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SUMMARY
The paper is divided into two parts.

Part I contains the foundations of non-linear deformation and stress
analysis in the Eulerian and in the Lagrangian descriptions. The various
sets of objective and conjugate constitutive variables are constructed

and discussed.

Part II is devoted to the presentation of the consistent, geometrically
nonlinear description of elastic-plastic and rigid-plastic material
behaviour. The presentation is limited to the purely mechanical theory
and to quasi-static deformation processes. The attention is focused

on the problems concerning geometrical non-linearities. In particular,

the material stability concept is widely discussed.

The elaboration contains a number of new results in various

chapters.

ZUSAMMENFASSUNG

Die Arbeit besteht aus zwei Teilen.

Teil I beinhaltet die Grundlagen nichtlinearer Deformations- und Spannungs-
analysis in Euler'scher und in Lagrange'scher Beschreibung. Die verschie-
denen Gruppen objektiver und konjugierter konstitutiver Variablen werden

hergeleitet und diskutiert.

Teil II ist der Darstellung der konsistenten geometrisch nichtlinearen
Eeschreibung elastisch-plastischen und starrplastischen Materialverhaltens
geyidmet. Die Darstellung ist dabei auf die rein mechanische Theorie und
auf quasi-statische Deformationsprozesse beschrankt. Hauptaugenmerk ist auf
Probleme gerichtet, die geometrische Nichtlinearitdten betreffen. Insbe-

sondere wird das Konzept der Materialstabilitdt ausfiihrlich diskutiert.

Die Arbeit enthdlt in verschiedenen Kapiteln eine Reihe neuer Ergebnisse.
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PART I

NON-LINEAR STRAIN AND STRESS ANALYSIS

1. INTRODUCTORY REMARKS

Elastic-plastic deformation is a very complicated process. In ana-
lysing this problem one might wish to include such phenomena as non-
linear and anisotropic memory, thermal effects, strain rate sensitivity
and so on. It is impossible, however, to construct a theory which is
at the same time general, detailed enough and applicable in engineering
practice. Therefore, for practical purposes some simplified models have
been proposed. These models describe only the basic properties of ela-
stic-plastic deformation processes, neglecting more complex ones which

are supposed to be of minor importance in particular applications.

In general, the elastic-plastic theory is non-linear both physically
and geometrically, and therefore non-linear functional relationships
between stress, strain and deformation history as well as between strain
and displacement fields are involved. The problem may be physically

linearized by using linear material models.

Geometrical simplifications result from assumptions concerning the
magnitude of strain and lead to the specific elastic-plastic theories.

Let us consider such situations.

1. Elastic and plastic components of strain are both small and of the
same order of magnitude. The maximum elastic strain component is

given by the yield stress divided by Young's modulus, e = oo/E,

and is usually of the order 10-3.Therefore,the;ﬂasticstraincomponents

of the order of magnitude 10é3arealso allowed. In this case the
linear strain analysis can usually be applied and the total strain
can be considered as a sum of the elastic and plastic components,
e = ¢ + eP. such theory will be called infinitesimal elastic-

plastic.

2, Elastic components of strain are still infinitesimal (ee‘g 10 ),

but plastic components are supposed to be finite. The additive



decomposition of the total strain measure into elastic and plastic
parts is still allowed. This situation often occurs when dealing
with metal plasticity, unless the hydrostatic pressure is very
high. Therefore the problems of finite deformations of engineering
structures usually belong to this category. The theory describing

such cases will be called elastic-finite plastie.

3. Elastic and plastic components of strain are each large (finite).
Such condition can be realized in an explosive forming of metals,
since then a high hydrostatic pressure occurs (the elastic defor-
mation caused by the hydrostatic pressure is not limited by the
onset of yielding). Since the finite strain components are non-
linear expressions in terms of displacements, the assumption of
additive decomposition of strain into elastic and plastic parts
cannot be applied directly. Such theory will be called finite

elastic-plastic.

In this paper attention will be focused on some particular aspects
of the elastic-plastic theory, namely on the problems concerning geo-
metrical non-linearities. However, the assumption of small elastic strains
will be retained and, therefore, we shall deal with the elastic-finite
plastic theory as well as with some problems of inifinitesimal elastic-
plastic theory. In particular, in the analysis of structural stability
the rigorous, geometrically non-linear approach is required. Also when
the representative stress level attains a magnitude comparable to the
magnitude of the slope of stress-strain curve (in the plastic range
the hardening modulus appears to be often of the same order of magni-
tude as the stress itself), some problems may be poorly described as
a result of the linearization. In other words, the necessity of geo-
metrically non-linear formulation results sometimes more from the shape
of the member under consideration (structural stability problems) and
from the intrinsic material properties (small hardening parameter) than

from the smallness or largeness of the strains themselves.

An important question which arises in the geometrically non-linear
analysis is: which description, lLagrangian or Eulerian, should be used
when formulating the constutitive equations. This question should be

answered on the basis of experimental test results which would suggest



the forms of constitutive relations and the appropriate variables in

terms of which to express them.

In the paper the development of the constitutive relations will be
given both in the initial (Lagrangian) and in the current (Eulerian)
description, and next the results will be compared and discussed. The
presentation will be limited to the purely mechanical (isothermal)

theory and quasi-static deformation processes.

Although the theory of elasto-plasticity is not new, it is only in
the last decade that more attention has been paid to geometrically
non-linear description of deformation process of elastic-plastic
materials. The interest in the non-linear analysis has been stimulated
by increasing requirements for better predicition of structural be-
haviour on the one hand, and by the fact that our capability of solving
the non-linear problems has grown with the advent of large high-speed

computers on the other.



2. KINEMATICS

2.1. Motion

Let us consider a material body which in its initial (natural
stress-free) configuration at time to occupies a region Bo in the
three-dimensional physical space. To identify material points we can
use their coordinates XK at time to with respect to some fixed Carte-
sian frame of reference. Points in the space will be identified by

their Cartesian coordinates Xy (Fig. 2.1).

X1.X1

Fig. 2.1

During the motion the material points X are displaced to various

positions x in the space. At the time t they occupy a region B.

In general, the quantities associated with the initial (undeformed)
configuration of the body will be denoted by upper case Latin letters
or by the subscript "o" throughout the paper. Similarly, quantities



associated with the actual (deformed) position of the body will be de-

noted by lower case Latin letters.

The one-parameter family of transformations

xk = xk(XK,t) or X = ﬁ(g’t) (2.1)
78 known as a motion. We assume that the functional relations (2.1)
have continuous partial derivatives up to whatever order desired,
expect possibly at some singular points, curves and surfaces. Moreover,
they are single-valued and have a unique inverse
= 2.2
XK XK(xk't) ( )

in the neighbourhood of the material point P.

The unique inverse (2.2) exists if and only if the jacobian

J’5|W| *¥0 (2.3)

is not identically zero. The assumption (2.3) is known as the axiom
of continuity. It expresses the indestructibility and the inpenetrabi-
lity of matter. (No region of positive, finite volume is deformed

into zero or infinite volume; and one portion of matter never pene-

trates into another).

2.2. The Eulerian and Lagrangian description

The deformation necessarily involves both the initial and final
configurations, but there is a choice of coordinates to be used as

independent variables.

Depending on whether we want to describe such quantities as
stresses, strains and velocities for some particles of the body X or
for some points of physical space X, we have to apply Lagrangian

(material) or Eulerian (spatial) description.

The movement of cars along a one-way street may serve as the one-

dimensional example, given by W. Prager [1], to illustrate the difference



between these two ways of describing the same motion. The Eulerian
description corresponds to the observations of traffic policemen, who
report on the velocities with which cars pass their fixed observation
stations. The Lagrangian descripton, however, corresponds to the ob-
servations of drivers, who report on their velocities and progress

along the street.

In the Lagrangian analysis the initial position of the particle X
and the time t are taken as independent variables. They are called
the Lagrangian or material variables. The functions @ = ®(X,t) expressed
in terms of Lagrangian variables, describe the variation of physical
parameters for a given particle during its wandering through the space.
The Lagrangian analysis is used primarily when considering geometrical-
ly non-linear behaviour of elastic and plastic structures since then
the boundary conditions are usually referred to the initial configura-

tion.

In the Eulerian analysis the actual position of the particle X
and the time t are used as independent variables. They are called
Eulerian or spatial variables. The functions ¢ = wgﬁ,t) describe
variation of physical parameters of the body at a given point of the
physical space. The Eulerian analysis appears to be convenient for
the description of a flow process, in which the initial configuration

is immaterial (for example a metal forming process).

It is worth emphasizing that, whenever we know the motion of each
particle of the body, we can easily pass from one description to the

other.

2.3. Strain analysis

2.3.1. Deformation and displacement gradients

The motion, which carries a fixed material point through various

spatial positions, may be expressed by

X,

g = %y (Xeat) in the Eagrangian description (2.4)

or

>
It

K XK(xi’t) in the Eulerian description (2.5)



Differentiating (2.4) with respect to XK, we obtain a tensor

— = x, (2.6)

which is called the material deformation gradient.

Similarly, differentiating (2.5) with respect to x; we obtain a

tensor

L. S —= X, . (2.7)

which is called the spatial deformation gradient.

Indices after a comma indicate differentiation with respect to
XK when they are upper case letters, and with respect to X when they

are lower case letters.

The material and spatial deformation gradients are interrelated

through the chain rule for partial differentiation,

axi aXK ) axi BXL s 2.8)
BXK axj ij BXK Bxi KL

Making use of (2.4) and (2.5) we have:

dxi=xilxde . dx, = X, .dx, . (2.9)
The vector U, joining the points Po and P in Fig. 2.1 (the initial

and final position of the particle) is known as the displacement vec-

tor. This vector may be expressed as the difference of coordinates in

the initial and final position:

U(X,t) = x(X,t)-X in the Lagrangian description, (2.10)

]

uix,t) = x-X(x,t) in the Eulerian description. (2.11)

Differentiating the displacement vector with respect to the coordi-

nates we obtain either the material displacement gradient



Ue,r = %118k ~ ke (2-12)

or the spatial displacement gradient

ui,j = Gij - XK,jGKi . (2.13)

2.3.2. Deformation and finite strain tensors

The neighbouring material points PO and Qo in the initial (unde-
formed) configuration (Fig. 2.1) move to the point P and Q, respective-

ly, in the final (deformed) configuration.

The square of length of the line element Po Qo is

2 _ -
(@s)” = ax - ax = ax, dx, (2.14)

whereas, in the deformed configuration, the square of the line element

PQ is

@s)? = dx - dx = ax ax, (2.15)

~ ~ i

Substitution of (2.9),. into (2.14) and (2.9)1 into (2.15) yields

@as) 2

1]

XK,iXK,jdxidxj (2.16)

and

(ds)2

xi,Kxi,LdXKdXL' » (2.17)

A body is said to undergo a rigid-body motion whenever
(@s)? = (@s)? (2.18)

for all material points, (the deformation has not changed the distance
of any pair of neighbouring material points). Therefore, the difference
(ds)2 - (dS)2 is used as a measure of the strains produced during the

motion.

Making use of (2.14) and (2.17) this difference may be expressed



in the Lagrangian description in the form

2 2 _ _
(ds) (as)” = (xi,Kxi,L GKL)dede—stdedeL (2.19)
where the second-order tensor
E_(X.,t) = & (x, .x, . - 6.) (2.20)
KL'K'™ T 2 “i,x"i,L KL :

is called the Lagrangian (or Green's) finite strain temsor.

Using (2.15) and (2.16), the difference (ds)2 - (dS)2 may be ex-

pressed in the Eulerian description in the form

-2 2
(ds) (as)” = (Gij XK,iXK,j)dxidxj'-Zeijdxidxj (2.21)
where the second-order tensor
e, .(x. ,t) = l~(6 - X X ) (2.22)
ijhittt T2 Vi) K,i%K,5" - :

is called the Eulerian (or Almansi's) finite strain tensor.

It follows from the definitions (2.20) and (2.22) that the

Lagrangian and the Eulerian strain tensors are symmetric

EKL = ELK ’ eij = eji . (2.23)

The finite strain tensors may be expressed as functions of the dis-

placement gradients. Thus, the substitution of X x from (2.12) into
: ’

(2.20) leads to the Lagrangian strain tensor given by

1
== + . .
E 2 (UK,L UL,K * UM,KUM,L) (2.24)

Similarly, the substitution of XK i from (2.13) into (2.22) gives
1

the Eulerian strain tensor in the form

=% (u, . +u ). (2.25)

®ij 1,3 7 %0 7 Y, 1%,
In view of the relations (2.19) and (2.21) the necessary and suffi-

cient condition for a rigid body motion is that the Lagrangian and/or
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Eulerian strain tensors be identically equal to zero for all material

points of a continuum.

2.3.3. Infinitesimal strains and rotations

Let us introduce the infinitesimal strain tensors EkL' Ekl and the

~o
infinitesimal rotation tensors R__, as symmetric and skew-symmetric

kL' k1
parts of the displacement gradients, respectively, in the Lagrangian

and the Eulerian descriptions:

~ _ 1 ~ - l_ .

Exp 22 Wn YU, 7 Sk T2 My Ty e (2.26)
F =Lw -u ¥ =Lw . -uw ) (2.27)
KL - 2 "K,L L,K ! kKl - 2 “k,1 1,k ° :

The above quantities are the strains and rotations of the classical

linear continuum theory.

Equations (2.26) und (2.27) result in

U =% _ +R , (2.28)

(2.29)

~ 1 ~ ~ ~ ~
= + — + .
EKL EKL 2 (EMK RMK) (EML + RML) ! (2.30)

~
e = e -

1 NS ~y ~
X1 Kl 3‘(e + )(Eh +T.) . (2.31)

mk rmk 1 ml

It follows from (2.30) und (2.31) that, in general, E%L = 0 and/or

~y

k1 k1
of infinitesimal strains is not sufficient for a rigid-body motion.

= O does not imply EKL = 0 and/or e = 0; that is, the vanishing

~
Therefore, EKL and 3&1 are not strain measures for a general case of

finite deformations.
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2.3.4. Rotation tensor and other strain tensors

For the description of the local rotation of a given particle

we now define a rotation tensor 5.

Let H? be an orthogonal triad along the principal directions of
o
strain at a point Po' After deformation the original triad N is rotated
into the orthogonal triad n lying along the principal directions of

strain at P (Fig. 2.2).

Fig. 2.2
We define a so-called rotation tensor R as the unit, orthogonal tensor
which transforms (shifts and rotates) E? into E?:
o _ o
n RkKNK R (2.32)
N = R Ip® (2.33)
K kK 'k ° :

It is now clear that the necessary and sufficient condition for pure

strain is

R =286 (2.34)

Let us apply the so-called polar decomposition theorem [2] to the

deformation gradient X, Then the result may be written as
’

X =

i,K RiLULK = vinjK (2.35)
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where RiL is the rotation tensor, and U and Vij are positive definite

KL
symmetric tensors known as the right (or Lagrangian) stretch tensor and

the left (or Eulerian) stretch tensor, respectively.
Substitution of (2.35)1 into (2.12) gives

U =R, U -6 . (2.36)

According to the definitions (2.26) and (2.27) the infinitesimal strain
and rotation tensors in the Lagrangian description may now be written

as

T = U._. -8

KL R(ICP PL) KL ' (2.37)

~

where parentheses enclosing indices indicate the symmetric part of the

quantity and brackets the antisymmetric part.

Solving (2.36) for RKP and UP and substituting (2.28), we obtain

L
R_=(6§_+E_ +R )U_1

KP KL © UkL T KL UPL f (2.39)
U =(8._ +F_ +R _RE (2.40)
PL KL KL KL’ W KP :

Formulae dual to these involving the Eulerian representation are not

difficult to find.
The vector de at a point Po (Fig. 2.1) is carried by the deforma-
tion into

dxi = xi,Kng . (2.41)

Substituting (2.35) into (2.41), we have

dxi = RiLULKdXK = vinjdeK' (2.42)

The deformation of any line material element may be considered, there-
fore, as resulting from a translation, a rigid rotation of the princi-

pal axes of strain and stretches along these axes. The deformation (2.41)
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may be decomposed into translation, rotation and stretch in two diffe-

rent ways:

The vector dX is first rigidly translated and rotated into d(g)
(Fig. 2.3).

a xj =R, dX_ . (2.43)

dx, = v,.d x. . (2.44)

Substituting of (2.43) into (2.44) yields (2.42)2.

dX

\
d ) (R)
X3 X =) dx
3 d
X
X2
X1
Fig. 2.3

Note that the stretching (2.44) involves, in general, further rotation

of the vector d(g), except when dx is taken along the principal axes
of V...
"

The relation (2.41) may be decomposed in another way as follows
s
(Fig. 2.4). The vector dX is first stretched into d€§)
(s)

d XL = ULKdXK . (2.45)

(s)
The vector d X is then rigidly rotated into the vector dx and shifted
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to the point P,

dx, = d(>s<) (2.46
i - Rypd X - . -46)

Substitution of (2.45) into (2.46) gives (2.42)1.

X3

Fig. 2.4

As we can see, the tensorial measures of the foregoing transformations

are dependent on the order in which they are applied.

Let us define the stretch An in the direction n as the ratio of
final ds to initial dS length of an infinitesimal line element dx of

direction n,
~

A o= 22 (2.47)

Let A, (i =1,2,3) be principal stretches (that is stretches in princi-

pal directions).

An acceptable tensor measure of finite strain € may be obtained

[3] by defining its principal values €, as

ei = f(Ai) where £(1) =0, £'(1) =1 (2.48)

and f(Ai) is any sufficiently smooth monotone function.
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The most commonly used strain measures are included in the one para-

meter family:

1 2m
om (Ai - 1) form # 0 ,
€, = (2.49)
i
InA, for m = 0
i
For m = 1 we obtain the principal values of the Lagrangian (or Green's)
strain tensor E: ) )
= — - 1). .
€, =3 (Ai ) (2.50)
For m = -1 we have the principal values of the Eulerian (or Almansi)
strain tensor e:
_1 -2
e, =5 (1 =-A9) . (2.51)

1
For m = 5 we get the principal values of the Cauchy (or engineering)

strain measure:

Ei = Ai -1 . (2.52)

For m = O we get the principal values of the Hencky (or logarithmic)

strain measure:

€., = 1lnA, . (2.53)
i i

Similarly, any of the above considered strain measures may be expres-

sed in terms of the displacement gradient by puttingm =1 or m = -1
orm= %—or m = O, respectively, in the relation
e =% +iu u _+m-1DEF + (2.54)
KL XKL, 2 MK M,L MK ML °° )

where polynomial up to the second order in the displacement gradient

is indicated.

2.3.5. Approximations

Various approximate theories of the nonlinear mechanics of con-
tinua may be obtained by neglecting some of the nonlinear terms in the

geometrical relations (the terms of second order importance).The
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following approximations are presented to provide only an intuitive
ground in this theory.
1. Pure finite strains

Since the necessary and sufficient condition for pure strain is

that

RKL = GKL (2.55)

the equation (2.40) takes now the form

U =8 + E + R . (2.56)

From the symmetry of the stretch tensor it follows that in

this case

obd

KL = 0 (2.57)

and

~

UKL = GKL + EKL (2.58)

Substitution of (2.57) into (2.30) yields

~

£ E ) (2.59)

= +
E E MK ML

KL KL

S

2. Small rotations and large strains

When the rotation of the principal axes is small, the rotation
tensor R is close to unity and the infinitesimal rotation tensor

E is small.

The Green strain tensor (2.30) may then be approximated by

~

(E

E_ +BE R_+E R ). (2.60)

~ 1
g + =
E EKL 2 MK ™ML MK ML, ML MK

KL

3. Small prineipal extensions and large rotations

In this case the extensions in principal directions are supposed

to be small. Hence, the stretch tensors are close to unity
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ne

$ . (2.61)

The rotation tensors (2.39) can now be approximated by

P +E_ +R . 2.62
RKL (GKL EKL RKL) (2.62)
On comparison of the symmetric and skew-symmetric parts of

both sides of equation (2.62) we get

R(KL) = SKL + EKL ’ (2.63)

As simple example a thin bar may serve which is bent into a

ring without large extension.

In some situations certain components of the rotation tensor
may be considered to be small as compared with others; then the
geometrical relations may be further simplified by dropping the
terms containing these components. This is used to obtain the
second-order plate theory known as the von Karmén - Timoshenko

theory.

Small strains and small rotations (small deformation)

This is equivalent to an assumption of small displacement gra-

dients:

U << 1 P u << 1 . (2.65)

Then all nonlinear terms in (3.30) and (3.31) may be dropped
and the finite strain tensors reduce to the infinitesimal strain
tensors:

E = E ' e = e

KL KL . (2.66)

The resulting equations represent the so-called small deforma-

mation theory of continuous media.
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5. Small strains, rotations and displacements

If both the displacement gradients and the displacements themselves
are small, then disappears the difference between material and
spatial coordinates and hence between material and spatial descrip-

tions. Thus

(2.67)

and we have the classical linear theory of infinitesimal deforma-

tions.

The above classification of approximate theories is based on the
assumptions imposed on the strain and rotation tensors. Direct appli-
cation of these theories presents some difficulties since the compati-

bility conditions have to be satisfied.

The strain and rotation tensors are expressible in terms of the
displacement gradients. Therefore, another classification of approxi-
mate theories may be obtained by neglecting some of the non-linear
terms in the strain-displacement equations (2.24) or (2.25). Then, the
three displacement components and their gradients (or the wave lengths
of deformation patterns) are employed as a basis of approximation. For
example, moderately large deflection and small tangential displacement
theory is known as the Donnell-Vlasov theory, when applied to shallow
shells. This approach is particularly convenient to formulate the appro-

ximate plastic shell theories.

2.4. Rate of deformation

The definition of the velocity vector is given by (2.4) as v = i.
An alternative form of the same vector may be obtained by substituting

x=X+U into (2.4). This leads to

vEE=(X+0 =0 (2.68)

since X does not depend upon time.
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According to (2.68), the velocity field in the Lagrangian and in

the Eulerian descriptions is given, respectively, by

. 3UK

VKQ{"t) = UK(’)S,t) =3 ! (2.69)
. aui Bui

Vj_(?i't) = ui(?\c‘,t) = F + Vk 'ax—k . (2.70)

In (2.70) the velocity is not given explicitly since it appears also

as a factor in the second term on the right-hand side.

The material derivative of the velocity is the acceleration. In

the Lagrangian description it is given by

ov
- . _ K
ag (X,£) = T (X,t) = ==, (2.71)

and in the Eulerian description by
v, oV,

I _ i i
AR A TR S

. (2.72)
The spatial gradient of the velocity field, called velocity gradient,

may be decomposed into its symmetric and skew-symmetric parts,

(V. ., = V., .)0 (2-73)

1
v, == (v, . + v, . + =
2 (1,3 Jrl) 2 1,3 jei

i,3

The symmetric part

= %—(v. .+ v, L) (2.74)

a..
ij i3 j.i

is called the deformation rate tensor, whereas the skew-symmetric part

-1
wij =3 (Vi,j vj,i) (2.75)

is called the spin or vorticity tensor.

It is easy to show that, if the displacement gradient is small as

compared to unity, u,
i,k

infinitesimal strain tensor gij is approximately equal to the deforma-

<< 1, the material derivative of the Eulerian
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tion rate tensor dij'

-
~

e l-(u + u )T = l-(v -u, .V
ij 2 i,J j.i 2 1,5 i,k'k,J
(2.76)

- oY — + =
PV T Y%, 1) 2,5y, T

It can similarly be shown that, if ui Kk
14

approximately equal to the material derivative of the Eulerian infini-

<< 1, the spin tensor wij is
tesimal rotation tensor élj’

¥, etl-(v. .- VvL L) =L (2.77)
ij 2 "i,j j.i ij
According to the equations (2.19) and (2.21) the difference between
the squares of line elements before and after deformation may be ex-
pressed in the Lagrangian and the Eulerian description, respectively,

as follows:

2 2

as® - as® = 28 _ax ax_, (2.78)

as® - as® = 2e .dx. dx (2.79)
G, dx, - i

The material derivative of the equation (2.78) gives

2, . .
(ds™) " = 2EKLdXKdXL ’ (2.80)

whereas the material derivative of (2.79) leads to

26, dx . dx, + 2e, .dv.dx. + 2e, .dx, dv

2.
(ds) k13 3%y 13V I¥y 3% dv, =

2(é )dx. dx

k1 T i1V, k T CkiVi, 1) X 9*g - (2.81)

On the other hand, the material derivative of the square of the diffe-

rential line element dxi may be calculated as follows:

(dsz)' = (dx,dx,) = 2dx.dv, = 2dx.v, .dx, = 24, .dx.dx. , (2.82)
i1 ii i3
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since

(v, . = v, ,)dx.dx, =0 .
i,] J.1 i 3]

Comparison of (2.80) with (2.82) furnishes

= E 2.
dij EKLXK,iXL,j (2.83)
whereas comparison of (2.81) with (2.82) leads to the relation
d = é + e, v +e. Vv = ch—R (2.84)
ij ij ik k,] jk 'k, i ij

The right-hand side of the above equation is called the Cotter-Rivlin
time derivative and will be denoted by eZ§_R (1).

According to the definition introduced in the section 2.3.2, a
motion is regarded to be rigid-body motion if and only if the deforma-
tion does not change the distance of any pair of neighbouring material

points,that is if

(dsz)' = 0. (2.85)

By comparison of (2.85) with (2.80), (2.82) and (2.84) we arrive at
the conclusion that the necessary and sufficient condition for the

Ve-R 0, or E.. = 0O,

motion of a body to be rigid is dkl = 0, or ekl XL

but not ekl = 0.

The deformation rate rensor dkl is a measure of the instantaneous
rate of change of lengths of material elements and angles between them.
To see this, let us substitute dxi = nids into the equation (2.82)

to obtain

2ds(ds)” = 2a..n.n. (ds)> (2.86)
ijig
or
(ds) " _ =
as = dijninj = d(n) (2.87)

(1) Objective time derivatives will be considered in chapter 3.3. The
material derivative of Almansi strain tensor éij is not objective.
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where d(n) is the rate of stretching in the direction n. If, for example,

n is taken along the x, axis, then

1

= . 2.88

Yoy = 911 (2.88)

Thus the diagonal components of the deformation rate tensor appear

to be the rates of stretching in the coordinate directions. It can be
shown in a similar way that off-diagonal components dijrare halves

of the shear rates in the orthogonal coordinate directions,

1 -
Ay = - 59(1,2) .

2.5. Change of volume and surface elements

During the motion from some initial configuration at time to to the
current configuration at time t, the volume element dV0 is deformed
into dV. If the initial volume element is taken as the parallelepiped

(1)' 45(2) (3)

specified by three vectors dX and dx (Fig. 2.5), then

(1) (2) (3) (1) . (2) . (3)

Qv =dx 'xdx' "’ -ax " = € dX ~TdX TdXg (2.89)

where eKLN is the permutation tensor. Due to the motion the line

element dX becomes dx and the parallelepiped deformes into a skewed

parallelepiped having edges qi(l), d£(2), d£(3) and a volume given by

the box product

av = axPxax @ .ax =€, axMaxPax (2.90)
~ ~ ~ 1Jk 1 J k

Because of the relationship dxK = XK idxi between the initial and the
14

deformed line elements the initial volume element dVo, defined by

(2.89), may be transformed to take the form

av_ =€ ax{Max, P ax 3

o KLNXK,iXL,ij,k i j k . (2.91)
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X3.X3
XZXZ
X1IX1
Fig. 2.5
The jacobian of the transformation de = XK idxi is defined as
’
= | -1 . .
J _xK'iI : EKLNeijka'ixL'ij'k (2.92)

Multiplication of equ. (2.92) by eijk and use of the relation
Eijkeijk = 6 leads to

J€ =€ . (2.93)

. X X .
ijk KLN K, i L,JXN,k

Substituting (2.93) into (2.91), we obtain the inital volume ele-

ment dVo in the form

- (1), (2) ; (3)
dVO = JEijkdxi dxj dxk . (2.94)

Finally, the comparison of (2.94) with (2.90) leads to the relation

between initial and final volume elements

_°. g, (2.95)
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By using the principle of mass conservation
dvp = dvp (2.96)
oo

in the equ. (2.95), the jacobian J may also be expressed as the ratio
of the instantaneous and the initial mass densities

J = . (2.97)

b
po
In order to describe the deformation of a surface element, let

us consider again the material line elements represented by the vectors
(2) (1)

qg(l) and dX° ° in the initial state and by the vectors dx and
d£(2) in the instantaneous state, (Fig. 2.6).
(o]
0 dF
df -=— =7
)] P
N{ /dX , dF
—f
R dX n d ~ _ dF
/>
X3.X3 dx(Z)
X2|x2
X1.X1
Fig. 2.6

1f dF° denotes the area and N normal to the plane of the parallelogram

specified by the vectors dx(l), dx(z), then the surface element vector

d{? is given by the vector product

dr° =NAr° = dgmxdg(z)
or
o _ o _ (1) . (2)
dFK = NKdF = EKLNdx L de . (2.98)
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In the similar manner, the deformed surface element vector dF of the

area dF and normal n can be interpreted as the vector product

x(1) (2)

or

dF, = n dF = € dx(l)dx(z)

k- "% i3k*s By - (2.99)

Substitution of the relation dXL = XL jdxj into (2.98) yields
I

€ (1) 4, (2)

k = Skntn, 35w, k% g (2.100)

Next, mulitplication of the relation (2.100) by X and use of (2.93)

K,1l
furnishes
o _ (1) . (2) _ (1) .. (2)
dFKXK,i = EKLNXL,ij,kXK,idxj dxk = Jeijkdxj dxk . (2.101)
Finally, substituting (2.99) into (2.101), we obtain:
arS = JdF , x (2.102)
K ii,K :

or by using (2.97) we may also write the relation between the initial

and the deformed surface elements in the form

ar® = 2arx, (2.103)

2.6. Strain analysis in curvilinear coordinates

It is sometimes convenient (e.qg. in the shell theory) to analize

the deformation process in curvilinear coordinates system {xk}.

At each point of the physical space the base vectors 9 are now
defined as partial derivatives of radius-vector p with respect to the

coordinates (Fig. 2.7),

@
o

(o]
]
:

(2.104)

&
~

ox
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x1
€
€2
Fig. 2.7
To identify material points we use their curvilinear coordinates at
time to’ denoted by XK. The base vectors for the points of physical
space, which are occupied by the body in its initial state, are de-
fined as the partial derivatives of radius-vector z'with respect to
the coordinates XK,
3R
G, = — - (2.105)
K 3XK

According to the definitions, the base vectors are tangential to the

coordinate curves.

The infinitesimal vectors dP and dp in the initial and the actual

configurations, respectively, may be expressed as )

ap
ap = — axf = ¢ ax® , (2.106)
~ ~K
ax
op
=~ gk _ k
dg = axk dx = gkdx . (2.107)

(1) The summation convention is here implied by every diagonally re-
peated index.
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Therefore, the length of an infinitesimal line element before and after

deformation can be written as

2 _ o dp oo L K. L _ K_L

das™ = qg dg EK ngX dx GKLdX dax— , (2.108)
2 _ k., 1 _ k. 1

ds™ = qB- qE = Ek -gldx dx = gkldx dx (2.109)

where GKL and 91 are covariant components of the metric tensor in the
initial and the actual configurations, respectively, defined as scalar

products of the base vectors

GKL = EK'EL , (2.110)
Il =g 9 - (2.111)

The relations between the contravariant components of the infinitesimal
line elements before and after deformation have now the similar form

as for the Cartesian components

axt = x*axt (2.112)
i

axt = xt ax® . (2.113)
'K

By using (2.112) und (2.113) in (2.108) and (2.109), the difference
between the squares of the line element before and after deformation

may be written as

2 2 i j L K. L K. L i K. L
- d = - = - =
ds S gijx,Kx’de dax GKLdX dax (gijx,Kx,L GKL)dx dx
K. L
= ZEKLdX ax (2.114)

or

2 2 i 3 KL . i 3 K L, . i3
s -dS” =¢g..dx dx” - G __X . X .dx dx .. =G X X .)dx " dx" =
d 935 KL ,i",3 (935~ %X, i¥, 5

k.. 1
2ekldx dx (2.115)
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where the Lagrangian and the Eulerian strain tensors are defined as:

1 i j
= = - 2.
EKL(E,t) > (gijx,Kx,L GKL) R (2.116)
1 K L
eij(ﬁ,t) =3 (gij - GKLX,iX,j) - (2.117)
In the Cartesian coordinates we have
= = 2.118
Sen = k1 T S ( )
and equations (2.116), (2.117) coincide with (2.20), (2.22).
For later use, let us introduce two additional base vectors:
oP P K
~ ~ X K
c, (x,t) = = = G X R (2.119)
k axk o axk Kk
op QE k
~ ax k
C (g,t) = = =g X . (2.120)
K axN axk axK ~k K

The relation (2.119) between Sx and EK indicates that Sk are vectors

into which the base vectors EK transform after deformation. Similarly,
it follows from (2.120) that the vectors EK after deformation become
[+ Therefore, Sy may be treated as the base vectors in convected
(embedded in the material and deforming with it) or Zntrimnsic coordi-

nate system.



- 29 -

3. STATE OF STRESS

3.1. Stress tensors

A stress tensor referred to the current state of a body is a
natural physical concept. The use of Eulerian variables enables us,
therefore, to treat all questions of statics in a particularly simple
manner. On the other hand, from the standpoint of kinematics, the
Lagrangian variables seem to be particularly suitable for the descrip-
tion of motion of a body, especially if the boundary conditions are

referred to the initial state.

Since the constitutive equations relate stresses to strains (or
strain rates), therefore, in order to construct a consistent theory,
it is necessary to express both stresses and strains in the same des-
cription. Hence, if strains are referred to the initial state of a
continuum (as in the Lagrangian description) it is required to use
stress measures defined also with respect to the initial configura-
tion. Such stress measures are physically artificial, though mathema-

tically consistent.

If dg? denotes the initial surface element vector of area dFo
with the corresponding unit outward normal vector N, and dF is the
surface element vector in the current state of area dF with the unit

outward normal vector n (Fig. 3.1), then

O O
dFK = dF NK ’ (3.1)

dFk = dF nk . (3.2)

X3 Fig. 3.1
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Let us denote by dp a force vector acting on a surface element QE. Then
the force vector t acting on the unit surface element is given by the
relation
! (3.3)
i dF )
and is called a true stress vector. The true or Cauchy stress tensor
cki is defined by the equation

dp, = o, ,aF, (3.4)

or
t., =0, .n . (3.5)

Since okl is referred to the current state, it constitutes a stress

measure in the Euler description.

Equation (3.4) suggests the following way of defining a stress

tensor TKi referred to the initial state:

(o)
dpi = TKidFK (3.6)
or
Ti = TKiNK (3.7)
where dp.
T, = —% (3.8)
dar

denotes the force vector acting on the unit surface element in the
initial configuration. T, is called the nominal stress vector, and

Ty; is called the first Piola-Kirchhoff or nominal stress tensor.

Substitution of dFj given by (2.103) into (3.4) and comparison
with (3.6) furnishes

o
T o= 2

Ki 7;-ciij,j or (3.9)

P
., =— T .X. .
cij po lej,K

The relation (3.9) indicates that the first Piola-Kirchhoff stress

tensor TKi is not symmetric, as a rule. It is therefore inconvenient
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té use this tensor in the constitutive equations. To avoid this diffi-
culty, let us modify the tensor TKi so as to obtain a symmetric tensor,
which is also a suitable stress measure in the Lagrangian description.
To this end, we subject the force vector dpi to the same transforma-
tion that changes the vector dxi (in the current state) into the vec-
tor dXK (in the initial state). Therefore, in analogy to relation dXK=
XK,idxithetransformed force dPK is given by

dp,_ = X_ .dp, . (3.10)
A modified stress tensor § is now defined by the relation
dp_ = s__dFe (3.11)
K KL L ° )

Syp, ~ is called second Piola-Kirchhoff (or Kirchhoff) stress tensor.
Substitution of dpi given by (3.6) inot (3.10) and comparison with
(3.11) furnishes the relation between first and second Piola-Kirchhoff
stress tensors:
SKL = XK,iTLi . (3.12)
Similarly, substitution of TLi form (3.9)1 into (3.12) yields the rela-

tion between the second Piola-Kirchhoff and the Cauchy stress tensors

pO
Spp = = X (3.13)

K,i%5,3%1]
The relation (3.13) clearly exhibits the symmetry of the tensor SKL’

K,ij,K
with respect to the Cauchy stress tensor to obtain

By using the relation X b4 = 6ij we can solve the equation (3.13)

0
0., = —X, X. _S . (3.14)
ij Py 1K' J,L KL

In order to elucidate the differences between the introduced stress

measures, let us present these definitions in a more compact way.
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The Cauchy or true stress tensor g expresses the relation between
the surface element vector dF in the deformed configuration and the

force vector dp acting on this element, that is

dp; = o, aF, (3.15)

or

t, = o0,.n, where t, = — (3.106)
1 il J 1

The first Piola-Kirchhoff or nominal stress tensor T expresses the
relation between the surface element vector dg? in the initial con-

figuration and the force vector dp in the deformed configuration,

Q
dp, = T, dFy (3.17)

oxr

Ti = tKiNK where Ti = — (3.18)

The second Piola-Kirchhoff stress tensor S expresses the relation
between the surface element vector dz? in the initial configuration

and the transformed force vector qg,

o
dPK = SKLdFL (3.19)

where

ar, = X .dp. .

3.2. Stress representation in the convected reference frame

The second Piola-Kirchhoff stress tensor has been defined by its
components referred to the initial configuration of the body. There-
fore in the initial curvilinear coordinates with the base vectors G

K
this tensor may be expressed as

KL
5=28 SKEL . (3.20)
In order to find the representation of the second Piola-Kirchhoff stress

tensor § in the convected coordinate system, let us transform the base
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vectors GK into the current configuration. According to (2.119) we have

G = . After substitution the relation (3.20) takes the form

2k T Xk Sx

KL k 1
§5==:s x’Kx,Lgksl . (3.21)

. i 4 KL | .
Next using (3.14), written in the form clj==Jl-le3]I§ , in (3.2 1) weobtain
. P o 't
o k1l
= — . .22
I§l o] o E.ks.]_ ( 3 )
p

The above relation indicates that 7?-akl may be treated as the represen-
tation of the second Piola-Kirchhoff stress tensor in the convected coor-
dinate system. It is why both stress measures SKL and 7$-okl are sometimes
called the Kirchhoff stress tensor. The difference between tensors and their
representations in various coordinate systems have to be clearly distin-

guished in order to avoid misunderstanding.

3.3. Stress rates

When formulating physical laws and constitutive relations it is
desirable to use such tensor fields which do not depend on the observer

(or on the frame of reference). Such quantities are called objective.

It is not difficult to show that the material rate of change of
the Cauchy stress components (calculated with respect to a fixed coordi-
nate system)
90, .
§..(x,t) = —=L +vo,. (3.23)
ij'~ ot k"ij,k

is not objective. To this end, let us consider a bar in simple tension,
along x axis (Fig. 3.2a), the stresses being cxx = k, oyy = Q.
After a rigid rotation of 90° about the z axis, the stresses become:
Uxx = 0, Oyy = k (Fig. 3.2.b). We therefore see that the stress compo-
nents with respect to the fixed reference frame have changed and
é " *+0, 4 v # 0. However, from the standpoint of the moving bar, the

X
stress state has remained constant.
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t 4] 4446yy=k

R

Yyttt

Bxx=k

b) ‘ ‘ { v

&

Fig. 3.2

We shall now construct objective stress rate tensors which can replace
the material time derivative of the Cauchy stress tensor in the consti-

tutive relations. Such objective tensors will be called stress fluxes.

Let us introduce the following definitions [4]:

Definition 1

Two motions x, (X,t) and x; (X,t) are ecalled equivalent if
x) (X0) = Q) (B)x (X, ) + by (E) , (3.24)
t' =t - a (3.25)

where Q(t) is an arbitrary, nonsingular orthogonal transformation

91%1 = 24%m = Sm ¢ 19ql =1 (3.26)

bk(t) is an arbitrary vector, and a is a constant.

In the rectangular coordinates, le and bk represent, respectively,
the rotation and the translation of one frame with respect to the

other. No such physical interpretation is possible in curvilinear

coordinates.
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Definition 2

—— ane o —— - - —

A tensorial quantity is said to be objective if in any two equiva—
lent motions it obeys the appropriate tensor transformation law for

all times.

According to the definition, a vector v, a second-order tensor t
and, generally, a n-th order tensor c are all objective if their
componenents in objectively equivalent motions are given by the re-

spective relations:

V;{(’}\(‘lt) = le(t)vl(')‘("t) ' (3.27)
t]'(l (')\(‘,t) = ka (t)an(t)tmn (5,1:) ’ (3.28)
Cloror (X8) = Q (80 _(E)... C__.0.(X,8) - (3.29)

For time-independent tensorial cuantities, the transformation law,
under the coordinate change (3.24), is as given by (3.27) - (3.29).
Thus, for such quantities the objectivity readily applies. For time-
dependent quantities, however, this is not always the case. Consider,
for example, the velocity vector v = %- Differentiation of (3.24)

with respect to time yields
. . .
vy levl + lexl + bk . (3.30)

Comparison of (3.30) with (3.27) indicates that the velocity vector is
not objective. It is easy to show that neither the acceleration vector

nor the spin tensor are objective [4].

According to the definition 2 an objective Cauchy stress rate measure

Gij in equivalent motions must transform as

v
(Ukl) = kaanGmn - (3.31)

Since the definition of an objective stress rate is not unique, vari-
ous stress fluxes have been frequently used in the recent literature.
The so-called Jaumann derivative was the first one, derived by Zaremba

[6] and Jaumann [7] independently. We shall denote it by QYJ.
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To see the meaning of the Jaumann derivative let us consider a typical
particle at the point P and choose P as the common origin of the coordi-
nate systems X, and xi. At an instant of time t these systems coincide;
the first is fixed the second participates in the rotation of the neigh-
bourhood of P with instantaneous velocity wij' Thus, the coordinates

X, and xi are related by the transformation

X5

=x, +w,.x.dt = (§,, +w, db)x, . (3.32)
i ij] ] i) 1] J

At the instant of time t let the stress at the particle P be denoted

by Gij(t) and at a later instant of time t + dt by oij(t + dt) as re-

ferred to the rotating axes xi. Jaumann defined the stress rate as

(oi.)vJ z lim ét [o'. (t +4dt) - o'.(t)] (3.33)
J dt+o 1J 1]

whereas the material time derivative is defined as

.. = lim

s [o..(t +dt) - o,.(t)] (3.34)
1J dt-+o 1 1]

L
atc

where oij(t) and oij(t + dt) denote the stresses referred to the fixed

coordinate system.

According to these definitions, the Jaumann derivative of the tensor
oij is the rate of change of this tensor from the point of view of an
observer taking part in a rigid rotation of a particle, whereas the
material derivative of the tensor oij is a rate of change of this

tensor from the point of view of an observer fixed at the point P.

The stress tensor at the paricle P at the instant of time t + dt

referred to the fixed coordinates xj is
+ = -+ q . -
oij(t dt) oij(t) oij(t)dt (3.35)

whereas, when referred to the coordinate system xi it becomes

o'.(t +dt) = o, . (t) + (o_.)VJ(t)dt. (3.36)
1) il ij
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Transforming the stress tensor Uij(t + dt) under the coordinate transfor-

mation (3.32) to the x% axes, we obtain:

Gij(t + 4dt) = (Gik + wkidt)(djl + wljdt)okl(t + dt) (3.37)

Next substituting, oij(t + dt) from (3.35) into (3.37), we find:

cij(t + dt) (6, *+ W idt)(ajl +w .dt)[okl(t)-+okldt] =

k 1j

2
,oil)dt-ko(dt ) +... (3.38)

+ (5, + .+
Oy (8) + (O5q * Wy 0pg ¥y

Comparison of (3.38) and (3.36) furnishes the following result

Vg _ .
(Uij) = oij wikokj wjkcki (3.39)

if the terms of higher order with respect to dt are neglected.

In the recent literature various definitions of the stress rate are
frequently used. Since the deformation rate tensor dij vanishes if the
neighbourhood of the considered particle moves as a rigid body, others
possible expression for the stress rates that are objective may be ob-

v
J
k) to (cij) .

tained by adding terms i(oikdjk + okjdi

In view of further applications it appears convenient to construct

the objective stress rate tensors following Noll's derivation [5].

The "convected" or the Oldroyd derivative of the Cauchy stress tensor
o was derived by Oldroyd [8]. We shall denote it by 270 and obtain by
mapping the contravariant components okl onto the curvilinear reference
frame with the base vectors EK (which are transforming into the spatial

base vectors by the deformation gradient: g. = EKXKI),taking material
~. ’

g
~l
time derivative, and then mapping the result again onto the actual

configuration:

kl, 9o ijJ K L .. k 1 .ij K _L ij, K . L ij K L ,.+k 1
) = X X . x = X X .+ X )X, + X (X, X _=
(o ¢ /1 :J) S s o s3] o " ,1) P | ° ,1( ,J) ]X,K L
= Bkl - okpvl —olpvk (3.40)

:P 'p
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Use has here been made of the relations:

L 1 1 L .. L p
X7 x =6, , X = -X" v . (3.41
¢J /L J ( Il) P o1 )

The equ. (3.41)2 may be proved by differentiating (3.41)1 with respect
L

to time and mulitplying the result by X X
14

The Cotter-Rivlin derivative [9] of the Cauchy stress tensor, de-
noted by EYC'R, may be obtained in the similar way as the Oldroyd
derivative, but by using the covariant components of the stress ten-

sor okl instead of the contravaiant ones:

v ] . K L . P P
C-R = + + . .
(ckl) (oij 'K ) ,k 1= % cxkpv'1 olpv,k (3.42)

The Jaumann derivative of the Cauchy stress tensor g may be obtained
again similarly as the Oldroyd derivative. To this end let us assume
that the deformation results from translation and rigid rotation of
the principal direction only, then

X Xk = Rk P X =R . (3.43)
4

Substitution of (3.43) into (3.41)2 yields

K, . K p K
R)" = - = wP. .
( k) va,k (3.44)
Now, we are taking material time derivative of the contravariant
Cauchy stress tensor components in the reference frame which after
rigid body rotation becomes an actual spatial reference frame with the

base vectors Iy 7 and then mapping the result again onto the actual

configuration:
(Okl)VJ = (o 13 K L) R R1 - [613RKRL + lJ(R$)'RP .
KL 1] 1 ]
k 1
(R )RR

. S (3.45)
p p
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Relations (3.44) have been applied here.

It follows from the derivation that the Oldroyd and Cotter-Rivlin
(known as "convected") time derivatives of a tensor are time rates of
the spatial (contravariant and covariant, respectively,) components
of this tensor from the point of view of an observer taking part in
the deformation of the body; whereas the Jaumann or "co-rotational”
derivative of a tensor is (as it was already mentioned) a time rate
of the spatial components of this tensor from the point of view of an

observer taking part in the rigid motion of the body.

For the use in the constitutive equations of plasticity the Jaumann
definition is preferable to the other stress fluxes since, if it vani-
shes, the stress invariants have to be stationary:

V3 . . .
g =0 = I =1II =1III =0 . (3.46)

~ g o [+
~ ~ ~

This condition is not fulfilled by other definitions of stress rates.

3.4. Equilibrium conditions

We consider the static equilibrium of a body subjected to a body
force fi per unit mass and surface tractions. In the Eulerian descrip-
tion the surface traction ti is referred to the unit area of a deformed
surface with the unit outer normal nj. In the Lagrangian description the
surface traction Ti is referred to the unit area in the initial state

with the unit outer normal NK'

The resultant body force acting on the region V is

inpdv = inpodvo . (3.47)

A v
o

The resultant of the surface tractions acting on the surface F is

Jt.dF = JT.dFo ) (3.48)
1 hR
F Fo
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At the static equilibrium, the sum of the resultant body force
and the resultant of the surface tractions vanishes. Hence, on account

of (3.47) and (3.48), we have

inpdv + JtidF =0 (3.49)
v F

in the Eulerian description, or
O (o}
Jf,p av -+JT.dF =0 (3.50)
i"o i
VO FO

in the Lagrangian description.

Making use of the relations (3.5) and (3.7), and the Gauss theorem,
the equations of equilibrium (3.49) and (3.50) can be rewritten to

take the forms

J(fip +0,y )V =0 (3.51)
v
J(fipo + TKi'K)dVO =0 . (3.52)
VO

Since these equations must be valid for an arbitrary region V and

Vo, the equations of equilibrium may be written as:
+ £f.p =0 inv , (3.53)

g..n, = t, on F (3.54)

T . + fp =0 in v, (3.55)

T .N =T, on F (3.56)

in the Lagrangian description.
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Substituting TKi = SKin,L' which follows from (3.12), into (3.55)

and (3.56), we obtain the equations of equilibrium in the Lagrangian

description expressed in terms of the second Piola-Kirchhoff stress

tensor

(s +£fp =0 , (3.56)

X, .
KL 1,L),K i"o

SKin,LNK = Ti . (3.57)

Making use of the relation (2.12) between the displacement and
deformation gradients, the equations (3.56), (3.57) may be written as:

(s ) + fp =0 (3.58)

§. + u, .
xelin t Skt x i"o

(SKLGiL + SKLui,L)NK = Ti (3.59)

Differentiation of the equilibrium equations with respect to time
leads to the equilibrium rate equations. Equations (3.53), (3.54)

furnish
+ fip - fipv =0 , (3.60)

.. . — O,.. =
i3, ~ °i3,1V1,5 k. k

(6 )nj =t (3.61)

+ -
i35 7 %%, T %139 m) i

where the following relations are used:

.. .) = ({o,. X . =64,. X . +o0.. X, )=
©33,3 ©35,8%,3" T %i3,8%,5 T 913,k %k, 3
=6,., . -0.. . X . =0,. . - 0,. . .62
1j.,3] ij.K Krlvlr:] cljrj l],lvl,j' (3 )
p = _pvk’k' (3063)
ax 4 1 1
(ng) " =(-3g) =3 @) -ggz @s)dxy =v, ;n, = d,nan, =

v, .n. = d n. (3.64)
j,i i (n) J
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The relation (3.63) follows from the mass conservation requirement.
Differentiating (3.55) - (3.59) with respect to time, we obtain the

equilibrium rate quations in the Lagrangian description:

Teix + £iPo =0 (3.65)
'i‘KiNK = 'i'i , (3.66)
(éKL it Sk 10 SV ot £, =0, (3.67)
(éKL it éKLul'L * Servy N = T, (3.68)

As we can see from the above relations, only the equilibrium rate
equations (3.65), (3.66) expressed in terms of the first Piola-Kirch-
hoff stress tensor have the form usually applied in the classical

linear mechanics of continua.
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4, CONJUGATE VARIABLES

A process of isothermal deformation of solids may be described
using different stress, strain , stress rate and strain rate mea-
sures. This choice, however, is not arbitrary, but constrained by

some invariant requirements.

Starting with the definition of deformation energy, Hill intro-
duced the concept of a stress measure conjugate to a given strain
rate measure [3]. This concept can be generalized for stress rates
and strain accelerations. Such generalization is particularly useful
when the Eulerian description is used since then the objective stress
rate and the strain acceleration measures are not uniquely defined,
even near the reference configuration. Application of the definition
of conjugate variables helps to choose the proper set of objective

‘measures.

According to Hill's definition [31, a stress measure 1 is conju-
gate to a given strain measure g, when any infinitesimal increment
of deformation energy AW per unit reference volume is expressible

as the scalar product of 1 and dg

dw = l"ii (4.1)

or in rate form:

W=1-% . (4.2)
Since the scalar product of the Cauchy stress tensor g and the de-
formation rate tensor g gives the rate of deformation energy per
unit current volume, the rate of deformation energy per unit referernce

volume may be expressed as

W=o0.4.. (4.3)
ij ij dv
(o]
or
. o]
=2 65 4. , (4.4)
o ij ij

where the mass conservation law is used.
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Equation (4.4) shows that the variables Oij' dij commonly used in
the Euler description, are not the conjugate variables in the sense of
definition (4.2). Introducing, however, the stress measure

p

O
., = — . 4.5
tij 5 Gij ' ( )

called the Kirchhoff or Trefftz stress tensor, the equation (4.4) can
be written in the form
W=¢t.d,. (4.6)
1] 1)
which is consistent with the definition (4.2). Therefore, the variables
tij' dij are conjugate variables of the Euler description. For a rigid-
plastic material, which is assumed incompressible, we have p = po and,
therefore, t.. = 0,..
ij ij
Substituting (2.83) and (3.14) into (4.4), the rate of deformation

energy per unit inital volume can be written as:

= = 4 - 7
W= SeeXs, 1%, v, i, 5 T SkiFro (4.7
whereas, substituting (3.9)2 into (4.4), we obtain
W= = (4.8)

Tei®5, k%5 = Tki¥i,x
Relations (4.7) and (4.8) indicate that the variables in the Lagrangian

description SKL' E and TKi' v,

KL iK are conjugate.

Differentiation of equ. (4.2) with respect to time furnishes the
power rate equation which defines conjugate stress rate and strain

acceleration measures,

W= (1-8)° =

~

+.L§ ) (4.9)

Qe
Lo

This condition, written for the conjugate variables in the Eulerian

description t,., d4,., takes the form
1] 1]

W= (tijdij) = tijdij + tijdij' (4.10)
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The conditions {(4.2) and (4.9) are not, however, the only requirements
which have to be satisfied by the constitutive variables in order to
obtain a consistent theory. The other one is the invariant requirement
under superimposed rigid body motion. This condition is not satisfied
when the material time derivatives of the components of the Kirchhoff
stress tensor éij and of deformation rate tensor éij in the current
configuration are applied as stress rate and strain acceleration

measures.

Despite widespread interest in recent years in various definitions
of the objective stress rates [4] - [12], the choice of suitable defi-
nitions when formulating the constitutive relations still remains a
matter of taste or convenience. Therefore, we shall now attempt to
construct such stress rate and strain acceleration measures that will

be conjugate and objective.

Since the rotation tensor R is the proper orthogonal tensor, the

following relations take place:

RixBri = %%o¢ © RifRey = 835 - (4.11)

In view of (4.11) the equation (4.6) can be rewritten to become

W= tklRKkRLlRpKRrLdpr (4.12)

Differentiating (4.12) with respect ot time, we obtain

- . .
W= Ry Rexfrrlpr

+ ) i
t1RraRL1 RoxRrrdpe! (4.13)

The Jaumann (or co-rotational) derivative of the Cauchy stress
tensor was defined in the section 3.3 by the equation (3.45). Analogous-
ly, we can define the Jaumann derivative of the Kirchhoff stress tensor
and the Jaumann derivative of the deformation rate tensor as:

-t w -t w ’ (4.14)

VJ: M -
(tpr) = (t,.R_R_.) RoeRer, = tpr on"rm mpm

kl Kk Ll
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VI = RO R(RR A ) =d, -d w -dw . (415

(dkl k L1  pK rL pr kl km 1lm Im km

Now, by using the definitions (4.14)1 and (4.15)1, the equation (4.13)

can be rewritten to become

Vg vV
)Ta, + @) (4.16)

W=ty Tdy

The relations (4.6) and (4.16) provide the first set of conjugate
variables in the Euler descritpion which are invariant under super-
imposed rigid body motion:

Vg Vi

I set: tkl, dkl: (tkl) ’ (dkl)

Now, let us attempt to construct other sets of conjugate and objective
constitutive variables. Following Green's and Naghdi's [13] (or per-
haps ealier Noll's [5]) idea, let us introduce co-rotational or
rigid-body components EKL of the Kirchhoff stress tensor (components
in the reference frame which takes part in the rigid rotation of the

body)
t = t..R__R (4.17)

and co-rotational components aKL of the deformation rate tensor

dKL = RpKRrLdpr (4.18)

Substituting (4.17) and (4.18) into (4.12) and into (4.13), we obtain

the rate of energy and the rate of power equations in the forms:

(4.19)

=
[
i
o }|

.
.

(4.20)

=

]
ctle
o7
+
T

The relations (4.19) and (4.20) furnish the second set of objective

conjugate variables:

II :-
set tKL' dKL' KL’ ~KL

e
Q10
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(all these quantities are unlatered by superimposed rigid body motion).

Comparison of (4.14) and (4.15) with (4.17) and (4.18) furnishes

the following results:

Vg
4.
KL® TKL (tkl) dkl ! (4.21)

o
~
*

It

- - .- _ VJ
tKL(dKL) = tkl(dkl) . (4.22)

Now, let us consider the other way of constructing the conjugate
variables, the way concerned with convected measures. To this end,

we make use of the identity:

xk,LXL,l = le - (4.23)

The energy rate equation (4.6) can be, therefore, written as

W= 1%k, ka’le'er,Ldpr (4.24)
Differentiating (4.24) with respect to time, we obtain
ﬁ - (tklxK,kXL,lxp,er,Ldpr). =
= (tleK,kXL,l).xp,er,Ldpm.+
( )T . (4.25)

+ d
B ¥k, k%0, 1 ¥p, K¥r, 1%r

According to the definition of "convected" time derivative introduced
in the section 3.3 by equations (3.40) and (3.42), the Oldroyd deriva-
tive of the Kirchhoff stress tensor and the Cotter-Rivlin derivative

of the deformation rate tensor can be written as: (1)

Yo

(t xp,er,L = tpr

= ) - -

pr) tleK,ka,l tpmvr,m rmvp,m ¢ (4.26)

(l)The Cotter-Rivlin derivative of the deformation rate tensor, defined
by equ. (4.27) was first introduced in joint paper by Rivlin and Erick-
sen and, therefore, some time is called Rivlin-Ericksen derivative.
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@ )'CR = (g ) X

X =
pPr k1 k,le,L K,pr,r dpr + dplvl,r + derl,p (4.27)

where use was made of the relations:
(XL,l) N -XL'pvp,l ! (xp,K) - xl.Kvp,l' (4.28)

Substitution of (4.26)1 and (4.27)1 into (4.25) yields the relation

o v v
= o C-R
W (tkl) dk1 + tkl(dkl’ (4.29)

which furnishes the next, third, set of conjugate, objective variables:

Vo Vc-r

IIT set: t,., d ’ (dkl) .

k1’ Y1 Fp)

In view of equ. (2.84) the deformation rate tensor dij is equal to the

) VC-R,
J
Therefore, the III set of conjugate, objective variables can be written

Cotter-Rivlin time derivative of the Almansi strain tensor (ei

as

v v A
' . C-R o C-R
(III)' set: tkl' (ekl) ' (tkl) B (ekl) .

The "convected" components of the tensors Lt and d are defined as

(see e.g. [13])

t =

KL tklxK,kXL,l ' (4.30)

a_ =z d

KL k1 %k, K1, (4.31)

They are obtained by mapping the spatial components t of the Kirch-

kl
hoff stress tensor, and dkl of the deformation rate tensor onto the
reference state according to the transformation rule such as dXK==XK idxi
o_ P ) !
and dFK = o xi,KdFi' respectively.

Substitution of (4.30) and (4.31) into (4.24) and (4.25) provides

the rate of energy and the rate of power equations in the forms

W = tKLdKL p (4.32)



- 49 -

KL dKL + tKL(dKL) . (4.33)

The relations (4.32) and (4.33) indicate the fourth set of objective,

conjugate variables:

IV set: tKL' dKL' (tKL) ’ (dKL) .

Comparison of (4.26) and (4.27) with (4.30) and (4.31) proves the

following relations:

- Y

(tep) "dpp = (£,)7°d, (4.34)
t @ ) =t _(a.)cR (4.35)
KL ' KL k1 'kl - °

In view of the relations (3.13) and (4.5) we have

Sk T Y®k kL1 (4.36)

Comparing (4.36) with (4.30) and (2.83) with (4.31), we see that

t =8 ' a_ =& ’ (4.37)

that is convected components of the Kirchhoff stress tensor tKL and the
deformation rate tensor dKL coincide respectively with the components
of the second Piola~Kirchhoff stress tensor SKL and the Green strain

rate tensor éKL in the Lagrangian (initial) frame of reference.

The (IV)' set of the conjugate, objective variables can be, there-

fore, written as:

(IV)' Set: S ’ EKL' S

E
KL KL’ "KL

and the relations (4.34), (4.35) take now the form: (1)

S B = (¢ )70

SKL KL (tkl d ' (4.38)

kl

(!) The relations (4.38) and (4.39) were derived in another manner by
H. Stolarski [14]
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. v
= C-R
SKLEKL tkl(dkl) . (4.39)

For a general case of curvilinear coordinates, the considerations ana-
logous to the above lead to the following sets of the constitutive
variables which are objective and conjugate in the sense of the defini-

tions (4.2) and (4.9).

In the Eulerian description:

1. Co-rotational (rigid-body) measures

=KL, = -KL, . = .
a) t o, dp, (B0, (dKL)

- contravariant components of the Kirchhoff stress tensor t and

covariant components of the deformation rate d in the co-rotational

reference frame and their material time derivatives.

by £kl kL Vg vy

 d (t

k1’ ! (dkl)

- respective components of t and d tensors in the Eulerian (spa-

tial) reference frame and their Jaumann (co-rotational) derivatives.

2. Convected measures

TKL * KL, . 5 ..
a) t, A (E7) 7, (dp)

~ contravariant components of the Kirchhoff stress tensor‘E and
covariant components of the deformation rate tensor d in the
convected reference frame (embedded in the material and deforming
with it) and their material time derivatives.

k1 Kl Vo

Ve-r
b) t7, dkl' (t™) (dkl)

- respective componenets of t and d tensors in the Eulerian
(spatial) reference frame and their convected (Oldroyd and Cotter-

Rivlin, respectively) derivatives.
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In the Lagrangian description:

KI‘ - .KL ..
s , EKL' S EKL

- contravariant components of the second Piola-Kirchhoff stress
tensor S and covariant components of the Green strain rate tensor
E in the Lagrangian (initial) coordinate frame of reference and

their material time derivatives.

According to (4.37) the Lagrangian measures concide with the

convected measures (2a).

The second set of Lagrangian conjugate measures, that is the
first Piola-Kirchhoff stress tensor TKi' the velocity gradient vi,K
and their material time derivatives are inconvenient to be used as
constitutive variables since they are neither ojective (not invariant

with respect to the rigid body motion) nor symmetric.

Hill considered the relations between constitutive equations when
different stress rate and strain rate measures are used. He has shown
[10] that the existence of a homogeneous quadratic rate potential
(which leads to a symmetric stiffness matrix) for a material when the
constitutive law is expressed in terms of a set of conjugate stress
rate and strain rate measures, implies the existence of similar quadra-
tic potentials when the constitutive laws are expressed in terms of any
other set of conjugate stress and strain rate measures. Therefore, the
transformation of the constitutive law established, for example, in the
Lagrangian description under the assumption of existence of a quadratic
rate potential into the Eulerian description may lead (for compressible
materials) to non-symmetric stiffness matrix when as constitutive va-

riables the Cauchy stress tensor and deformation rate tensor are used.

As it will be shown in the part II, co-rotational and convected
(or Lagrangian) measures do not lead to the dual description of the

same material even for infinitesimal strains.
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PART 1II

CONSTITUTIVE RELATIONS FOR ELASTIC-PLASTIC AND RIGID-
PLASTIC MATERIALS

1. INTRODUCTORY REMARKS AND MODELS OF MATERIALS

An internally consistent axiomatic theory of elastic-plastic media
may be constructed with the use of any conjugate variables. The Cauchy
stress tensor, however, is usually chosen as a stress measure since

it is a "true" stress (force per unit area) in a current configuration.

As the theory of elastic-plastic material has been developed mainly
for the description of the behaviour of structural metals, it is the
experiments that should decide which variables are most suitable for
the description of material models reflecting known properties of metals.
Therefore, beforewediscuss the constitutive relations in the plastic

regime, a very brief outline of some experimental facts will be given.

When a bar of ductile metal is stressed in simple tension, its mecha-
nical behaviour is described by the load-elongation curve. Numerous ex-
periments show typical load-elongation relationships, as indicated in

‘the diagrams of Fig. t.1.

Load} Load} D

— —

A E elongation A elongatior

a) b)

Fig. 1.1
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For sufficiently small values of the load (before point B is reached),
the relationship is linear and reversible and the law of linear elasti-
city is expected to hold. For higher load values - BCD curves - the
relationship becomes nonlinear and irreversible. The behaviour in this
region is termed plastic. Mild steel shows an upper yield point B and
a flat yield plateau BC, see Fig. 1l.1(a). Most other metals do not
have such a flat yield platform and their behaviour is illustrated in

Fig. 1.1(b).

The curves shown in Fig. 1.1 are too complicated to be used as mathe-
matical models of materials, so it is clearly desirable to approximate
them by simpler relations. An obvious suggestion is to apply the linear
approximations as presented in Figs. 1.2 and 1.3. As before, point B
represents the yield point load. If BC is horizontal, as in Fig. 1.2(a)
and 1.3(a), we obtain perfectly plastic material models. Finally, if
the total strains are large as compared to the elastic strains, the
latter may be neglected. Then, we obtain rigid plastic models of actual

materials - Fig. 1.3.

When we consider unloading, the elastic material will retrace its
load-elongation curve to the origin, whereas the plastic process is
irreversible. Thus, if the material is loaded into the plastic range
along ABC and then unloaded, the slope of CE is assumed to be the same

as the initial slope of AB.

If the unloading is continued, the material will eventually flow
plastically in compression. For the perfectly-plastic material models,
Fig. 1.2(a) and Fig. 1.3(a), the compressive yield load will be the
same as the tensile yield load CE = EF. For hardening material models,
Fig. 1.2(b) and 1.3(b), the compressive yield load depends upon the

amount of tensile hardening. This property will be discussed later on.

Another important difference between elasticity and plasticity is
the question of uniqueness. For the plastic range, the stress is no

longer uniquely determined by the strain, and vice versa.

The load and the elongation represent the axial stress and axial

strain of the specimen under uniaxial stress. Therefore, the material
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load$ load 4
C
B . C B
A E . A E .
elongation elongation
—F
F
a) b)
Fig. 1.2
load4
loodf
C_-
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models are often defined by the stress-strain relations analogous to
those presented in Figs. 1.2 - 1.3. Now, the theory of elastic-plastic
solids in terms of conjugate variables T - £ will be constrﬁcted and
next, by the identification of conjugate variables with those of the

Eulerian or Lagrangian description, the characteristic properties of

defined materials will be analysed and compared.
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2. YIELD CONDITION

2.1. Yield function

Existence of a yield(or loading)function in the theory of plastici-
ty is usually introduced as an assumption (L. we postulate that there
exists a scalar function f(I,'Ep'K) which depends on the state of
stress, plastic strain and a parameter k. The parameter k is called a

hardening parameter and depends on the plastic deformation history.

If we regard the stress state T as a point with components Tij in
the nine-dimensional stress space, then, for a givenvaluegP and k, the

equation

£(z.ef0) =0 (2.1)

represents a surface in the above space and is called a yield condition
or a yield surface. If we assume that plastic deformation is independent
of hydrostatic pressure, what is in agreement with experiamental data,
then the yield surface takes in the principal stress space Oy 02, )
the form of an infinitely long cylinder or prism with the axis inclined
at the same angle to each of the three axes of principal stresses (Fig.
2.1).

Changes in plastic deformations occur only when f = O. No changes
in plastic deformations occur when £ < O. No meaning is associated with

£ > 0.

A history of loading may be regarded as a path in the stress space
and the corresponding deformation history as a path in the strain space

with axes €,..
i)

The yield criteria that are in excellent agreement with experiments
for most ductile metals are the Huber-Mises and the Tresca conditions.
For most metals the Huber-Mises yield condition fits the data more
closely, but because of linearity the Tresca law is frequently simpler

to use in analytical considerations.

(l)It may be shown [15], however, that existance of a yield function is
a consequence of the requirement that the stress is an isotropic, home-
geneous of the order zero, tensorial function of the strain rate.
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.4 | / 51= 62'—‘ 53

/ /]

Fig. 2.1

2.2. The Tresca yield condition

For mild steel and for some others metals, it has been observed that
plastic deformations basically consist of slips in crystals. Hence, it
was supposed (by Tresca in 1864) [16] that yielding occurs when the

maximum shear stress reaches a certain critical value.

In a multiaxial stress state with the principal stresses Gyr Oyr Oy
the Tresca yield condition can be written as
|oy-0, | |o,-04] |o3-0, |

> ’ 3 R 3 ] =k (2.2)

max [
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where k is the yield locus in the pure shear test. Considering the uni-
axial tension test with the tensile stress o,we find the following rela-
tion between the values of yield point in pure shear and uniaxial tension
tests: .

x = fkl (2.3)

2

where Co is the yield limit for tension. Consequently, the condition
(2.2) is represented in the Cartesian space with axes 01, Ogys 03 by
the hexagonal prism whose axis is equally inclined to the coordinate

axes (Fig. 2.1).

For plane stress state one of the principal stresses vanishes, say

03 = 0, and the hexagonal prism reduces to the hexagon ABCDEF obtained

by intersection of the prism with the plane o3 = O. The yield condition

then becomes

It
(@)

max [|°1| : o |c1 - 02|] (2.4)

)

2.3. The Huber-Mises yield condition

In 1904 M.T. Huber assumed that it is a certain critical amount of
the shear energy in an elastic body that should be responsible for the
onset of yielding, irrespective of the type of stress state [17].
Huber's idea was independently expressed by R. von Mises in 1913 [18]
in the different form. He suggested that yielding of the material

begins when the shear stresses intensity o, = /5;-(where J., is the

2
second invariant of the deviatoric part of stress tensor) reaches a
critical value k. Thus the Huber-Mises yield condition assumes a very

simple form of the general relation (2.1), namely

Jd, =k (2.5)

or

2+(02-0)2+(03—0)2=6k2 (2.6)

(ol—o 3 1

2)

when referred to the principal stresses. The value of k may be obtain in

a simple way, by means of the uniaxial tension test. Let us assume that
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only the principal stress O, having the value of the yield point S is

1

present, while the two remaining principal stresses 02 = 02 = 0. From

the relation (2.6) we obtain

k = — (2.7)

Geometrical interpretation of Huber-Mises yield condition is a circu-

lar cylinder in the principal stress space ¢ with the axis

1’ %27 93
inclined at the same angle to each of the three axes of principal

stresses (Fig. 2.1).

For a plane stress state (03 = 0) the yield condition (2.6) reduces
to the equation

[}

02 + 02 - 0,0, =0 (2.8)

represented by an elipse in the ¢ plane (Fig. 2.2).

1’ 92

Fig. 2.2



3. LOADING AND UNLOADING CRITERIA

To explain the meaning of loading and unloading in a plastic
state, consider a state in which (2.1) is satisfied. The time rate

of the yield function can then be written as

+ 2——-5?
EP

Q

+ —E-& . (3.1)

Fhe
[l
Ll
1) |r—n
1
Q
Q

A point in the stress space lies on the surface (2.1) and is about to
move inward if f = 0 and £ < O. Such a change leads to an elastic

( or rigid) state and is natural to call it unloading. However, unloa-
ding is a purely elastic process and, therefore, no plastic strain
occurs, EP = 0, and the rate of change of the hardening parameter
must also vanish, kK = O. Hence, in view of (3.1), the criterion for

unloading from a plastic state is

Q
Hh

O and f =

h
Il

i <0 . (3.2)

2o

Since &P and & vanish also for hardening materials when a stress point

~

lies on the yield surface and is about to move in the tangential direc-
tion the ecriterion for neutral loading from a plastic state is
. £

f=0 and £ = —;-i'= o , (3.3)

Qi

otherwise the loading process takes place. Thus the eriterion for

loading from a plastie state is

i >0 . (3.4)

A stress point lies on the yield surface and is about to move outwards,
together with the yield surface (because the end of a stress vector

cannot go outside).

A simple geometric interpretation of these criteria is shown in
Fig. 3.1. For a stress staterepresented by a point on the yield sur-
face, loading, unloading or neutral loading take place, according to

whether the stress increment vector is directed outward, inward, or
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along the tangent to the yield surface, respectively.

. \ loading

unloadin® nbutral

Fig. 3.1

For perfectly plastic solid, the yield function f depends neither on
the plastic strain nor the strain history, therefore (2.1) may be

written as

£(x) = ¢(x) -k =0 (3.5)

where k is a constant.

In this case the equation (3.5) represents a surface in the stress
space which remains constant during the whole plastic flow process.
The unloading criterion has the same form (3.2) as for the hardening

plastic material, whereas the loading criterion now becomes

(=]
Hh

(3.6)

H,
]
(@]
Hhe
(1]
QL
)
24
il
(@)

Note that (3.6) coincides with the neutral loading criterion for harde-

ning materials. In view of (3.5) the situation in which £ = 0 and

g%—i > 0 is not possible for perfectly plastic materials.
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4. THE DRUCKER POSTULATE

The Drucker postulate plays a fundamental role in the mathematical
theory of plasticity. The normality, convexity and material stability

conditions, all follow directly and simply from this postulate.

The postulate proposed by Drucker [10] may be formulated in the
following way. Consider a body or a system at rest, made of time-inde-
pendent material, loaded by a set of surface tractions z? and body
forces E? in equilibrium. An external agency is supposed to generate

T -1 and Af = £ - £

~J

an independent ‘set of conservative forces AT
in the equilibrium which cause a change in the displacements Au. The
system is said to be stable when the work done by the external agency
on the displacements it produces is positive or zero whatever the set

of added forces. This statement may be written as

(e]

Au Au,
1 1
AW=J [, -T‘?)du.dF°+J [p (£, - £ du,dv®20 (4.1
] i i i o i i i
> o v° o
or
t t
AW = J (P, - T)v.dtdr° + J Jp (f. - £2)v.atdav® = o (4.2)
1 1 1 o] 1 1 1
t vt

F
o (o}

where F° and Vo are the surface and the volume of the body at the time
to’ Ti is the surface traction referred to the unit surface F°
dp;

(T, = —5 ) and £, is a body force referred to the unit mass.
i gp i

Denoting by N, the unit vector normal to dFO, we have the known rela-

k
tions:

T. = T _.N , T. =T_.N (4.3)

where TKi is the nominal or the first Piola-Kirchhoff stress tensor.

o . .

As F° and V° are time-independent we can interchange in (4.2) the
time and the surface as well as the time and volume integrals. Next,
substituting .(4.3) into (4.2) and making use of the Gauss theorem, we

obtain
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t ‘ t
f O (o] (o] (o]

= - + - =

AW J (T, = T NV, dF qt p (f, ~f)v, av dt
t F° t v°
o] o]
t
O (o] (o} o]

= - + - + - £, a >0.

J J[(TKi TKi)vi'K (Tps TKi)IKVi (£, fl)povi] v dt 20
(o)

t v (@.4)

With the use of equilibrium conditions the relation (4.4) becomes

t
o o
= - > .
AW J J(.TKi Ki)vi,KdV dt =20 . (4.5)

t

Y
o o

When the body is under homogeneous stress and strain, the volume inte-
gral in (4.5) may be omitted and the criterion defines a class of mate-

rials for which

t
o
J (TKi TKi)vi,KdtZ o . (4.6)
t
o

To eliminate from the criterion the elastic part of strains, the closed
stress cycle is considered - ABCD or A'B'C'D' -~ as shown in Fig. 4.1

for simple tension.

load or 4
nominal stable,_l_’unstable
stress f--——-———— O B_ c
T8l B
ol ____ S - -
T A D Al D]

‘ displacement or
Fig. 4.1 extension
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If the elastic properties of the material are uneffected by plastic

strain, then the elastic recovery at the end of the cycle is complete

and only the plastic deformation du? K remains. The relation (4.6)

takes then the form

t
L > 4.7
) J(TKi Txi)vi,Kdt"o (4.7)
t
o
where vP is the plastic part of velocity.

With the assumption of small strains the expression on the left
hand side of inequality (4.7) can be expanded into the Taylor series
at the point B. To within an accuracy of the second order terms, the

inequality (4.7) becomes

B o .. p 1. P 2 1 B o 2
- = = - 4 >
(Tys ~ Ty Vi k98 + 3Tk Vi, @0 + 5 (Tpy TKi)vﬁ,K(dt) =0 (4.8)
B
Txi = Txi

It may be shown [19] that the inequality

B o] p
- 2 4.
(Tys TKi)Vi,K o) (4.9)
is the only condition which follows from (4.8) (that is from the

Drucker postulate) when it is satisfied for the closed stress cycle.

Indeed, even if the second term in (4.8) is negative,
T vP _ <o , (4.10)

(falling branch of TKi - u; . curve in Fig. (4.1)), the inequality

i,

(4.8) cannot be violated by holding v? and TB. fixed and moving To.
B 0 i,K Ki Ki

- T . i 3 3 03 hd 3
Xi i s too small in comparison with TKi' it

is not possible to close the stress cycle.

closer to TB.. If |T
Ki
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5. NORMALITY AND CONVEXITY

As a consequence of the condition (4.9) (i.e. the requirement of
positive work done over a stress cycle), the normality of strain rate
vector to the yield surface and convexity of the yield surface can be

proved at the assumption of small strains.

Since near to the reference state all the stress measures coincide
and all the strain rate measures coincide too, the inequality (4.9) may
be written in the similar form for any conjugate stress and strain rate

measures,

(" - P20 (5.1)

~e

In particular, for the variables tij - dij which are conjugate in the

Euler description the inequality (5.1) takes the form

2. -t%)a..20 (5.2)
ij i3’ i

whereas, for the variables SKL - EKL conjugate in the Lagrangian des-

cription we have

(siL - sP)E 20 . (5.3)

The inequality (5.1) may be expressed in the form

!'ZB -;r‘oll'épl cos §y =2 O (5.4),:

p

B . . R
where ¥ is the angle between QL - E?) and € vectors. This requirement

B ~ o
means that the vector (2 - g?) for each interior point T has to make an

acute or right angle with the vector é?, that is

ly| < 90° . (5.5)

. o
The vector P depends uponifgbut is independent of 1 . Therefore, if a

~e

plane is drawn through point B (Fig. 5.1) perpendicular to é?, then all

the admissible points O must lie on one side of this plane. This is
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clearly the definition of a convex surface. In this way the convexity

of yield surface has been proved.

Next, let us take the convex yield surface and discuss the restric-
tions on the plastic strain rate vector é. Since E must make a nonab-
tuse angle with every vector (EF - l?) this can only be satisfied if
E is in the direction of the normal (assuming the yield surface to be

smooth at the point B). Thus

@
Hh

eP = A

~

(5.5)

2

where A is a nonnegative scalar function which may depend on stress,

stress rate, strain and strain history.

At a corner or edge of the yield surface (point B' in Fig. 5.1) the

normal and thus the direction of &P is not unique. Such surface is

~

composed of a number of individual smooth yield surfaced fa = O which
intersect at B'. Then the strain rate vector é? lies within a cone

bounded by normals to the surfaces fa = 0 at point B' and can be writ-

ten as followé

P ' Bfa
€ = AGF . (5.6)

The relation (5.5) is known as the flow rule and (5.6)as the genera-

lized (or Koiter's) flow rule.

Hence, the convexity of a yield surface in any stress space and
the normality of conjugate strain rate vector at the assumption of

small strains have been proved.

Entirely equivalent results can be obtained in the load space.
From the formulation of Drucker's postulate, it immediately follows
that the inequality analogous ot (4.9) may be written for the load
2 and velocity vP vectors:

~

2 0. (5.7)
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m.
v
—

—

Tij or é-.j
B
P

Fig. 5.1

Convexity of the load surface and normality of the plastic velocity

vector may be proved in the same way as above (Fig. 5.2).

VP
kB
TB
0

—
Ti or VP

Fig. 5.2
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Now, let us draw some conclusions from the Drucker postulate when
finite elastic strains are allowed. Then the different stress measures
and different strain rate measures do not, in general, coincide and the

relations (5.2) - (5.3) do not follow from (4.9) any more.

From the definition of conjugate variables (the requirement of

invariant energy rate) we can state that

B P _ BagP_BgP 8
Tei¥i,k = %%i%i = SkrFxr - (5.8)

The second term at the left-hand side of inequality (4.9) is, however,

not an invariant measure when finite deformations take place, thus

©gP 4 g° gP (5.9)

o _p
TgiVi,k © %%i%i ¥ SkcFrr-

Ki 1,

Therefore no conclusion about normality and convexity in the space
of Kirchhoff (or Cauchy) stress tensor and in the space of the second
Piola-Kirchhoff stress tensor can be drawn directly from the Drucker

postulate if finite elastic strains are allowed.

However, it can be shown that from the assumption of normality

af(ti.)
d,, = A ——— (5.10)
ij Btij
when the Eulerian variables are use to define a material, follows

the normality of the Green strain rate tensor E to the yield surface

KL
which is obtained by the transformation of equation f(tij) = O into

the second Piola-Kirchhoff stress space. Thus we have

. af(sMka,Mxl,N)
EKL=A 5 S (5.11)
KL
where, in view of the relationship tij = SKin,Kxj,L'
. = ). 5.
f(SKin,Kxj,L) f(ti]) (5.12)
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Making use of (5.10), (2.83) from part I, and known rules of diffe-

rential calculus, we may transform the right-hand side of (5.11) as

follows:
9E Synre, 1,8 SE Sy s, 2 Skr¥, 1, N
A 3sS - 3 (S x ) s
KL MN"k, M1, N KL
= A 3f135l1- - X X =4 X = E (5.13)
3¢, x, k1,0~ %x*k, K1, T Cku C 3

This proves the statement (5.11).

Similarly, one would like to show that from the assumption of convexi-
ty of the yield surface in the Kirchhoff stress space, the convexity
of the yield surface in the second Piola-Kirchhoff stress space does
also follows. However, this implication at finite deformations is not

so simple and requires additional restrictions.
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6. MATERIAL STABILITY

Although the concept of material stability in the plastic range
was introduced by Drucker almost 30 years ago, this definition appears
to be not precise enough and therefore the question still arises of

what exactly a "stable material” means.

In the recent literature the following two approaches to the defini-
tion of the material stability of time-independent materials are most

commonly used.

The first one is concerned with Drucker's concept. The material
stability condition is then derived from the energy criterion of stabi-
lity of a body or a system when homogeneous stress and strain states

are assumed.

The second approach. consists in generalization of the definition of
material stability under one-dimensional tension to cover an arbitrary
stress state. According to this definition the material is said to be
stable when the stress-strain curve is rising (the OAB curve, Fig.
6.1(a)) and it is said to be unstable when the curve is falling (the

BC curve, Fig. 6.1 (a)). For the 3-dimensional stress state the material
is said to be stable when the yield surface is swelling locally at the
plastic flow process, and is said to be unstable when the yield sur-

face is shrinking locally (Fig. 6.1(b)).

A
B A -

BN

A C ~ R

\

A C
(o]
=
o a) £ b)

Fig. 6.1



- 71 -

This idea can be expressed analytically as a requirement that the
scalar product of conjugate stress rate and strain rate tensors be

non-negative for stable material

v Vv
T..€..20 (6.1)
1] 13

where V denotes an objective time derivative.

This definition does not, however, describe the material properties
in a unique way since the material stability depends here upon the
choice of measures of the stresses, strains and the objective stress
and strain rates. (The scalar product ¥ij¥ij is not invariant under

the change of stress, strain, stress rate and strain rate measures).

Usually in the literature both approaches are treated as leading
to the same results when small strains are considered. It will be shown,
however, that in general it is not the case. The differences in res-
ponse of structural elements made of plastic materials which are
stable in different senses may be substantial when the stress level
has attained a magnitude comparable to that of the plastic hardening

modulus.

Moreover, it will be shown that a rigorous non-linear analytical
formulation of the Drucker postulate leads to the unique choice of
the stress rate and the strain acceleration measures in the inequality

(6.1).

As it was shown in chapter 4, part II, the Drucker postulate satis-
fied in a stress cycle guarantees the normality and convexity only,
but not the material stability. To ensure the sufficient condition of
the material stability in Drucker's sense, the requirement of positive
work done has to be satisfied not only in a stress cycle but for any
stress path from an initial state T;i' Then, instead of (4.7) the
relation (4.6) has to be used in further considerations. After expan-
ding into the Taylor series at the point B to within an accuracy of

the second order terms, the inequality (4.6) becomes
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B (e} 1 - 2 1 B (e} 2
- at+= T . v, dt + = (T . =-T .)v. dat 20 .
(TKi TKi)vi,K 2 "Ki, 1,K( ) 2 ( Ki Kl) 1,K( )
B
Txi ™ Tki
For Tii = T;i this relation reduces to the requirement
. S )
TKiVi,K =20 (6.2)

which expresses the material stability condition in Drucker's sense.

For an elastic-plastic material we are, therefore, not able to eli-

minate from the criterion the elastic part of strains.

For simplified, rigid-plastic material model, the Drucker postulate
satisfied for any stress path in the nominal stress space leads to the
condition

= > .
Txivi,x = Tkivi,x = © (6.3)
which is both sufficient and necessary for the material stability in

the Drucker sense.

However, in view of the lack of symmetry and objectivity, the

i and vi K are rather inconvenient variables for the material
!

description. Therefore, we shall express the material stability con-

N .
ensors TK

dition in the Drucker sense (6.3) in terms of the variables of the

Eulerian and the Lagrangian description.

The material stability condition in the Drucker sense in the Lagrangian

description:

Making use of the relation between the first and the second Piola-

Kirchhoff stress tensors (equ. (3.12) part I),

T =S X

Ki KL"i,n’ (6.4)

the left-hand side of the inequality (6.3) can be rewritten in the

form
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.

il

‘v. =8 x. . +S. . v, _v,
TeiVi,k = Sre®i,n) Vix - Swke¥i,tVi,k T SkeVi, Vi,

1 -
— + + . 6.5
2 Sk, 1Vi,k %, Sk, ViLk (6.5)

In view of the definition (2.20), part I, of the Green strain

tensor

5 X5, " Sk (6.6)

sl
KL ~ 2

the Green strain rate tensor may be expressed as

Bgr = %'(Vi,xxi,L * Xk, (6.7)
With the use of (6.7) the relation (6.5) can be shown to be
Tei¥i,x = Sxcfer * SxuVn,k YN,L (6.6
Substitution of (6.8) into (6.3) yields
éKLéKL * SV, kN, L 20 (6-9)

which is both sufficient and necessary condition for the material

stability in the Drucker sense in the Lagrangian description.

The material stability condition in the Drucker sense in the Eulerian

description :
In view of the relation (4.36), part I, between the second Piola-
Krichhoff and the Kirchhoff stress tensors,

S (6.10)

ko - Sk¥k, k¥, 0

the second term on the left-hand side of the inequality (6.9) can be

rewritten in the form
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= %10, x"n,1

= \J . 6.11
e ¥k, k%, 1V, KN, L (6.11)

v v
SKL N,K N,L

According to (4.38), part I, the first term on the left-hand side
of (6.9) can be expressed as
. Vo

SKL KL = (tkl) dkl (6.12)

where (tkl)vo is the Oldroyd derivative of the Kirchhoff stress ten-
sors. Substitution of (6.11) and (6.12) into (6.9) yields

Vo

(t, ,) d 20 (6.13)

+
k1’ %1t %%1Vn,kn,1

which furnishes the material stability condition in the Drucker sense

expressed in the Eulerian description.

In the literature, however, the Jaumann stress derivative is usual-
ly chosen to be used in the constitutive relations. Therefore, making
use of the relation between the Jaumann and the Oldroyd stress deriva-

tives (which can be obtained from (3.39) and (3.40), part I)

)Vo = (t )VJ

Xl K1 - tkpdlp - tlpdkp ' (6.14)

(t

the material stability condition (6.13) can be transformed to become

VI, _ S
(€h1) " 7dyy = Vo V1 n Z 0 (6.15)

In particular, when the solid is plastically isotropic, the principal
axes of tkl and dk1 coincide (then tkpdkl = tkldkp and tkpdklwlp =

tlpdklwkp = 0 as a scalar product of symmetric and antisymmetric tensors

[ 20]) and (6.15) can be rewritten as

‘@

- . .1
tkldkl tklvn,kvl,n) 20 (6.16)
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Volume integral of (6.16) leads to the sufficient stability condition

derived by Hill [21] for a rigid-plastic body.

The validity of the Drucker postulate is reasonable only when strains
are small. The conventional small strain formulation of this postulate
leads to the inequality (6.1). Therefore, therequirement (6.1) written

in the form

£ > 5 > .
tkldkl 20 or SKLEKL >0 . (6.17)

is commonly presented as the Drucker material stability condition.

It was shown, however, that the rigorous non-linear formulation of
the Drucker postulate leads to the material stability condition (6.3)
(called material stability in the Drucker sense) which coincides neither

with(6.17)1 nor (6.17)2.
The constitutive inequality

(t )VJdkl >0 (6.18)

kl

will in further considerations be called the material stability condi-
tion in the Eulerian description or in the Jaumann sense, whereas the

constitutive inequality

. >
SKLEKL 2 0

will be referred to as the material stability condition in the Lagran-

(o )vo

gean description or in Oldroyd sense (since S B . = (0,,) " q,,).
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7. PERFECTLY PLASTIC MATERIAL

Since the perfectly plastic material has so far been introduced
as a plastic solid for which the neutral stability condition is satis-
fied, in view of the above considerations, such definition does not
describe the material properties in a unique way. Therefore, it seems
reasonable to introduce the following definitions of the perfectly

plastic materials in various senses.

We say that material Zs perfectly plastic in the Drucker sense if

_ 7.
TgiVi,x = © (7.1)
or
S 5 + = N
SerFr * Sern, kw1 = © (7.2)
orx
Vo
) 9 5aVn,kVn,1 T © (7.3)
oxr
(t W33 . -t v =0 (7.4)
1 kl k1'n,k"1,n .

Material is perfectly plastic in the Eulerian description if

(tij)deij = 0 (7.5)

or
t..d.. =0 (7.6)
1j 1]
provided the material remains isotropic.

Material is perfectly plastic in the Lagrangian description if

S._E__ =o0. (7.7)

The significance of the above differences in the definitions of
perfectly plastic materials can be demonstrated in simple tension of
a bar made of the isotropic perfectly-plastic material in the Drucker

sense (Fig. 7.1).
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rtieee

VHETH
>

Fig. 7.1

The relations (7.1), (7.2), (7.4) can now be written as:

v =0, (7.8)
XX X,X
- 2
xxtax T Sxx x,x) =0 . (7.9)
. 2
-a (v )7 =0 . (7.10)

Since for small deformations all the strain rate measures coincide

vg,XCidxx e Exx o €x’ the equations (7.8) - (7.10) can be rewritten as:

Txxexx =0 , (7.11)

€. +5s (e )" =0 , (7.12)
XX XX XX XX

.
1

.

~
]

g € o (€ . (7.13)
XX XX XX XX

For time-independent materials the extension Exx may be taken as the

time measure, then the equations (7.11) - (7.13) become:

dex

3e =0 , (7.14)
XX
dex

ae = - sxx . (7.15)
XX
doxx

=0 . (7.16)
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Satisfying the initial conditions:

(o] (o] (o]
T =T ’ S = 8 . o] =aq for ¢ =0,
XX XX XX XX XX XX XX

the solution of equations (7.14) - (7.16) leads to the relations:

o

T =T ,

XX XX

SO
€ = -1n8S + 1ns°® =ln—-&,
XX XX XX

XX

(o} 0'XX

€ = 1ln g - lno = ln —
XX XX XX 00

XX

as illustrated in Fig. 7.2.
stressﬁ
Dxx
1 o Txx
Sxx .
strain
Bxx
Txx
1 tgdo=
Sxx

Fig. 7.2

(7.17)

(7.18)

(7.19)
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As we can see in Fig. 7.2, the perfectly plastic material in the
Drucker sense turns out to be strain-hardening for tension and strain—
softening for compression in the Eulerian descriptionwhereas in the
Lagrangian description it is strain-softening for tension and strain
hardening for compression. The hardening (or softening) parameter h

at the onset of yielding is equal to the yield-point load o_(tga, =1).
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8. HARDENING RULES

In the previous sections we have discussed the yield surface, the
flow rule and material stability conditions. Now, let us consider the
hardening rules which describe how the plastic deformation e enters

the yield function

£(1,e5,0) =0 (8.1)

or, how the yield surface changes in size and in shape during the
plastic deformation process. We shall discuss several most common

hardening rules.

8.1. Isotropic hardening

For isotropic hardening we assume that the yield surface maintains
its shape, centre and orientation, but expands uniformly about the

origin (Fig. 8.1). The subsequent yield surface may be written as

£(r,ePi0) = £ (1) -k =0 (8.2)
where fo(I) = 0 is the initial yield surface (for EP = 0), and K is

the hardening parameter which depends on the plastic strain history.

There are two widely discussed hypotheses proposed for computing
the hardening parameter k. The first one, known as the work-hardening
hypothesis, states that the hardening is a monotonically increasing

function of the total plastic work

c=xw® , E 5o (8.3)
aw®P
where
P
WP =Jf£dr§p : (8.4)
(o]

It is usually assumed that

k = WP . (8.5)
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The second isotropic hardening hypothesis, known as the strain-
hardening hypothesis has it that k depends on the amount of plastic

strain

K=k . (8.6)

This dependence is usually assumed in the form

eP
.<=Jd€ (8.7)
(@]
where
- 1
de =(§2—d£p-d£p)/2. (8.8)

For the Huber-Mises yield condition both hypothesis lead to the same
results (Fig. 8.1)

e
// ’“

Fig. 8.1
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8.2. Kinematic hardening

According to the kinematic hardening hypothesis proposed by
W. Prager [22] the initial yield surface translates in the stress
space preserving its size and orientation. Any motion must be normal
to the edge in contact with the stress vector. When a corner of the '
yield surface is reached by the stress point, the yield surface moves
in the direction of stress vector. Fig. 8.2 illustrates Prager's
hypothesis for the Tresca yield condition shown for two segments of

proportional loading.

Fig. 8.2

Prager's concept of kinematical hardening may be formulated analytical-

ly as follows

£(,ef0) = £z - =0 (8.9)

where & represents the translation of the centre of the initial yield

surface.
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If linear hardening is assumed, then

&., = Cg, . (8.10)
ij ij

where c is a constant.

H. Ziegler [23] modified Prager's rule by suggesting that the direction
of motion of the yield surface agrees with the radius vector OB that
joins the centre of the yield surface with the yield point representing

an acutal state of stress (Fig. 8.3)

T,

N\

Fig. 8.3

Ziegler 's hardening rule may be expressed analytically if (8.10) is

replaced by the relation

o= op(t,. - oo, l) (8.11)

where u > o.

More complex hardening rule was proposed by P. Hodge [24], who extended
the kinematic hardening to include an expansion of the yield surface

simultaneously with its translation.
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9. OBJECTIVE AND CONSISTENT DESCRIPTION OF PLASTIC DEFOR-

MATION PROCESS

9.1. Invariance requirements

As it was already said in chapter 4, part I, the choice of suitable
stress, stress rate, strain rate and strain acceleration measures, when
formulating constitutive laws, is not arbitrary but constrained by some

invariance requirements.

The invariance requirement under superimposed rigid body motion
leads to the formulation of objective stress rate and strain accelera-
tion measures, whereas the invariance requirement of the rate of defor-

mation energy was the base at the defining conjugate variables.

In chapter 4, part I, the conjugate an objective sets of stress,
stress rate strain rate and strain acceleration measures were con-
structed. When the constitutive relationships for elastic-plastic and
rigid-plastic solids are formulated, it turns out that these sets of
measures do have to be employed to obtain consistent and objective

material behaviour description.

The following invariant descriptions of the plastic deformation

process can be proposed.

9.2. Co-rotational formulation

The yield condition is formulated in terms of co-rotational (rigid-

body) components EKL of the Kirchhoff stress tensor by the equation

f(tKL,K) =0 . (9.1)

The process of plastic flow is then described by the relations:
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D elastic
a_ = if £ <O
dKL o} i state
. af = .
or if £ =0 and — t <0 unloading
ot KL
KL
. _ of = _ neutral
or if £ =0 and 3T tKL =0 loading
KL
(9.2)
& 2 2E , A>20 if £=0 anma 2Lt o0 loading
KL ot ot KL
KL KL (9.3)

Making use of (9.2), (9.3) it may be proved that the following relation
has to be satisfied

Pt

>
KL KL o - (9-4)

Indeed, if 5§L = O then (9.4) is satisfied with the sign of equality.
If aiL # O then, according to (9.3),

-p = - a_f_'. S
dKLtKL A ot tKL =0 (9.5)
KL
af =
because A2 0 and t >0 .
atKL KL

The co-rotational yield condition is one which is most commonly used

in the theory of plastic structures. Indeed, constitutive relations for
isotropic, plastic shells and plates are formulated in terms of stress
and strain rate components tangent to the middle surface. This formu-
lation is in agreement with (9.1) - (9.3), therefore it does coincide

with the co-rotational yield condition.

If the actual state coincides with the reference configuration, then

tKL = tkl ' dKL = dkl (9.6)
and, according to (4.14) - (4.15), part I,
£ o=, )9, =@ . (9.7)

KL 'kl ' YKL k1
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The yield condition (9.1) and the plastic flow rule may now be written

as
£t %) =0 (9.8)
P _ .
dkl (0] if £ <O
or if £=0 and =X (t. )W <o, (9.9)
5T X1
X1
@ =A3E A>0if f=0 ana 2 k& H)Is0 . (9.10)
K1 Tt Ttk

It may be shown, in the same way as before, that, as a consequence of

(9.9) - (9.10), the following relation takes place,
@ e )\I>0 . (9.11)
kl 'kl -

The inequality (9.11) is called inchapter 5 thematerial stability condition
in the Euler description (or in the Jaumann sense). According to (4.21),

part I, the condition (9.4) concides with (9.11).
If the considered material is assumed to be isotropic then [20]

P V3 _ 4P :
dp, (6 ) Y =ap g (9.12)

v
and the Jaumann derivative of the Kirchhoff stress tensor (tkl) J in

the relations (9.9) - (9.11), may be substituted by the material deri-
vative ékl' Therefore the co-rotational formulation of constitutive
relations for initially isotropic material coincides with the conven-

tional one if small deformations are considered.

9.3. Convected formulation

Let us now assume that the yield condition can be formulated in
terms of convected components EKL of the Kirchhoff stress tensor in
the form

f(tKL,K) =0 . (9.13)
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Then, according to the flow rule, the process of plastic flow is des-

cribed by the relations:

aiL = Q if £ <O
_ 3f =
or if £ =0 and o~ tKL <0 , (9.14)
3ty
5§L=A—?E—f—,/\zoif £=0 ana 2L EKL>0. (9.15)
KL atKL

£ =t and d_ =4 (9.16)

)
<
O

) , d_ = (d.)CR (9.17)

On substituting (9.16) and (9.17) into (9.13) - (9.15) the yield condi-

tion and flow rule may be written as

E(t, k) =0 (9.18)
P _ .
dkl =0 if £ <0
or if £=0 and —i— (t. )’°<o0 , (9.19)
5t K1
K1
a® =nE nz0if £-0 ana 2t )50 . (9.20)
K1 7t e, Kl

Similarly as before it follows from (9.14) and (9.15) that

(9.21)

e

ip S
dKL KL 2 o
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and, according to (4.34), part I,)or directly from (9.19) and (9.20)

dil(tkl)vo >0 . (9.22)

9.4. The Lagrangian formulation

As it was shown in chapter 4, part I, convected components of the
Kirchhoff stress tensor EKL' convected components of the deformation
rate tensor aKL and their material time derivatives coincide, respective-
ly, with the components of the second Piola-Kirchhoff stress tensor SKL'
the Green strain rate tensor EKL and their material time derivatives in

the Lagrangian (initial) frame of reference:

t._ =8 , d._ =E , t.. =8 , d_ =E ) (9.23)

Therefore, the relations (9.13) - (9.15) can be written with the use of

the Lagrangian description variables in the form:

£(S, k) =0 (9.24)
E§L=° if £ <o
. 3f -
or if £ =0 and — S <o , (9.25)
35S KL
KL
é§L=A§§—,Azo if £=0 and g%"émfo‘ (9.26)
KL KL,

The constitutive inequality (9.21) may now be written as

-p - >

EKLSKL =20 . (9.27)
The inequality (9.27) is called in chapter 6 the material stability
condition in the Lagrangian description. According to (4.34) and (4.38),

part I, the condition (9.21) coincides with (9.22) and (9.27).
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9.5. Conclusions

Comparison of the above considerations with those presented in
chapter 4, part I, shows that the stresses,strains and their rate
measures used in the formulation of the constitutive relations of
plastic flow process coincide with those which were derived in chapter
4, part I, as conjugate and objective constitutive variables. Thus
the pfesented theory turns out to be a consistent and objective one.
Furthermore, the constitutive inequalities (9.11) and (9.27), which
were regarded in chapter 6 as the material stability conditions in the
Eulerian and the Lagrangian descriptions respectively, are not intro-
duced here as more assumptions but are derived as necessary conditions
when the yield function and the flow law are formulated in terms of
particular variables. As it was shown in chapter 6, none of the consti-
tutive inequalities (9.4), (9.11), (9.21), (9.22) and (9.27) coincide

with the material stability condition in Drucker's sense.
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10. THE LINEAR FUNCTIONAL RELATION BETWEEN STRESS RATE AND

STRAIN RATE

10.1. General formulation

Now, we shall see that the linear functional relation between a con-

jugate stressratei,and strain ratelé in the form

- . 10.1
Ti5 T Pigkta (10.1)

where Aijkl

elastic-plastic hipooperation, follows as a consequence of the following

is a known function of the current state and is called an
assumptions:

1. Elastic strains are small, so the total strain rate may be written

as the sum of elastic and plastic components

. _ =€ .p
eij eij + Eij . ] (10.2)

This is not generally true, but for static deformations of metals

the assumption is reasonable.

2. The elastic response of the material can be described by linear

functional relation between the stress rate and the strain rate,

e . e

Tij = Aijklekl (10.3)

e
where Ai. is called an elastic hipooperator. Hooke's material

jkl
belongs to this category.

3. Plastic strain rate SP is described by the flow rule
.P f
€,. = A (10.4)
ij Btij
where .
p =
f(Tij,Eij,K) =0 (10.5)

is the yield condition.
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We shall now derive an appropriate form for Ai, in (10.1) for

jkl
particular material properties.

For simplicity, let us consider an isotropic, work-hardening material

(1), then
= _ P
f(Tij'K) = ¢(Tij) K (W) (10.6)
where
wp = (T..ep.dt (10.7)
JT13%43

is the energy dissipated during the plastic deformation process.

With the above restriction, A, .
ijkl

strain analysis. Substituting éij from (10.2) into (10.3) and then

is formed exactly as in the small

(10.4) into (10.3), we obtain

. - a® . _:p, _ ,e . _ Jf
T3 = 29 B 7 T iy G Aarkl)‘ (10.8)

The condition £ = 0O (necessary for plastic state to occur) can be

now written as

QW
Hh

- 39—"— WP = o. (10.9)
i3 wP

Q
~
-
.
7

Next, substitution of (10.8) into (10.9) yields

af +§—f-:—"v'ap=o ) (10.10)
Kkl W’

. e of

= Bisk1 3T, G T Mae
: ij

In view of (10.6) and (10.7) the equation (10.10) can be rewritten

to become

. e d¢ .
=A .., — (€. -A T,.E..
ijkl dTij k1l dil dwp ij ij

=0 . (10.11)

(1) Non-isotropic hardening might be included in the formalism, however,
this would lead to severe complications.
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Substituting once again é?j from (10.4) into (10.11) and taking into

account (10.6), we obtain

E = Al d?¢ (€ — A di¢ ) - = Tig A df¢ =0 - (10-12)
J ij k1 ar ij
From this equation the factor A can be calculated as
e d¢ .
Biik1 @t 1
1]

A = . (10.13)

ae 40, gk, A

PR ATy awP P 9Ty

Finally, substituting A from (10.13) into (10.8) we arrive at the
relation (10.1), where the elastic—plastictﬁ@ooperatorAijkl is des-

cribed by the relation:

a®,_a® Q¢ 4o
ijkl prmn dt dt
e mn pr

Bigki T Rijkl T T e ab . ak )
@5k ar. ot Ti3) &t
J k1 aw® ij

(10.14)

Due to symmetry of the elastichipooperatorAijkl it follows from

(10.14) that the elastic-plastic hipooperator Ai‘

k1 is also symmetric,

thus
A, . =A .. 10.15
ijkl klij ( )
Let us note that in the obtained constitutive relation the elastic-
plastic hipooperator Aijkl is the function of the current stress tensor
X only, but not the current strain tensor. This is only the case when
isotropic work-hardening is assumed. In general case, however, Aijkl

will be a function of the current strain tensor as well.

To obtain a mathematically consistent theory of elastic-plastic
material, the constitutive equation (10.1) should be expressed in
terms of any set of conjugate, objective variables derived in chapter

4, part I. Application of different variables may lead, however, to
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the definitions of elastic-plastic materials whose behaviour in the

plastic range will be quite different.

Now, the constitutive relations (10.1), (10.14) in terms of the
most commonly used variables of the Eulerian and the Lagrangian des-
criptions will be presented and next the results for small strains and

small rotations approximation will be compared and discussed.

10.2. The Eulerian description

Let us consider the following set of conjugate measures in the

Eulerian description

t

VI
K1’ (tkl) ’ dkl' (dkl) . (10.16)

Then the constitutive relations (10.1),(10.14) can be written in the

known form

Vg _
(tij) = Aijkldkl (10.18)
where Ae Ae aé a6
e ijkl prmn dtmn dtPr
A, = A, - (10.19)
ijkl ijkl (Ai'kl di¢ + dk 'ti') dig
J k1 aw® I 9Fyy

and the yield condition (10.6) takes the form
= - P =
f ¢(tkl) K(W) =0 . (10.20)

In view of (4.4) and (4.5), part I, the following relations between
the Jaumann derivatives of the Cauchy and the Kirchhoff stress tensors
take place:

P

Vg _ o Vg ., ‘o
(tij) 5 (cij) + 5 Vk,koij . (10.21)

Substitution of (10.21) into (10.18) leads to

(o )VJ =

p
L. - .22
i3 o, Pigkr T %130 (10.22)
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or

v
J - a (10.23
(0, Piix1%1 )

where

D
=P i - 8 10. 24
DK oo Bk 7 945%) (10.24)

It should be noted that, whereas the elastic-plastic hipocperator
Aijkl is symmetric (as is indicated by equation (10.15), the hipoopera-

tor D. .
i

k1 is non-symmetric,

10.2
Dijkl¢ Dklij (10.25)

Hill [10] has shown that the existence of a homoegeneous quadratic

N

rate potential ¢ T -E, such that

[
Q
-

|

’ (10.26)

Q2
2o

leads to the symmetric stiffness(elastic-plastic hipooperator) provided
the constitutive law is expressed in terms of the conjugate stress and
strain measures. The Cauchy stress tensor"g and the deformation rate
glare not, however, conjugate measures (as it was shown in chapter 4,
part I). Therefore, the lack of symmetry of the hipooperator D, in

ijkl
(10.23) is not surprising.

However, in view of the assumptions of small elastic strains and
incompressibility in the plastic range, the term Oijékl in (10.22) may
be regarded small as compared with A"kl and then

1)

~ A 10.27
Dijkl ijkl (10 )
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10.3. The Lagrangian description

Let us take the set of conjugate variables in the Lagrangian des-

cription

SKL' SKL' EKL' EKL . (10.28)

The constitutive relations (10.1), (10.14) can now be written as

SKL = CKLRSERS (10.29)
where e ce aé as
c _ Ce ) KILRS MNPZ dgMN dSPZ (16.30)
KLRS KLRS (Ce d¢ . dk s ) d¢
KLRS dSKL de RS dSRS
and the yield condition (10.6) becomes
£=¢(s,)-kW) =0 . (10.31)
KL
Let us now convert the constitutive equations (10.18) - (10.19)

expressed in the Euler description inta the variables of the Lagran-
gian description. To this end, we make use of the relations (2.83),

(3,14), (3.39) and (4.5), part I, to obtain:

. = , . ’ .33

tiJ SKLxl,KxJ,L (10.33)

(£ )T = £ —w . - w. t . . (10.34)
ij ij ik kj jk ki

Material time differentiation of (10.33) leads to the relation

(10.35)

Y59 = SkeXi, 5,0 T BkVi,k TRy,
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Substituting Eij from (10.35) into (10.34), we obtain

) = S + + .
(tij) SKLXi,Kxj,L tkjdik tkidjk . (10.36)
Next,substitution of (10.36) into (10.18) yields
s a a (10.37)

ke¥1,6%9,L - Pigkaa%a T Bks%ik T ki

Finally, substituting d from (10.32) and t, ., from (10.33) into

kl kj
(10.37) we arrive at the following result:

- -

Sgr = @iyka¥k, 1%L, 3R, k%s,1 " Sre¥k, i%s, 1 " Sre*L, i%s,1) ks (10-38)
or
s'KL = BKLRSéRS (10.39)
where
_ (10.40)

= X -S__X X, ., -8__X X .
Brrrs = Piski®k, 1%L, 3%R,x%s,1 " Srek, 1%s,1 TSRk, 1%s, 4

The form of the right-hand side of the above equation indicates
that

BKLRS = BRSKL . (10.41)

Comparison of equations (10.29) with (10.38) clearly reveals the
differences between elastic-plastic materials defined with the use

of different sets of conjugate variables.

In order to better understand the order of magnitude of the errors
introduced when one set measures is replaced by the other without
suitable change of the constitutive function, let us consider the

following approximations.
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1. Small strain, large rotation approximation

Making use of polar decomposition of the deformation gradient, we
can characterize the motion of any material line element as a rigid

body motion R and a pure deformation U,

X =R_U . (10.42)

Uml o 6ml and XK,l ﬁlRKl - (10.43)

Then according to (10.40), the tensor BKLRS takes the form

B = A, ...R_. . - 8 . . - S . . . 10.44
KLRS ijkl KlRLjRRkRSl RLRK1R81 RKRL1R31 (10 )
It is readily seen that the formulation for finite strains is not much

more complicated than that for small strains, large rotations.

2. Small strain, small rotation approximation

If both strains and rotations are small as compared with unity, then
the constitutive equation (10.44) may be further simplified. Substitu-
ting

X =6 (10.45)

into (10.40), we obtain

Berrs = Prrrs T Srifks T Smelns (10.46)

In the elastic range, A s is a tensor of elastic moduli and hence

the additional stress terms in (10.46) are negligible as compared with

it. Then BKLRS = AKLRS' and both the Lagrangian and the Eulerian formu-

lation leads to the definition of the same material. However, in the
plastic range the additional terms are no longer negligible since the

slope of the stress-strain curve, described by tensor A is often

KLRS'
of the same (or smaller) order of magnitude as the stress itself.
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Therefore, no matter how small the strains and rotations are in the
plastic range, the Lagrangian and the Eulerian formulations given by
relations (10.18) - (10.20) and (10.29) - (10.31), respectively, lead
to the definitions of two different materials. Though the yield point
loads of two geometrically identical structures made of these two
materials are in general the same, their post-yield behaviour may be
entirely different. Whereas a structure made of the material defined
by relations (10.18) - (10.20) exhibits structural stability, the
behaviour of the same structure made of the material (10.29) - (10.31)

may be unstable at the onset of yielding and vice versa.

In particular, the use of (tij)V

J and dij measures and the consti-
tutive relations (10.18) - (10.20) for defining a plastic material
which exhibits plastic hardening rate of h would imply, in uniaxial
tension or compression, a plastic hardening rate of h-2S when expressed
in terms of the rates of the second Piola-Kirchhoff stress tensor and
the Green strain tensors,Fig. 10.1, Since S can be for plastic material
of the same order of magnitude as h, this is in conflict with the

approximately symmetric tensile and compressive response of initially

isotropic materials.

tio /50 r

1p=——- 1<<;z—¢—

tgyp=h tgp =h-2=

Fig. 10.1

my
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10.4. The Prandtl-Reuss equations

If the constitutive relations (10.18) - (10.20) are coupled with
the Huber-Mises yield condition, then we obtain the so-called Prandtl-
Reuss equations. These equations are most commonly used for descrip-

tion of the elastic-plastic material behaviour.

For isotropic, work-hardening material the Huber-Mises yield con-

dition can be written in the form

' [ = 'Y
ijtij K (W) (10.47)

o

- 3
3J2 =3

where

8 . (10.48)

1
=t -t <
3 kk ij

ij ij
Compar ing (10.47)2 with (10.6) we see that

3 v g
bty =5 tistiy - (10.49)

According to the flow rule (10.4) the plastic part of the strain rate
is now defined by

P P L Y e T (10.50)
ij ij atij i]

After differentiation with respect to time the equation (10.47E!can

be written as

3t..(t. )VJ=_d_K__v.]p

. - . (10.51)
i) 1] aw®

In view of (10.7) and (10.50) the equation (10.51) can be rewritten

to become

e (e )T = S per e (10.52)
1] 1]

From this we get
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t!.(t'i.)VJ

A o= (10.53)
dk . ,
aP 1313

Substitution of (10.53) into (10.50) yields

3tl (tl )VJ

FL S S .= S | (10.54)
ij L £ ij
P kLKL
orxr
v
tr (er)'d
df. = h—}fcl,—}g—— €], (10.55)
] k1l "kl J
where
h = 1_ dxk
3 4P

is the slope of the simple tension stress-strain curve in plastic

range.

(10.56)

The elastic component of the deformation rate tensor is defined by

Hooke's law as

=——(t - —

e + VJ v VJ
955 E i3 £ 819 F

where v is the Poisson's ratio and E is the Young's modulus.

(10.57)

Since for small elastic strains the deformation rate tensor may be

decomposed additively into elastic and plastic parts,

a, . =a% +4°, , (10.58)

ij ij ij

substitution of (10.55) and (10.57) into (10.58) provides the Prandtl-

Reuss equations in the form

Vg
1 1]
1 +y A v tkl(tkl)

a,, = —Y ] Vs o — '
i3 = 5 (&5 e 815 Cxk hty ta 13

93 * oo (10.59)
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for plastic loading and

(10.60)

for elastic loading or unloading.

The equations (10.59), (10.60) can be inverted, then the Prandtl-

Reuss material is described be the constitutive relations in the form

v E tiith o9
J__E_ v _ Sijtk (T +v
(€55 T3y a1 * T2y 8i3fi et (3n+ E )]dkl
b 2Py
(10.61)
for plastic loading and
t. ) =B (5. 5.+ _5 .5 )4 (10.62)
i3 T+v k%51 * T+2v %%’ %

for elastic loading or unloading.
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