)}/s)(Zh (;: L2k N:‘/
2)
h 2h° ¥ 245, 3 ty
(%—N,(F N)/“(T/v,,/“ ;/v) |-

[0l ue, v ] ey, dn, de

(3.2.18)
With
Jd_ - 2 _, 2 >’ ., 2 ?
ox,” Mon T "eps i Gp Tyt s
n, = cos(X., 1) n, = cos (X,, 1)
B} 20’ . 2h°\w W
= Ny 3 Ac( 5 N }/6 j A{(n = M(,Gnﬁ
2h* € 3.,@ s 2
Mn.s = -n, ”q(g_Mt// 24 /\41 / (26 AA—'M{Z’)
zh3 2 Zh‘ ot
lﬂhn = /3 ( A/ )
(3.2.19)

we obtain
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2 3 S
«n,g» = f [(2h N + % N ) (B Ny + 2 M)

tF/
20 B 26 20° @ 2676
( dp,,ts —5' vfp,s) ( Ndp,,s 7 Ndp,//s)] )

(2 g3 w97 -T >
[—Léﬂl v ) L4x ' L‘x e 0(X;(9/X; AT -

Jlanns N2, (v-s) (M),

Z
s
(ZE N+ 2N, (2 New + 2850, ) ] -

[U VR UE U U] ek, by, dt

(3.2.20)

Angular brackets denote super vectors, upper index "T" stands for

"transposed”.

From (3.2.20) conditions for statically admissible stress-represen-
tatives EP follow immediately: As in the interior [ of the plate

integral over | must vanish,it must hold:

77 hz (7}
Napg + 5 Neapp =0
2
Ndﬂ'dp + %Nd/l!,o(/& = O

in F (3.2.21)
N e 3E e
o(/;,/} S dPIP B

2
Napp * % Napp = 0

On the boundary Z of the plate conditions of statical admissibility

of Np depend on the support of the plate. Requirement of orthogonality
of ;tatical and kinematical quantities induces that either the respec-
tive kinematical quantity or the adjoint statical quantity becomes
zero. The first happens on Zk’ the second on /_. As in (3.2.20) stress-

representatives of different order appear as statical boundary quan-
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tities, independent from each other, the case of combined statical
and kinematical boundary conditions (e.g. simply supported boundary

of a plate) is included in this theory.

On a free boundary e.g. we obtain the following requirement for

statical admissible stress representatives.

(y L2 &)
Nen *+ 3 Netn ©

I

N
I
S
[
]
o

(4

: (3.2.22)
N(A' i’l’_z N @
oln L =

f2) ()
No(h - Ls_'?i Nﬂ(?’] = o

Three minimum principles for the Kirchhoff plate

Be Ao the region of admissible stress states according to (2.8.29)
of the unrestricted three-dimensional problem, defined by yield-con-
dition. According to (2.8.29) solution of problem (3.2) can be con-

structed by minimization of functional

No(8)= 50, <207 6)=3up, (9-9) G $ e avae
(V? (3.2.23)

for p € HP'.

(i) three-dimensional method:

Here we choose

1% .0
9 =[Gy, % Xt), T, (5, %,5,T)] €5 = A,

~ (3.2.24)

,.,P =[69( /x K b//ﬁ (XJIX.“)( )J€§.D"Ao
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Ao assumes absolute minimum of value zero for the solution

gp (xl,xz,x3,r) EHPr.

(ii) two-dimensional method:

here we choose:

¢ = [M’(;(Xh)’l,’t), I, (X,:,Xz,?] € 00— Ao

-~

€

" (3.2.25)

g

[}

[ A/cls;a (XMXUT)/ /7;: ()(/'l)(z'T)7 € Qa- Ao*:

. * s . . s
With NZB' ZB'NEB as two-dimensional represesentatives according
to (3.1). Ao assumes absolute minimum of value zero for the

. P 0, P, _
solution NaB(xl,xz,T) € Ht . Aot and Ht are the region of ad
missible stress states and Hilbert space of statically admissible

functions in two-dimensional representation resp..

(iii) mixed method:

Here we choose:

g2
g = [/%(,4 (x,%.,T), 17, (x, x37]€n>- Ao,
» 9*(/\, ~ ' V3 0 (3.2.26)
,;P = [(q(P 4')(31)(3 ! L)’ ﬂ;n(X”yz'XJlT)]é é = Ao

A attains absolute minimum for the solution Ngﬂ(xl,xz,ﬂ € Hz' .

Its value is not necessarily equal to zero.

3.3. The rate boundary value problem of the plate according

to von Karman plate theory for elasto-plastic material

behaviour

Analogously to (3.2) in case of the initial boundary value pro-
blem of the Kirchhoff plate we derive the conditions for statical ad-
missibility of two-dimensional stress rate representatives 'gjxl,xz) by
orthogonality condition for kinematically and statically admissible
strain and stress rate quantities §g(x1,x2,x3) and qg(xl,x2,x3), resp. .
For this purpose we define two-dimensional representatives D and T of

three-dimensional tensors &d and QE according to (3.1.2-4):
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D) tr, 0= { D5, B, D ]

Y o (f € [42337

/,

P | (3.3.1)
?;i CKH X;) = { Je s Z;% cr <f 1 <p<HoO

The scalarproduct for the three-dimensional case is then defined accor-

ding to (3.2.2) by:
£ 2 7,
PP v
LI, D» -"/(Z Z 7:7: My Dg ) dx, ax, (3.3.2)

Just like in (3.1) we restrict our considerations to those elements
6d and 8t for which remainder of Taylor expansion according to
(3.1.4 - 6) vanishes, so that analogously to (3.1.6) a unique relation
exists between three-dimensional quantities §d and 6t and two-dimen-

sional representatives D and T.

Splitting up (3.3.2) analogously to our procedure in case of the

Kirchhoff plate, we obtain:

<(l:'2?2» = «( dﬁ/J%“‘§>'+ <rz;3’1%8)>4k<{7%ﬂ/%%3‘>> *
Tz, By ® (3.3.3)

In case of the von Karman plate we now assume that third and fourth

term is small in comparison with <<T,D>>.
~

- e S i s . S 4 S St VR G e S " e QS S et i ot S e S St e S S P S S Y T S B S e o e S

Kinematically admissible strain tensor representatives are defined

by:
F/.'_ P/" (2 ) [47] ¥/ 2y fy [¢7]
g q?,w 3 } { (xF / ’%F’ Qé/;/"éége s Lﬁx/ 644/'" LéiJ;
(3.3.4)
Here U;l) are two-dimensional displacement vectors where 0(2) is an

2

exception according to (3.2.14). may again be interpreted as de-

flection of the plate in x3—direction.
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Because of assumption of moderate rotations and small strains and
the requirement of fulfilling the condition of balance of momentum

according to [72,74] holds:

M/ (”) 2 ) 2
o U, Ul v Tog =Tow (3.3.5)

T [

Then the scalarproduct (3.3.3) becomes:

KIP D> = S o "
- Z “/3 mm /3:(/ + 7/;; “1] 0’/\’ 0/X
F

L=4

(3.3.6)

with +h

WA
My = [ X3 dX, . (3.3.7)

U
1N

Explicitely we obtain for p

<<7-PD » /[[(2/7 (41 Z'T— !3)/ (Zhi‘ P +2?/,’57;/:r///

5 § ( 2) 3
__3__“/3 Z; d{:u) (25/7 «/:J 24K ﬂu} (2/77_{) Zh o(/-‘)/o U/‘:

“ 2T
(ZhT -+—§— o(/.; Zl/J[UPI /IXIB/U/_*. %";,UIQ/;]T/O/X4O/XZ

/ ffonry. 22 02) 28 v 267 (2B o287

S_(2 7‘(‘//
(Y B BT A

5""7 h

[y " vy U] "} edx, dx, -

/

_h (3 2/,3 (2 2;,5 2;, (3
ﬁ[(2h 0(/3/3 3 Eﬁ, )( Ol,o/@ 0(/3/5)( a,;/a, ];/Jla

{Fl



Zh,r 2/_'7 (4/ 2 3) (2) a@) 2‘;3 G /
(5 ), (2hTopy + “3*7_ )/aq+(2h°7"/_°/s Tl U]

o(pla +-— “PP “P'ﬁ of
Y N TN () 277
) [(/“‘ ! (/,d, U Y U J Ax, dx, (3.3.8)
Here T(i) is defined by
. an w
{t) 3
Tn = Tap g (3.3.9)
With: (3.3.9)

IS TEINY )% 20 @ 2h°
/ZC%ZI" +=’5-"— n ) Us ot dly, /Tz:ﬁ,ﬂ *T@f,;/‘/wd&dx =
F/

s s
(2)[ gi oth +2£ om/U (2;’ o(/s/; 7”7;;; }”d Um] dx 0/)’21-

’/?2/13 e(,(:,l/;q + 2/75 q/_,,/&,(}UwO/X O/Y ' (3.3.10)

we finally obtain

LTHD» = [ (2hi + ZET0), [or T < ZTR)], U+

(24 T Mr‘ Y) U, - (22 d,,‘j; 2t In@ETS2ETY)

(_2-_3— z.—(—(Zl 2:7 “:I// (2:?37;{:; l’ll/j[ U’ZJ(/B) U(z,f ZXJ dA&

'

s e [ B T 2
(F)

2;,’ (2) ﬂ// zz., (4 z;, (3 2% % zt,? @
(3 “Ppn* ap/w)]( «p,s S 7:(,6,5 ( Z(;/, a'/slg/_/

4 5]
[V VS UE Ul ] Tl ay,

(3.3.11)

Using the following abreviations we reformulate the boundary integral

and obtain an expression similar to (2.2.19):
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2;73 (2 (tu
= (—3_ 7;/31/3 5' «ﬁ/_s )n

a~
[

4 20 @ w H 2)
Vv, = (21.,7;;14-7"7;" )/o U,:’+(ZhCn+ZT7;,,}UI:(/O

3_ ) LS 2/,3 @ (
Mns = _nznd (%ﬁ_?‘;” + 75-—7;‘ / —Nen o({3 2 7:(;)/
2403 @ 245
Mo = npny (73 7;p + T /

(3.3.12)

Then boundary integral becomes:

ﬂ[(ﬂv BT (Vo Yos Myl Moy (BT 220,

(77; + 2 7:(”//][(/w & u U "”] j ol x, olx,

(3.3.13)

Either in (3.3.11) and in (3.3.13) first derivations of Tég) are con-

tained as factors. However if reference state ( )o is given, TaB'o'
andfﬁnlh)are known, satisfying homogeneous equilibrium conditions in
V and homogeneocus statical boundary conditions on zS so that ex-

pressions

2 (2
(Zh T ,,,/,/, £5 ,,,,,,)/ U,a(

(3.3.14)

(2h T+ 22T ),

vanish identically.

In this way we obtain analogously to (2.2.21) conditions for statical

admissibility of stress-representatives E(i):
ZA w
20 Tpp 5 e =0 ”
2h3 @ @ 2h° 12 2h° +
(-21’7 7;/3,/5 7;/3:0} ({“ / ( “p/so( + “,5/3«}
217 25w
7:‘/’/3 z;ﬁﬁ -0
2h 71 2/,77_14; -0 © (3.3.15)

wp tT7 «g,1
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Boundary conditions on Z  are like in (3.2) dependent on support of
the plate, so that requirements for z}i) on Z_ are obtained by con-
dition of orthogonality of adjoint kinematical and statical quanti-
ties allowing (3.3.14).

All stress rate representatives E}i) satisfying above conditions in
F and boundary conditions on ZS according to the considered problem,
are called two-dimensional stress-rate representatives z? of order

p = 4.

Now it is possible to use the relations of three-dimensional theory
according to (2.5-6) in order to deal with the rate boundary value

problem for the von Karman plate without additional assumptions.

3.4. Three functionals for the solution of the rate

boundary value problem of the plate according to

the von Karméan theory for hardening material

In opposition to (3.2 -3) in this chapter we start from the
Kirchhoff-Love-hypothesis of plane cross sections of the plate during

the entire loading process. Be vi(xl,x x3) the displacement vector

2'
of an arbitrary point of the plate, so that Green's strain tensor

and its derivation with respect to time E’are defined by:

23&23 = Via"V%I + %LI‘:J
2627 = 7 + \/,'2'r %'3

Veat a1+ Vv, 2 Vv,
(3.4.1)

2 €4 = Ung* Uga “XsUyap + Upq Usp

- _ L:t - - _ . - °
2&, 4p* Upa= X Usupt UgaUsp + gy Usp
where u, denotes displacements of points of midsurface of the plate
in xl,xz—direction and ug denotes deflection in x3—direction. De-

formation gradient F is defined by:

1+u,,~% Usan | Uy ’Y:W‘J a2 | - "‘3,4 ‘
_—— —— — — — — — —— _'_ — — —
£ = e I S X w (3.4.2)
,'a.( “2,47 233 04 | 22 73 %322 | 3,2
w ! ! }
3/4 ' u312 /,
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its derivation with respect to time accordingly.

Stresses and stress rates are not, as in case of purely elastic pro-
cesses, proportional to € and E. In order to describe shape of stress

distribution in x3—direction according to (3.1) we may:

(i) cut the plates into sheets and assign to each sheet a stress-.

tensor depending only on xl,xz-coordinate.

(ii) choose polynomial test-~functions in x3-direction for the stress
tensor where its free parameters decide for the shape of stress-

distribution in x3—direction.

As in (3.2 - 3.3) polynomial methods have been treated broadly we
choose the first (i) possibility. Then we represent stress and stress-

rate by the following sets:

'

/M;; (%, %) = { Aé:v) ﬁﬂ/ A/;? Y xp = A%“«

and (3.4.3)

L (]

Nya (X2, = { N,,/J, N«(;l, NG YT /\'/«;.J = Ny

(see fig. 8). If we introduce these quantities into functional

(2.6.41) , we obtain:

SPLATREWE DT i)
u,P# Upe + Uy Usp ™ Uga U X, (4 " Y
r " .
€ . . .o, - o a
+Z xA u’/dua,/l * b-z Uy + 63 3 _zNocﬁ Lo(,eag )} df 0/)(
(=4 Yy
- “* - (.
—me*Zés,J , ] dx, dx,
L=q c=4
(Z,)
r .(. r .(
: (4 - . ((I P - . p
A E a2 e m bd) = (6= &) A, ol

{Z“} (3.4.4)
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- r Z/\'/ (¥} Z (u )((i)
b d .

Ndp (=54 P / ‘(p 3

r 4 .
o r . fl‘/ e r =Z ¢, () (¥}

Nan =Z/V0m ; Mdn 4 M"’ )(; '

24 ted (3.4.5)

After transformation we obtain

4 Vis . . - . > . .
24,: —2:/{/\/«/5 (uo(,Pf Up,at Py Ugpt g Uy )t /‘7,,(/3 (M:.,,,,/,* u3,/_w)
(F/
_ roo. . T . T (cs ' y
+ Mcp Usw A3,0 + bo( U +63 Us 'Z L“,BJJ op Ne’J .} 0/)(_" OIX‘Z

- (/\./«(n(;‘-.(_/\;’e(n ""a,o("‘l?l:(s) OIX,, D/Xé.’
(Zs)

,:/ [Ri (i) = Pl (- G+ V (g 51 ol X, 0l X,

(3.4.6)

This mixed functional does not have extremum properties (2.6), but
is very convenient in application because test functions for rates
of stresses and strains may be chosen indepedently from each other.

A numerical example will be given in (4.3).

« (1) (1) . (i)

If we choose e.g. in (2.6.57,59) k = 3, we obtain for N B yBAGNAG :
fi _ l 2 0/4 ] j h‘) 4 [., w
I3 4&—3 N»u I"E 453 N '26"‘ 44-2 Mi)]
[y " fe) (Y] (Y]
| =N TR N RN A )] N [
'I(/m\ | N 1
1 ___._____.:;_._1__.___ _—W——C—.‘_ 1
4 i) 4 D th
Nn‘/ I'E T YES Nee= |zg-! 2”7 z)] . Nu
2 * ! 4 (N“" cv‘:) ]2 I . N("

Nu‘/ (2T e | 42 N
M) I I I A
' !

(4+v), 2% "2
¥* | * |‘/'—5- t =3 Ny,
\ | | &
|

(3.4.7)
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Index ( )* denotes here and in the following prescribed quantities on

the boundary of the plate, f(l) denotes forces distributed aloﬂg the

2 -direction, V denotes the resulting
force on the boundary of the plate in x3-direct10n, x( 1) is the
(i)

distance between component NaB of stress representative and midspan

boundary of the plate in X, 0%

of the plate.

If we use functional (2.6.53a) having extremum properties under
conditions derived in (2.6), we obtain with (3.2.19) and with defini-

tions of boundary quantities Mnn' Mns' V the following expression:

A
&7 {7 Kf/’rJ(“"ﬁ*"‘M*“mst Usp by ) (Gt gttty i sy,
(F)

A 2 . . . .
t g Kaprg (Coup * Capad (Gg g+ Gy gy ) +

3 . . . L .
+4+ K«/sw(“s,«/s*“s,p«)(“x,cr + ”J‘,x*“ar"‘.;d' t U g “3,5’)

r rd \d r . p v
' +£‘ N“ﬁ Usu Usp * 7€< Ug t 7£3 “3} oA X, 0/"/; *
U - o, ¥ * ¥l . y r »
[Mn: “3,0'*/\/«“« ( h5‘5+l/)u3]0/'\/o‘f d"i—MﬂJ“
{f) (3.4.8)

With
r

4 ', )] 02
= L L .
de“, Z:,, O([ID’J) a(/g ¥4 :;,-4 XPG’J)(‘;.; °‘[3fa’ E d{bb’é 3.4.9)

( ) is defined in (3.4.7). Convexity of (3.4.8) is assured if,

BY6 ;
analogously to (2.2.60) in three-dimensional analysis, L( ) and N g
are positive definite. Necessary condition is that NZu and N11 -

are positive. This requirement corresponds to the requirement in [72]
of positiv definit membrane stress-tensor. Interesting is also the
difference to [72]: Whilst in this chapter conditions of convexity
concern only the given reference state, in [72] the corresponding

requirement concerns unknown state of solution of the problem and is
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in this way an assumption. This difference however, is essentially
connected with linearization of the problem in the neighbourhood of
the reference state ( )o' If nonlinear terms in the rates would be
considered, conditions equivalent to those in [72] should be posed as

assumptions on the herein treated rate problem.

Functional (3.4.8) is treated in (4.3) numerically. We shall see
that analytical effort in using (3.4.8) is much bigger than in using
(3.4.6), however for comparable degree of approximation number of un-
known scalar quantities entering the linear system of equations is much
smaller so that the needed time of calculation is much shorter and

numerical errors are less important.

If we use functional (2.6.35) we obtain:

./[IZN“; ,/MN;:J“’Z’—N' by U J A X AN,

e {[{/&;; P Up o ™ /Y%B'za LZ%/: )(’Lz;¥_(23 )+
(2.)

-+ZNI,ln,s [ -0 0200 - G2 )T} oK A,

(3.4.10)

Difficulties in use of this functional arise from the fact that dis-
placement gradients must be kinematically and statically admissible

as follows from (2.6.46, 2.08 - 13). This has been discussed in [8] for

the rate problem of rigid plastic material behaviour. However in order to obtain
global and pointwise error bounds analogously to theory of elasticity,
investigations in this direction, up to now not succesful, should be

continued in using functional (3.4.10).

] ot

Nog” (xq5%5)

. Fig. 9
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4. NUMERICAL RESULTS

4.1. Calculation of stress state in a quadratic plate

according to (3.2) without hardening

A quadratic, homogeneous, on boundary Z simply supported plate
is loaded proportionally by a distributed load g orthogonal to the
midspan of the plate assuming for plane vertical boundary surface.
Material behaviour be elasto—idealplastic. Assuming for infinitesimal
displacements we apply the method of approximation of stress state in
the plate derived in chapter (3.2). Tresca's and von Mises' yield-
conditions are used parallely. Load is symmetrically and sinusoidally
distributed over the plate with:

)

™ m
q(xl,xz) = q, - cos ( 35'“1) .cos ( 72 X

2
*3
A
F
] ' - q
/A —T 7 =
'/ ———— & =
J o / / X,
/ ,/ a
Zh 7 — 7 -
| ; z
;’ a
X4
Fig. 10

Following (3.1.7 - 10) we introduce two-dimensional representatives

n .
Ngﬂ and EaB for stress- and strain tensors. Here we restrict on re-

pPresentatives up to order two.
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*;
Q(x,,x,)
1
[ y S
)— — - '— -— —
/7 _,.-"'-L\\
7 -~
’
/
¢
e . 7
/ N,
= g
A 4
S, P "
;n/ﬂl ’4@

Fig. 11

So the scalarproduct (3.2.2) becomes:

g (
(W% ED = / [Neg 5 Eud + Ny 23 Eugy T dlx, o,

7]
(F7

Kinematically admissible strain representatives E" are given according

to (3.2.12-14) by:

E;;:ﬂ = %(u::;} + u/':;()
& - 0w
With
L{‘: = 2h w,
uy =- %3 “3,u
w, = U, = 0 on Z
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Condition of orthogonality (3.2.15) then defines statically ad-

missible stress-representatives:

(P

(NBETS = [z,, N 2N "] [Usy, U2, ] ol

/[7 “/31/%12;,3 a’/&,ﬁ}[ud, U(ZIJ o, dx,

tF)
:‘/2,, n TVt Mass)® Mon] [ U U U [Tody,dix,
12
3 le> (2) )] C+
/\/ U =0
"« Mg C. (4.1.3)

For plates simply supported on the entire boundary, ua and u, are

3

identically zero on the boundary. Only u is not prescribed such

3,n
that statically admissible stress representatives must satisfy:

A@p,q = C? .
P in F
A%ys”gd =0
(4.1.4)
>
p1nn =0 on 2

Because of assumptions of infinitesimal displacements and vertical
(D)p
aB

loading, in our case N vanishes identically in F and on Z.

Definition of the region of admissible stress-states

In the following we shall use Tresca's and von Mises' yield con-
dition to describe the region of plastically admissible stress states.

Using principal stresses 01, 0,, 0, we obtain for the general three-

2 3

dimensional case:

(64‘69.)2 * (62‘63)2* (53'(5,,)2 < 2G2 (4.1.5)
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16,-G,] £Gs G, >3, > G,
/63~64/ < 9 G, >G, >6, (4.1.6)
16 -G/ < G G, >G, >0,

With (4.1.5) and (4.1.6) as yield conditions following von Mises and
Tresca, respectively. O denotes yield limit from uniaxial tension

test. For plates we obtain [1]:

62+ G* - 606, <« 6 (4.1.7)

for condition (4.1.5) and
16,-6,/ £« G ‘f 6,6,€0
16,1 < G (4.1.8)

o/ < if 6,5, >0
2 —

Ol

instead of (4.1.6). With

_ A A 2
S,z —7(644*6;2) IVT,I'(GM"@I) + G, (4.1.10)

(4.1.7) may be transformed to

2.62 -G 62z+364: < 652 (4.1.11)

22 A1

e}

A4

and (4.1.8) becomes

2 z 2 . 2
(6,,4‘622) + 1-,!642 < 6-s '7[644622 é642 (@.1.12)

1 X 2
'3_(6;4 +6é7.) tv%(o-M“GZZ)z*' 6122$65 'F 6:14 G}z > 6:’2

Using three-dimensional approach, stress state is defined by Ua =

B

= UaB(xl,xz,x3) such that region of admissible stress state is also

defined in three-dimensional space.
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E Tresca
von Mises

Fig. 12: Plane representation of yield-conditions
(three~-dimensional problem)

Using two-dimensional method (3.2.25) stress state g = gﬁxl,xz,XB) is

represented by EZ with the inverse relation (3.1.9):
3 (2 A (17
6«# (X."xz'xs)"-: z_hf N«P (x4,Xz)'X3+2—FN°(ﬁ (XJIXZ) (4.1.13)

For example 1 stress representative E? is in the admissible region if
+ = s s s .. .
caB (xl,xz) = ouB(xl,xz,h) is inside the admissible region according
to (4.1.7), (4.1.8) resp., with:

+ (2) .
SHRERA =537 Nag (X, %) (4.1.14)

Then we have for von Mises'yield condition

@) 2

(2 2 2 Ay f2/2
M, +/V‘Z—NM/V22+3N42 < N
(4.1.15)

2
with Ng) = 23h Gs
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and for Tresca's yield condition

(2,2 @2 2
(N =Ny )* + 4NgT < N2 H NN < N2

Ky 14 22 = 12

(4.1.16)
1 (7] e 2 of4 7] 2 z o LT Y 22
FONT + N ) Y NG-MEPA NS = N MWy >

12)
A N,

. Tresca
von Mises

o
<
B

Fig. 13: Plane representation of yield-condition
(two-dimensional problem)

Assumed material behaviour

For our examples 1 and 2 we use the steel with designation of U.S.-
standard 1025 carbon steel (NACA technical note N° 902) [25]. This

material can be well approximated by an elasto-idealplastic material

law.

4 N
X . imit =3, .
2 with yield limi Og 3.792 .10 —¥

modulus of elasticity E = 2.0167-107£2-
-3

— so that o /E=1.80 -10
£ S

Fig. 14
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Purely elastic solution

For example 1 purely elastic solution is analytically known [85]:

2
N°m = -an'i;(xl-f v) 5"”[g('§1 +4)]'5,‘,, [g §+4)] no summation

ofoX
2 .
N;z - _%‘3" (4-V)cos [-}'(-;% #4)]-cos —?(%M)] a#*p
(4.1.17)

With v as Poisson's ratio and Qo as load parameter. Following (4.1.13)

three-dimensional stress-distribution is therefore given by:

o{2)

3
o
6“/3 = T3 Nocle Xs (4.1.18)

Three-dimensional approach

A very simple class of shape functions is characterized by the

requirement of vanishing of residual moments NZéZ) induced by plasti-
city.
Pl
Nep = O (4.1.19)

So we may use the following approximating test functions over the

cross section of the plate:

4
P & -4
60{/3 (X, %, X3) = Zb«p Xy (4.1.20)
=
with b;;)(xl,xz) as unknown coordinate-functions. As q, acts only in
x3—direction in example 1 we have:
) 13) (S)
b = b = b = 0O (4.1.21)

Written in detail condition (4.1.19) becomes:

th

) y 3 s (27
(éa(/,x,+b°,p’xs)x3dx3=o=> b, =-35b (4.1.22)

~h
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If we use test-functions

(2)

(4, ) = ¢

(a’-x*) i
oot -X « no summation

(4.1.23)
(2/

.,(,,(x,,x)* p X X2 a # B

then statical boundary conditions are identically fulfilled. If we
allow for symmetry of the problem, we obtain:

Cae T G = G
Cpp = Coy = S (4.1.24)

This means that we introduce into functional (3.2.23) test-functions

with only two free parameters:

gix =c, x3 Shz)ﬂa Z);no summation
_p: (4.1.25)

.
Pup =06~ 3 XXt 8

With (4.1.25) and Ao as region of admissible functions 2?-—2 we

i
obtain the functional:

_/\,_'°= ﬁg [.(Bf +2(4+)’)(.942 -914 22)

tﬁ-%

FLO RN Q)20+ V)(5 = T (530 5,8, )] X500, el

41
(4.1.26)

After inserting (4.1.25) we obtain for (3.2.25) the following ex-

pression:

si}zi - 536@0&{375[F( ~E,C+ zé( & - 5 C. )]f (4.1.27)

here (h3 denotes dimensionless quantities with:

2

~ Caz 0 2h e~ X
b= 2% = 7
[ -~

= R (O )2 =X
p = TE &9 Xy = 52 (4.1.28)
o G, a 42 ~ 4

=——“A t—— QO a
Cp = 22 (55 3 =F (5
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Numerical results

With v = 0.3 we obtain purely elastic solution as:
6:0( = Té_;' Sth [—g x, +4}]-Sl‘h[%r(;(‘2+/1)] \)'("3 no summation
A . (4.1.29)
6o = A% s [F(%,4)] cos[F (%,+4)]- %, w48

So additional stresses induced by plastification are defined by

G2 = B,,(k_-,—%’)?:)(/—?z) no summation

(L3 %

(4.1.30)

]

~9 ~
Qe = B,(%,-&2%}) %, o # 8

Xe
such that entire three-dimensional stress-distribution in the plate
is given by:

G = (5% Sin[F (%, +4)sin[ 5 (%y+ 4)] - B,(1- B2 X3)(1-%E)] %5
(4.1.31)

5«,3= ?A'r‘ cos[B (%o ) Jeos[TF (+4)] - B ["‘_?)?; )%, ?P} X,

Numerical values

To}d
o
i
w
w

1.0 15.6 8.4 - 0.2109 = 0.0299

1.15 17.9 9.7 - 0.5655 - 0.2221
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+h

purely
elastic
l solution

~h

o =115 Q.= 1.00

Fig. 15: stress-distribution over the cross section of the plate
in the middle of the plate in xl—direction

Two-dimensional approach

(2)
B

Here we use test-functions Nz ., satisfying equilibrium condi-

tions in F and on 2.

(2 s ~ ~ A~
Nj: "= <4 (4")(42)(4 _Xt.z} +C, (4-x4l}["—le7

Pl ~2) ~ ~ ~
N,, =< (A—X;)(A-x")+(,' (4~x;)(/f~x,'7 (4.1.32)
p() A

N, =C[2%,%,- TR X+ X%, )]+ <, [2%,%,- L(%5% + X% )]

57172 2 "4

with

NP (S =21) = MR =24)= NE¥(5,=R, - 0)=0 (4.1.33)

14
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From symmetry of loading and gecmetry of the considered plate follows:

¢, = <, (4.1.34)

Equilibrium condition in the interior is given by:
P 9(2) P2 _ 2 4
Ny 1r *Noz22 2 Naz 22 = ~2[c. (4=X3) + (1~ x1)+
(4.1.35)
-y2_2 e
¢ (1=x2) +C(1-x})]+ 2[C (2-x7-x})+c, (2-xt-x2)]

From this follows: C_ = —Cl, c_ = -C

5 6 2°

So statical admissible stress representatives p are given by:

R = C, (A= X )1 -sz) - Cy(4-xi)(1- X/;} no summation
'£,= 4 3 4 3 A S 4 .5
Q‘P"-‘-C"(Xq"g‘x“){xﬁ“3‘Xp)+6:!(x,“' ?X«)(XA"-—S_—XF} o # B
(4.1.36)
Functional (3.3.35)
*
N, (p) =sup (2-270)
~ '8*6 No—Aot £
after inserting (4.1.33) becomes:
»
N (c,C)=[(G*C,CF) 4 01468 +(c2-C,C,) 6,04351
+(2¢,6,-¢,¢0-¢cr¢c,) 521133 ] (4.1.37)

Numerical values

% Cl C2 iﬁyield—conditions
1.5 0.1933 -0.2708
v. Mises
2.5 -0.3327 0.1234 L
1.5 0.1575 -0.2351
Tresca
2.5 0.3673 0.1580
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Interesting herein is the change of sign of coefficients for load
parameter E; increasing from 1.5 to 2.5. This may be interpreted by
the different position of regions of admissible stress representa-
tives (appendix Al0). Result (4.1.31) as well as result (4.1.37) are

rather rough appraximations:

1. in three-dimensional case the shape of test-functions in Xy 1Xy=
direction was prescribed, only distribution in xl—direction was

object of optimization.

2. in both cases we restricted our test-functions to order 6 (taking
into account the vanishing of coefficients in (4.1.31) represen-
ting vanishing of membrane stresses), where symmetry and equili-
brium condition reduced the number of unknown parameters in the

functionals (4.1.26) and (4.1.37) to two.

By increasing the number of coefficients, use of representatives of
higher order than two and by combination of three-dimensional and
two-dimensional method a technically useful application of the herein
developed methods seems to be possible. Our examples on the contrary

have illustrative character.

In general in every calculation under assumption of infinitesimal
deformations validity of this assumption has to be estimated for the
considered problem; especially for thin plates and shells deflections
may assume easily large values. To get some idea of the obtained nume-
rical results we imagine the plate from example 1 having 2 dm length
of the edges and a constant thickness of 5 mm. For the modulus of
elasticity E = 2106-7~1O4 ng of the chosen material dimensionless
laods 551 = 1.0 and 362 =-1.1§ correspond with physical loads 91 =

= 131.6 po 3 and dp = 151.4 mZ * Deflection for purely elastic
material behaviour with the same modulus of elasticity in the middle
of the plate-‘would be whax1 = 2.242 mm and wmax2 = 2.578 mm. Dimension-
less relations w/2h would then assume the values whax1/2h = 0.4484

and wmax2/2h = 0.5156 such that use of theory of infinitesimal de-
formations is only justified, if we assume that the unknown plastic
deformations are small with respect to the deformations in the

(hypothetical) case of purely elastic behaviour.
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4.2. Calculation of the stress state in a circular plate

according to. (3.2) without hardening (example 2)

A homogeneous circular plate, clamped on the entire boundary is
proportionally loaded by a vertical distributed load q, constant over
the entire plate. Material is assumed to behave according to (4.1)
elastic-idealplastic. Assuming for infinitesimal deformations we calcu-
late approximately the stress state by the method derived in (3.2)
and already used for example 1 again using yield conditions of von

Mises and Tresca

ANSANNN
122274

V1

Fig. 16
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Calculation of this example is analogous to the procedure in example 1.

For details we therefore refer to [85].

Purely elastic solution

Also for this example analytical solution for hypothetical purely

elastic behaviour is known:

i((4+v)—;72(3+v))

NE“(F) —4‘:"—((4“’) FA(4+39))

(4.2.1)
B, (F7%y) = 2 G((1+v) ~F2(3+9)) X,
GUFR) = 2 G((1+v) - #3(1+39)) %,

Quantities denoted by ("3 are dimensionless with:

~ o(2) oQ
Ny T E(2h)? (Zh ; 3=

(4.2.2)

o(Z)

N = c(Zh)z (za} ;

N
[
mh» RN

- #(z5)’

Here Néz) and Né ) represent stress representatives of second order,

expressed in cylindrical coordinates.

0
|

Region of plastically admissible stresses are described according to

(4.1.10-14) by yield-condition according to von Mises and Tresca.
~s 4 1

Elastic limit load is Eiim =0 A W—
Y/1+v2-v

Two-dimensional approach

As in (4.1) we use representatives of order 2 and choose the following

test-functions
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[4
~n .
NE®(F) = 5 a; 7

=4
(4.2.3)
6
~ O, A~ ‘VZ"I
N, (F) = z b, F
taq

for stress representatives of residual stresses. Taking into account

symmetry and satisfaction of equilibrium conditions (4.2.3) we obtain:

NP(U ~2 ~3 ~ ~
N,. =a4+a3r +a,r +a5r"'+cz6k'5-

= (4.2.4)
Ny = a, *3‘23"*-‘!%»" tSa . F* ba,F

These functions are introduced into functional

Ao=1(2 33}4 (4.2.5)

which is (appendix AB) special case of (2.8.29) in case of proportional
loading. A0 is then minimized on ﬁ? - 3; where analogously to (4.1.15-
-16) 3; expresses region of admissible two-dimensional representatives,

described by von Mises and Tresca's yield-conditions.

ggmerical results

~ yielﬁ"

q 3 a3 3 8g % condition
2,650 0.0547 0,1410 -0, 3945 0,4020 -0,1419 Tresca
2,675 | 0,0525 | 0,2489 -0,6911 0,7003 -0,2461 Tresca

2,700 0,0318 -0,0461 0,0730 | 0,0215 -0,0515 | von Mises

3,000 0,0262 0,0708 0,0324 0,0029 -0,0687 von Mises

3,300 00,0017 0,1394 00,0850 | 0,0192 -0,1427 von Mises

For purely elastic material behaviour maximal dimensionless deflections
would become 0.614 so that use of infinitesimal theory is some extend

justified also in example 2. Already with our very simple test-functions
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we obtain an increase of limit load of 36 %, relative to elastic limit

load aiim = 2.4301, though redistribution of stresses in x3-direction

remained unregarded.

Three-dimensional approach

As in (4.1) we prescribe in r-direction a shape-function for re-
sidual stresses, here proportional to the distribution of elastic
stresses. In x3-direction we choose:

o v ~ ~2 ~s
6'. (Xs) = a,{ + a2x3 +a3 X3 + a" X33

(4.2.6)

G (%) = b+ b Z+ b, K2+ 7}

Analogously to (4.1.20) we satisfy equilibrium condition by satisfac-

tion of
+1
P, 1 ~ -
-4
(4.2.7)
+4

=4

Introducing of (4.2.6) into (4.2.7) leads to the following test-func-

tions:

~ ~ ~3
E2(R) =(a, % - 22 a, % )( 165 #2- 0,65)

2= (4.2.8)
&%) =(b% 22 b %) (0,957~ 0,65)

If we insert these functions into the functional according to (4.2.5)
for three-dimensional quantities, we obtain after minimization in the

region of admissible function the following numerical values:
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E a, b2 yield-conditions
2,5 -0,7651 -0,2169 Tresca

2,5 -0,1475 -0,0176 von Mises

2,6 -0,9901 -0,2807 Tresca

2,6 -0,3593 -0,0457 von Mises

2,9 -1,6651 -0,4720 Tresca

2,9 -0,9998 -0,1500 von Mises

3,0 -1,2148 -0,1914 von Mises

3,3 -1,8642 -0,3349 von Mises

For loads E’> 2.9 for the used test-functions no result could be ob-

tained for the Tresca yield-condition.

In example 1 the functional

¥*

No(g) = sup (£-2°9)
2€2%A, ~

was minimized by a double optimization process: first for fixed‘g the

set of suprema u (p - p*,p). was determined from which that vec-
T Pp0n, &R

tor 3 is obtained as solution, for which the supremum attains minimum
value equal to zero. As shown in (A8) proportional loading solution
may be determined from minimizing 7\‘0(2’) = (R'.Q)L' I € go - Ao. This
numerically more convenient method, corresponding to the method of
MOREAU [33] had been used in example 2. In this case,however, we have
to take into account that ﬁ; does not attain the value zero for the
minimum at which the solution p is found. Both examples have been
calculated on TR 440 of Ruhr-University Bochum by a direct optimiza-

tion method of Box [90].
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4.3. Calculation of an elasto-plastic beam with hardening

according to (3.4) (example 3)

A symmetrical simply supported homongeneous thin beam, with
material behaviour according to (2.6.54 -60), is loaded by a proportio-
nally increasing load, constantly distributed over the length of the

beam. Using the functionals (3.4.6,8), derived in (3.4), we determine

the history of the beam.

4
A7V

i-th element

Fig. 17
physical guantities dimensionless quantities
local coordinates X, Z )’? =X I i - E

] Q h
displacement in ;—direction v o = %%
displacement in z-direction W W= %% (4.3.1)
stress (G} S=7% 4 h)
distributed load =2 (2)4
9 ¢=E(+

The problem will be solved by three subseguent discretisations:

1) In x-direction the beam is cut into n elements
2) Each element is cut into m sheets in z-direction

3) Load is applied incrementally.
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If we use functional (3.4.8) then we obtain:

n 4, m
G i G
T DO e )+ 5568y, g, s
=2 > i1 VEY] (4.3.2)

Here Gei have to fulfill the condition of compatibility and the rates

of displacements of the middle-line have to fulfill geometrical boundary
conditions. In order to take plastification into account, the stress
state in the middle of every sheet j in every element i is taken as
measure to determine the tangent modulus. For this purpose material

law according to (2.6.57) is used. Here (2.6.60) reduces to the scalar

expression

)2

4y’
Lo, = 2 + 35

Test-functions for displacements of the middle-line of the beam

We introduce in every element test-functions for the displacement-

field:

4, 5 2
” 2+%(3-%°) | o(,}
2-%(3-%%) X, RN,
w (%)= B v ou(X)= - ( (4.3.3)
FE)+(z=a) | | |7 QAR A
7(§£ﬂ’(?ﬁ4) Pz/

Here, oy @, denote incremental node-displacements in z-direction,
81, 82 as incremental node-deflection and Yyr Y, @s incremental node
displacements in x-direction. With these test-functions we calculate
incremental strains §g:

-
(% [3-3%° X,

e, [
1/\8 3x2-2%-4 | | p,

\ 3X+2% -4 P2

A




~ T g
(4[3-3%" A,\ (4] - 6% T,
—3*-3?1 Az ~ 6; az
1 ~2 ~ —Zﬁ ~
3%=2x%-1| | B 65+2 | | B
| 384281/ |8, L\ 6%-2/ |\ B,
(4.3.4)
Here Al, A2, Bl,,.B2 are node displacements and -deflections of

reference. state according to the rate guantities. Rate of stress

80 can be determined by use of tangent modulus (2.6.59).

In our example geometrical boundary conditions restrict to the
requirement -of vanishing of displacements at the ends of the beam.
This will be satisfied by attributing value zero to the relevant para-
meters of test-functions. If we enter these quantities into functional
(4.3.2) then we obtain the solution of the incremental problem using
Ritz method after integration over the length of the beam and intro-
duction of global system parameters as those free parameters oy Bi'

Yy for which functional J, assumes a stationary value. If we assign in

2
(4.3.2) the value zero to

m '

-~ (3} ~ ~
26 J"‘fx,- J"”/x‘- (4.3.5)
i=

so equilibrium conditions are not fulfilled in the neighbour-state

but in the reference state by the such transformed functional. This
corresponds to the proceeding in (2.6.14 - 29) and is comparable with
the so-called "second order approximation" [84]. The problems in

using this method are evident: As matrix L, here degenerated to a
scalar, is always positiv definit, instable states cannot be noticed.
In the herein treated cases, however, instable states do not occur.

In order to get an impression of the differences occuring in using

one or the other functional we compare the solutions for purely elastic
behaviour using both functionals. We state that the difference between
them relative to the solutions obtained by geometrical linear theory

(first-order-theory) is not essential. (fig. appendix A 17).

Stiffness matrix of the problem is in both cases symmetrical and has
band structure (appendix A9), The elements of the matrix are compli-

cated polynomial expressions.
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Functional (2.6.41) degenerates in the case of our example 3 to:

! =Zf (PILERLVDIC LY

{=4
A s A ~
—4S /i, I, }dx
(4.3.6)

With dimensionless quantities according to (4.3.1) we introduce test-

functions for the incremental quantities in each element:

g 4! ) ~ Y~

J6° = ng+ny X +n¥%

Ji = JA - sz (4.3.7)
~ ~ ~2

JW = O(A * O(zx +0(3X

The according functions of the reference state are obtained by

~[3‘) lg) Q‘) ’Jl~z
- N NER L NP R
& = I+ X (4.3.8)

w = A, *A, ¥+ Agyz

Where the parameter N are obtained

(J) (j) (3)
Ny e N7y Tyw Tor By 3

from summation over time steps from the incremental parameters. As Gei

r Byr A

are computed from displacement-test-functions the compatibility condi-
tions is fulfilled in each element by definition. In oppositian.to
(4.3.4 -5) here we use Lagrange multipliers to formulate jump-condi-

tions between neighbouring elements and the boundary conditions [51].

Calculation of stiffness matrix is in this case easier but the number
of unknown quantities in the considered system of equations is lafger
than in using (4.3.2): In both cases we used 6 elements and 6 sheets

in every element; in using functional (4.3.6) we get 167 unknown para-
meters, in using (4.3.2) we have only 21 unknown quantities. Although
in using (4.3.6) the stiffness matrix has band structure, however, the

bandwidth is much bigger than in the previous example.
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Ap ge'tid ix A2

Convexity of the elastic region for_ the von Kérmén-plate using

von Mises' yield condition for the first and second Piola stress -

tensor ¢ and § , resp.

In (2.3) we showed that the change of geometry has an influence on
the description of elastic region if we use the first Piola stress
tensor. Here we investigate if this effect has under assumptions of
chapters (2.1 -2.3) an essential influence of convexity of elastic

region C and validity of normality rule in transition from € to C.
If we use g, von Mises' yield condition in three dimensions is given by

! ! 2 ! '
Gy G-k <0, Sy =Cry~ 39 O (A2-1)

If we regard the plate as plane object, (A2-1) reduces to:

A
4
’ _ 2 (6:14 - 62.2) 612 (A2-2)
o(p - 4
6212612 ) (644—622)

If we assume validity of Mises' yield-condition in using t and we

take into account relations for von Karmanplate derived in [74]

t, = G, A {-% - G, 4 (A2-3)

with ¥, as deflection of the midspace of the plate in a-direction, so

we obtain:

/

L/ 2
- <O . -
tgt' t}t k / z:'c c(/a tzf;ts/_s <0 (A2-4)
Because of ta = %aa and tt;ﬁ = taB for o # B we have:
7 /
toly =%%  tplpOR%0,%
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With (A2-2) we obtain:
[ / _ 1 _ ) .4‘
To(pt(p :(6“/3 d;qz zGKQ){G.(p Jexpz @3)’@136;/;%6; (A2-6)
so that (A2-4) becomes
2
O Ly 5] -390~ < 0
If we write (A2-2) in the same férm, we obtain:
-3 _b* A2-8

Written in detail GYn + qkwh has the following form:

d, +Lp = (A2-9)

Because of general assumption of small strains squares of deflection

must be small in comparison with unity. So we have:

by t B8, = dpy (07

This means that convexity of region C is assured for convex regions

€ in the case of the von Karman plate.

Validity of normality-rule

If we compare the formulations of normality rule for elasto-plastic
material using the first Piola stress tensor t and second Piola-Kirch-

hoff stress tensor g
dt..ddf =0 ., d@..dgf=0 (A2-10)

it follows (1.3.15) that they differ by the scalar value

~

[4 P _
G.JF.dd" = G, dF, d’d,-a | (A2-11)
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This difference does not vanish in general. In order to investigate
the influence of the assumptions of (1.1 -1.3) in the case of the
von Karman plate assuming the validity of the Kirchhoff-Love hypothesis,

we write (A2-11) in detail: With

.&4:4—'\:‘3 (em C(m-)(_, ‘f-i,z - (f'
L2 - . < . . . P .
™ | Canths G, 4E, -f d,;,; iy €[12.5] (42-12)

‘R Y, o

we obtain

P iy
GEM‘{F;1Chd§ = GZ, Z]Q{u;f x;d’«

P

) Iolyy “JZJdP]—*-

37

Q, [(Wu, XY, Jiol) +(du,,-xdY,)dd] - 49 Jol] ] +
6:12 [ (Jul,l— x.'i J%J) JOCf+ (Juill-'stfz}Jde - dsf Jd‘g: ] i (A2-13)
&, [(9%,,-%,0%,)dol] +({ - I, )} - % I, ] +

6, [0~ XI B, ) I (I, KIE )delf -d, I ]

In order to get an impression of the size of (A2-11) we consider the

one-dimensional case of the nonlinear beam with:

R l:"""l-xJ‘P"," —Y;
f - ] ' G = (—341 (A2-14)
Y, o)

Then (A2-13) becomes:

G,y JF, Jol.; = 644[(JM4,,‘)9J‘1fM)Jd;—Jf Jo/: ] (A2-15)

If we consider the limit case that all notes are purely plastic, we

. 24P = - P _
have: &dj = 8u) | = %380 |, &dj, = 8o

(A2-16)



- 106 -

In comparison we consider the expression:
A

IyuL

1 A 2

- — — - . -]
79, L JE, = 3(du, ~X%dY¥ L J¢) E (A2-17)
with modulus of elasticity E. (A2-17) may be interpreted as rate of
potential of the second Piola-Kirchhoff stress tensor for vanishing

plastic rates of deformation.

For a hypothetical case we compare (A2-16) with (A2-17): A beam
1
10
, stress of reference state may be limit stress o

may have maximal deflection @ = z 6°, maximal rate of deflection
1

20 q)lmax .
for uniaxial tension test. The material may be the same steel'as in

example (4.3) with E = 2.1 - 107 E%Z and og = 3.8 - 104 ESTZ . If we

may be

assume according to the von Karman plate theory ¢ and u, | - X0, ,
td ’

to be of the order of magnitude, we finally obtain:

2 2 _ - N
G dFinddlf) < 2840 (Z2a) [ués) -] = 0942 =4 LL,

4 D NN o F R RN ~ oan
?JEzJL ﬂmcﬁsm_~ 54 {75) (20-,,0/ 24 40°= 10.5 = 102

This means that for this example replacement of (A2-10a) by (A2-10b)

would induce a numerical deviation of 10 Z relative to (A2-17).
Appendix A3

(st d2°), = [Itu M,

o

o
kL J-[Lk 0,)(, d’l/z 0{,\’3 =

v

It

P
Ju,, L7 dx, dx, dx,

v/
=0 on 8 =(iily
P
d¢, n, Juk ol/x,dx, olx, - JtLp du olx,dx dx. =0
— ke © Tk 3
%UBK =0 on B,

17}
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Aggendix A4

X (48 d¢%) = PUIE=d¢) - (de™ Jt® J2® sty 4

s58E, [(at5-a 2% g2 ae> aet), - Ptsto-aeos g2t -
JI"’S%"

R (8¢°- %) - (8™ SE% ey ~(It" L")+ <t defy +

. to__ d'fp* t’ + dto M _ J‘sp:t{fh
sip,, (0850008 4 (981480, = (LI,
ngwex/‘

(d',éh,‘ JEV)H .,.(J:é./‘:‘ J,t"}” _ 5*(Jto_d»$9*4d‘$f't/J

!

(7 It = RS- a8 ItF ) T >

#
B (d2% JIt°) —(dt™= dtf J¢° + sup [(Jz‘ Jt"'crff’/

Jtf'e 3¢
-y(‘ﬂ_a ]

With

/D(Jtﬁ)-— Swp [(J‘L‘ocﬁ‘y JZ“p/ /)(dt cffp*/]

dt*e 7

We have

Lo (427 = (I 97 - (4t 40 835 1 P (429

L0 (99 < & (5 dt")

1
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on Pg are convex, <QE?,6£P> is linear, <qu,qu> is strictly convex
b}

for positive definite Eo’ as we had assumed. By this LIO(GEP) is
strictly convex as the sum of convex, strictly convex and linear func-

tions is always strictly convex.

Appendix A5, ‘A6

Proofs are analogous to A3 and A4' ng,qu, Eo are replaced by qu,

62?, L, respectively.

Aggendix A7

From definition of polar functionals follows that Fl and F]ocan be

written in the following way:

)

E(L5d9) = sup [(£-2% o) -1t Wit - (%25 o1 ®)

ey

-
-
4~

~ ‘o

_

~
]

sup [(¢27d)-Fe2 7)1, ] + ¥ (2%2%) +
és"’e;f?

From subtraction follows immediately

e o et e _ ¥ 0
o (£9.98) - £ (£90Y = Sup [(22£52%) - ¥ tee?-1,, ]

e s
-sup [(2%87d) - (¢ ] < o
LT <

We proceed analogously in regarding F2 and F20 :
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t’Q_(eo/"} ¢(t° %) +sup [(d O{e ,‘?./’:;teé?“)-cb(.éq,tp*/]

%% ys

—(@-d7t> ) - (" t°-2%)

Rolt0d) = D(L28) + 7 +sup [(42d°£°-¢%) - Bl e9%.
20 / )+ x g;’;f‘e’”-’:f/ ¢(~g/_;o]
=42055%5§?”4°
_ (ao_ o-(ez_o_ ff}
~ 7 ~
Because H " LHP we have: (éu, 59*) = (iu"gp) =0

By this fact and by taking into account that supremum is researched
for elements rt‘:‘p* € H® it follows:

su'o[(d e+ ~,9i') ¢(t‘ i"p'}]
Ve s

sup [(g*~d7t°-t%) - D (2222 ]+ (&} ¢

tf* 3{9’ !

If we compute on - F2, we obtain:

e aa e 0 o .
Fo (B35 ) - (2 o°) = Sup [@2 &5t e7)- bz g7 -1, ]

-sup [(d%d52%¢%Y) - P(2-2*)] < ©

%€ Je&

Appendix A8
From definition we have
A (59) = b,(5>5%) + &, () -<s5%5° 6" =
P (559 +sup  [<s5257 3% - B, (5% $2]-< 5% 55 5%

e o>



- 110 -~

for elasto-plastic material we have:

¢, (§-5°) =0 for 5%5%¢ £
[+ ~ -~
If we restrict to EP*’EP € 5? - E, gf*,gf* € HP', we have:

A, (8% =sup [{s%-5%3°)] -<s%575%)
Freslr

As the supremum is searched for elements EP* € E? - E it follows

immediately:
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AEBendix A9

Structure of the stiffness matrix for functional (4.3.2) from example
(4.3).

X, o Bl o, By

pooooo oooooloooooo;ood L #
*% 0.000{090{000[000[000000
* *P PPPl00OR0O00000[000000 p
* * *' P PPIPPPMRO 'oo"o'“dd?ooa( 5
* ***PPPPP 00000000 o
xxxlxxRipPP 00000000 £

B 00/000000
PI0OBO0OOOOOO
Pfoo\o\o.ooqg_o !
PPPPDOO0O0O0O
**‘*;****P\P-PPPO 0000O0
**\.i***;**P\PPPOOOOO‘Q
***\;\h*****P\PPPPP 00
R AL *****PP,PPPO '
*
*
*

v ' d " O

***** PPPOO

. —— -

*****PPPOOP

***** POOFP

!*****&oop

*
| AR 5**‘***&00
A E R RN EEIE C A I W
*

* %k ¥ XK % ¥ X ¥ N

Symmetrical elements are denoted by (*), elements denoted by (P) are
polynomials of a certain complexity depending on the geometry and

material state of the reference state.
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Appendix AlQ
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Appendix All

Graphical representation of redistribution of stresses for example (4.1),
three—dimensional method, q, =

1,15, gg = 0.72, von Mises' yield-condi-

tion.

Scale: 0 = 1.0 £ 5.095 cm
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Appendix A .12

Graphical representation of redistribution of stresses for example

(4.1), two-dimensional method,

q, = 2.5, o_ = 0.72, von Mises' yield-condition.
Scale: N(Z) = 0.2 £ 2.075 cnm.
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Appendix Al3

Graphical representation of redistribution of stress for example
(4.2), three-dimensional method, q, = 3.3, o, = 1.62, von Mises'

yield-condition
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Graphical representation of redistribution of stress for example

(4.2), two-dimensional method, q, = 3.3, o, = 1.62, von Mises'

yield-condition.
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Appendix Alé

Qualitative dependance of increments of displacement z—direction from
the quotient E/EO. Material according to (2.6),no yield-condition

(OS = 0), load-increments Aq = 0.025.
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Appendix Al7-

Comparison of displacement—functions for geometrically nonlinear,
elastic behaviour using functional (3.4.2) for the same load-increments
a) allowing for all terms

b) cancelling expression (4.3.5)
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