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PREFACE

The list of works on the non-linear mechanics of plates, shells
and rods is extensive. However, the known monographs and treatises
(for example, cf. [i,11,18,20-22,24-26,28,35,39]) are concerned main-
ly either with some special theories or with some kinds of materials
and deformations. The aim of this treatise is to approach the non-
linear mechanics of plates, shells and rods from more general point
of view. Firstly, we provide a systematic treatment of the mechanics
of large deformations of plates and shells made of an arbitrary mate-
rial and of an aribrary thickness. We also extend the obtained results
to describe the mechanics of rods. Secondly, we develop independently
various approaches to the plate and shell theories and we derive the
known formulations as the special cases. Thirdly, we discuss the
wide class of the shell and rod problems which lead not to the equa-
tions but to the variational inequalities (non-classical or unilateral
problems, [8]). To render the analysis more concise we shall confine

ourselves only to the pure mechanical theories.

Within the general treatment presented in the work it is not possib-
le to precise properly the regularity conditions for the fields under
consideration in order to investigate successfully such topics as, for
example, the existence, stability or convergence of solutions. Never-
theless, this treatment constitutes the basis for the analysis of more
special problems and gives the new insight into the known shell and rod

theories and the related problems.

The main topics of this contribution can be listed as follows:

1. The methods of formation of the general theories for plates and

shells (Chapter A).

2. The derivation, modification and simplification of the special

large deformation theories for unelastic shells (Chapter B).

3. The general formulation of the non-classical plate and shell

boundary-value problems (Chapter C).

All results of the Chapter A and some from those of the Chapter C
have been adopted to obtain the formulation of the general theories

and non-classical boundary value problems for the large deformations



of unelastic rods. Thus the analysis of rods is not treated separately
but is a consequence of the results which have been obtained for plates
and shells. This work deals mainly with plates and shells and only

few sections are devoted to describe the mechanics of rods (Sec. 5.3.
in the Chapter A, Sec. 3.5. in the Chapter B and Sec. 2.4. in the
Chapter C).

The contents of the treatise is so arranged that, apart from the
Prerequisites, the Sections 1,2,4 of the Chapter A can be read inde-
pendently of each other. Sections 2,4,5 of the Chapter A are the keys
to the Chapter B. Also Sections 1-3,7,9 of the Chapter B are indepen-
dent each other as well as Sections 4,5,6 which have to be read after
Section 3 of this Chapter. In the Chapter C the Sections 1,2 are in-
dependent. The reader is assumed to be familiar with the basic con-
cepts of the conteméorary non-linear continuum mechanics which can be

found, for example, in [23,33,34,39].

Most from the presented results have not appeared in the literature.
The list of references is restricted mainly to the works which are
strictly related to the subject of this treatment. No attempt has been
made to detail or even outline the history and the recent development
on the plate, shell and rod theories(for the particulars the reader
is referred to [26,1] and to the related papers). The fundamental con-
cepts and the basic denotations used throughout the work are given

below.

Bochum, March, 1980

Cz. Wozniak



PREREQUISITES

Shells and shell theories. Plates. Let E be the Euclidean 3-space

referred to a fixed rectangular Carthesian coordinate system Ox1x2x3

(the reference space). Throughout the lectures using the term "shell"
we shall mean the parametrized shell, i.e., the pair (B ,KR), where

B is the body,[33], and k_ is the smooth invertible mapping from B

to the reference space E, Kz : B+ E, such that KR(B) =1 x (h_.h+):
where I is the regular region on the plane Oxlx2 and (h_,h+) is the
interval of the x3—axis. The element B of the pair (B.,KR) will be
called the shell-like body and kp Will be referred to as the shell
reference configuration. It means that we confine ourselves only to
shell reference configurations in which the shell-like body B has the
from of the undeformed plate with the constant thickness h+ = h_. Such
reference configurations may be never attained in the motion of the
shell but their application in the non-linear shell treatment make it
possible to obtain the relatively simple form of the basic relations

(). Every "shell structure" which is met in engineering can be repre-

sented by the finite system of parametrized shells.

Let 8 = (61,82) be an arbitrary point in M and £ an arbitrary number
of the closed interval <h_,h+>. The triples X = (61,92,£) will be used
as the material coordinates of the shell-like body with its boundary.
By the shell theory we shall mean the system of equations of motion,
kinetic boundary conditions (laws of mechanics) and constitutive rela-
tions which describes the shell like body and in which all fields are

independent of the material coordinate E.

The geometric meaning of a term “"parametrized shell" which was intro-
duced above is quite formal and includes the bodies which, roughly
speaking, are neither "“thin" nor have anything in common with the fami-
liar in engineering concept of a shell. The applicability of the shell
theories to the description of such bodies within continuum mechanics
may be often impaired. On the other hand, the necessity of such general

approach will be evident if we deal with arbitrary large deformations.

1
) The restriction imposed here on the choice of the shell reference

configuration is not used in most of works on the shell theories.



In this case we have to take also into account configurations of the
shell-like body which may not give any resemblance to the intuitive
concept of a shell. We also do not make any suggestion that the shell
is "thin", because under large deformations the shell-like body which
is "thin" in one configuration may be not "thin" in another. To pre-
cise the terminology we shall define the shell within mechanics as
the shell-like body B governed by a certain shell theory.Every such
theory is related to the parametrized shell (B, Kg) -

If there exists the special shell configuration which can be inter-
preted as "undeformed" and if this configuration coincides with a cer-
tain shell reference configuration Kpr then the shell will be called
the plate.In such situation instead of the shell theory we can talk

about the plate theory. Below, both terms will be used parallelly.

Rods, and rod theories. Within the large deformation theory the

geometric meaning of a term "rod" can be assumed in the identical form
as that of a shell. It means that using throughout the work the term
"rod" we shall understand the parametrized rod, i.e., the pair (B,KR),
where Kp satisfies the conditions given above. We shall refer Bto as the
rod-1like body and kg as the rod reference configuration. The triples

X (91,92,5) introduced above will be used as the material coordina-

tes of the rod-like body with its boundary. By the rod theory we shall
mean the system of equations of motiom, kinetic boundary conditions
(laws of mechanics) and constitutive relationswhich describes the rod-
like body and in-which all fields are independent of the material coor-
dinates 61,62. All comments oh a geometric meaning of a term "parame-
trized shell"”, which were given above, also concern the geometric
meaning of a term "parametrized rod". We shall define the rod within
mechanics as the rod-like body B governed by a certain rod theory.

Every rod theory is related to the parametrized rod (B,KR).

General scheme of notation. The denotations used throughout this

treatise are mainly based on those used in [26,33]. The time coordi-
nate is denoted by t, t € I, I being the known suitably chosen time
interval, aﬁd the four-tuples (xl,xz,x3,t) will be interpreted as the
inertial coordinates in the Galilean space-time. We denote by

X = (xl,xz,x3) the points of the reference space E and by25= (61,62,5)

the shell or rod material coordinates (cf. above). We refer 5==p(5,t),



X € KR(B), t € I, to as the position vector, at the time instant t,
of this point of the shell or rod (or their boundaries) which in the

reference configuration k_ occupies the place X. The symbol;>:KR(B)xI+E

R
stands for the deformation function of the shell-like(or rod-like) body.

All other denotations will be explained in the text of the work.

The tensor notation is used throughout the notes but the summation
convention holds with respect to all kinds of indices (not only tenso-
rial indices). The sub- and superscripts o,B8,Y,...(K,L,M,...) run over
the sequence 1,2 (over 1,2,3)and are related to the material coordinates
61,92 (to the material coordinates 61,62,63 = ). The subscript "R"
informs us that the quantity under consideration is the density related
to the regions KR(B), (h_,h+), I or their boundaries. The partial deri-
vatives of an arbitrary function f£(X,t) = f(Bl,ez,g,t) (if they exist)
= 3£/9f, £ = 3f/dt and VE= (£ of 5of

are denoted by f o = of/20%, £ ),
’

Vi = (Vf’1,Vf’2,Vf'

I3 ’3

). The ordered sets of fields or numbers are de-

3
a=1,...,n}, b(N) = {bA ,A=1,...,N}, etc., and

noted by 3 = {aa:

the indices a,b,... run always over the sequence 1,...,n. The vectors

and the vector functions in the vector 3-space are underlined:

- _ 1.2 .3
R = (pllP21P3)l R - (b ’b ,b ), etc..



CHAPTER A

FORMATION OF PLATE, SHELL AND ROD THEORIES

In this Chapter we are to give general formulations of some basic
approaches to the theories of unelastic and elastic plates and shells.
We are also to outline the characteristic features of these approaches
and to trace the interfelations between them. To simplify the analysis
for the time being we relate all fields exclusively to the reference
configuration of the plate or shell in the sense defined in Prerequi-
sites. The results obtained for shells we utilize to derive the general

form of the rod theories.

1. DIRECT APPROACH

The term "direct approach" informs us, that the plate or shell theory
(or some from its relations) is postulated independently of the gover-
ning equations of solid mechanics, [26]. Special kinds of the direct
approach, based mainly on the concept of the Cosserat surface, are
well known in the recent literature and can be found in [6,14,26;34].
Here we outline the direct approach in the more general form. It is
based on the system of axioms and rules of interpretation of primary
concepts in the terms of the classical solid mechanics. Apart from
Secs. 3,5 of this Chapter, the direct approach, as a rule, will be not

utilized in next sections of our treatise.

1.1. Deformations

The kinematics of plates and shells in the direct approach is based

on the following Axiom.

AXIOM 1. For every shell (}) there exists the non-empty set Q of the
ordered sets Ay = {qa(g,t), 8 € N, t€I1,a=1,...,n}, n>1, of

sufficiently regular real-valued functions qa(-).

(1) .

For the convenience we often use the term "shell" instead of "plate
and shell”; the shell has always to be understood in the sense given in
the Prerequisites.



Definition. Every ordered set q(n), q(n) € Q, will be called the

shell deformation function.

The term "shell deformation function" will be also used in other
approaches to the shell theories and has not to be confused with the
deformation function of the shell, which is defined on KR(B) x I,

cf. the Prerequisites.

Interpretation. We shall assume that the shell deformation function

q(n)is uniquely determined by the deformation function x = p(X,t),
X = (61,92'€) €1 x <h_,h+>, of the shell like body. It means that
there are known functionals ¢g(-), a=1,...,n, defined on the set of

all deformation functions p of the shell-like body ,

q (88 =@ (B, 1) ,a=(..oom) , (A1.1)

where 8 € M, t € I. However, in the direct approach developed here the
relation inverse to (Al.1.) is not known, i.e., the deformation p of

~

the shell do not need to be uniquely determined in term of q(n).

Example: the Cosserat surface. Putting n = 6 rq, = G;rigg,t) +

+ 6;_3di(g,t), i=1,2,3, and Q := {q(6)l[21'22'g] > 0}, where 2’(1575,0;’
we arrive at the known concept of the Cosserat surface i.e., the smooth
surface given by x = £(g,t) , with the field of directors g(‘_@‘,t) ' ’Q'GII,
such that [Ed'EQ'S] > 0 for every time instant t,t € I. Egs. (1.1), for
example can be assumed as
apigg,o,t)

q; = pi(-g,o,t) 1G5, = di = 3 (a1.2)
! In some formulations of the direct approach based on the Cosserat sur-
face instead of Egs. (Al.2.) stronger condition p=x+ ?S is postulated,
which implies Egs. (Al1.2.). This condition seems to be too strong be-

cause it eliminates alternative interpretations of the fields d,r, which,

for example, can be given by

1

) In the general case we can introduce the functionals ¢ Qg,t, .)
defined on the space of all deformation functions p of the shell-like
body, but in all applications we deal only with the cases given by
Eq. (A1.1.).



opP.
= = -
g, = pl (Q,O,t) ’ qi+3 —dl "'J ﬁ dg = Pl('gl:h_‘_at) pl('g"h"'t) ’

1,2,3.

1

where i

Superposed rigid body motions. The rules of interpretation (al.1.)

yield the transformation formulae for the functions qa, a=1,...,n,
under an arbitrary rigid body motion p- é = g(t)'g + S(t) , where g(t)
is, for every t € I, an arbitrary rotation tensor (or an arbitrary
orthogonal tensor if the reflections of E are assumed to be admissible)
and g(t), t € I, is an arbitrary vector. If q(n) constitutes the
ordered set of all components of a certain system of scalars or vec-

tors then p =+ g(t)g + ¢c(t) imply

q, Ala)qb+ a,r as= 1,...,n, (A1.3.)

where Ag are the known functions of Q(t) and a are the known functions
of Q(t), c(t). The more general rules of transformation can be also
considered (cf. for example, [40]).

Strain measures and compatibility conditions. Let E(r) = {Ep '

p=1,...,r} be the ordered set of the differential operators acting

on q(n)(-,t), such that ep = Ep(q(n)), p=1,...,r are invariants under
arbitrary rigid body motion of the reference space (under group of
transformation (A1.3.) in the special case mentioned above). If ep
are independent then e(r) will be called the ordered set of the strain
measures, provided that r is the smallest number of independent invari-

ants. The conditions imposed on e , which ensure the existence of

(r)

the solution q(n) of the system of equations e }, such

= E
) = Fo) Gn)
that q(n) € Q, are called the compatibility conditions. The compatibi-
lity conditions are used in so-called intrinsic formulations of the

shell theories, cf. [5], for example.

1.2. Forces

We shall introduce the forces via the concepts of the shell rate
of work and the shell kinetic energy functions, which will be treated

as the primary concepts.



AXIOM 2: To every regular subregion “o of I at an arbitrary time
instant t,t € I, and for every shell deformation function q(n) there

are assigned the values:

- a- a-
Re(Ho,t)z %thale + J quadaR , (a1.4)

oIl n
o o

a _ ,a a _ _.a - ,
where tR = tR(gﬂt'ER) ,fR = fR(QJt) and np (an,nRz) is the outward

unit normal vector on BHO in the plane 0x1x2, and
’ ao a
= 3 - h ¢ Al.5
Ri(Ho,t) J (HR qa,a Rqa)daR ' ( )
it
o

ao aa a_.a
where HR r-HR (R,t), hR = hRgg,t).

Definitions. Re(Ho.t), Ri(Ho,t) will be called the rates of work of
external and internal forces in HO. Putting P; = t;gg,t,nR) for § €0l
and for np as the outward unit normal vector on 3ll, we shall refer
p;, f; as the shell external forces(boundary tractions and shell body
forces, respectively).H: ,h: will be called the shell internal forces

(stresses).

Interpretation. The interpretation of the shell external and inter-

nal forces is provided by Egs. (A.1.4), (A.1.5) and (A.1.1) in terms

of their rate of work.

Remark. We have tacitly assumed that the introduced shell forces
do the work only on é(n) and Vé(n)' Such system of forces will be
called of the first order or simple shell force system (related to
the deformation function q(n)). The second order shell force system

with respect to q(n) will be introduced in Sec. 1.5.

BAXIOM 3. To every § € 1 is assigned the non-negative real valued

differentiable function Kp defined for every q(n) and é(n)

K ) (Al1.6)

R~ & 9m)r Iny

being the density related to I and such that k_ = O only if é(n)= O.

R



_10..

Definition. The function Kn will be called the shell simple kinetic

energy function and the functions —ig ,a=1,...,n, where
LN S (a1.7)
R ~ . *
dt Bqa Bqa ;

will be named the shell inertia forces.

Let us observe that as a primitive concept we have not introduced
the concept of mass but the concept of kinetic energy. The kinetic
energy function (Al.6) will be called simple, being independent of

Vg (n)’ Va (n) and higher derivatives.

Example. For the Cosserat surface n = 6, q(6)= (5,5)

and

R_(T,t) = % (N -+M - Al + J(f E+L - daa

oll 1
Ri(H.t) = J(E °£'a+§ -g' +mR-'g‘)daR ’
Il
I I
Kp =2 PRE-EZ v %43
(6) _ (6) _ (6)a _ , 0 o (6) _ _
where tR = (E'R'ER) P fR = (£RI’I\-'R) ' HR = (ER'ER) and hR = (0, ER)'

components in brackets being the vectors of forces and moments, res-

pectively, cf. [26].

1.3. Field equations

The interrelation between the shell force system and the shell de-
formation function due to the principles of mechanics will be obtained

here from the following:

AXIOM 4; For every t €I and every function u_, defined and continuous

on I and differentiable inIl the following relation holds

a a .a _ aa
%pRuale + J(fR J.R)uadaR = J(HR u,
oll i} i

a
o —hRua)daR 3 (A1.8)

’
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Eqg. (1.1.8) represents the simplest case of the known principle of
virtual work for the simple shell force system. From the foregoing
condition we obtain the field equations of the shell theory. They
include the equations of motion

aa

a a
+ + =i
HR,a hR £ i

a

R (A1.9)

which have to hold in I x I, and the kinetic boundary conditions

ao. - .2
R "Re ~ PR (a1.10)
which have to hold nearly everywhere on 3l x I, np = (nra) being the

outward unit normal to 9l on the plane Oxlxz.

Example: For the Cosserat surface we obtain

a -
N + =
~R,q £R pR~ ’
(63
p— + =
ER,a R iR aRﬁg !
and
o o
= N = .
Nefre = Rp v MRPpe = Mp

Remark. From Egs. (A1.8), (Al1.3), by virtue of the known invariance
conditions with respect to the translations in time and translations
and rotations of the reference space, we can obtain the principles of
conservation of the energy, of the momentum and that of the moment of

momentum; cf., for example, [40].

1.4. Constitutive relations

Constitutive equations are the definitions of the different classes
of materials. Thus no extra axioms are needed to introduce the consti-

tutive equations into the direct approach to the shell theories.

Definition 1. The shell will be called hyperelastic if there exists

the non-negative differentiable real valued function Eg = eR(e'q(n)’

Vq(n)), Q’E I, invariant with respect to the group of transformations

q, Aaqb + a, (cf. Eq. (A1.3), and such that
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o€ o€
ae __R_ =-—R (A1.11)

R aqa

The function €r ( if it exists) will be called the shell strain energy
function and Egs. (Al1.11) will be referred to as the constitutive equa-

tions of the hyperelastic shell.

Remark. For the hyperelastic shell the field equations and the
constitutive equations can be derived from the following principle of

the conservation of energy

d _ a- a-. .
3t J(ER + KR)daR = } quale + JquadaR ,
| oll I

which has to hold for every é(n) and every t € I.

From Eq. (Al1.11) we conclude that under arbitrary rigid motion of
c

the reference frame p > Q(t)p + c(t) we have ¥? > Azwb' where Z;A§:=6b

and Wa stands for an arbitrary element of the shell force system,

provided that Eg. (A1.3) holds.

Definition 2. The shell will be called elastic if there exist the

, ~ag, ~a
real valued functions HR Qg,Vq(n),q(n)), hR{Q,Vq(n), q(n)), s em,

such that
ao _ Yao
Hp @/t = Bm (B, Va  yeq ) -
a e (A1.12)
hp8/t) =ho8,Yq ea,) -

- Egs. (A1.12) will be referred to as the constitutive equations of the

elastic shell.

Definition 3. The shell will be called simple if there exist the

. ©a0, (t) (t), »a (t) (t) (t) .
functionals Hp (g,Vq(n) ' q(n)), hR(,g,'Vq(n) 'q(n)) . where Ay = q(n) (8,t-0),

o=0 0=0
g 2 0, such that

oan

B2 (g, t) = B2 (p,vq(") , o!F)

0=0 (A1.13)

(t) (t)

a @a
np(8,t) = hR(8,va ) v q )

o=0

) .
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Egs. (A1.13) will be referred to as the constiutive equations of the

simple shell.

We postulate that the constitutive equations have to be invariant

under arbitrary rigid motion of the reference frame, i. e., for an
(t) (t)
(n) * Un)
tutive equations (!) and arbitrary Q(o), clo), o 2 O, we have

arbitrary functional Wa(g,Vq on the RHS of the consti-

(t) (t) (t)

-a_ b _,a b

b
’ (A(n)qb

where ab = {Ab ,a=1,...,n}.
(n) a

Example. For the elastic Cosserat surface we obtain

@ _ ca -
N~ RpQ2gS g 3 FXg v
a <o
M= M (2’33’2,3’2) ’
D = B (82503 o003

Remark 1. Every hyperelastic shell is elastic and every elastic
shell is simple. The constitutive equations which define different
classes of non-simple shells can be also included into the direct
approach but we neglect them here (such shells will be analysed in the
next Sections). It must be stressed that the definitions of different
shells from the point of view of the constitutive equations (Defini-
tions 1-3) have the sense only if related to the fixed set Q of the
shell deformation functions q(n) and for the postulated system of the
shell internal forces. Thus the definitions 1-3 are valid only for the
first order system of shell internal forces (with respect to the shell
deformation function q(n)).

If the field equations (A1.9), (A1.10) (where i:

(A1.7)) and the constitutive equation are known (i.e., the RHS of Egs.

are defined by Egs.

(A1.6) and (A1.13) are known) then we say that a certain shell theory

has been established.

1
) We treat Egs. (Al1.11), (A1.12) as the special cases of Egs. (A1.13).
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Remark 2. For the detailed analysis of the direct approach in the
special case of the Cosserat surface and within the first order shell

force systems the reader is referred to [26].

1.5. Generalization

Let us define in Axiom 2 the rates of work Re(Ho,t), Ri(Ho,t) of

external and internal forces,in the more general form

_ a. ao. a. ao.
Re(no,t)..§ (tha + ot qa'a)le-+J(qua-+fR qa,a)daR'
BHO HO
(A1.14)
_ aoB. aa . a.
Ri(]Io,t) = I ( HR qa,aB + HR qa’a Rqa)daR
i .
o

which holds for every regular subregion Ho of T and every t € I. If
a ,aa
. tR' tR
ly. The ordered systems of the scalar, vector and tensor functions (1)

{p:, (p;“),f;,(f;“)} and {h;,(H;a), (H:“B)}, where a = 1,...,n, will

Ho = I then in Egs. (Al1.14) we replace by p:,p:a, respective- .

be called the second-order shell external and internal force systems,

respectively. Let us assume that the shell kinetic energy function k

R
in the Axiom 3 is given by
‘R T &) V() 1 In)  M@m)) (a1.15)
Putting
2 jl,BKR ) 3KR iaU::jl_aKR ) BKR A1.16)
= 3 4 - 3 oo -
R ~ dt aqa aqa R dt Bqa’a qa,a

"we shell refer the fields ia - iaa to as the shell inertia forces

R R,0
The function (A1.15) will be called the shell second-order kinetic
energy function. At least let us replace Eg. (A1.8) of Axiom 4 by the

following one

1
( )With respect to the group of transformation of the orthogonal

Cartesian coordinates 8%, o =1,2, in the region Il of the plane. For
every fixed "a" symbols (pa“),(faa),(Hga)denotevectors and (HgaB)
denotes second order tensor.
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a
- hRua)daR (a1.17)

From (A1.17) we obtain the field equations for the second-order force

system; They include the equations of motion

aof ao, a a ao .a .aa
H + H + + £ - = - Al.18
R,0B R,qa hR R fR,a lR lR,a ¢ )

and the kinetic boundary conditions

ao éBu d aof a _a ao
+ = = - -
(Hp™ + Hp p)ng, ar, (Hp "Dpgfre) = Pp - i by R (l fr )Py
apo ao ‘ (a1.19)

n = - .
R Ra'RB PR "Ra

The Definition 1 of Sec. 1.4. has to be changed now by assuming
e = SRQQ'q(n) ,Vq(n) 'VVq(n)) and

aaf _ BeR ao, BeR a aeR (A1.20)
Py S E— Fyem— R .

R
Bqa,aB a,o a

The function eR in Egs. (Al1.20) will be referred to as the shell strain

energy function (1. Analogously, instead of Egs. (Al1.12), (Al1.13) we

have now
H:“B(g,t) = B2 %% (e, AL VRN PP PN
HRY (8,0 = H(O,VVa L Vaaa) (a1.21)
By (8,6) =g (8,%Va, ,Va ) q) .
and
m2P g0y = 2P, e . Vg o ,q&;) .

G—O

1
( )Mind, that Definition 1 of Sec. 1.4. is no longer valid, cf. Remark

to Sec. 1.4.



- 16 -

ao _ @aa (t) (t) (t)

HR (8,t) = r—l (E,VVq(n) ' Vq(n) ' g ) ., (A1.22)
0=0

a _ =a (t) (t) ()

hp (8:8) = R (8, VWVa v Va ) v dyy )
0=0

respectively. Egqs. (A1.20) or (Al1.21) or (A1.22) will be referred
to as the constitutive equations (for the second order shell internal
force system with respect to q(n))of elastic and simple shells, re-

spectively.

The field equations (A1.18), (A1.19) with the definitions (A1.16)
and the constitutive equations (Al1.22) (which can be taken in the
more special forms given by Egs. (Al1.21) or Egs. (A1.20)) represent
certain shell theory (with the second order shell force system and the
second order kinetic energy function), provided that the RHS of Egs.

(A1.15), (A1.22) are known.

Remark 1. It can be observed that in the known Love-Kirchhoff shell

theory we deal with the second-order shell force system.

Remark 2. The higher-order shell force systems can be also intro-

duced but they will not be used in what follows.

2. APPROXIMATION OF THE SOLID MECHANICS RELATIONS

In this approach to the plate and shell theories no primary concept
or axioms are needed apart from those which are included into the
classsical solid mechanics relations. There exist many different schemes
of approximating the solid mechanics relations of the shell-like body
by the relations of the shell theory. The scheme we are going to pre-
sent at this section seems to include, as the special cases, all known
methods of derivation of the relations of the large deformation shell
theories. We do not analyse, however, some from the approximate approaches
used in the derivation of the linear or small deformation theories (cf.
[12,27], for example). We start with the pure analytical description

of the approximation procedure which is applied in this section.
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2.0. Analytical preliminaries

Let X be the topological space of vector functions defined on a

certain differntiable manifold (or on a manifold with its boundary),

Y be the linear space and A be the known mapping from X to Y with the
domain D(A) and the range R(A). Moreover, let A be the non-empty sub-
set of R(A). Many problems of mechanics are described by the binary
relations of the form: A(x) =y, v € A. If, for example, A = {6} then
the problem will be described by the equation A(x) = 6, if A is the
set of all non-negative elements (with respect to a certain positive
cone in X) then we shall obtain the inequality A(x) 2 O and if

A = R(A) then the problem will be described by the mapping A. We shall

-

denote domain of this binary relation by E.

The problem we are to deal with will be referred to as the formal
approximation of the binary relation A(x) =y, y € A. The procedure

leading to this approximation will be realized in two following steps.

1. The approximation relation. We shall introduce in X the approxi-
mation-relation ~, putting x ~ % iff (x,§5 € E.x g, where % is the
known non-empty subset of X, such that = D(A). The set = will be
interpreted, roughly speaking, as a certain "approximation" of the

domain £ of the relation we deal with.

Definition 1. An arbitrary field ? = A(;) - A(x), where x ~';,

will be called the error field of the approximation x ~ X.

The error fields can be also represented by ? = A(;)-y, y € A,
and the set of all error fields (for the fixed approximation rela-

o
tion) will be denoted by ¥Y; it is a subset in the linear space Y.

2. The restriction of the error fields. In the known approximation
procedures we usually demand that all "errors" have to be, roughly
speaking, "sufficiently small". In our formal approximation we shall
only demand that not all ? belonging to g are admissible. To this
aid we shall assign, to every X with % . the known non-empty subset
%; of ?. The condition 3 € %i will be called the restriction of the
error fields due to the approximation relation x -§, where X is an

arbitrary but fixed element of Z. At the same time we shall postulate
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. ~ O ~ o]
that for every y .,y € A, there exists at least one pair (x,y)E;;xY;,

such that A(';c') -y = §}.

~
=)

~ (o]
Definition 2. The relation: A(x) -y € Y;, y €A, x €E, will be

called the formal approximation of the relation "A(x) =y,y € A",

provided that the foregoing condition is satisfied.

Remark 1. In the formal approximation neither norms in the spaces
X,Y nor a-priori estimations of the approximation procedure have been
postulated. The genefal scheme outlined above has been established
mainly in order to "approximate“ the relations of the non-linear solid
mechanics by the relations of the shell or rod theories. The known
approximation methods of functional analysis are, as a rule, too re-
stricitve to be applied to this aid in the case of large deformations

of an arbitrary shell-like body.

In what follows we shall understand the concept of approximation

exclusively in the sense of the formal approximation.

~
-

~ o] ~
Remark 2. The formal approximation A(x) -y € Z;, x €5, y €A, can

be usually treated as a "good approximation" (in a certain well de-

fined sense) of the relation A(x) =y,y € A, not for all x € & but
(o] o] ~
only for x € 5, where % is a certain subset of = (as a rule £ is the

O
proper subset of Z). It means that the applicability of the formal appro-

ximation is usually restricted only to a certain class of problems.

Example 1. Let yt,yt € Y¥, v=1,...,N, be the known functionals
the form of which can also depend on X ,;c' € %. Putting ?{?{, i= {glyt (§)=O,
v =1,...,N} we shall approximate the relation "A(x) =y,y € A" by
the relation: yt(A(;)) = yz(y), y €4, v=1,...,N.

Example 2. Let V be a certain linear functional space and v; the
~ o~ o
non-empty subset of V, known for every x € E. Putting z; ﬁ={§|<v,§*>==0
for every v € Vg} we shall approximate the relation "A(x) =y,y € A"

by the relation: <V,A*(§)> = <v,y> for every v € Vg,‘; €%.

Now let V be the topological space and B the known mapping from X xV

to Y (in applications B is, as a rule, certain bilinear form). We shali
also deal with the problems of mechanics described by the relation:
B(x,v) =y,y € A, for every v with Vx , X € £, To define the formal

approxiamtion of this relation we shall introduce:
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~o

1. Two approximation relations x ~ x, v ~ ¥ in the spaces X,V, re-
spectively (they are denoted by the same sign "~"), given by
(x,;) € 2 x %', (v,?r') € Vx x '\‘:‘.;, where NE', '\7,;{, are the known sub-

~
=

sets of X,V, respectively, such that Z X "\I:;{, < D(B) for every

%X € . The error fields will be defined by ¥ = B(%X,v) -B(x,v) =

B(X, V) -y,y € A.

2. The restriction of the error fields, given by ?{ € %i" where ?L;{.
is, for every ; € '5', the known subset of Y. At the same time we
demand that for every y,y € A, there exists at least one pair
.9 €

11

o ~ o~ ~ ~
x Y?(,, such that: B(x,v) -y = ?f for every v € Vs

~) I~ o "~ ~
Definition 3. The relation "B(x,v) ,y € Y.;c., X € 8, yE€EA for every

¥ with '\7.}\{,", will be called the formal approximation of the relation:

B(x,v) =y, y € A for every v with Vx' x € E.

The difference between the formal approximation and a "good" appro-

ximation, described in the Remark 2, for the foregoing case still holds.

2.1. Solid mechanics relations

By the solid mechanics relations we shall mean the laws of motion
and the constitutive relations. The laws of motion will be assumed
here in the form of the field eguations, which include the equations
of motion and the kinetic (natural) boundary conditions. They will be

related to the reference configuration k of the shell-like body B

(cf. the Prerequisites). Denoting by E(')\(ft) v Py (X), E'R Xx,t), 'E\).R(')\(‘,t) '
P (’)é,t) the second Piola-Kirchhoff stress tensor, the mass density, the
body forces, the surface tractions and the deformation function, re-
spectively, we shall assume the field equations in the well known
form (1)

@B - by ~Div(WpTI=Q, T=T ; XEk,(B),t€T,

"~

o]
(a2.1)

(VpTin. -p, =2 XE€ 3K‘R(B) almost everywhere, t € I,

(1) Throughout the treatise the relations involving the derivatives may
be understand also in the generalized sens, because the classical par-
tial derivatives may not exist. Thus Egs. (A2.1) may be interpreted as
the laws of the conservation of momentum and that of moment of momentum
for an arbitrary regular part of the region KR(B) or its boundary 3k, (B).
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T : . .
where T is the transpose of T and n_ is the unit normal outward to

R
BKR(B).

In order to writedown the constitutive relations of solid mecha-
nics we shall introduce the right Cauchy-Green deformation tensor

(s) _ {(x%,06 =1,...,s} of the real

C = (VB) TVR and an ordered set A
valued functions defined on Il X I. The elements A° represent all those
fields of mechanics which do not appear in the field equations but
are needed to describe the material properties of the bod‘y. To des-
cribe many different classes of materials we shall assume the con-

stitutive equations in the general form (1)

£ (EJEJEIA ) =0, wu=1,...,m; m=6+S§S,

i(X,C,T,A"7) <0, (22.2)

. . (s)
ol ,S,E,A ,C ,E‘O) < O for every an'zo with J(')\(‘,EO,E‘O,A ) £ 0,

(B) independent functionals de-

(5) (x,.)), t € T ana

~

where fu (X,-) are, for every X with Kp
fined on the space of functions (C ('}5,.) ,3(5,-),1
iX,-), ©(X,+) are, also for every X with « (B), the real valued func-

R
tions defined on T2 X T2 x R® and (T2 x T2)

2
2 & R®, respectively,T is

the space of all symmetric second-order tensors. The domain of T2x T2 x R®
where j(X,-) < O, is usually assumed to be the closed set, X € Kp (B) .
We shall also introduce the one-to-one coorespondence S: R6 cl g =

= (01,...,06) +‘§'(’g’) € T2, with the inverse g = §—1’ 2(":\[:) € R6. We
assume that the stress components 0\) (5,t) which can be expressed by

Egs. (1&2.2)1 exclusively in terms of C(X,t - o), 0 2 0, do not appear

in Egs. (A2.2)2'3.

EXAMPLES
1. Ifm=6, j

11

0, ¢ = 0 and fu =0, u=1,...,6, have the form

":E:

~

(X, C(X,t-0)) , (82.2)

gl-ns

(v

(1) We assume that the fields Al,...,ks' represent the internal parame-
ters and AS+1, . .,AS characterize together with p, the kinematics of
the medium (being, for example, the rates of plastic deformations);
here S is the fixed integer, 0 £ S < s.



- 21 -

where £ is the response functional, then Egs. (A2.2) 1 describe

the simple material.

Ifm=6, j 20, ® =0 and fu' n=1,...,6, are the known diffe-
rential operators with respect to the time coordinate, then Egs.
(A2.2) describe therate-type material, cf. [33]. If these ope-
rators are linear then we deal with the linear viso-elastic

material.

Let S be given by (01,...06) = (T“,T22,T33,T12,T13,T23) . If
j(ﬁ,g (-)) is the known continuous and convex real valued func-
tion for every ')‘(’,')\(‘ € Kp (B) ( so that the domain of R6, where
j(}f{,g(o)) < 0, is a closed convex set) and Eqs. (A2.2) have the
form

S=alfl+4., JED <o

(A2.2)2

tr A(Eo—g) < 0 for every E‘o with j (5,30) <0,
where A = g()\(6)) € T2 and ’é = '%(5,3,2) is the known, for every
X,T,C, linear mapping T2 > T2 (here m = s = 6), then we shall
deal with the elastic-perfectly plastic material. The condition
j(X,T) = O represents the yield condition, A is the rate of the
plastic deformations and Eq. (A2.2)3 constitutes the principle

of maximum plastic work, cf. [15,30].

Let m be the orthogonal projection of R6 on the closed convex
set K := {glj(g(g)) £ 0} c R6. Introducing the denotation (cf.

(8], p. 234)

o trlz-sas i @liz-sasT @1

J (T
u(~) m

where u, y 2 O, is the coefficient of the linear viscosity, and

putting Egs. (A2.2) in the form (here m = 6)

$=2ltl + 2
(a2.2) ,

2
- < r -
tr A(T I) =< Ju(T ) Ju(g) for every T € T°,

we arrive at the elasto-visco plastic materials. It has been

shown in [8] that if p = O then Egs. (A2.2)3 reduce to Egs. (A2.2)2
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If U > O then Eq. (A2.4) will yield A = aJu/ag and if u =20
then A € Z)J‘_l (2), where BJu (z) is the subdifferential of Ju(-)
at E

5. If j(‘{(‘,g(.)) is the known function as before, E = % (5—‘\1‘), and
Egs. (A2.2) have the form (with m = 6)

(A2.2.)4
- < i ; <
tr A(Eo E) < O for every Eo with ](X,Eo) <0,
where A = ’13('}3) is the known linear transformation, A=S() (6))€T
and j(’)\(‘,g) < 0, then we shall deal with the locking materials,

6. If m > 6, and S > O, then intefpreting )\S+1,. ..,}\S+6 analogously
as in Example 3 and ('5 = ()\1 PR As)as the internal parameters des-
cribing the effect of the work hardening we shall postulate the equa-
tions of the form (A2.2) 2 with j=3j (1{',3,5) and the extram=6 scalar
relations£='§[2] ’ where5=5(5,z,g) is the known linear mapping

form T2 to Rm-'6 = RS. This is the case of the elastic-plastic

materials with the work hardening.

2.2.Simple approach

Now as the field x in the relations of Sec. 2.0. we shall take the

(s) (s)

triple (p,T,A ). The set of all x = (p,T,A ) which satisfy Egs.

(82.1), (A2.2) for an aribtrary but fixed pair (ER’ bR) will be de-
noted by EZ. Thus the set A introduced in Sec. 2.0, stands for the set
of all RHS of Egs. (A2.1), (R2.2), i. e., of all 8 + m tuples

(2,2, 0,...,0(m-times),a,B) with a,B as arbitrary non-negative num-

T = =5 3 I = = (s) =
bers. We have = = _lx_2><_3, where E € Eyr E € Eqyv A € Eg- The

approximation relation "~" of the Sec. 2.0. will be postulated by
~ ~ ~ ~ ~ (S) ~(S)

- - — -
-

putting T =% x x =_. We shall denote (p ~ p, T ~ T, ~A =

17 =2
= @12 %)~ G EX ) vherep~pise (p,D) €3 xz, T ies (1D €z

(1,75 7 e 0 (5 7S FE R o
x £, and A SRS ier (A €E, x E,. The approx:.mat:.on g, of
the set El of the deformation functlons p(X, t) = p(6,g,t) will be

determined by the approximation relation

R(8.E,t) ~B(8,E,t, q (8,t)) for some q  €Q (a2.3)
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where n is the fixed positive integer, ;(-) is the known differentiable
function and Q) = {qa, a=1,...,n} is an ordered set of arbitrary
independent differentiable real valued functions a, defined on T x I.

Moreover, the non-empty set Q is defined by Q := {q(n)]det V; > 0 for

every é'E KR(B)}. An arbitrary ordered set q(n), q(n) € 9, will be
referred to as the shell deformation function. All RHS of Egs. (A2.3)

represent the set.?l.

Let § be the one-to-one correspondence between R6 and the space T2
of the symmetric second order tensors with components TKL = TLK (L.
It means that to every T is uniquely assigned the ordered set
g = (01,...,06). Let M, O£ M< 6, be the fixed integer. We shall

assume that the mapping g

S = for every X € KR(B) is such, that

~

[B1]

for every v with 1 £ v £ M, Egs. (A2.2.)1 here the form
v -V
0 (T) -0 (X,C(X,t-s)) =0 , v=1,...,M, (A2.4)

where ov(zﬂggg,-)) are the known functionals. If M = O then there are

no equations (A2.4) (2). For every U with M<py £ 6 we assume that the

u

stress components ¢ are not uniquely determined by the history of de-

formation (i. e., they cannot be represent in the form analogous to

that of given by Egs. (A2.4). We seek to approximate the functions o
by the representation
~ N
ou(z) ~ ou(')j‘,'r( )(g,t)), u=M1i,...,6, (a2.5)
(N) A . : '
where T := {t, A=1,...,N} is an arbitrary ordered set of the

sufficently regular real valued functions defined on I X I and Equ,-)
are the knonw for every 5,‘5 € KR(B), regular real valued functions
defined on RN. We shall also assume that every TA = TAQQ,t) is an
invariant under arbitrary rigid motion of the reference space. Substi-
tuting into (A2.4) on the place of the Cauchy-Green deformtion tensor
C, the function C = (VS)Tvg (with 3 from the RHS of Egs. (A2.3), we
shall postulate the fazlodzng approximation of the second Piola Kirch-
hoff stress tensor

(1

)Indiceé K,L.M,... run over 1,2,3 and are related to the coordinates
81,602,083 = ¢.

2
( )For M = 6 we deal with the simple material; in this case in Egs. (A2.2)
jZ0,9=0,8S=o0.
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§V(X,C(K,t = ), v =1,...,M,
T~T =50 | ' o (82.6)
™ 6,6)) .

'B'“(')\(’,r M+1,...6 .

Some from the functions o may be assumed as identically equal to zerxro

N .
{or independent of T( )); it means that the suitable stress components

ou are neglected (or assumed to be known a-priori).

The functions )\o, o=1,...,8, defined on KR(B) x I, in the con-

stitutive relations (A2.2) will be approximated by (1)

o~

2~ xw®(9,0), o= 1,...8, (A2.7)

~

(p)

where w := {w", m=1,...,p} is an arbitrary ordered set of the

smooth real valued functions defined on II x I and 7:0(’}\{', «) are the
known regular functions. We have stated before, that the fields

)\1, . ..,)\s represent the internal parameters (which have to be deter-
mined by the constitutive equations fu =0, y=6,...,6 +8) and

+
)\S 1,. . .,ls concern the kinematics of the body (they have to be deter-
mined by the relations (A2.2)2 3) . We shall now assume that w",
4

m=1,...,P, are the arguments of the functions }\o%’.) for 0=1,...,8
and that mﬂ, P+ 1,...,p are the arguments of the functions 20 (}\(', -)

for o =8 +1,...,s.

Putting x = (g.g,h(s) ), X = ('S,E,'X(S) ), E

E(E) , we have defined
by Egs. (A2.3), (A2.6), (A2.7), the relation x ~ % introduced in Sec.
2.0. The set I is the set of all x and = is the set of all x. It is

the first step of the approximation procedure, which approximate the -

set & by the set "3 IfM =6, i. e., if the material (for a fixed
X, X € KR(B)) is simple, then we conclude that it is the constraint

approximation of the basic field.

In what follows we shall use the concept of the shell strain

measures. To this aid we denote by E = {Ep, p=1,...,r} an ordered

(r)
set of the differential independent operators acting on q(n) (-,t),

such that ep = Ep (q(n)) are invariants under arbitrary rigid motion

1
( )'I‘he sign~has always to be u'r‘x'der’gtand in the sense defined in Sec.

2.0. of thig Sha ter. The sets 52, 53 introduced above are the sets of
all fields T,% (8) defined by the RHS of Eqs. (A2.6), (A2.7), respec-
tively.
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of the reference space and (Vg)TV'S=§('}£,e(r)), e(r)

§(-) being the known function. The set e(r) will be called the shell

strain measure; it is not uniquely determined by the foregoing condi-

= {ep. p=1,...,r},

tions.

Now we shall define the error fields putting 9 = (rR, Sp au,a,a).

where
- ~ . ~ - ~ ~ ~_4\l]:‘
£R = pRR bR Div TR , 'T'R = VRE,E—E
Sr = Zelg " Br ¢
a =f -f =% =M+1,...,m, A2.8)
u u u u’ U ' ' (
a = ? -3j, j=o0,
a = % -9, Q 0,
and where we have denoted
v e (N (p), . ~  (s)
£, = £, &e T ') < e e
~ N ~ ~ ~(S
j = 3(Xx,e T( )' (P; =3 (XICIT')\( ))l
~ (r) ~~ Ao
~ ~ N) ( N) _ (s)
o = "p(xle(r)lT ' P)'e(r)'T(o '—'(-D(NIStEr)\ 'EO'E:O)' (a2.9)
~ ~ o ~ ~ Ay -~y ~ (N)
S, =Sl ) E =5, =" xS, M=,

<
Il

1,....M, v =M+ 1,...,6.

We have not introduced the error fields av = ?v' v=1,...,M, because
the equations fv =0, v=1,...,M, have the form given by Egs. (A2.4)
" and can be eliminated from the system of relation by substituting ov

into T = g(g) in the field equations.

The second step of the approximation procedure is to restrict the

error fields. To this aid we introduce the known ordered set.

_ oM (N)  (p)
= .-A(elgl tle(r) ' T W Y.

-
-

u
A

r+N+p

defined on IT % (h_,h+) x I xR , which are independent for every A

and where p =M+ 1,....m=6/ S, A= i,..., N+ P (1.

(1)In the special case we can assume that & EUBE/aqa, a=1,...,n, and
) 2300/31,, w = MHl,...,6,A=1,...,N, E5= 027 2u"el, AN, u=7,. .,

m +6; A=N+1,...,N+P.
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o
The restriction of the error y

= (£ ,ER,a(m),a,a) given by (A2.8)
will be assumed in the form (!)
hy hy
a a
JE'R"?' dg =0 , JER'g dg =0 , a=1,...,n
h_ h_
m h+
Jausz‘-;dg=o , A=1,..., N+P |, (32.10)
u=M+1h-
h+ h+
Jadg=0 ' Jad£=0
— h_
. ~ ~ o~ ~ O
It means that for every x = (p,T,A(S))E % the set Y of all error fields
~ o © o
? = (£R'ER'a’a) has been restricted to the subset Yx,Yx < Y, of the

error fields satisfying Eqs. (A2.10). Mind, that for é;ery p=1,...,M

we have au = 0.

Now by the direct calcualtions we shall prove that the approxima-
tion T of the set E of triples x = ggﬁz,k(sh, given by Egs. (a2.3),
(A2.6), (A2.7), and the restriction of the error fields determined by
Egs. (A2.10) leads to the relations of the shell theory. Substituting
the RHS of Egs. (Z-\.2.8)1'2 into (A2.10)1’2, after the denotations

h, h,
ao _ [,a~k ~ka a _ a ~k ~LK
Ap B ‘q)kP,K'I'k dt by = J‘Dk,KP,L at
h_ h_
hy
a_ [,ak a; +k_r.a; =k
fp = |obpad + o], ppvled,
+ -
h_
(A2.11)
h,
2z [p6Kar ; oeem
R - |PR*kP PR ‘
h-
h,
2 = |o%pfac 6 € oIl
PR = kpR ’ a.e.,
h

(1)The restriction of the form (A2.10) (but with the integral over Il has
been used in [1] to obtain the equations of motion for the rods,cf.
Sec. 5.3..
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where ER' ‘;}'R are the surface tractions on the surfaces § = h+, £ = h_,

respectively, we obtain after simple calculations

ao a a _ .a .
HR,a+hR+fR—lR ; QEH,tEI,
(A2.12)
ao, _.a .
HR np, = P : 6 €31 a.e., t. €I.
Let us also denote
h+ _ h+ h+
= | F =H = =

gA_Ifu_AdE R K_deg R ¢-J®d€ (A2.13)

h h h

We observe that the integrands in Egs. (A2.13) are the known ex-
plicit functions of £,E € (h_,h+). Thus the integrals in Egs. (A2.13)
can be calculated. Thus g_ are the known functionals and k, y are

the known functions of 6,e T(N) ,m(P) . In view of Egs. (A2.2),

~""(r)’
(A2.10), (A2.13), we obtain

(N) (p))

gpllre (it W =0, A=1,...,N+P

k(8 ,e r .T(N).m(p)) <0,

(r) (A2.14)

'T(N),w(p)’e?r)TéNB < 0 for every S(r).réN)

o (N)  (p)

LA

with K('g,e < 0.
At the same time substituting E = E(E) , with E given by Egs. (A2.6),

into Egs. (A2.11) and denoting

1,2
h,
~aq _ |.a~k Ko ~
HR = Jq’kp,KS (o) dg ’
h—
h (A2.15)
+

~a _ _ |.,a ~k LK~
hR = Jq)k,Kp,LS (o) ag ’

h

we also obtain
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ao _ ~ao (N)
Hp (&%) = By @y Va0

(A2.16)

(N)) .

a ~a

hR(g,t) -hr(g.q(n)Vq(n),T
We can observe that the integrands in Egs. (A2.15) are the known ex-
plicit functions of £,& €(h_,h+); it follows that the RHS of Egs.
(A2.16) are the known functionals (they are, at the same time, the
functions with respect to T(N),Q).

The shell theory derived from the solid mechanics relations (A2.1),

(A2.2) is represented by:

1. the field equations (A2.12) (the equations of motion and the

kinetic boundary conditions),

2. the constitutive relations (A2.14), (A2.16). The example of

the approach given above will be given in the Chapter B.

Remark. If m =6, M=6, j =0, =0, i.e., if we deal with the
simple material, then there are no functions I and k 20, ¥y =0
(i.e. Egs. (A2.14) are identities), the argument g in Egs. (A2.15) is
given by

VoY

=9 (X,C,(K,t = 0)) , v=1,...,6,

~

and the functions ﬁza(-), 3§(-) in Egs. (A2.16) are indeéendent of
(N)
T :

ac _ ~aa a_n~a A
e = Hp QRed(n)¥9))r Bp = hpl@rag,) ¥ay,))- (2.16),

Egs. (A2.16)1 represent the approximation of the constitutive equa-

tions of shells made of the simple materials.

Strain measures and compatibility conditions. By the shell strain

measure we mean an arbitrary ordered set e(r) of the real valued func-
tions e defined on 1 x I, such that e = E =1,...,r (E
o ’ 0 p(q(n)), P ’ ’ ( P
are the differential operators acting on q(n)(-,t)), ep are invariants
under arbitrary rigid motion of the reference space and there exists
~ T ~
= (Vp)'V
(x) (r)) (2) 2

for every q(n) € Q. It is obvious that the functions ep have to be

the function E(}\{‘,e ) satisfying the condition §(5,e
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i
§ i
’ ‘ '

interrelated by ce%tain conditions which will be referred to as ﬁhe
shell. compatibility conditions. To obtain them let us denote bYAE(E)
the Riemann-Christoffel tensorﬁrelated to the metric tensor C. In the
solid mechanics the compatibility condition has the well known form
EQS) = 0. Using the formal apgroximation procedure we shall introduce
the approximation relation c ~ :g', define the set ?[ of error fields g
putting ?( := {,‘llﬂ = g(g)} and restrict the error fields by 2 € YE"

o] ~ ~ [} ~
where YE is the known, for every c= g(g,e ), subset of Y. This re-

(x)
striction, for the: time being, will be assumed in the form !

h+
KLMN
JJKLMNGT atg=0, t=1,...,T,
h—.
KLMN . .
where GT are the known functions of z,e(r) and the derivatives of
e(r) with respect to Ba. Thus the "shell approximation" of the condi-
tion 5(5) = 2 will have the form
h+
KLMN
R ’ = 0, =1,...,T. .1
J KLMN(C(X e(r)))G,r dE =0, T 1 (3a2.17)
h

Eq. (A2.17) represents a system of interrelations imposed on e(r)
which will be called the shell compatibility conditions. They are
used in the intrinsic formulations of shell theories (in which as the

(N)

unknowns we take the triples(e ¢ T ,w(p)) togehter with the equi-

(xr)
librium equations and the constitutive relations. The number T of the
shell compatibility conditions in the shell intrinsic formulations

satsify the condition T 2 r - n.

2.3. Second order approach

The simple approach to the plate and shell theories leads to the
equations of motion which are the differential equations of the first

order with respect to 0%. In the simple approach also the number of

the kinetic boundary conditions is equal to the number of the equations

a

of motion. The obtained systems of the shell external forces {p;, fR ;

a=1,...,n} and the shell internal forces {h;,(H;a, o=1,2);

a 1,...,n} will be called simple, i. e., they do the work on the

fields qa and éa’ qa o respectively. Now we are to develop an approach
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which leads to more general form of the field equations.

We seek to approximate the set Z, of all deformation function by
the setlgl, such that (p;;) € El x ., holds iff

P(B,E,t) ~ BB E sy (0,8),Va ) (8,8))a ) €Q . (a2.18)

~

It is more general case than that given by Eq. (A2.3). At the same

time we leave the approximations (A2.6), (A2.7) unchanged.

Example. The shell theory will be called the Cosserat surface
theory if the approximation relation (A2.18) has the form

p(elglt) N£(21t) + Eg ('g,t) ’

where 9y = Y6 k,k =1,2,3} and Q := {q(G) |[21, 32',9]' > 0}

. It is a special case of Egs. (A2.3), provided that

= {rk,d

where a =
~0 '

’

are independent. For the known Love-Kirchhoff theory

W R

z
the fields r

we postulate

217%,
g(g.i,t) ~£(3,t) + £ |.€1—;3_2T R S
= = = > = . .
where {r, .k 1,2,3} d3) and Q : {q(3)| det a g >0, a,%3a, '28}

It is a special case of Eg. (A2.18) but not of Eq. (A2.3).

The error fields are now also defined by means of Egqs. (A2.8), but

the restriction of the error fields will be different (!). Putting

h, |
LREJ"E‘R.BdE-'-[gR'E]h *leg-ply, o RET,
+ -
h—
h

let us define the functionals

1
( )It may be shown that the restriction of the fields XR/SR given

by Egs. (A2.10)1,2, in the case of the approximation relation (A2.18)
will lead to the uncorrect form of the shell field equations.
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E (N) = JLRda + %MRle . (32.19)
I :

N
The functionals ET(N) will be treated, for every T( ), as defined
on the space Q of the shell deformation functions q(n). We shall re-
strict the error fields (A2.8) by postulating Egs. (A2.10)3_5 and re-

placing Egs. (A2.10) by the stationary condition

1,2

GET (N) =0 (A2.20)

(N)

for an arbitrary but fixed T .

The simple calculations lead now to the following equations which

hold in I

alL aL
= ) -===0, a=1,...,n , Q€N , t€1I, (a2.21)
0]

and to the conditions which have to be satisfied almoste everywhere

on 9ol

aMR_ q aMR . . oL e
= ’
aqa le aqa'a Ra, qa,a Ro
(a2.22)
aMR
n, =0 a=1,...,n , 6€3 , t€I,
°q Ra ~
a,a

where ER is the unit vector tangent to 3Il. Introducing the denota-

tions
9 %
= ¥ . (A2.23)
qa ~ qa,a

~o

using the first Piola-Kirchhoff stress tensor I = \73"‘1" and putting

R
h,
aaf _ B, ao
h.
h+
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hy
a ~kK . a
hR = -’JTR ék,Kdg ’
h.
h+
ao _ . ag ao k ~ao k
fr = Jbi:"kd e+ Iy, pR]h+ tlyepely,
h_
h,
a _ k. .a a k a _k
fr = JbR¢kd€+[¢kpR]h tloeply,
+ -
h_
hy
.ae _ ~Kga0, . _ .ao . . . .
lR - JDRP \Pkdg - lR (Elq(n)'vq(n) Iq(n)lvq(n)lq(n) qu(n)) r
h,
i% = k2 gz = i2 (o v : v§ g, 99, ) (A2.24)
R - |PRP "k ® T R0 Y)Y Yn) L)y :
h

for every § € I as well as

hy h+
aa _ k‘pamdg a _ kQadg (22.25)
Pp = |PRi @& Pp = |PR% y

h h_

for almost every § € 3 we obtain from Egs. (A2.21), (A2.22), after
many manipulations, the shell field equations. The shell equations of
motion will be given by

aof ao a a ao .a .aa
+ + + - = - . A2.2
HR,(!B HR,a hR fR fR,a i lR,a ( 6)

; and have to hold in II(for every t € I). The shell kinetic boundary

conditions will have the form

aa d aop aBa a .ao ao
+ —— + = - -
Hp Pra ai_ (B Dpgtre’ * BR,g%Ro = Por 'r " IR )PRg ¢

HaOLB . _ _an (a2.27)
R "Ro"RE = PR '
and have to hold almoste everywhere on JJ(for every t € I); we have

used here the extra denotations

ao
aN _ Py nRa . (22.28)
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Let us substitute now to Egs. (Z—\2.24)1 23 the RHS of E‘ZR = VS"E" '
1471 ~~

E = E(E) + where E is given by Egs. (A2.6). Denoting

h
~acf_ ~aaB (N), __| ~k KB~ ,aa
HR = HR (g:q(n) ’ Vq(n) lvvq(n)lT ) J[ P'Ks (g) ‘Pk ag ,
h_
~ao _  ~aoB Ny, _ ~k Ko~ _a
HR = HR (Q,q(n).Vq(n),VVq(n)r )y = J(p,KS gg)ék +
h_
+3 s @ ) ag
b,
a - ja (N)y _ _ |~k IK~ a
Hp = ho(8.q . /Va  ,,Wq 1) = Jp,LS @ 1 dE (32.29)
h—
we obtain
‘ N
% (0, 0) =E;“B(g,q(n),Vq(n).VVq(n),T( )y,
ao, _ ~ao (N)
HR (6, t) Hp (Eﬂq(n),Vq(n),VVg(n), T Yo (A2.30)
a _.,a (N)
he (8, t) =hy Qg,q(n),Vq(n),VVq(n), T )«

for every 6 €11, t € I. Egs. (A2.30) and (A2.14) will be referred to
as the shell constituitve relations. IfM = 6 then the term ™ Gin
drop out form Egs. (A2.30) and Egs. (A2.14) will be identities (cf.
Sec. 2.2).

The functionson the LHS of Egs. (A2.26) are defined on I x I and the
functions in Egs. (A2.28) are defined almost everywhere on 3l x I. On
the RHS of Egs. (A2.30) there are known constitutive functionals or
functions and on the RHS of Egs. (A2.26) there are known functions

obtained from Egs. (A2.24)6 o

The terms i: ,i;a can be also obtained from the shell kinetic energy

function, defined by
h

= y o5z L
h

2.

tod.

dg, (A2.2.31)
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by means of the relations

oK oK oK oK
.a d R R , ao, d R _ R ) (A2.32)

i7 = — =
R
de aqa,a 9a,a

If the material of the shell-like body is hyperelastic, i. e., if
Egs. (A2.2) have the form
_ L)
I = % ovVp '
where 0=0d(X,Vp) , X € KR(B), is the strain energy function, then

introducing the shell strain energy function
hy

€r = g (Q,q(n) ,Vq(n) ,VVq(n))E JDRG (E,Vg) ag (p2.33)
h

we obtain the constitutive equations (A2.30) in the form

ae BE 38
i AT C SR KPP PR 79
9a,aB %a,a a

Egs. (A2.34) can be treated as the definition of the hyperelastic shell
provided that Egs. (A2.23) hold.

Remark 1. The field equations of the shell theory (A2.26) (A2.27)
as well as Eqs. (A2.24), (A2.25) can be also obtained by postulating
that the relation

Pr - GRdaR + ('}2'R - pRg) . GEdvR = J tr(E"RVﬁ'g)dvR (A2.35)

BKR(B) KR(B) KR(B)

holds for every

3p ap
p = — q_ + —— &q
~ Bqa a aqa’a a,a

where an are arbitrary independent real-valued functions defined and

continuous on NI and smooth in II. In view of p'V‘S, Eh n'E;, Eq. (A2.35)

can be interpreted as certain "approximation" of the principle of vir-

tual work for a shell-like body. The suitable restriction of the error
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fields ER' ER can be derived from Eq. (A2.35) and from the definitions

of these fields. It is represented by the condition

+ hy

Sp° GpdEdl + J(JR-ngg+[r§R.6£]h++[§:R'6p]h_)daR=o (A2.36)
Mh

3“55‘

oll

which has to hold for every dép defined above. The foregoing condition

is equivalent to the condition (A2.20).

Remark 2. Now let us reject Egs. (A2.23) and assume that géniaa:
a=1,...,n; a = 1,2, are the known sufficiently regular and inde-
pendent vector functions of arguments z,q(n),Vq(n). The restriction
of the error fields can be also postulated in more general form by
assuming that the condition (A2.36) has to hold for every

63=2a6qa + f‘“aqa'a , (32.37)
where the functions 6qa have the same meaning as in the Remark 1.
Under this assumption we shall obtain again the field equations (A2.26),
(A2.27) with the denotations (A2.28) and the formulas (A2.24), (A2.25).
If the conditions (A2.23) do not hold then Egs. (A2.32) will not be
valid; in this case also Egs. (A2.34) will not hold even if the mate-
rial of the shell-like body is hyperelastic.

Remark 3: Putting waa =0 fora=1,...,nand o = 1,2 in the case
described in the Remark 2 and rejecting the argument Vq(n) of the
function p, we obtain the results of Sec. 2.2.. Thus the simple approach
to the sh;il field equations can be treated as the special case of such
second-order approach which is governed by the assumption that Eq.

(A2.36) has to hold for every Vp given by Eq. (A2.37).

2.4. Generalization

Within the procedure outlined above the approach to the shell theory
is determined by the form of functions:g(-),am(~),iﬂ(.) in Egs. (A2.3),
(A2.6), (A2.7), respectively (they describe the approximation relation)
and by the form of functions 2?(-),X?a(.), E%(-) in Egs. (A2.24), (A2.25),

(a2.29), (A2.10)3, which characterize the restriction of the error
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fields. We shall see now that the restriction of the error fields can
be assumed in the more general form than that postulated by Egs.
(A2.10)3_5 and Egqs. (A2.36), (A2.37). To this aid, instead of the

, . aa .
smooth or continuous functions 2?, i ,:i, let us introduce the func-

tions E?, E?a'gﬂ , b, B of the arguments 8,&,t and q(n),T(N),w(p),Vq(n).
we assume that these functions can attain, for example, the non-zero
values only on the finite subset of <h_,h+>. Instead of the restric-
tion of error fields S’ IR given by Egqs. (A2.36), (A2.37), let us
assume that the relation

S -d(§£) + J b -d(Qg) =0 (a2.38)
BKR(B) KR(B)

holds for every d(ép), such that

—-a -aq
(ang + an’mi )daR on Tx{h_} and H><{h+L
-a —aa
d(GE) = (anqg + 6qa'aqg )le on 3H><(h_,h+) ’ (A2.39)

-a -a i,
(anqg + an,aqg )daR on I x(h_,h+) ’

where an are arbitrary independent functions defined on and continuous

I and smooth in II. Instead of the restrictions of the error fields

a , 4,0 given by Egs. (A2.10) let us postulate the restrictions

(m) 3-5'

m hy _

Z Jaudizzo , A=1,...,N+P ,

ol h

u=M+l A (A2.40)
hy hy
Jad5=0, [ad§=0.
h h

Thus the functions éﬁ,...,é introduced above together will the error
fields have to ensure the existence of the Stieltes integrals in

Egs. (A2.38), +A2.40). By the direct calculation we obtain again the
shell field equations (A2.26), (A2.27) and the shell constitutive re-
lations (A2.30), (A2.14), but instead of Egs. (A2.24)1_5, (A2.25) we

arrive at the formulas with the Stieltes integrals (1)

1 ‘ ac i
(1) The terms [Wk ]h+,[wia]h_,1n Eq. (A2.24)4 have to be replaced by

by [@ia]h+, [ﬁia]h_,respectively, cf. Eq. (A2.39)
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h, hy
~kB -ao k_=
H;“B = -J TRBd‘Pi A ,p: = Jdeq>; , (A2.41)
h h

and instead of Egs. (A2.13) we obtain

h, h, h,
, k= [Jab , q;-:—J"LBdE . (A2.42)
h_ h

Analogously, instead of Eqs. (A2.29) for the response functionals we

obtain the formulae

h+
~aaB . |~k _KB ~ _=aa
R = p,KS (g)d?k
h—
h+
~an ~k Ko —a , ~k LK~ _-aq
hR = P,KS (u)d¢k + p'LS gg)dwklx ' (22.43)
h—
h
+
~a _ ~k LK~ -a
hp 2 JP,LS (@dey ¢ -
h

and Egs. (A2.24)6 7 for the inertia forces have now to be replaced by

B, b,

a  _ ~k _-a .aa _ | ~k_-aa

ip = JpRp d@k e ip ..JpRp d?k . (A2.44)
h h

The analogous procedure can be also applied in order to obtain the
more general form of the compatibility conditions, i. e., instead of

Egs. (A2.17) we obtain

JREW( (X,e )46 =0, t=1,...,T, (A2.45)

where éfLMN are the known functions.
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If d3° = Qadg,...,d§§==2;d£, db = d&, dB = dE, then we shall arrive
at the formulas obtained in Secs. 2.2., 2.3.. The example of the equa-
tions of the shell theory obtained by the approach outlined above
(which, at the same time, cannot be derived from the relations of Secs.

2.2., 2.3.) can be found in [21].

Summing up, the approximation of the solid mechariics relations
(a2.1), (A2.2) leads to the shell theory determined by the field equa-
tions (A2.26), (A2.27) and by the constitutive relations (A2.30),
(32.14). The fields in the shell theory are related to the fields of
the solid mechanics by means of Eqs. (A2.41), (A2.42), (A2.9) and by
the approximation relations (A2.18), (A2.5), (A2.6), (A2.7) The shell
response functionals in Egs. (A2.30) are defined by Egs. (A2.43) and
the shell inertia forces are related to the distribution of the mass
density DR by Egqs. (R2.44). It must be stressed, however, that the re-
lations (A2.26), (A2.27), (A2.30), (A2.14) of the shell theory con-
stitute the "good" approximation of the solid mechanics relations

(a2.1), (A2.2) only for a certain calss of problems (cf. Remark 2) in

Sec. 2.0.). It means that the functions S,E,T(S) (cf. Egs. (A2.3),
(A2.6), (A2.7)) and the functions 3°,¥ ,E5,b,B (cf. (a2.40)-(A2.44),

which describe the analytical structure of the formal approximation,
cannot be quite arbitrary, but have to lead to the shell theory which
is a "good" approximation of the solid mechanics problems under con-

sideration.
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3. MIXED APPROACH

Mixed approach combines together the direct approach with the formal
approximation of the solid mechanics relations. It means that some from
the "shell" fields (i.e., the fields defined on I x I, 1 x I or almost
everywhere on 3l x I) are postulated a priori and others are derived
from the relations of solid mechanics. Here we shall give only one exam-
ple of the mixed approach. To this aid we shall assumé that the material

of the shell-like body is simple and that:

1. For every set Gq(n) of real valued functions an, defined and

continuous in I and smooth in II, the following relation hold

a aN f a a
+ ~ - 1 =
%(pRan 2 an’ﬁ)le + J(fR 1R)6qadaR
on L (A3.1)
-
- T]fi Spy, g%V
KR(B)
where
_ o _ .a ao
aqa,ﬂ - qa,anR ! ka - kaqa * wk an,u
I, =pT , R = R&Eia Ve,
T = T(,p) ,

and where 2?, Eéa, S are the known functions of X, q(n)' Vq(n)

and E(}\(’, -) is the known response functional of the simple material.

2. The shell inertial forces are given by

h
+
a_a R _R =L, % %4
'R T at 3¢ g ’ R-2|PrR-R :
a a h

3. The motion of the shell is approximated by the function
X = E(E’q(n)'vq(n))' 9(n) € Q, where Q := {q(n) |det VE > 0O}.
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From Eq. (A3.1) we obtain the shell equations of motion

T R L L (33.2)

HR.aB R,0 R R R

and the shell kinetic boundary conditions

ao. ~d aoB

aof _.a
R "Ry * a1 ‘M

) + H n

H R "rg'Ro R,0"R8 ~ FOR '

R (A3.3)

aaB aN ,

He Mro"rg © PR”

with the denotations (A2.28). We also obtain the constitutive rela-

tions

aaB ~auf

Hp o = Hp @y V() TV y,))
ao = ~ao
Hy Heo (Bragyy. Vq(n),VVq(n)), (n3.4)

a ~a
= h-R (Q,q(n)'Vq(n),VVq(n)),

o

with the RHS defined by the RHS of formulas (A2.24)1_3 in which

T = EQ&VS) is the response functional

~

In the shell theory described by Egs. (A3.2) - (A3.4), the shell

external forces p:, p;a, f; have been introduced by the direct approach
: o
but the shell internal forces H; B, H;a, h; and the shell interia

forces —i; are related to the "three-dimensional" description of the

shell-like body, analogously as in the approximation approach.
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4. CONSTRAINT APPROACH

In this section we are to detail the approach in which the plate
or shell theory is included into the "three-dimensional” description
of the shell-like body. Roughly speaking, we shall deal with the
"three-dimensional"” description of mechanics of the shell-like body
in which all boundary value problems are "two-dimensional”, i.e., they
can be stated exclusively for the relations of the shell theory. The
idea of such treatment of mechanics of the shell-like bodies in based
on the concept of constraint and will bereferred to as the constraint

approach.

4.0. Analytical preliminaries

The concept of constraints, which up to now has been used almost
exclusively in mechanics (including some problems of thermo- and
electromechanics), has more general meaning. In this subsection we are
to introduce the concept of constraints independently of any problem
of mechanics, i. e., as a certain analytical concept. Such approach
makes it possible to use the concept of constraints in an arbitrary
field theory. Moreover, the basic notions concerning constraints seem
to be more clear when treated independently of the physical interpre-
tations. It must be stressed, however, that such general approach to
the concept of contraints is based on the hidden assumption that the
relations we are to introduce are motivated or implied by certain

physical situations.

Let X be tﬁe topological space of vector or scalar valued functions
defined on a certain differentiable manifold Q(or on its closure ) and
let Y be a certain linear space (1). Moreover, let A be the known
mapping with the domain D(A) in X and with the range R(A) in the linear
space Y. It means that for every y,y € R(A), there exists at least one

element x,x €ED(A), such that A(x) = y.

Now suppose that A is the known non-empty subset of R(A). The
governing relations of many field theories, in which x,y are the fields

under consideration, are given by

(}) In the special cases, which will be referred to as strictly local,
the manifold @ reduces to the one point set.
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A(x) =y ,y€A. (ad4.1)

Eq. (R4.1) represents certain binary relation with the domain

A—l(A) and the range A. If A = {8} then this relation will con-

stitute the equation A(x) = 6 and if A = R(A) then Eg. (A4.1) will re-
present the mapping. In what follows we shall assume that the relation
given by Eq. (A4.1) is known, i.e., that there are known the operator

A and the set A, A cR(A). We shall also interpret Egq. (A4.1) as the

govering relation of a certain field theory.

Now suppose that within the field theory governed by Eq. (24.1) we
are to describe some special problem or some class of such problems.
To this aid we have, roughly speaking, to restrict or to modify Eq.
(A4.1) by taking into account certain "extra" data which characterize
the class of problems under consideration. If, for example, Eq. (A4.1)
represent the system of the differential equations then as the "extra"
data we can take the suitable boundary or initial conditions and the
"modification” of Eq. (A4.1) leads to a certain initial-boundary value
problem. In the general case we shall say that certain constraints are

imposed on Eq. (A4.1).

To formulate the formal definition of constraints (i.e., the defini-
tion indépendent of the physical structure of problems) let us firstly
denot by % the subset of Y which is the range of the mapping & x A + Y
given by ? = A(x) -y, x € E, y € A. The concept of the constraints
(imposed on the relation given by Eq. (A4.1)) we shall obtain as a

special case of more general concept of the semiconstraints.

Definition 1. We shall say that the semiconstraints are imposed on

Eg. (A4.1) if there are known:

1. The non-empty subset E'of D(a),

2. The multifunction

o}

o) o
3x+YxCY ; Yx*d) ' (2a4.2)

1

~

o)
and if for every y,y € A, there exists at least one pair (x,?)EEEXYX,

such that A(x) = y + 9.
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Definition 2. The semiconstraints (imposed on Ega. (A4.1) will be

~

called constraints if Z € Z; the foregoing inclusion will be called

the constraint inclusion.

Generally speaking, in the case of constraints we restrict the
domain of the binary relation given by Eq. (24.1)
Let us observe, that for some y,y € A, it may happen that it does not
exist x,x € E, such that A(x) = y. Thus the fild ? ,? = A(x)-y, can

be interpreted as the field "maintaining" the semi constraints.

In what follows we shall use more general concept of semiconstraints
instead that of constraints (!). If for every x € int F there is (A(x)€A)
= (gx = {6}) then the semiconstraints will be called correctly imposed
(on the relation given by Eq. (Ad.1). If (3 € ?zx) - (-9 € QX) holds for
every 8 .9 € %, then these semiconstraints will be called bilateral
with respect to x, x € Eﬁ and if (9 € gx)=:(—§ ¢ gx) holds for every ?
3 €9~ {6}, then they will be called unilateral with respect to x,
x €F

of semiconstraints. It must be stressed that in the problems of mecha-

. The multifunction (A4.2) will be referred to as the realization

nics the realization of seminconstraints has to describe the physical
character of the problems and the semiconstraints imposed on the re-

lation (RA4.1) have to lead to the resonable solutions of these problems.

Example. Let Egq. (A4.1) represents the mapping from the space X(Q)
of functions defined on the n-th demensional differentiable manifold
to the linear space Y () of functions defined on the same manifold Q.
This is the case in which A=R(A). Let us also assume that Q = I xT,
where Q,T are the differentiable manifolds of the orders k,l respective-
ly, k + 1 =n (2). our objective is to give an example of the constraints
' imposed on the mapping A(x) =y, x = x(§,n), vy = y(&,n), & = (51,...,§k)
€N, n= (nl,...nl) € T, which reduce the n-th dimensional problem des-
cribed by the mapping A to a certain k-th dimensional problem (i.e.,

to the problem in which we deal exclusively with functions which are

independent of n. To this aid we shall assume that the following objects

are known,cf. [43]:

(1) For the particulars the reader is referred to [44,45].

(2) This global assumption can be replaced by more weak assumption that
8 is the fiber space over Il and T is the standard fiber.
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1. The topological space U(Il) of the vector functions q defined

on I,
2. The mapping ¢ from U() to X(Q) : x = ¢(q), q = q(g), § € I.

3. The linear space W(I') and the system of N linear independent

functionals wz € Wk(I'Y, a=1,...,N.

To impose the constraints on the mapping A(x) = y we shall assume

the subset = of = D(A) in the form

(1)

n

= {x|x = ¢(q) for some g € Q} ,

o
where Q is the known non-empty subset of D($), D(¢) < U. The set Y

is given by
o 0,0 _ o
Y := {yly = A(x) - y for some x €%,y €A}, YV, (a4.3)

To define the realization of the constraints we have to introduce the
[e] o] ~
non-empty subsets Yx of Y for every x € 5, i.e., for everyx= ¢(q)

q € Q. These subsets will be assumed in the form (!)

Y o= {§|<§(£,-),v:;> =0forA=1,...,Nand every £ €E1}. (a4.4)

Denoting
xA<q,9 s<A(q>(q))!£,w;;>. R={3, a=1,...N},
V() =<y >, Y=Y, A=1,...N}, EEDN,
we obtain from Eqgs.(A4.3), (A4.4)
A(q,E) =y(E) ,a€Q, EET . (a4.5)

Eg. (A4.5) has been obtained by imposing the special form of constraints
on the mapping A(x) = y and is independent of the variable 1, IEEIZ

Thus the n-th dimensional problem described by A(x) = y has been re-
duced to the k-th dimensional problem described by Egq. (A4.5) (in the
sense explained above). It may be easily observed thét the procedure
outlined above can be also applied to the formation of the shell theo-

ries.

(1) The functionals WZ in Eqa. (A4.4) can also depend on gq,q € Q.
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Generalizations. Let V be the topological space of functions v and

B be the known mapping form X x V to Y. The concept of the semicon-
straints can be also introduced when we deal with the relation of the

form

‘B(x,v) =y, y €A, for every v € Vx‘ ’ : (a4.6)

where Vx are the known non-empty subsets of V and A is the known non-
empty subset of R(B). We shall say that the semiconstraints are imposed
on Eq. (A4.6) if there are known the non-empty subsets‘g, %;, X E‘E,

of X,V, respectively, as well as the multifunction (A4.2) and if for
every vy, Y € A, there exists at least one pair (x,g) €% x %x such

that B(x,v)

o)
y +y for every v € Vx. Here Yx are the known subsets

O .
of ¥, where

o :
Y := {? !? = B(x,v)-y for every v € v, and some (x,y) €E x4}, (24.7)
and where we have denoted = := {x]B(x,v) = y for every v € Vx and some

y EAY.

Now let F be the known mapping from X x Y to a certain linear space.
Let us also denote by £ and A the domain and the range, respectively,
of the binary relation given by F(x,y) = 0. We shall say that the semi-

constraints are imposed on this relation if there are known:

1. The non-empty subsetlg of X.

2. The multifunction

~ o) o)
= 2 x> Yx cyY ,

where

o.
Y := {?}F(x,y + 3) =0 for some x€ Z, y A} (A4-7)1

and if for every v,y € A, there exists at least one pair (x,y)

~ ©O
€ S><Yx, such that F(x,y-fg) = 0.

Remark. Let us observe that the concept of semiconstraints is closely

related to the concept of formal approximation which has been intro-
duced in Sec. 2.0. Generally speaking, the formal approximation can be
expressed in terms of the semiconstraints. However, the concept of
semiconstraints does not include any “"approximation relation",

i.e., the set Z may not constitute any "approximation" of the
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set S(which was the assumption of the procedure outlined in Sec. 2.0).
Thus by imposing the semiconstraints (or constraints)on a certain
binary relation (A4.1) we obtain the relation A(x) -y € Yx, y €A,
which may not be interpreted as the approximation of the relation

A(x) =y, y € A. Such situation will take place, for example, if the
constraints imposed on the differential equations of mechanics lead

to the initial-boundary value problems for these equations.

4.1. Examples and interpretation of constraints in solid

mechanics

The concept of constraints is well known in mechanics, cf.[2,3,13,
33, 36-39, 41-45]. The aim of rather simple examples given below is to
outline some special cases of constraints from the point of view of the

general treatment developed in Sec. 2.0.

Example 1. Let Eq. (A4.1) stands for the mapping iﬂg) = T where
f(.) is the response functional,‘g € 2, where Z is the set of all
= 2
histories of the right Cauchy-Green deformation tensors and T €T%,

where T2 is the space of the symmetric second order tensors. Let
° A - 2
Y := {§|§=E(C) —Efor someg€:,r'£€T },

and assume that

Ti={glc€s, a Q) =0, v=1,...8; N6},

o) 2

Y. :={N|t_(ND)= 0 for every D € T" with (A4.8)

~ Bav 2 ~
tr(—é—é—g)=0}, YECT,SGE,

where(lé-) are the known independent differentiable functions. Egs.
(A4.8) describe the constraints ;mposed on the constitutive relation
E(S) = T. We observe that these constraints lead to the new relation
i(g) =T+ N with N = A“aav/ag, where A’ are arbitrary scalars. It is
the well known case of the internal (material)constraints, [33]. Thus
Eqs. (A4.8) represent certain constitutive hypothesis which can be in-
corporated into the constitutive relation, cf. [2]. On the other hand
we also observe that Egs. (A4.8) can be interpreted as a formal appro-

ximation of the constitutive equation T(C) = T, which may constitute
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the good approximation for a certain class of motions. This is the
class of motions satisfying the condition C € 8, where % is an arbi-
trary subset of £ which can be "approximated" by the set = defined in
Egs. (A4.8). It means that the conditions given by Eqé‘ (24.8) can
be interpreted either as the constraints or as the formal approxima-

tion related to the constitutive relation i(g) = T.

Remark. The semiconstraints which can be interpreted as a certain
formal approximation (in the sense described in Sec. 2.0) will be
called the simplifying semiconstraints. If such interpretation does
not hold then we shall say that they are the real semiconstraints.
This terminology is based on that introduced in [2]. In the special
cases in which Z is a set of a certain kinematical fields (for example
the set of deformation functions) and Y is the space of forces (for
example the external forces acting at the fixed body) we can often
interpret the condition x € g, where % €%, as due to some of forces
v,y € %x. If such interpretation holds then we shall say that the
constrains'are reactive (this interpretation can be also extended on
non-mechanical cases). Inversly, if the systems of forces y,y € gx'
are interpreted as due to the condition x € E, then we can say that
the constraints are material. The terminology introduced above is
based on that proposed in [2]. It must be stressed, however, that such
terms as "real", "simplifying", "reative" or "material" applied to
the concept of constraints or semiconstraints are not related to the
formal structure of this concept but only tothe interpretations of semi-

contstraints in different classes of problems.

Example 2. Now let the constitutive relation be given in the form
Lqudg) =0, wu=1,...,6, where Lu are the known differential opera-
tors with respect to the time coordinate (it is the constitutive re-
lation of the rate-type material). Let on Lu(SnE) =0, u=1,...,6,
be imposed the constraints given again by Egs. (A4.8). In this case
we obtain (cf. Sec. 2.0, Generalizations) the relation Lu(SaI + N) =0,

where N = A“aav/ag.
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Example 3. Let the relation given by Eq. (A4.1) represents the

governing equations of the solid mechanics for the simple materials.

It means that A(x) = y stands for
- Di v + p =
piv (Vp T) PRR = b s
- (24.9)
(VpIng =By -

where the values T of the second Piola-Kirchhoff stress tensor have
been determined by the suitable response functional i = i(l(',vfg(t)).
Here x = P € = cC X,y = (RR'BR) € Y, where Z is the set of all deforma-
tion functions (we assume that Z is a subset in a certain topological

space X) and Y is the linear space of all external forces.

Let us denote Rt = g(.,t), t € I, and let ¢ be the known mapping
from the space of sufficiently regular functions P defined on Kp (B)

to a certain linear space, having for every P the weak derivative

[$3D]

& (pt') , t € I. Then the constraint inclusion T € Z can be determined

by
T .= {ple(p) =0, te€T1}. (A4.10)
R~ (t) ~ . o
Putting T € T(X,Vp ~'),p € £, we shall now define the set Y by means
of
Y := {(£R,sR) ILR = -Div(Vp T)+p_p - bR 'ER =
(p4.11)
= (VpT)nR - p_ for some p €%} .

The external forces (£R 'ER) can be interpreted, for example as the
forces "maintaining the constraints ¢(p_) = 8, t € I". Among many possi-

ble realizations of these constraints we can assume the multifunction

e

o) o
E) P~ Yp C Y determined by

o |
Y := . + . =
b { (rp+ S50 «% Sg " vday J rp ydvp= 0 for every

BK‘R(B) KR(B)
v with ®'(£t)x= 6} . (A4.12)
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In this case the "reaction force§'£R ' Sp do not work on any' virtual

displacement” v defined above.

Summing up, we conclude that the constraints imposed on the mapping
(A4.9), which are given by Eqs. (24.10), (A4.12), lead to the system

of relations

DJ.V(VBE) + ER + Ip = PgP
= +
"Dk "R "

(A4.13)
@(pt) =6, t€I1 ,

. . = i ' =
c]( Sr XdaR+ J'ER deR O for every v with ¢ (gt)x 9,

BKR(B) KR(B)

where E = iQ&,Vp(t)). The constraints under consideration are bilateral.

Example 4. Now let ¢ be the known mapping from the space of suffi-
ciently regular functions defined on BKR(B) to a certain linear spacei
possessing the weak derivative ¢'(XE ) for every YP, = R("t)|an (B)( ).
Let the motions of the solid body be restricted by the kinematicRboun—
dary conditions of the form @(Ygt)==3, t € I. It is a special case of
constraints described in the foregoing example, which leads to the
relations

pivp®) + b = ogh

(VpT)nR = Pr +s_,

~ o A ~R

(A4.14)
q)(YRt) =86,

§ Sp -'Y'daR= O for every v with ¢ (Ygt)x =0 ,

BKR(B)

(t

where T i(X,VP )) as before. We deal here with the well known case

~

of the solid body subjected to the kinematic bilateral boundary con-

straints.
(1) yf is here the trace of the function f on BKR(B).
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Example 5. Let us assume that the relation given by Eq. (A4.1) stands
for the constitutive relation of the rate-type material L(T) [i] = Q,
2
where L(E)[-] is the linear mapping from the space T~ of all symmetric

2 2
second order tensors to the space T~ , defined for every T € T°. Now

we have (Ehi) € 5 = T T2 and s €A = T2. Let the subset = of Z be
defined by

1

=1 xT% T :={I]5(D <o) (a4.15)

where j(-) is the known sufficiently regular mapping from T2 to R.

[o) .
Thus the set Y will be determined by

g for some T € T, i € Tz,

<0
W
=)
o
{]
=
3
-3
[ —)
i

o o .
3 x > Yx C Y, where now x = (E,E),

~
-

Moreover, let the multifunction

" be assumed in the form

g = {Bltr R(

- < i i <
x T) <0 for every T with J(Eb) < 0}. (A4.16)

T
~0
Egqs. (A4.15), (A4.16) describe the constraints imposed on the constitu-

tive relation E“Ep[i] = g. These constraints lead to

([Tl =c+D,
jm <o, (24.17)

tr[D(T -T)] £ O for every T with j(T ) £ 0 .
~ ~O v ~0 ~O

If j(T) = O is the yield condition (and L is independent of T) then we
can interpret Egq. (R4.17) as the constutive relation of the elastic-per-
fectly plastic material with D as the rate of the plastic strain. Thus
the elastic-perfectly plastic materials can be interpreted as the spe-
cial rate-type materials with the constraints defined by Egs. (A4.15),
(A4.16).

The detailed analysis of the different special cases of constraints

in solid mechanics can be found, for example, in [45].



- 51 -

4.2. Relations of so0lid mechanics with semiconstraints

The governing relations of solid mechanics have been described in
Sec. 2 of this Chapter and their analytical from is given by Eqgs.
(a2.1), (A2.2). Now we are to interpret Egs. (A2.1), (A2.2) as a cer-

tain binary relation. To this aid we shall introduce the linear space

YAof five-tuples y = (ER' ER , a(m),a,a), a(m) = (al,...,am), where
Sy are vector functions defined almost everywhere on BKR( ) x I, =

are vector functions defined on KR(B) x I and au: w=1,...,m; a,a are
real-valued functions defined on KR(B) x I. Moereover, let X be the
topological space of the triples x = (BRI'A(S)) of functions defined
on KR(B) X I, such that T = E;‘and the local invertibility condition
det Yg > O holds for every X € KR(B), t €I (i.e., the governing re-
llations of solid mechanics possess orientation-preserving solutions

p) . Let us assume, for the time being, that the external forces (ER' ),

b
~R
are arbitrary but fixed. Then Egs. (A2.1), (A2.2) can be interpreted
as the relation (for every fixed (pR,bR)) with the domain Z in the
space X and with the range A which can be indentified with the zero

element of the linear space Y.

Using the approach outlined in Sec. 4.0 we shall impose on the fore-

going relation the semiconstraints in their general form. To this aid

~o

~ (o] o
we have to specify the subset = of X and the multifunctbm15€x-+YXC:Y,

o
where Y is the subset of Y consisting of all five tuples y = (ER r S
a(m), a,o) which are the values of the LHS of Egs. (A2.1),‘(A2.2), re-
(s)

spectively, for all x = (p,T,X ) € E.

Thus the governing relations of the solid mechanics with semicon-

straints will be determined by:
1. The field equations, i.e., the equations of motion

R,?, , T=1, (A4.18)

Div(Vp T) + bR +r_ =p
and the kinetic boundary conditions

(VEE)BR= Py + Sg (A4.19)

where every (ER'ER) will be called the active external force and

(ER’£R) will be referred to as the constraint reaction force.
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2. The constitutive relations given by

fu(')ilg-lzlx ) = aur p =1, =,
i xcra®) —as<o
(A4.20)
(s) .
- <

© (X,C,T, A . Eo,zo) a £ 0 for every (Eo’zo) with

. (s)

J(§:EO.EO,A ) —a<o

where, as usual C = (Vp)TVp and where (a ,a,0) will be called

(m)
the constraint constitutive reaction (l).

3. The semiconstraint relation given by

~ (A4.21)

[$314

o] o
(ER'ER'a(m)'a'“) € Y €Y, x €

=<0
'

where'gis the known subset of X (in the case of constraints

e)
% € £) and Yx are, for every x € Z, the known subset of Y. The

five~-tuples ? = (£R'3 a,a), 9 € Yx' will be called the

R’ (m)
constraint reactions; they include the constraint reaction force

(ER'ER) and the constraint constitutive reaction (a(m),a,a).

Remark. The semiconstraint relation (A4.21) is not an arbitrary
relation but has to describe in the analytical form all "extra" infor-
mations about the class of problems we are to investigate, i.e., the
informations which are not included in Egs. (A2.1) and which can modify
the form of Egs. (A2.2). Generally speaking, the form of the semicon-
straint relation (A4.21) and the constitutive relations (A4.20) has to
ensure the existence of the physically reasonable solutions to the

~
—
=)

well stated problems of the solid mechanics. We shall assume that
implies %x = {g} for every x € =. It means that if there are no "extra"
restrictions imposed on the set of triples x = (RJE'X(S)) then there

will be no reactions 9, i.e., 8 = g. We shall also assume that the con-
dition given in the Definition 1 of Sec. 2.0 of this Chapter has to be

satisfied for every active external force (ER'ER)'

(1) The simple example of the constraint constitutive reaction is given
by the field N in the Example 1 of Sec. 4.1.
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Interpretation. In the case of constraints the reactions ? = (rR,
sR,a(m),a,u) can be interpreted either as "maintaning"” the constraint
inclusion = € £ or as "due" to that inclsuion(cf. the interpretation

of constraints in solid mechanics given in Sec. 4.l.of this Chapter).
o o}

The sets Yx have to be understood as the sets of all reactions y which

are able to"maintain" such deformations, stresses and constitutive

parameters, described by the triple x = (p,T,A(S)), that always x €

~
-

4.3. Formation of shell theories

We shall obtain the shell theories by postulating the special form
of the constraint relation (A4.21). Firstly, let us assume that the
constitutive relations (A2.2)1 for y =1,...,M, where M is the fixed

integer, O < M £ 6, have the form

M@ = & x,cx,t-s)), (A4.22)

6

where ¢ : T2 -+ R~ is the known one-to-one mapping with the inverse

E : R6 - T2. Simultaneously, we assume that the stress components
ou(z), HW=M+1,...,6, are not uniquely determined by the history of
motion, i.e., that for u > M the relations of the form (A4.22) do not
hold. If M = 6 then Egs. (A2.2) reduce to the form given exclusively
by Eq. (A4.22); in this case we assume that m = 6, j = O, ¢ £ O and
the constitutive relations (A2.2) define the simple material. If M = O
then there are no constitutive relations of the form (A4.22). Secondly,
let us denote by q(n), T(N), w(p) the ordered sets of the sufficiently
regular real valued functions defined on II X I and let B(X,q(n)ﬂq(n)),

(N)), p=M+1,...,6, and ?UQg,w(p%, g =1,...,8, be the known

it
sufficiently regular functions. Let us also denote § = (V;)TVE and
assume that the set Q := {q(n)|det V; > 0} is not empty. The relation

(A4.21)1 will be postulated now in the form given by:

p = E}ﬁ,q(n),Vq(n)) for some q(n) € Q,



~ N)
au(‘_)g,r(m)for p=M+1,...,6 and for some'r( ,

A(S) ='Y(S)g5,m(p))for some w(p). (r4.23)

~

It means that the set

(p,E,A(S)) which can be expressed in the form given by the RHS of Eqs.‘

in Eq. (A4.21) is the set of all triples

(A4.23). For the simple materials Egs. (A4.23) reduce to the form
given by Eqg. (A4.23)1(1).

In order to specify the form of Eq. (A4.2_1)2 we shall assume that

gao =

there are known the functions Ea, ¥y, :u, b, é; H=M+1,...,m;

B (N (p)
A=1,...,N+P, of the arguments X, Dipy * Vq(n), T ;W P

, such that
there exist the Stieltes integrals in Egs. (A2.38) (with the denotations
(A2.39)) and in Egs. (A2.40). The integer P, O < P < p, is the number

of the shell internal parameters wn, m=1,...,P. We postulate

e}

= {(;E:R's 1 a

Sk (m),a,a)!au =0 foru=1,...,M;

Eq. (A2.38) has to hold for every 8p given

by Eqs. (A2.39); Eqs. (A2.40) hold}, (24.24)

(s) =

" for every x = (p:E,A ) € =. It means that the constraint reactions

§ = (r_,s_,a a,a) in the class of problems under consideration have
~R'~R" " (m)

to satisfy the conditions given by (A4.24).

Now by the direct calculations, which are analogous to those given
in Secs. 2.2, 2.3, we shall obtain form (Egs. (A4.18) - (A4.20),
(Ad.23), (A4.24) the system of relations of the shell theory. This
system is determined by shell eauations of motion (A2.26), the shell
kinetic boundary conditions (A2.27) and the shell constitutive rela—

tions (82.30), (A2.14). At the same time we shall obtain the relations

) We also assume that AO = Xﬂ(ﬁ,wl,,_.,wp) for o =1,...,S and A0,=7?

(ﬁ,wP+1,...,mp) for o = S+1,...,8, where A],...,AS are the "internal"
constitutive parameters, i.e., described by Egs. (34.20) ¢ for u=6+1,...,
6+S=m, and A +---,A% are the "kinematical” constitutive parameters,
characterizing certain strain incompatibilities (such as the rates of
plastic strain), cf. Sec. 2.1. If S=Oor S=s then P=0 or P=p, respec-—
tively. Analogously, wl,...,wP and wP+1,...,wp, will be referred to as the
shell internal and kinematical constitutive parameters, respectively.
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of the form (A2.41) - (A2.44) with the denotations given by Eg. (A2.28).
1f 8" = 97ag, a¥’" = y*%ag, o) = = q¢, db = df, dB = df and if the
Stieltes integrals in Eqs. (A2.38), (A2.40) reduce to the Riemann inte-
grals, then instead of Egs. (A2.41) - (A2.44) we shall arrive at Egs.
(a2.24), (A2.25), (A2.29).

We can now observe that using the constraint approach outlined above
we have obtained the relations analogous to those which have been
obtained in Sec. 2 by the formal approximation approach to the shell
theories. The interrelation between the concept of semiconstraints
and that of the formal approximation procedure has been mentioned in
Sec. 4.0. In the constraint approach to the shell theories we deal
with the "simplifying”" constraints (cf. the Remark to Sec. 4.1) which
can be interpreted also in terms of the formal approximation procedure.
That is why for the constraint reactions we have used here the same

denotations ER’ ,a,0 as for the error fields introduced in Sec. 2.

2R (m)
On the other hand, the constraint approach to the shell theories does
not involve any "approximations" and all resulting relations are con-
sistent with the general relations of the solid mechanics with semi-
constraints described in Sec. 4.2. Generally speaking, the semicon-
straints or constraints imposed on certain binary relation lead to the
new relation which may be not interpreted as the approximation of this
binary relation. Thus the shell theory obtained via constraint approach
can be treated independently of the classical solid mechanics relations

as a certain new analytical "model" describing some class of problems

for the shell-like bodies.
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5. CONCLUSIONS

5.1. Relationship of results

It has been observed that the formal structure of the general
shell and plate theories obtained as the result of the different approa-

ches is similar. It consists of (1):

1. The equations of motion (cf. Egs. (A1.18) and (A2.26))

aaf ao, a a ao .a . a0
Brog THrg " PR T TR 7 fR,6 T R T iRa ¢ )

where

a _ .a ) ) . .
ip = 3g(@rteq 0y Ve )1y Y9 () 1 D) Y (n))

14

ac (A5.2)

. ao . . e ..
e DA ZATE FERRAL YRR FRTAL PR Y RAL TR

a
are the known functions. The fields H:aB,H; h: are called the

shell internal forces, the fields f;, faa represent the shell

R

body forces and -i;, -i;a are referred to as the shell inertia
forces. The ordered set q(n) is said to be the shell deformation

function.

2. The kinetic boundary conditions (cf. Eqs. (A1.19) and (A2.27)
with the denotations (A2.28))

H;anRa * EE;'(H;aBtRa"RB) * H;?gnRa B PgR '(i;a - f;a)nRa
Haaﬁn i ‘= Pﬁﬂ (A5.3)
R Ra RB R

where we have denoted

(1) For the simple shell force system all underlined terms drop out
from the relations below; it is the case in which the function P is
independent of the argument Vq(n), cf. Eqs. (A2.18), (A4,23)1.
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The fields defined by Egs. (A5.4) are called the shell surface
tractions. The system of the shell surface tractions and the
shell body forces will be referred to as the system of the shell
external forces. Egqs. (A5.1), (A5.3) will be called the shell
field equations. The derivatives in these equations may be also
understand in the generalized sense. It means that the shell
equations of motion can be also interpreted as obtained form
Egs. (A5.1) by the intedgration over an arbitrary regular part
Ho of M and by the formal application of the divergence theorem.
Analogously, the shell kinetic boundary conditions can be also
interpreted as obtained form Egs. (A5.3) by the integration -over
an arbitrary regular part Lo of oIl and by formal application

of the divergence theorem (with respect to the LR—coordinate).
Such situation will take place if, for example, the partial
derivatives with respect to 8% in Egs. (AS5.1), (A5.3) do not

exist.

3. The constitutive relations (cf. Egs. (B2.30), (A2.14))(l):

aoB _ ~aofB (N)
Hp = B " ®dy) ¥y WGy T

ao _ ~aa (N)

HR = HR Qg,q(n), Vq(n),VVq(n),r ), ~ (A5.5)
a _ ~a (N)

hR = hR (Q‘.q(n)lvq(n):VVq(n):T )

~ao ~ao  ~a .
where HR B, H_ =, h_ are the known response functionals and

R R
) (N)  (p), _ _
gA@/eu)J ;0 =0, A=1,...,N+P
c@,e oW (Pheg, ' (A5.6)
~" " (x)
(N) p) o (N) < o (N) . <
w(g,e(r),‘r R ug . e(r), To ) £ 0 for every e(r), TO withk 20,

where 9 are the known functionals, k,y are the known scalar func-

tions'and e ) are the shell strain measures (Ep,

= E
) = B Y
p=1,...,r, are the known differentials operators acting on

) Using the direct approach we have postulated only the special form

of Egqs. (A2.30), (A2.14), given by Egs. (A1.22). However, the form of

the shell constitutive relations obtained in Secs. 2,4 can be also postu-
lated within the direct approach.
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N
q( )(.,t)). For the simple materials the term 1( ) drops out
n

from Eqs. (A5.6) and Egqs. (A5.6) become the identities (this
is the special case which was postulated in Sec. 1). The

(N)' u)(p)

ordered sets T are referred to as the shell stress

parameters and the shell constitutive parameters, respectively.

The fields in Egs. (A5.1), (A5.2), (A5.5), (A5.6) are defined
on II x I; analogously the fields in Egs. (A5.3), (A5.4) are
defined almost everywhere on 9l x I. All these fields as well
as the functionals and functions: i;, i;a, Ezaﬁ’ Ezé, ﬁ:, gA,
K, ¥, have to satisfy the suitable regularity conditions. These
regularity conditions have to ensure, roughly speaking, the
existence of the physically reasonable solutions ot the well

stated problems within the shell theory under consideration.

Now let us look at the mechanics of the shell like bodies from the
point of view of the formal approximation approach and that of the con-
straint approach. Then the three sets of relations have to be satisfied,

namely:

1. The relations of the shell theory (i.e., the relations indepen-
dent of the material coordinate £, £ € <h_,h+>), given by Eqs;
(AS5.1), (A5.3), (A5.5), (A5.6) with the denotations (A5.2),
(a5.4).

2. The relations of the "three-dimensional' mechanics of the shell
like body (i.e., the relations dependent on all material coordi-
‘nates 91, 92, £; Q €1, £ € <h_,h+>), given by the field equa-

tions (cf. Eqs. (A2.8) or A4.18),(A4.19))

~ ~ ~ ~ ~T
s + = ; = ’
Div(lpTMy + b+ Zp =P 7 L7 2%

(A5.7)

and by the constitutive relations (cf. Egs. (A2.8)3_5 or (A4.20))

fu (:):(:IE,T.T ) = au ; B = 1,...,m N
58T —aso (35.8)
~ r~ N(s) ~ ~ ~J ~ .
-0 <
¢ (X,C,T,\ . E'o'zo) o £ 0 for every (EO.EO) w1th(s)
j(z.solzblk ) £a.
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~ ~ T
where C = (Vp) Vp.

3. The interrelations between the fields in the shell theory and
the fields in Eqs. (A5.7), (A5.8). They are given by (cf. also
Egs. (A2.18), (A2.6), (A2.7) or Egs. (A4.23)):

ol
m

o
lo
™
iy
Q
S
Q

=]

1,...,M,

au (')ilg(')\(" t_s) for IJ

141
m
tn
D)
a
l

M (N)

5,1 ) for u M+1,...,6,

~
g

~(s) _ T(S)(i.w(p)) (25.9)

and by Egs. (A2.29), (A2.13), (A2.24)4_7, (A2.25) with the de-

notations (A2.9).

Mind, that all three sets of relations mentioned above are exact
from the point of view of the formal approximation approach as well as
from that of the constraint approach. They give the general description
of the mechanics of shell-like bodies. It must be stressed, however,
that both'procedures leading to the shell theories influence the form
of the field equations of the classical solid mechanics (A2.1) by the

presence of the "extra" forces r in Egs. (A5.7). These procedures

]
also "modify" the material propeitigs (a2.2) of the body by the presence
of the "extra"fields a(m), a, a in Egs. (A5.8). The form of the "extra"
fields is strictly connected with the range of applications of the shell
theory to the special problems (i.e., with the reliability of solutions)
and will be detailed in Sec. 1.3 of the Chapter C. Egs. (A5.7) - (A5.9)
do not belong to the shell theory and are the basis for  the determina-

tion of the "extra" fields £R'3 ,a

R (m) e@,0 .

5.2. Features of different approaches

Apart from the relationship of results described in Sec. 5.1., every

approach to the shell theories has also its own characteristic features.

The main features of the direct approach are:
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1. The relatively simple structure, based entirely on axioms,

corresponding with that of the classical solid mechanics.
2. The approach does not involve any approximation procedure.

3. The approach does not contain full informations about the
analytical structure of the kinetic energy function and the

response functionals even in the simplest special cases.

Both the approximation and constraint approaches to the shell
theories are based on the derivation of the shell theories from the

"three-dimensional” solid mechanics.

The formal approximation of the solid mechanics relations, which

leads to the plate and shell theoreis, is characterized by:

1. The possibility of obtaining many different forms of the shell
governing equations, by introducing different functions Enga'
Eéa, etc.

2. The difficulty in estimating the “error" involved in the appro-
ximation procedures (for the non-linear systems no general

criteria of accuracy are known).

3. The well determined relation with the "three dimensional" theory
and the possibility of extending the results on the non pure

mechanical case (cf. [26] for example).

In the mixed approach the field equations of the shell theory are
usually obtained by the direct approach and the shell constitutive rela-
tions via approximations of the "three-dimensional" constitutive rela-
tions. The structure of the shell relations, as a rule, is simpler than
that obtained form the approximation approach because some from the
" underlined terms (in Egs. (A5.1) - (A5.5) may be negleéted. The mixed
approach can also supply the interpretations of the fields in the shell

equations in terms of the fields of the solid mechanics.

The main feature of the constraint approach is its consistency with
the mechanics of shells treated as the three-dimensional bodies. How-
ever, the interrelation between the Ythree - dimensional" solutions of

problems of the constraint approach and those obtained from the classical
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solid mechanics, remains open question as for as the non-linear theories
are concerned. It has to be stressed that in the formation of the plate,
shell and rod theories the constraints or semiconstraints are intro-
duced to render the theory more tractable, [2], and the constraint

:a,0 can be interpreted as certain "imaginary"

reactions sS_,a

AR'2R' % (m)
external fields acting at the shell like body.

5.3. Formation of rod theories

All obtained results concerning the plate and shell theories can be
easily modified in order to obtain the rod theories (cf. the Prerequi-
sites). Using, for example, the formal approximation approach, in the -
place of the shell deformation function q(n)QQ,t) we have to introduce

the rod deformation function q(n)(i,t), £ € <h_.h+>, t € I, cf. Eq.

(A2.3). Analogously, instead of the "shell-type" functions T(N)(g,t),

w(P)(g,t)(cf. Egs. (A2.5), (A2.7) we have to introduce the "rod-type"

N ey, o®

from the shell theory to the rod theory in all relations in the place

functions 1 (£,t). Roughly speaking, in the formal passage
of 2' £ we have to substitute the material coordinates £, 2, respective-
ly, i.e., to make the interchange between the points § €1 and£;€<h_,h+>.
Thus the integrals over (h_,h+) have to be replaced by the integrals

over Il and inversely. Let us also observe that the integrals over JIl

have to be replaced by the sum of the values of the suitable integrands

for £ = h_ and £ = h+. Analogously, the values of the fields for £ = h_

and g h+ have to be replaced by the integrals over 3ll. This simple
scheme, the geometric and physical sense of which is clear, makes it
possible to obtain all needed relations of the rod theory (or relations
which lead to the rod theory) directly from the suitable relations con-
cerning the shell-like body. Thus by modifying the form of Egs. (A5.1)-

(A5.6) we obtain (!)

1. Rod equations of motion (for every & € (h_,h+) t € I)

a a a a a a a
" +'H + + F5 o= = i - 'j A5.10
"Hp 33t MR, 3t * fp T g 3 T g 7 g ( ’
(!) Mind that the indices a,B8,... (related to 6%,6%,...) have to be re-

placed by the index 3 (related to § = 63), which in the following re-
lations is omitted or represented by the "primes", i.e., "Ha = H;33,
etc.
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.a ; 5 q, .9 )
R = SREE A9y 39 Ty, 37T ) L 3

[
I}

(25.11)
r - IREt 090,390 ), 39 T, 3)

H.
]

are the known functions and q ., = q(r“(E,t), g€(h_,h), t €I The

fields in Egs. (A5.10) are related to the fields in solid mechanics

relations by means of the formulae

e s Jﬁk%@a . ¥ =BT,
n
@ - [~k3.-a | ~kK -a
Hp = J (Ty d(Dk + Tp d\?k'K) '
)|
a _ [ ~kK =-a
h, = ] do K
i
- k.za K .-a
fo = Jde\Pk % Y (A5.12)
n ol
a_ | k -a k. -a
fr = J bpddy + f{ Ppddy
1 ol
- ~k _-a i
ip = J pRp de '
1

~k o=a

which can be deduced directly form Egs. (A2.41), (A2.24). In more

special cases in Egs. (A5.12) we can assume d5i = (PadaR or = ¢idLR

k
a - . .
?:d ?:k Wkd r OF WdeR for 8 € Tl or 9 € 3Ill, respectively. Here
i - . .22) h
Spr Ypr bpr Yy are known functions of X, ~( X ( ), 3 The Egs. (A2 ) have
now their counterparts in the form @a = ap/gq , W = Bp/dq 3 We have
also to assume that E = EQQ:Ecq( ),q( y, 3) where P () is the known

function (cf. Secs. 2,4); if ; (.) is independent of the argument q(n) 3
’
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then the underlined terms drop out from all relations. (Egs. (A5.7) in

, - a
this special case lead to those derived in [1]. The fields 'HR, 'HR,

.a .
hg, a=1,...,n, and -'i;, —igs a=1,...,n, will be referred to

as rod internal and inertia forces, respectively.

2. Rod kinetic boundary conditions (for £ = h_, § = h+, t € I)

- " _ @ _ i@ _ A
HRn + HR'EZ Pg ( ip fR)n
a A (A5.13)
" = L}
Hpn = Py

where n = +1 for g h, and n = -1 for £ = h_. Using (A2.41), (A2.25)

we obtain now

]

ca k_=a a . k_-a

Py = [ ppd¥, + Pp : J ppdd, - (A5.14)
i m

a
RI
rod external forces. The form of Egs. (A5.13) may be deduced from that

of Egs. (A5.3), (&5.4). Egs. (A5.10, (A5.13) will be referred to as the

The fields p;, 'p;, f 'f;, a=1,...,n, will be referred to as the

rod field equations. They can be also interpreted in the integral gene-
ralized sense if the derivatives with respect £ do not exist (cf. the

comments to the shell field equations in Sec. (5.1)).

3. Rod constitutive relations (for & € (h_,h+), t € I) can be de-

duced from Egs. (A5.5), (A5.6). Modifying Egs. (A5.5) we obtain

-} = npyd (N)
Bp = "Bp&ha )19y, 3:9y 33,7 )
gy _ Y2 (N)
H HR(E:q(n)rq(n)’y q(n)'33’T )
n? = nd )y

R = Pr (B9 9n), 3 ny L3377

where the form of response functionals on RHS of Egs. (A5.12) can be
N A '
obtained from Egs. (A5.9) and (A2.6) provided that T( ) = {t7(&,t),
;€ (h_,h+),t € I, A=1,...,Nl. Assuming that m(p) = {m“(t,t), &E(h_h+),
]
t€ I, mn=1,..., and that e = E ), ¢ =1,...,r, where E (.) are
p} 0 0 @) P o
the ordinary differential operators with respect to § (such that ep =

= ep(g,t) are, invariants under arbitrary rigid motions of the reference
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space), we also obtain

(N)  (p), _ -
qu,eu)m ) y = 0, A 1,...,N+P ,

(N) (p), o
K(E,e(r),r , 0 Y=< 0,

(N) (p) o (N)

o
<
w(E.e(r),T ) ey To ) £ 0 for every €r) ' (o)
with K(é,eo ,I(N),w(p)) <0 (A5.16)
(r)" o
By virtue of Egs. (A2.42) we have here
I E Jfﬁd:A r K = deb, P EJ [00's [ I (a5.17)
) : Il I

For the simple materials Egs. (A5.16) are indentities and the argu-

N
ments T( ) drops out from the RHS of Egs. (A5.15).

All fields in Egs. (A5.10, (A5.13), (aA5.15), (A5.16) are independent
of 8 = (61,92); thus the mentioned above relations represent the gene-
ral scheme of the rod theory. For every special rod theory the form

‘ . . A ,.8 @ 4.8 ,a .
, K
of the functions and functionals ige 'ips HR HR' hR' Ipr ¥ is

assumed to be known and can be obtained from Egs. (A5.12)6 27 (A5.12)1_3,
[4

a za U - 3 . a .a

K’ ¢k,::,b,8(or functions wk'Qk'

Eg) are known. The relations of the rod theories can be obtained by

(A5.17), provided that the functions ¥

the direct, approximation, mixed or constraint approaches analogously
as the plate and shell theories. All considerations concerning the
plates or shells which have been carried on throughout this chapter
hold also for rods provided that all relations are modified according
to the remarks at the beginning of this section. That is why we do
not detail separately in this treatise the problems of formation of

the rod theories.

Let us observe, that the mechanics of the rod-like bodies, from
the point of view of the formal approximation and constraint approaches,

is described by:

1. The rod theory given by Egqs. (A5.10), (A5.13), (A5.15) and (A5.16).



- 65 -

2. The relations of the "three-dimensional" mechanics of the rod-

like body, given by Egs. (A5.7), (A5.8).

3. The interrelations between the fields in the rod theory and
those in Egs. (A5.7), (a5.8). They are given by Egs. (A5.12)

(A5.14), (A5.17) and by the equations of the form (25.9) in

which now Vq(n) = q(n) 3 and q(n),T(N),m(p) are the functions

defined on (h_,h,) x I.
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CHAPTER B

SPECIAL PLATES AND SHELL THEORIES

In the Chapter A the general form of the governing relations of the
plate, shell and rod theories has been obtained. Now we are to derive
different plate and shell theories as the special cases of the general
approaches which have been developed in the Chapter A. We confine our-
selves mainly to the theories describing the mechanics of "thin" shell

structures.

1. SCALAR PLATE THEORY

It is the plate theory in which only one real-valued function charac-
terize the motion of the plate. The known applications of this theory
are restricted to problems of the small deflections of thin plates.
Nevertheless, the scalar plate theory constitutes a good illustration

of the general relations of the Chapter A.

1.1. Governing relations

By the scalar plate theory we shall mean the plate theory in which
the plate deformation function q(n) reduces to the simplest possible

form = {q}, where g = q(8,t), 8 € M, t € I, is a sufficiently

gq
(1)
smooth scalar function. From Egs. (A5.1) we shall obtain the equations
of motion of the plate theory under consideration
apf o o o o
H +H +h_ + fo - =4i-i" . B1l.1
Roog R PR Y IR T fRa RIR,e0 (B1.1)
The kinetic boundary condition will be obtained as the special case

of Egs.(A5.3)

o d aB Ba
+ — ’
Henge ¥ 3. MR Tro"re’ H,8"Ra - Por
Hean . N (B1.2)
R "rp"Ro PR

where

.4 N_ «
Por * Pr i (Prtro’” PR = PRlpq - (B1.3)
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The constitutive relations will be described by Egs. (A 5.5), which

now can be written down in the form

aB _ ~af (N)
HR - HR (9IQrvq:VVq,T ) ’
Ha = H (eyq,Vq.VVq,T(N)) ' (B1.4)
R R
~ (N)
hR = hR (elq:Vq,VVq'T ) ’

and by Egs. (A5.6), in which e (q) is the strain measure of

= E
(r) (r)
the scalar plate theory. If there exists the plate kinetic energy

function (cf. Sec.2.3. of the Chapter A) Kp = KR(G,q,Vq,q,VQ) then

. (B1.5)

Thus the scalar plate theory is described by Egs. (Bl;l), (1.2),
(B1.4) and (A5.6). The relations of this theory will constitute the
basis for the illustrationof the special problems in the Chapter C.
Here, form the foregoing relations we shall derive the well known
linear theory of plates. To this aid we shall assume that the plate
is 'hyperelastic, i; e., that there exists the plate strain energy

function €r T eR(Q, Vg, VVg) such that the relations

BER BER

o aeR
, H -y h_ T~ — =0 B1.6
R g aB R 9q o R oq ( )
’

r

hold for every g € 1. Egs. (B1.6) are the special case of Egs. (B1.4),
(A5.6).

The classical plate theory. Now supposethatthe plate strain enexgy

function ER has the form

1 _aBys
==C ’ ’
FRT2R 9,08%ys
where C;BYG are the smooth functions defined on II and coﬁstituting the

strongly elliptic tensor for every 0 €1- Then Egs. (Bf.l) and (B1.6)
yield

WBYey ) o eg - %, =g - i®

€9 ) up R - 'R’ R R, o
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if CQLBY(S = A GaBGYG + B SGYGBG, where A_, B_ are the scalar functions
R R R R R
defined on ]T(AR + BR > 0, BR > 0),then the plate will be called iso-

tropic. In this case

aB aB A8 oy .BS
= + . B1.7
HR AR6 ) q,yG BRG 8 q,yd ( )
" _ 1 oy 2
Moreover, ‘if AR, BR are ?onstantsandncR =3 aR(q) , where a, iz the
positive number, then putting D_ = A_ + B_ and assuming that £ =0
. R R R R,a
we shall obtain
-D_AAg + £f_ = a_g, A(-) = das(-) . (B1.8)
R R R 0B

The positive constant DR is said to be the stiffness of the plate.
’ R

. (¢
D t = H
enoting QR R, B

we also obtain from Eq. (B1.7) that

o aB
Q. = DRG

o Aq o | - (BL.9)

and from Egs. (B1.2) the kinetic boundary conditions of the form

o d o
+ —— =
R Ra i (B tra"rE’ = Por
| (B1.10)
Ra _ _N
B "rg"Ra ~ PR
Egs. (B1.7) - (B1.10) represent the well known "classical" plate
theory.
1.2. Interpretations
"Let us assume, for the time being, that the argument T(N) drops out

from Egqs. (B1.4) and that Egs. (A5.6) are identities. Let us also inter-
pret Egs. (Bl;l) - (B1.4) as obtained via the direct approach. Then

the rule of interpretation of the function g should be known. Putting

h+ + h_ = O we can interpret g as the deflection of the midsurface of
the plate. In this case (cf. Sec. 1.1. fo he Chapter A)

q(8,t) = p(8,0,t) .1 ' (B1.11)

~ ~3

s 3 . s
where i, is the versor of the x"-axis in the reference space. In the

3
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direct approach all informations about the plate deformation are
given by Egs. (B1.11). It means that no kinematical hypothesis

are needed when we approach the plate theory via the direct approach.
On the other hahd,this approach does not supply any informations for
example, in the case of the "classical"” plate theory, about the
values of the constants AR, BR' aR (apart from D_ > O, BR > 0, aR > 0,

R
postulated in Sec. 1.1.). Thus we have obtained only the formal struc-

ture of the constitutive relations (B1.7), (B1.9) and of the inertial

term aRﬁ in Eq. (B1.8). The interpretation of the plate forces H;B,

£ in Egs. (B1.7), (B1.8), (B1.10) in the case of the direct

N
R’ Por’ PR
approach is given by the formulae (cf. Sec. 1 of the Chapter 3a)

= _f aB.
Rl - JHR andaR
n
_ . o . . - .
Re = ‘[(qu + qu,a)le + JqudaR JqudaRi- (B1.12)
oll i 1!

We conclude that if the derivatives g o are sufficiently small with
; ,

respect to the unity (i.e., the g o can be approximately treated as
. , A

_ B
the components of the curvature tensor of the deflected midsurface
of the plate) then Hil, Héz can be interpreted as the bending and

H;2 as the twisting couples. Analogously, pg will be the boundary
bending couple, Por will be the boundary transverse force and fR
thé plate body force. This interpretation is implied by the inter-

pretation formula (Bl1.11) and by Egs. (B1.12).

If Egs. (B1.1) - (Bl1.4) are obtained from the approximation or
constraint approaches then the form of the function 5(-) in the

approximation relation

X,q,0q)

~

p(X.t) ~ p(
or in the constraint relation

P(Xrt) = B’(qulAq) ’
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respectively, have to be known. For example, the funcction p(-) can

be assumed in the form

o, . ~1 ~2
= + + —
p=96i i, Elalxazl (B1.13)

s

k

where a =i + q i_ and i, is the versor of the x -axis. Eq. (B1.13)
~ ~o ,a~3 k

represents the known kinematic Kirchhoff hypothesis. Moreover, if the

plate is hyperelastic then

h
+

€g = JpRo (é,VE(')\(‘,q,Vq)) dag
. h_
and for the "classical” theory we shall obtain from Egs. (B1.6), the

formulae (B1.7) in which

3 3 3
A =B g B, _EbT
R 12(1-v=) R 12(1+v) R 12(1-v4)

where h = h+ - h_ and where E,v are the known material constant.

It must be stressed that the results obtained in this section can
be found in any elementary textbooks on the linear plate theory and
have been derived only in order to provide the simple illustration of

the general approaches developed in the Chapter A.



2. PSEUDO PLANE AND PLANE PROBLEMS

The plane problems are usual formulated independently of the plate
theory as the plane strain or plane stress problems. Here we formulate
the governing relations for more general class of such problems using
the general approach of the Chapter A. By the pseudo-plane problems
we understand the class of problems which, rothly speaking, are "inc-

cluded" between plane stress and plane stress problems.

2.1. Pseudo-plane problems

Let us assume that the plate deformation function q(n) can be
assumed as Uy = L3y " {qa,q; o = 1,2}. Putting h_ = -h, h, =h,
h » 0, and denoting by ik’ k =1,2,3, the versors of the rectangular
Carthesian coordinate system xk in the reference space, we shall inter-
pret 93 by means of q, = pa(g,o,t), q = 8p3(g,0,t)/8£ or q = _
= p(8,0,t) -iﬂ, q = [ap(g,o,t)/BE]‘£3, when using the direct approach
(cf. Egs. (A1.1). Using the approximation approach, we assume Eq.

"(A2.3) in the special form
2
g(g,_&,t-) NR(Q,E,t) = (;qai'u + gq’J\_‘3 , q(3) €Q (B2.1)

where Q := {q(3)|det Up > O}. In the constraint approach the sign ~ in
Egq. (B2.1) has to be replaced by the equality.

Because the RHS of Eq. (B2.1) do not contain the derivatives of q(3)
we can apply the simple approach (Sec. 2.1. of the Chapter A) or to
use the first order shell force system in the direct approach. From
Egs. (A2;4) (replacing the sign ~ by the equality) or from Egs. (Al1.9),
(A1.10) we obtéin the field equations (!}) in the form

Bo B B _ :B
HR,Q + hR + fR i R

H3a + h3 + f3 .3

R,o R R R pen, tel,

fl
-
.

2

(!}) Eqs. (B2.2) can be also obtained from Egs. (A2.36)-(A2.38) taking
into account (A2.33)-(A2.35) and (B2.1). The same form of the equa-
tions we shall obtain from the constraint approach.
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Bo _ B
AR "R " PR
3a 3
= i , a.e. I .2
HR "ea = PR 9 €0M, a.e t € (B2.2)
Using Egs. (A2.5) with ga = BS?Bqa, we arrive at (1)
h h
Ba _ [ Ba 30 _ f.3a
Hy = JTR dg, Hy = JTR £de,
-h -h
h
B _ 3_ (.33
hR =0 , hR = JTR dag,
_h :
h h
B _ [.8 +8 . =B 3_ 3 +3 -3
£ = Jdeg +Potpy o Eo= JEdeE+hpR hp, . (B2.3)
-h -h
f f
B _ |=8 3 [,.-=3
PR-J RdE: Pr —JEPRdE
“h “h
h
. By
i JoRdEG q, -
-h
. h
3 2 .
i = JDRE agq .
-h
Because of E; = qyél + qgéz, in view of Eq. (A2.10) we obtain
~ Yé 2
C . =3 +
aB 9y,0%, 8 & 9.3,
C_=¢ T -4l
@3 - 99,4+ 3379

= = Y6 i iv
It follows that e(r) e(6) {(s qY,qu.B)' q’a,q}. The constitutive

relations we can assume in the general form (42.15) where Egs.

(A2.6) -

(A2.9) hold. For the hyperelastic shell they reduce to the equations

(1) Wwe denote here

Er

k.
Prd,

iy in Eqs. (A2 1) to avoid the ambiguity.



o BsR B BeR _
B “ha, . MR T Taq "0

B,a B

. . h (B2.4)
30 R 3 ‘R ~
= = - —— ; = X

HR Y - ’ hR 5q €p JpRo( ,C)dg

1

-h

If the plate is sufficiently thinand the external force resultant in
x3—direction can be neglected, then taking into account the mixed
approach we shall postulaté that the terms Hga, f;, pg, i; drop out
from Egs. (B2.2)-(B2.4). Thus the mixed approach, under foregoing

conditions, yields

h
Ba B _ By.. _
Bra T TR 7 98 KV aR—JdeF’ ’
-h
3
hR =0 ; 9'6 n, te€1I, (B2.5)
Ba _ B
HR Mo =~ PR 8 €on, a.e., t €1

For the hyperelastic matrials we shall assume here, using the mixed

= y, (578 3. .
approach, that eR. ER(Q,(G qy’aqé’s),q). If, from hR BeR/Bq we
can express ¢ in terms of qY o then Egs. (B2.5) and Egs. (B2.4) will
lead to the system of two equations of motion for the two unknown func-
tions qY = qyﬁﬁ,t). It is a well known plane stress of the theory of

elasticity.

Now, using again the mixed approach, let us assume that the terms

H:a, pR, i; drop out from Egs. (B2.2)-(B2.4) (.

Then
Ba B _ BY..
HR'a+fR—0LR6 qY:
B+ -0 ; 6€EN, t €I (B2.6)
R R—_ IN 4 ’ . s
Ba _ B
HR Npo = PR ‘ 8 €0, a.e., t €I .

(H a11 assumptions postulated in the mixed approach or in the direct
approach can be based on the physical premises.
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Let us also assume that g = 1 is the solution of Eq. (82.6)2 for an

3 3 .
arbitrary q , i.e., let £ = -hqu -1 [BER/aq]q _, Then e, =

1 R
Ad
= N P . the 11
eR(e,(é qy,aqG,B)) and Egs. (B2 6)1 (B2 4)l lead to the we
known plane strain problem of the theory of elasticity.

The analysis of the pseudo plane problems can be found in [3].

2.2. Plane problems

Putting 9y = 9o = {qa , o = 1,2} and

2
P(B.E.E) ~BO,e,t) = Do i *Eiy, ap €0 (82.7)
~ . a=1

where Q := {q(z)!det Vp > 0}, we shall arrive at the plain problem.

The field equations are

Ba B _ By..
HR o + fR aRG qY ' Q'E n, tezI1I ,
' (B2.8)
Ba _ B
HR neo = Pr P g € 3ll,a.e., t €I
with the denotations (B2.3)1 5 7 For the hyperelastic material Eq.
. ’ r
5 - = Af § .
(B2.4), holds with e = e (6, (8 qv,aqG,B))’
de
Hﬁ“ - = (B2.9)
98,0

If the inertia forces in Eq. (82.8)1 can be neglected (via the mixed

- approach) then as the basic unknown can be taken a = GYGq q and
af Y.a 8,8
h
H'® = JTyadg ,
-h
Yo oY . .
where T =T are the components of the second Piola-Kirchhoff
stress tensor, TBa = pB ¢ = qG ¢ (1) . Because of HBa = qB '
T R lY . ’ ‘Y R IY
and denoting by aB the inverse matrix with respect to gB , we can
'Y
transform Egs. (B2.8) to the form
Héaga v -0,
Haa. _ 8 (B2.10)
fRa = P !
(l1)Here q@¢ = q, because q, are related to the orthogonal Carthesian

coordinate system xK in the reference space.
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where the inertia forces have been neglected, the vertial line denote

the covariant derivative in the metric aaB and where we have denoted

§_ 8.8 § . &8
£ "anR P ] -.aBpR
At the same time
da aeR
H =2 a . €g = ER(e'(aaB)) . (B2.11)
aB
Let us assume that t'(s,p(s are the known functions of aaB' Then Egs.
(B2.10), (B2.11) constitute the system of 5 equations for 6 unknown
functions Hda, a (because of H[Ga] =0, a = 0). To obtain the

aB [aB]
extra equations we shall take into account the compatibility condi-

tions. Eq. (A2.20) can be now taken in the form

h
R =

I 1212dg °

-h
where the component R1212 of the Riemann-Christoffel tensor is now
the known function of CaB = aaB' Ca3 =0, C33 = 1., Thus the foregoing
compatibility condition leads to the equation R1212 = O which together
with Eqs. (B2.10), (B2.11) constitute the system of 6 equations for the
6 unknowns aaB' Hsa, It is the well known intrinsic formulation (l) of

the plane problem of elasticity. The analogous intrinsic formulations
can be also applied to the pseudo plane elastic problems described by

Egs. (B2.5) or Egs. (B2.5) or Egs. (B2.6) and Egs. (B2.4) , provi-

1,4,5
ded that the inertia forces can be neglected. The intrinsic formula-
tions can be also applied to the non-elastic or even non-simple materials.

In this case Egs. (B2.11) has to be replaced by Egs. (A2.15), in which

e(r) = 9(3) = (all'a22'a12) and by the equations
h
. §
Héa - JS “(2)dg
h

where‘g are determined by Egs. (A2.6), (A2.7) (after replacing the sign

~ in (A2.7) by the eqguality).

(1)By the intrinsic formulation we mean such formulation of the governing
relations in which the internal forces and the strain measures are the
basic unknowns (instead of the deformation function).
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3. EULERIAN AND LAGRANGIAN FORMULATIONS

In the Chapter A all densities have been related to the reference
configuration of the shell. In this configuration the material coordi-
nates 91,62,5 coincide with the Carthesian orthogonal coordinates xl,
x2, x3, respectively. The formulations of the plate shell or rod
theories in which all fields are related either to a certain arbitrary
but fixed confiquration or to the actual configuration are termed
Lagrangian or Eulerian formulations, respectively. If the fixed con-
figuration (which can be called initial or undeformed) coincides with
the reference configuration (1) then the shell governing relations
obtained or postulated in the Chapter A are expressed in the Lagrangian
‘formulation. Such situation holds mainly in the plate theories. Ie the
shell theories the initial configuraiion is usually assumed as diffe-

rent then the feference configuration.

3.0. Analytical preliminaries

. K
let 2, K=1, 1II, III, z = (ZK) € Q , be the curvilinear coordi-
nates in the region £ of the space R3, related to the CartheSLan ortho-
gonal coordlnates xk, k = 1 2,3, by means of xk = w (Z), 5 = (Z ), det
m . K> 0, m (.) being the known differentiable functions. We shall
k_ k . o - _ k
denote Iy = ) (lndlces K.L,M,... run over I, II, III), gMN = gMgkN’

M
’
g = det gMN = (det w )2, We shall use the well known formulae

M  (83.1)
ML ! :

where { } are the Christoffel symbols.

k-
Let AR » where the dot stands for an arbitrary "dead" multiindex

M .,Mm, be the field defined and smooth in  of the vector density

17°°

related to the region QR’ where QR = w-l(ﬂ). Putting

' : (B3.2)

a b=
old
]
>
Q

R C .
we obtain A~ 4ds the density related to the region Q. Using (B3.1),

(!) The term "reference configuration" has to be understood exc1u51vely
in the sense defined in the Prerequisites
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(B3.2) we also obtain

. M- k
— A; L= A 19y
g
where we have denoted
M- M- N M. M K.
= + + .
Al =n ,L IR ko2 A
) ML ML, ) . .
Mind, that A ]L = A IL' where the vertical line denote the covariant

derivative in the metric Iun* Analogously

1 k- N. P. N P p. k
—— A = + +
/g R I T STV R OV L N el
and ANLM] ] ANLMI . Thus we have arrived at the relations

LM LM ’
1 kL ML, k 1 _KLN MLN, k

— A =A " ,g,, —A = A e (B3.3)
/g R,L L°M /g R, LN LN°M

Now let QR =1 X(h_,h+), I being the regular region on the plane -
ox'x® and h_ < 0, b, > 0. Let x* = y*¥(g), 8 € I, be the differentiable
functions such that det (w%awk,s) > 0. It means that xk = ¢k(9)¢‘g =
= (e“) € I, can bebinterpreted as the parametric representation of a

certain surface 7 in R3, The mapping xk = ¢#(E), Z € QR p wiil be now
. k
assumed in the form x = wk(g) + Nk(ﬂ) & , where ZK = 65 4—6§€ (1), and
. k i
Nka =1, N ¢k

/0
k_ k o k
ng- w,a 6M + N™§

O (i.e., N is the unit vector normal to 7). Then

2w

+ ENkaéz, and on the coordinate surface { = 0O (i.e.,
1

on the surface 7n) we obtain

I = - K
vg = va, a = det a B w,awk,B

ag’ @
3, _ By__.B 3, o, 3,
lag? = Pag v fazd =70y v 340 = {33} = {55k =0
where baB are the components of the second metric tensor of the surface
.
. k.
Let the fields A_ ', defined in Q, are such A; 3 z o.
,
Then also AM']3 Z 0 and from Egs. (B3.2), (B3.3) we obtain on the sur-

face n

(1) Mind, that ZK are not the material coordinates of the shell-like body
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k- _ ,a- k 3- k

1
— A=Ay +A°N
R r
Ja o
Lopke o aYey Ky a3 (B3.4)
— R,0 al,y o .
va
1 AkaB - AyaB! wk + A3aBI Nk ,
Ja ;0B aB’,y aB

where the foregoing fields can be interpreted as defined on n. At the

same time

QB! - AGB _ ba 38
A .B ” B BA ’
(B3.5)
3B 38 af
A o= A b ’
'8 g * Byg?

where the double vertical line denotes the covariant derivative on the
surface 1n(the superscript "3" is the "dead" index in the differentia-

tion on the surface).

Now let Aé, where the dot stands for an arbitrary multiindex Kl"'

Km' be the field in defined and smooth @ of the scalar density related

to the region QR. Putting
1 . .
— AR = A , (B3.6)
g

we obtain A° as the density related to the region Q. Using (B3.1),

(B3.6) we arrive at

1 . .
— A = A [ '
/E R,L L
where
. . N
A [L = A'L + {NL}A
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L
Let us observe that AL[L = A ;L' ALM[L[M = ALM M Thus we have arrived

at the relations

L M LM
= Al — A = A
R,L L Jo R,LM I

1. (B3.7)
9

Let QR =1 X(h_.h+) and let A’ = 0 and on the

R,3

"
°
5
o
=]
w’

w'_l

surface n, m = Y (), we obtain

—LvAé =a", —L-A; =a% , 3—-A;6 0 = a8 6 (B3.8)
V’; . /g , O a /; ,(1 o

where the covariant derivatives in Egs. (B3.8) are related to the cova-

riant derivatives on the surface w by means of Egs. (B3.5).

Egs. (B3.4), (B3.5), (B3.8) are the basis for the further analysis.

3.1. General formulation

- Let xk = ¢k(9), 8 € II, be the parametric representation of an arbi-
trary smooth surface T, Nk = Nk(E), Q € N, be the field of unit vectors

, a=det a Let

k
1 d =
normal to 7, an aaB w,awk,B

aB’

kaB ka

A + a4 gl o gk gk (B3.9)

+ A
R,aB R,a R R R,a R R,0

stands for a certain equation of motion of the shell theory. The suitable

kinetic boundary conditions have the form

ko d ko kBa _ k ko ko
AR PRa * dL_ (A PrgRa’ * PR,a"Ra ~ Por T Ui fR 1Ppq
B (B3.10)
R Ra RB pR

Multiplying Eq . (B3.9) by (/aP)-1 and using Egs. (B3.4) we obtain

MaB,

M M Mo
A [0 AN] . i ]

Ay LM Mg =i -

lag N . o (B3.11)

where the covariant derivatives are determined by Egs. (B3.5).
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To ﬁransform the kinetic boundary conditions (B3.10) we shall use

the known formulae

_Jx - (91,2 =
"Ra _‘/a o (le) ' *Ra )‘ta !
Tk v,k k k TR Va,a B
= + b N ’ N = _b ’ =
w,yﬁ {yﬁ}w,u Y8 .8 Sw.u /2 {Bﬁ}

where "1" is the arc parameter along the boundary 3m = E(BH). Let us

decompose the RHS of Egs. (B3.10)

1 k _ vk 3 k
/rpon- polb‘Y + pON '
(B3.12)
1 kN N k 3N_k
— PR~ = p‘~w + p~N ’
.'/)T’ Y
and introduce the derivatives
MBa MBa, N NBa, N
AMBa] - A'B + A {NB}+ a {NB} . (B3.13)

B

where the Christoffel symbols are related to the system of curvilinear
K K K
coordinates Z2 = Gaea + 63 £ introduced in Sec. 3.0 and are taken for

€ = 0. We shall also use the absolute derivatives along the boundary om

D -M d -M N,=N §
5T = 30 + {N(S}A t (B3.14)

.where t is the unit vector tangent almost everywhere to dn. After some
calcualtions we obtain the following alternative form of the shell

kinetic boundary conditiohs (B3.10):

Mo D MBa MRo _ M _ . Mo _ Ma
A na + EI-(AA natB) + A ]Bna = P, (i £ )na
(B3.15)
Mo _ __..MN
AR nanB = -ap ’

where M = 1,2,3 and where the denotations (B3.12) - (B3.14) hold.
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M M M
At the same time the relations between the fields A aB’ A a' a and
the fields AE“B, Aia, ag can be obtained from Egs. (B3.4)1 and have the
form
o- 1 k- Bo
A" =—npn_ V¥ a '
AR
(B3.16)
a3 - L A§°Nk
/a'

The equations of motion (B3.11) and the kinetic boundary conditions
(B3.15)constitute the system of the field equations of the plate or
shell theory, related to an arbitrary smooth surface w, T = i(ﬂ), pro-
vided that in the reference configuration they are given by Egs. (B3.9),

(B3.10) .

Remark. If both sides of the field equations are scalars (with
respect to the group of transformation of the reference space), then

they can be written down in the form

opB a a  _ . _ ;C
R, 08 + AR,a + ap + fR fR,a =iy lR,a ' (B3.17)
and
a d af Ba .0 o]
+ — = - -
AR "Ra dl_ (P "re%Ra’ * PR,8"ra = Por - ‘'r T fR)PRq °
(B3.18)
ofB _
AR nRanRB = pg .
Using the transforamtion formulae (B3.8) and
e T _ e (B3.19)
/T OR o /5\" R
we obtain from (B3.17), (B3.18) the equation of motion.
P N T T L I (B3.20)
"aB @ a ‘a .

and the kinetic boundary conditions
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o d Ba Ba, - .0 a
-~ = - - f .
A n, + al (\A natB) + A [Bna Py (i )na
(B3.21)
XAaBn nB = —apE '
where
Ba Ba Ba, v
= A
A [B A'B+ {YB}

All densities in Egs. (B3.20), (B3.21) are related to the surface

or to its boundary aw. Instead of Egs. (B3.16) we obtain now

a . ' (B3.22)

A'_____l_..R
Ya

3.2. Eulerian formulation of éhell theories

Now let us assume that the parametric representation xk = wk(g),
9 € 1, of the surface m, is, for every time instant t, t € I, given
by xk = pk(g,go,t), where go is an arbitrary but fixed value of £
(the fixed number form <h_,h+>). Then we deal with the moving surface,
i.e., with the family of surfaces L t € I. Putting m = LI for every
t, t € I, we shall refer Eqs. (B3.11), (B3.15) as well as Egs. (B3.20),

(B3.21), to as the Eulerian formulation of the shell field equations.

3.3. Lagrangian formulation of shell theories

If to every time instant t, t € I, we assign one known surface w,
given by xk = wk;e), 8 € II, then we shall refer Egqs. (B3.11), (B3.15)
‘as well as Egs. (B3.20), (B3.21), to as the Lagrangian formulation of
the shell field equation. If m = M then the Lagrangian formulation
will coincide with the formullation given by Egs. (B3.9), (B3.10) or
Egs. (B3.17), (B3.18), i.e., with the formulation introduced in the
Chapter‘A. if xk = wk(g) = pk(gfgo'to)' where to is the fixed "initial"
time instant., then in the Lagrangian formulation all fields are re-
.lated to the ghell material surface § = &o in certain initial configu-

ration. Moreover, if £s = 0,5(h_ - h_ ), this surface will be referred

to as the shell midsurface in the reference configuration.
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3.4. Interrealtions between Lagrangean and Eulerian

guantities

Let all quantities related to the Eulerian formulation ("Bulerian"
quantities) be distinguished by a dash. Let the covariant differentia-

tion (B3.5) in this formulation be denoted by a stroke with a dash,

i.e.
—aBT By =0=38 =387 =387 = =af
A =2 - b A", AT = N+ .
lB llB g g =2 'IB b, P (B3.23)
Then the formulae (B3.4) yield
Jaak gl - /Zal ,
K
o—-Ko T - |
Ga 0| gt = Jaar : (B3.24)
aK o

K- L. -KM{... LM, ... s
where A~ , A stand for A 1 Mm, A M Mm, respectively (where

My..M is an arbitrary "dead" multiindex (!)) and were

(_J-B 53 l:U-k

(5;) = L = e ] v . (B3.25)
-8 -3 ok
g9 93 {

The quantities and the covariant derivatives which are not distinguished
by & dash are assumed to be expressed in the Lagrangean formulation

("Lagrangian” quantities). From the formulae (B3.8) we obtain

/5_‘5. = ‘/a—l.A- ’
/AR*] = /a'a%| , (B3.26)
a o
ARET = /AP
‘aB ‘aB
The formulae dual to (B3.23) - (B3.25), i.e., obtained by interchanging

the quantities and derivatives distinguished by a dash with those without

(1) If m = 0 then we assume A - EK ,AL' = al.
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a dash, also hold. It must be remembered that the covariant deriva-
tives are not the surface derivatives, i.e., that Egs. (B3.5), (B3.23)

hold.

Egs. (B3.23) -~ (B3.25) and the corresponding dual equations des~
cribe the interrelation between the "Eulerian"” quantities and the
"Lagrangean" quantities. Many special cases of the foregoing formulae

can be found in the literature on the shell theories, c.f. [28,29].

Remark. From Egs. (B3.2), (B3.3), (B3.6), (B3.7) we obtain

=M. =N N-
/S'A gM »GA '

= =MLY —N |NL
FRET N - /g

-MKLT -N NKL
vga | g, = Ygn |

KL °M KL
where 53 E a% gk’LgLN and
g a = /g'a :
R = /anN|
G KL %;AKleL.
Thué‘the Egs. (B3.23) - (B3.25) constitute the special c;ses ofAthe

foregoing formulae.

3.5. Eulerian and Lagrangean formulations of rod theories

“k k
Let x* =Yy (§), & € (h_,h+), be the parametric representation of

Q

the smooth curve o in the reference space. In the neighbourhood of

we shall introduce the curvilinear coordinates ZM = aMea + 52{, M=
o

|
-
-~

. k k k
II,III, putting x =y (g) + Na(g)ea where N are the unit vector
~a

k k.
o’ a¥k,3 T O BY Ap (&)
r € (h_,h+), we shall denote the smooth field of the vector density

fields defined on 4, such that N -N =g
a ~

retated Lo the stright line segment (h ,h+) (dot stands for an arbi-

trary multiindex Ml"“Mm)' Denoting a - we obtain the formulae

X
Y3 k,3

ke _ a-k | 3.k
A =ATN 4Ty (B3.27)

53 |~
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where AM., M= a,3, are the vector densitites of the field under con-
sideration related to the unit length of the curve ¢ and expressed

in the vector basis N ,y _. We obtain also
~y e, 3

1 k3 _ 33, .k a3, _k
/;AR,B =ATIgb g AN
(B3.28)
1 k33 333 k @33 k
1 - |
/;A,33 AT gqu AT Ny
ﬁhere
33, _ .33 3, M3 3,.3M
3 T A3+ {31 LIS S
(B3.29)
Aa3| . Aoz3 + {a}AM3 {3}AaM

i3 =B 3 ¥ lyy M3 '

and where {J;} are the values of the Christoffel symbols for the curvi-
linear coordinate system ZM, M=1I,II,III, on the curve c(i.e., for

6% = 0) . Analogously, for the field Aé = Aﬁ(&), £ € (h_,h+), of the
scalar density (defined on 0) related to the stright line segment

(h_,h+), the following formulae hold

A = A

3 L 3333 33| (B3.30)
/; ’

3
AR = A

.3 33

where A" is the corresponding scalar density related to the curve o¢.

Using Egs. (B3.27) - (B3.30) we shall derive the Eulerian and
Lagrangean form of the field equations of the rod theory (A5.10),
(A5.13) provided that the terms in the field equations are either
vectors or scalars (with respect to the group of transformétions of
the reference space). In this case the equations of motion (A5.10)

have the form

(B3.31)
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kK k k. "
where the symols 'AR, 'AR,... 'cR and AR, 'AR,..., 'cR stand for some

from “H:, 'H;,..., 'i:, respectively. Multiplying Egs. (B3.31) by

( /3)-1 and using Egs. (B3.27) - (B3.30) we arrive at the relations

M M M M .M M M _
"a| +A|3+a +b - b|3 §3; M=a,3,

33
(B3.32)

“A|33 + 'A[3 +a+b-'bl, =c-"c|

3 3

where the derivatives are defined by Egs. (B3.29). The kinetic boundary
conditions (A5.13) in the case under consideration can be represented

by

k k k k k k k
) + " - - ] - ! - " = !
ARn AR'3n eR ( cR bR)n ; ARn eR '
(B3.33)
' 4+ " = - v . | . " = ,
ARn AR’3n eR ( cR bR)n ; ARn eR

: a
where the symbols ei, 'e; as well as eR, 'eR stand for some from PR'

'p;, respectively. After simple calculations (cf. also Secs. 3.0, 3.1)

we obtain from (B3.33) the formulae

2t + "A]3n =M ('cM - 'bM)n : "AMn = -a'el )
(B3.34)
‘An + "A[3n = e‘- ('c - 'b)n'; "An = -a'e ,
where M = o,3 and where we have denoted
M _ .M N, .M N, N
A[B_A'3+{N3}A +{N3}A .
(B3.35)
Al A +{M}A
3 - 7,3 M3 !

Eqs.l(B3.32), (B3.34) represent the alternative form of the rod field
equations, corresponding with Egs. (B3.31), (B3.33), respectively. If
wk(g) - pk(g'g'to) then Eqs. (B3.32), (B3.34) constitute the Lagrangean
formulation of the rod field equations. If wk(E) = pk(g,g,t), where t
isvan arbitrary element of I(the curve ¢ is moving in the reference
space), then Eqs. (B3.32), (B3.34) represent the Eulerian formulation

of the rod field equations.
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4. VECTOR THEORIES

By the vector plate or shell theory we shall mean the theory in
which the shell deformation function q(n) has the form q(3) = {ri,
i=1,2,3}, where r=r (g, t),’g € II, represents, for every t € I,
the smooth surface in the reference space. The special examples of
the vector plate and shell theories are known as the Kirchhoff plate
approximation and the Love-Kirchhoff shell approximation. In this
Section we shall derive the general form of the vector shell theory
directly from the relations of Sec. 5 of the Chapter A. Such general
form is not used in applications and is treated here as the illustra-
tion of the formulae given in the Chapter A and in Sec. 3 of this

Chapter.

4.1. Govérning relations

Putting q(n) =r(@,t), § €1, t €I, we shall assume that

(3)
the function F in Egs. (A2.18) and (4.23)1 depends on r and Vr:

p(X.r(8,t), Vr(8,t)), r €9 , (B4.1)

ol
"W

where Q i= {£|det V; > 0}. From Egs. (A5.1), (A5.3), (A5.4) we obtain

the shell equations of motion

kaB ka |, .k k ko k ko
S+ + + - =3 - 4.
B T Hro TP ¥ I~ fp = 1k T iR (B4.2)

and the shell kinetic boundary conditions

ko 4a kaB kBa k ko ka

+ — t + = - - ,
He Pra al_ (Hp Peg®ra’ * HRr,g"Ra = Por ~ Ug fR 1 7Ra
HkaBn n - _ kN (B4.3)
R R RB pR
with the denotations
k . k d ko
Por © Pr dl, (Pp tRo) -
(B4.4)
Kg - _ka
PR = PR "ra
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Superscript "k", as usual, runs over the sequence 1,2,3. We deal here
with three equations of motion and the six kinetic boundary conditions.
The constitutive relations in their general can be derived from Egs.

(A5.5), (A5.6). The first set of these relations is given by H

HgaB _ ﬁkaB(Qﬂv£,V%£,r(N))

g5 - 5 g,vr, 75,1 W) (B4.5)
R RNN ~
k _~k 2 (N)

hR = hR(g,YL.A r,T ) .

Egs. (B4.2), (B4.3) and (B4.5) constitute the most general form of
the field equations (A5.1), (A5.3) and the constitute relations (A5.5),
respectively, in the case of the vector shell theory. They are based
exclusively on Eq. (B4.1) and no further assumptions (concerning; for
Lov® in Bgs. (A2.24), (82.25), (A2.29))

have been made. One from the consequences of such general approach is

example, the form of functions ¢

that Eqs. (B4.2), (B4.3), (B4.5) in the special case of the plane pro-
blems do not reduce to the well known form but involvé also the terms
with the couple-stresses. That is why we shall treat the general vector
sheil theory rather as an example of the generél approaches developed

in the Chapter A then as a starting point for further applications.

The form of the second set (A5.6) of the constitutive relations
for a vector shell theory will be obtained by assuming that Eq. (B4.1)
has the form§= x+ E;r[:{, where N = (31>< 32) / |'<31 x 22[, E'a = 'E',a (E is
the unit vector normal to the surface x = r(8,t), 2,6 I, for an arbi-
trary but fixed t). It is a well known assumption used in the Love-~-
Kirchhoff shell theories. The components of the metric tensor

§ = (VS)TVS will be now given by

~ 2
caB =3, + 2£ba8 + £ caB ,
Co3 “C34 70 ¢

Cy3 = 1.

(1) The RHS of Eqs. (B4.5) are independent of r because they have to
be invariant with respect to the group of translations of the reference
space.
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where .

k k
+
.ark'B r,aNk,B)

"

b =

1
ST ¥ o'k, Pag T 2NN

"
2

N

caB T ,0 kB

are the first, second and third fundamental tensors of the surface

x=r(0,t), § € I (for every fixed t). At the same time CaB = babeGaYG,
6 "~

where aY a = 6;. It means that C is now the function of arguments £,

Sa
’ ba . Because aaB' ba

aaB 8 8 are invariants under arbitrary rigid motion
of the reference space, then e = b _) are the shell

(r) = %6) = upPap
strain measures. This rather trivial and well known result leads from
Egqs. (A5.6) to the following general form of the constitutive relations

of the vector plate and shell theories in which Eq. (B4.1) has the form

P =x +EN:

~

N) (P, _
98 @ )bt w7y =0, A=1...,N+P
€(8ta ) o)t ™ Fh< o
(B4.6)
(N () o O (N, _
w(gﬁ(aaﬂ)'(baB)'T ’ W '(ath(baB)TO )< O for every
o 9 (N) (N) (P)

a,/Pygr Ty With K(e,(SaB
If the material of the shell like body for a fixed Qﬂ ﬂ € I, is simple
(i.e., it is simple in all points X = (8,£), £€ (h_,h), § being fixed)
then,Eqé. (B4.6) are indentities and the argument T(N) drops out form
Egs. (B4.55 (cf. Sec. 2 of the Chapter a). If, moreover;~the material
for a fixed 8, 6 € T, is elastic then the RHS of Egs. (B4.5) are the
known functions. If the material is hyperelastic and Egs. (A2.33) hold

then from Eqs. (A2.34) we obtain

Ko B aeR K BeR X
HR =—8r ! HR = or ! hR =0
k,aB k,o
where the shell strain energy function €_ depends on 0, a = rk r '
Kk X R ~" “aB 0 k,B
b = 0.5(N «r +r N ).

oB 0 k,B o k,B
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Remark. From the formal point of view we deal here with an arbitrary
large deformation of the shell-like body. However, the vector shell
theory in which Si= r + &N is not a good approximation in the case of

the large deformations because the condition C =1, as a rule, is

33
never fulfilled with the sufficient accuracy (the thickness of the

shell undergoes the remarkable changes during the large deformations).

4.2. Lagrangean and Eulerian formulations

Now we shall express the governing relations of the vector shell or
plate theory in the Lagrangean and Eulerian formulation. Using Egs.

(B3.11) we obtain the equations of motion

A e L LTI Ay
of ‘o o o
(B4.7)
a8 w3 w3 o B o353,
"o o o
where in view of Eqs. (B3.16)
yo _ 1 _kaB Sy yo _ 1 ka 8y
H - ,r1HR rk,ﬁ a ! H - FYHR rk,Ga !
va va
g30f - L gkeb o , g% = L gkey , (B 4.8)
~1 R k /~ R 'k
ra va
AR SO S 3 =L Ny ete. .

< Analogously, from Egs. (B3.15) we obtain the kinetic boundary conditions

e . D hgYBe YBo: _ Y Yo Yo
H n, + i (AH natB) + H ]Bna =P, (1' £ )n ,

3a D 3Ba 3Ba _ .3 30 _ 3o
H nq * A1 (AH natB) + H ]Bna = P, -(i f )na .

(B4.9)
YoB __asYN
AH nanB— ap
3aB 3N
AH n n,=-ap
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where in view of Egs. (B3.12)

Y 1 k Sy 3 1 k
p. =—p_ ¥ .2, p =—p_N_ .
o. X oR’k, S fo) A OoR k
N 1 kN I\ 3N 1
pYN = — pR.\plpk Ga Y , pr~N= — k'I\\]’N
Y ’ /PR Tk

But the LHS of Egs. (B4.8) are invariant under an arbitrary rigid
motion of the reference space; it follows that the left hand sides
of the suitable constitutive relations have also be invariant. Thus

we conclude that

g8 36, @ ), o )Ny,

~’ uv uv
2% - %6, ), m .My,

~" Ty TRY)

(B4.10)

B =%%6,a ). ),y ,

~ uv uv
3a _ ~3a (N)
R S PN PR PL A I

where the RHS of Egs. (B4.10) are known. The form of the constitutive

" relations (B4.6) remain unchanged.

Egqs. (B4.7) - (B4.10) can express either Lagrangean or Eulerian
formulation of the vector shell theory (cf. Secs. 3.2. - 3.4. of this
Chapter). In both cases the arguments auv' buv of the functionals on
" the RHS of Egs. (B4.10) are the components of the fundamental tensors
of the midsurfaée of the shell during the motion, i.e., they are

functions of the time coordinate.

Egs. (B4.7), (B4.9), (B4.10) and (B4.6) are the general form of
the vector shell theory. The different simplifications and special
cases of this theory, mainly for the elastic materials, can be found
in the recent literature. To the problems of the vector shell theories

we shall come back in Sec. 9 of this Chapter.

Remark. Introducing the denotations

Q =

r

M M o
O,_HOLlj|B+HM
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the equations of motion can be written down in more compact form

Yo Y38 oY _oLYe _ LY _ LYo

o) ||a - b0 £ £ !a i R
3a 3 3¢y _ .3 _ .3a

0 Ila + baBQaB-Pf - f la =i i |a ,

where Egs. (B3.5) have been taken into account.

4.3. Membrane theories

The analysis in Secs. 4.1, 4.2. was based on the derivation of the
shell theories from the solid mechanics equations (By the approximation
or by the constraint approach). Using the direct approach, we have to
replace Eqa. (B4.1) by the weaker condition of the form £jg,t) =
=‘EQQ,£O,t), 8 €M ¢t € I, where Eo is the fixed numer from <h_,h+>.
Moreover, we can formulate the shell theory introducing the shell
force system of the first order (cf. Sec. 1 of the Chaptef A). Then
the field equations (B4.7), (B4.9) will reduce to the form

el I R B T R S
a a
Yo Y 3a - 3

H na = p , H o P .
Within the direct approach we shall also postulate that i3 = 0, p3 = 0,
and H];BNk = 0 (i.e., that H3a = 0). Using Ega. (B3.5) we obtain

Hyai| + £ = iY b HaB + f3 =0; 8 €T,

o apB
(B4.11)
Hyana =p' ;0 €3 a.e. |,

At the same time let the material of the shell be simple; then the
N
terms T( ) drops out from Egs. (B4.10) and we can postulate the con-

stitutive equations in the form

H'Y = E"“(e,(auv) i (B4.12)

Egs. (B4.11),(B4.12) represent the special case of the vector shell
theories which are called the membrane theories (cf. also Sec. 9.3. of

this Chapter).
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5. MULTIVECTOR THEORIES

For the multilayered plates or shells we can introduce the con-
straints (or the formal approximations) in which the motion of the
shell is uniquely determined (or approximated) by the motion of the
limit surfaces of the layers. Using the simple shell force system
(cf. Sec. 5 of the Chapter A) we can formulate then the plate and

shell theories which are called multivector theorieé.

5.1. Governing relations

et h, = h , h =h and h < h for v=1,..., m - 1, whereh,
m + u u+1 1]

1
for u=1,...,m, m 2 2, are the known numbers or functions of 6, 6 €.

Let us split the plate or shell under consideration into m - 1 dis-

jointed (open) layers, assuming that AhLl H hu - hu' p=1,..., m-1,

+1
is the thickness of an arbitrary layer in the reference configuration.

. Let the function S in Egs. (A2.3) and (A4.23)1 be assumed in the form

~ 1-lu+1—£ g-hu
=7 QW T L @8 s BEh 2 u st m ]
H H (B5.1)

where §'= £M(9”t)' 8 €M, w=1,...,m, represent for every t, t € I,
the "m" non-intersecting surfaces (!). It means that q(n) = q(3m) =
{£u, u=1,...,m} is the shell deformation function (2). In the direct
approach instead of Eq. (B5.1) we only postulate that £U(2't) = ng,huf
t), u=1,...,m. Because the RHS of Eg. (B5.1) does not depend on the
derivatives oqu(n) then we shall assume that the system of the shell

forces is simple. From Egs. (A5.1) we obtain

Muﬂa+wum*_ﬂum:=ﬁmk,

R,0 R R R
(B5.2)
(W) ka (w)k
= =1,-.- ’
HR nRoz PR r M M
(I)The set of all r m = {gu,u==l,...,m} satisfying this condition coin-

cides with the set Q of all shell deformation functions.

(2) The approach outlined in Secs. 5.1., 5.2. is based on the yet un-
published work of Z. Baczyhski on the multilayered elastic bodies.
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where in view of Egs. (A2.11) and (B5.1) we have denoted

h+
(Wka _ { (M kel Ko
HR = J<I>l p'KT dg ,
h-
h
+
wk _ [, kel L3
hp ' = 7)%y,3 P LT A8
h_
by
wk _ [(u)kl (Wk, +1 Wk, =1
fr ¢ J¢l ppat F o) "y B SN
h-—
h
+
Sk () kel .
i 'J"R“’l pde ; ge€m,
h-
h
+ N
(mk _ [kl _ 5
pR = J¢l de £ ; 6 €3 a.e., ¥ 1,...,m. (B5.3)
B .
and where Q(U)k = 0 for £€ (h ,h ) and for § €(h  ;h Y, w=1,...,m.
1 - -"pu-1 TE

In the special case given by Eq. (A2.23)1 we obtain

[ o if E€<h_h >
£ -h
1 .k
e 8, if EE€ (hu_l,hu) ,
(Wk H
o = <
1
R~ & x
L 61 if g€ (hu, hu+1) '
H
{ o if £;€<hu+1,h+> '

for u=1,...,m. Egs. (B5.2) are the field equations of the multi-

vector shell theory.

The general form of the constitutive relations will be derived from
Egs. R .6). 2 i = 0,t), =1,...,m}, d =
as. (A5.5), (A5.6). Denoting £4m) {Eugv t), u 1 m} 4

= {£u+1 - £u, u=1,...,m-1}, we obtain
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(ke _~(uka (N)
By =Hp (Q'Vz'(m) ! g(m—l) T

(B5.4)

Rk ek o o )

R R (m)'d(m-l)'T ), w=1,...,m,

where the RHS of Egs. (B5.4) can be derived from Egs. (A2.29):

h
+
~(uwke _ [~ Ko~ (u)k ..
HR = fp’KS (g)cbl ag |,
h_
h
+
~k [~ L3~ (u)k _
hR = JP,LS (3)¢1,3 dag , ‘u 1,...,m .

To obtain the second set of the constitutive relations we shall intro-

duce the set e(r) of the shell strain measures. From § = (VS)TVE we
obtain
c = (—h“'l_g)za - a + Py =8 70 (a -a +
aB &h ~)o ~(p)B (Ahu)2 (wa “(u+1)B

£ -h
+ a - a ) +(———i§2a -a .
~(WB ~(p+l)a Ahu ~(p+l)a ~(u+1)B

h

~ =& £E-h
s _ u+l

—1‘l -
a3~ Thh )2 B S t B8 )Z Ru+)a T

~ 1
C =

—_— -d ; =1,...,m-1 ,
33 7 @n )2 Sw "L v m

and 4 = . Let us also denote

= r r -r
Lo ~(u) ,o ~(p) T~ (utl)  ~()
= . Then we conclude that as the shell measures of defor-

where

d d
~pla - ~W),a
mation we can take the scalar products a - a , a -d + a -

P 2o Ewe’ Rane "Lt 2
-d ., a -d , a . d d .d d -d ’ =1,...,m-1
Rana’ Se S’ 2mae " fu’ 2ae’Sm’ S Sm M Pt
(they are not independent if m > 2). The ordered set of the foregoing
r = 14 (m - 1) scalar functions) will be denoted by e(r) and is the
argument of the constitutive relations (A5.6).
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Egs. (B5.2), (B5.4) and (A5.6) (where e has been defined above)

(r)
constitute the governing relations of the multivector plate and shell

theories.

Remark: The vector shell theory, outlined in the privious Section,
is not the special case of the mulitvector shell theory, because it

involves the second order shell force system.

5.2. Lagrangean and Eulerian formulations

To obtain the Lagrangean or Eulerian formulations of Egs. (B5.2),
(B5.4) we shall apply the results obtained in Sec. 3 of this Chapter.
Using Egs. (B3.11), (B3.16) we transform the equations of motion (B5.2)1

to the form

r

H(u)yal + h(u)Y + f(u)Y - i(u)Y

¢ - (B5.6)
3
H(Ll)30l! +h(u)3 + f(u)3 = i(U) ’ u = 1""‘lm [
where (cf. Eqs. (B3.5)) H(u)vala _ H(u)Yalla _ bZH(“)3“ ) H(u)3ot|m=
= H(u)3a!! + b H(U)GB and
- Ha aB
Wya _ 1 (u) ka 8y
" = B Tk, 82w
a
()
(W3 _ 1 (W) ka
H = -;———-HR 'Nk '
()
(B5.7)
Wy _ 1 (u)k Sy
b R Tk, 8w
a
(w)
w3 _ 1 (Wk _
h = —————-hR Nk' etc., U = 1,...,m,
a
(W)
d = . . =
and where a(u)aB 5(u)a z(u)B a(u) det a(u)aB and a(u) are the

components of the metric tensor inverse to the first fundamental tensor

of the surface x (Q,t), 2 € I, for an arbitrary but

a o=
(u)oB k- Tk .
fixed t, t € I. From Eqs. (B3.15) we obtain the transformed form of the

kinetic boundary conditions (BS.2)2:
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gRlve p(u)Y
a

(B5.8)

gW3e p3

. R p=1,...,m,

At the same time the constitutive equations (B5.4) will be transformed

to the form

H(U)YU- = ';I’(U)Ya(e'e 'T(N)) R

~" " (r)
H(u)3Y = E(UBY(B,e ' T (N)) ’

~ (r)

(B5.9)

RWY gy g )y

~ " (r)
h(U)3 ='B‘(U)3 (,g,'e(r)'T(N))‘ 0EN pu=1,...,m,

where e(r), r = 14(m-1), are the shell strain measures introduced
in Sec. 5.1.. The LHS of Egs. (B5.9) are invariant under an arbitrary

rigid motion of the reference space.

Egs. (B5.6), (B5.8), (B5.9) and (A5.6) express either Lagrangean
or Eulerian formulation of the multivector shell theory (cf. Sec.3

of this Chapter).

5.3. Polynomial representation

The general form of the multivector plate or shell theories can be

obtained by replacing Eq. (B5.1) by more general assumption

m

= E ez e (B5.10
u=1

where Yu are the known functions satisfying the conditions Yu(g.hv) =
= Gt for every hv' v=1,...,m. It follows that the functions £u'
u=1,...,m, have the same sense as before, i.e., they represent,

for every t € I, the sYstem of m non-intersecting surfaces. The gover-
hing relations in this case have again the form given by Egs. (B5.2),

(B5.4), (A5.6) (or by Egs. (B5.6), (B5.8), (B5.9), (A5.6)) but the
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functions ¢£U)k

NS
=y 61. If

mk _

in Eqs. (B5.3) can be now assumed in the form Ql

=<
I

1> and for & €<hu+1,h+>
£E-h h

Yy = ——— for £ € (h ,h),\(“=l’.1-g for £€ (h ,h
b-1 u=-1""u y TR TR

£ O for £ € <h_,h _
v (B5.11)

),

Ah 1

where 1t = 1,...,m, then we arrive at the special case described in
Secs. 5.1., 5.2.. If Yu(g,.) is the known polynomial of the k-th
order with respect to &, £ €(h_,h+), k2m -1, then we shall say

that the polynomial representation of the multivector theory is given

at 3',2 € 1.

Remark 1. In the polynomial representation the RHS of Egs. .(B5.4)

depend on all elements of the ordered sets vr In the

., d .
(m) * ~(m-1) .
representation given by Egs. (B5.11) we obtain the recurrentive system
of shell relations. In this system the RHS of Egqs. (B5.4) for n =1
1 Vi T K 1% En T Eaer
respectively, and for an arbitrary y with {2,...,m-1} they depend only

and y = m depend only on Vr , Vr - r, and on A{m

v v v -
O -1 R R Ay T Fuert Xt

representation given by Egs. (B5.11) may be more effective in appli-

- ru. Thus for the large m the

cations then the polynomial representation.

Remark 2. Let uo be an arbitrary but fixed positive integer M < m.

The alternative form of the multivector shell theory can be.obtained

b i that = A su=1,...,u-1,u+1,... hi da = -
y assuming tha q(3m) {£u0 gu u ' noolougtl, m}w erehv £u
- £u0° The vectors gu are called the directors assigned to the surface

given by r =r (8,t), 6 €1, for every t. The motion of the shell
~MIO ~HO '~ ~

is determined now by the motion of the surface with m - 1 directors.

If m = 2 than we obtain the special case of the Cosserat surface shell

theory, which will be detailed in the next Section.
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6. COSSERAT SURFACE THEORIES

They are the shell theories in which the motion of the shell is
approximated or determined (in the constraint approach) by the motion
of a certain Cosserat surface, i.e., the surface with the smooth

field of vectors defined on it.

6.1. Governing relations

By the Cosserat surface we mean the pair (nt,g), where L is the
surface in the reference space it will given by the parametric repre-
sentation x =x(6,t), 2,6 M, for every t,t € I) and 4 is the vector
field on LA 4= g('g',t), 6 €N, £t € I. Let us denote by Q the setof all
six-tuples (q(6) = ((rk,(dk)), such that [214a2"q']>0' 30‘ = £,a , for
every time instant. Interpreting q(6) as the shell deformation function
let us assume that the function p in Egs. (A2.3) or (A4.23) is given

~

by

B=1x(0,t) +£d0,t) (B6.1)
for some q(6) = (x.d) € Q. The approximations P ~§ or the constraints
p = p (cf. Secs.2 and 4 of the Chapter A) lead to the shell theory
;hié;‘will be called the Cosserat surface shell theory, provided that
we shall deal with the simple shell force system (cf. Sec. 5.1. of

the Chapter 1). In the direct approach, instead of Egq. (B6.1), we oniy
postulate that r =‘ggg,£o,t), da = R(g, Eo,t) / 3E, where 50 is the

fixed number with <h_,h+>.

Denoting a = 6§rk + 6:—3dk , a=1,...,6, and

ac _ .a ko a=-3_ ka

HR = GkHR + 6k MR B
a _ .ak a-3 k

hp = 8P ~ S8 Mg ’
a a_k a-3.k

fR 6kfR + 6k 1R '
a _ 6a k + 6a—3 k

Pp = %Pr T %k SR '
.a _ a.k a-3.k

ir= dklR-+6k g ’



- 100 -

we shall write Egs. (A2.12) in the form

Hgfa * fg = i; !
(B6.2)
M;?a—mR+llR<’ =j]1: !
and
HSn, =ef, Min = s (B6.3)

a—

where, putting ¢ a’Ek/aqa, h_:-h,h+ = h, we obtain from Egs.

k
(a2.11)
h
B ([ + ead® )% 4 e
R B /B
~h
h
K = [+ ea® TR 4 % jeae
R - IB IB
-h
h
kK _ K _ k k .~B3 k33
hR 0, m. = JHrIB + gd'B)T +dT°]ag ,
-h
h
x _ [k +k | -k
fR _JdeE,‘ + Pyt
~h
' B6.4
h ( )
k _[ x +k -k
1R _Jb £Edg +h(pR pR) ’
- <h
h
k- _{ k k _ [ x
e =Jde£ , sy = JpRe:dz :
-h
k _ .k k _ _ -k -k
‘lR zo_r + BRd ’ JR = BRr + YRd '
h h h
i} 3 3 2
a, = JdeE ' BR = JpREdE ’ YR-JDRE dg .
' -h -h -h

It must be'stressed that the field 5; introduced above has nothing
in common with the field Sr introduced in Secs. 2 and 4 of the Chapter

A.
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Egs. (B6.2) rebresenf. the equations of motion and Egs. (B6.3) are the

kinetic boundary conditions of the Cosserat-surface shell theory.

Let us determine the set of strain measures for the Cosserat sur-

face shell theory. From § = (V;)TVE and Egqs. (B6.1) we obtain

~ 2
Cug =8 "8 * 803" 35 4) v 84, g
Ca3 = Eu -g + Egu ‘S R (B6.5)
C33=g‘2 ’
wherea Zr ,d =d . Thus for e we can take the ordered set
~ o~ S~ T ~a (r)
of r = 14 functlonsgﬂ-ge ' (Eﬂ.gﬁ+'§'5"gﬂ) R gagB 'Eu'fq"
da -4, d4-d.
~Q ~ ~o r~o

The first set of the constitutive relations can be derived from
Egs. (A2.16), (A2.15). For the Cosserat-surface shell theory we obtain
(1 ' '

ka _ ~ko (N)
HR = HR 6, (E‘B) ’ ('(‘i‘B) IQIT )
k _ ~ka (N) ‘
My = M0, (3, (g0, a ) (B6.6)
k _~k,, (N)
mR = mR(e'(’%B) ’ ('(E'B) ISIT ) .

where the RHS of Egs. (B6.6) we obtain substituting E“KL = SKL(ZJ:) into
Egs. (36.4)1_4. The second set of the constitutive relations has the

form (A2.14), where the set e of the strain measures has

) - a4
been defined above.

The field equations (B6.2), (B6.3) and the constitutive relations
(B6.6), (A2.14) are the governing relations of the Cosserat-surface
shell theory. For the shells made of the simple materials the argu-
ments T(N) 'drops out from Egs. (B6.6) and we can also neglect Egs.

(12.14) (cf. Secs. 2 and 5 of the Chapter A).

() we denote (a

o) T (aphap) . (dg) = (dy.dy)-
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6.2. Lagrangean and Eulerian formulations

The Lagrangean or Eulerian formulations of Egs. (B6.2),(B6.3), (B6.6)
can be easily obtained by means of the general transformation formulas
(B3.11), (B3.15), (B3.16). Equations of motion (B6.2) will have the

form

Mo M M Ma

IR L MMM

-m +1 =3 ,M=1,2,3,

or, using the surface covariant derivatives

g’ - bgﬁ3a + £V =47,
B - p mg*Paed =53 ,
-la aB
(B6.7)
30 aB 3. .3 _ .3
M”a-baBM -m’ +1° =357,
where
a7 = Logkey  BBY, gl Logkey
/;w R k,B /; k
‘ (B6.8)
k By 3 _ 1 k .
fY - 1 erk,Ba R £ = = leﬁ{ , etc.
Ja a
and where a E det aaB' aaB = r o - r 8 and aBY are .determined by
r’ 14
aByaYa GB in terms of aaB' The transformed form of the kinetic

boundary condltions (B6.3) will be derived from Egs. (B3.15)
(B6.9)

where eM, sM‘are related to e:, sg by the formulae of the form (B3.12)1,

i.e., by means of

oY 1 Xk By

= —pr a~ ', =

/X‘ R k,B

1
i

and analogously for sY, s3.
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Denoting now be e(14) the ordered set of the shell strain measures -

(cf. Egs. (B6.5), we can transform the first set of the constitutive

relations to the form

Yo _ ~vyo (N)

H = H (~,e(14)rT )l
30 _ ~30 (N)

H - H (‘Q’,e(14),'r )'

M =ma(2,e(l4),T(N)),

. ’ (B6.10)

3o _ ~3a (N)

M = M, (Q/e(14),r ),
Y Y (N)

m =m (g,e(14), T ),
3 _~3 (N)

m =m (g,e(14), T ),

At the same time from (B6.4)1_.4 and from the equations of the form

(B6.8) we obtain

h
/au = J[(ag + EBE)E“BQ + B %% ac ,
“h

h
/a3y = I (gBB'f}'BY+ v Nae

“h

h

Yam'® = J[ (6; + e8P 4 Y% ae

B
-h
h (B6.11)
/2w %= J (BT + BT M)At
-h
h
/am' = I[(GZ + T 4 270t
-h
h
/Zm = j («EBB"FBB + BTy dE
-h
where we have denoted
Bg = d%Brk,GasY' BY = dkrk'(sa{sY ’
K K (B6.12)

B, =4 N ,
Y Bk k
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The RHS of Egs. (B6.10) can be derived by substituting %KL =8 qy
into Egs. (B6.11).

Egs. (B6.7), (B6.9), (B6.10) and (A2.14) can be ‘interpreted either
as Lagrangean or as Eulerian formulation of the Cosserat-type theory

of shells (cf. Sec. 3 of this Chapter) .

6.3. Alternative form of governing relations

Now instead of vectors Mia, m;, l:, jg, sg we shall introduce the
ke k ,k k _k A A
vectors GR ' gR, kR, ep’ tR, respectively, defined by

ka k Mmadl '

GR = g.lm R

k k 1
9 T E.1p™ d '

. .

kz = e 1ml‘}gdl , (B6.13)
oo komgl

R .1m’R !

k k 1

tR = e_lms d R

Substituting into RHS of Egs. (B6.13) the RHS of Egs. (B6.4)2 4.6.8.10
. r ’ 14 14

we observe, that the fields introduced above represent the shell

couple stresses and moments. Now we introduce the LHS of Egs. (B6.13)

into the goﬁerning equations of the shell theory. To this aid let us

multiply Egs. (B6.2)2 by eilmdl. Let us also observe, that
M 9 +®r  4+m_a) =
k Rm 1,0 ‘Rm" 1,0 Rm L

h
dm [~ e

=€ jPn,M’ Py,n9570 ¢
-h
. X . X . k k m.1
which makes it possible to eliminate the functions 9 = € lmde . Thus

Egs. (B6.2)2 can be transformed to the form

ka k moa 1 k k
+ + = .
Rya T E.amR F,a Y ¥R T 3R
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At the same time, using (B6.13), we shall transform (B6.3)2, obtaining

ko
Cg PRa = CR °

Passing to the Lagrangean or Eulerian formulations, the two foregoing

equations can be written down in' the form

GYQ|| _ bYG3a-+EY 53 4 kY =Y,
a o e )
G3a]| +b e B3,
a aB oB
Y _ Y 3o _ 3 oy __YB - k1
G n, c, G n, =c, G’a-—a EBG' €Ba 'eklmr,Br,aNm'

It means that the equations of motion are now given by

B - pYe3® 4 £ = 1Y,
[0 4 a

H3°°|| +b 1+ 343,
o of
(B6.14)
GYa|| - bYG3a + aYBE 1% + x' =a',
o o Ro.
G3a|' + b GO"B + € HmB + k3 = a3
a af aB
and the kinetic boundary conditions have the form
HY“na =e', H3ana -3,
(B6.15)
"% =c¢' ' G3an = c3 ,
o o
Now let us represent the vector field‘g in the form
_ q0 _ k a _ _oB k
dk =d rk,a + de, d = de , d = a dkr,B
and let us also denote
rR*® = [6% + (&%) - pla)elT® + a°%°8,
Y v (B6.16)
R* = (@ +b_aH)Fr® 4 g

Y YB
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After simple calculations we arrive at the formulae

h. . h
HGB=LJRaBd£, H3B'=—;—_JRBdE
A =)
h
B - —1—J ®"% - r%aV)eacafe, (B6.17)
/a 8y
~=h
h
g - L J RYadB€d£€BY .
/;—h
We can also ‘introduce the new shell strain measures. Denoting
D,=d|l,-b_d D =a +b .a° (B6.18)
aB a''B e ' Ta )0 oB
we obtain at equations
~ ¥6,_2
C(xB = aaB + ZD(aB)g + DaYDBda £ R
C.=a ad+ o B +rpaye, | . (B6.19)
a3 aB Ba a ‘
~  _ a.B 2
C33—ddaa8+(d) R
where a = a -a..Now for e we can take the ordered set of r = 15
of  ~ ~B (525 8 8 a.B 2
functions aaB, D(aB)' DaYDaﬁa ’ aaBd . DBad + Dad’ dad aaB' a .

The first set of the constitutive relations will be now assumed in

the form
MB _ ~MB (N)
H = H ('g"e(IS)'T ).
(B6.20)
MB _ ~MB (N)
G =G (Q,e(ls),r ),

where the RHS of Eqs. (B6.20) can be obtained by substitutingz=§(§)
into Egs. (B6.16) and the RHS of the resulting equations into Egs.
(B6.17).

The equations of motion (B6.14), the kinetic boundary conditions

(B6.15) and the constitutive relations (B6.20), (A2.24) constitute the
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alternative form of the governing relations of the Cosserat-surface

shell theory.
Remark. After simple calculations we shall obtain the following
interrelations between the fields in the equations (B6.14), (B6.15)
and in the equations (B6.7), (B6.9):
B Y 4 dEBa w3y,

Y -ae
3y o By
G =d eaBM '
kB —ae P 1%y g%
K = a% 1P
aB
and analogously for:,aY, a3 and jY, j3, cY, c3 and sY, 53, where
k o - ik Bo.
d” = d rk'Ba .

d:de,

Elastic-perfectly plastic shells

6.4.
Let the constitutive relations for an elastic-perfectly plastic
2.1. of the Chapter a)

material be assumed in the form (cf. also Sec

E-alzl-p=o0,
jx,m) <0, (B6.21)
trA(T —T) <0 for every T with j(X 'an) <0,

A", is the rate of the plastic strain, A[T] is the

where A = (A ), A = T
elastic part of the strain rate and j(ﬁhz) = 0 is the yield condition

(B6.21) are the special form of the general constitutive

(1). Eqgs.

relations (A2.2).
To obtain the constiutive relations for the elastic-perfectly plastic

shells within the Cosserat-surface shell theory we have firstly to
(R2.7).

introduce the approximation relations (A2.5) -
introduce the mapping s (cf. Sec. 2 of the Chapter A) assuming

) The form of the linear transformation A and that of the functlon

(1
j(.) can also depend on the deformation gradient Vp.

To this aid we
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1 2 1 1 23
that T = §}g) has the trivial form (T 1, T 2, T33, T 2, T 3, T ) =

= (01,..., 06). It means that the stress components ou, p=1,...,6,
simply coincide with the suitable components of the second Piola-
Kirchhoff stress tensor TKL, K,L. =1,2,3 (1). We shall approximate

all stress components, assuming (A2.5), (A2.6) in the form

T(N)]’

EFL = (B6.22)

™ (x,t) ~

~ o~

TP E.t) or T =3l

‘where A = 1,...,N (summation convention holds), X = (8,8) and SKL are
the known functions (2). We also have A,= E(A(e))' i.e., (All' A22,
A33, A12' A13, A23) = (Al,...,A6), and we shall postulate the approxi-
mation (A2.7) in the form which corresponds to that given by Eq. (B6.5),

i.e., in the form

~ o 1 22
hg®e) ~ Ko =8 (8,0 + Eu (8,0) + E5b (0,6
~ 0 1
Aya(Xet) ~ R o =8 (8,8) +8a(8,8) , (B6.23)

Q(0,t)

~

Ay (Xe8) ~ Agyg

where, as usual, 5 = (g,t), and the ordered set of arbitrary regular
. o 1 2 o 1 o (p)
functions waB' waB' waB' wa, wa, w plays the role of the set w p .

p = 14, in Eq. (A2.7). The strain componenets C (the components of

KL

the right Cauchy-Green deformation tensor) are approximated by CKL'

i.e., (FKL'V CKL)' where CKL for the Cosserat type shell theory have

to be assumed in. the form (B6.5).

Now we can introduce the "error" fields au, p=1,...,6, a,a,

defined by Egs. (A2.8). Putting (Ell' E ) =

22" E337 Byar Ey3r Epg
= (al,...,a6), we obtain from Egs. (A2.8), (A2.9)

E=C-alElt

o]

11}
>
0n
~
-

- ](2(‘12) ’

(=]
11
(wd
=
n

~~c (N) (N)
Fuho -1 ] - tpA(zo -T .

The foregoing formulae have been introduced here only in order to

give an example of Egs. (A2.8) (A2.9). In the second step of the

3-5'
(1)We have tacitly assumed here, that neither from the stress components

is determined by the history of motion, i.e., we have assumed M = O in
Egs. (a2.6).

(2) Mapping S : R
mation 'g

6 ’T2 . .
> has nothing in common with the linear transforma-
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formal approximation procedure we have to restrict the error fields
by means of EQs. (A2.IO)3_5. To this aid we shall assume the functions
: s, u=1,...,6, a=1,...,N (cf. Egs. (A2.10), where now P = O,

M =0, m=6) in the form

-

(=l 6y o (g1l 22 .33 12 13 .23
._A,. .,_.A = = r-A'—AI—A'- l—-A ’
(B6.24)
_KL _ 3T ~KL
S N
9T
From Egs. (A2.13) we obtain
h
- < ~MN.B ~  ~KL
9a ~ J Crr, ™ Pxran’s * Aer)Sa & -
-h
h
< = J s St ™hae (B6.25)
~h
h
_ |~ ~KL A a
vy = J I\KLSA (iE(TO T) .
-h

But all the integrands above are the known functions of & and all
integrals in Egs. (B6.25) can be calculatéd. Denoting by e(14) the
ordered set of the strain measures in Eqs. (B6.5) and using Egs.
(B6.25) we shall obtain the constitutive relations (A2.14) in which

r =14, p=14, P=0. If A depend only on X then denoting

KLMN
h h h
o ~ 1
GMJ—i—Jsmﬁg,GM‘Ei-[ggﬂdg,é$EJ—JE%?BdE
A A A ] A A A
e, G O

. o ,%aB 1 1o
. - + . . - +
(a aB maB)GA (a dB + aB d maB)GA
. 2 208 o Qa3
+ -4 - +
+ (4 dB maB)GA (a d wa)GA
: 1, la3 : 0,933 B _
+2(d d - wa)GA + (d-4d - w)GA DABT =0,
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(N)

kK(8,T ) £0 ,
PP B L GoB 2 ZaB
W™ B A Yupgn T “agea
o %03 1 a3 = 0933 (N) . (N)
< =0,
+0 G, "+ 2waGA + wGA ) S0 for every T with K(e,ro <0
(B6.26)
where
h
+ .
1 ~MN~KL
= — S d , = d =d
PaB JguJ P S 4% 0 2R " RaRa
h

and DAB have to constitute the positive definite N X N matrix. At the

same time form Egs. (B6.11), (B6.22) we obtain

o 1
Yo _ (Gla + BYGBa + BYG3a) A

H 8%a A ‘

w3 - 3 &BY 4 BG3Y)T ,

A
M'® = (IY“ + BEGBa + BYGia) A (B6.27)
Yy _ 9y3 v1B3 Y233, A
m (GA + BBGA + B GA )T ,
3 83 033 A
m- = B A + BG )T ’
where the functions BY BY

g’ ' BY, B are the strain shell measures de-
fined by Egs. (B6.12).

Egs. (B6.26), (B6.27) are the constitutive relations of the elastic-
perfectly plastic shells described by the Cosserat-surface shell theory
(L. Together with the field equations (B6.7), (B6.9) they constitute
the shell governing relations of the Cosserat-type shell theory. The

basic unknowns are:

1. the shell deformation function dg) = (x(8,t), 4(8,t)), which
approximate (or describes in constraint approach) the motion of

the shell by means of Egs. (B6.1),

h Egs. (B6.26), (B6.27), which have been obtained here form the
formal approximation approach, can be also derived by the constraint
approach.
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2. the function T(N)=={TA(§/t), A=1,...,N} which approximate (or

describes) the stresses in shell by means of Egs. (B6.22),

3. the function o® = (& ), & ), & ), &), G ), D), where
X X af X aBk aB o o
p = 14 and (waB) = (wll) ' w22, w12)’ k =0,1,2, which approxi-

mates (or describes) the rate of the plastic strain by means of

Egs. (B6.23).

If instead of the field equations (B6.7), (B6.9) we use the field
equations (B6.14), (B6.15) then instead of Egs. (B2.27) we have to
take into account the constitutive equations obtained from Egs. (B6.16),

(B6.17), (B6.22). They will have the form

oB _ QaB G _ +wOqy~YB a®384_ A
B =6 + @ ||Y b d)G," + d°G, 1T,
38 _ B.2YB 304 A
B = [(d’Y + bYBd )G, + dGA It ,
= {a[eY® + @l .- pYa) &% 4 g8y - | (B6.28)
A s § A A
Y e, 18a 130 BS A
d [(d'(S + b dT)G T + dGA 1}a €5YT ,
3¢ _ Brlyo Y N 1.1 v1l3a A
¢ =4l + @ ||6 b & + a'Gy ]EBYT ,
where d = dek, a* = aaBdkrk Bare the strain measures. Egs. (B6.14),

(B6.15), (B6.26), (B6.28) constitute the alternative form of governing
relations of the elastic-perfectly plastic shells described by the

Cosserat-surface shell theory.



- 112 -

7. MODIFICATION OF THE SHELL THEORIES. GENERAL CASE.

The problem we are going now to detail can be stated as follows:
how from the special plate or shell theory one can derive new plate
or sheli theories? In this Section we shall try to give rather general
answer to that duestions using the analytical methods describéd in

Secs. 2.0. and 4.0. of the Chapter A.

7.0. Preliminaries

Let be known certain shell theory described by the Egs. (A2.12),
(A2.14), (A2.16). Let us substitute the RHS of Egs. (A2.16) into Egs.

(A2.12). Then we obtain the equations

~ao, ~a a a
+ + -i_ = ;
HR,a hR fR iz O,'Q‘EH,tEI
(B7.1)
_ ~ao a _ .
HR nRa A pR =0 ; ‘g € 9l a.e., t €1 ,

which together with Egs. (A2.14) describe the shell theory under con-
sideration. Putting x = (q(n)T(N%, let us write down Eqs. (B7.1) in the
form A(x) = 6, where A is the operator with the domain D(A) in the
space X of the sufficiently regular fields x defined on II X I and with
the range R(A) in a certain linear space Y. By Z, £ € D(A) we shall

denote the set KerA, i.e., the set of all solutions of a(x) = 6.

In the Sec. 7.1. we shall introduce the formal approximation of the
equation A(x) = 8 (cf. Sec. 2.0. of the Chapter A) and in Sec. 7.2.
we shall impose the semiconstraints on this equation (cf. Sec. 4.0. of
the Chapter A). In both cases we obtain certain new "modified" shell

theory.

7.1. Modification by approximation
To construct the formal approximation the equation A(x) = 6 we have:

1. To introduce the set Z, = D(A), which "approximates”"the set

Z. Then the formal approximation relation ~ will be given by

(§31

~o ~ —
X~x = (x,x) € % x

: o o
After that we can define the set Y, Y € Y, of the error fields
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o o o . ~ . o} o~ o~ .
v, ¥ € ¥, putting Y = A(Z), i.e., ¥y = A(x), x € E. In view of

Eqgqs. (B7.1) we shall write % = (rén), sénk, where rén) = {r;(g,t),
(n) a
a=1,...,n}, sp = {sR(g,t), a=1,...,n} and
a ~aq a a .a
rR = HR,u hR - fR + lR ’
(B7.2)
a _ ~aa _.a _
sR = HR nRa pR , a 1,...,n .

2. To restrict the error fields by introducing the multifunction

m

~ O [e] ~ ~
3 x-*Y;c ¢ and putting (f/ € Y;, x €% ().

The general scheme of the formal approximation of Egs. (B7.1)

then leads to the relation

1

~ o - ~
A(x) € ¥; , x € ' ' (B7.3)

or, in the explicit form, to the relations

~ao ~a a a .a
+ + =
HR,a hR fR + rR lR .
~ao a a.
Hy Ppo ~ Pr * Sg ¢ (B7.4)
() _(n),_9o .9 ~._ (N), . =
(rR N )=y € Y o x= (q(n).T YEE .

Egs. (B7.4) together with (A2.24) represent the new shell theory
obtained from the shell theory described by Egs. (B7.1), (A2.14),

by the formal approximation approach (2).

Example 1. Let V be the set of the fields v(n)==fva,a==1,...,n},

where v, are the sufficiently regular real valued functions defined

on II. Let v§ be for every %X, X € £, the known non-empty subset of V.
r(n) S(n))
R 'R

on the field v. Then the restriction of the error vields can be assumed

Moreover let VYo be the rate of work of the forces 3 = (

in the form

e

O ~
Yoy 1= 9 I <v,(§)r>t = 0 for every v with V;}. X €

The relation (B7.3) is given now by

(1) At the same time the given conditions in Sec. 2.0 of the Chapter A
has to be satisfied

(2) We tacitly assume that there should exist the physically reasonable
solutions of the correctly stated problems for Egs.(B7.4), (AZ.24).
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[£31

<V,A(;)>t = 0 for every v with V; ‘ X € . (B7.5)

Example 2. Let A be the known set of the sufficiently regular
vector valued functions A = (Al,...,AM) defined on 1 x I and L; be,
for every';ve g, the known linear operator acting from A = D(L§J to
the space Y. The restriction of the error fields can be assumed in
the form

[o] ~ ~
Z; .= {$|§ = L;Ll] for some )\ € A}, x €

The relation (B7.3) is now given by

1

A() - L) =8, X €F . (B7.6)

Remark. The modification by the formal approximation outlined

above can be also applied to the field equations of solid mechanics;

then x = (p,T), 3 = (£R'ER) and A is given by the LHS of Eqs. (A2.1).

7.2. Modification by semiconstraints

Let us impose on the equation A(x) =

~y
-
-

given by Egs. (B7.1) the

1 o

semiconstraints, introducing the set < D(A), and the multifunc-

14

~ o o o
tionm : £ 3 x » Yx c vy, Yx ¥ ¢. Then we shall arrive at the relation

1

A) €Y, x €%, (B7.7)
which, in the explicit form, coincides with the relation (B7.4) provi-
ded that x is now replaced by x (the field x in Eq. (B7.7) is not
treated now as the‘approximation). The elements 3 of 8 are called the
reaction fields. The multifunctions m in the special cases have the
forms analogous to those givenin Examples 1,2 of the Sec. 7.1.. We see
that the formal structure of the relation obtaining as the result of the
modification by the approximation is the same as that obtained by the
semiconstraints. However, the interpretations of both approaches are
different, because not all "semiconstraint approaches" can be inter-
preted as certain kinds of the formal approximations (cf. Sec. 4.2.

of the Chapter A).
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7.3. Passage to the second order shell force systems

The shell equations of motion (A2.12)1 involve the simple shell
internal force system {(Hga), h;, a=1,...,n} ,i.e., they are the

first order differential equations with respect to ea(cf. Sec. 2.2.

of the Chapter A). Now we are to show that by the suitable modifica-
tion of Egs. (A2.12) we can arrive at the shell field equations with
the second order shell internal force system,i.e., at the differential
equations of motion of the second order with respect to 86%. To this
aid we shall denote by Q the set of the ordered sets 95" {qa,
a=1,...,n} of the sufficiently regular real-valued functions q; de-
fined on T x I, such that the function q(n)' given by qa = wéﬁg,q(ﬁ)'
Vq(ﬁ)), a=1,...,n, O < n, satisfies the condition q(n) €Q, ¥

(n)
being the known ordered set of the independent differentiable functions

defined on 1T x R3n. Moreover let ®:, W:a be the known functions which

can be assumed in the form (1)

a 3¢% ao ng
% 3. ' Ya T3
qg qa'a

~
-

o) o)
Let the sets Z, < (or !;) in Secs. 7.1., 7.2., be given by

(N)

T . = = | = - = e
z {x= (q(n)rT ) qa (pa(grq(n)lvq(ﬁ)): a 1, ,n for
some q =, €0}
(B7.8)
°© _o._, (n) (n) a a _
Y, o= {y-(rR 'Sp ) | [sRhale -f-JrRhadaR 0 for every

oll n

h. = 6°h. + ¥°%_  and every h _. €H}
aa a a,o (n)

where H is the set of all ordered sets (hl""'hﬁ) of regular real

valued functions defined on I (continuous in T and differentiable in II).
a

Now substituting to the integrands in Egs. (B7.8)2 in the place of Spr

r; the LHS of Egs. (B7.2) , respectively, after simple calculations

1,2
we obtian
308 ac a a aa .a .aa
H + H +h +f - f = -
R,aB R,a R R R, R lR,a ’

(1) The indicies a,a run over 1,...,n and T,...,n, respectively, where
n > n.
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a a.a aB.a
= - H ¢
b hRq’a R a,B '
a_ .a.a ao a 3o
= £ = f
fR fR(Pa ’ "R Rwa !
a _ _a,a aa _ _a,aoa
Pp = Pp?, + Pg ERRY. . etc

It means that by the modification of Egs. (B7.1) we obtain Egs.
(B7.9) in which we deal with the second order shell force system.
Egs. (B7.9) can be treated either as the approximation of Egs. (B7.1)
(in this case %%) is the approximation of q(n)' q(n) ~ @, ) or as

(n)
the result of the semiconstraints.

7.4. Application of the constraint functions

In the foregoing Sections the real valued functions qa ra = 1,;..,n,
have been treated as independent. Now let us assume that they are
interrelated by the equations hu(g,q(n),Vq(n)) =0, u=1,...,M,
where hu are the known independent differentiable functions. Let Q,

Q ; Q, be the set of all regular solutions of hu =0, u=1,...,M;
we assume that Q # ¢. Moreover, let A be the set of all sufficiently
regular vector valued functions ), = (A;,...,AM) defined on Il x I

and M set of regular functions p_ = (u;,...,uR) defined on 3l x I,

~R
a.e.. On Egs. (B7.1) we now impsoe the semiconstraints, putting

~ - (N) ~
2= {x = (q(n),r )|q(n) € 0}
° o (n) _(n) a _ _,uoh oh
Yoe=dy 2 g usp g = )\R—a“+(>\l‘;———3'J )
9 Qa0 !
a y 3h " aﬁu 4 " aﬁu
s_ = =\ n, tu +—-=— (U, 7757
R R aqa’a Ra R aqa le R a(dqa/le)
for some AR € A and some O €M}, x €% , _ (B7.10)
where
_ ahuﬁg..) o
h ozoif A= -
U O if g *0 . G,n - %,
al g € am ~
~ (B7.11)
_ 3h, (8, +)
B, = hu(g-)lg con if g =0
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It means that ﬁu are either the boundary values of the functions hu
(when hu do not depend on qa'm) or they are identically equal to zero.
The vector functions AR'ER will be called the shell constraint func-
tions.

Subsituting to Egs. (B7.4) in the places of r:, s: the expressions
introduced by Eg. (B7.10)2 and taking also into account hu(g'q(n)’

Vq(n)) =0, w=1,...,M, we arrive at the system of equations:

~ao doh oh

H u _ 3 H 1] a _ .
(HR + AR oq ),a * hR AR 8qa * fR *

a
R ’

hu(glq(n):Vq(n)) =0 , w=1,...,M; 08 €1,

~

(B7.12)
o oMy y aﬁu 4w aﬁu a
(H + A In =ur_____(u_—‘_)‘+p ,
R R 3qa'a ROl R Bqa le R B(le/Bqa) R
ﬁ ’ [} = H .
8y 1Ty o) = O 7 8 €

Egs. (B7.12) have been obtained by imposing semiconstraints on Egs.
(B7.1).
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8. MODIFICATION OF THE COSSERAT-SURFACE SHELL TEEORY

Now we are to show some applications of the general procedure out-

lined in Sec. 7 to the Cosserat surface shell theory.

8.1. General case

Substitﬁting the RHS of Egs. (B6.6) into Egs. (B6.2), we obtain a
special case of Egs. (B7.1). Then using the approach developed in Sec.
7.4. we shall derive the special case of Egs. (B7.12), related to the
Cosserat-surface shell theory. Passing to the Lagrangean or Eulerian

formulations (cf. Sec. 6.2. of this Chapter) we obtain the equations

hu (QIE,E,VE,VN) =0, u = 1""IM '
o
L YL P N
~ (o]
> ot bdéﬁas P £+ 8 =53, 4 (B8.1)
MO - pP - 1Y+ DY =5,
o o
~ ~ (o]
M3a||a + agﬁaﬁ m3 + l3 + 13 = 33 '
where
e L on L, 3hy By
a £’ = [-A o, * O T N
1
/_'03 . Bhu " Bhu
a £7 = [0 57+ Op 57 ),]Nk ’
k k,a o
(B8.2)
Jz Y u ahu u ahu By
vYall=[-2ag W + (g °d, ).a]rk.Ba !
[4
oh oh .
[o]
N ’
R Bdk R adk,a o k

which here to be satisfied in II X I. Analogously, we obtain the

boundary conditions
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'ﬁ'Y“na =ef + 87, W“na =Y + 2V
(B8.3)
§3a _ e3 + 33 ) M3an _ S3 + 23 ‘
where _
dh oh oh
/2 87 = D‘; 3 * Pra * “; 3 £ - d(; (“; 3@ 1}dJ. y ) 1ry Y,
T, OO Ty R r/dlgd Tk
iy ' Bhu y aﬁu a aﬂu
re = I or, Pra ¥ PR or, ~ dl ‘“R 3 (ar, /al_) Mmoo
’
_ _ (B8.4)
/e u ahu u ahu d H ahu By
As = [A n__ +u - (p yle, a™ ',
R34 "Re " R4 &l 'R 3(dd,/al)) K,o
o3 ' zahu " aﬁu a aE
NS = 2is 3d, _ o T MR 3d, ~ dl “‘R 3 (ad /dl y

which have to be satisfied almost everywhere on 9 x I. Egs. (B8.1) -
(B8.4) represent, together with Egs. (A2.14), the modifications of the
Cosserat-surface shell theory, due to the presence of the constraint

relation (B8.1)1.

If we take into account the alternative form of the governing rela-
tions of the Cosserat-surface shell theory (cf. Sec. 6.3. of this

Chapter), then Eqs.(BB.lh 5have to be replaced by
r

o~ ) ~ O
Eﬂa|| P e W kY 4R = e '
o o Bo )
(B8.5)
~ (o]
G3°‘||,+b P8 e PP LR =S,
a oB oB
where
h oh
Y. _k glf_,4 _1u u M By
fklze a0 55 Y Op e~ ) ,dl k6
m 1'1'1,0-
(B8.6)
oh oh
°3_. k 1. .u _q u u
= - —_ 4
AT Ee d [0 53t + Op 537 ) N
m m,Qa
and Egs. (B8.3)2’4 by
o, =Y e QY T, 232 ‘ (B8.7)
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where

S Y k  lp,m ahu u aﬁu da u aﬁu By
C = —_— -
A € md P38  Mre * "R 3@ " 3L R 3@avary ) tk,e®
m,o m R m R
T LR g, R (B8.8)
Az e 9D : 33 "re T PR 3a - ai- MR 3@avais ) Nk
m,o m R m R

Postulating different special forms of Egs. (B8.1)1 we obtain diffe-
rent modifications of the Cosserat-surface shell theory. The two special

cases of such modifications will be presented in the next subsections.

8.2. Love-Kirchhoff shell theory

It is the well known theory which can be obtained from Egs. (B8.1)-‘
k
K,0 - o, d dk -1=0.

They are the Love-Kirchhoff constraints, which can be also given by

(B8.4) by assuming Egs. (B8.1)1 in the form dkr

dk = Nk,ﬂ = ng,t), being the field of the unit vectors normal to the

surface LI for every t € I. In Egs. (88.1)2 there is now M = 3 and
we shall deal with the three constraint real-valued functions A;,A;.

Using Egs. (B8.2)1 and (B8.4)1 we obtain

2 2

0
£ =L 0% ) fKaPY o ph®, a2 a%a
Ja R k" ,a ,B o R
o3
-1 (}\;dk) aNk = Aa”a s
}/; ’
(B8.9)
o) .
kY =L oImo3a «0%  jarf Y - a8 2%,
~ k Rm Rm,a" 1 ,B Ba
«1lm, .3 o k
o] + = .
k3 =_l_ ek (?\Rdm Aer'a)le 0
Va
In view of the results of Sec. 6.3. we can observe that if dk = aNk
(for an arbitrary o # 0) then G3a = 0, k3 = 0, a3 = 0, c3 = 0 (cf.
Remark to SEc. 6.3.). Denoting Qa = H3a + Aa, we derive from Egs.

(B8.1), (B8.5), (BB.9) the following form of the equation of motion
of the Love-Kirchhoff theory
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o af 3 _ .3
o |la + by =+ £ =i
(B8.10)
Yo _ ,YB o Y _ LY
G ||u al€ 0 + k' =al,
aB af
b * EaBH =0 .

At the same time from Egs. (B6.16), (B6.17) we obtain the constitutive

relations
h
gy = FY = L ,f(a“ - sfY@y ae
Ja 1 B B ~
~h
(B8.11)
h
Y =g = L J 68 - bég)gs57(5)<iga°866 )
/A A £ £ ~ B

Substituting the RHS of Egs. (B8.11) into (BB.lo)4 we arrive at the
identity. Egs. (B8.10) are the well known equations of motion of the
Love-Kirchhoff shell theory which have been obtained here by the modi-

fication of the Cosserat-surface shell theory.

Passing to the kinetic boundary conditions of the ‘Love-Kirchhoff

shell thebry we obtain from Egs. (B8.4) and (B8.8)

1,2
QY _ .v,.6 93 _ ,a_ _ du
e = ubGt , e~ = A n, a1 ’
(B8.12)
8Y = ],1656t6as‘Y . 83 =u .

where p,p are the constraint function on the boundary (mind, that
o, _ ke . _ . .
k,atR) =0, d dk 1 O. Thus the kinetic

boundary conditions will be written down in the form

hu = 0 is given by dk(r

~ya Y Y, 6
= +
H na e ubst R
Qana = e3 - g? !
(B8.13)
% =Y -1 € t6aBY '
o aB

=0 .
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. o .
L.et us also observe that the constraint functions Q ,u can be easily

eliminated from Egs. (B8.10) and (B8.13).

Remark. Using Eqg. (B.8.1)5instead of Egs. (B8.5)2, in view of
o
13 = -A3, we shall obtain in the place of the identity (38.10)4 (pro-
vided that Egs. (B8.11) hold) the equation for the constraint function

A3. Then from Egs. (B8.1)2_5 it follows that

B + g7 - pN®* =37,

(4 o
H3“|a £+ AY||Y==13 .
anla RS T .

which is another form of the equations of motion in the Love-Kirchhoff

shell theory.

8.3. Generalized Love-Kirchhoff shell theory

The Love-Kirchhoff shell theory, even for very thin shells, cannot
be applied sﬁccessfully to the problems of large deformations. From
the restriction dkdk = 1 it follows that the thickness of the shell
(measured in the direction of vector g) is constant during the de-
formation. This condition is not satisfied (even as the approximation)
when the large deformations are concerned. Putting asside the condition
dkdk = 1, let us assume Egs. (B8.1)1 in the form dkrk o = 0. Now M = 2
and we shall deal with the two sreal-valued constrainé functiqns'kg.
Using the formulas of Sec. 8.1. we obtain again Egs. (B8.10) 3" The

1-
o
remaining equation we obtain from Eq. (B8.1), in which now i3

3a 0.8 3 3 .3
+ - = - .
M ||a b M m- + 17 =3 (B8.14)

At the same time Egs. (B6.11)3 4.5 yield
. ’ r

h
MB =3B L J(G“—db"g) es"®@ ace
” L Y Y
h

I
n

’

w = %z J(d SE +as* @Eac , - (B8.15)
a
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m =m =

1
Va

where 4 = dgg,t) is the function defined by d = 4 Nk. For the simple

k

materials Egs. (B8.10) (B8.14), after substituting RHS of Egs.

1-3'
(B8.11), (8.15), constitute the system of six equations for six basic

unknown rk,ci,Qa. Passing to the kinetic boundary conditions we obtain

from Egs. (B8.4)

oy _ .Y/ 9 o3 _du a
e' = ubat , e = ar + A na ’
(B8.16)
Y-y , -0,
and then from Egs. (B8.3)
~Yo, Y v, ¢ ) 3 du
= + = - —_—
H na e ub6t ’ Q na e ar !
(B8.17)
Eyana = sY + utY ' Eﬁana = 53 .

Remark. Instead of Egs. (B8.S)1 we can use Egs. (B8.1)4 in which
o
lY = -AY. Then we have also to take into account the interrelation
3
QY - AY =g (cf. Sec. 8.2.) which allows to eliminate either Qa or

A% from the shell field equations.
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9. SIMPLIFIED SHELL THEORIES

To describe some special classes of problems within the plate or
shell theory we often try to make this theory more tractable by intro-
‘ducing certain postulated a priori simplifications into the shell
governing relations. As the known examples of such simplification we
can mention the procedures leading to the small deformation or linear
theories, to the theories of shallow shells,.to the membrane theories,
[13] , and to the different variants of the small deformation theories
in which we restrict tﬁe values of the strains, [5,24], deflections,
[18], deformation gradients, [7], or rotations, [28,29]. Other examples
can be given by simplified descriptions of certain non-homogeneous
shells with the aid of the theory of homogeneous shells and by simpli-
fied descriptions of some "perforated" shells by the theory of simply
connected shells. The plate and shell theories obtained by such simpli-
cations will be called the simplified theories. The objective of this
section is to show that the simplified plate and shell theories can be
interpreted as obtained either by imposing the special form of semi-
constraints on a certain plate or shell theory or by applying special
kind of formal approximation. Such semiconstraints or approximations
will be referred to as the effective semiconstraints or the effective

formal approximations, respectively.

9.1. Effective semiconstraints and the shell theories

We shall start with some pure analytical concepts. Let X be a certain
topological functional space, Y be the linear space and A,i be the
mappings form X to Y such that D(K) c D(A). Let us assume that the
class of problems under consideration is governed by the binary rela-
tion A(x) =y, v € A; with the domain Z. Let us aléo define the sets

T := {x|A(x) =y for some y € A};

oo ) N (B9.1)
:= {y]y = A(x) - A(x) for some x € =} ,

<0

where A = R(A) N A # ¢.

"

We shall say that the semiconstraints imposed on the relation
A(x) = y,y € A are effective if there are known the operator A and

the multifunction
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(o]
Ix>¥ cvy . (B9.2)

such that for every y € A there exists the pair (x,g) € X Yx satis-

fying the condition A(x) -y = 3.

Thus the effective semiconstraints imposed on the binary relation
A(x) =y, y € A, lead to the binary relation A(x) = v, v € A and

. - (o] ~
to the conditions A(x) - A(x) € Yx' x € = .

Remark. All foregoing statements can be also expressed in terms of
the formal approximation procedure (cf. Sec. 2.0. of the Chapter 3).

o)
Thus the fields ? ,? € Y, can be called the error fields of the appro-

(€304

ximation x ~:§, where x ~'; iff (x,;) € & x and ? = A(;) - A(x) (since

i(;) =y = A(x)). The conditions ? € gﬁ'c 3 can be treated as the re-
strictions of the error fields and the approach can be called the
effective formal approximation approach. Thus the effective formal
approximatiop of a certain binary relation always leads to another
binary relation and to the independent condition which describes the

range of its applicability.

Up to now the whole procedure has been quite formal. In the appli-
cations we look for such operator A that the relation A(x) = v,y € A,
can be treated as a certain effective simplification of the relation
A(x) =y,y € A. At the same time we demand that the "error fields" 8
due to this simplification should be, roughly speaking, "sufficiently
small". Thus the obtained relations i(x) =y,y € Z, will constitute
the "effective" tool in the further analysis only if the field x,x € E,

- o
satisfies the condition A(x) - A(x) € Yx'

Now assume that the relation "A(x) = y,y € A" coincides with a
certain relation of the shell theory. The formal approach outlined
above can be éuccessfully applied to obtain the simplified relations
"A(x) = y.,y € A" in the cases in which we deal with the phenomena orxr
quantities of the "different order" of magnitude. In such situations
we introduce the operator A putting A(x) = A(x) + ?, cf. Eq. (39.1)2,
where A characterizes the phenomena or quantities of the "first order"
and ? are the quantities of the "higher order" which in the "effective”
description of the problems, given by A(x) = v,y € A, cf. Eq. (B9.1)1,
can be neglected. Thus gx has to be interpreted as the setof such "higher

order" terms which are "sufficiently small" to be neglected in the
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efféctive description of the problem. However, from the point of view
of the simplifying procedures known in the mechanics of the shell-like
bodies, the sets Y are often not deflned but rather intuitively des-
cribed by the condltlons of the form Y = {y Il]y” << ||Ax) || } (where
||.||1s the suitable norm in the llnear space Y). If to every x,x € EZ,
we assign certain "small" parameter v, and if the asymptotic procedure
are used then we usually assume that gx = 0(v), v = v(x). Such proce-
dures have been used, for example, in [5,7,12,14,16-19,27-29], where
different simplified theories of the "small deflections", "moderate
deflections” "small, large,moderate rotations”, etc., have been intro-

duced.

Example. Let y = sinx stands for the mapping y = A(x). In the large
rotation theory (cf. [29], p.91, x will be here interpreted as the

value of the rotation vector of the shell element) for A(x) = sinx we

assume that A(x) = x - ;'x3. Thus the relation y sinx is simplified
to the form A(x) = y given by y = x - %}XB, cf. Eqs (B9. 1)1. At the

) 1
same time it is assumed that ? = A(x) -y =sinx - (x - 3% ) E‘Y =

= 0(v5/2), cf. (B9.1)2, where v is the small parameter of the shell,

o
[20]; here sets YX are independent of x. In the theory of moderate
rotations, [29], we assume that if A(x) = sinx then i(x) = x and

o . o 3
y.= sinx - x € Yx = 0(v7).

9.2. Special cases

" Let us assume that a certain "fundamental" motion of the shell .
is described by the ordered set of functions %(n)(gft) = {aaqg,t),
a=1,...,n} and let us take into account the second motion deter-

mind by q(n) + ew w = {waqz,t),a =1,...,n}, where

= 3
(n) (n) " " (n)
€, € € <0,1>, is a certain scalar parameter (}). Let us also assume

that the shell is elastic and that the mapping A(x) = y, where y =
_ (f(n) (n)

Pr (n)’
tions (obtained by substituting RHS of Eags. (A2.26) into Egs. (A2.12);
(N)

Y X =W stands for the system of shell governing rela-

the ordered set T drops out from the quations for the elastic shell).

The operator A now depends on the parameter e, A = A . Putting A =
A+ of(e), we assign to the operator A certain llnear (with respect

( )) operator A. Putting also y E ACR(A), A=R(d) NA, we obtain

the relation A(w =y, vy € A, which describes the theory of small

)
(n)’ o
elastic deformations superimposed on the finite deformation q( ) If

() Wwe assume here that p p(X q Vg 0y’ i.e., that the shell theory
under consideration is obtalned by the constraint approach.
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a(n) is time independent and characterizes certain natural shell con-

) =y.,y € A, represents the linear elastic
o
- €Y
(my ~ Y W(n)

has to ensure that the values of the "reaction field" ? are sufficient-

figuration, then A(w(n)

shell theory. At the same time the condition ‘}3, = A(w

ly small. In this cas Y has to be the normed space and the multifunc-
, o
tion (B9.1) can be assumed in the form Yw( : 1= {? III?IIS nIIA(w(n)H}
n

where nis a certain positive number, n << 1.

If we assume that q(n) = 8(n) ©) + ew (8),x=1,2,..., then putting

Kk (n)

Ae = KK + o(eK) we obtain, under the conditions introduced above, the
successive approximations in the statics of the elastic shells, given

— _ ]
by A (wK(n)) =y, K 1,2,..0. .

The different simplified shell theories play an important role in
the development of the foundations of shell theories. In the next sub-
section we shall give an example of such theory, using the concept of

the effective semiconstraints.

9.3. Example: membrane shell theory

The membrane shell theory (which has been introduced via direct
approach in Sec. 4.3.of this Chapter, cf. also [13]) will be derived
below from the generalized Love-Kirchhoff shell theory by imposing on
the relations of this theory the special form of the effective semi-
constraints. To this aid we shall treat the thickness 2h of the shell

in the reference configuration as the small parameter, putting

h
J x(£)Adgf = 2hx(0) + o(h) , (B9.3)
-h

for an arbitrary smooth function x defined on (-h,h), x € X.

To use the results of Sec. 9.1. we shall assume that

h h
A(x) =de£, A(x) = 2hx(0) = Jx(O)de;, Y=o ,

-h -h

for every x € X. We shall also use the denotation A w(A) ; it can
be easily seen that now w(i) = A and m(o(h)) = 0, where o(h) is inter-

preted here as the integral operator defined by Eq. (B9.3). Thus 7 can
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be treated as the projection defined by

h
7 ( J x(£)dE) = 2hx(0), x € X . (B9.4)
h

Thus from Egs. (B6.4) we obtain

ka, _ k ~Ba 3o
e’ = 2 AT
ka, _
TT(MR ) =0 ’
k, _ k ~B3 x~33
Tmp) = 2h(r T+ d°T )k=0 '
(B9.5)
k k|- +k k
m(E) = 2th|€==0 + byt By
k Kk, _ k k, _ Kk _
m(lp) =0, mey) = thngzo » T(sp) =0, W) =0,
N S | =k
Tl'(lR) = 2hpR'£=O r ’
. +k -k _
where we have assumed Pp ,pR = 0(h). Then Egs. (B6.8), (B6.17), (B6.16)
yield
ni) = 1" = 1@ =@ =0
oB 2h ~oB (B9.6)
mH ") = =T k=o '
/a
because of the relations d = dkrk BaBa = O which hold in the genera-
. 14

lized Love-Kircchoff theory. Now from Egs. (88.6)1_3, (B8.10), (B8.11)

we obtain Qa = o(h) and then

HYal}a + £ =iV +om) ,
baBHaB re3 =i tom (B9.7)
33 = o(hf
where
w= ¥ e POl | ®9.6)

a
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where, by virtue of Egs. 6B6.8), (B9.5) - (B9.8), we have denoted

H = ;é: 2l =0 '

£Y = -ylE (21-11:;:{{é ot §R "BR)rk,BaBY .

i¥ = L 2hp_ | _ e aPY ' (B9.10)
= Prle=0 " Tk,

3 = »—/1—5 (2hb]l:|€=o+f:->; + f);)Nk .

i3 E/L;zhpng=orNk .

Applying the projection m to Egs. (B8.13) and taking into account
Egs. (B6.6), (B9.5) we obtain

5% =&Y (B9.11)

where we have denoted

¥z 2 K By (89.12)

:/_5 Prle =0 k,8®

In Egs. (B9.10), (B9.12) we have used the same denotations for the
projections of the fields HYa,...,iB, eY as for the fields HYa,...,i3,
e’, of the generalized Love-Kircchoff theory. Egs. (B9.9), (B9.11)
with the new denotations (B9.10), (B9.12) represent the field equa-
tions of the membrane shell theory. The obtained equations have been
derived by using the concept of the effective constraints; if A(x) = y

stands for Eqs. (B8.6) (B8.10) and Eqs. (B8.13) then A(x) = vy,

'
y € A, stands for (BQ.;)? (B9.11). Let us also observe that Egs. (88.6)3
(B8'.13)2_4 are interrelated with the identities of the membrane theory,
i.e. the projection m of these equations leads to the identities. The
membrane shell theory can be used only for the special class of problems.
The condition 3 = A(x) -y € gx has to define such solutions x of the
"membrane" equation A(x) = y, which, roughly speaking, are the "gdod

approximations" of the solutions of the generalized Love-Kirchhoff

shell theory, described by A(x) = y. Thus the multifunction (B9.2) has
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to determine the range of application of the membrane shell theory and
the set A is the set of such external forces in the generalized Love-

Kirchhoff shell theory for which this theory can be simplified to the
"membrane" form.



- 131 -

CHAPTER C

NON-CLASSICAL PROBLEMS FOR PLATES, SHELLS AND RODS

In the treatement of the plate, shell or rod boundary-value problems
we usually assume that the boundary conditions have the form of equa-
lities and we take into account only such external forces which are
the known loadings. However, we meet the phenomena for which the bounda-
ry conditions have to be given in the form of certain implications in-
volving the inequalities. In some problems we also deal with the shell
or rod "internal" conditions (for example, due to the unilateral con-
tact of shell or rod with certain rigid bodies) or with the forces
which "control" the .motion of the shell or rod (for example, the effect
of a friction). All these problems in which, roughly speaking, "certain
tresholds are crossed or attained" (cf. [8], p.XIV), will be referred
to as the "non-classical" problems. In this Chapter the general dis-

cussion of such problems will be carried on.

1.FORMULATION OF SPECIAL PROBLEMS

Throughout this section we shall assume that a certain plate or
shell'theory is known. Within this theory we are to formulate and to
detail differéht, mainly non-classical problems for plates and shells.
The general formulation of such problems also includes, as the special

‘cases, the known boundary value problems.

1.1.Génera1 case

Every plate or shell theory (in the sense explained in the Prere-
quisites) is represented by the field equations (i.e., by the equations
of motion and the kinetic boundary conditions) and by the constitutive
relations. However, the shell theory itself pro&ides no informations
how the shell is loaded, how it is supported or how it can deform in
the special situation under consideration. If the analytical form of
such informations is known, then we shall say that a certain special
problem of the plate or shell theory has been stated. In what follows
we shall confine ourselﬁes to the special problems analytical structure

of which is determined by:
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1. The field and constitutive relations of a certain plate or shell

theory.

2. The analytical description of deformations which can be realized

by a shell.
3. The analytical description of the loadings acting at the shell.

4. The interrelation between deformations which can be realized by
the shell and the constraint reactions which are able to main-

tain these deformations.

5. The analytical description of other external forces acting at

the shell (field reactions).

Thus the informations needed to formulate the special problems of
the shell theory involve the new concepts of the loadings and the reac-
tions. The physical sense of these concepts is rather clear and their
analytical description will be introduced below. We shall understand
the term "shell special problem" only in the sense outlined above and
we shall deal with the "non-classical" as well as with the "classical"
probiems. We assume that the shell theory under consideration is de-
termined by.the field equations (A5.1), (A5.3) and the constitutive

.aa  ~aof ~ao

Arelations (A5.5), (A5.6). The form of functions i;, lR R HR R HR R

3:} gA,K,w in Egs. (aA5.1), (A5.5), (A5.6) is assumed to be known.
Remark 1. In order to obtain the solution to the spécial problem

we have also to take into account certain initial conditions for (q(n),

T(N), w(ph. In what follows we may assume that either the initial

conditions are stated independently on the formulation of problem or

they are included into this formulation. In the latter case the initial

conditions for g due to the existence of the inertia terms, can be

(n)’
included into the . description of deformations which can be realized by
a shell. The initial conditions for (e T(N) w(p)), which depend on

(r)l _l
the form of the constitutive relations, can be also treated as certain

constitutive assumptions. In this case the subscript "A" in Egs. (A5.6H

,JN&mm5=o,A=N+P+L

(x) (N) (p)
---+/N+P+R, are the initial conditions for (e(r),T W )

has to run over 1,...,N+ P +R, where gA(Q,e

In the most cases not every shell deformation function q(n) = {qa
(6,t), a = 1,...,n} belonging to Q@ (cf. Secs. 1.1., 2.2. and 4.3. of
the Chapter A) is admissible. Mostly we deal with the shells which are
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supported or for which some kinds of deformations are excluded by the
action of certain external forces or by the properties of the material
(material incompressibility, for example). This fact gives rise to the

following assumption.

Assumption 1. In every shell problem there is known the non-empty

o
subset Q of Q, which is interpreted as the set of all shell deforma-

tion functions q(n)admissible in this problem.

o) .
The inclusion Q € Q will be referred to as the shell constraint

. ] o
inclusion. The special case Q = Q can be also taken into account.

In every shell problem we have to know the system of the shell exter-
nal forces which characterizes the loading of the shell (in some pro-
blems the loadings can be equal to zero). Thus the second assumption

about the shell problems will be stated as follows.

Assumption 2. In every shell problem there is known the system of

shell external forces §R = {ﬁ:(q(n)), ﬁga(q(n)), f:(q(n)), E;a(q(n));

a=1,...,n ; o = 1,2}, where ﬁ;,...,%;a

are, for every § €1, t € I,
o -
the known functionals defined on Q (). The system Yp will be inter-

preted as the shell loading system.

;, f:a; a=1,...,m; o = 1,2} be the system of
the total shell external forces (cf. the field equations (A5.1), (A5.3),

(A5.4)).

a ao
Let YR—{PRr PR ’ f

Definition 1. The system of shell external forces §R = {Eg, E:“.
¥:,,¥:“; a=1,...,n; a = 1,2}, defined by
v )
Yp = Yy T YR (cl1.1)

will be called the system of shell reaction forces.

Thus the shell external forces, in every problem under consideration,
are the sum of the loadings and reactions. In some special problems
0
the reactions can be due exclusively to the constraint inclusion Q € Q

but in the general case wemay also deal with the reactions which are

(1) The form of these functionals is determined by Egs. (A2.24)4 5 and
(A2.25), by the equations pg = ﬁg (p), vk = BX(p) which define the loa-
dings acting at the shell like body (pX, DX are the known functionals)

~ R
and by p= g{i,q(n),Vq(n)), cf. Eq. (A4.23§1.
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not implied by the restriction of the deformations (for example, in
the case of the reactions which are due to the friction). That is why
we shall analyse two kinds of the reactions: the one maintaining the
constraint and the other which is not related to the constraint inclu-

sion.

For the time being let us assume that the set 8 of the shell defor-
mation functions, which are admissible in the problem under considera-
tion, is unlquely defined by the sets Q , £t € I, of the lnstant values
q(n&(.,t) € Q of these functions. The constraint inclusion QCZQ given
by Qt c Qt' t € I, () will be called configurational. We shall denote

0
+t) for every t € I;we shall refer elements q(n)t of Qt

Unyt = Iny ¢

as the admissible shell configurations at the time instant t. Let V

be the linear space of the functions V(n) = {va ;a=1,...,n} defined
o

and continuous in Il and smooth in II. Let q(n)t € Qt; if there exists
<+
€' €5 > 0O, such that q(n)t ev(n)

the field v(n)will be called the virtual displacement for the admissible

configuration q(n)t of the shell. The set of all virtual displacements

€ Qt for every €, O < ¢ < € then

' will be denoted by V .
q(n)t

Let us denote by <yR,v( )>t the rate of work at the time instant t

of the external force system Yo {p ’paa a faa a=1,...,n; a = 1,2}

s V €V:

on an arbitrary field v (n)

(n)

a ao. a ao
< > = + dl_ + | (£ +£ da_.
V)7t 3( (PRVa * Pg Yo% J( r'a TR Va,0’ %%
3
The restriction of the set Q of all shell deformation functions to
o
the subset Q of the deformation functions which are admissible in the
problem under consideration is always connected with the existence of

. o oa oaa Qa Qaq
certain systems y {

i fR, fR ; a=1,...,n ; o =1,2} of the
external forces. In the case of the configurational constraint inclu-
(o) ) .
sion the set Yq of all systems §R will be postulated in the form
(n) ’

v o .0
.= |
q(n) : {yR:<y (n) t > 0 for every v(n)G\l ,t €I} (C.1.2)
(n)t
o o le]
where g € Q.. An arbitrary element y_ of Y is called the con-
(n)t t R q(n) :
*Yn)

(1) 9. is the set of all q, .(.,t)such that q, . € Q;: Q
t (n) (n)

o
strant reaction on the shell deformation q(n) € Q. The definition

t1 = Qt2 for every
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(C1.2) states that for the configurational constraints the total rate
of work of the constraint reactions on an arbitrary virtual displace-

ment is always non-negative.

If the constraint inclusion is not configurational then the sets
-St, t € I, do not determine the set 8 of all shell deformation func-
tions q( ) admissible in the problem under consideration. Nevertheless
we shall assume that for every q(n)t € Q there exists the set V
of the "test functions", such that Egq. (C1.2) holds (we take J.nt(gn)t
account also anholomic case, cf. [45]). Now we shall formulate the
next:assumption describing the special shell problems under considera-

.tion.

Assumption 3. In every shell problem there are known the sets gq ’
- (82, gao Qa Qan _ _ (nl_

’ RI Rl RI [ 4 ’
, which are defined by Eq. (Cl.2),where Vo are

q( ) € Q, of shell external forces y

0.=12er EYq
Yn)t

the known sets of t%e test functions (defined for every q( )t € at'

o o o .

The system of forces Ypr ¥ € Ygq, .+ will be called the shell con-
. . {n)

straint reactions.

The foregoing assumption characterizes the interrelation between
o o}
the constraints inclusion Q € Q and the sets Yq of the shell con-
(n) -
straint reactions, which, roughly speaking, can maintain the constraints

or are due to them.

We have stated before that the constraint reactions may not be
equal to the shell reactions ¥R' It follows that we shall also deal
with the other kind or reactions which are not due to the constraint
inclusion 8 c Q.

*a *an *a *aa
{PRI PR r £ £ H

*
Definition 2. The system of external forces Yp = r' IR

a=1,...,n; o =1,2}, defined by

¥ v o
Yp ¥ Y¥p T ¥y » (c1.3)

will be called the system of shell field reactions.

Thus the reaction forces are the sum of the constraint reactions

and the field reactions. The field reactions y will be interpreted as

due to the existence of certain external systems of forces yéu),
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p=1,...,m, which, roughly speaking, "control" the deformations of the
shell. The systems y(;), u=1,...,m, of such control forces are assumed
to be determined.by the motion of the shell, i.e., there are known the
relations‘y(;) = yéU)(q(n)), whgre yQU)(.), pu=1,...,m are the known
functionals defined on the set Q of shell admissible deformation func-
tions. We shall confine ourselves to the cases in which the field reac-

tions can be determined by

* (n) (W)
’ > = .
<}R’V(n)>t 2 <y R 'V(n)>t for every v(n) € Vt T 1,...,m (C1.4)
(w) (u)
where Vt P Vt c VvV, are the known, for every t € I, non-empty sets
of the suitable chosen test functions, satisfying the conditions
VEU) n Vév) {6} for every u # 6 and such that yéU) =08, u=1,...,m,

implies that §R = 6. The sense of the assumption (Cl.4) will bedetailed.
in Sec. 3. We shall see later that for example, the field reactions due
to the friction between the shell and some other bodies can be described

in that way.

Let us denote Ut = U Vé“) and introduce the functions Séu) :Ut'+Véu)
. (n) - . (u) T _ . . (u)
putting 6t Yy = Vin) if Vin) € Vt and dt Viny = 6 if v(n)E ug\vt .
Then :
* I ) ()
> 0y
YprVin) Tt = E Yp o % YimTe -
u:
Denoting by
m .
- (w) (u)
Ta e’ ‘Z<YR Q) S Ve Vi € U -
(n) t n=1

(n)

the rate of work of all control forces y p=1,...,m, on the

R 4
fields S(U)v , we obtain
_ t (n)
* .
>
<yR'v(n)>t 2 Jq(n)év(n)) for every V(n) € Ut' t € I.

Now we can formulate the last assumption concerning the formulation

of the special problems in the shell theories.
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*
Assumption 4. In every shell problem there are known the sets Yq ’
Q * * n
q( ) € Q, of the shell external forces (field reactions) yR = {p;, (n)
* * *
p:a, :, f;a; a=1,...,n; a = 1,2}, defined by
Iy | > £ € (c1.6)
Y = <Yy _,V > 2 Jd v or every v U Cl.
% (n YRIYR"V () "t q(n)t( (ny’ ¥ Viny = Y%
and every t € I} ,
whre Jq (.) are the known functionals defined by Eq. (Cl1.5) and
(n) £
U U < V, is the set of the test functions known for every t € I.

t' Tt

Remark. Comparing Eq (Cl1.2) and Eq. (Cl1.6) we can suppose, that
in some special cases the constraint reactions may be obtained as a

"limit case" of the field reactions in which J >0, U >V
, o 9(n) ot 9yt
for every fixed q(n)t € Qt and t € I. In these cases only the field

reactions have to be taken into account and the approach corresponds
to that known as the "penalty function method" in the optimization

theory (cf. Sec. 3.3. of this Chapter and the examples detailed in [8]).

From the foregoing analysis it follows that, in every problem under
. . a ao _a ao
cons;deratlon, the system yR = {pR, pR ’ fR, fR ,a=1,...,n; a=1,1,2}

of the shell external forces in Egs. (A5.1) (A5.3) (A5.4) is the sum

*

+ YR

v

A A [e]
= + = .
Yp = Yp t¥p =Y tY (c1.7)

R

of the loadings, constraints reactions and field reactions. The loadings
are determined by the shell deformation (cf. Assumption 2)
A A o

Yp = Yp(d(y)r 9y €2 ‘ (C1.8)

A o )
where yR(.) are the known functionals defined on Q, and the reactions
are determined by the inequalities (Cl1.2), (C1.6). Summing up we con-
clude that the general form of the informations needed to formulate

the special problems within certain shell theory is given by the rela-

tions (*)

(*¥) We have tacitly assumed here that we deal with the second-order
shell force system. For the simple shell force system (cf. Sec. 5.1. of
the Chapter A) the terms pga,ﬁga,...,f;a, 3“,... drop out from the
relations.
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o
€ ;
Upy - @
a _ A3 )+ *a  oa
PR = PR q(n) PR PR ’
aac _ pae )+ * .0 + 2%
*
a Aa a. ©%a
= +
fR fR(q(n)) * fR fR !
a Aa *a Qa
Co= + + ’
fR fR (q(nﬂ fR fR (Cc1.9)
*3 *aq, *a *ao
+ >
§ (PRuy * Pp U, o g ¥ J(fRua * R Ya,a! %R Jq(n)t(u(n))
on Il
for every u(n) €Ut' t €1,
(gav -+8aav ydl_ + (gav + %aav Yda_ =2 O
R a R a,o R R a R a,a R
oll Il
for every Y (n) €Ev , t €I,
Tyt
° . Aa Aaoc Aa Aaa
where the sets Q, Ut’ Vq(n)t and the functionals j PR ’ ?R' ?R p

Jq are known.

(n)t

Thus the problem within certain shell theory is described by the
field equations (A5.1), A5.3) (cf. the last footnote), by the éonsfi—
tutive relations (AS.S)é (A5.6) and by the relations (C1.9). If Vq(n)g:
c Ut for every q(n) € 9 and t € I, then by the simple calculations

from Egs. (AS5.1), (A5.3),(C.1.9)2_7 we obtain the inequality

_~aop ~a _~a S
J( v ‘ B-+HR va' tha)daR >
n
> ¢ 3% v + 8 a4+ #2224 (C1.10)
OR a R a,E R R R a,oa
oll |
a a
+ - %y 1aa + g v, )
R R 'a” R q(n)t (n)
- o
which has to be satisfied for every V(n) €Ev ' q(n) €090, t €1I.

Tyt
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We have used here the earlier denotations

AaN _ Aao Aa _ Aa Aao. - o

= = - d t d P = v n_ ,
Pp Pp Pra ’ Por Pp (pR Ra)/ lR a,N a,o R
~aof ~aoc A Aa AaN aa Aa .
and HR B, HR ' hR' as well as Por’ pR~, ?R R fR are the known functio-

nals defined by Egs. (A2.29) and introduced by Eg. (Cl.8), respectively.
Eg. (C1.10) will be called the fundamental inequality of the shell pro-
blem; it has to be considered together with Egs. (A5.6) and the condi-
tion q(n) é 8. The basic unknowns in Egs. (C1.10), (&5.6), (C1.9) are

T(N)’ w(p)

the fields g . If the material of the shell is simple

(n)’
then Eqgs. (A5.6) are identities and the only basic unknown is q(n). In
this case the shell problem is described by the inequality (Cl.10)and

o
by the condition q(n) €0 hH.

The example of the application of the general approach to the spe-
cial shell problems outlined above will be detailed in Sec. 3. Also in
Sec. 3 we shall discuss some of the consequences of the inequality

(C1.10).

Remark 2. Using the terminology of Sec. 4.0 of the Chapter A we can
say that the formulation of problems within certain plate or shell theory
coincides with imposing the special kind of semiconstraints on the rela-
tions of this theory. The semiconstraints under consideration are de-
fined by the constraint inclusion 8 < Q and by the multifunction

o *

A o
03549 > Y , where Y = {y_( }ey oY .
()~ Y(n) R T Y g,

q(n)

Remark 3. Every formulation of the shell problem, described by the
relations of the shell theory and by Egs. (Cl1.7), (Cl1.8) as well as
by the conditions (Cl1.2), (C1.6) should lead to the physically resonable
solutions of this problem (it must exist, at least, one such solution).
However, for the non-linear shell problems the sufficient conditions
which ensure the existence of such solutions, are not known (cf. also

Sec. 1.3 of this Chapter) .

Remark 4. As the basicunknown in the problems described above we

(N) (p))

have assumed the triple x=(q(n),T , . However, Egs. (Cl1.10),

(A5.6) are also starting point in the problems of stability (then QR =

= QR(e,q(n))and we look for the values of the scalar parameter ¢ for

(1) We may assume here that the initial conditions have to be stated
independently of the problem cf. Remark 1.
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which there exist many physically reasonable solutions x),or in the

optimization problems.

1.2. Application of the constraint functions

The approach to the special plate and shell problems given in Sec.
1.1. is very general. Now we shall analyse the more special class of

plate and shell problems.

Let w(m) = (¢u, p=1,...,m), m < n, be an arbitrary ordered set of
the sufficiently regular functions defined on T x I. we shall assume
o
that the set Q of shell deformation functions admissible in the problem

under consideration is given by

(o]
Q := {q(n)lhv(g,t,q(n),Vq(n),w(m),le(m)) =0, V=1,...,N;

R EM t €L b (0 By V) by Ty = O

p=1,...,R ; 8 €31 a.e. , t €1} , (c1.11)

where hv'b are the known independent hH differentiable functions,

= Ty and where T is the linear trans-
(m) (m)

formation which assigns to the functions g , P
o (n)" " (m)

values on 3ll. The relation q(n) € Q0 can have many analytical represen-

v = d/le: ) = ™ iny v

., their boundary

tations of the form (Cl1.11). The unknown function w(m) plays here the
role of a certain auxiliary function; introducing such function we can,
for example,.reduce the system of the k-th order differential equations
with respect to q(n) to the system of the first order differential
equations with respect to q(n),w(m). The functions w(m)canalsolxatreated
as the "slack variables" (used in the optimization and control theories)
- which are applied to convert the inequalities of the form ggg,t,q(n),
Vq(n)) 2 O into the equalities hgg,t:,q(n),Vq(n),w) = 0, where h(.) =
=g() - w2

We shall interpret the relations hv(') =0, v=1,...,N and bp(.)==0,

p=1,...,R, as the known restrictions imposed on the internal and

boundary values of shell deformation function q(n)and its material

(1)Denoting by zZp, A =1,...,M, the arguments of h,(Q,t,.), bp(Q,t,.)
we assume rank _(Bhv/'c)zA) = N,N<M and rank (Bbp/azA) =R, R £ M.
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derivatives. The form of these relations depends on the special problem
under consideration (!). Equations bp = O are often called the geo-

metric boundary conditions.

Let us assume that we deal now the problems in which the control

forces are equal to zero. Then the field reactions are equal to zero,
* o
Yp = 6, and yR = yR

o
(C1.11). Let us also assume that for every q(n) € Q the constraints

, i.e., all reactions are only due to the constraints

are bilateral (cf. Sec. 4.0. of the Chapter A); then for every v(n) €

Ev we also have =-v €V and the inequality in Ega. (Cl.2)
9yt (m) " 9t
can be related by the equality <§R' v(n)>t = 0. It means that
oa oaan f Qa ao
+ 1+ + = .
% (pRva 12 Va,a)d B J(vaa fR va,a)daR 0 (C1.12)
ol 1
holds for an arbitrary test function v , vV Ev . The sets
o (n) (n) Qnyt
\Y r g € Q, of the tests functions will be assumed as the sets
q(n)t (n)

of the solutions of the following equations in I

Bhv Bhv Shv dh

v+ u. .+ u. =0, v=1l,...,N (C1.13)
3 a 3 L0 ,
. q aQ a,a awd d awd'a d,a

and the conditions which have to hold almost everyhwere on 9l

abp Bbp _ abp Bbp a
+ + —— — = = Py .
Sa;-va 37 Vva 3¢d Uy + avwd Vud o, p=1, R, (C1.14)

wherea=1,...,nand d =1,...,m (summation convention holds).

Let us assume that we deal with the shell theory in which the simple
shell force system is involved. In this case the terms with 8;“, %gu
in Egs. (Cl1.12) have to be neglected. Let A;QQ,t) be arbitrary differen-
tiable functions for every § € I, defined and continuous in Il for every
t €_I. Let us also denote by E:(Q,t), v=1,...,N, p;gg,t), p =1,...,R,

arbitrary differentiable functions defined, for every t € I, almost
o
everywhere on 3. Then the reaction forces 8;, f: satisfying the condi-

tion

(1) Instead of the restriction b, =0, in some problems we can also take
intoaccounttherestrictionsbp(Tq(n),Tw(m9=e, where B , p=1,...,R,
are the differentiable (in the Gateaux sense) operators from L2 (3M) to
L2(3N) and Tf is the trace of the function f on the boundary .
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oa Oa
= Ccl.15
§ pRvale +JvaadaR o ( )
ol ||
for every v_ such that (v s ) is the solution of Egs. (C1.13)
a (n) " (m)

(C1.14), can be assumed in the form

0a v Bhv v Bhv
fR=MRag T Mg e BTl
a,o
(Cl1.16)
v ahv v Bhv
A _-(A _—-) =0’ d=1,-.-’m 2
R de R a¢d,a ,0
“and
3h oh 3h
%a _ v v -V v _ 5 (ﬁv Y -
R R 99 Ja Ro R 9q R Ban
Bbp 0 abp
“Up 9 + (UR 3%q ), a=1,...,n;
a _ ) (C1.17)
dh oh oh
- Wy = - Ty g ) -
awd’a Ra R 3y R Bde
0o B = o B
U, — + V(u =) ’ d=1l <M .
R de R 93 ¢d

The definition of the functions hv is given by Eg. (B7.11). The unknown

functions A;, ﬁ;, ug are called the constraint functions. Egs. (Cl.16),

.(C1.17) lead to the condition (C1.16) if the following jump conditions

_y oh,  3b .
[u 55&; + 35&; ] =0 , a=1,...,n ;
_ (C1.18)
-v ahv 0 abp
! av¢d+u ng—d ]=O ' d=1,...,m

hold in all points of 9l.

Summing up, the class of problems under consideration is described
by the shell field equations and constitutive relations (with the simple
force system), by the geometric boundary conditions bp(g,t,q(n) ' ﬁq(n),
w(m)' 6w(m)) =0, p=1,...,R, g € 9Ill, by the geometric internal condi-
tions hv(g’t'q(n)'Vq(n)'w(m)'vw(m)) =0, v=1,...,N, 6 €T, and by the
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decomposition rules of the shell external forces

a _ Aa oa
Pp = Ppld(gy) * Py~
(C1.19)
a Aa Qa
fr = fR(q(n)) tip o

where ga(.), p;(.) are the known functionals which define the loadings
and 8a, %a

R R
same time Eqgs. (C1.16)2, (C1.17)2, (C1.18) have to be taken into account

(L.

are given by Egs. (C1.17)1, (C1.16)1, respectively. At the

In many special shell problems we deal with the restrictions imposed

on q( ) which are given exclusively by the geometric boundary conditions

o
of the form bp(g,q(n),Vq(n)) = 0. In this case we see that f = 0, p;

is determined by the last two terms of Eq. (C1.17)1 and that Egs. (C1.16)2

(C1.17)2 are indentities.

Remark 1. The foregoing analysis remains valid if the functions hv’

bp»depend also on the time derivatives q(n), i(m), Vé(n). Vé(m),

i.e.,
if
h\)('g‘, * q(n) ,Vq(n)p u)(m) ,Vl’)(m)) = 0, 'g’ €T ,
(Cl1.20)
b (8 v & Ve T ) =0, §ER ae.

where dots stand for arguments mentioned in Egs. (Cl.11). Now we
assume that-hv(e,?(n),Vq(n),w(m),vw(m), <)Y, v=1,...,N,and b (6 ‘( )
Vq(n),w(m),vw(m),vw(m), s p=1,...,R, are the independent (cf. the
last footnote) differentiable functions. The derivatives ahv/aqa,...,
db /Bq ;... in Egs. (C1.13), (Cl1.14), (C1.16) - (C1.18) have to be re-
placed now by the derivatives dh /aq s-+.0b /aq ,.;., respectlvely,
all other relations remain valid. This is the case of the anholonomic

constraint inclusion.

Remark 2. The foregoing results can be also modified by introducing
other sets of the test functions. These sets may be obtained by repla-
cing the derivatives dh /aq r-..s0b /aq ,...3b / BVyd in Eags. (C1.13),
(C1.14) by the known functlons h 1+--4 b ,...,Bd, respetively. These
new functions h ,..,,ES have also to reglace tﬁe derivatives Bhv/aqa,

_ v
...,abp/avwd, respectively, in Eqs. (C1.16)- (Cl1.18). Such treatment

(1) We have tacitly assumed here that the initial conditions are not in-
cluded into the description of the problem.
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includes, as the special cases, the geometric and anholonomic constraints

(k) (k) (k) (k)
. _ . . . , v v
and can be also used if k-th time derivatives ¢ (n) (m) q(n), (m)

o

are the arguments of all functions h , bp defining the set Q. Then

a _ (k). =d _ = (k)
= ey = 9ob ) .
hv abp/a dr- - bp ] p/BV Vo3

Remark 3. Comparing the results obtained above with those given

is Sec. 7.4. we conclude that the formulation of some special pfo—

blems can also include certain modification of the shell field equa-

tions.

1.3. Reliability of solutions

Let us assume that we have solved the special shell problem under
consideration (1), i.e., that we have found the triple of functions
(N) (p%_ In the non-linear problems it may happen that there

(q(n)'T i
. . . (N) (p)
exist many physically reasonable solutions (q(n),T 0 )

. Let us
take into account an arbitrary but fixed solution. Now the question
arises whether this solution is reliable from the point of view of

the classical "three dimensional” mechanics of shell-like bodies.

The estimation of the "errors" involved by using the shell theory
instead of the classical solid mechanics was stated in [26] as one
from the two main problems of the general theory of plates and shells
{cf. [26],p. 444; the other main problem was stated as the development
of the shell theories as approximate theories relative to shell-like
bodies). In the engineering applications of the shell theories rather
intuitive reasoning is usually used to evaluate the reliability of solu-
tions. It follows from the fact that the general analytical methods of
estimating the "errors" introduced by the shell theory are unknown.
However, certain necessary conditions imposed on the solutions of the
special shell proklems can be formulated. To do this we shall assume
that the shell theory under consideration was obtained by means of

the formal approximation or constraint approaches. It means that if
the fields q(n),T(N), ép)' have been found, then from Egs. (A5.9)

we can calculate the "three dimensional" fields p = p(X,t), T = T(X,t),

A(s) = A(S%é,t). After that we can calculate the field a(m) from Egs.
A(s)) < 0 and the

s < < . .
(AS’S)IT If j £0,0 £ 0 for every SO,EO with J(Eo'zo’

(1) cf. Remark 1 to Sec. 1.1 of this Chapter.
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values of the fields au are sufficiently small (for example, of an
order of numerical errors of the calculations) then the shell solution
(q(n),T(N),w(p)) can be treated as reliable from the point of view of
the constitutive relations. Mind, that the fields a,a in Egs. (1&5.8)2,3
cannot be uniquely determined within the mechanics of the shell-like

bodies.

Next let us assume that the fields BR} ER in Egs. (A5.7) can be
evaluated with the sufficient accuracy (;). Then from the fiéld equa-
tions of the solid mechanics (A5.7) we can calculate the forces rR, SR'

The external forces (bR, BR)' sR) are elements of a certain linear

g%,
space. Let us introduce in this space the finite system of pseudo-norms
|:(-,-)E!K, k =1,...,K, which characterize, roughly speaking, the
magnitude of the external forces from the point of view of the quanti-
ties we are interested in. These pseudo-norms can be taken, for example,
as the norms of the external forces acting on a certain parts of the
shell like body at certain time instants or in certain time intervals,

cf. [45]. If the conditions
I} (£ rSp) Il sl (bR )b v =1,..., K (c1.21)

hold, € being the known positive number Sufficiently small with respect
to unity, then we shall say that the shell solution ( q(n),T(N),m(P))
is reliable form the point of view of the field equation. It must be
stressed, however, that the formulation of the physically reasonable
conditions (Cl1.21) cén be difficult because rather intuitive reasoning
has to be used in evaluating the fields Qgpﬂgq) (cf. the last footnote)
and in introducing the suitable pseudo—norﬁs ]|(-,-)§|K. On the other
hand, in the constraint approach the physical sense of the Egs. (Cl1.21)
is rather clear. It is the condition which postulates that the reaction
forces maintaining the constraints leading to the shell theory have to
be sufficiently small with respect to the external forces acting at

the shell like body. The reaction forces QER"ER) are treated here as
certain "imaginary" forces which have been introduced, together with
the suitable constraint inclusion, only “to render the theory more

treatable",[2]. Such constraints have been called in [2] the simpli-

fying constraints. Some applications of the inequalities (Cl1.21) can

(1)We have bp = b+ B+ B = Br + Prs where Bp., Bp are the loadings
which are known (ig the function b is known), and % 1Pp are the unknown
reactions(usually bg = O)which can be evaluated only with a certain
approximation. ~
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be found in [45]..

(N) ’w(p)

The solution (g ) of the shell problem will be called

T
(n)’
reliable if it is reliable from the point of view of the constitutive

equations and that of the field equations hy.

Remark. If we interpret the shell theory as a certain formal appro-
ximation of the solid mechanics relations for a shell-like body (cf.

Sec. 2 of the Chapter A), then the fields a s_ are interpreted

m) ' ~R' <R »
as certain "error" fields. The introduced above conditions (Cl1.21) (as
well as the conditions imposed on the values of the fields au) postu-
late that the "error" fields have to be sufficiently small. Thus the
problem of reliability of the solutions has the same character in the
constraint approach to the shell theory as in the case in which the

shell theory is obtained from the formal approximation of the solid

mechanics relations.

1.4. Some open questions

The problems in the general mechanics of plates and shells are
connected mainly with the approximation and the constraint approaches
(which have many common features, cf. Chapter A) because the direct
approach séems to have rather theoretical meaning. Among these problems

we shall mention the following:

o
1. To determine the form of functions p, ,g?,x? . etc. in the

T
~R
approximate and constraint approaches, which lead to the reasonable

form of solutions to the different classes of problems.

2. To estimate the applicability of the different shell theoriés
to the different classes of special problems by comparing the
results obtained from the approximate and constraint approaches
with those of the classical solid mechanics

3. Introducing the functional sequences of the form p = Eﬁgpﬁrq(n))r

~

where "n" runs over certain infinite subsequence of the sequence
1,2,3,...,to evaluate the influence of the integer "n" on the
solutions of special problems and to analyse the convergence

problem when n + o,

(1)We have tacitly assumed here that the special problem under consi-
deration has been correctly stated and its solution is physically rea-
sonable.



- 147 -

4. To give the correct formulations of the different special pro-

blems within the shell theories.

5. To find the conditions that ensure the existence, stability
and, if needed, the uniqueness of the solutions to the special

shell problems.

The problems mentioned above have been treated suécesSfully only
in some special situations mainly in the theory of small deformations
or in the theory of linear elastic shells. The particulars can be
found in [4,8,16,17] and for the general reviews of these problems

the reader is referred to [18,26,29].
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2. ALTERNA'fIVE APPROACH TO SPECIAL PROBLEMS

In the previous section we have assumed that a certain plate or
shell theory is known and we have described the formulations of special
problems within this theory. Now we are to assume that a certain special
problem has been stated within the solid mechanics. We shall show how
to pass from this "three-dimensional" statement of the problem direct-
ly to its formulation within certain shell theory. We shall also adopt
the obtained results to derive the formulation of the "non-classical”

problems for rods.

2.1. Statement of problems in solid mechanics

The governing relations of solid mechanics will be assumed in the

form of the following field equations

. R T
Div (V£Z)+BR=DRE Iz=2 ’
(C2.1)
(VBE)gR = E.R '
and the constitutive relations
fu(z'SIEIA(S)) = 0, u=1, .m=6+S ,
5 x.crat®) <o,
. (s) (C2.2)
©(X,C.T, A" ,C /T ) <0 for every C ,T with
. (s
LB IR P

The foregoing relations have been discussed in Sec. 2.1. of the Chap-

ter A and have to be interpreted here as the interrelation between

,A(s)

the triple of the basic unknowns (p,T , the deformation function

p, the second Piola-Kirchhoff stress tensor T and the ordered set of

\ (s)

"internal and kinematical parameters" (!) and the external forces

(1) The fields Al,..“,AS are treated as the internal parameters (which
are described by the constitutive relations f. =0, u =6+ 1, 6 + S)
and the fields AS+1,‘..,AS are interpreted as the kinematical parame-
ters, independent of the deformation function p. The integer S is known
for each material, 0 £ S £ s, cf. Sec. 2.1. of the Chapter A.
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(pR,bR)(the surface tractions pR and the body forces BR)' The set of
all deformation functions which are admissible by Egs. (C2.1), (C2.2)
will be denoted by C (we can assume that C := {p|det|Vp > 0}). The

linear space of all external forces will be denoted by F.

We shall say that the special problem of the solid mechanics has
been stated if the form of Egs. (C2.2) is known and if the following

conditions are satisfied:

o o
1. There is known the non-empty subset C of C which characterizes
all motions of the solid admissible in the problem under consi-
o]
deration. The relation C © C will be called the constraint

inclusion.

2. There is know the system of external forces given by (QR(p) gR
(g)), where ( ), Q (.) are the known functlonals defined (for
every X € KR(B) and t € I) on the set C The external forces
PR'gR) will be interpreted as the known loadings acting at the

body.

3. For every p/p € C there is deflned the non-empty subset 13 ofl?whlch
characterizes all reactions (p b Ywhich can maintain the defor-
mation p admissible by the constralnt inclusion (or which are

due to the constraint inclusion, cf. Sec. 4 of the Chapter A).
o o
Thus the character of the sets Fp depends on the set C.

4, For every BB € 8, there is defined the non-empty subset ; of
F characterizing all reactions (ER’ER) acting at the body (in
the motion described by g) which are not due to the constraint
inclusion (for example, the forces of friction) and cannot be

treated as the loadings (1).

At the same time we shall postulate that

=P (o) +B +5
Pp = BR'B) ¥ Pp T By
b =B (o) + B+ b )
~R  ~RE ~R  ~R°

A A
(1) The forces, which are defined by the relations of the form p_ = pR

(p) will be always interpreted here as the loadings.
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Thus every special problem within the solid mechanics will be described

by Egs. (C2.1), (C2.2), by Egs. (C2.3) and by the conditions

S ,8)¢€br b by EF
(E,R'NR) Fp ’ (:gR"VR P
€S (C2.4)

vo

We can observe that the special problems of solid mechanics (inthe sense
described above) are determined by the form of Egqs. (C2.2), by the
set 8, by tze functionals QR(')' gR(') and by the sets of gxternil .
forces %p’ Fp, defined for every P € & (). The pairs (§R'2R)' (Eh'BR)
will be called the constraint reactions and the field reactions, re-
spectively. Thus the constraint and field reactions are determined,

in every problem under consideration, by the multifunctions

o [e] o *
CEpi—»FPCF ,C:p»ch F. (C2.5)

o .
If C C then there are no constraint reactions and we shall assume

o o o
that Fp {(9,8)} for every p € C. The constraint inclusion C < C

togetHZr with the multifunction

(e} v
C3pw chF (C2.6)

~

v o * vV Vv o * X
where F = F_ @ F_, (i.e., (p.B) = B B) + (g B). define the
constraInts Tmposed on the solid body. Examples of constraints in
'solid mechanics can be found in [45] and the related papers (cf. also
Sec. 4.1. of the Chapter A and examples below). In the special problems
of solid mechanics analysed here we shall take into account exclusive-
ly the constraints describing the situations which can be interpreted
as "physical”. These constraints, however, can also include all idea-
lizations of the problems which are usually met is solid mechanics.

For example, in determination of 8 we can assume that the supports of
the body are absolutely rigid or the the material of the body is in-

compressible. On the other hand, we shall not introduce here the con-

straints solely in order to simplify the description of the problem

(1) The initial conditions for (p,T, ﬁs)) can'be either stated inde-

pendently of the formulation of'g'gpecial problem or can be included
into this formulations, cf. Remark 1 of the Sec. 1.1. of this Chapter
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(for example the constraints leading to the theories of plates, shells
dr rods, cf. Sec. 4 of the Chapter A) (1).

Example 1. Let BKR(B) = 51 U §2, S1 n 82 = ¢ . The constraints given

by

(o] .
C := {p[pls is known},
~) o 1

v VvV v v
F = = = R
p iT 1 (Bprkp) lBp =8 . Py s, 8}

lead to the well known classical boundary value problems. We have here

1 o * .
Fp = Fp' Fp = {0} (i.e., there are only the constraint reactions) and

the multifUnction (C2.6) is constant.

Example 2. Let the solid body can move only in the region @ of the
reference space bounded by the smooth surface 3Q with interior normal
n and let the contact between the body and the surface 3@ be friction-

less. Then
o -
c : = {p|lp(x,t) €Q for X € ke (B) and p(X,t) € Q

for X € BKR(B) , t €1},

By iB =8 pxt €225 (x,t) =g and
p(X,t) € 30 = éR(gé,t) = A (X,t)n for almost every

X€d _(B) , t €I and for some A_,A_ = O} .
~ R R R

% o ’
Here also Fp = Fp but the multifunction (C2.6) is not constant.

~ ~

2.2. General form of governing relations

The formulation of special problems introduced above is too general
' for the further analysis because it does not give any informations
about the form of the multifunctions (C2.5). In what follows we are

to deal with a certain class of these multifunctions. To describe this

(1) Such constraints in [1] have been called "simplifying" constraints.
It must be stressed, that the terms "physical” and "simplifying" are
related to the interpretation of certain phenomena within the mecha-
nics and often may here rather pure conventional character, cf. Sec.
4.1. of the Chapter A.
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class let us introduce the space D of the veétor functions defined

and continuous on Ke (B) and differentiable in Ko (B) . Let us also de-
note Pe = p( AR for every t € I and every P € C To 1nterrelate the
constralnt inclusion C C C with the sets of the constralnt reactions
Sp, B € C, we shall firstly assign to every R the suitably chosen

non-empty subset Hpt of D; elements h of Hpt will be called the test
functions. The well known example of the test functions in mechanics

-are the virtual displacements. We shall characterize the multifunc-

tion (C2.5)1 by means of the following assumption.

o) o
Assumption 1. The sets Fp, p € C, of the constraint reactions (Eﬁ'

o
BR) are given by

Po.= {( B

(
o o) o

, + . 2
b P.:b )| § P hda J bR hdvR O for

NR ~e
BKR(B) KR(B)
(c2.7)
o
every h € H , PEC and t € I} .
D .
The foregoing assumption states that the total rate of work of

the constraint reactions on an arbitrary "virtual displacement” h is

always non-negative.

o) o)
Example. If the sets Ct of all P ( where p € C) are convex in D

~

then we may assume that

_ - )
H. := {h|h = p, - p, for some p_ E'Ct}

for every p,., t € I.

If the constraint are bilateral at p)(cf Sec. 4 of the Chapter a),
ie., if B B € Fp = (BB € F S thenp €H, = BEH, .t € 1.
The inequality in Eq. (C2.7) can be ﬁﬁen replaced by the equallty and
the total rate of work of constraint reactions can an arbitrary "vir-

tuai displacement" is equal to zero.

In order to give the description of the multifunction (C2. 5)

shall assume that the field reactions (p b ) are due to certaln sys-
W W) ~R'~R

tems (p ' Eh ) u=1,...,m, of the external forces which may act

at the body and which, roughly speaking, "control" the motion of the
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" body. That is why the systems (p(u), (U)) will be called the control

forces. We shall assume that in every problem under consideration the

instant values of the control forces are determined by certain known

functionals defined on the sets 8 , i.e., that pép) = pQU)( ). (U) =
N;u)(p ), where p( (.), béu)( ) are, for every t € I, the known
functionals. To every system (p(U) (UH, =1,...,m, and every t,

t €1, we shall assign the subset Dé“) of D of the virtual displace-

ments on which the control forces do the work. Denoting

=2

if h
(1) ~
Gt B =

6 if h D\Dém

we introduce the functionals

m

I E:E: [4 0 . s paa J p(W) - 5V

p=1 BKR(B) R(B)

hdv ] (c2.8)

deflned on D for every Pyer t € I (such that p € C) and every t € I.
The functionals (C2.8) represent the rate of work of all control for-
ces. In order to interrelate the unknown field reactions with the

control forces we shall introduce the following assumption.

* o * X
Assumption 2. The sets F_, p € C, of the field reactions (PR'RR)

4]

are given by

*
F_:= {(

B ;)' hda_+ b -hav.2J (h)
p Pr'RR %R AR AR =Yp &

dxg (B) < (B) ~t
(C2.9)

: o
for every h € D, p€C and t €1}

This assumption states that the total rate of work of the field
reactions on an arbitrary displacement is never smaller then the
corresponding totél rate of work of the control forces. We see that
'if all control forces are equal to zero then the field reactions will

be also equal to zero.

It must be stressed that both assumptions are based on certain physi-

cal premises and generalize many different situations connected with
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the descriptions of the various special problems of mechanics. They do
not express the laws of mechanics but rather have the character of
the constitutive hypothesis which define certain class of multifunc-

tions (C2.5). To this 'class we shall confine ourselves in this Chapter.

Let us observe that in viewof H. <D for every P, Eg. (C2.9) holds

Pt

also for every h € H_, . Then taking into account Egs. (C2.9), (Cc2.7),

Pt
(C2.3) and (C2.1) we obtain the inequality

J tr (ERV}}’)dvR 2 % §R -RdaR-i- J (:B'R —pRg) -'l;l,dVR'l'J {h)

kg (B) 3k (B) kg (B) ~
(C2.10)

in wgich 'T'R: VBE and which has to hold for every '13 € Hpt, t€1 and

)3 € C. The inequality (C2.10) will be referred to as the basic inequa-

lity of the solid mechanics problem under consideration and has to

be considered together with the constitutive relations (C2.2) and with

phe condition B € 8. If the material of the body is simple, i.e., if

Egs. (C2.2) reduce to the form

I'R = IR('}\(‘,Vg(’)\(‘,t—s)), s>20 , (C2.11)
where E;(E,;) is the known reponse functional for every X € KR(B) then
the special problems of solid mechanics (in the sense described in
Sec. 2.1) will lead ot the inequality obtained by substitution of the
RHS of Eq. (C2.11) into Eg. (C2.10)

Summing up, the general form of the governing relations for the
special problems under consideration is given by Egs. (C2.10), (C2.2)
and by the condition p € 8. For the simple materials it reduces to
Eq. (C2.10) (where tﬂ; first Piola-Kirchhoff stress tensor IR is given
by Eq. (C2.11)) and to the condition g € 8. For linear elastic bodies
the analysis of the "unilateral” special problems can be found in [10]
and for linear visco-elastic and elastic-plastic bodies some basic

"non-classical"” problems have been investigated in [8].
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2.3. Passage to plate and shell problems

Now let us assume that B is the shell-like body, i.e., that (B,KR)
represent certain parametrized shell (cf. the Prerequisites). Then the
question arises how to describe (at least, from the formal point of
view)thespeéial probiems of solid mechanics, governed by Egs. (C2.10),
(C2.2), in term of functions which are independent of the material
coordinate £, & €(h_,h+). We shall answer this question using the for-
mal approximation procedure developed in Sec. 2 of'the Chapter A. To
this aid let us introduce the set P of deformation functions of the shell-

like body B, putting
= = p(X, v 2.12
P {£|£ E(f“ 9 (p) 9, for some q . € o} ( )

where P(-) is the known sufficiently regular function and Q is the set

of all q(n) = {qagg,t), g € ﬁ, t€1, a=1,...n} such that det VS > 0
(o] -

for every q(n) € Q. We shall assume that P N C # ¢ and denoting C =

= P N C we shall also assume that the set C can be given by
Ti=1{plp=3 v € 9} 2.13
C := plp= B(}\(,.q(n). q(n)) for some q(n) 0 (c2.13)

o)
where Q is the known subset of Q.

(s)

Let S be a set of the triples s= (p,T,A ) which are the solutions

of Egs. (C2.2). We shall "approximate” (1) the set S by the set S of

~ o~ ~(s) ~ 3 (s)

the triples '; = (p,E,A ), such that p € 'E and E, are determined

by the RHS of Egs. (A2.6), (A2.7), respectively. Then using the formal

approximation procedure determined by Egs. (A2.8) (a2.9), (A2.10)3_5

4-6'
(A2.13), we shall arrive at the constitutive relations (A2.14) which

14

can be interpreted as certain "shell approximation" of the constitutive

relations (C2.2) of the solid mechanics.

In the general case the pair (ELE) satisfying (C2.10) for every

T(s)) € S may not exist. Thus we have to

h € Hy and such that (p,T,
"approximate"” Eg. (C2.10). To this aid we shall define the subset H of

the space D putting

(1) Here and in what follows the “"approximation" is understand in the
sense of the formal approximation procedure, described in Sec. 2 of
the Chapter A. This procedure can be also interpreted in terms of the
constraint approach, cf. Sec. 4 of the Chapter A.
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a aq
.= = .14
H : {thk ov, * ¥ v, , for somev . € v} (c2.14)

(n) = {va, a=1,...,n}

= . a ao
defined and continuous in I and smooth in II, and where‘g . 2 are

where V is the linear space of the functions v

the known functions introduced in Sec. 2.3. of the Chapter A. Apart

from the conditions given in Chapter A we shall assume that Hp NH*¢
~t
for every p Denoting q = H N H we shall also assume that the
At Be Bt
sets H. are given by -
Bt
H, := {hlh = 0% + 3% for some v, . €V } (C2.15)
R ~'k k' a k a,o (n) q
(n)t

where Vq(n)t agg the known subsets of V, defined for every q(n)t51q(n)
(.,t), 9 (n) € Q.

Let us observe that the conditions PN C =C, HN Hp = HP (where
~ o~ ~t ~t
C, Hp are given by Egs. (C2.13), (C2.15), respectively), determining

the ?grmal approximation, modify the character of the special problem
of solid mechanics under consideration. It follows that not all pro-
blems of the solid mechanics for the shell-like bodies, which are
described by Egs. (C2.10), (C2.2), can successfully treated by the
'relations independent of the material coordinate §.

Now restricting the sets H, of Egs. (C2.10) to the sets ﬁ;

p
~t ~t
given by Egs. (C2.15), after simple calcualtions we arrive at the

o
relation (C1.10) which has to hold f r €Ev_. €
( ) which has o) or every V() q(n)t' 9(n) Q,
t € I, and where:
~aa3~a ~ . .
‘l.HR h aredefined by Egs. (A2.29)g being defined by Egs.(A2.6).

2. SER' 3:”,?:, %:a are the shell loadings, defined by

Aa _ Aa _ d (Aaat ) Aa
Por © Pr ET Pp Ra’" PR ° pR Ra

and'by the RHS of Egs. (A2. 24) (A2.25)' in which in the places

of b ’ p we have to substitute gk, 3 , respectively.

3. i;, i:a are the shell inertia forces defined by Egs. (A2.24)6 7

: o
for q(n) € Q.
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4. The functional J is defined by
q
(n)t
i (W a. (u) (v)aa ()
= dai_ +
Jq(n)t(v(“ﬂ :E: ?[(pR st Va * Pr S¢ va.a) R
u=1 9ol

(C2.16)

(wya_(u) (w)yao . (p)
+ J(fR ﬁt Va + fR 6t va,a)daR]
n

where péu)a, péu)aa, fé“)a, féu)aa are determined by the RHS
of Egs. (A2.25), (A2.24) _ in which in the places of p;, b:

we have to substitute pé“sk, béU)k

have introduced here the denotation

, respectively. Moreover, we

) (n)
v if v € v
sWy o) (m) = ¢ (€2.17)
£ (n) (u)
¢ if Vin) € V\Vt
where V(“) are the non-empty subsets of V, such that the sets
Béu) = Déu) N H can be given by
AL {h|h, = o2v  + y3% for some v € V(u)} . (C2.18)
t k k a k a,a (n) t

Summing up, the special plate or shell problems are governed by
.0 .
q(n) € Q, by the condition (C1.10) and by the shell constitutive re-
lations (A2.14). All fields in these problems are independent of the

material coordinate £.

Remark 1. Let us observe that the formal structure of the governing
relations for the special plate or shell problems obtained above is
the same as that describing the special problems of the plate or shell

theory which has been obtained in Sec. 1.1. of this Chapter (cf. Egs.

{(C1.10), (A5.6)). However, the shell loadings-pa, p:a, £2, £2% and the

Al(u)a A(ulac A(w)a A(un)ac R R R
control forces pR R pR R fR ' fR , which in Sec. 1.1. have
been assumed a priori as certain functionals of q(n), now are related

(w) (W)

to the loadings (SR,QR) and to the control forces (pR ,bR )of the

shell-like body.
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Remark 2. The comments concerning the relability of solutions which
have been given in Sec. 1.3. remain valid also for the solutions of

problems described above.

2.4. Passage to rod problems

Now let us assume that B is the rod-like body (cf. the Prefequisites).
We shall try to describe the solid mechapics problems, governed by Egs.
(C2.10), (C2.2), in term of functions which are independent of the
material coordinates Q = (61,92), g € II. Making use of the analogy be-
tween the formation of the rod theories and the shell theories (cf.
Sec. 5.3. of the Chapter A) we shall apply the procedure which is ana-
logous to that used in the Sec. 2.3. of this Chapter. Firstly, we shall‘
inﬁroduce the set P of the deformation functions of the rod-like body
3 by the formula of the form (C2.12) in which Q is the set of all rod
deformation functions q(n) = {qa(g,t), £€‘dkjh+>, t€I1,a=1,...,n}.
'q(n)'q(n),B = gQQ.E,

) is the known sufficiently regular function. We shall de-

It means that Q = {q(n)ldet VS(e,g ) = 0}, where

o

a
Yy ,3’ " o -
fine the set C putting C = P N C and assume that C # ¢ and that

S :=(plp=53 £ € 9
C:=1piP = B(X'q(n)'q(n),3) or some q ) 2

~

o .
where Q is the known subset of Q.

Secohdly, we shall "approximate" the set S of all solutions s = (p,

(8)y of Egs. (C2.2) by the set S of the triples 3 = (S,';E,'X'(S)).
are determined by the relations

v (s)
M9, ¢,

k)
putting S € ¢ and assuming that E,
obtained from Eqs. (A2.6), (A2.7) by replacing the arguments T

0® .0 by 1M ig,0, 0P

(£,t), respectively. Using the same proce-
dure as in the previous section we shall arrive at the constitutive
relations (A5.16). They constitute certain "rod approximation" of the

constitutive relations (C2.2) of the solid mechanics.
Thirdly, we shall introduce the set H in the space D by the formula

a a . .
o= = ¢ v + ¥ v ).
H : {hlh] v '3 for some V( ) E } (Ca- 19)

in which V is the linear normed space of the sufficiently regular func-

tions v(n) = {va, a=1,...,n} defined on <h;,h+>; the symbols 2?,2?
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stand for the known fields introduced in Sec. 5.3. of the Chapter A.

Putting H = H N H we shall assume that B are the non-empty sets
E R P
given by
~ a a
. .= = + -
H, = {Blhk ¢kva kaa,3 for some Vim) € Vq } (C2.20)
~t (mt
where V are the known subsets of V defined for every q =q
(Mt o (n)t (n)
(.,t), q(n) € 0. (In Eq. (C2.20) the function Et and q(n)t are inter-

related by b, = P(Q'g’q(n)t’q(n)t,3)'

At least, replacing the sets Hp in Egs. (C2.10) by the sets'ﬁp
t

introduced above, after some calclaltions we obtain the relation ~

+
ll~a '~a Na
J(— Hev, 33 + 'Hpv, 5 - hpvode 2z
h—
Aa ,Aa Aa ,Aa

2 [pgv, pRVa,3]h_ [Ppv, Rva,3]h+ + (c2.21)

h

+

ANa - Aa _ .a
+J[( £ ighv, 3+ (Ep idv,ldg +J (n)t(v(n)) '
h—
o
which has to be satisfied for every v €Ev , a €0Q, t €I,
(n) Yyt (n)
where :
m

J (v, )= (Wwa (n) wag ()

q(n).t (n) 22:1{[pR 8, Vv, * 'Pp S, Va,3]h—+

(Wa(u) uya (w)
+[F§ 6t vt Py 6t Va,3]h+ + (c2.22)
h+

(Wya, (u) e dag (o)
+J (fR 6t v, + fR st va'3)d£ }
h

and where:

~3a ~ 3

1. "'E;';, 'H>, 'h coincide with the RHS of Egs. (A5.15),
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Aa  ,Aa Aa

A

2. | fR, 'f; are the rod loadings defined by the RHS of Egs.
A

i i hlace , -

(a5.14), (1\5.12)4’5 in which BR' p. have to be replaced by gﬂ Eﬁ

3. i;' 'i: are the rod inertia forces defined by Eqgs. (AS.12)7 8 L.

Moreover, in EqQ. (C2.22) we have used the denotations (C2.17), where
V(u) are the non-empty subsets of V such that the sets Béu)i D;U) n8u

are defined by

~(n) _ - a (w)
Dt 1= {g[hk ¢kva + kaa,3 for some Vin) € Vt } . (€2.23)

(u)

We have to remember that the symbols Vv, V v denote now the

q 14
(n)t
sets of functions defined on <h_,h+> x I and q(n) is now the rod de-

formation function.

The relation (C2.21) is independent of the material coordinates
8 = (61,62). Thus the special rod problem is governed by the condition
q(n) € 8, by Eg. (C2.21) and by therod constitutive relations (A5.16).
For the simple materials Egs. (A5.16) are identities (cf. Sec. 5.3.
of the Chapter A) and the problems under considerations are described

o
exclusively by the inequality (C2.21) with the condition q(n) € Q.

Remark -1. Using the general analogy between the formation of the
shell theories and the rod theories (cf. Sec. 5.3. of the Chapter Aa)
we can easily apply the results of Sec. 1.2. of this Chapter (con-

cerning the constraint functions) to the special rod problems.

Remark 2. The question of the relability of solutions of Egs.
o
(C2.21), (A5.16)(with the condition q(n) € Q) has to be treated ana-
logously as in the case of the special plate and shell problems, cf.

Sec. 1.3. of this Chapter.

Remark 3. The roleof the initial conditions is analogous to that
described in Sec. 1.1. of this Chapter, i.e., they may be either in-

cluded into description of the special rod problems or treated separate-

ly.

(1) In the formulae of Sec. 5.3. of the Chapter A which are quoted here
we have to assume that d¢a==¢adaR or = ¢ale, ay? = \PadaR or = Wale.
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3. PROBLEMS IN THE SCALAR PLATE THEORY

In this Section we shall illustrate the general consideration of
Sec. 1.1. of this Chapter taking as an example the simplest plate theory,

namely the scalar plate theory (cf. Sec. 1 of the Chapter B).

3.1. General formulation

We shall assume the field equations of the scalar plate theory in

the form

B 4w an o+ o= (C3.1)

R,aB R, R R R
~and

d af Ba
+ I =
B Ra i, (e trare’ * PR'g"Ra = Por
(C3.2)

HBO: = —pm '

n_.n_ =
R RB Ro R

where we denoted

d a N o

Py = Pphp, (€3.3)

I
el
|

)

ct

Por =
: o .

In Egs. (C3.1), (C3.2) we have neglected the terms with fR and i; in

order to simplify the notations. The constitutive relations will be

assumed in their general form described by

af _ ~aB 2 (N)
HR - HR (QrQ:Vq,V q,T )I
B = T (e,q,vq,v2q, 1V, (C3.4)
R R '~
o~ 2 ()
hR = hR (Qﬂq,Vq,V q,T ),

and by Eqs. (A5.6) for q . = ai symbol q = q(g,t), gETN, t €1,

stands for the deflection of the undeformed plate midsurface (this mid-
surface coincides with the closed region 1l on the parameter plane x3==0).
The set of all deflections will be denoted by Q. The inertia term iR.hlEqs.
(C3.1) can be given by

oK oK
i =2 _R__R (C3.5)
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where KR = K (G,q,é) is the plate kinetic energy function. The func-

tion K (.) as well as the functionals on the RHS of Egs. (C3.4) and the
form of Egs. (A5.6) (with q(n) Z g) are assumed to be known. By the
(N)

basic unkowns we mean the plate deflection g and the functions T .
m(p). The systems of external forces are represented by y ==(p ,pu,f )
and the linear space of all Yr will be denoted by Y. The system Yp will

(N) (p))b the formulation of the

be related to the basic unknowns (q,T
special problems of the scalar plate theory. The general formulation
of such problems, realized within the analysis outlined in Sec. 1.1. of

. this Chapter, includes:

1. Determination of the set Qo' QO < Q, of all admissible (in the

problem under consideration) plate deflections.

2. Decomposition of the external forces Yp = (p R’ pg, fR) into the

A A A v VN V
1 i = = r ’ ’
oadings Yr (poR r/N' fR) and reactlons y (poR Py )

A A
where Pop = poR(q)' pg p”(q). fR =

R(q) are the known func-
o
tionals defined, for every 2 € H, t € I, on the set Q of the

admissible plate deflections (cf. Eq. (Cl.1)).

\ o
3. Decomposition yR yR + yR of the reactions y into the constraint
o * * *N
reactlons = , t d =
y ( R,p; fR) and the field reactions ZR *(po ’pwl

f ), cf. Eq (C1.3), and determination of the sets Yq' Yq, q € 9,

of all y P y by means of Egs. (Cl1.2), (Cl.6), respectively.

After that we can eliminate the system Ygp = (poR,pE,fR) of the plate
external forces from the field equations (C3.1), (C3.2) and to obtain

the final system of relations for the basic unknowns q,T(N),w(p)(cf.

Egs. (C1.10), (AS5.6). If the plate is elastic or even simple then the
argument T(N) drops out form Egs. (C3.4) and Egs. (A5.8) are identi-

ties (cf. Sec. 2.2 of the Chapter A).

o
In what follows we shall use the denotations %qo= 8q x %g X Fq and
* 0% * * o o * *
= X ’ € E € ’
iq Pq PN Fq where p pE Pm f Fq and p R P

AN g
€ PN, f~ € Pq for every q € Q We shall alyadenoteq N =g g
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3.2. Examples of problems

We shall give now some examples of problems of the scalar plate
theory. By A,T we shall denote the known smooth and open parts of 9ll
(which may be also empty) and we shall use the denotation AO = 3m\a,
Fo = oN\A. Moreover, by K we denote the subset of Q such that for the

stationary problems K := {qlq 0} and for the dynamical problems

o) 0 o
v} where q,v are the known regular

o .
K := {q|q(-,to) =4q ., Q(-rto)
functions defined on 1. We also assume that the plate is elastic and

A A AN A
that the 1 i = , ’ .
a e loadings Yo (poR pg fR) are known

Example 1. The plate with the classical boundary conditions. In

this case

8 := {q|q€K and q|, = | = o}
Q := 1qjq €K an qA-O’q,E'F_O'
] o o ON OoN oN
= = 0 ’ I~ 2= =0 ,
Pq {poR]poRlA ) Pq {pﬁypﬁlr }
o o
o o O _
Fq.-{fR!fR—o},
Y {e}
Y =
q
s) ON © o
The sets Qq = Pq X Pg X Fq are here independent of q, g € Q. Such pro-

blem will be referred to as the classical boundary-value problem and

o} o}
we shall denote Q Z Q, where Q is defined above.

class

Example 2. The plate with the boundary conditions as in Example 1
and with partial interaction with the rigid surface. ‘
Let x3 =z, 8 € M, ¢ > 0, be the rigid smooth surface situated "under"
the undeformed plate. Neglecting the thickness of the plate we shall
assume, that the plate is in a contact with this surface if qgg,t) =

= £(8). Then

8 :i={gla€o  __and q(p,t) <z(@®), OEN, £ €1} ,

class

v

o) o o
Fo = {fgla(@,t) < c(@) = £.(9,t) = 0 and q(g,t) = 7(8) = r (6,t) 2 O,

8€n, tert,

[o) oN *
and Pq, Pa, Yq are given analogously as in Example 1.
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Example 3. Unilateral kinematic boundary conditions ond and T

In this case

(o]
:= < P>
Q := {q|q € K and ql, €0 and 9 nir o}
O 0 o o
= o= = >
Fg= (o}, poe={ppla(@.e) =0 =p (8t 20, and
q(g,t) <O0O=p (8,t) =0,8 €L, tE€ I,poR~,'AO=O}
N N 2 oN
P‘E{' :={p§'|q,£(g.t) = [ﬁ'(g,t) 2 O and q,N('g't) >0 = Pﬁ'(ﬁrt) =0
ON| .
o €T, tEI,pElr = o} ,
o
¥ :={0)
Yq =10

The foregoing unilateral conditions can be also combined with those

given in Examples 1,2.

Example 4. Deflections and rotations with the friction on the boun-
dary (static case). Assuming that there are no "rigid" supports on the

o
boundary (i.e., of the type described in Example 1), we obtain qu={6}

and
(o] . o
Q :={qlg=01 , Fq = {0} ,
; = {p |(6t)-0=>* (0,t)|<k and q(6,t) # b _(0,t) =k
q T tPor!TRY F | Pog & and q(g,t) #0=p p R/t =~k
8 EA,tET ap_|. =0
~ ! » and pplp =01
(o)
XN _ %N v { XN ' *N _
P;-—{pﬁﬂq'N(g,t) =0 = Ip;{'('f\)',t” >1 and q'}g(rg,t) + (?=pi'(gv,t) =

= -8 (6,t) 8 ET , t €1 and *Nl = 0}
=t ’ Rir_ = %

where k and 1, Bare certain known positive constants or functions de-

fined on A x I and T x I, respectively.

Example 5. Deflection of the plate controlled by the system of forces.

Suppose that the deflection of the plate (which is supportedas in Example l)
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in the —x3 direction is controlled by the vertical force (1) with the

extremal value r(+)(g,t) and in the +x3 direction by the vertical force
o
with the extremal value r (8 t), where r >0, r < O. Then F_ =
* *N ( ) (+) (-) q

= {6}, Pq = {06}, p~ = {0} and

o

Q= Q1aes ’

; {§| 0 : ) d q(8

= ' = ’ r <
Fq R q(~,t) > 0= R(g t) r(_)(N t) an q(~ t) o =

* *
= fR(g,t) =r (6,t) and gq(8,t) = O = fR(g,t) €<r 8,t) ,

(+) (=)

ry@e >, BEm eI},

o ©
and Pq, P% are defined as in Example 1.
o . 0 . %k .
In examples 2 - 5 the multifunction Q@ 5 q + ¥q' ¥q = Yq ] Yq, is

o] i
not constant, i. e., for the different q, q € Q, the sets Yq of the

. v .
reaction forces yR are different.

3.3. Basic inequalities

Now we shall give the examples of inequalities in Egs. (C1.2), (C1.6)
and derive the basic inequality (Cl1.10) for the scalar plate theory. Let
V be the linear space of the scalar functions defined and continuous in
M and smooth in N (cf. Sec. 1.1.). Let us assume that the constraint
inclusion 8 C Q is configurational, i.e., the set 8 is determined by
the system of sets at' t € I, which define the admissible configura-
tions q, z g(.,t) of the plate (2) at the time instant t. We shall

: o
assign to every qpr 9 € Q , t € I, the subset V_ of V, putting

q
t
v € Vq iff there ex51ts € ,e > 0, such that for every €, 0 < E:SEO,
t
there is q. + gv € Q . Elements of Vq will be called the plate virtual

t
displacement at the conflguratlon q - Thus Egs. (Cl.2) yields

H By the vertical force we meanhere the force acting in the direction
of the x~-axis.

(2) We have tacitly assumed here that the scalar plate theory had been
obtained by the constraint approach, i.e., that the function q(f, t),

8 € M, t € I, determines the deformations R of the plate. In the formal
approx1mat10n the function g determines only the approximation p of the
deformations p of the plate, i.e., P € p_, cf. Sec. 2.0. of the Chapter A.
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(C3.6)

o)
>
+.1vadaR_ 0 for every v € Vqt, 9 € at’ t € 1}

I

. o) o
The external forces 8R, Yo € Yq, are said to be the constraint reac-

tions; they are the forces which maintain (or which are due to) the

o
constraint inclusion Q < Q.

* %
Now let us determine the field reactions y = (p R’ p”, f ), y €
€ Yq, q € Q, which have been interpreted before as due to a certaln
system of forces which "control" the deflection of the plate. Putting

* * * *
Y =P X P~¥x F we shall assume that
q q q

q
* *
= < < s
Py = {pple ) S pop < 5(yy)
* N, N N N
= < < ' .7
fg o= (I S B <oty (e3.7)
F {£_| <t < } €9
Fq = UMplry Stpsryl ~acQ.
where (s P sm , T ), (s R sM , X ) are the known values of
(-) (-) (-) (+) (+) (+)
the vertical "control” forces. We assume that s , S , T

=)' % T B

depend on Q,t,q(e,t) and that s% ),s§+) depend on 6,t,q N(e,t); more
~y -— Lard ’ ~y .

general cases can be also taken into account.

Denoting u+(2) = sup (u(g),o), U_QQ) = —sup(—u(g),o), where u € U (11,
we obtain A

* + * - N 0N+ * -

- > - > - 20,..., - 2

(PR S(_))u 2 0, (pp s(+))u 20, (py s';'_))u 20, (£ r(_))u o)
and

‘} [y = 5 ()™ + (B =5y + (B -yunt PR75 ()% dlp +

ol

[ * + * - S
+ (fR - r(_))u + (fR - r(+))u ]daR >0, te€ETI.
I

(}) The denotations here are slightly different then those used in 8 .
Symbol U stands for the space of all scalar functions defined and con-
tinuous in M and smooth in I.
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Introducing the rate of work of the control forces

& + - N + N - + -
E + ,
th(u) J(s(_)u +s(+)u +s~('_)u'E+sT+)u'E)le J(r(_)u +r(+)u )daR t€I1,
ol I
(C3.8)
we obtain the relation
(b u+ pou )AL+ |fuda 239 (), t €1
Por” T PR, N TR R"CR = qt(u ’ ' (c3.9)
ol Il
which has to hold for every u € U.
In the view of Eq. (C1,9)2_4 we also have
= ( 5 + + 5
Por © Por'? Por " Por
N AN ON *N
= + 3-1
PE DE(Q) p; + PE ’ (C 0)
f = ? (q) +% + ; ’
R ‘R R © 'R

A o
where SoR(')' Sg(.), fR(.) are the known functionals (defined on Q)
which describe the loading of the plate. The remaining terms in Egs.

(C3.10) are described by the inequalities (C3.6) and (C3.9).

Thus the special problem of the scalar plate theory can be stated

(N),w(p)) such that q € 8 and Egs. (C3.1), (C3.2),

as follows: find (q,T
(C3.4), (A5.6) (i.e., the field and constitutive relations of the scalar

plate theory) as well as Egs. (C3.10), (C3.6), fC3.9) hold.

Using (C1.7), we shall denote the total reactions by

y .9 *
Por " Por " Por ’
VN _ oN . *N (C3.11)
v o *
= +
fR fR fR '

o
as the sums of the constraint reactions ?R = (%oR’ %%, fR) and the field

* * *y X
reactions yR = (poR'pE' fR). Now we are to obtain, from the system of

relations mentioned above, the basic inequality (C1.10). Because of
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Vq c v, from Egqs. (C3.10), (C3.6) and (C3.9) we obtain the relation
t

cL S v+ jar + | fvda2a (v (€3.12)
7 'Por RN TR T RVORT ! ’
3

which has to hold for every virtual displacement v € V_, . Eliminating

q
v t .
pr, 52, ¥R from (C3.11) by means of Egs. (C3.10) and taking into

account Egs. (C3.1), (C3.2), (C3.4), after some calculations we arrive

at the relation

g8 o - >
J ( HR V,aB + HRV, th)daR >
n (C3.13)
A AN
> s
2 % (pRv + pEv'N)le-+J(%R 1R)vdaR+Jq (v)
an ~ m t

0
which has to hold for every v € V. where qe € Qt' t € I. This rela-

tion will be referred to as the b:gic variational inequality for the
scalar plate theory problems. It constitutes the special case of the
inequality (C1.10) and states, that the-total virtual rate of work of
the loadings and the inertia and control forces does not exceed the
total virtual rate of work of the internal forces. If there are no
field reactions (the control forces are equal to zero) then the varia-

tional inequality (C3.12) leads to the following principle of virtual

work:
J(—%“Bv + v -hviaa >
R ,aB R ,a R R
m (C3.14)
2§($v+’;‘1~v)d1 +J(/f\—i)vda
R R ,N O°R R 'R R
an i

o)
for every v € Vqt ¢ q € Qt' t €1I.

~ We have arrived to the conclusion that every solption of the plate
problem has to satisfy the condition gq € 8, the basic variational in-
equality (C3.13) and Egs. (A5.6). Now the question arises when the
solution of this problem can be reduced to the solution of the basic

inequality (C3.13). We shall detail this problem in the next Section.

At the end of this Seciton we are to show that the constraints reac-

tions can be obtained as the special case of the field reactions. To
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this aid let us assume, for the time being, that there are no constraint
o
reactions. Let Q be the set of function g(.), which can be given by the

conditions (])

- N -
O.(Elt) € Q(git) . g €1, q,H(N't) € Q\("g:t) ' 2 € 9Il, t €1,
where Q(B £) " QL?'G £) are the known subsets of R. Let us also denote by
Ve, t) , 8 €T, the sets of values u(8) , § € I, satisfying the condi-
tio?l‘
_ + -
r(_) ('?‘ICI('grt))u - r(+) (qu(grt))u = 0, ge .

Analogously, by Vq(g,t) » § € 9N, we denote the sets of values u (),
6 €0, satisfying the condition

sy ©a@)u"+s (9,6 =0, 8 €M,

( (+)

and by V, (8,t),8 € 3l, the sets of values UN(Q') , satisfying the con-

~

q
dition

N + N -
( S @ed y(@ ey = 0, g € o,

1.Vq(2,t)=R=>r(_)=r(+) = 0, s(_)=s(+)=0,g€ﬂ,
- N
,t) = = = 6 € oI.
qu(g t) =R=s _, =5 ,=0 '
2.V (,t) =RU{0}> r, . =0, s . =o0,0 €T,
q~ (-) (-) ~
v_(8,t) =rR'U{O}=>s" =0 , 8 € 3,
Q ~ (-) L~
3. v, (0,t) =R ufol = r ,,=0,s,, =0 BET
J ©,t)=R U{o} = s\ =o0 , 8 € ol

(!) It means that no restrictions have been imposed on the gradients Vq,
Vv q,... of the function g in the region I.
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:(+), s§+) are arbitrary
)’ s? are arbitrary nega-

Let us observe, that in the second case r(+),

positive numbers and 'in the third case S (-
tive numbers. If V (8,t) = {8}, Vq &t {6} then r(_;, r
N ’

(+) " 97_), s%+) are arbitrary posfziveor negative numbers.

(+)" T (=)'

S

Le us denote by v the set of functions u(e), 8 € ﬁ, values of
t
which belong to v (6,t), 6 € H, and values of its normal derivatives
on Jl to Vq Qg t). We assume that u(.) are sufficiently regular. Then

N
from (C3.7)~and (C3.8) we obtain the condition

s +[§d > o  (c3.15)
7 Por® * PRY,n)dg * [FRUdag = .
£

which has to hold for every u € Vq ¢ Qg € Q t € I. But this condition

c01nc1des ‘with the condltlon (C3. 6) We conclude that f (6 t), p (Q,t),

(6 t) satisfy the conditions of the form:
* * + * -
8(8,t) ER or 6(8,t) ER U{0} or 6(8,t) €ER U{6} ,

* *
where § stands for fR' poR' ?)g, then the field reactions coincide with
the constraint reactions. Thus we have proved that if the sets Q are
t
uniquely defined by the sets Q(6 )’ 8 € m, Q(e t),e € am, € I, then
Egs. (B1.18), (B1.19) can be replaced by the relations of the form
N N
B1.17) in which r , T S s , S ar ither the
(B1.17) in which x _\s T ys S v Sqyyr S(oyr S( are el
known functions as before or are certain constants which can attain

arbitrary either non - positive or non-negative values.

3.4. Variational formulation

We shall denote by X(Il), X(9Il) the linear spaces of sufficiently
regular functions defined onlland almost everywhere on dIl, respectively.
We shall confine ourselves to the special situations in which two

following assumptions hold.

o
1. For every q € Qt' t € I, there exists the function GR(qt,.) de-

fined and concave on X(II) and such that the condition

2}
o
I

+
> -
(=) GR(qt.u ) BR(qt.O) ’
_ (C3.16)
> -
r(+)u 2 GR(qt,u ) GR(qt,O) ’

hold for every u, u € X(I).
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e
2. For every q € Qt‘ t € I, there exists the function oR(qt,.,.),
defined on X(9l) x X(9N) such that GR(qt,u,.), GR(qt,.,uN) are

concave for every u ,uN € X(9N) and such that the condif?bns

~

+ +
> -
s(_)u = oR(qt,u ,0) oR(qt,O.O) ’

0
c
v

(+) oR(qt,u ,0) - oR(qt.O,O) '
(C3.17)

+ +
s u > OR(qt,o,UN) - OR(qthIO) ’

> Ty -
s(+)u,N > OR(qt,O,uN) oR(qt,O,O) '

hold for every u P Uy € X(all).

Functions GR' op can alos depend explicitly on the time coordinate
t, t € I. From Egs. (C3.16), (C3.17) it follows that the values of the
N N
, X , S s , S ; S ar ow determined
() T T T T Sy R e
as the derivatives of UR(qt,u(g), uN(g)). GR(qt,u(Q)) when u(@) > + 0 ,

control forces r

+ O.
u (@) > + o0

~o

Egs. (C3.7) yield

pw > 8 ut o+ N T
R (") (+) IN !

and by virtue of Egs. (C3.16), (C3.17) we obtain
fu 26 ( 5
gY TORr(Ar) - Opla.0)

*
20 ’ -0 A
PgY R(qt,u 0) R(qt 0,0),

*N
2 a_(q, ,0,u -
pﬁu'ﬂ R(‘t' ’ ﬂ) oR(qt,O,O)
' . * * *N
for every u T It means that the field reactions fR. poR' pg are

subdifferentials of the functions GR(qt,.), OR(qt.-.O), OR(qt'o")’
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respectively. They will be referred to as the densities (related to

I or 3N) of the subpotential of the field reactions.

Combining Egs. (C3.8), (C3.16), (C3.17) and denoting

= [ A, 1 . .
Jq (u) oR(qt u u'E)d R + JGR(qt u)daR (C3.18)

J
t an i

we obtain’

J (u) 23 (u -3 (0 . (C.3.19)
e 9 9

o
Every functional Jq (u), q € Qt' t € 1, defined on X, will be called
t
the subpotential of the field reactions. In view of Egs. (C3.17),

(C3.16), from Eg. (C3.18) it follows that

* *N * . '
2 - .
% (poRu + pﬁu'ﬁ)le + JfRudaR _.th(u) th(O) (C3.20)

oll il
for every u(g), 2 € ﬁ; Egs. (C3.20) describes the interrelation between
the rate of work of the field reactions and the suitable increment of

their subpotential.

N N
R . ’ . = ’ = ’ - .
A emark. If r(_) r(+) s(_) s(+) s(_) s(+) then
op 90 90 .
¥ R * "R N _ "R
fR = aq ’ PoR = Bq ' P’ﬁ' = aq N ) (C3.21)

and the subpotential reduces to the potential of the field reactions.

The basic variational inequality (C3.13) of the scalar plate theory
can be now rewritten in the form
~aB ~L ~Q,
- + - >
[( HR v H_ v th)daR 2

0B R ,a
1 : (c3.22)

~

2> (S v + Srlgv ydar_ + (/f\ -ijvda_+J_ (v) -J_ (0)
= R R ,N" TR R R R q q
N t t

, o

which has to hold for every virtual displacement v € Vq ;q € Qt,'and
t

for every t € I. It states that the sum of the total virtual rate of
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work of effective and inertia forces and virtual increment of the sub-
potential of the field reactions does not exceed the total work of

the internal forces.

By the direct calculations we can now verify that Egs. (C3.22)

leads to:
1. the inequalitites (C3.9), (C3.6),
2. the field equations (C3.1), (C3.2),

3. the constitutive equations (C3.4).

Thus we conclude that the problem of the scalar plate theory, in which

there exists the subpotential of the field reactions, Can be stated as
o

follows: find q € Q and T(N),m(p) such that Egs. (C3.22), (A5.6) hold

o
for every v € Vqt, q € Qt’ t €1I.

In the special cases the densities of the subpotential of field

reactions can have the form

5 _-§ ( % *1q . *2
r - S qt) r Op = oR(qt,qt,E) = oR(qt) OR(qt,E) ,

N

and Egs. (C3.16), (C3.17) interrelate the control forces r(_),...,s(+)

» * *
and the fields GR' GR by means of

*

>3 *y -8 (q.) N T >e (qeq. . +uD) -0 (q )
NCH ""'S(+)U,E'OR qt,qt,E uﬂ o qt'qt’ﬂ .

>
r(_)u = GR(qt-+u
Then the subpotential of the field reactions (B11.18)-has to be defined
by

P ydl_ + | p_(q.)d

q S - R M e B B B

t Sl i

and the increment of this subpotential in Egs. (C 3.20), (C 3.21)
have to be replaced by J(qt + u) - J(qt)p Thus basic variational in-
equality (C3.22) now yields
A A A
aB v}
- + - >
J( HR v’mB HRv,a th)daR 2
it 4 (C3.23)
A AN A - '
> + 1_+ [ -1 + - .
2 %(pRv Fhv,g)d R J(fR 1R)vdaR J(qt-+v) J(qt)
all 1 '
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This special case of the obtained result was detailed in [8] under
assumption that the plate is elastic and for every t € I the set St

is convex in X. Then the virtual displacements can be defined by

Vqt := {v|v = w - q, for every w € at}’ t € Ié i.e., Eq. (C3.23) holds
for every v = w - qe where w is arbitrary in Qt' This case corresponds

to the linear theory of elastic plates.

3.5. Examples

Let us return again to the Examples 2 and 5 of Sec. 3.2. of this
Chapter. In the Example 2 the sets 8t' t € I, are convex. Moreover,
J(qt) = O,»i.e., there are no field reactions. Thus the problem
leads to the solution of inequality (C3.23) (with J(.) = 0) for every

v=v(), 8 € , where v|A =0, Vv = 0 and v|II < §. The solution

- .QIF [

q(e,t), 8 €N, t € I, of the problem has to satisfy, for every t € I,
iti = = | <

also the conditions qtlA 0, qt,N'F O and 9 ip S ¢ as well as the

condition q € K (cf. Sec. 3.2. of this Chapter) .

n

o :
In the Example 5 of Sec. 3.2. the sets Qt are also convex. The

subpotential J(.) of the field reactions has the form

- +
Jlay) = J(r(+)qt *roydde

It

which can be derived directly from Eq. (C3.8). Thus the problem leads
to the inequality

J(-ﬁ;sv + Bov - h_v)da_ =
I

A AN - +
> v - -
2 4 pRv+pR 'N)le-bj(fR lR)vdaR-FJ(r(+)v r(_)v )daR,
ol It Ul

v = w--qt .

which has to hold for every w = w(g), 8 € I, such that w!A = 0,

~

= 0. The conditions qt| = 0, q € K. ( the function

{ = |
YNiT A~ 0% %,nir
q is either time independent or satisfy the known initial conditions)
have to be satisfied (for every t € I) by the solution q of the fore-

going inequality.
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Both examples outlined here represent the non-linear problems even

~s ~o NN N . :
if EﬁB’ ﬁu, h_, pR, PR' i are linear functions of q and its first and

R R R R af aBys
second derivatives, [8]. For the elastic plates for which By = Cp Y
q v’ H; = 0, hR = O, there are known the conditions for the existence
’

and uniqueness of solution, [8]. The analysis of problems of the linear
plate theory is outside of the scope of this work because it may be

found in [8].
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