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Summary

Mechanized tunneling is a construction method that gained high interest in the last decades,
due to the high demands on infrastructure development in large cities. A decisive factor
for the efficiency of the tunneling projects employing tunnel boring machines (TBMs) is to
understand and predict the abrasive wear of the machine components during ground exca-
vation. This constitutes the main topic of the present work.

In this thesis, a novel wear model for the prediction of the abrasive wear rate is devel-
oped. It is based on the idea of extending the results of single scratch tests to the total
wear rate produced by a mixture of abrasive particles. The introduced wear model leads
to closed form relations and avoids complicated and computationally expensive 3D wear
simulations. This objective is reached in three steps: in the first step, the Discrete Element
Method (DEM) is used to find a relation for the number of contacting particles with the tool
specimen. For this purpose, a procedure for parameter identification of the DEM is devel-
oped based on an energy minimization approach. It allows to establish a relation between
the microscopic contact parameters and macroscopic material parameters as employed in
continuum mechanics.

In the second step, a single scratch simulation is performed using the Finite Element
Method (FEM) to investigate the cross-sectional geometry of the resulting groove and the
dominant wear mechanisms. For simulation of the single scratch test two coupled damage-
plasticity material models are developed. Since the modeling of damage involves character-
istic softening and localization effects and consequently leads to ill-posed boundary value
problems, the material models have to be equipped with regularization strategies. The first
model has a gradient-enhanced formulation for regularization of the damage distribution,
while the second model uses a variational approach with rate limitation in combination with
a so-called emulated representative volume element.

Finally, in the third step, a wear model is introduced to derive relations for the estimation
of abrasive wear, which can be applied to homogeneous materials as well as a mixture of
particles. Several test cases are performed to investigate the influence of the abrasive par-
ticle size and the indentation depth on the wear mechanism. To clarify the computational
procedure of the model, two specific examples are discussed in detail.
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1

1 Introduction

1.1 Motivation and Objectives

The rapid world’s population growth and quick global urbanization cause an increasing ten-
sion on the transportation system of people and goods, and consequently very high demand
on infrastructure. Transportation is being addressed as a crucial aspect in economic produc-
tivity, accessibility, and the ease of lifestyles in emerging and developing megacities. Since
the earth’s surface is already being intensively used, the underground space offers an ex-
tra dimension to work with and guarantees a sustainable solution for traffic congestion and
population growth worldwide. Therefore, tunnel construction has gained more and more
attention, with both methods of conventional tunneling and mechanized tunneling.

Mechanized tunneling using tunnel boring machines (TBMs) is a construction process,
characterized as an effective and safe method in a wide variety of geological conditions
such as subsoil with low bearing capacity and high groundwater level. It offers several
advantages, especially in inner-city areas, such as non-affected life above the ground during
the construction phase, high quality of the segment elements, and accuracy of the finished
tunnel profile. In addition to high investment costs, these advantages are offset by a lack
of flexibility due to difficult adaptation to unexpected geological conditions, very intensive
planning phase, and long installation stage.

The correct choice of tunnel boring machine and monitoring the parameters influencing
the lifetime of cutting tools are important factors that can be considered in the planning phase
to avoid unexpected stoppage and consequently to increase the efficiency of the projects.
Realistic computer simulations in the planning and research phase can help to understand
different processes better and ultimately optimize the profitability of excavations. For ex-
ample, it can be precisely predicted when tools must be replaced due to wear before failure.
Otherwise, significantly longer service time for replacement of completely worn tools leads
to very high costs and has a negative effect on logistics. Hence, in the last decades, re-
markable attention is paid to the wear, or more precisely abrasive wear, to the excavation
tools.

Abrasive wear occurs when the roughness of abrasive particles, penetrates a softer sur-
face under high contact force and slides over it. This behavior is characterized either in the
form of plastic deformation or material removal. Many methods have been used to describe
the abrasivity of sand and rock, ranging from laboratory tests such as the dry sand-rubber
wheel test (ASTM-G65) to numerical simulations. Different numerical methods, such as
Finite Element Method (FEM), Smoothed Particle Hydrodynamics (SPH), and Discrete El-
ement Method (DEM), can be used for modeling the contact between abrasive particles and
construction tool.

The problem with the application of DEM is that a generally accepted method for the
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determination of required material parameters does not exist. Finding a solution for this
problem is one goal of this work. A connection should be established between the com-
monly used material parameters and those required for simulations with DEM. Moreover,
the numerical simulation of the contact problems requires a fine resolution of the involved
constituents (specimen and abrasive particles). Consequently, a coupled damage-plasticity
material model is demanded that allows for time-efficient simulations, which is another goal
of this work.

The objective of this work is the development of a novel wear model for the estimation
of abrasive wear rate. The idea is to use two numerical methods, i.e., Discrete Element
Method (DEM) and Finite Element Method (FEM), to develop closed form relations, and
to avoid complicated time-consuming 3D wear simulations. This objective has reached in
three steps: The first step is to employ the DEM for finding the number of particles in
contact with the construction tool specimen. In the second step, a single scratch test has
simulated in Abaqus, using a coupled damage-plasticity material model to investigate the
cross-sectional geometry of the resulted groove, the degree of wear, and the dominant wear
mechanisms. Finally, in the last step, a wear model has introduced to derive relations for
estimation of abrasive wear. The developed model extends the results of the scratch caused
by a single abrasive particle into the total abrasive wear rate. This extension has done using
relations governed by the DEM particle simulations. A schematic overview of this objective
has shown in Figure 1.1.

Step 1
Simulation of particles

Step 2
Simulation of single scratch test

Wear model 

Step 3
Estimation of abrasive wear rate

DEM parameter identification
Chapter 5

Coupled damage-plasticity model
Chapter 6

Validation of material model
Chapter 7

Figure 1.1: Schematic overview of the objective of this thesis

1.2 Outline

This thesis is organized as follows: after this introductory, the mathematical and mechanical
fundamentals are presented in Chapter 2. In addition to the presentation of the notations
and conventions, relevant areas of continuum mechanics are explained. Furthermore, the
thermomechanical balance laws are presented, which establish the basis for constitutive
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equations. Finally, Hamilton’s principle, as well as the principle of the minimum of the
dissipation potential are explained for the derivation of evolution equations.

Chapter 3 is dedicated to the tribological system. The excavation tools, installed on the
shield of TBMs regarding the ground to be excavated, are presented. An overview of the
different wear mechanisms, that happen to the tools, is given. Furthermore, a detailed insight
into abrasive wear, known as the dominant wear mode in mechanized tunneling applications
is included.

Chapter 4 demonstrates the fundamental of the two numerical methods utilized in this
study, namely: Discrete Element Method (DEM) and Finite Element Method (FEM). It
follows by Chapter 5, which contains the preliminary step in DEM simulations, known as
parameter identification. An analytical approach based on the minimization of energies at
the contact points is introduced and then extended to the entire material. It leads to establish
a relation between the microscopic contact parameters and the macroscopic material param-
eters as employed in continuum mechanics. This parameter identification is verified with a
compression test performed by DEM for both bonded and granular materials.

The two newly developed regularized coupled damage-plasticity models are presented in
Chapter 6. First, the description of the constitutive equations for plastic material as well
as damage behavior together with the issue of localization are discussed. Additionally, the
three kinds of regularization techniques are explained briefly in the same chapter. Finally,
material models are introduced. The first material model evaluates an efficient Laplace oper-
ator for gradient enhancement of damage function and applies suitable operator splits. The
second material model uses an emulated representative volume element (ERVE) and states
a rate-limitation viscous regularization of damage function. The regularization is performed
only on the damage parameter, while in this work, the plastic regime is limited to hardening
behavior and is coupled in its local form. Some representative numerical examples for three
boundary value problems including a plate with a circular hole, a double-notch specimen,
and a sharp-notch specimen are presented in Chapter 7. The specific aspects of the devel-
oped material models as well as the influence of regularization on the material behavior are
investigated. That follows by a comparative discussion.

The outline of Chapter 8 has depicted in the objective of this thesis. The investigation of
soil-tool interaction starts with the theoretical background of contact mechanics and algo-
rithms. The relation between particle size and the number of contacting particles is obtained
using DEM simulations. Besides, the scratching movement of a single abrasive particle with
a range of predefined radii through a softer surface is simulated. The influence of different
parameters on the wear mechanisms and groove shape is investigated. The wear model is
introduced to derive a relation for estimation of total abrasive wear rate. Moreover, to clar-
ify the calculation procedure of the model, two specific examples are discussed in detail.
Finally, Chapter 9 summarizes results as well as an outlook on further model extensions and
investigations.
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2 Fundamentals

The aim of this chapter is presenting a rough description of mechanical fundamentals, which
is necessary for better understanding of this thesis. First, in Section 2.1, the mathematical
notation and conventions are discussed briefly. Section 2.2 reviews some core concepts
of continuum mechanics, and Section 2.3 introduces the Lagrange multiplier method for
solving the optimization problems. Afterwards, the balance laws of thermodynamics for
continuous media are provided in Section 2.4. Based on that, the constitutive equations are
applied in Section 2.5. Finally, Hamilton’s principle and evolution equations are derived
in Section 2.6 to state the behavior of a physical system in a way that is equivalent to the
presented balance laws.

2.1 Notation and Conventions

The provided notation and mathematical principles are defined in an exemplary right-handed
rectangular Cartesian coordinate system with basis ei; i = 1, 2, 3 and expressed using indi-
cial notation. Thus, a tensor of zeroth order corresponds to a scalar denoted as a, b, c, · · · ,
whereas the tensor of first order corresponds to a vector denoted as a, b, c, · · · , additionally
the tensor of second order corresponds to a matrix denoted asA,B,C, · · · with

a = ai =

a1

a2

a3

 A = Aij =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (2.1)

and there are also tensors of higher order, for example fourth order is denoted as A,B,C, · · · .

The Einstein summation convention is employed; thus, the repetition of an index in a term
denotes a summation with respect to that index over its range. For example, the traction
vector ti , acting in the direction ni, is given by ti = σijnj = σi1n1 + σi2n2 + σi3n3. A
dot over a variable indicates a derivative with respect to time (e.g., ẋi = ∂xi/∂t). Vertical
braces denote the magnitude of a vector or the absolute value of a scalar.

2.1.1 Tensor Products

The dot product (also called scalar product) of two vectors a and b is defined as

a · b = aibjδij = c (2.2)

where c is a scalar quantity. Here, δij refers to Kronecker delta,

δij =

{
1 if i = j;
0 otherwise

(2.3)
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The cross-product of two vectors a and b produces a vector c that is perpendicular to both
a and b and can be written using the permutation symbol as

a× b = ci = eijkajbk (2.4)

with

eijk =


0 if 2 indices coincide;

+1 if i, j, k permute like 1, 2, 3;
−1 otherwise

(2.5)

The dot product of a tensor of second orderA and a vector b is defined as

A · b = Aijbjei = c (2.6)

and results in a vectorial quantity c, and the dot product of two tensors of second order A
andB

A ·B = AijBjlei ⊗ el = C (2.7)

provides a tensor of second order C. Furthermore, from the double dot product of a tensor
of forth order A and a tensor of second order B we get a second order tensor C, described
by a double contraction

A : B = AijklBklei ⊗ ej = C (2.8)

Finally, the dyadic product or tensor product of two vectors a and b is a second order tensor
C such that

a⊗ b = aibjei ⊗ ej = C (2.9)

2.1.2 Tensor Analysis

The Nabla operator ∇ is formally understood as a vector, where its components are the
partial derivative with respect to the basis ei:

∇ =
( ∂

∂x1

, · · · , ∂

∂xn

)
(2.10)

Since the Nabla operator is not a vector but an operator, special calculation rules also apply
here. Its dyadic product with a function f gives the gradient of f

gradf = ∇f =
∂f

∂xi
ei (2.11)

while its dot product with a vector a results in the divergence of a

diva = ∇ · a =
∂ai
∂xi

(2.12)

The determinant of a 3x3 matrix is calculated as:

detA = det

A11 A12 A13

A21 A22 A23

A31 A32 A33


= A11A22A33 + A21A32A13 + A31A21A32 − A13A22A31 − A23A32A11 − A33A12A21
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(2.13)

And the trace of a 3x3 matrix is calculated as:

trA = tr

A11 A12 A13

A21 A22 A23

A31 A32 A33


= A11 + A22 + A33

(2.14)

2.1.3 Voigt Notation

The constitutive law in linear elasticity for a homogeneous anisotropic body, the generalized
Hooke law, postulates a linear relation between the two second-rank tensor fields, the stress
σ and the strain ε as follows

σ = E : ε (2.15)

Hereby, the three-dimensional stiffness tensor E, a tensor of fourth order, is of size 3× 3×
3× 3 with consequently 81 entries whereas the stress tensor σ as well as the strain tensor ε
are of size 3× 3 with consequently 9 entries presented as follows

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 , ε =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 (2.16)

For ease of calculation and implementation in computer codes that work with matrices, we
will express the stress and strain tensors as 6×1 matrices, such that E will be a 6×6 matrix.
This is called Voigt notation and introduced by Voigt (1910). The Voigt notation is used
to exploit the symmetry of condensed matter to transform second-order tensors (cf. e.g.,
stress tensor) to vectors and kinetic forth-order tensors to square matrices (cf. e.g., elasticity
tensor)

σ11

σ22

σ33

σ23

σ13

σ12

 =


E1111 E1122 E1133 E1123 E1113 E1112

E2211 E2222 E2233 E2223 E2213 E2212

E3311 E3322 E3333 E3323 E3313 E3312

E2311 E2322 E2333 E2323 E2313 E2312

E1311 E1322 E1333 E1323 E1313 E1312

E1211 E1222 E1233 E1223 E1213 E1212

 ·

ε11

ε22

ε33

2ε23

2ε13

2ε12

 (2.17)

2.2 Continuum Mechanics

Continuum mechanics is a branch of mechanics which deals with physical phenomena of
materials considered as continuous masses, characterized by position and displacement vec-
tors. Kinematics relations include the geometry of a body, its motion in space as well as
its deformation during motion. This section gives a general outline over the core concepts
of continuum mechanics such as kinematics, stress measures and mechanical equilibrium
which are basis for finite element method. For comprehensive treatment of this topic, the
reader is refereed to the classical literature, e.g., Ogden and Sternberg (1985), Bonet and
Wood (1997), Holzapfel (2000), Simo and Hughes (2006), de Souza Neto et al. (2011), and
Belytschko et al. (2013).
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2.2.1 Motion and Configuration

A continuum bodyB is defined as a set of material points or particles in the three-dimensional
Euclidean space at some instant of time t. When the body is in motion, it occupies a contin-
uous sequence of geometrical regions, Ω0, . . . ,Ω called configurations of B. The configu-
ration Ω associated to the current time t, is called current (or deformed) configuration. The
typical material point of the body in the current configuration is described using spatial (Eu-
lerian) coordinate vector x. For convenience, an initial configuration Ω0 can be introduced
to provide a reference at time t = 0 which is referred to as reference (initial, undeformed)
configuration and the position of the material point is uniquely described by the reference
(Lagrangian) coordinate vector X . Figure 2.1 illustrates the body B in the reference and
current configuration.

Ω0

Ω

P P´

x(X,
t)

X

u(X,t)

e1

e2

e3

Figure 2.1: Configurations and motion of the body B

In the following, a clear distinction in writing operators in different configurations is out-
lined: differential operators containing derivatives with respect to the material coordinates
X are indicated as ”Div” and ”Grad”, whereas the ”div” and ”grad” which are used to
denote the operators with derivatives with respect to the spatial coordinates x.

The relation between the position vectors of the body B in the current and the reference
configuration results in a vector field called displacement field

u(X, t) = x(X, t)−X (2.18)

The velocity of a material point results from the time derivative of the displacement field
and represents the rate of change of its position vector, i.e.,

v =
dx
dt

=
∂x(X, t)

∂t
(2.19)

The acceleration of a material point results from a further time derivative of the displacement
field and represents the rate of change of velocity of a material point, i.e.,

a =
d2x

dt2
=

dv
dt

=
∂v(X, t)

∂t
(2.20)
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2.2.2 Deformation Measures

In order to describe the deformation process, the deformation gradient tensor F which maps
an infinitesimal differential line element of the reference configuration dX to the corre-
sponding one in the current configuration dx is introduced.

dx = F · dX (2.21)

where

F =
∂x

∂X
=
∂(u+X)

∂X
= H + 1 (2.22)

with the displacement gradient

H :=
∂u

∂X
= Gradu. (2.23)

In general, F is an unsymmetric second order tensor. Analogously to the transformation
relation in Equation (2.21), the deformation of infinitesimal surface elements and volume
elements can be also described, which are necessary to define the balance laws and stress
measures later. The connection between the volume elements in the reference and current
configuration is obtained as

dv = detF dV = J dV. (2.24)

where J = detF is named after Jacobian. The deformation gradientF is invertible. Namely,
its determinant has to be strictly positive (detF > 0) in order to assure the impenetrability of
matter (to prevent negative volumes). With the definition of the deformation gradient above,
and employing Equation (2.21), the transformation of the surface elements can be written as

da = JF−T · dA (2.25)

which shows the relation between deformed- and undeformed surface elements and is known
in the literature as Nanson’s formula.

The deformation gradient can be uniquely decomposed multiplicatively into an arbitrary
proper orthogonal rotation tensorR and a symmetric positive definite right stretch tensorU
or left stretch tensor V , so that

F = R ·U = V ·R (2.26)

The rotation tensorR is proper orthogonal tensor and therefore,R ·RT = RT ·R = I and
detR = 1, where the stretch tensor are symmetric, thus U = UT and V = V T .

2.2.3 Strain Measures and Linearization

Strain tensors are defined with respect to the reference configuration or the current con-
figuration. The so-called deformation tensors which describe deformations without being
influenced by a pure rotation are introduced as

C := F T · F and B := F · F T (2.27)
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where C and B are called the right Cauchy-Green deformation tensor and the left Cauchy-
Green deformation tensor, respectively. The first one (C) is a tensor which refers to the
reference configuration, while the second one (B) belongs to the current configuration. By
expressing the deformation gradient in Equation (2.27) with stretch tensors and rotation
tensor from Equation (2.26) and utilizing the orthogonality condition of the rotation tensor
RT = R−1, the Cauchy-Green deformation tensors can be expressed as

C := F T · F = (R ·U)T ·R ·U = RT ·UT ·R ·U = F T ·U = U 2

B := F · F T = V ·R · (V ·R)T = V ·R ·RT · V T = V T · V = V 2
(2.28)

In Equation (2.28), the influence of the rigid body rotation on the deformation is efficiently
removed. Therefore, the tensorsC andB represent pure stretching and are positive definite.
In addition to the defined quantities, strain measures are necessary to express the deforma-
tion at a certain point and later on be able to define constitutive equations. The definition
of strain is - unlike the definition of deformation - based on a strain concept. Therefore,
different strain measures are mentioned in the literature. A common strain measure is the
Green-Lagrange strain tensor

E =
1

2
(F T · F − I) =

1

2
(GradTu+ Gradu) +

1

2
GradTu · Gradu (2.29)

in which I is the second order identity tensor, which operates on line elements in the ref-
erence configuration to quantify the actual change in squared length of these line elements,
i.e.,

dx · dx− dX · dX = dX · 2E · dX. (2.30)

The equivalent of Green-Lagrange strain tensor in the current configuration is the Euler-
Almansi strain tensor

e =
1

2
(1− F -T · F−1) =

1

2
(gradTu+ gradu) +

1

2
gradTu · gradu (2.31)

where the displacement gradient in Equation (2.23) is defined with respect to the current
configuration

gradu =
∂u

∂x
. (2.32)

and similarly that expresses the change of squared lengths of these line elements in the
current configuration, i.e.,

dx · dx− dX · dX = dx · 2e · dx. (2.33)

In this thesis, we assume that the displacement remains small in order to ensure satisfac-
tory approximation of the original quantities by the linearized ones. This assumption leads
further to the conclusion that x ≈ X . Hence, the initial configuration Ω0 of the body B
can be considered coincident with the current configuration Ω. In this case we speak of the
geometrically linear theory, or the theory of small strains.

The above assumption implies that the quadratic terms in definition of Green-Lagrange
tensor and Euler-Almansi tensor in Equations (2.29) and (2.31), are small and can be ne-
glected. Thus, we can define the linearized strain tensor

ε =
1

2
(gradTu+ gradu). (2.34)
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From this point on the theory of small strains is applied. The trace of linearized strain tensor
is equal to the volume change of an infinitesimal volume element

tr(ε) = εkk = lim
dV→0

dv − dV
dV

, (2.35)

which is also called volume dilatation. For modeling elsto-plasticity in materials, since
plastic deformations are considered to be volume conservative, a decomposition of the strain
tensor into spherical and deviatoric part is necessary. With the definition of volumetric or
spherical strain

εvol =
1

3
tr(ε), (2.36)

and the deviatoric strain εdev, the linearized strain tensor can be decomposed as

ε =
1

3
tr(ε)I + εdev. (2.37)

2.2.4 Stress Tensor

To elaborate the concept of stress, we consider a body B in the current configuration Ω
subjected to volume loads b and traction loads t on the part ∂Ω of the boundary as in Figure
2.2.

n

da
df

df

-n

∂Ω

t
b

dv

Figure 2.2: Arbitrary control volume and the traction vector

Assume the body is separated into two parts by a surface passing through an arbitrary
typical point P with the unit normal vector n at the interface. Taking an infinitesimally
small surface element of size da, the resulting internal force on the element is denoted as
df , i.e., the force that is transferred to the other part of the body. The so-called stress vector
tn can then be defined as

t = lim
da→0

df
da

(2.38)

The stress vector can also be decomposed into a component collinear to the surface normal,
called normal stress and denoted σ, and an orthogonal component, called shear stress and
denoted τ . In order to describe the state of stress in a body, three orthogonal cuts with lin-
early independent associated normal vectors are processed. The resulting stress components
at an infinitesimally small volume element are shown in Figure 2.3.
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σ11

x1

x2

x3

σ12

σ13

σ33

σ32

σ31

σ22

t3

t1

t2
σ21

σ23

Figure 2.3: Stress components at an infinitesimally small volume element

The stress tensor can be defined by means of Cauchy’s theorem

t = σ · n (2.39)

which allows to express the stress tensor as

σ =
(
t1 t2 t3

)T
=

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.40)

Further, σ is symmetric;

σ = σT (2.41)

which can be proved by balance of angular momentum for the infinitesimal volume element
in Figure 2.3.

2.3 Lagrange Multiplier Method

In optimization problems the idea is to optimize (i.e., find the local maximum or minimum
of a function) subjected to one or more constraints. In simple cases, the secondary con-
dition can be inserted directly into the function to be optimized. Moreover, the Lagrange
multiplier method offers a solution for more complex constraints. Let f(x1, x2, · · · , xn) be
the function of optimization, which is subjected to k constraints from g1(x1, x2, · · · , xn) to
gk(x1, x2, · · · , xn). According to the Lagrange method, first the constraints are rearranged
so that they are equal to 0. Then they are each multiplied by a Lagrange multiplier λi and
added to the function. This is how the so-called Lagrange function results:

L(x1, · · · , xn, λ1, · · · , λk) = f(x1, · · · , xn)+λ1g1(x1, · · · , xn)+ · · ·+λkgk(x1, · · · , xn)

(2.42)
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Taking the partial derivative of this function with respect to all variables of x1, · · · , xn and
λ1, · · · , λk, and set the derivatives equal to zero:

∂L(x1, · · · , xn, λ1, · · · , λk)
∂x1

:= 0

...
...

∂L(x1, · · · , xn, λ1, · · · , λk)
∂xn

:= 0

∂L(x1, · · · , xn, λ1, · · · , λk)
∂λ1

:= 0

...
...

∂L(x1, · · · , xn, λ1, · · · , λk)
∂λk

:= 0

(2.43)

The solution of this system of equations results in stationary points of the initial problem.
Moreover, the Lagrange method is also generalized by the Kuhn-Tucker conditions, which
can also be considered for inequality constraints of the form h(x1, · · · , xn) ≤ c.

2.4 Balance Laws

This section concerns the most important balance relations of continuum thermodynamics.
The balance of mass, the balance of linear and angular momentum, the balance of energy,
and the entropy inequality will be presented. The first and second laws of thermodynamics
are the foundation for Hamilton’s principle allowing for a thermodynamically consistent
derivation of the presented material models. A detailed review on this subject can be found
in Silhavy (1997), Holzapfel (2000), Truesdell and Noll (2004) and Gurtin et al. (2010).

2.4.1 Balance of Mass

In a closed system, the mass of a body is generally conserved during the motion. In other
words, the total mass can be expressed as

m =

∫
Ω

ρ dV (2.44)

where ρ is the mass density related to the current configuration. Hence, the conservation of
mass can be expressed in the local form as

ρ̇+ ρ∇ · v = 0 (2.45)

Within the framework of the small strain theory, which is assumed to accurately describe
problems throughout this thesis, one can apply the condition ρ̇ = 0.
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2.4.2 Balance of Linear and Angular Momentum

For a given body in a spatial domain Ω with boundary surface ∂Ω subjected to volume forces
b in the body and the surface traction vector t acting upon the boundary surface, the balance
of linear momentum states that the change of the linear momentum in time is balanced by
the sum of these external forces and can be mathematically expressed by

d
dt

∫
Ω

ρv dV =

∫
Ω

ρ b dV +

∫
∂Ω

t dA (2.46)

With Cauchy theorem, the surface traction vector t is calculated from Cauchy stress tensor
σ and the unit normal vector n as

t = σ · n (2.47)

Using the divergence theorem and integrating over the whole surface of the body, one obtains

∫
∂Ω

t dA =

∫
∂Ω

σ · n dA =

∫
Ω

∇ · σ dV (2.48)

Utilizing the conservation of mass (Equation (2.45)), the balance of linear (translational)
momentum can be expressed in the local form as

∇ · σ + ρ b = 0 (2.49)

The total angular (rotational) momentum of a body with reference to a point x0 is defined
by

L =

∫
Ω

r × ρv dV, r = x− x0 (2.50)

The change of the total angular momentumL is balanced by the sum of the moments exerted
by the body force and the surface traction with reference to the same point

d
dt

∫
Ω

r × ρv dV =

∫
Ω

r × (ρ b) dV +

∫
∂Ω

r × t dA (2.51)

By means of the balance of linear momentum (Equation (2.49)), the conservation of mass
(Equation (2.45)), Cauchy’s theorem (Equation (2.47)) and the divergence theorem, it fol-
lows the symmetry of Cauchy stress tensor

σ = σT (2.52)

2.4.3 Balance of Energy - First Law of Thermodynamics

In the context of thermodynamics, the total energy of a closed system (no exchange of mass
with the surroundings), is preserved during the process of motion. It means that, no energy
can be naturally created or destroyed, but it can be transformed from one form to another
one. This leads to the first law of thermodynamics that reads: the change of the total energy
of a body, consist of the internal energy E and the kinetic energy K, is balanced by the
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mechanical power of external forces W and the heat supply (heat power) Q. The global
form is given by

Ė + K̇ =W +Q (2.53)

Hereby, the kinetic energy K is given by

K =

∫
Ω

1

2
ρv · v dV (2.54)

and the internal energy E is defined by

E =

∫
Ω

Ψ dV +

∫
Ω

θs dV (2.55)

including the Helmholtz free energy Ψ, the absolute temperature θ and the specific entropy
s. Moreover, the mechanical power results from the volume and surface forces

W =

∫
Ω

b · v dV +

∫
Ω

t · v dA (2.56)

Finally, the thermal power Q due to the internal heat source h and heat flux qn is presented
by

Q =

∫
Ω

h dV +

∫
Ω

qn dA (2.57)

The heat flux qn represents the rate at which heat enters the body (inward normal flux) across
the boundary surface ∂Ω and can be transformed using the dot product between the Cauchy
heat flux and the outward unit normal vector, known as the Stock’s heat flux theorem, as

qn = −q · n (2.58)

Substituting Equations (2.54), (2.55), (2.56) and (2.57) into Equation (2.53) and with the
help of the Cauchy’s theorem (Equation (2.47)) and the balance of linear momentum (Equa-
tion (2.49)), the balance of energy can be assembled as follows∫

Ω

(
Ψ̇ + (θ̇s) +

d
dt

1

2
ρv · v

)
dV =

∫
Ω

( d
dt

1

2
ρv · v + σ : ε̇+ h−∇ · q

)
dV (2.59)

After some manipulations and eliminating the identical integrals transfers the balance of
energy into its local form and provides

Ψ̇ + θ̇s+ θṡ = σ : ε̇−∇ · q + h . (2.60)

2.4.4 Entropy Inequality - Second Law of Thermodynamics

The balance of energy declares the energy transfer in a thermodynamics process, but does
not account for the direction of the energy transfer. However, natural processes show certain
asymmetry, so that the transfer always goes in one direction. This can be dealt by the second
law of thermodynamics. The entropy of a body is denoted as the absolute entropy production
H and corresponds to

H =

∫
Ω

(
ṡ+∇ · q

θ
− h

θ

)
dV, (2.61)
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to represent the total disorder of the system. The second law of thermodynamics states the
non-negativity regarding closed systems and leads to the inequality relation

H ≥ 0. (2.62)

which is known as the entropy inequality. The volume-weighted quantity of the absolute
entropy productionH is the entropy production S defined as

H =

∫
Ω

S dV (2.63)

The local form of the second law of thermodynamics, after some calculations and elimina-
tion of identical integrals, can be expressed by

S = ṡ+∇ · q
θ
− h

θ

= ṡ+
1

θ
∇ · q − 1

θ2
q · ∇θ − h

θ

(2.64)

The non-negativity also applies for the entropy production S, thus

S ≥ 0 (2.65)

The local form of the first law of thermodynamic can be solved for internal heat source h as
follows

h = Ψ̇ + θ̇ s+ θ ṡ− σ : ε̇+∇ · q (2.66)

Multiplying the local form of the second law of thermodynamics in Equation (2.64) with the
absolute temperature θ provides the first subsequent equation. Taking into account h from
Equation (2.66) leads to the second one

θS = θṡ+∇ · q − 1

θ
q · ∇θ − h

= θṡ+∇ · q − 1

θ
q · ∇θ − Ψ̇− θ̇ s− θ ṡ+ σ : ε̇−∇ · q

(2.67)

and after some simplification the second law of thermodynamics can be written as

θS = −Ψ̇− 1

θ
q · ∇θ − θ̇ s+ σ : ε̇ ≥ 0 (2.68)

which contains the internal dissipation θS on the left-hand side and the Clausius-Duhem
inequality on the right-hand side.

2.5 Constitutive Equations

The kinematics and the balance laws, presented in the previous section, are material-independent
in its formulation and therefore universally valid for any continuum body. However, an ini-
tial and/or boundary value problem cannot be solved using these equations alone. Thus,
to characterize the material response and close the system, additional relations called con-
stitutive equations are needed. A large number of constitutive laws for different materials;
i.e, pure elasticity, plasticity, visco-plasticity, damage and etc, have been developed so far.
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For more details on this topic, readers are referred to Truesdell and Noll (2004), Chadwick
(2012) and Haupt (2013).

The general formulation of the constitutive equations connects the so-called response
functions which include the Helmholtz free-energy Ψ, stress tensor σ, heat flux q, and
entropy s, to the set of process variables which include the strain tensor ε, the temperature
θ, the gradient of temperature ∇θ, and the internal variable λ, which are assumed to be
scalar for most of the material models used in this thesis. Therefore, it follows

Ψ = Ψ(ε, θ,∇θ, λ)

σ = σ(ε, θ,∇θ, λ)

q = q(ε, θ,∇θ, λ)

s = s(ε, θ,∇θ, λ)

(2.69)

Hence, the general Helmholtz free energy Ψ can be customized to describe a desired material
behavior. Application of the material time rate to the Helmholtz free-energy gives

Ψ̇ =
∂Ψ

∂ε
: ε̇+

∂Ψ

∂θ
θ̇ +

∂Ψ

∂(∇θ)
· ˙(∇θ) +

∂Ψ

∂λ
λ̇ (2.70)

Substituting Ψ̇ into in Equation (2.68), and after some rearrangement the local form of the
Clausius-Duhem inequality becomes

(σ − ∂Ψ

∂ε
) : ε̇− (s+

∂Ψ

∂θ
)θ̇ − ∂Ψ

∂(∇θ)
· ˙(∇θ)− ∂Ψ

∂λ
λ̇− 1

θ
q · ∇θ ≥ 0 (2.71)

Equation (2.71) has to be valid for all materials or processes. Let us now consider two spe-
cial cases. The first case is a process of pure elastic deformation with constant temperature
in time and space and without evolving any internal variables, which consequently results
only in a change of strain tensor. Therefore, the stress tensor can be calculated in accordance
with

σ − ∂Ψ

∂ε
= 0

⇔ σ =
∂Ψ

∂ε

(2.72)

The second one is pure heating or cooling under constant strain and again without internal
variables, where only the temperature varies in time but remains constant in space. Hereby,
the entropy s is delivered by

s+
∂Ψ

∂θ
= 0

⇔ s = −∂Ψ

∂θ

(2.73)

According to Bargmann and Steinmann (2005), the Helmholtz free energy Ψ in the classical
theory has to be independent of the temperature gradient, therefore

∂Ψ

∂(∇θ)
= 0

⇔ Ψ = Ψ(ε, θ, λ)

(2.74)
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Now, in view of stresses (Equation (2.72)) and entropy (Equation (2.73)), the Clausius-
Duhem inequality (Equation (2.71)) takes the form

p λ̇− 1

θ
q · ∇θ ≥ 0 (2.75)

The first term in the above inequality represents the mechanical dissipation, where an ad-
ditional quantity p is defined as the thermodynamic driving force and provides information
about the evolution direction of the internal variable. The following applies

−∂Ψ

∂λ
λ̇ ≥ 0

⇔ −∂Ψ

∂λ
=: p

(2.76)

The second term of inequality (2.75) represents the thermal dissipation and has to fulfill
the heat conduction inequality. According to the work of Holzapfel (2000), Gurtin et al.
(2010) and Demtröder (2017), a suitable constitutive law which relates the heat flux q to the
temperature gradient∇θ is

−1

θ
q · ∇θ ≥ 0

⇔ q ∼ −∇θ
(2.77)

What remains to be specified is the response function governing the evolution of the
internal variables, which will be achieved in Section 2.6 with Hamilton’s principle.

2.6 Hamilton’s Principle and Evolution Equation

The objective of Hamilton’s principle is to derive the equations governing the mechan-
ical behavior of continuous media in a way that is equivalent to the balance laws pre-
sented in Section 2.4. In this section, after the introduction of dissipation potentials for
rate-independent and rate-dependent materials, first the general application of Hamilton’s
principle addressed to materials including a gradient of the internal variable is presented
in Subsection 2.6.1, and then the special case known as the principle of the minimum of
the dissipation potential (PMDP) is illustrated in Subsection 2.6.2. The numerical imple-
mentation of evolution equations obtained from the Hamilton’s principle and the PMDP is
discussed as well.

The variational principle known today as the Hamilton’s principle for dynamic systems of
particles is based on the work of Hamilton (1835). Since then, the principle is widley used
in continuum mechanics, as in the works of Bedford (1985) and Bailey (2002). More works,
especially in the field of microstructure, can be found in Hackl (1997), Ortiz and Repetto
(1999) and Carstensen et al. (2002b).

In the case of non-conservative materials, the dissipative processes should also be taken
into account. Therefore, here the dissipation function D is introduced to describes the
amount of energy used for irreversible transformation of elastic or kinetic energy to dissipa-
tive energy. Based on the concept of the so-called generalized standard material, introduced
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in Halphen and Nguyen (1975), which covers a number of inelastic material behaviors, sev-
eral approaches for the dissipation function are generally possible, the most common ones
are presented subsequently.

The first one is for classical rate-independent elastoplastic-type material models

D := r1 |λ̇| (2.78)

where r1 is the dissipation parameter. The second example is for rate-dependent viscoelastic-
type material models

D :=
r2

2
λ̇2 (2.79)

with the parameter r2 describing the viscosity of the material. Combining these two ap-
proaches, gives the dissipation function for elasto-viscoplastic-type materials as follows

D := r1 |λ̇|+
r2

2
λ̇2 (2.80)

The next required component to formulate the Hamilton’s principle, is Gibbs energy, which
for continuous materials is given by

G := Πint + Πext (2.81)

where Πint is the internal potential derived from Helmholtz free energy Ψ based on the strains
ε and internal variables λ, thus

Πint :=

∫
Ω

Ψ(ε, λ) dV (2.82)

and Πext is the external potential derived from the volume forces b and the surface tractions
t as follows

Πext := −
∫

Ω

b · u dV −
∫
∂Ω

t · u dA (2.83)

Using this expression, Equation (2.81) assumes the form

G :=

∫
Ω

Ψ(ε, λ) dV −
∫

Ω

b · u dV −
∫
∂Ω

t · u dA (2.84)

Using the kinetic energy from Equation (2.54), finally, the Hamilton’s principle for contin-
uous and non-conservative materials reads∫ t1

t0

(δK − δG + δV) dt = 0 (2.85)

Restricting our attention to the static case by neglecting the kinetic energy, hence the sim-
plified Hamilton’s principle results as

δG + δV = 0 (2.86)

where δV is refer to the virtual work of dissipative forces and is defined by

δV =

∫
Ω

p̂ δλ dV (2.87)
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Thereby, p̂ is the so-called dissipative force, which shows the dissipative character of mi-
crostructural evolution and is derived from the dissipation potential D as

p̂ := −∂D
∂λ̇

(2.88)

In this point, substituting Equations (2.87) and (2.88) into (2.86) Hamilton’s principle for
continuous and non-conservative material under static conditions is provided by

δG +

∫
Ω

∂D
∂λ̇

δλ dV = 0, (2.89)

and will be used in further calculations. It is worth to mention that, in the case of conserva-
tive materials, naturally no dissipative process is taken into account. Hence, the simplified
Hamilton’s principle for continuous and conservative materials in static case reads

δG = 0. (2.90)

2.6.1 General Application of Hamilton’s Principle

In the general case of Hamilton’s principle, as mentioned before, in addition to the displace-
ment field u (or strains ε) and the internal variable λ, the gradient of internal variable ∇λ
also enters into Gibbs energy, thus

G = G(ε, λ,∇λ) (2.91)

Application of Hamilton’s principle yields the necessary condition for stationarity

δG +

∫
Ω

∂D
∂λ̇

δλ dV = δuG + δλG +

∫
Ω

∂D
∂λ̇

δλ dV = 0 ∀ δu, δλ (2.92)

where the variations δu and δλ may be chosen individually, and therefore, the two station-
arity conditions∫

Ω

∂Ψ

∂ε
: δε dV −

∫
Ω

b · δu dV −
∫
∂Ω

t · δu dA = 0 ∀ δu (2.93)

∫
Ω

∂Ψ

∂λ
δλ dV +

∫
Ω

∂Ψ

∂∇λ
· δ∇λ dV +

∫
Ω

∂D
∂λ̇

δλ dV = 0 ∀ δλ (2.94)

have to hold individually. Introduction of the mechanical stress by σ = ∂Ψ/∂ε, Equation
(2.93) constitutes as the strong form of the balance of linear momentum, viz.

∇ · σ + f = 0 ∀x ∈ Ω (2.95)

and Neumann boundary condition, as

σ · n = t ∀x ∈ ∂Ω (2.96)

which can be solved by employing the finite element method. Moreover, for the second
stationarity condition in terms of the variation of λ, Equation (2.94), an integration by parts
provides

∂Ψ

∂λ
−∇ ·

(
∂Ψ

∂∇λ

)
+
D
λ̇

= 0 ∀x ∈ Ω (2.97)
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(
∂Ψ

∂∇λ

)
· n = 0 ∀x ∈ ∂Ω (2.98)

where Equation (2.97) is refer to as the Helmholtz equation and Equation (2.98) is again the
Neumann boundary condition. This general application of Hamilton’s principle is presented
for topology optimization by Junker and Hackl (2016) and for damage modeling by Junker
et al. (2019).

2.6.2 Principle of the Minimum of the Dissipation Potential

The principle of the minimum of the dissipation potential (PMDP) is the special case of
Hamilton’s principle. Various versions of this principle already appear in the works done
by Martin and Ponter (1966), Maier (1969), and Maugin (1992), and are widely used in the
literature. Here, it is assumed that the Gibbs energy is no longer a function of the gradient
of the internal variable∇λ, thus

G = G(ε, λ) (2.99)

Analogously to the general form of Hamilton’s principle, the first stationarity condition is
the same as Equation (2.93), where applying the integration by parts provides the strong
form of the balance of linear momentum (see Equations (2.95) and (2.96)). In the case of
PMDP, the second stationarity condition simplifies to∫

Ω

∂Ψ

∂λ
δλ dV +

∫
Ω

∂D
∂λ̇

δλ dV = 0 ∀ δλ (2.100)

Elimination of the identical integrals results in the simple expression

∂Ψ

∂λ
+
∂D
∂λ̇

= 0 (2.101)

known as Biot’s equation, for more details refer to Biot (1962). Performing the integration
with respect to λ̇ provides

∂Ψ

∂λ
λ̇+D +A → min

λ̇
(2.102)

where A is an arbitrary integration constant and can be defined by

A :=
∂Ψ

∂ε
: ε̇ (2.103)

Introducing a Lagrangian L gives

L := Ψ̇ +D → min
λ̇

(2.104)

with Ψ̇ being the rate of the Helmholtz free energy Ψ. According to Hackl and Fischer
(2008), the PMDP can be formulated as follows:

From all admissible fluxes (possibly constrained by conservation and boundary condi-
tions), those fluxes are taken which minimize the Lagrangian in Equation (2.104).
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Since the Lagrangian L is assumed to be minimized with respect to the rate of internal
variables λ̇, the time derivative of Helmholtz free energy in Equation (2.104) is always the
product of thermodynamical driving forces and the associated internal variables, where the
derivative of Ψ with respect to strains can be neglected. Application of Hamilton’s principle
in either general form or as PMDP provides the evolution equation for the internal variable
λ.

For the first case of a rate-independent material, DRI = r1 |λ̇| (see Equation (2.78)), the
evolution equation is formulated in the form of

λ̇RI =
|λ̇|
r1

p = ∆ρ p (2.105)

where ∆ρ = |λ̇|/r1 is identified as consistency parameter for λ̇ 6= 0. In order to determine
the consistency parameter, Legendre transformation is applied as follows

D∗RI = sup
λ̇

{p λ̇−DRI} = sup
λ̇

{|λ̇|(p sgnλ̇− r1)} = sup
λ̇

{ |λ̇|
r1

(p2 − r2
1)
}

(2.106)

The corresponding yield function is obtained as

Φ := p2 − r2
1 ≤ 0 (2.107)

which is equal to

Φ := |p| − r1 ≤ 0 (2.108)

The internal variable will be updated from previous time-step (.)m to the current time-step
(.)m+1 according to

λm+1
RI = λm +

{
∆ρ p(ε, λ) for |p| > r1

0 else
(2.109)

The consistency parameter δρ has to be estimated such that the condition Φ ≤ 0 holds true.
Therefore Kuhn-Tucker conditions read

∆ρ ≥ 0, Φ ≤ 0, ∆ρΦ = 0 (2.110)

Choosing the driving force from current or previous time-step will determine the numerical
scheme for solving the evolution equation; i.e., p(εm, λm) leads to explicit time discretiza-
tion which is also referred to forward Euler method, whereas p(εm+1, λm+1) leads to implicit
time discretization and referred to backward Euler method. There are also combined time
discretization, where different methods are applied to the strain and internal variables and
results in an operator split; i.e., p(εm, λm+1) using strain from previous time-step and in-
ternal variables from current one, or vice versa p(εm+1, λm) the internal variable from the
previous time-step combined with the strains of the current time-step.

For the second case, where the dissipation function of rate-dependent material consists
of two parts, DRD = r1 |λ̇| + r2

2
λ̇2 (see Equation (2.80)), the evolution equation can be

calculated as

λ̇RD =
1

r2

[|p| − r1]+ (2.111)
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where [x]+ := (x + |x|)/2 only returns the positive values. In this case a yield function is
not necessarily introduced and the evolution of λ is limited by the viscosity parameter r2

and by the assuming a specific value for the time increment ∆t, which allows to update the
internal variable with

λm+1
RD = λm +

{
∆t
r2

(|p(ε, λ)| − r1 for |p| > r2

0 else
(2.112)

Similar to the first case, different choices of driving force with respect to the current or
previous time-step leads to different scheme for solving the evolution equation numerically.
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3 Tribology

Tribology is an interdisciplinary science to study the mechanisms that take place between
interacting surfaces in relative motion and is fundamentally about the principles of friction,
lubrication, and wear. The term tribology was derived from the Greek term tribos, trans-
lated as rubbing. Tribology research is considerably versatile, but some industries place
higher demands on tribological systems due to their continuous operation requirements or
extreme conditions, such as transport and manufacturing. The main focus of this work is on
computational tribology, which aims to model the behavior of tribological systems, through
combining the theories of continuum mechanics, contact mechanics, and fracture mechan-
ics.

A tribological system consists of four elements: the main body, the counter body, inter-
face media, and the surrounding medium. This system considering all relevant influencing
factors is represented in Figure 3.1 schematically. The intermediate medium can be a lu-
bricant, wear particles, or a layer formed by mechanical interactions between the main and
counter body. Furthermore, the load system, composed of normal force, relative motion,
and temperature, acts on the wear pairing and determines the mechanical interactions be-
tween the involving bodies. From these considerations, it is clear that wear is not a material
property but a system property.

main body

counter body
relative motion

normal load

System boundary

surrounding medium

intermediate
 medium

Figure 3.1: Schematic representation of a tribological system, inspired by Röttger (2019)

In this chapter, first, an overview of the mechanized tunneling and different tools that
could be installed on the cutter head of the tunnel boring machines (TBMs) are given in
Section 3.1. Following by the definition of the wear in Section 3.2, as well as the introduc-
tion of the wear mechanisms. Finally, Section 3.3 deals with the detailed explanation of the
abrasive wear, as it is known as the dominant wear mechanism that happens at the cutting
tools in mechanized tunneling.
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3.1 Mechanized Tunneling

Mechanized tunneling, as compared to conventional tunneling, is dedicated to all excavation
techniques performed mechanically using different machines, from the simplest like diggers
to the most complicated like TBMs. These machines can build up tunnels in difficult geo-
logical environments, as well as not very stable soil with high groundwater. Furthermore,
they can prevent large disturbances and subsidence on the surface, and guarantee the stabil-
ity of the tunnel during the construction phase, i.e., peripheral support in the case of shield
TBMs, or both peripheral and frontal support by earth pressure TBMs or slurry shields.

Additionally, mechanized tunneling provides a high excavation speed, as well as good
quality and profile accuracy of the finished work. It enhances the health and safety condi-
tion of the workforce and has a little interference with the environment (little noise, hardly
any vibrations, and unchanged groundwater level). However, the main drawback of this
technique is that a significantly long time and effort is needed for the planning phase and
installation of the shield machine and the lack of flexibility due to the certain restrictions in
the tunnel geometry, which make the method not economically optimized for short tunnels.

(a) (b)

Figure 3.2: Tunnel boring machines (TBM) a) earth pressure shield (EPB) for use in soft
soil, b) double shield TBM for excavation in hard rock Herrenknecht (2021)

For excavation in the hard rock, when there is a risk due to falling rocks during operation,
or for tunneling in the soft ground below the groundwater level, TBMs can be equipped with
a shielding system. According to Röttger et al. (2015), the shield machines used in this case
can present a supporting system using compressed air, earth pressure, or liquid substances
(bentonite). Figure 3.2 shows two examples of equipped TBMs for quarry in soft soil and
excavation in hard rock.

3.1.1 Tool Concepts

Different tool concepts have been developed to place on the shield of TBMs concerning
the ground to be excavated. They should be adopted to the geology and the corresponding
excavation mechanism for the type of ground. They are described in detail in the work
of Küpferle et al. (2017a). For example, as illustrated in Figure 3.3, the cutting discs
are introduced for excavation in hard rocks, while chisel, reamer, and ripper are used for
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quarrying soil. However, since they do not influence the further investigations in this work,
they are only discussed briefly in the following.

Chisel

Reamer

disc

(a) (b) (c)

Figure 3.3: Front view of the shield for tunneling machines a) standard configuration, b)
configuration for soil ground and c) configuration for hard rock (Röttger et al.
(2015))

Cutting Disc

Cutting discs or wheels are originally used for excavation in hard rock since chisel and other
burin tools quickly become blunted in contact with the abrasive rock. They apply a great
point load on the rock, causing fragmentation and crack propagation, thus leading to the
formation of crack networks and finally breakage of larger pieces instead of grinding up. As
shown in Figure 3.4, in addition to single cutting wheels (mono-disc), there are also multiple
edge cutter rings arranged in parallel. They can be equipped with scrapers to carry out the
fragments, bearings, and cemented carbide studs.

cutting ring

bearing casing

(a)

cemented carbide studs

(b)

Figure 3.4: Cutting discs of a TBM (a) Mono-disc consists of bearing casing and cutting
ring (Tunnel-Online (2013)) (b) multi-edge cutting ring with cemented carbide
studs (Küpferle et al. (2017a))

The cutting wheels are made of wear-resistant, high-alloyed work steel with high car-
bon content. Frenzel et al. (2008) concluded that the material should achieve the greatest
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possible hardness, as well as a certain fracture toughness to withstand the high mechanical
stresses during operation in hard rock.

One failure mechanism of cutting discs can be flank wear due to abrasion, which happens
when they penetrate too deep into the rock, and is the function of the penetration depth, the
rotational speed of the cutting wheels and the properties of the ground to be excavated. Rad
(1975) quoted that the dominant wear mechanism, in this case, is the two-body abrasion,
i.e., scratching of the material surface. Additionally, due to the low density of the ground
or adhesive-acting suspensions or mechanical failure, disc cutters can experience frequent
blockage and stop rotating, so that the non-rotating cutting discs will be worn locally from
one side and develop a flat surface.

Another mechanism causes wear due to surface spalling. Czichos et al. (1995) shows that
the three-body abrasion, i.e., indentation of abrasive particles into tool material, leads to
continuous wear of the material surfaces if they move relative to the material surface. Addi-
tionally, cycling indentation of abrasive particles into the tool material can lead to disruption
and ultimately brittle material break-out.

Chisel, Ripper, and Reamer

Another group of tools used for excavation in the soil is chisel, ripper, and reamer. Chisel
and ripper are installed perpendicular to the cutter head and used for scratching the tunnel
face. The main difference between chisel and ripper is that rippers are direction-independent,
i.e., they can be used in both rotational directions of the cutter head and therefore have a cut-
ting edge for both directions of rotation. While chisel due to its geometry can only move in
one advanced direction. Reamers are usually arranged at regular intervals in the outer radius
of the cutter head. They serve to transfer the quarried soil behind the cutter head through
the excavation chamber.

The material used for these tools is similar. They are made of the main steel substrate,
responsible for transferring forces from the tunneling device into the ground to be exca-
vated. Due to the different requirements, such as wear resistance, material strength, and
toughness, the tool is locally protected by coating or deposition welding of materials such
as cemented carbide pins or ceramic edges. The tool can lose its functionality either due
to high-impact loads caused by hitting boulders or geological inhomogeneities or from cy-
cling loads promoting fatigue failure. According to Theisen (1997), the service life can be
improved by utilizing a material that possesses sufficient hardness (resistance against plas-
tic deformation and crack formation) alongside high fracture toughness (resistance against
crack propagation).

3.2 Wear Mechanisms

The term wear is defined as damage to the surface of a solid body, involving progressive
material removal, due to relative motion and frictional contact with another surface. This
process is usually slow but is considered as one of the major factors causing damage and
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consequently failure of components during the lifetime of tools or machines. Therefore,
wear is an important topic from the economical point of view and efficiency of the project.

In general, wear is a complex procedure that depends on different mechanical, physical,
chemical, and electrical phenomena which take place at the same time or change irregularly.
Thus, different wear classifications can be considered from many points of view, depends
on the methods of mechanics, physics, and chemistry. According to Zum Gahr (1987), wear
mechanisms can be divided into four main categories: abrasion, adhesion, surface degrada-
tion, and tribochemical reaction. Which mechanism dominates an application depends on
the tribological system. In mechanized tunneling, an analysis of excavation tools represents
that abrasion and surface degradation are the dominant wear mechanisms [Gharahbagh et al.
(2011), Düllmann et al. (2013)]. These individual wear mechanisms are briefly presented
here.

3.2.1 Abrasion

Abrasion occurs when the roughness of hard solids, i.e., abrasive particles, penetrates into
softer surfaces under high contact force and slides over them. What happens at the mi-
croscopic level depends on the hardness, strength, and volume fraction of hard particles in
the tool material (Theisen (1997)). Ductile materials experience deformation and machining
processes that lead to failure due to fatigue. In the case of brittle materials, on the other hand,
these roughnesses primarily lead to micro-breaking. Depending on the type of material, the
focus is on entirely different processes at the microscopic level.

Zum Gahr (1987) concluded that abrasion can be categorized into four micromecha-
nisms: micro-chipping, micro-plowing, micro-fatigue, and micro-fracture. Micro-chipping
and micro-plowing results in homogeneous wear rates by abrasive degradation, whereby
an abrasive particle is penetrating into the material and sliding relative to the surface, thus
leads to material removal. As the wear process continues, both mechanisms can transform
into micro-fatigue, leading to crack formation and propagation under active cyclic loading.
Finally, the resulting crack networks can lead to a break out of material, which is known as
micro-fracture.

3.2.2 Adhesion

Adhesion at the microscopic level happens when two solid bodies slide on each other under
high normal stress, and they do not separate at the original interface, but at the new interface,
which runs through one of them. The solid, through which the new separating surface runs,
loses mass on the surface, which remains attached to the second solid. The basic requirement
for this type of wear is that the connection established at the original separating surface has
a higher shear strength than the shear strength of one of the two solid bodies.

Depending on the material of the two solid bodies, the connection could be based on me-
chanical interlocking, diffusion of atoms or molecules, electron transfer, or chemical bonds
on the surface. Therefore, adhesion can be reduced by building up a separating lubricat-
ing film or by forming reaction layers from the lubricant additives that are matched to both
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solids, as explained by (Köppl 2014).

3.2.3 Surface Degradation

The surface degradation is due to cyclic loading of a base and a counter body between which
high contact forces are present, and leads to micro-cracks on or below the surface of the base
body, detachment of flat fragments on the surface, and thus material removal. Micro-cracks
can arise from local stress peaks, even if the macroscopic load is within the elastic limits of
the material, see the work done by Küpferle et al. (2017b).

3.2.4 Tribochemical Reaction

Tribochemical reaction refers to wear mechanism that results from a chemical process on the
surface of a solid and consequently material loss which is activated by the mechanical and
thermal stress. For example, the oxidation of metals counts under atmospheric conditions.

The insight of the above-mentioned wear mechanisms is beyond the scope of this work.
For more details, readers are referred to Rabinowicz and Tanner (1966), Popov (2010) and
Köppl (2014). In real applications, the wear process is more complicated and is normally
a combination of different wear mechanisms mentioned above. The focus of our work is
on mechanized tunneling, and therefore the prediction of wear of the cutting tools, where
the abrasive wear is the dominated specific type. Accordingly, the volume loss depends on
the material properties of contacting bodies, as well as contact behavior such as pressure,
sliding velocity, and temperature. This is explained in more detail in the following section.

3.3 Abrasive Wear

Abrasive wear is the most dominant wear process in tunneling tools, which is caused due
to hard particles that are forced against, penetrate and move along a solid surface (ASTM
2013). The abrasive wear process is classified according to the tribological system into two
groups: two-body and three-body abrasive wear. In two-body abrasion, wear is caused by
fixed hard protuberances of one surface sliding slide over the other, while in three-body abra-
sion particles are trapped between two contacting surfaces and slide or roll freely. According
to Harsha and Tewari (2003), since in three-body abrasion the loose abrasive particles rather
roll than slide, the rate of material removal is less than two-body abrasion.

Wear is not a simple material property, but rather a system-dependent quantity (Arbeits-
blatt 2002). According to Friedrich et al. (1991), the abrasive wear process can not only
be characterized by material properties but also by the surface properties of the involving
partners., see Figure 3.5.

Different test methods are developed for estimation of abrasive wear such as Cerchar test,
LCPC test, pin-on-disc machine and, dry sand-rubber wheel test, for example in the work
of Käsling and Thuro (2010). The abrasive wear that happens to the cutting tools of TBM
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Solid body:
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• Volume
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• Layer thickness
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Abrasive wear

Figure 3.5: parameters influencing the abrasive wear performance

is categorized as the two-body abrasion (grooving), as the abrasive particles penetrate and
scratch the surface of the tool during excavation. An investigation of the damage process
at the microstructural level will help to estimate the wear behavior of different materials in
advance. In the present work, the single scratch events with predefined indenter size and
shapes are performed to analyze the grooving process at the microstructural level, which
is based on the nano-scratch laboratory test. Then the wear behavior is modeled based
on the dry sand-rubber wheel test. These two laboratory experiments are explained in the
following.

3.3.1 Nano Scratch Test

Abrasion can be experimentally reproduced using a single scratch test, in which a moving
indenter penetrates the surface of the specimen. Tests were conducted with scratch software
from CSM instruments, equipped with a sphero-conical diamond (tip radius 10 µm). A
gradually increasing load (3 mN to 603 mN) is applied to the specimen by a cantilever arm,
where the indenter is placed. The applied normal force (fN), as well as the resulting scratch
geometry (Ag), are continuously measured during the scratch test. This testing procedure is
a reference for our numerical simulations of single scratch asperity, which will be presented
in Section 8.2.

3.3.2 Dry Sand-Rubber Wheel Test - ASTM G65

The standard test procedure for the dry sand-rubber wheel (ASTM-G65) is broadly used
to investigate the abrasive wear resistance of metallic materials. The abrasive particles are
guided by a nozzle in between a rubber-coated wheel and the specimen. The rotating rubber
wheel, which is pressed against the specimen with a defined load through a lever arm, drags
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the abrasive particles with controlled size and composition across the polished specimen
surface. The rotation of the wheel is such that its contact face moves in the direction of grit
flow. The pivot axis of the lever arm lies within a plane, which is approximately tangential
to the rubber wheel surface and normal to the horizontal diameter along which the load is
applied. The test setup is shown schematically in Figure 3.6 and is considered as a reference
for our wear model, which will be introduced later in Section 8.4.

Figure 3.6: Schematic overview of the dry sand-rubber wheel test
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4 Numerical Methods

In this chapter, we discuss the fundamentals of the two numerical methods used in this thesis.
Section 4.1 is dedicated to the Discrete Element Method (DEM), while in Section 4.2 the
essential motivation and principles of the Finite Element Method (FEM) are discussed.

4.1 Discrete Element Method (DEM)

The Discrete Element Method (DEM), originally proposed by Cundall and Strack (1979),
is a popular numerical technique in which the material behavior is represented by interac-
tions between a collection of arbitrarily shaped particles. Note that the term ”particle”, in
the present context, denotes a body that occupies a finite amount of space. Each particle
moves independently of one another and interacts only at contacts or interfaces between the
particles. In recent years, it has found its applications in both fundamental research and
engineering fields. It is suitable for simulating granules, such as soil, whether static or dy-
namic. However, it could also be considered for solids if there is a breakout of individual
parts, large deformations or if different bodies come into contact with each other.

The DEM has a time-stepping algorithm and is based on the idea that the chosen time-
step is so small that during a single time-step, disturbances cannot propagate further from
any particle than its immediate neighbors. It is the most precious advantage of DEM that
the nonlinear interaction of a large number of particles can be solved without requiring an
excessive amount of memory or an iterative procedure; since it assumes constant velocity
and acceleration over each time-step.

4.1.1 Calculation Cycle

A thorough description of the method is given in a two-part paper by Cundall and Hart
(1992). The general DEM can handle deformable polygonal-shaped particles. In this study,
we use the PFC3D code for our simulations, which is known as a simplified implementation
of the DEM because of the following restrictions:

1. The particles are considered as rigid bodies.

2. The contacts occur over an infinitesimally small area (i.e., point contact).

3. Behavior at the contacts uses a soft-contact approach where the rigid particles are
allowed to overlap one another at contact points. The overlaps are very small in com-
parison to particle size and are related to contact forces via the force-displacement
law.
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4. Bonds can exist at contacts between particles.

5. All particles are spherical. However, the clump logic supports the creation of a more
complex arbitrary shape.

Law of motion
(applied to each particle)

resultant force and moment

Force-displacement law:
(applied to each contact)

relative movement
constitutive relation

Update particle and wall positions and set of contacts

Contact forces

Figure 4.1: Calculation cycle in PFC3D. Image inspired by (Itasca 1999)

Calculations in DEM are performed by alternating between Newton’s second law applied
to the particles and the force-displacement law applied to the contacts between particles. At
the beginning of each time-step, a set of contacts is updated from particle and wall positions.
The force-displacement law is used to update the contact forces arising from the relative
motion between the two entities at the contact based on the chosen contact constitutive
model. Next, Newton’s second law is applied to determine the motion of each particle
arising from the contact and body forces acting upon it. The calculation cycle is represented
in Figure 4.1. The calculations performed in each of the two boxes of Figure 4.1 can be
done effectively in parallel.

A

B

[B]
r

[A]
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d

n
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[A]xi
[C]
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Figure 4.2: Illustration of ball-ball contact. Image inspired by (Itasca 1999)
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Assume there is a contact between two particles A and B, with radii r[A] and r[B], as it
is illustrated in Figure 4.2. For ball-ball contact, the unit normal, ni, which describes the
contact plane, is given by

ni =
x

[B]
i − x

[A]
i

d
(4.1)

where d is the distance between the ball centers

d =
∣∣∣x[B]

i − x
[A]
i

∣∣∣ (4.2)

The overlap Un, is defined to be a relative contact displacement in the normal direction, and
is given by

Un = r[A] + r[B] − d (4.3)

The location of the contact point is given by

x
[C]
i = x

[A]
i + (r[A] − 1

2
Un)ni (4.4)

Almost the same relationship describes the contact between a particle and a wall element,
this is explained in more detail in PFC manual (Itasca 1999).

The contact force F i can be decomposed into normal and tangential components with
respect to the contact plane as

F i = F n
i + F t

i (4.5)

The normal contact force is calculated by

F n
i = Kn Unni (4.6)

where Kn is the normal contact stiffness and depends on the chosen contact model. The
most common contact models will briefly explained later. The following applies to the
tangential direction analogous to the relationship:

∆F t
i = −Kt ∆U t

i (4.7)

where Kt is the tangential stiffness at the contact and ∆U t
i = V t

i ∆t is the incremental
displacement in the tangential direction, depends on the shear component of the contact
velocity V t

i and the time-step ∆t. In contrast to the normal direction, incremental values for
force and displacement are used in the tangential direction.

4.1.2 Contact Components

The mechanical behavior of the material is described via the contact between particles. At
each point, at least one of these possibilities could be applied: contact, slip, or bonding. In
PFC there are two standard contact models (linear and Hertz) and several alternative ones.
In the following, the components of contact, as well as the contact models, will be briefly
explained.
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Stiffness

The contact stiffnesses in the normal and tangential direction, Kn and Kt, are essential
components for every contact model. These are determined from the stiffness, which is
assigned to the particles and the wall elements, depending on the selected contact law. They
relate the contact forces and relative displacements in the normal and shear directions via
Equations (4.6) and (4.7).

If no other components, such as bonds, damping, or friction, are added to the contact, it
is only active under pressure. It means that, the stiffness is only defined for the compressive
connection of two particles via the contact stiffness. If a connection is created using bonds,
these bonds also define the stiffness for the tensile forces. The contact stiffnesses differ for
the linear and Hertz contact models, as will be described in Section 4.1.3.

Slip

The inelastic behavior of contact is defined by slip behavior for compressive normal forces
and breaking of bonds for tensile forces. The slip behavior is described by the dimensionless
friction coefficient µ. Here, µ is equal to tan(φ), where φ is the particle friction angle.
Sufficient tangential forces will cause particles to slip relative to each other or other surfaces.
The extent of slippage under tangential force is determined by:∣∣F t

∣∣ ≤ µ |F n| (4.8)

Usually, 0 < µ < 1 should be applied, but in some cases µ > 1 can also occur. Then the
tangential force can become larger than the normal force acting in contact.

Bonds

More complex behavior can be modeled by allowing the particles to be bonded together
at their contact point. Consequently, the bond is broken, when the inter-particle forces
acting at any bond exceed the bond strength. This allows tensile forces to develop between
particles. The two standard bonding behaviors are embodied in contact bonds and parallel
bonds. A contact bond can be envisioned as a pair of elastic springs (or a point of glue) with
constant normal and shear stiffnesses acting at the contact point. These two springs have
specific shear and tensile normal strengths. Here, the bond strength is defined as fn,c in the
normal and f t,c in the tangential direction. A parallel bond provides the force-displacement
behavior of a finite-sized piece of cementitious material deposited between two balls. It
can be envisioned as a set of elastic springs with constant normal and shear stiffnesses,
uniformly distributed over a circular cross-section lying on the contact plane and centered
at the contact point. The different behavior of the bonds in the normal and the tangential
direction is illustrated in Figure 4.3.

If the representative tangential force is reached, then the bonds break, and the contact
forces are set to zero. Note that, in addition to tensile forces, parallel bonds can also be used
to transmit moments.
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Figure 4.3: Contact laws in normal (left) and shear (right) direction, slip behavior versus
breaking of contact bonds

Clumps

The clump logic is used to create and modify groups of particles, to have complex shaped
grains. A clump behaves as a rigid body with a deformable boundary (i.e., the particles
comprising the clump remain at a fixed distance from each other) and will not break apart,
regardless of the forces acting upon it. In this sense, a clump differs from a group of particles
that are bonded to one another.

The internal contacts of a clump are skipped during the calculation cycle, which results
in savings of computational time compared to a similar calculation where all contacts are
active. Particles within a clump may overlap to any extent; contact forces are not generated
between these particles, but any contact forces that exist when the clump is created or when
a particle is added to the clump will be preserved unchanged during cycling.

Damping

To consider the damping effect, a damping force term is added to the equations of motion.
On the other hand, dampers can be added to the contact in both normal and tangential direc-
tions. These then act in parallel with the active contact model and available bonds. In this
case, a damping force is added to the contact force:

Di = βi |V i| (4.9)

where, βi is the damping constant and V i is the relative velocity at the contact. However,
the damping constant βi will not be specified directly in DEM, but via a ratio di, which
describes the influence of the damping constant in the critical damping constant βcrit

i is:

βi = di β
crit
i (4.10)

for di = 1 critical damping is achieved, so the system finds its equilibrium as quickly as
possible. If nothing is defined, then di = 0 will be applies.
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4.1.3 Contact Models

Linear Model

The linear contact model is the most common contact law, which is also used in our work.
In this model, contact stiffnesses are constant and calculated from the stiffnesses of two
contacting entities [A] and [B]. In the normal direction, it is given by

Kn =
k

[A]
n k

[B]
n

k
[A]
n + k

[B]
n

(4.11)

and in tangential direction by

Kt =
k

[A]
t k

[B]
t

k
[A]
t + k

[B]
t

(4.12)

Bonds and dampers described in Section 4.1.2 can be inserted into this model as well.

Hertz Model

The Hertz model provides sliding and stiffness that varies as a function of the elastic con-
stants of the two contacting entities, overlap and normal force. It is not defined for tensile
forces, and is therefore incompatible with bonding. The contact normal stiffness is given by

Kn =

(
2〈G〉

√
2r̃

3(1− 〈ν〉)

)√
Un (4.13)

and the contact shear stiffness is given by

Kt =

(
2
(
〈G〉23(1− 〈ν〉)r̃

)1/3

2− 〈ν〉

)
|F n

i |
1/3 (4.14)

Un is the sphere overlap, |F n
i | is the magnitude of the normal contact force. The multipliers

to both of these equations are a function of the geometric and material properties of the two
entities in contact, with G being the shear modulus, ν the Poisson’s ratio, and r̃ the mean
particle radius.

Other contact models

The literature contains a large number of other contact models that have been developed
for a wide variety of applications. A comprehensive introduction of all types of contacts
between particles can be found in the work of Schütte (2001). There are also individual
contact models designed for special applications; for example, smooth joint models are
used by Obermüller (1989) to model the boundary surfaces, or by Straßberger (1997) in the
prediction of instabilities of rock formations.
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In addition to the application-specific contact models, there are also attempts to develop
a contact model whose parameters can be determined from simple standardized tests (see
Westerhoff (1995)). The mentioned models are only examples, the list can be expanded as
required.

4.2 Finite Element Method (FEM)

The purpose of this section is to introduce the Finite Element Method (FEM). Generally,
FEM is a numerical technique for solving problems that are described by Partial Differential
Equations (PDEs) or can be formulated as functional minimization. A more precise finite
element solution can be obtained by increasing the number of simple elements or using
elements with more complicated shape functions.

4.2.1 Variational Formulation

In mathematical modeling of problems in engineering fields, it is often not easy to solve the
system of partial differential equations analytically, due to the complexity of the geometry of
the domain or the high non-linearity of the material behavior. In order to find an approximate
solution for such a problem, it is more common and suitable to use the so-called weak (or
integral) formulation of the investigated problem. The starting point of variational approach
in finite element method is Gibbs energy G, as

G =

∫
Ω

Ψ dV −
∫

Ω

b · u dV −
∫
∂Ω

t · u dA (4.15)

The stationarity condition for the Gibbs energy with respect to the displacement field u is
derived as

δG =

∫
Ω

∂Ψ

∂ε
: δε dV −

∫
Ω

b · δu dV −
∫
∂Ω

t · δu dA
!

= 0 ∀ δu (4.16)

where the partial derivative of energy with respect to the strain ∂Ψ/∂ε corresponds to the
stress σ. Due to the fact that the equilibrium condition is fulfilled for the state of minimal
energy, the energy expression can be minimized with respect to the primary variable u.
Hence, it holds that the variation of the Gibbs energy must vanish for any change in the
displacement field u, i.e., δG = 0. Therefore, variation of Gibbs energy can be written as∫

Ω

σ : δε dV
!

=

∫
Ω

b · δu dV +

∫
∂Ω

t · δu dA ∀ δu (4.17)

It is also known as the principle of virtual work.

The core idea of finite element method is to simplify a problem with significant com-
putational effort by discretizing the continuum body into Ne number of finite elements.
Consequently, both the total volume Ω and the boundary ∂Ω are composed of the element
volumes Ωe and element boundaries ∂Ωe as follows:

Ω =
Ne∑
e=1

Ωe, ∂Ω =
Ne∑
e=1

∂Ωe (4.18)
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The discretization can then be entered into the integrals of the variational formulations in
accordance with

Ne∑
e=1

∫
Ωe

σ : δε dV
!

=
Ne∑
e=1

∫
Ωe

b · δu dV +
Ne∑
e=1

∫
∂Ωe

t · δu dA ∀ δu (4.19)

when adding up the evaluated terms element by element, the global node numbering must
be taken into account. This procedure is called assembly and is described in Fish and Be-
lytschko (2007) in detail.
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Figure 4.4: Discretized body (Top) arbitrary and reference element in physical and natural
coordinate system (Bottom)

The elements are built up through their surfaces by a specific number of nodes Nn (eight
for cubic-like or hexahedral element), where they are described by their physical coordinates
x as

x = (x1 x2 x3)T (4.20)

Hexahedral (or brick-type) linear 8-node three-dimensional isoparametric element is de-
picted in Figure 4.4, in both an arbitrary shape related to the physical coordinate as well
as reference shape related to the natural coordinate. The nodal coordinates of the reference
element are described by the natural coordinate vector

ξ = (ξ1 ξ2 ξ3)T (4.21)

where they make up the master or unit cube of three-dimensional elements on which the
shape functions of arbitrary shaped hexahedral elements can be formed. The term “isopara-
metric” means that nodal coordinates x̂ and nodal displacement field û are specified in
parametric form and are interpolated with the same shape functions. Furthermore, the same
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functions are also applied to the variation of the nodal displacements δû according to the
Galerkin (or Bubnov-Galerkin) method. This allows to formulate

x = N · x̂ , u = N · û , δu = N · δû (4.22)

with so-called shape functions N . As it is already shown in Figure 4.4, considering the
origin of the natural coordinate system in the origin of a cube with an edge length of two,
then the trilinear shape functions (eight nodes) can be found as

N1(ξ) =
1

8
(1 + ξ1)(1− ξ2)(1− ξ3) N5(ξ) =

1

8
(1 + ξ1)(1− ξ2)(1 + ξ3)

N2(ξ) =
1

8
(1 + ξ1)(1 + ξ2)(1− ξ3) N6(ξ) =

1

8
(1 + ξ1)(1 + ξ2)(1 + ξ3)

N3(ξ) =
1

8
(1− ξ1)(1 + ξ2)(1− ξ3) N7(ξ) =

1

8
(1− ξ1)(1 + ξ2)(1 + ξ3)

N4(ξ) =
1

8
(1− ξ1)(1− ξ2)(1− ξ3) N8(ξ) =

1

8
(1− ξ1)(1− ξ2)(1 + ξ3)

(4.23)

The eight shape functions are assembled to a matrix, accordingly

N = N (ξ) =N1(ξ) 0 0 N2(ξ) 0 0 · · · N8(ξ) 0 0
0 N1(ξ) 0 0 N2(ξ) 0 · · · 0 N8(ξ) 0
0 0 N1(ξ) 0 0 N2(ξ) · · · 0 0 N8(ξ)


(4.24)

The nodal coordinates x̂e and nodal displacement ûe of a specific element are assembled to
the vectors

x̂e = (x̂1
1 x̂1

2 x̂1
3 x̂2

1 x̂2
2 x̂2

3 · · · x̂8
1 x̂8

2 x̂8
3)T

ûe = (û1
1 û1

2 û1
3 û2

1 û2
2 û2

3 · · · û8
1 û8

2 û8
3)T

(4.25)

so that the coordinates x and displacements u depend on the natural coordinates according
to x = x(ξ) and u = u(ξ), respectively.

As next, the correlation between the strain tensor and the element displacement vector
has to be defined. Utilizing the definition of linearized strain tensor by

ε =
1

2
(∇u+ u∇) (4.26)

and under consideration of the Voigt notation, one can evaluate the approximated strain
components as

ε̃ = B̃ · u (4.27)

where the strain operator matrix B̃ contains the corresponding derivatives and allows a
linear mapping between strains and displacements. It is defined in three-dimensional space
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according to

B̃ :=



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

∂
∂x2

∂
∂x1

0


(4.28)

Now, inserting the approximation of displacement from Equation (4.22) into Equation (4.27)
results in

ε̃ = B̃ ·N · û = B · û (4.29)

where the multiplication of B̃ ·N corresponds to the derivative of shape functions dependent
of natural coordinates ξ with respect to the physical coordinates x and denotes the operator
matrixB = B̃ ·N . Each component k ofB can be calculated using the chain rule as

∂N k(ξ)

∂x
=
∂N k(ξ)

∂ξ

∂ξ

∂x
(4.30)

and these components can be formulated into a matrix as follows
∂N (ξ)
∂ξ1

∂N (ξ)
∂ξ2

∂N (ξ)
∂ξ3

 =


∂x1
∂ξ1

∂x2
∂ξ1

∂x3
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

∂x3
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ3

∂x3
∂ξ3



∂N (ξ)
∂x1

∂N (ξ)
∂x2

∂N (ξ)
∂x3

 (4.31)

or alternatively written in shorter form as

∂N (ξ)

∂ξ
= J · ∂N (ξ)

∂x
(4.32)

which introduces the well-known Jacobian matrix J . Then, the derivatives with respect to
the coordinates x can be found according to

∂N (ξ)

∂x
= J−1 · ∂N (ξ)

∂ξ
(4.33)

Finally, it only remains to calculate the integrals in Equation (4.19) numerically, as the
analytical integration is hardly possible due to time expenses. Within the framework of this
thesis, the common numerical method of Gauß quadrature is taken into account. The Gauß
quadrature of a function f(x) over the parameter space x ∈ [−1, 1] is given by the sum∫ 1

−1

f(x)dx ≈
m∑
j=1

w(xj) f(xj) (4.34)
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where w(xj) are the weight coefficients to the function f(xj), evaluated at certain integra-
tion or so-called Gauß points xj . For polynomials of polynomial degree p ≤ 2m− 1 Gauß
quadrature method delivered exact results, while higher-order polynomials and other func-
tions can be integrated approximately. For specific application, the integral is extended into
three-dimensional consideration, thus∫ 1

−1

∫ 1

−1

∫ 1

−1

f(ξ) detJ(ξ) dξ1 dξ2 dξ3 =

NGP∑
g=1

wGP f(ξgGP ) detJ(ξgGP ) (4.35)

The transformation of integrals from the physical coordinates into the natural coordinates is
performed using the determinant of the Jacobian matrix. In this case, quadratic function are
used; i.e., m = 2, and therefore the NGP = m3 = 8 are given by

ξiGP ∈



±
1√
3

± 1√
3

± 1√
3


 i ∈ {1, ..., 8} (4.36)

4.2.2 Residual and Tangent Matrix

The principle of virtual work in Equation (4.19) for an arbitrary (constant) variation of
displacement δu can be written as

Ru =
Ne∑
e=1

∫
Ωe

BT · σ̃ dV −
Ne∑
e=1

∫
Ωe

NT · b dV −
Ne∑
e=1

∫
∂Ωe

NT · t dA !
= 0 (4.37)

whereRu provides the residual of the displacement field. In order to seek for the zero point
ofRu, the well-known Newton-Raphson solution scheme is applied in an iterative way. For
more details regarding this method see works of Zienkiewicz et al. (2005) and Fish and
Belytschko (2007). By formulating the residual at the iteration step k + 1

Rk+1
u = Rk

u +
dRk

u

duk
·∆uk+1 !

= 0 (4.38)

the displacement increment ∆uk+1 can be found according to

∆uk+1 = −
[

dRk
u

duk

]−1

·Rk
u (4.39)

Here,Rk
u corresponds to the residual from Equation (4.37) evaluated for the previous itera-

tion step k, and the derivative of the residuum with respect to the displacements dRk
u/duk

is denoted as the tangent matrix and can be determined as

dRk
u

duk
=

Ne∑
e=1

∫
Ωe

BT · dσ̃
dû

dV =
Ne∑
e=1

∫
Ωe

BT · dσ̃
dε̃
·B dV (4.40)

Then, the displacements are updated as

uk+1 = uk + ∆uk+1 (4.41)

If the residual for this updated displacement is zero or at least reaches a specified tolerance,
the iteration steps can be ended. Otherwise, the next iteration is continued until the state is
reached.
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4.2.3 Stresses and Material Tangent

As discussed in Subsection 4.2.2, for determining residual and tangent matrix and subse-
quently updating the displacements, stresses and material tangent should be calculated in
advance. In the case of linear constitutive relationship given by Hook’s law

σ̃ = σ̃(ε̃) = E · ε̃ (4.42)

the material tangent matrix dσ̃/dε̃ in Equation (4.40) can be trivially determined by

dσ̃
dε̃

= E, (4.43)

that corresponds exactly to the stiffness matrix E. Since this tangent matrix is obviously con-
stant for a linear elastic material model, the displacements can be updated either analytically
or using the Newton-Raphson method which converges in one iteration.

To implement the non-linear material behavior in the finite element method, the material
tangent matrix is the total derivative of the stress with respect to the strain. We should
emphasize that the non-linearity in this context only refers to the non-linear relationship
between stress and strain, i.e., non-linear constitutive equations. Therefore, geometrical
non-linearity, i.e., non-linear relation between displacement and strain, is not considered in
this work. In the case of non-linear constitutive relationship, stresses are a function of strains
and internal variables, and generally formulated as

σ̃ = σ̃(ε̃, λ) (4.44)

Here, in agreement with the procedure presented in Junker and Hempel (2017), we perform
a consistent linearization from Taylor expansion for stresses, meaning

σ̃m+1 = σ̃m +
∂σ̃

∂ε̃

∣∣∣∣m ·∆ε̃+
∂σ̃

∂λ

∣∣∣∣m ∆λ (4.45)

with ∆ε̃ = ε̃m+1 − ε̃m and ∆λ = λm+1 − λm being the increment of strains and internal
variables, respectively, and σ̃m the stress from previous time-step. It is important to mention
that in this thesis, λ refers to the vector of internal variables and consists of internal variables
regarding the plasticity as well as internal variables regarding the damage. Thus, this will
be explained in detail for each material model used in this work in Chapter 6. Then, the
material tangent matrix is derived as

dσ̃
dε̃

∣∣∣∣m+1

=
∂σ̃

∂ε̃

∣∣∣∣m +
∂σ̃

∂λ

∣∣∣∣m ⊗ ∂λ

∂ε̃

∣∣∣∣m+1

(4.46)

The individual derivatives of the stress, i.e., the first two terms on the right-hand side, will be
calculated uncomplicated. The implementation of plasticity follows an explicit Euler proce-
dure. Therefore, the derivatives of the plastic internal variables with respect to the strain at
the previous time-step are not interned in the calculations. For the implementation of dam-
age, we consider an implicit update scheme, with both rate-dependent and rate-independent
behavior of the evolution equations.

For rate-independent material behavior, the evolution equation according to Equation
(2.109) is

λm+1 = λm + ∆ρ(ε̃m+1) p(ε̃m+1, λm) (4.47)
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and consequently third term of Equation (4.46) can be derived as

∂λ

∂ε̃

∣∣∣∣m+1

= ∆ρ
∂p(ε̃m+1, λm)

∂ε̃m+1 +
∂∆ρ(ε̃m+1)

∂ε̃m+1 p(ε̃m+1, λm) (4.48)

The derivative of driving force can be calculated directly, while for calculation of the deriva-
tive of the consistency parameter ∆ρ, we need also the yield function Φ, and based on
Equation (2.108), it reads

Φ =
∣∣p(ε̃m+1, λm+1)

∣∣− r1
!

= 0

=
∣∣p(ε̃m+1, λm + ∆ρ(ε̃m+1) p(ε̃m+1, λm+1)

∣∣− r1
!

= 0
(4.49)

Setting the derivative of yield function equal to zero, i.e.,

dΦ

dε̃m+1 =
∂Φ

∂ε̃m+1 +
∂Φ

∂∆ρ

∂∆ρ

∂ε̃m+1

!
= 0 (4.50)

Rearranging the above equation

∂∆ρ

∂ε̃m+1 = −
[ ∂Φ

∂∆ρ

]−1 ∂Φ

∂ε̃m+1 (4.51)

Finally, substituting Equation (4.51) into Equation (4.48) leads to the calculation of the
derivative of the internal variable as

∂λ

∂ε̃

∣∣∣∣m+1

= ∆ρ
∂p(ε̃m+1, λm)

∂ε̃m+1 −
[ ∂Φ

∂∆ρ

]−1 ∂Φ

∂ε̃m+1 p(ε̃
m+1, λm) (4.52)

For rate-dependent material behavior, the evolution equation according to Equation (2.112)
is

λm+1 = λm +
∆t

r2

p(ε̃m+1, λm)− r1 (4.53)

which unlike to the previous case, leads to the easy calculation of the desired derivative of
the internal variable as

∂λ

∂ε̃

∣∣∣∣m+1

=
∆t

r2

∂p(ε̃m+1, λm)

∂ε̃m+1 (4.54)
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5 DEM Parameter Identification

The Discrete Element Method (DEM) has many advantages compared to continuum meth-
ods, especially regarding processes that include loosening, fracturing, defragmentation as
well as filling and flow processes. This leads to a wide range of applications in various
fields of engineering. The main problem that remains within this method is connecting the
contact parameters that govern the material behavior to the basic physical properties of the
investigated material.

The main focus of this chapter is to develop a parameter identification approach for dis-
crete element simulations including granular materials as well as rocks. In Section 5.1, after
introducing different concepts for parameter identification of DEM, the advantages and dis-
advantages of each procedure are explained. An analytical prediction based on an energy
minimization approach is introduced in Section 5.2. It leads to a relation between the macro-
scopic elastic constants and the microscopic contact parameters. Ideally, this relation should
be applicable a priori, before the actual simulation is started. Section 5.3 deals with the setup
and calibration of compression tests, performed in PFC3D software for solid and granular
materials. Section 5.4 uses the results of the compression test for validation of the developed
analytical parameter identification relations. Furthermore, the influence of complex particle
ensembles on material properties is investigated.

5.1 Introduction

The discrete element method is a promising approach for modeling soil-tool interaction and
can be used to overcome some difficulties encountered by analytical methods and finite el-
ement simulations, as discussed by Coetzee and Els (2009). The major obstacle concerning
the use of DEM is the required input parameters. Often, the parameters defining the con-
stitutive model have no direct physical meaning and are therefore hard to determine. This
is especially valid for very complex materials such as soil; for more detail, please refer to
Donzé et al. (2009).

Current studies on parameter identification that figure out the required inter-particle pa-
rameters can be divided into two main categories: one group that uses calculations to repli-
cate specified experimental results and the other that uses the theoretical approach. Both
procedures are designed to find a connection between the parameters on the microscopic
and macroscopic scale, such as contact stiffnesses and particle radius on the one hand and
Young’s modulus and Poisson’s ratio on the other. An overview of these two groups is given
in the following.
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5.1.1 Using Experiments to Calibrate Material

There are many publications regarding different applications of the discrete element method,
in which the required DEM parameters are derived from a calibration process using experi-
ments. Belheine et al. (2009) proposed a calibration for material behavior by simulating a
drained triaxial test for a soil sample. Since the calculation time for a limited specimen is
within reason and the numerical results are quite close to the experimental ones, this could
be a promising approach. There remains the known problem that the soil characteristics
can deviate drastically between laboratory experiments and in-situ conditions. Therefore,
other groups, such as Asaf et al. (2007), use a field test for the calibration process. Here
also, a good agreement can be achieved, but the results are limited to the two-dimensional
case. These are just two examples of several publications with a similar approach to finding
DEM parameters for some specified applications, some other examples can be found in the
work of Cleary et al. (1998), and Tanaka et al. (2007). The main drawback is that new test
simulations and experiments are required for every new material because the results cannot
be transferred to another material, application, or packing density.

5.1.2 Theoretical Approaches

Due to the obvious drawback mentioned in Section 5.1.1, some groups aim to find a theoret-
ical base to connect the macroscopic to the microscopic material parameters. Although due
to the work of Donzé et al. (2009), none of the analytical approaches are generally accepted
yet, a short overview of the different methods will be given in this section. The theoretical
studies focus on defining the microstructural strain, which results from the behavior of gran-
ular material and relating it to the macroscopic strain. An overview is given by Bagi (2006),
who subdivides the methods into two classes:

• An equivalent continuum is defined for all or part of the assembly. The translation field
of this equivalent continuum is then designed to fit the characteristic translations of the
single-particle centers. Usually, the equivalent continuum is set up through the nodes
of each particle center, while the particles do not necessarily need to be in contact.
The exact choice of the equivalent continuum differs in the different approaches; see
for example works of Bagi (1996), Cambou et al. (2000), Kuhn (1997), Kruyt and
Rothenburg (1996).

• On the other hand, there is the “best-fit” method, in which a translation gradient ten-
sor is defined and the smallest deviation from the characteristic displacement of the
specimen is determined. This method was developed by Cundall and Strack (1979)
and adapted in the works of Liao et al. (1997), Cambou et al. (2000) and others.

In the first group, the assembly needs to be thoroughly investigated to identify the equivalent
continua. Then, the resulting deformations need to be matched to the expected continuum
results. Depending on the chosen approach, this leads to good results; however, a consider-
able (computational) effort is also required. The same is true for the best-fit method. Here,
the computational time comes into play because the displacements of all particle centers or,
in some cases, even all contact points need to be identified.
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5.2 Energy Minimization Approach

A variational approach is provided to relate the local contact parameters to the macroscopic
material properties, such as elastic stiffness and yield state of the soil. This method was
briefly introduced in Hoormazdi and Hackl (2018) and is presented in more detail in this
section.

5.2.1 Microscopic Potential

The relative displacement of two particles at the contact point is denoted by u, and has one
elastic part, one inelastic part, and one part due to relative rotation, as given by

u = ue + ui + ur. (5.1)

The component of relative displacement in normal direction un is assumed to be purely
elastic, whereas the tangential component ut contains an inelastic part and a rotational part
as well. Therefore, it holds that

un = un,e, ut = ut,e + ut,i + ur. (5.2)

In tangential direction, displacements have to be measured as small deviations from the
current configuration, and therefore this decomposition is only valid for infinitesimally small
displacements. Let an infinitesimal rotation of the particle be expressed by the rotation
vector ωi, then the rotational part of the relative displacement is given by

ur = −r[A]ω1 × n− r[B]ω2 × n. (5.3)

where r[A] and r[A] are particle radii and n is the unit normal vector, see Figure 5.1. Obvi-
ously it holds un × ur = 0.

[B]r
[A]
r

n

Figure 5.1: Two contacting particles

Based on this consideration and Helmholtz free energy defined in Section 2.5, the poten-
tials at the contact level in the normal and tangential directions are given as

Ψn(un) =
Kn

2
(un)2, Ψt(ut,e) =

Kt

2
(ut,e)2 (5.4)
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where Kn, Kt are contact stiffnesses in the normal and tangential directions and will be
calculated from particle stiffnesses later. The contact forces in the normal and tangential
direction can be derived from these potentials as follows:

tn =
∂Ψn

∂un
, tt =

∂Ψt

∂ut,e
(5.5)

Forces are generated using the force-displacement law by considering an appropriate con-
tact model that defines the interaction between particles as well as the interaction between
particles and walls. As it is mentioned in Section 4.1.3, in the present work, a linear contact
model is applied. The contact forces in normal and tangential direction can then be derived
from the potentials defined in Equation (5.4), which also correspond to the linear contact
law:

tn = Kn un, tt = Kt ut,e (5.6)

5.2.2 Macroscopic Potential

Now, that the contact point has been examined in more detail and potentials have been es-
tablished at the contact level, they should be converted into a macroscopic potential. Let us
for this purpose assume a (nearly) monodisperse medium consisting of spheres of (average)
radius r. We further assume that all relative displacements and contact forces may be de-
scribed as a function of the normal direction n, independent of the corresponding individual
particle. Specifically, the total relative displacement is then given as u = u(n), and the
elastic one as ue = ue(n). We define the average over all directions of a quantity f for the
3D case as

〈f〉 =
1

4π

∫
S2
f(n) dS, (5.7)

where the integration is performed over the unit sphere S2. The macroscopic specific free
energy Ψm of a corresponding continuum is then given as

Ψm = ρc 〈Ψ(ue(n))〉. (5.8)

Here, ρc denotes the number of contacts between particles per unit volume and will be
discussed more in detail in Section 5.3. It is approximately given by

ρc =
c

2

1− η
4
3
πr3

, (5.9)

where η is the porosity and c is the coordination number, i.e., the average number of contacts
a particle has with its neighbors.

The macroscopic deformation gradient can be calculated as the directional average of the
relative displacements

∇um =
1

r
〈u⊗ n〉. (5.10)

Let us now assume that the directional distribution of relative displacement u(n) as well as
the particle rotations ω will be arranged by the medium in such a way as to minimize the
free energy for a given macroscopic deformation gradient. Furthermore we will take ω to
be an average rotation constant for all particles. The macroscopic free energy can then be
calculated as

Ψm(∇um,ut,i) = ρc min{〈Ψ(ue)〉 |u,ω; ∇um =
1

r
〈u⊗ n〉} (5.11)
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5.2.3 Derive Elastic Constants from Macroscopic Energy

This section shows the derivation of the elastic material constants, i.e., the elasticity modulus
E and the Poisson’ ratio from contact parameters. The next part dedicated to the considera-
tions applied to the granular materials, followed by the part representing relations valid for
bonded material.

Granular Material

Making use of elastic and inelastic contact deformations defined in Equations (5.2) and (5.3),
and substituting the formulas of Equation (5.4) into Equation (5.11) results in the following
macroscopic free energy

Ψm(∇um,ut,i) =

ρc min

{〈Kn

2
(u·n)2+

Kt

2
|u−(u·n)n−ut,i+2rω×n|2

〉
|u,ω;∇um =

1

r

〈
u⊗n

〉}
.

(5.12)

In order to minimize the macroscopic free energy, we introduce the Lagrange multiplier σ̄,
and formulate the Lagrangian as

Lm = ρc

〈Kn

2
(u·n)2+

Kt

2
|u−(u·n)n−ut,i+2rω×n|2

〉
+σ̄ :

(
∇um − 1

r

〈
u⊗ n

〉)
.

(5.13)

Stationarity conditions of Lm with respect to u and ω give

ρc

(
Kn (u · n)n+Kt (u− (u · n)n− ut,i) + 2r Ktω × n

)
−1

r
σ̄·n = 0 ∀ δu (5.14)

〈(u− ut,i)× n〉 − 2rω = 0 ∀ δω (5.15)

where we make use of ut,i · n = 0, (ω × n) · n = 0, and (ω × n) × n = −ω. Equation
(5.14) may be solved for the relative displacement as

u = ut,i +

[(
1

Kn
− 1

Kt

)
n⊗ n+

1

Kt
I

]
·
(

1

ρcr
σ̄ · n− 2r Ktω × n

)
. (5.16)

Substitution of Equation (5.16) into Equation (5.10) for macroscopic deformation gradient
gives

∇um = ∇um,i +
1

ρcr2

[(
1

Kn
− 1

Kt

)
〈n⊗ n⊗ n⊗ n〉 : σ̄ +

1

Kt
〈n⊗ n〉 · σ̄

]
+ 2r〈n⊗ n〉 × ω.

(5.17)

A straightforward calculation gives

〈n⊗ n〉 =
1

3
I, 〈n⊗ n⊗ n⊗ n〉 : σ̄ =

1

15
trσ I +

2

15
σ, (5.18)
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where σ = sym σ̄. Now, we introduce the total and inelastic macroscopic strain ε =
sym∇um, εi = sym∇um,i. Then we can rewrite Equation (5.16) after systematization
using Equation (5.18) as

ε = εi +
1

ρcr2

[
1

15

(
1

Kn
− 1

Kt

)
trσ I +

(
2

15

1

Kn
+

1

5

1

Kt

)
σ

]
. (5.19)

Equation (5.19) constitutes an isotropic linear-elastic material law in which we can identify
σ as a stress tensor and ε as strain tensor. The macroscopic Young’s modulus and Poisson’s
ratio are given as

E = 15ρcr
2

(
3

Kn
+

2

Kt

)−1

, ν =
Kn −Kt

2Kn + 3Kt
. (5.20)

This direct relation between the microscopic contact stiffnesses on one hand and the macro-
scopic elastic constants on the other, makes it possible to predict elastic constants, prior and
without time-consuming calibration procedure, directly from the chosen microscopic ones
for particle assemblies in a DEM calculation. Rewrite Equation (5.20) for contact stiffnesses
results in

Kn =
E

3ρcr2 · (1− 2ν)
, Kt =

E

3ρcr2 · (1 + 3ν)
(5.21)

Now, it is possible to assign an appropriate contact stiffness based on Equation (5.21) to
a material, modeled with DEM, with which the material obtains the required macroscopic
stiffness. Here, as already mentioned, the contact stiffness does not correspond to the par-
ticle stiffness but is calculated from the particle stiffness according to the selected contact
law.

Bonded Material

The relations between the contact parameters and material properties already derived for
granular material in the previous part are also valid for cohesive materials and solids. Fur-
thermore, it is also important to determine the strength of the bonds. To achieve this, the
parameter identification procedure presented in Section 5.2 is expanded here for the calcu-
lation of the bond strengths.

To derive the bond strengths in the normal and tangential directions, the relative displace-
ment of contact obtained from Equation (5.16) is considered. From this, the component of
displacement in the normal direction is defined as

un =
1

ρcr

1

Kn
n · σ · n, (5.22)

and after a straightforward calculation using ut,e × n = 0, the elastic part of displacement
is

ut,e =
1

ρcr

1

Kt
(σ · n− (n · σ · n)n) . (5.23)

Employing Equation (5.6), this yields expressions for the contact forces in the form

tn =
1

ρcr
(n · σ · n) n, tt =

1

ρcr
(σ · n− (n · σ · n)n) . (5.24)
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Here, σn = (n ·σ ·n) is interpreted as the normal component of the stress vector regarding
the cutting plane with a normal basis of n, and σt = σ · n− (n · σ · n)n as its tangential
component. Therefore, Equation (5.24) can be simplified as

tn =
1

ρc r
σn tt =

1

ρc r
σt (5.25)

If the tensile force tn acting at the contact is interpreted as the strength of the contact bond in
the normal direction, it can be replaced by fn,c. The same applies to the tangential direction.
Finally, Equation (5.25) gives a failure criterion in which the bond’s break occurs either in
the normal direction or in the tangential direction.

The failure stress of contact connections in the normal direction can be obtained as Rank-
ine stress σRankine

y , and in the tangential direction as Tresca stress σTresca
y . These relations

are reformed after the bond strengths

σRankine
y = ρcr f

n,c and σTresca
y = ρcr f

t,c (5.26)

where with the known failure stresses, the above equation results in the bond strengths in
the normal and tangential direction.

5.3 Compression Test

In order to verify the macroscopic material constants obtained from the microscopic contact
parameters through analytical relations derived in Section 5.2, a series of confined and un-
confined compression tests are conducted. Thus, the elastic constants E and ν determined
analytically according to Equation (5.20) can be compared with those resulting from the
evaluation of the numerical compression test. The tests are performed using the discrete
element method via the PFC3D code.

5.3.1 Setup of Three-dimensional Test

A cylindrical material vessel with a height of hv = 63.4 mm and a radius of rv = 15.85 mm
is created with wall elements. The wall elements are made frictionless and their normal stiff-
nesses are set to be a bit larger than the normal stiffness of an average particle to ensure that
the ball-wall overlaps remain small. The top and bottom walls are used as loading platens,
and the velocity of sidewalls is controlled by a servomechanism to produce a constant con-
fining stress. For fully unconfined tests, the side walls are removed. Spherical particles are
created at half their final size and are placed randomly into the vessel. The particle radii are
then increased in three steps until the porosity of the specimen reaches 35% and the system
is allowed to settle down under zero friction. The final radius of the particles is between
Rmin and Rmax and satisfies the normal particle size distribution.

To reduce the magnitude of locked-in stresses and to create a dense, isotropic, and well-
connected system, the specified isotropic stress is obtained as the average of the direct
stresses. In our models for granular and rock material, σ0 is set equal to approximately 1%
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of the uniaxial compressive stress. The microscopic material parameters are then assigned
to the particles.

In the next step, for the bonded material model, parallel bonds are installed between the
particles in the assembly that are in the near neighborhood and the corresponding properties
are assigned.

To perform an unconfined compression test, the specimen is removed from the material
vessel by deleting the confining walls, and the assembly is allowed to relax and achieve
static equilibrium.

The actual test starts by applying the confining and axial stresses. Loading is performed
by moving the platens towards each other at a final velocity of vp, calculated by a given
strain rate ε̇p, and setting vp = 1

2
ε̇p L0, where L0 is the initial length of the specimen. Note

that for quasi-static loading, the chosen value of ε̇p is strongly dependent on L0.

The test continues until a specific test termination criterion is reached. For a bonded
material, the deviatoric stress σd = σ1 − σc is increased continuously to a maximum value.
When the material fails, the deviatoric stress is decreased and the test is terminated once the
σd meets the condition |σd| < α |σd|max. For an unbonded material, a strain-controlled test
is performed. Therefore, tests are terminated when the applied axial strain reaches a specific
value, i.e., εa < α.

From the compression test, the following macroscopic elastic material constants are ex-
tracted:

1. Young’s modulus (E) and Poisson’s ratio (ν) can be derived as

E =
σa

εa

(5.27)

and

ν = −∆εx

∆εa

= 1− ∆εv

∆εa

(5.28)

where σa and εa are the axial stress and strain, respectively, εx is the strain in the
perpendicular direction, and ∆εv = ∆εx + ∆εa is the volumetric strain.

2. The peak strength (σf) is the maximum value of the axial stress existing at peak load.

3. For the bonded particle model, the crack initiation stress (σci) corresponds to the point
during the test at which a specified fraction (0.01) of the total number of cracks at
peak load have been formed.

These values are taken from the numerical calculation by applying three different proce-
dures:

(i) Wall-based:
Forces and displacements of the wall elements are monitored and lead to the required
stress and strain calculations.
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(a) (b) (c)

Figure 5.2: Three measurement schemes: (a) wall-based (b) specimen-based (c)
measurement-sphere-based

(ii) Specimen-based:
The outer dimension (ball elements) of the specimen are monitored and used to calcu-
late stresses and strains.

(iii) Measurement-sphere-based:
Three measurement spheres are installed in the specimen. They are located in the
upper, middle, and lower part of the specimen. Forces and displacements from these
spheres are averaged.

Figure 5.2 illustrate the three different ways for measuring forces and displacements in com-
pression test.

Here, Kn, Kt, and r are averaged values, taken directly from the simulation, and ρc is
calculated according to

ρc =
nc

V
, (5.29)

where nc is the number of contact points and V is the volume of the specimen.

5.3.2 Calibration Procedure

Macroscopic Properties of Material

Sand and gravel are two types of typical granular materials and are classified as cohesion-
less soil. Here, Chende sand is used as an example for the calibration procedure of granular
material. The laboratory-scale properties that typically characterize sand are Young’s mod-
ulus (E), Poisson’s ratio (ν), unconfined compressive strength (σf), and strength envelope
(consist of peak strength and corresponding confining pressure Pc). When real granular
material is simulated, the microscopic parameters have to be adjusted to match the realistic
macroscopic behavior.
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Table 5.1: Mechanical macro-properties of materials
Lac du Bonnet granite Chende sand

E (GPa) 69 E (MPa) 87
ν 0.26 ν 0.32
σf (MPa) 200 σf (kPa) 1150
σci (MPa) 90
φ (deg) 59 φ (deg) 32
c (MPa) 30
ρ (kg/m3) 2630 ρ (kg/m3) 2630

Rock behaves like a cemented granular material and is modeled by a bonded particle
assembly in PFC. In this study, Lac du Bonnet granite is assumed to be the intended physical
material. In addition to the above-mentioned macro-properties, the crack initiation stress
(σci) should also be considered for characterizing solid materials. The observed laboratory
properties are obtained from a 63 mm diameter specimen with a length-to-diameter ratio of
2.5. The macromechanical properties of Chende sand and Lac du Bonnet granite are given
in Table 5.1. The micro-properties should be chosen so that they match the macro-properties
given in this table.

Microscopic Properties

For programs that simulate continuum media, the input parameters such as modulus and
strength are calculated directly from the results of laboratory tests. However, for codes
such as PFC, which simulates the macro scale material behavior from the interaction of
microscale material components, it is difficult to find the input properties directly. In this
case, the appropriate micro-parameters can be chosen using a calibration procedure, by first
determining the behavior of the intended physical material and then comparing the response
of the synthetic material with the relevant measured response of the physical material. In
the following, first the calibration procedure for solid material and then the procedure for
granular material are discussed.

a. Solid material

Rock is modeled as a synthetic material consisting of non-uniformly sized grains (spheri-
cal particles and/or clumps) and cement (parallel bonds). The eight micro-properties with
a short-term response required to characterize a parallel-bonded material, are as follows:

{Ec,
kn

ks

, µ}

{λ̄, Ēc,
k̄n

k̄s

, σ̄c, τ̄c} (5.30)

whereEc and Ēc are the Young’s modulus of particles and bonds, respectively; kn/ks and
k̄n/k̄s are the normal to shear stiffness ratios of particles and bonds, respectively; µ is the
particle friction coefficient; λ̄ is a radius multiplier used to set parallel bond radii; σ̄c and
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τ̄c are the normal and shear strength, respectively, of cement-like material represented by
parallel bonds.

The Rmax/Rmin ratio should be set to be greater than 1, in order to avoid uniform pack-
ing, which tends to produce anisotropic macro-properties. The following calibration
sequence should be used to match elastic properties, peak strength, and crack initiation
with minimum iterations. The elastic parameters are controlled by five micro-properties,
Ec, Ēc, λ̄, kn/ks, and k̄n/k̄s. Here, λ̄ is set equal to 1 to produce cemented-based materi-
als with complete filling of the throat between bonded particles. As λ̄ → 0, the bonded
material approaches granular material.

First, to reproduce a given Young’s modulus, the model should be forced to behave elas-
tically with no bond failure by setting the material strength to a large value and then
varying Ec and Ēc. In this study, the difference between Ec, Ēc is kept constant to re-
duce the number of unknowns, i.e., Young’s modulus of the bond is always set to be 100
GPa larger than the Young’s modulus of the particle. Poisson’s ratio of the investigated
material is affected by kn/ks and k̄n/k̄s for bonded materials. Again, to reduce the num-
ber of free parameters, both ratios of normal to shear stiffness for particles and bonds are
set equal. Young’s modulus of the material has a linear relation with the micro elastic
modulus. In addition, as the ratio of normal to shear stiffness increases, Poisson’s ratio
increases. Both values will be calibrated by performing a few iterations.

Next, the unconfined compressive strength is matched by varying the mean material
strengths for a fixed ratio of standard deviation to mean strength at zero confining pres-
sure condition. The normal and shear strengths of the bond are set equal to one another,
otherwise, it will affect the failure mode by controlling the relative number of shear and
tensile failure events. For a fixed ratio of standard deviation to mean material strength
and a fixed ratio of normal to shear material strength, the peak strength is linearly related
to the mean material normal strength. The intended compressive strength of the specimen
will be reached after a small number of tests.

The last investigated parameter is the crack initiation stress, which will be matched by
varying the ratio of standard deviation to mean material strength. Increasing this ratio
lowers the stress at which the first crack initiates. Since this may also change the peak
strength, a few iterations may be needed to match both values.

The particle friction coefficient can be used to reproduce post-peak behavior. After cali-
brating the macro-properties, the Mohr circle can be obtained by performing a set of tri-
axial tests with different confining pressures. The test results for Lac du Bonnet granite
are shown in Figure 5.3, which includes Mohr circles at confining pressures of 0.1, 1, 10,
and 20 MPa and the failure envelope. The cohesion of 55 MPa and a peak friction angle
of 33◦ are obtained from the Mohr circles for this specimen.

b. Granular material

A granular material is an assembly of particles that move independently of one another
and interact only at contact points. The Young’s modulus, Poisson’s ratio, peak fric-
tion angle, and peak compressive strength are mechanical properties that characterize
granular materials. The four micro-properties with a short-term response required to



58 5 DEM Parameter Identification

0 50 100 150 200 250 300
0

50

100

150

200

Normal stress [MPa]

S
he
ar
st
re
ss

[M
P
a]

Figure 5.3: Mohr circle for Lac du Bonnet granite

characterize a granular material, are as follows:

{n, Ec, kn/ks, µ} (5.31)

where n is the material porosity, Ec is Young’s modulus of the particle, kn/ks is the
ratio of normal to shear stiffness, and µ is the overall particle friction coefficient. The
calibration procedure for an unbonded material is mainly a subset of that for a bonded
material and is performed step-by-step at a confining pressure of 300 kPa to minimize
the number of iterations. The elastic modulus is controlled by two micro-parameters Ec

and kn/ks, and the strength is controlled by µ. The response of the granular material is
affected by the initial material porosity n. First, for fixed values of porosity, stiffness
ratio, and particle friction coefficient, Young’s modulus will be calibrated by varying Ec.
The relation between peak secant modulus and Ec is typically nonlinear. Poisson’s ratio
depends on the stiffness ratio and very little on other parameters. As the stiffness ratio
increases, Poisson’s ratio also increases.

The peak strength is controlled by a single micro-parameter µ. Once the elastic responses
have been calibrated, the peak strength at given confinement can be reproduced. It will
vary as a function of confinement and will increase with the increasing value of µ until it
reaches an upper limit, which is a function of grain shape and particle distribution size.
Then, based on the calibrated DEM model, the triaxial tests will be performed under
lateral confining stresses of 100, 300, 500, and 700 kPa. Figure 5.4 shows the Mohr circle
at the stage of peak stress for Chende sand and the mean friction angle stands by 39◦.

5.4 Results

In this section, first, a series of triaxial compression tests are performed in Subsection 5.4.1
with calibrated parameters and variable particle radii to validate the predicted macroscopic
elastic parameters derived from the analytical relations in Section 5.2. Then, the influence
of complex particle shape on the material strength and behavior are presented in Subsection
5.4.2.
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Figure 5.4: Mohr circle for Chende sand

5.4.1 Validation of Analytical Relations

Elastic properties

The tests are carried out with five different discretizations, whose average particle radius is
in the range of 0.76 mm to 2.86 mm. The test properties are listed in Table 5.2. To have more
accurate results for each case, five different specimens are created by varying the random
number generator during the material genesis procedure. The final results are an average of
all the specimen results.

Table 5.2: Particle discretization for investigation of elastic properties
Test number 1 2 3 4 5
Mean radius [mm] 0.76 1.0 1.49 2.18 2.86
Number of particles 16115 6860 2089 644 277

Figures 5.6 and 5.7 show the results of Young’s modulus and Poisson’s ratio for solid
and granular materials, respectively. These results are always related to the legend in Figure
5.5. As the test number increases, the particle radius increases, and thus the number of
particles in the assembly decreases. PI marks the predicted values of Young’s modulus and
Poisson’s ratio according to Equation (5.20). Figure 5.6(a) shows the results of Young’s
modulus for the solid material. The predicted Young’s modulus decreases with an increase
in test number, which is due to the use of higher contact stiffness values. In all cases, the
specimen-based and wall-based outputs are almost the same and very close to predicted
values, whereas the measurement-based results overestimate it. For a larger number of
particles, the scatter between results becomes smaller, i.e., wall-based, specimen-based, and
predicted results become almost identical, and measurement-based goes closer.

These tests are also used to verify Poisson’s ratio. The corresponding results are presented
in Figure 5.6(b). For all different numbers of particles, the ratio of normal to tangential con-
tact stiffnesses is kept constant, which leads to a constant value for the predicted Poisson’s
ratio, according to Equation (5.20).
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Figure 5.5: Legend representing the different measurement schemes corresponding to Fig-
ures 5.6 and 5.7
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Figure 5.6: Comparison between three-dimensional compression test results and predicted
analytical values (a) Young’s modulus and (b) Poisson’s ratio for solid material

The same investigations have been performed for granular material and the results are
presented in Figure 5.7. Similar to the solid material, the wall-based and specimen-based
Young’s modulus are almost identical, whereas in this case, the measurement-sphere-based
outputs correspond better to the analytically predicted values. This can be explained by the
location of measurement spheres - one each located in the upper, lower, and the middle of
the specimen - so that the boundary areas are overrepresented. Therefore, for estimation
of the Young’s modulus of the granular materials the measurement-sphere-based results
are in a very good agreement with analytical results compared to the results of two other
schemes, namely wall-based and specimen-based. Furthermore, for this compression test, it
is obvious that we must observe a minimum number of particles to obtain reliable results.
If the number of particles is not sufficient, the contact forces will not be distributed very
well and may be higher in the middle of the specimen, far from the boundaries. Therefore,
if the average is taken from the three measurement spheres, the forces are overestimated,
which results in overestimation of the Young’s modulus. The results in Figures 5.6 and 5.7
show that a minimum number of 2089 particles (Test 3) produces convincing results. From
these calculations, it can be concluded that the accuracy of the predictions for both Young’s
modulus and Poisson’s ratio according to Equation (5.20) are very good and acceptable.

Bond strength

Here, the failure stress, which is required to calculate the bond strength in normal and tan-
gential directions, according to Equation (5.26), is investigated. For this reason, three differ-
ent tests are carried out with fixed particle radius, in which only the strengths of the bonds
are varied. In test 1, the bond strengths in normal and tangential directions are set to be
equal, so the following applies: f n,c = f t,c. In Test 2, the focus is on the bonds in the normal
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Figure 5.7: Comparison between three-dimensional compression test results and predicted
analytical values: (a) Young’s modulus and (b) Poisson’s ratio for granular ma-
terial

direction so that the failure hypothesis according to Rankine can be verified, see Equation
(5.26). Here f n,c = 100f t,c. Test 3 is used to compare the failure hypothesis according to
Tresca, so here the tangential bonds are significantly strengthened, 100f n,c = f t,c applies.
For clarity, these test cases are summarized in Table 5.3.

Table 5.3: Test properties for investigation of bond strength
Test 1 fn,c = f t,c

Test 2 fn,c = 100 · f t,c
Test 3 100 · fn,c = f t,c

The results for the failure stress are summarized in Figure 5.8, which are based on the
different measurement methods for stresses and strains, i.e., wall-based, specimen-based and
measurement-sphere-based, as well as the Tresca and Rankine failure limits. In Test 1 with
equal normal and tangential bond strengths, the two failure stresses determined according
to Equation (5.26) are identical. They easily overestimate the values obtained from the
simulation.
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Figure 5.8: Yield strengths resulting from the triaxial tests compared with the values accord-
ing to the parameter identification for three test cases according to Table 5.3

The simulation results for Test 2 correspond very well with the failure stress according
to Tresca σTresca

y . Since the normal bonds in Test 2 are selected to be significantly stronger



62 5 DEM Parameter Identification

than the tangential bonds, here the tangential bonds are the ones that trigger the failure. The
failure after Tresca is therefore expected here and confirmed by the results. With the same
logic, in Test 3 there is a correspondence between the simulation results and the failure stress
according to Rankine.

In general, there is a very good agreement between the predicted values of the parameter
identification and the values resulting from the DEM simulation. The deviations occurring
by a maximum factor of 2 may appear large at first glance. However, if one considers how
strongly the three differently determined simulation results already vary, it becomes clear
that such a deviation is hardly significant. Equation (5.26) is therefore suitable for predicting
failure stresses or for deriving the corresponding bond strengths from known failure stresses.

5.4.2 Influence of Complex Particle Shape

To study the effects of bonding and grain shape, a set of tests using complex shaped mate-
rials is also provided. Therefore, first, a homogeneous assembly with all spherical grains,
and second a mixture of spherical and clumped grains, are created. The base material has a
minimum radius of 0.8 mm and a ball-size ratio (Rmax/Rmin) of 1.66. The micro-properties
assigned to the grains and bonds are listed in Table 5.4. The clumped-grain material con-
sists of 50% peanuts (3-particle clumps), 25% dyads (2-particle clumps), and 25% spheres.
The clump logic is presented in Section 4.1.2 in detail. Solid (bonded) and granular (non-
bonded) materials are produced for each grain system giving a total of four models. All
materials are tested under two confined compression conditions, i.e., at 1 and 10 MPa con-
finement. The grain shapes are illustrated in Figure 5.9.

Table 5.4: PFC short-term micro-properties for grains and bonds

Grains Bonds

Rmin = 0.8 mm λ̄ = 1

Rmax/Rmin = 1.66

Ec = 70 GPa Ēc = 70 GPa

kn/ks = 2.5 k̄n/k̄s = 2.5

µ = 0.5 σ̄c = σ̄t =(mean ± std.dev.)

170± 35 MPa

ρ = 2630Kg/m3

For granular material, the confined compression tests are performed by loading the spec-
imen until the axial strain of 1%. According to Figure 5.10, the stress-strain curves increase
rapidly and then continue with a nearly steady-state plateau, which here is denoted as the
strength of the material. By comparing the curves in this figure for the spherical and mixed-
shape materials at 1 and 10 MPa confinements, two important facts could be concluded:

1. The mixed-shape material is stronger than the homogeneous spherical material (e.g.,
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Figure 5.9: Cluster grain shapes

at 1 MPa confinement, the strength of the mixed-shape material is ∼4.1 MPa, while
that of the spherical material is ∼2.5 MPa);

2. The peak strength increases with confinement (e.g., for the mixed-shape grains, the
strength at 1 MPa confinement is ∼4.1 MPa, while at 10 MPa confinement it is ∼41
MPa).
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Figure 5.10: Axial and confining stresses versus axial strain for granular material with ho-
mogeneous spherical grains (top) at (a) 1 MPa confinement and (b) 10 MPa
confinement and with mixed-shape grains (bottom) at (c) 1 MPa confinement
and (d) 10 MPa confinement

The same tests are also performed on the bonded material. In this case, the resulted stress-
strain curves are nearly linear until peak (denoted here as the strength), and then experience
a stress drop (as shown in curves of Figure 5.11). By comparing the curves for the spherical
and mixed-shape grains at 1 and 10 MPa confinement, again we conclude two important
results:
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1. The mixed-shape material is stronger (e.g., at 1 MPa confinement, compare Figure
5.11(c) where the strength of the mixed-shape material is ∼205 MPa, with Figure
5.11(a) for spherical material where the strength is ∼194 MPa);

2. The peak strength increases with confinement (e.g., for the mixed-shape grains, the
strength at 1 MPa confinement is ∼205 MPa, while at 10 MPa confinement it is ∼230
MPa).
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Figure 5.11: Axial and confining stresses versus axial strain for bonded material with ho-
mogeneous spherical grains (top) at (a) 1 MPa confinement and (b) 10 MPa
confinement and with mixed-shape grains (bottom) at (c) 1 MPa confinement
and (d) 10 MPa confinement

Both of these behaviors are expected for granular materials as well as bonded materials.
The presence of non-spherical grains has increased the material strength.

5.4.3 Summary of Results

In this chapter, an approach to DEM parameter identification based on energy minimization
has been presented in Section 5.2. By defining contact energy and relating that to the energy
of the entire assembly, equations are derived for the elastic parameters. The relations depend
on the contact parameters, the mean particle radius, and the number of contacts per unit sec-
tor, which includes information regarding the packing density. They relate the macroscopic
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material properties to the microscopic contact parameters and are introduced in Equation
(5.20) for granular materials and Equation (5.26) for bonded materials.

A numerical compression test has been simulated in PFC3D software in Section 5.3 to
verify the analytical relations developed for predicting elastic parameters. A calibration pro-
cedure for rock and cohesionless soil is recommended in Subsection 5.3.2 and first applied
to the simulation of Lac du Bonnet granite and Chende sand using a series of compression
tests. For both these materials, a set of compression tests with different confining pres-
sures are performed to obtain the Mohr circles, which could model the failure envelope and
friction angle with a good agreement.

Comparisons of the results of the numerical compression apparatus and analytical predic-
tions in Subsection 5.4.1 further prove that the parameter identification procedure we pro-
posed can serve as a reliable method to obtain the macroscopic behavior of materials based
on the mechanical micro-properties. To be able to estimate the influence of the discretiza-
tion, all tests are carried out with five different particle sizes. From the simulations, three dif-
ferent values are recorded for each property, depending on how the forces and deformations
are measured: Wall-based, specimen-based and measurement-sphere-based. For granular
materials, the validity of the parameter identification can be shown both for Young’s modu-
lus and Poisson’s ratio. For bonded materials, in addition to the two mentioned parameters,
the relationship between the failure stress on the macroscopic level and the bond strengths
on the contact level, i.e., Equation (5.26) is also verified with a very good agreement.

Finally, a set of compression tests are performed with complex particle ensembles. The
results are compared to the homogeneous spherical particle simulations in Subsection 5.4.2,
to investigate the influence of particle shapes on the strength of materials. As expected, the
mixed shape materials are stronger than the homogeneous materials in both granular and
solid cases.
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6 Material Models and Regularization Schemes

This chapter corresponds to the constitutive relations for describing the behavior of certain
materials subjected to external loads and boundary conditions. Based on the discussion in
previous chapters, this work intends to investigate the abrasive behavior and wear resistance
of metallic specimens. Therefore, the developed material models must contain the inelastic
behavior, i.e., the plastic deformations as well as damage. Thus, Section 6.1 is devoted to
inelastic materials. The issue of localization, which is a characteristic of the material models
involving softening effects is given in Section 6.2, follows by an overview of different regu-
larization techniques in Section 6.3. Since the focus of our work is on metallic material, the
plastic regime is restricted to the hardening behavior and therefore the regularization is per-
formed only on the damage parameter. Finally, two coupled regularized damage-plasticity
material models are introduced in Section 6.4, including the principles governing the evolu-
tion of internal variables.

6.1 Inelastic Material Response

6.1.1 Plastic Material Model

A schematic plot of the stress-strain behavior for a plastically loaded metallic bar under
uniaxial tension is presented in Figure 6.1, where the axial stress σ is plotted against the
axial strain ε. The linear elasticity is one of the most commonly used theories for design-
ing engineering structures, where the material is loaded within a typically small range of
stresses, such that after removal of the external loads the material will partially return to its
original state without the evolution of permanent (plastic) strains. Although the elasticity is
satisfactory for most engineering materials early on, many materials loaded to sufficiently
high stress, and beyond the so-called yield stress σy exhibit permanent deformation, i.e.,
evolution of plastic strains take place. This process is described by the plasticity theory.
Accordingly, exceeding the critical threshold will cause deformation, which will not return
to its original state when the external loading conditions are removed. Accompanying the
evolution of the plastic strain, an evolution of the yield stress itself can also be observed.
This phenomenon is known as hardening.

Plastic strains come from microscale level, e.g, for ductile materials such as metals, they
can be explained in terms of the theory of dislocations and nucleation resulting slip on
specific crystallographic planes as independently introduced by Orowan (1934) and Taylor
(1934). Although the movement of dislocations occurs with all loading, this movement
is insignificant until the yield point occurs. At this point, loading causes dislocations to
be generated, moved, and stored. The ease with which dislocations can move determines
the hardness of the material. The above-mentioned properties can be observed not only in
metals but also in a wide variety of materials. For instance, in materials such as concrete and



68 6 Material Models and Regularization Schemes

σ

ε

ε

εp εe

σy

E

Figure 6.1: Stress-strain curve for a plastically loaded material. Image inspired by
de Souza Neto et al. (2011)

rocks or soils, permanent strains are occurred due to opening and closing of cracks, sliding
of grains over one another, and pore collapse at high confinement.

The different mentioned micromechanisms result in varying macroscopic behavior for
materials under plastic loading. The plastic deformations in metals run almost with con-
servation of volume and finish in an increase in the strength (hardening behavior) of the
material. On the other hand, due to the reorientation of the particle structures in the soil-like
materials and concrete, the plastic deformation is connected to the volume change and re-
sults in a decrease in the strength (softening behavior). For a more comprehensive treatment
of the theory of plasticity, the reader is referred to Hill (1998), Jirásek and Bazant (2001),
Lubliner (2008), and de Souza Neto et al. (2011).

By considering small strain case, ε stands for linearized strain tensor, derived from the
displacements u by ε = 1

2
(∇u + u∇) and is decomposed into a recoverable elastic strain

(εe), and an irreversible plastic strain (εp)

ε = εe + εp (6.1)

The Helmholtz free energy function accounting for elastic and plastic deformations, which
develops both reversible and irreversible deformations, is defined in the form

Ψ(ε, εp, αp) =
1

2
(ε− εp) : E : (ε− εp) + w(αp) (6.2)

The internal variables are the plastic strains (εp), which are assumed to be a deviatoric
quantity, e.g., εp : I = 0, and the plastic hardening variable αp. The plastic potential
w(αp) defines the hardening behavior and it is considered as a function of history dependent
variable αp.

Various plasticity models have been used throughout the literature to define the yield
surface, like the models of Tresca (1869), Rankine (1872), Mohr (1900), Mises (1913), and
Drucker and Prager (1952). Besides, several plasticity theories are defined to consider the
change in size, shape, and position of the yield surface, such as the isotropic hardening (Hill
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(1998)), which corresponds to the changes in the size of the yield surface and the kinematic
hardening (Prager (1956)), which corresponds to the changes in the location of the yield
surface. In this thesis, the consideration is restricted to the linear isotropic hardening with
the relation w(αp) = 1

2
KHα

2
p, where the parameter KH defines the rate of hardening.

In the view of Equation (6.2), the constitutive relation for the stress tensor σ is introduced
by

σ =
∂Ψ

∂ε
= E : (ε− εp). (6.3)

and based on the introduced internal variables, the corresponding thermodynamic conjugates
involved in the formulation become

σp =
∂Ψ

∂εp
= devE : (ε− εp). (6.4)

and

pp = − ∂Ψ

∂αp
= −w′(αp) (6.5)

In the present study for classical rate-independent plasticity, the dissipation function is a
homogeneous function of order one and reads

Dp = rp|ε̇p| (6.6)

with rp being the dissipation parameter related to plasticity. In addition to the energies, the
usual constraints for plasticity have to be specified. Thus,

εp : I = 0 and α̇p = |ε̇p| (6.7)

which motivate to define

c1 := ε̇p : I = 0 and c2 := α̇p − |ε̇p| = 0 . (6.8)

The plasticity model in this thesis uses the von Mises yield criteria (as in Mises (1913))
with isotropic linear hardening, where the model quantities are summarized in Table 6.1.
The material parameter rp represents the plastic yield limit and KH defines the rate of hard-
ening.

6.1.2 Damage Material Model

Damage can be characterized as the presence and evolution of microscopic defects (micro-
cracks, voids, cavities, etc) which lead to macroscopic damage and failure (complete loss
of load-carrying capacity) of the material at the end. The characteristic behavior of dam-
age and the scale at which it occurs depend upon the specific type of material considered.
The damage evolution results from the nucleation process of microscopic cracks and voids,
growth, and coalescence leading to macroscopic damage at the end. This mechanism is
schematically presented in Figure 6.2.
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Plasticity material model

• Yield function Φp and plastic potential w(αp):

Φp := |devσ| − (rp −KHαp) ≤ 0, w(αp) =
1

2
KHα

2
p

• Stress tensor σ and the thermodynamic conjugates σp and pp:

σ = E : (ε− εp)

σp = devE : (ε− εp), pp = −KHαp

Table 6.1: Summary of the plastic material model

Virgin
material 

Nucleation of 
micro-cracks and voids

Growth, coalescence
and macroscopic damage

Figure 6.2: Schematic illustration of damage evolution in materials. Image inspired by
de Souza Neto et al. (2011)

The mechanisms that characterize the mechanical degradation of materials can be divided
by their global response during damage into two distinct classes: brittle and ductile damage.
Brittle damage occurs mainly in the form of breaking of atomic bonds along specific crys-
tallographic planes in the presence of relatively slight plastic deformations. This behavior
arises as a consequence of unstable cracks, which propagate rapidly without an increase in
applied stress and usually have a preferred direction nearly perpendicular to the direction
of the applied load. Brittle damage can be observed typically in ceramics such as glass and
concrete or in metals at low temperatures.

On the other hand, ductile damage is normally associated with extensive plastic deforma-
tion ahead of crack. The formation of stable cracks, which resist further extension unless
applied force is increased, usually develops slowly in comparison to the brittle case. The
global response of ductile material results in the further evolution of local plastic defor-
mation. It causes coalescence of cavities and finally is followed by a smooth drop. This
behavior is basically what material models in the present thesis describes, as the focus here
is on metallic materials and specifically steel. The ductile and brittle damage and their cor-
responding stress-strain diagrams are schematically illustrated in Figure 6.3.

Besides, damage can be considered from different scales, starting from rarely studied
atomic scale, following by introduced microscopic scale considering the micro-cracks and
their propagation, and finally ending up with a macroscopic scale which will be described by
continuum damage mechanics and can be related to the previous microscopic scale by tech-
niques of transition, averaging or homogenization. Continuum damage mechanics (CDM)
represents and models the effects of distributed micro-cracks and micro-voids and their
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Figure 6.3: Schematic illustration of brittle and ductile damage and their corresponding
stress-strain diagrams. Image inspired by Schwarz (2019)

growth on the material behavior at the macro scale by a continuous damage variable. This
concept was proposed by Kachanov (1958) without a clear physical meaning for damage,
thus CDM is rather a phenomenological approach for damage.

According to the literature, there is a wide range of damage variables, varying from scalars
to first-, second- or higher-order tensors. Tensorial damage variables are used for consid-
ering anisotropic effects of damage evolution in different directions, as in the works of
Chaboche (1981), and Menzel et al. (2005). Meanwhile, in many problems, it is sufficient
to consider damage as an isotropic evolution process, wherein these cases, a scalar damage
variable will adequately describe the state of damaged material, for instance in the work of
Lemaitre (1971). Many theories are developed to show the classical interpretation of scalar
damage variables. Among them, the first one was given by Rabotnov (1969), who proposed
the reduction of the cross-sectional area due to micro-cracking as a suitable measure for the
state of internal damage, i.e., d = Ad/A, denoting respectively by A and Ad the areas of
the virgin and damaged materials. The second one was proposed by Gurson (1977), known
as Gurson’s void growth theory, considered the current volume fraction of the voids in the
representative volume element as the damage internal variable, i.e., d = VP/V . In both
definitions, d = 0 corresponds to the virgin material, and d = 1 represents a total loss of
load-bearing capacity.

The Helmholtz free energy function Ψ of a material accounting for isotropic damage
process is modified in the form

Ψ(ε, d) =
1

2
f(d) ε : E : ε = f(d) Ψ0 (6.9)

with the energy Ψ0 related to the purely elastic or undamaged material and the scalar variable
d determines the deterioration of material stiffness. The damage function f(d) has to be at
least twice differentialable in order to ensure damage depending driving forces and also has
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to fulfill the condition

f(d) : (0, d∞)→ [0, 1) | {f(0) = 1, f(d∞) = 0} (6.10)

where f(d) = 1 is related to completely undamaged state and f(d) = 0 stands for complete
material stiffness loss (damaged) state. A typical choice for damage function, satisfying the
above mentioned conditions, is

f(d) = e−d, (6.11)

with an unbounded domain interval for d, i.e., d ∈ [0,∞) and its obvious property f ′(d) =
−f(d). It is used in the work of Dimitrijevic and Hackl (2008) and will be applied in Model
I in this work. In addition, a more common damage function is

f(d) = (1− d)2 (6.12)

where in this case, the domain interval is bounded from above, i.e., d ∈ [0, 1]. This damage
function is often applied in the literature, for example in the works of Miehe et al. (2010)
and Brepols et al. (2017) and will be used for Model II in the present work.

With regard to Equation (6.9), the constitutive equation for stress tensor σ becomes

σ =
∂Ψ

∂ε
= f(d)E : ε, (6.13)

and the thermodynamic conjugate corresponds to internal variable d is

pd = −∂Ψ

∂d
= −1

2
f ′(d) ε : E : ε = −f ′(d) Ψ0 (6.14)

Similar to the plasticity, the dissipation function for brittle damage is also a homogeneous
function of order one and is chosen as

Dd = rd|ḋ| (6.15)

with rd being the dissipation parameter related to damage. The model quantities according
to the considerations of this section are summarized in Table 6.2.

6.2 Localization

Degradation of stiffness, strength, and/or other material properties in one way or the other
(e.g., due to plasticity or damage), leads to softening behavior which typically occurs in
conjunction with strain hardening of the material. The application of such material models
is closely related to the localization process, which is characterized by the fact that the pre-
dicted deformation shrinks into a narrow zone with a high concentration of strains (Bazant
et al. (1984)). The width of the localization zone is small but finite and depends on the ma-
terial microstructure. Therefore, the width can be considered as a material-specific quantity
called “material length scale”, determined explicitly using the size of the averaging zone
(Jirásek (2002)).

The implementation of conventional local material models involving softening phase in
the finite element simulations tends toward an ill-posed boundary value problem after the
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Damage material model

• Yield function Φd:

Φd := pd − rd ≤ 0 ,

• Damage functions f(d):

– Model I: f(d) = e−d

– Model II: f(d) = (1− d)2

• Stress tensor σ and the thermodynamic conjugate pd:

σ = f(d)E : ε ,

pd = −f ′(d) Ψ0 ,

Table 6.2: Summary of the damage material model

onset of softening due to non-convex and non-coercive energy functions and suffers from
strongly mesh-dependent results. If the mesh size is selected to be infinitely fine, then the
energy dissipated in the localization zone will vanish, leading to the occurrence of a crack
whose formation requires no energy. Such behavior is non-physical and undesirable. There-
fore, if coercivity and convexity of an energy function are not satisfied, the minimization
problem leads to microstructure and prevents finding a global stationarity point for numeri-
cal calculations as investigated in the works of Ball (1977), Dacorogna (1982) and Francfort
and Mielke (2006).

An energy function is coercive if it has a superlinear growth, as it is illustrated in Figure
6.4(a). Thus,

lim
|x|→∞

Ψ(A)

|A|
=∞. (6.16)

Finding a stationarity point for non-coercive energy function that becomes constant after
some strain limit is problematic, as it is no longer growing. Furthermore, an energy function
is convex, if any point described by 0 ≤ λ ≤ 1, on the arbitrary secant of two points A1 and
A2 is always above the function, thus

Ψ(λA1 + (1− λ)A2) ≤ λΨ(A1) + (1− λ)Ψ(A2) ∀ A1, A2, 0 ≤ λ ≤ 1 (6.17)

The illustration of convexity is provided in Figure 6.4(b). Similarly, non-convex energy
functions have also a problem for finding a stationarity point, as the local extremum may
not necessarily coincide with the global one. This is why convexity can also be interpreted
as the stability of the function regarding superimposed fluctuations of the argument of the
function.

The strain localization problem is not related to the finite element method, but to the
material formulation itself. Therefore, continuum material models experiencing softening
behavior should be equipped with a regularization (localization limiter) strategy to reduce
(if not completely avoid) mesh dependency in the finite element analysis. This complex
phenomenon can be modeled successfully by combining theoretical and numerical methods
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Ψ Coercive

Non-coercive

A

(a)

Ψ

A
A1 A2λA +(1-λ)A1 2

Ψ(λA +(1-λ)A )1 2

λΨ(A )+(1-λ)Ψ(A )1 2

(b)

Figure 6.4: Schematic illustration of (a) coercivity (b) convexity with respect to an energy
function Ψ

to allow the prediction of their behavior. Each method is related to its particular restrictions
and range of applicability.

6.3 Regularization Strategies

The local continuum material models do not consider the microstructural processes and
thus do not enter characteristic internal material length scales into the formulation. This
property has almost no influence on the utilization of material models involving hardening.
In contrast, the reliability of the results achieved from material models including softening
behavior is extremely affected by this phenomenon.

To overcome the above-mentioned problem, some regularization techniques are proposed
that introduce a material length scale into the formulation and are based on a general idea
that the displacement field remains continuous in the whole domain. The most common
regularization schemes are gradient-enhanced regularization, integral-type regularization,
and viscous regularization, discussed in more detail subsequently.

6.3.1 Viscous Regularization

The main idea of viscous regularization is to add rate effects into the constitutive model,
so that concurrently with an increase in deformation rate in softer elements, the strain rate
also increases to make the element stiffer again. This method prevents the accumulation
of deformation in one element and forces the neighbored elements to engage in damage.
Thus, the dissipated energy has the same amount as in the case of no regularization. Al-
though this solution for localization adds an artificial feature, “the viscosity”, to the material
behavior, it does not need any additional global discretization, since it only operates at the
local level. Furthermore, mesh-independent and stable results are achieved with a simple
implementation in common non-linear finite element packages. It has a lower computation
effort in comparison to other regularization schemes. However, we should mention that in
this method the simulations are strongly dependent on the loading velocity.
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Needleman (1988)first introduced the idea of viscous regularization with a simple one-
dimensional case study, where he removed the pathological mesh dependency in strain-
softening boundary value problems by presenting a rate-dependent formulation and rendered
the governing equations well-posed for both static and dynamic problems.

Viscoplastic regularization was also used by Sluys and De Borst (1992) specifically for
dynamic problems of cracked medium related to wave propagation and reflections on the
cracked zone. Soyarslan (2009) devised Perzyna-type viscosity for regularization of post-
peak response with softening due to local isotropic damage coupled with hyperelastic-plastic
material behavior. Moreover, the concept of Perzyna viscoplasticity was used in the work of
Faria et al. (1998) to introduce a new constitutive model for massive concrete considering
two scalar damage variables and plastic strain tensor as internal variables. Chaboche et al.
(2001) limited the rate-dependence of viscous damage models by applying some interface
debonding models. This was sufficient to eliminate any solution jumps, i.e., localization of
strain, but with a much lower rate effect. An almost similar idea to the one applied in Model
II in this thesis was also used in the work of Allix (2013) by bounding the rate of internal
variables to limit the rate-dependencies in the damage model. Since there was not much
literature available for viscoplastic regularization of static problems, Niazi et al. (2012)
applied a detailed numerical study of viscous regularization for a local anisotropic damage
model by introducing two length scales; a primary and a secondary length scale. His work
was dedicated to static problems and compared the reason for the existence and limitations
of different regularization strategies.

6.3.2 Integral-based Regularization

In the integral-type strategy, the non-local variables are introduced as certain weighted av-
erages of the corresponding local quantities over a neighborhood at a point. This idea is
illustrated by the following formulation based on the work of Bažant and Jirásek (2002),
where the non-local counterpart of a local field ξ(x) in the domain Ω is defined as

ξ̄(x) =

∫
Ω

α(||x− y||) ξ(y) dy, (6.18)

where α(||x−y||) represents the non-local weight function. The non-local variables obtained
this way replace the corresponding local one in the constitutive equations. Based on the
selected weight function, either as the Gauß function or as the Green function, an internal
length scale of the non-local continuum will be introduced, see the work of Peerlings et al.
(2001).

Kröner (1967) and Eringen and Edelen (1972) incorporated non-local terms through inte-
gral equations, leading to non-local elasticity theories. More popular in the latter approach,
the non-local treatment and weighted functions were limited to control the strain-softening
and the elastic part was considered in the local form. Extension into continuum damage me-
chanics is presented by Pijaudier-Cabot and Bažant (1987) and Bazant and Pijaudier-Cabot
(1988). An integral-based strategy was also proposed by Comi (2001), who modeled the
tension-compression asymmetry character of rock-like materials using two isotropic dam-
age variables and two internal length scales. Moreover, the application of this strategy in
non-local plasticity can also be found in the work of Eringen (1981), Svedberg and Runes-
son (1998), and Jirásek and Rolshoven (2003). A coupled damage-plasticity model based on
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the non-local integral-based regularization for ductile failure is proposed by Nguyen et al.
(2015). They focused on the determination of model parameters with a novel calibration
procedure, based on the experimental technique, as well as facilitating the implementation
of the model into existing finite element codes.

Although this method offers a high degree of flexibility based on its averaging procedure,
the difficulties regarding the numerical implementation into nonlinear finite element code
are its obvious drawback. Therefore, it losses its prevalence over time for regularization of
the strain localization phenomena, however, it is still quite popular in the field of topology
optimization.

6.3.3 Gradient-enhanced Regularization

The gradient enhancement is the most versatile regularization approach, that introduces
higher-order gradient terms (normally Laplacian) of the non-local variables into the consti-
tutive relations and belongs to the group of non-local strategies. The gradient-enhancement
can be considered as the differential counterpart of integral formulations. Several formula-
tions are available for applying the gradient to the model. First models applied the gradient
to the strains, known as micromorphic models, as in the work of Pijaudier-Cabot et al.
(1988). The most common approach is to introduce a list of additional variables, which is
coupled to the list of internal variables via an interaction term. By penalizing the gradients
of the additional variables, one attains the regularization as a pure minimization of the po-
tential functional with respect to displacements and additional variables. This approach is
illustrated with a specific energetic formulation based on the work of Dimitrijevic and Hackl
(2011), where the enhanced Helmholtz-free-energy function is obtained by

Ψ =
1

2
f(d)(ε− εp) : E : (ε− εp) + w(αp)

+
βd

2
(ϕd − d)2 +

cd

2
|∇ϕd|2 +

βp

2
(ϕp − αp)

2 +
cp

2
|∇ϕp|2

(6.19)

where the numerical parameters βd and βp represent the energy penalizing the difference
between the corresponding non-local and local fields, whereas cd and cp stand for the gra-
dient parameters that implicitly introduce a damage and a plastic internal material length,
respectively. Calculation of the introduced field functions ϕd and ϕp requires two additional
stationarity conditions∫

Ω

[
βd(ϕd − d) + cd(∇δϕd · ∇ϕd)

]
δϕd dV = 0 ∀δϕd (6.20)∫

Ω

[
βp(ϕp − αp) + cp(∇δϕp · ∇ϕp)

]
δϕp dV = 0 ∀δϕp (6.21)

that are coupled to the standard principle of virtual work defined for the determination of dis-
placements. Generally, this regularization leads to a guaranteed ellipticity of the boundary
value problem and the mesh-independent results, which is an obvious advantage, especially
for quasi-static loading conditions. However, the main drawback of this scheme is the in-
troduction of additional variables, i.e., both the displacement and the non-local variables
become the global unknown and must be discretized at the global level. In the context of
the finite element method, this leads to additional nodal unknowns and consequently larger
computational effort.
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The first gradient models were derived from integral-type formulations, by expanding the
local variables in the Taylor series around the material points, see e.g., Mühlhaus and Al-
fantis (1991) and Peerlings et al. (2001). This approach could be pursued with a phase-field
framework as well. For example, Miehe et al. (2010) proposed a thermodynamically consis-
tent framework for phase-field models of crack propagation in elastic solids, developed in-
cremental variational principles for rate-independent diffusive fracture, and considered their
numerical implementations by multi-field finite element methods. Brepols et al. (2017) out-
lined a regularized gradient-extended damage-plasticity model based on the micromorphic
approach using a “two-surface” formulation.

In the literature, many works deal with coupled plastic-damage material models, which
combine either gradient damage with local hardening plasticity, for instance in the works
of Makowski et al. (2006) and Nedjar (2001), or the gradient isotropic softening plasticity
with the local damage behavior, as in the works of de Borst et al. (1999) and Svedberg
and Runesson (2000), or the gradient damage coupled with gradient enhanced softening
plasticity, for example in the work of Dimitrijevic and Hackl (2011). Within a continuum
framework, plasticity and damage couplings have been studied either in a large strain format,
e.g., Voyiadjis and Kattan (1992), Lubarda (1994), and Zhu and Cescotto (1995), or in a
small strain format, e.g., Silmo (1987), Ju (1989), Hansen and Schreyer (1994), and Doghri
(1995).

6.4 Coupled Regularized Damage-Plasticity Model

In this section, two coupled regularized damage-plasticity material models are presented.
Model I is presented in Subsection 6.4.1, which evaluates an efficient Laplacian for gradient-
enhancement of damage function and is based on a combination of the finite element method
with strategies from meshless methods. In Subsection 6.4.2, Model II is introduced using
an emulated representative volume element (ERVE) for viscous regularization of damage
function. From a theoretical point of view, this coupling between damage and plasticity is
treated naturally with a simple adequate choice of dissipation function. The regularization
is performed only on the damage parameter, while here, the plastic regime is limited to the
hardening behavior.

6.4.1 Model I: Gradient-enhanced Regularized Damage-Plasticity with Laplacian

Model I is dedicated to a regularization strategy based on gradient enhancement of the
Helmholtz free energy function for a coupled damage-plasticity model, which renders the
model well-posed. The enhancement is provided, following a new approach recently intro-
duced by Junker et al. (2019) and Schwarz et al. (2019).

Variational Material Modeling

The total Helmholtz free energy function for this coupled material model reads

Ψ = Ψm + Ψr (6.22)
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consists of the mechanical energy Ψm and the regularization energy Ψr. In view of Equa-
tions (6.2) and (6.9), the mechanical part of Helmholtz free energy function accounting for
damage and plastic deformation, which develops both irreversible deformations as well as
deterioration of stiffness, is given by

Ψm = Ψm(ε, εp, d, αp) =
1

2
f(d)(ε−εp) : E : (ε−εp)+w(αp) = f(d)Ψ0+w(αp). (6.23)

The definition of the involved quantities in the above equation is already given in Subsec-
tions 6.1.1 and 6.1.2. For the present model, the damage function f(d) = e−d with the
internal damage variable d ∈ [0; 1) and its obvious property f ′(d) = −f(d) is chosen.

The regularization of the model is achieved by the gradient enhancement of the damage
function f , specifically by adding a potential that is convex in the highest gradients to the
mechanical contribution of the Helmholtz free energy Ψm in Equation (6.23). The most
simple approach is given by

Ψr =
1

2
β|∇f |2 , (6.24)

where β stands for the gradient parameter and used as a switch between local and enhanced
model: setting β = 0 obtains a local coupled damage-plasticity model, see Junker et al.
(2019) for more details.

The last ingredient for applying the Hamilton’s principle is the dissipation function, which
determines the type of differential equation, i.e., rate-dependent or rate-independent. In the
current model, dissipation function is a combination of two homogeneous functions of order
one, and thus reads

D = Dd +Dp = rd|ḋ|+ rp|ε̇p| (6.25)

with rd and rp being the dissipation parameters related to damage and plasticity, respectively.
For more information, regarding the choice of dissipation function for the damage behavior
refer to, e.g., Dimitrijevic and Hackl (2011), Junker et al. (2019) and for plasticity refer to
Carstensen et al. (2002a), and Mielke (2003).

Now, by taking into account the above-mentioned terms, Hamilton’s principle for non-
conservative continua reads

δG +

∫
Ω

∂D
∂υ̇
· δυ dV = 0 ∀δu, δυ , (6.26)

where δ denotes the (total) variation, u is the displacement and υ refers to a set of internal
variables, for further details see Hamilton (1834) and Hamilton (1835). Referring to the
enhanced free energy function, the Gibbs energy can be obtained as

G :=

∫
Ω

Ψ(ε,υ) dV −
∫

Ω

b · u dV −
∫
∂Ω

t · u dA (6.27)

where υ is the already introduced vector of internal variables describing the microstructure
of the material. The quantity b refers to the external body force of the body Ω, and t is the
surface traction at the surface of the body ∂Ω.
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Considering the constraints for plasticity, defined in Equation (6.8), the corresponding
virtual potential is given by

δC =

∫
Ω

λ
∂c1

∂ε̇p
: δεp dV +

∫
Ω

γ

(
∂c2

∂α̇p
δαp −

∂c2

∂ε̇p
: δεp

)
dV . (6.28)

where the two Lagrange parameters λ and γ ensure c1,2 = 0. Mention that formulation in
terms of rates in the constraints c1,2 demands a similar definition of the virtual potential as
also necessary for the non-conservative forces given by ∂D/∂υ̇. The virtual potential for
the constraints allows to write the final form of the Hamilton principle as

δG +

∫
Ω

∂D
∂ḋ

δd dV +

∫
Ω

∂D
∂ε̇p

: δεp dV + δC = 0 ∀δu, δd, δεp, δαp (6.29)

The variations δu, δd, δεp and δαp are independent of each other. Consequently, the sta-
tionarity condition postulated by the Hamilton’s principle yields the following system of
variational integral equations:

δuG = 0 ∀δu (6.30)

δdG +

∫
Ω

∂D
∂ḋ

δd dV = 0 ∀δd (6.31)

δεpG +

∫
Ω

∂D
∂ε̇p

: δεp dV + δεpC = 0 ∀δεp (6.32)

δαpG + δαpC = 0 ∀δαp (6.33)

yielding ∫
Ω

∂Ψm

∂ε
: δε dV −

∫
Ω

b · δu dV −
∫
∂Ω

t · δu dA = 0 ∀δu (6.34)∫
Ω

Ψ0 f
′δd dV +

∫
Ω

β∇f · ∇(f ′δd) dV +

∫
Ω

∂Dd δd dV = 0 ∀δd (6.35)∫
Ω

(
∂Ψm

∂εp

+ ∂Dp + λI − γ ε̇p

|ε̇p|

)
: δεp dV = 0 ∀δεp (6.36)∫

Ω

(
∂Ψm

∂αp

+ γ

)
δαp dV = 0 ∀δαp . (6.37)

Due to the non-differentiability of D at ḋ = 0 ∧ |ε̇p| = 0, the set-valued subdifferentials
∂Dd and ∂Dp are defined as

∂Dd :=

{
rd for ḋ 6= 0[
− rd, rd

]
else

(6.38)

and

∂Dp :=

{
rp

ε̇p
|ε̇p| for |ε̇p| 6= 0[
− rp, rp

]
else

(6.39)

and entered into the stationarity conditions (Equations (6.35) and (6.36)).

The first equation in the system (Equation (6.34)) is the standard principle of virtual work
and can be solved by employing the finite element method. It introduces the mechanical
stress by

σ =
∂Ψm

∂ε
= fE : (ε− εp). (6.40)



80 6 Material Models and Regularization Schemes

The equation in terms of the variation of d (Equation (6.35)) is quite inconvenient to solve,
therefore, by applying an integration by part to the second term, it transformed into an inte-
gral over the boundary of the body and a volume integral involving second-order differential
term: ∫

Ω

β∇f · ∇(f ′δd) dV =

∫
∂Ω

βn · ∇f f ′δd dA−
∫

Ω

β∇2f f ′δd dV (6.41)

with the normal vector n. We immediately used a spatially constant penalty parameter for
the gradient. The Laplace operator∇2 is introduced as

∇2f := ∇ · ∇f =
3∑
i=1

∂2f

∂x2
i

. (6.42)

Inserting Equation (6.41) into the stationarity condition in Equation (6.35) transforms it to
its strong form

f ′Ψ0 − βf ′∇2f + ∂Dd 3 0 x ∈ Ω (6.43)
∇f · n = 0 x ∈ ∂Ω (6.44)

of which Equation (6.44) constitutes as the Neumann boundary condition for Equation
(6.43). The set-valued character of ∂Dd turns the formula into a differential inclusion. The
Legendre-Fenchel transformation of the dissipation function Dd

D?d = sup
ḋ

{
pdḋ−Dd

}
= sup

ḋ

{
|ḋ|(pdsgnḋ− rd)

}
∀x (6.45)

allows for a simplified representation (with the driving force for the damage function pd :=
−f ′Ψ0 + βf ′∇2f ). Since material healing is not observed during damage processes, it
holds sgn ḋ = {0, 1}, such that we find the yield function Φd := pd−rd ≤ 0. Consequently,
Equation (6.43) rearranges to (see also Junker et al. (2019))

pd ∈ ∂Dd

⇔

{
ḋ > 0 : pd = rd

ḋ = 0 : pd ≤ rd

(6.46)

It remains to evaluate the last two stationarity conditions, i.e., Equations (6.36) and (6.37).
The condition Equation (6.36) can only be fulfilled if the integrator is zero, viz.

∂Ψm

∂εp

+ ∂Dp + λI − γ ε̇p

|ε̇p|
3 0 . (6.47)

Again, the set-valued character of the subdifferential, now ∂Dp, request the differential
inclusion. It remains to compute the Lagrange parameter λ. To this end, Equation (6.47) is
double-contracted with the unity matrix I and the constraint c1 is inserted. This yields

λ = −1

3

∂Ψm

∂εp

: I =
1

3
σ : I (6.48)
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since I : I = 3 and ∂Ψm/∂εp = −σ. Consequently, it holds

ε̇p =
|ε̇p|
rp − γ

[
σ −

(1

3
σ : I

)
I

]
=
|ε̇p|
rp − γ

devσ , (6.49)

where the well known stress deviator can be identified. An indicator whether or not plastic
strains evolve can be found in form of a yield function when a Legendre transformation for
the dissipation function for the plastic strains is employed:

D?p = sup
ε̇
{ε̇p : devσ −Dp − γ(α̇p − |ε̇p|)}

= sup
ε̇

{
|ε̇p|
rp − γ

devσ : devσ − rp|ε̇p|+ γ|ε̇p|
}
− γα̇p

= sup
ε̇

{ |ε̇p|
rp − γ

(
|devσ|2 − (rp − γ)2︸ ︷︷ ︸

=:Φ̃p

)}
− γα̇p . (6.50)

Due to the supremum, the constraints enter with a negative sign in contrast to the minimum
in the Hamilton principle (due to the convexitiy of all functions). We can read off the yield
function Φp

Φp := |devσ| − (rp − γ) ≤ 0 (6.51)

from the Legendre transform, which has the same roots as Φ̃ but a more convenient form in
plasticity. Finally, the Lagrange parameter γ can be determined from Equation (6.37) to be

γ = −∂Ψm

∂αp

= − KHαp. (6.52)

The hardening variable may only increase (see Equation (6.7)). Thus, γ ≤ 0 since KH > 0,
from which follows that the prefactor |ε̇p|/(rp− γ) =: ∆ρ is positive and may be identified
as consistency parameter. We thus end up with the evolution equations for plasticity as

ε̇p = ∆ρ devσ , ∆ρ ≥ 0 , Φp ≤ 0 , ∆ρΦp = 0

α̇p = |ε̇p| = ∆ρ(rp − γ) = ∆ρ
(
rp +KHαp

)
(6.53)

which complement the field equations for the displacements and the damage function, viz.

∫
Ω

σ : δε dV −
∫

Ω

b · δu dV −
∫
∂Ω

t · δu dA = 0 ∀δu (6.54)

and

ḋ ≥ 0 , Φd = f ′Ψ+
0 − β∇2f − rd ≤ 0 , ḋΦd = 0 (6.55)

Note that we replaced in Equation (6.55) the total contribution of the mechanical part of
the Helmholtz free energy related to damage Ψ0 by Ψ+

0 which represents only the energetic
contribution due to tension loading. This is a significant improvement in the modeling of
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materials instead of taking Ψ0, which exhibit great sensitivity of their mechanical behavior to
pressure, resulting in a lower strength in tension than compression. To resolve the problem,
we formulate the free energy function in a way that evolution of the damage function will be
triggered only by the positive part of the elastic strain tensor. Corresponding to the model
of Mazars and Pijaudier-Cabot (1989), the always positive local part of the Helmholtz free
energy related to damage is

fΨ+
0 =

1

2
f(d) ε+

e : E : ε+
e , (6.56)

where ε+
e represents the contribution of the positive part of the elastic strain tensor εe =

ε− εp, which is calculated as:

ε+
e =

3∑
i=1

εe,i ei ⊗ ei for εe,i > 0 (6.57)

where εe,i stands for the eigenvalues of the elastic strain tensor and ei are the corresponding
eigenvectors.

Numerical Treatment

The discussion of the numerical treatment starts with the weak form of the balance of the
linear momentum (Equation (6.54)), and the evolution equations for the plastic strain and
damage, Equations (6.53) and (6.55), respectively. Due to use of the strong form of damage
evolution equation and implementation of Laplace function, the principle structure of the
algorithm remains the same as a typical finite element routine with displacements being the
only degrees of freedom at the nodes. According to Subsection 4.2.1, and by introducing σ
and ε as the vector of Voigt notation, the stationarity condition for displacement u (Equation
6.54) can be written in terms of the residualRu

Ru =
Ne∑
e=1

∫
Ωe

BT · σ dV −
Ne∑
e=1

∫
Ωe

NT · b dV −
Ne∑
e=1

∫
∂Ωe

NT · t dA
!

= 0. (6.58)

that constitutes in general as a non-linear algebraic equation for the displacement field at the
current time-step m+ 1.

For simplicity, we perform an explicit Euler integration scheme to Equation (6.53) for
plastic strain field at the material point level which yields for the rate-independent case

εm+1
p = εmp + ∆ρ devσm = εmp + ∆ρ fm devE : (εm+1 − εmp )

αm+1
p = αmp + ∆ρ

(
rp +KHα

m
p

)
(6.59)

where the superposition m refers to the previous time-step, and m + 1 is the current time-
step. The set of evolution equations for plasticity field is closed by Kuhn-Tucker conditions
gives as

∆ρ ≥ 0 , Φp := |devσ(fm, εm+1, εmp )| − (rp − γ) ≤ 0, ∆ρΦp = 0 (6.60)
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During the iteration process at the integration point level, the plastic internal variables are
not treated as additional unknowns, but are updated in terms of the consistency parameter
∆ρ, as in Equation (6.59), which is determined explicitly from the definition of the yield
function and the consistency condition by inserting Equation (6.59) into the yield function

Φm+1
p = |devσ(fm, εm+1, εm+1

p )| − (rp − γ)

= |fm devE : (εm+1 − εm+1
p )| − (rp +KHα

m+1
p ) . (6.61)

and solving the algebraic equation for the parameter ∆ρ iteratively e.g., by means of New-
ton’s method. The internal variables which needs to be updated during the iteration in the
integration point level are εp and αp.

For evolution of the damage function, first, we have to discretize the differential inequality
for damage (Equation (6.55)). As long as, damage function directly depends on the elasto-
plastic energy, it is therefore coupled to the local strains and will increase the computational
effort for calculation of displacement field of the current time-step, εm+1. In order to avoid
an increase in the number of unknowns at the nodes, the first operator split is introduced,
which leads to an algorithm that not only requires a minimum of computational effort, but
also is stable. Thus, with the consideration of explicit Euler scheme for plastic strains and
damage function from the last time-step fm, the stresses are calculated by

σm+1 = σm+1(εm+1, εmp , f
m) = σm + fm E : (εm+1 − εmp ) (6.62)

Consequently, this split converts the stationarity condition (Equation (6.58)) into a linear
algebraic equation with a constant tangent matrix for each time-step including the following
material tangent

dσ

dε

∣∣m+1
= fm E (6.63)

The solution for the displacement field is thus completely standard and can be performed
with any finite element routine. Due to the explicit character of the operator split, relatively
small load increments are required. However, it is already presented in original model by
Junker et al. (2019) that this drawback is of minor importance since exactly this split,
together with the numerical solution for the damage function, renders the global algorithmic
treatment being quite fast.

In contrast to the evolution of the plastic parameters at each integration point, the damage
function is defined at the center of mass of each finite element. Consequently, all Gauß
points in the same element make use of the same damage function fi. Therefore, the indica-
tor function is defined element-wise, such as

Φd,i = fiΨ̄0,i − βfi∇2fi − rd ≤ 0 (6.64)

where ∇2fi is the second derivative of damage function or rather Laplace operator for each
element i.

The calculation procedure for Laplace operator in the present study restricted to the gener-
alized three-dimensional unstructured finite element mesh. We skip the detailed procedure,
therefore, for more information regarding the description of Laplace in one dimentional, as
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well as the two- (2D) or three-dimensional (3D) cases for structured meshes, we refer to the
original publication by Jantos et al. (2019).

Initially, the Taylor series expansion for the damage function around the central element
mid point xi is formed as

∆fi,j = fj − fi =
3∑

k=1

( ∂fi
∂xk

∆xj,k +
1

2

3∑
p=1

∂2fi
∂xk∂xp

∆xj,k∆xj,p

)
(6.65)

The index j runs over all elements that form the neighborhood around element i, where in
three-dimensional case besides to the six next-neighbors, three additional neighbored ele-
ments are also necessary to close the system of equations, i.e., j ∈ {n, s, e, w, f, b, o, p, q}.
We use a more general procedure well-known in meshless methods for computing the
Laplace operator, where a central element is considered for evaluation of the Laplacian of
the damage function, and is associated to six next-neighbors: north, east, south, west, f ront
and back in the three-dimensional case (Jantos et al. (2019)). The three additional elements
have to be selected once for each spatial plane and preferably close to the central element.
Usually, these additional elements are the closest ones located in diagonal direction as il-
lustrated in Figure 6.5 for 2D case for simplicity. A search through the mesh prior to each
computation finds all neighbor relations and boundary elements, on which the Neumann
boundary conditions are applied according to Equation (6.44).

1

2

3

4

fn

fs

fw

fe

fo

dxw,2

dxn,2

dxw,1

dxn,2

Figure 6.5: Neighbor relations for an unstructured quadrilateral mesh in two-dimensional
case

The increments denote the distance between the central and the neighboring elements
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given as

∆xj := xi − xj =

xi,1 − xj,1xi,2 − xj,2
xi,3 − xj,3

 . (6.66)

We evaluate the Taylor expansion for nine elements j and obtain a linear equation system
with the first and second derivatives as unknowns. The boundary conditions can be applied
correctly, e.g., by introducing pseudo/ghost elements outside of Ω defined as mirror points
of the boundary elements on ∂Ω (see work of Stacey (1994) for more detail). The allocation
of neighbors to the respective elements and the determination of the spatial increments is
here again done once before the main calculation starts. The linear system of equations is
formed by collecting the Taylor series expansion in Equation (6.65) for all elements in the
neighborhood

∆f i = D · ∂f i (6.67)

with the known increments of the damage function ∆f i

∆f i = (∆fi,j)ej , j ∈ {n, s, e, w, f, b, o, p, q} (6.68)

and the vector of the unknown partial derivatives ∂f i

∂f i :=

(
∂fi
∂x1

∂fi
∂x2

∂fi
∂x3

∂2fi
∂x1∂x2

∂2fi
∂x1∂x3

∂2fi
∂x2∂x3

∂2fi
∂x2

1

∂2fi
∂x2

2

∂2fi
∂x2

3

)T

. (6.69)

The coefficient matrix contains the entriesD

Dj,1 = ∆xj,1 , Dj,4 = ∆xj,1∆xj,2 , Dj,7 =
(∆xj,1)2

2
,

Dj,2 = ∆xj,2 , Dj,5 = ∆xj,1∆xj,3 , Dj,8 =
(∆xj,2)2

2
,

Dj,3 = ∆xj,3 , Dj,6 = ∆xj,2∆xj,3 , Dj,9 =
(∆xj,3)2

2

(6.70)

for each neighbor j and is thus a 9×9 matrix. It is determined by the finite element dis-
cretization and does not change during the computation of a specific boundary value prob-
lem. The partial derivatives ∂f i can be computed by inversion of Equation (6.67) and read

∂f i = D−1 ·∆f i . (6.71)

We are only interested in the unmixed second derivatives for the computation of the
Laplace operator. Thus, we define the operator-matrix B∇

2

, which only contains the last
three lines of the inverse of the coefficient matrix. Consequently,

B∇
2

l,j := D−1
l+6,j , l ∈ {1, 2, 3} , j ∈ {1, . . . , 9} , (6.72)

such that

B∇
2 ·∆f i =

∂2fi
∂x2

l

el , l ∈ {1, 2, 3} . (6.73)



86 6 Material Models and Regularization Schemes

The coefficient matrixD depends only on the mesh topology and so does the operator matrix
B∇

2

. Thus, the operator matrix can be computed for each element prior to the computations
and stored in arrays with size 3× 9 for each element of the mesh. The Laplace operator for
each element i can be simply computed by

(Λf )i =
3∑
l=1

(
B∇

2 ·∆f i
)
l

(6.74)

and its derivative with respect to the damage function at each element i is given by

(DΛf )i :=
∂(Λf )i
∂fi

=
3∑
l=1

(
B∇

2 · ∂∆f i
∂fi

)
l
= −

3∑
l=1

(
B∇

2 · 1
)
l

(6.75)

with the identity vector 1, which has a length of 9. These notations will be used to write the
yield function and update the damage function as

Φk
d,i = fki Ψ̄m+1

0,i − βfki (Λf )i − rd ≤ 0 (6.76)

and

fk+1
i =

f
k
i −

Φk
i

Ψ̄m+1
0,i − β(Λf )i − βfki (DΛf )i

if Φk
d,i > 0

fki else .
(6.77)

The above equations are subjected to the time discretization which together with the dissipa-
tion parameters rd and rp controls the behavior of material, i.e., purely elastic, elastoplastic
and elastoplastic-damage cases. For purely elastic case, no plastic flow and damage occurs
in the interval

[
tm, tm+1

]
, and the condition

Φp(f, ε, εp, αp) ≤ 0 Φd(f, ε, εp) ≤ 0 (6.78)

are satisfied, thus with ∆ρ = 0 no evolution of internal variables take place. In the plastic
loading, the consistency parameter is strictly positive and the constraints are given as

∆ρ > 0 Φp(f, ε, εp, αp) = 0 Φd(f, ε, εp) ≤ 0 (6.79)

and in the third case, for elastoplastic-damage loading, both the plastic and damage evolution
occur and the solutions are defined by the Equations (6.59) and (6.77) according to the
constraints of

Φp(f, ε, εp, αp) = 0 Φd(f, ε, εp) = 0 (6.80)

The numerical treatment for the general three-dimensional unstructured finite element mesh
is presented in Algorithm 1.

6.4.2 Model II: Relaxation-based Regularized Damage-Plasticity with Emulated RVE

Model II presents a regularized damage model coupled with local plasticity based on a vari-
ational approach with rate limitation in combination with a so-called Emulated Representa-
tive Volume Element (ERVE). Its formulation is provided at first in the model introduced by
Junker et al. (2019) and Schwarz et al. (2019).
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Algorithm 1: Model I: Finite element algorithm
for i ≤ ne do

Elastic predictor step
input: tm+1, εm+1

Set: fki = fm, εkp,i = εmp,i, α
k
p,i = αmp,i

compute: Φk
p,i = |devσ(fki , ε

m+1
i , εkp,i)| − (rp +KHα

k
p,i)

Check for plastic processes in material level
if Φk

p,i < tol then
no plastic increment ∆ρ = 0

εk+1
p,i = εkp,i

αk+1
p,i = αkp,i

else
Solve Eq. (6.61) for ∆ρ

εk+1
p,i = εkp,i + ∆ρ fmi devE : (εm+1

i − εkp,i)
αk+1
p,i = αkp,i + ∆ρ

(
rp +KHα

k
p,i

)
update: εm+1

p,i = εk+1
p,i

αm+1
p,i = αk+1

p,i

after convergence of the finite element routine for ûm+1:

compute: Laplace operator Λf and derivative DΛf

for i ≤ ne do

input: Ψ̄m+1
0,i

Check for damage processes in element level

compute: Φk
d,i = fki Ψ̄m+1

0,i − βfki (Λf )i − rd

if Φk
d,i < tol then
Φk

d,i = 0

fk+1
i = fki

else
fk+1
i = fki −

Φk
d,i

Ψ̄m+1
0,i −β(Λf )i−βfki (DΛf )i

update: fm+1
i = fk+1

i
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Variational Material Modeling

The model is specifically based on the mechanical part of Helmholtz free energy function
for isotropic damage and plasticity, thus

Ψm =
1

2
f(d)(ε− εp) : E : (ε− εp) + w(αp) = f(d)Ψ0 + w(αp). (6.81)

For the current model, the damage function f(d) = (1 − d)2 with the internal damage
variable d ∈ [0; 1] is used. The constraints are similar to the one presented in Equation
(6.8). Moreover, the rate-independent formulation for dissipation function can be defined as

Dp(ε̇p) = rp |ε̇p| , (6.82)

and

Dd(ḋ) =

{
rdḋ for ḋ ≥ 0

∞ for ḋ < 0
, (6.83)

for plasticity and damage, respectively. Applying the principle of the minimum of the dissi-
pation potential (PMDP), the evolution equations are obtained for plastic internal variables
as

ε̇p =
|ε̇p|

rp +KHαp

devσ, α̇p = |ε̇p| = ∆ρ
(
rp +KHαp

)
(6.84)

and for damage variable d as

ḋ = arg min
{

Ψ̇m(ε, εp, αp, d) +Dd(ḋ) | ḋ
}

(6.85)

where rp and rd are interpreted as the yield-limits for initiation of plasticity and damage,
respectively.

Implementation of this procedure within a material point level is almost easy without any
mathematical problem. However, the lack of coercivity and convexity of the corresponding
energy function results in an ill-posed boundary value problem in the context of the finite
element method. This ill-posedness reveals as mesh dependency both in the global behavior
of the system, i.e., force-displacement diagram and in the distribution of internal variables
such as damage parameter. It is worth to mention, that this effect comes from the damage
behavior, as the plasticity is limited again to the hardening behavior and therefore does not
enter a new source of instability.

As explained in Section 6.2, for existence of a solution, two conditions should be fulfilled:
coercivity, i.e., superlinear growth of energy as a function of strain, and quasiconvexity or
in stronger form convexity, i.e., the stability of the solution regarding superimposed fluctua-
tions of the displacement field. Initially, the ill-posedness of the continuum problem can be
removed in a time-incremental procedure. Introducing a dissipation distance within a time
increment ∆t results in a point-wise minimization problem including condensed energy. A
straightforward way to achieve coercivity of the condensed energy is by rate-limitation of
the damage evolution.
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Although the convexity of the energy is now ensured, the stability of the results will be
achieved by calculation of the quasiconvex envelope of the potential. Therefore, the problem
will be limited to find the optimal fluctuation by minimization defined on a representative
volume element Ωrep of unit volume. Considering the strain field and the damage variable
as the two unknown in each time increment leads to a high-dimensional global optimiza-
tion problem with a numerically expensive solving procedure. Therefore, a specific damage
distribution is assumed inside the Ωrep, i.e., what’s happening inside Ωrep is not calculated
directly, rather it is modeled. This procedure is called Emulated Representative Volume El-
ement (ERVE). More details regarding this approach can be found in Schwarz et al. (2020).

Emulated Representative Volume Element

To describe the damage distribution inside Ωrep, the RVE is divided into a specific number
of subdomains of equal volume, which results in the mentioned Emulated Representative
Volume Element (ERVE). Each subdomain possesses a constant strain εi as well as constant
damage di. Instead of minimizing with respect to u, we will do the minimization with
respect to all εi yielding a given overall strain, resulting in

Ψrel(ε, εp, αp, {di}) = inf

{
1

n

n∑
i=1

f(di) Ψ0(εi, εp, αp)
∣∣εi; ε =

1

n

n∑
i=1

εi

}
. (6.86)

considering the effective damage function as

f̄ = n

[
n∑
i=1

1

f(di)

]−1

. (6.87)

The minimization problem in Equation (6.86) gives

εi =
f̄

f(di)
ε, (6.88)

and

Ψrel(ε, εp, αp, {di}) = f̄Ψ0, (6.89)

The corresponding damage dissipation function is defined as

Drel
d ({ḋi}) =

1

n

n∑
i=1

Dd(ḋi), (6.90)

and evolution of ḋi is given as

{ḋi} = arg min
{

Ψ̇rel(ε, εp, αp, {di}) +Drel
d ({ḋi}) | {ḋi}

}
. (6.91)

We apply the time-incremental setting, which provides the dissipation distance by

∆Drel
d

(
{d0i}, {d1i},∆t

)
=

1

n

n∑
i=1

∆Dd

(
d0i, d1i,∆t

)
, (6.92)
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and the corresponding variational formulation by

{di} = arg min
{

Ψrel
(
ε, εp, αp, {di}

)
+ ∆Drel

d

(
{d0i, {d1i},∆t}

)
| {di}

}
. (6.93)

The damage driving forces for each subdomains are introduced as

pd,i = −∂Ψrel

∂di
= − f̄

2

n

f ′(di)

f(di)2
Ψ0. (6.94)

Finally, the minimization in Equation (6.91) allows to determine

pd,i <
rd
n

⇒ di = d0i

pd,i = rd
n

⇒ d0i < di < d0i + k∆t

pd,i >
rd
n

⇒ di = d0i + k∆t

(6.95)

Based on our experience, the second case of Equation (6.95) is never realized in numer-
ical simulations. In order to eliminate the rate-dependent results, instead of the positive
parameter k, the amount of evolving damage is limited by the power of external forces as

`ext(u̇) =

∫
Ω

f · u̇ dV +

∫
∂Ω

t · u̇ dA (6.96)

where for finite element implementation can be calculated as

`ext(u̇) =
∆u ·

∑
f ∗

∆t
(6.97)

with the applied displacement increment ∆u = um+1 − um, the rate of damage evolution
is then limited to

0 ≤ ḋ ≤ α `ext (6.98)

where α is a factor to adjust the power of regularization.

Algorithmic Implementation

For the determination of stresses and material tangent, a linearized Taylor expansion is used.
Thus, starting with the definition of stress as

σ̃ = σ̃ (ε̃, ε̃p,d) = f̄(d)E · (ε̃− ε̃p) (6.99)

and referring to Equation (4.45), the linearized stresses are given by

σ̃m+1 = σ̃m +
∂σ̃

∂ε̃

∣∣∣∣m ·∆ε̃+
∂σ̃

∂ε̃p

∣∣∣∣m ·∆ε̃p +
∂σ̃

∂d

∣∣∣∣m ·∆d (6.100)

with ∆ε̃ = ε̃m+1 − ε̃m, ∆ε̃p = ε̃m+1
p − ε̃mp , and ∆d = dm+1 − dm being the increment of

strains, plastic strains, and damage variable, respectively, and σ̃m the stresses from previous
time-step. It is important to mention that, here d is a vector of damage variables with the
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length of n corresponds to the number of subdomains in each ERVE. The material tangent
can be derived as

dσ̃
dε̃

∣∣∣∣m+1

=
∂σ̃

∂ε̃

∣∣∣∣m +
∂σ̃

∂ε̃p

∣∣∣∣m · ∂ε̃p

∂ε̃

∣∣∣∣m+1

+
∂σ̃

∂d

∣∣∣∣m · ∂d∂ε̃
∣∣∣∣m+1

(6.101)

First, for the plasticity part, similar to Model I, an explicit Euler integration scheme is ap-
plied for simplicity, that results in the elimination of the parts regarding the increment of
plastic strain, ∆ε̃p, and derivative of plastic strain with respect to the strain, ∂ε̃p/∂ε̃, in the
current time-step. Consequently, the stresses are resulting in

σ̃m+1 = f̄(dm)E · (ε̃m+1 − ε̃mp )+(
E · (ε̃m − ε̃mp )

)
⊗

n∑
j=1

(
f ′(dmj )

n f 2(dmj )
f̄(dm) ej

)
·∆d (6.102)

Based on Subsection 4.2.3, and since the damage evolution given by

dm+1
i = dmi + α `ext ∆t (6.103)

contains a loop of continually changing driving force, it is quite difficult to determine the
derivative of vectorial damage with respect to the strain, as needed in Equation (6.101).
Therefore, we perform a numerical derivation of the damage derivative by applying the
tolerance of tol = 10−8 to the Ψ0, i.e.,

∂d

∂ε̃

∣∣∣∣m+1

=
∂d

∂Ψ0

∣∣∣∣m+1

⊗ ∂Ψ0

∂ε̃

∣∣∣∣m+1

=
dm+1
tol (Ψm+1

0 + tol)− dm+1(Ψm+1
0 )

tol
⊗
(
E · (ε̃m+1 − ε̃mp )

) (6.104)

Finally, inserting Equation (6.104) into Equation (6.101), the material tangent provides as

dσ̃
dε̃

∣∣∣∣m+1

= f̄(dm)E +
(
E · (ε̃m − ε̃mp )

)
⊗

n∑
j=1

(
f ′(dmj )

n f 2(dmj )
f̄(dm) ej

)
·

dm+1
tol (Ψm+1

0 + tol)− dm+1(Ψm+1
0 )

tol
⊗
(
E · (ε̃m+1 − ε̃mp )

) (6.105)

The numerical implementation of this procedure on the material point level results in the
following simple Algorithm 2.
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Algorithm 2: Model II: Rate-independent finite element algorithm

input: εm+1, εmp , αmp , dm, `ext

Set: dm+1 = dm, εm+1
p = εmp , αm+1

p = αmp

Check for plastic process

calc: Φp(εm+1, εm+1
p , αm+1

p ,dm+1)

if Φp > 0 then

εm+1
p = εm+1

p + ∆ρ f̄(dm+1) devE : (εm+1 − εm+1
p )

αm+1
p = αm+1

p + ∆ρ
(
rp +KHα

m+1
p

)
Check for damage process

for i = 1, . . . , n do

calc: pd,i(ε
m+1, εm+1

p , αm+1
p ,dm+1)

if pd,i >
rd
n

then

dm+1
i = dm+1

i + α `ext ∆t

if dm+1
i > 0.999 then

set: dm+1
i = 0.999

set: dm+1(dm+1
i )

calc: σ̃m+1 = σ̃(εm+1, εmp , α
m
p ,d

m+1)

calc: dσ̃m+1

dε̃m+1 = dσ̃
dε̃ (εm+1, εmp , α

m
p ,d

m+1)
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7 Model Comparison with Finite Element Results

This chapter aims to present the numerical results obtained in the simulations utilizing the
two coupled damage-plasticity material models introduced in Chapter 6. In the following,
the behavior of material models is distinguished utilizing several problems. The numeri-
cal examples involving gradient-enhanced damage-plastic material model are presented in
Section 7.1, while the examples employing the relaxation-based regularized damage-plastic
material model are given in Section 7.2. The influence of regularization on the material
behavior is investigated using two regularization states for each material model; i.e., al-
most localized state and strongly regularized one. For each case, two different boundary
value problems including three mesh discretization levels are considered. Furthermore, the
solution of each boundary value problem provides the global response in terms of force-
displacement diagrams and distribution of internal parameters, such as damage function and
accumulative plastic strain. Finally, in Section 7.3 a comparative discussion of material
models is presented.

7.1 Model I: Gradient-enhanced Damage-Plastic Material

In this chapter, the calculation results presented utilizing the Laplacian damage model cou-
pled with plasticity, Model I. Two appropriate examples are selected that illustrate the in-
fluence of the regularization procedure and mesh-independent behavior. The first one intro-
duces the results of a square specimen with a circular hole in its middle, while the second
one represents an asymmetrically notched specimen. The material parameters presented in
Table 7.1 are applied in the calculations. The selected results of the tests have presented in
the following.

Table 7.1: Material parameters used in the numerical examples in conjunction with the gra-
dient enhanced damage model coupled with plasticity

E [MPa] ν [-] rd [MPa] rp [MPa] KH [MPa]
200000 0.33 0.05 60 8000

7.1.1 Plate with a Circular Hole

The first example is a plate with a circular hole in the center subjected to tension applied as a
uniform displacement at the top and bottom ends of the specimen in opposite directions. The
actual boundary value problem and the specimen dimension have illustrated in Figure 7.1.
Due to symmetry, only one-fourth of the model has simulated. The simulation has repeated
using different mesh sizes. The chosen coarse mesh has 900 elements, the middle-size one
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has 4038, and the fine mesh consists of 8014, see Figure 7.2. For reducing the computation
time, the refinement accomplishes only in the area where the damage expects to occur.

100

100

50

u

u

(a)
25 25

50

u

(b)

Figure 7.1: Plate specimen with circular hole (a) Geometry and dimensions [mm], (b) Con-
sidered boundary value problem. Thickness is 3 mm.

 

(a) 900 elements

 

(b) 4038 elements

 

(c) 8014 elements

Figure 7.2: Finite element meshes with (a) 900 elements, (b) 4038 elements, and (c) 8014
elements for plate specimen with circular hole

The damage initiates at the cavity on the left-hand side and progresses horizontally to-
wards the outer edge of the specimen until it reaches the right edge that has considered as
fully-damaged. The procedure has illustrated in Figure 7.3, consists of the damage distribu-
tion in three states labeled as damage initiation, intermediate stage, and fully-damaged state.

As explained in Chapter 6, characteristic localization conducts to instabilities and mesh-
dependent results. Two different values of the regularization parameter considered for an-
alyzing its influence on the local and global material behavior. An almost-local damage
distribution with β = 0.1 [MPa mm2] and a parameter related to a regularized damage dis-
tribution with β = 1 [MPa mm2] have been chosen. Hereto, the structural response in terms
of force-displacement diagram has been presented in Figures 7.4 and 7.5, respectively. In
the almost-local version of the model, β = 0.1, as damage propagates through the specimen,
a slight difference between the curves becomes visible, which originates from the effect of
weak regularization. For the case with larger value of β, which is a strongly regularized
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(a) (b) (c) 

Figure 7.3: Damage distribution with β = 1 [MPa mm2] for the plate specimen for various
states (a) Damage initiation (b) Intermediate stage and (c) Fully-damaged state.
The results correspond to the mesh with 4038 elements.

version of the model, the mesh convergence is noticeable. Besides, increasing the regular-
ization parameter results in a bigger plastic zone and thus a larger maximum load, where the
damage begins. The points at which the damage snapshots of Figure 7.3 have been taken
are marked with blue dots in the diagram of Figure 7.5.
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Figure 7.4: Force-displacement diagram for plate specimen with β = 0.1 [MPa mm2]. Com-
parisons are presented for different mesh sizes: 900, 4038 and 8014 elements

The corresponding plastic hardening parameter (αp) increases in the direction of the in-
duced crack. The width of the shear bands are finite and independent of the used spatial
discretization. It begins from the minimum value of almost zero (e.g., −3.0 × 10−5) and
ends up with the maximum value of 0.006 at the end of the simulation, see Figure 7.6. Note
that the scale bar for the contour levels for both simulations is the same. Figure 7.7 depicts
the damage contours of three different discretizations. The damaged zone has been limited
to a thin area (colored in red) at the bottom edge of the specimen, as the β decreases. It
identifies a crack in a continuous sense. It is important to point out that the damaged zone
remains almost unchanged for the different mesh sizes at both values of β. It proves that the
material model is mesh-independent. We have also to mention that β is an input parameter,
which has to be chosen based on the behavior of a real physical material.
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Figure 7.5: Force-displacement diagram for regularized version of the model, i.e β = 1
[MPa mm2]. Comparisons are presented for different mesh sizes: 900, 4038 and
8014 elements
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Figure 7.6: Distribution of the plastic hardening parameter with (a) β = 0.1 [MPa mm2] and
(b) β = 1 [MPa mm2] for the plate specimen with 4038 elements.
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Figure 7.7: Damage distribution with β = 0.1 [MPa mm2] (left-hand side) and β = 1 [MPa
mm2] (right-hand side) for the plate specimen with (a) 900 elements, (b) 4038
elements and (c) 8014 elements
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7.1.2 Double-notched Specimen

The next boundary value problem deals with a double-notched specimen subjected to a
vertically time-dependent displacement u at the top edge and fixes at the bottom edge. The
boundary value problem and its corresponding finite element discretizations have illustrated
in Figure 7.8. In all the simulations, a coarse mesh with 1010 elements, a middle-size mesh
with 4033 elements, and a fine mesh with 8477 elements have considered. The focus of
refinement is on the center part of the specimen, where the damage process expects to occur.

u
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D = 5

   
(a) (b) (c) 

Figure 7.8: (left) Double-notched specimen with its dimensions [mm] and loading. Thick-
ness is 3 mm, which is discretized with one finite element, (right) Finite element
meshes with (a) 1010 elements, (b) 4033 elements, and (c) 8477 elements for
the double-notched specimen

Similar to the first example, two values are considered for β to compare the regularization
effect: β = 0.1 [MPa mm2] for almost-local case and β = 1 [MPa mm2] for regularized
case. Figure 7.9 illustrates the damage contours in three different stages, marked with blue
dots on the force-displacement curve, for mesh discretization with 4033 elements at both
values of β = 0.1 at the top row and β = 1 at the bottom row. At the first stage, the damage
begins independently at the root of each notch and then spreads rapidly toward each other.
In almost-local case (β = 0.1), the final damage zone looks like nearly two independent
cracks. Possible differences in the shape of the damaged area of the last time-step at the
top row coincide with the fluctuation of the force-displacement diagram, where the large
reduction of stress happens in a small time interval. It will not have a significant influence
on practical applications. These time-steps present the states in which the global stiffness
reduces remarkably.

In the regularized case (β = 1), the two initiated cracks meet at the middle to form
a thick damage zone placed diagonally within the specimen. This behavior leads to a fully
damaged area that has an almost “S-shape”. When the gradient parameter reduces to smaller
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Figure 7.9: Damage distribution with β = 0.1 [MPa mm2] (top row) and β = 1 [MPa mm2]
(bottom row) for the double-notched specimen for various states (a) Damage
initiation (b) Intermediate stage and (c) Fully-damaged state. The results corre-
spond to the mesh with 4033 elements.

values, then the width of the damage zone shrinks more. Therefore localization occurs in a
relatively narrower area. Furthermore, in the global response of structure for smaller values
of β (Figure 7.10), in contrast to the force-displacement diagram for regularized case (Figure
7.11), the point of maximum load decreases and shifts to the left. It is reasonable due to the
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thin totally damaged zone that may interpret as a crack in the continuous sense. It could
be assumed as a transition from damage modeling to fracture mechanics. In continuum
damage mechanics, cracks are smeared out over a failure zone where the displacement is
still continuous. In fracture mechanics, displacement is discontinuous through the crack
face that can propagate only between elements.
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Figure 7.10: Force-displacement diagrams for almost-local version of the model, i.e β =
0.1 [MPa mm2] for double-notched specimen. Comparisons are presented for
different mesh sizes: 1010, 4033 and 8477 elements
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Figure 7.11: Force-displacement diagrams for regularized version of the model, i.e β =
1 [MPa mm2] for double-notched specimen. Comparisons are presented for
different mesh sizes: 1010, 4033 and 8477 elements

The corresponding contours for accumulative plastic strain are illustrated in Figure 7.12
for mesh with 4033 elements in both values of β = 0.1 on the left-hand side and β = 1 on
the right-hand side. The influence of gradient parameter on the shear bands is more obvious
in this example, where for a larger value of β, a wider shear band with a larger maximum
value for αp occurs. Figure 7.13 is also used to illustrate the damage contours for different
meshes to prove the obtained mesh-independent results for both values of β.
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Figure 7.12: Distribution of the plastic hardening parameter with (a) β = 0.1 [MPa mm2]
and (b) β = 1 [MPa mm2] for double-notched specimen with 4033 elements.
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(a) 1010 elements (b) 4033 elements (c) 8477 elements 

Figure 7.13: Damage distribution with β = 0.1 [MPa mm2] (top row) and β = 1 [MPa
mm2] (bottom row) for double-notched specimen with (a) 1010 elements, (b)
4033 elements and (c) 8477 elements
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7.2 Model II: Relaxation-based Regularized Damage-Plastic Material

The focus of this section is investigating the behavior of the ERVE material, i.e., Model
II. For this purpose, two representative examples have considered. The first simulation is a
rectangular brick with a preexisting crack known as a sharp notch specimen. The second
one is the same problem treated in Subsection 7.1.2. The material model parameters used in
these calculations have specified in Table 7.2. The selected results of the tests have presented
in the rest of this section.

Table 7.2: Material parameters used in the numerical examples in conjunction with the
ERVE damage model coupled with plasticity

E [MPa] ν [-] rd [MPa] n [-] ∆t [s] rp [MPa] KH [MPa]
200000 0.33 0.1 20 1 60 8000

7.2.1 Sharp Notch Specimen

The first boundary value problem for representing the results of Model II is a rectangular
specimen with the dimension of 50 × 40 mm and a 25 mm sharp horizontal notch on the
left-hand side, subjected to a time proportional displacement u applied on the top and bot-
tom edges. Due to symmetry, only one-half of the specimen has simulated (highlighted in
blue). The geometry and the actual boundary value problem with its dimensions have illus-
trated in Figure 7.14. The Finite element results are presented for three mesh sizes, coarse
mesh with 996 elements, middle-size one with 4080 elements, and fine one with 8046 ele-
ments. The sharp notch results in a stress singularity at the bottom edge right in the center.
Consequently, the refinement is mainly limited to this area, Figure 7.15.

u

25 2519
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u

u

2

Figure 7.14: Sharp notch specimen with its dimensions [mm] and loading. Thickness is 3
mm, which is discretized with one finite element.

For Model II, two stages of regularization using different values of regularization param-
eter have considered; i.e., α = 0.05 [1/(N mm)] applies only a slight regularization to keep
the damage distribution almost-local and α = 0.005 [1/(N mm)] provides stronger regular-
ized damage distribution. The force-displacement curves for the three finite element meshes
are shown in Figures 7.16 and 7.17 for α = 0.05 and α = 0.005 [1/(N mm)], respectively.
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(a) 996 elements
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Figure 7.15: Finite element meshes with (a) 996 elements, (b) 4080 elements, and (c) 8046
elements for the sharp notch specimen.
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Figure 7.16: Force-displacement diagrams for almost-local version of the model, i.e α =
0.05 [1/(N mm)] for sharp notch specimen. Comparisons are presented for
different mesh sizes: 996, 4080, and 8046 elements.

It depicts that for the lower values of α, the damage occurs earlier and results in lower max-
imum reaction force F . Consequently, a smaller plastic zone is also observable. Comparing
the diagrams of different values of α shows that for almost-local damage (α = 0.05), there
is a slight mesh-dependency as expected. However, by improving the regularization effect,
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the mesh-independency proved. As an alternative interpretation, the coarse mesh cannot
capture the sharp cracks accurately.
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Figure 7.17: Force-displacement diagrams for regularized version of the model, i.e α =
0.005 [1/(N mm)] for sharp notch specimen. Comparisons are presented for
different mesh sizes: 996, 4080, and 8046 elements.

As illustrated in Figure 7.18 for three mesh discretization, the damage starts to develop at
the notch tip and progresses towards the outer right edge until the specimen has considered
fully damaged. It proves that our algorithm can consider the transitions from undamaged
to the damaged zones. The results for α = 0.05 [1/(N mm)] are given on the left-hand
side, whereas those for α = 0.005 [1/(N mm)] are drown on the right-hand side. In case
of localized damage, the totally damaged zone (area in red color) forms a thin and sharp
area, which recognizes as a crack. However, using a stronger regularization effect results
in a wider damage zone. The plastic hardening parameter or accumulative plastic strain
develops in this region in the range of [−5 × 10−6, 0.022]. It has presented in Figure 7.19
for the middle-size mesh with 4080 elements. When the value of α decreases, then the width
of the shear band increases. It has the same effect on the maximum value of αp within the
bands. Comparing the meshes related to the damage distribution shows a good agreement
and proves that the mesh is strongly independent.
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Figure 7.18: Damage distribution with α = 0.05 [1/(N mm)] (left) and α = 0.005 [1/(N
mm)] (right) for sharp notch specimen with (a) 996 elements, (b) 4080 elements
and (c) 8046 elements
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Figure 7.19: Distribution of the plastic hardening parameter with α = 0.05 [1/(N mm)]
(left) and α = 0.005 [1/(N mm)] (right) for sharp notch specimen with 4080
elements.
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7.2.2 Double-notched Specimen

The geometry of the problem with the finite element discretization has explained in Figure
7.8. For this example, selected results are again presented for two different values of regu-
larization parameter; i.e α = 0.05 [1/(N mm)] for almost localized damage and α = 0.005
[1/(N mm)] for stronger regularized damage.

Taking into account the global structural response, a perfect agreement in terms of force-
displacement curves are underlined in Figures 7.20 and 7.21 for α = 0.05 [1/(N mm)] and
α = 0.005 [1/(N mm)], respectively. Generally, weaker regularized damage comes with a
steep decrease in global structural responses due to sudden crack initiation and propagation,
which will verify in the following force-displacement curves.
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Figure 7.20: Force-displacement diagrams for almost-local version of the model, i.e α =
0.05 [1 / (N mm)] for double-notched specimen. Comparisons are presented
for different mesh sizes: 1010, 4033, and 8477 elements.
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Figure 7.21: Force-displacement diagrams for regularized version of the model, i.e α =
0.005 [1 / (N mm)] for double-notched specimen. Comparisons are presented
for different mesh sizes: 1010, 4033, and 8477 elements.

The corresponding contours of equivalent plastic strain αp, shown in Figure 7.22 for α =
0.05 [1 / (N mm)] on the left-hand side and α = 0.05 [1 / (N mm)] on the right-hand
side, illustrate that accumulative plastic strain propagate almost in the same region as the
damage function. Figure 7.23 shows the damage distribution for three mesh discretization
in the slight (left-hand side) and strong (right-hand side) regularization state. The main
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characteristic of Model II is similar to the one of Model I: two cracks initiate independently
at the root of notches and propagate rapidly to the opposite edges. Due to the respective
damage model, some dissimilarities can be observed in the damage distribution, especially
at the end of the simulation. For α = 0.05 [1 / (N mm)], the cracks tend completely
horizontally toward the opposite side and not to the opposite notch, as previously observed in
Figure 7.13 for the material model I. Moreover, in the strongly regularized case, the initiated
cracks merged at the middle of the specimen to form an “I-shape” thick damage zone.

   
(a)  (b) 

Figure 7.22: Distribution of the accumulated plastic strain with (a) α = 0.05 [1 / (N mm)]
and (b) α = 0.005 [1 / (N mm)] for double-notched specimen with 4033 ele-
ments.
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(a) 1010 elements (b) 4033 elements (c) 8477 elements 

Figure 7.23: Damage distribution with α = 0.05 [1 / (N mm)] (Top) and α = 0.005 [1 / (N
mm)] (Bottom) for double-notched specimen with (a) 1010 elements, (b) 4033
elements, and (c) 8477 elements.
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7.3 Comparative Discussion

In this chapter, the finite element results of several examples are carried out and discussed
to prove the applicability of the two developed damage-plastic material models, Model I
and Model II. Simulations performed for localized damage corresponding to a brittle-like
behavior and regularized damage corresponding to ductile behavior.

Both material models provide mesh-independent damage and accumulative plastic dis-
tribution. In localized damage, the numerical fluctuation leads to some tiny dissimilarity,
especially for coarse meshes. For example, for double notch specimens with material Model
I, the cracks are thicker for coarse mesh and can be handled with some optimization effort
for mesh discretization. Besides, due to different formulations for models, the damage zone
characters can be deviant. Model I shows a smooth distribution of the damage with a mel-
low transition zone between the damaged and undamaged parts. Contrary to that, Model II
represents a sharp transition zone that results in thicker cracks or a wide damaged zone in
localized or regularized cases, respectively.

The global response of force-displacement curves verifies the mesh-independent results
for both material models. Some differences occur in the localized damage case, but they
will remove by increasing the regularization effects. By the way, the agreement is still
acceptable. Due to different formulation, the character of the force drops for models varies
consequently. The curves of Model I experience a very steep drop and approach zero forces
with increasing displacement. However, in Model II, the curves exhibit a very smooth drop,
especially for regularized damage cases.

The first boundary value problem is the plate with circular hole discussed in Subsection
7.1.1, in which the material Model I, gradient-enhanced regularization, is implemented. In
this example, the cracks initiate at the hole and propagate toward the outer edge of the
damage distribution points for both regularization cases. The only exception is the force-
displacement curve for localized damage, where a slight difference in the peak value of force
is noticeable. However, a more strong regularization overlooks the problem with coarse
mesh.

Taking into account the double-notched specimen, presented in Subsections 7.1.2 and
7.2.2, the characteristic behavior of both models has compared more accurately. The main
characteristic of both models is similar. They provide mesh-independent damage distribu-
tions, starting from each notch and propagating towards each other. For almost-localized
case, final damage zones are two separate cracks, while in the regularized case, they meet
in the middle to form a thicker damaged zone. However, this single crack is interpreted
as S-shape for Model I and has an I-shape for Model II. The force-displacement curves of
Model I display a very sharp force drop compared to the slightly decreasing force of Model
II. The contours of accumulative plastic strain are formed better with Model II, as the plastic
strains should propagate almost in the same region as the damage. Moreover, the influence
of regularization on plastic strain distribution is more distinct for Model II.

The last boundary value problem is a sharp notch specimen in Subsection 7.2.1, illustrate
the results of Model II. For this example, the influence of the boundary conditions is strong,
especially regarding the global responses. The force drops show a slight division for coarse
mesh, but a better agreement occurs by damage distributions. Due to this perspective, the
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boundary conditions do not harm the mesh independence.

After this comparative discussion, the most compatible choice depends on the application.
Due to the simulation of abrasive wear and the difficulties entered through contact modeling,
material Model II (ERVE) is more efficient to use in this study. For this material model, the
implementation is done only at the material point level and leads to direct modeling in
commercial finite element software, Abaqus. Despite this most significant advantage, the
transition between damaged and undamaged zone is sharper for Model II. However, this
disadvantage can be disappeared by optimizing the regularization.
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8 Soil-Tool Interaction

The abrasivity of soil and rock is a significant factor with remarkable influence on the wear
of mechanical tools in different processes such as tunneling, underground mining, or quar-
rying. In such subsurface engineering projects, the construction time in the planning phase
is decisive. It is estimated based on different factors such as tool wear. Therefore, realistic
prediction of the tool wear during tunneling is prominent for the excavation progress. Abra-
sive wear happens in any situation where two materials with different hardness are in contact
during relative motion and depends on two parameters. The first one is the machinery, such
as the devices and tools used for excavation. The other parameter is the geological condition
of the soil and rock in contact with the tools.

Many different methods have described the abrasive behavior of sand and rock, such as
laboratory tests, field tests, and computer simulations. Each method has its strengths and
weaknesses. The aim is to introduce a more efficient wear model that estimates the abrasive
wear rate caused by a mixture of particles. For achieving this goal, the behavior of a scratch
caused by a single abrasive particle has extended to the abrasive wear of the particle mixture
employing relations produced with 3D particle simulations. Numerical methods used for
this procedure are FEM for simulation of single scratch test and DEM for modeling particle
mixture. First, in Section 8.1 the theoretical background of contact mechanics, constraints,
and algorithms is explained briefly. It is followed by Section 8.2, presenting the steps for
numerical simulation of a single scratch test and its results for different test cases. Besides,
the influence of various parameters on the scratch and wear mechanisms is studied. The
equations for calculating contacting particles derived from DEM particle simulations are
introduced in Section 8.3. Finally, in Section 8.4, the relations for estimation of abrasive
wear are introduced.

8.1 Theoretical Background

Contact mechanics, built upon the mechanics of materials and continuum mechanics, fo-
cus on computations evolving pressure and stresses acting perpendicular to the contacting
surfaces (adhesion) and stresses acting tangentially between surfaces (friction). Classical
contact mechanics is associated with Hertz (1882), as he dealt with contact problems be-
tween elastic bodies with curved surfaces. These classical results still form the base of
many industrial situations, but they are not a proper approach to deal with contact in many
engineering applications. About one hundred years later, Johnson, Kendall, and Roberts
(1971) found a similar solution for adhesive contact (known as JKR-Theory). It may come
from the general observation that solid bodies do not adhere to one another. JKR-Theory
was rejected by Derjaguin, Muller, and Toporov (1975) as they developed another adhesive
theory in the 1970s (known as DTM-Theory). Further advancements in contact mechanics
are followed by studying the importance of surface roughness for bodies in contact by Bow-
den et al. (2001). Their theory found out that the contact area between friction partners is
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less than the apparent contact area, which drastically influenced the tribology commitments.

In general, contacting bodies very often experience non-linear plastic and permanent de-
formations, and therefore mostly should be solved numerically. Computational modeling of
contact is a very challenging procedure. The choice of contact algorithm, discretization, and
constraints have a considerable impact on analysis and can lead to the lack of convergence
of numerical algorithms. Abaqus finite element software is applied to model the contact in a
single scratch test. Here, some of the computational algorithms and the required constraints
for dealing with contact problems are clarified.

8.1.1 Kinematics of the Contact Surfaces

According to the kinematics of contacting surfaces, contact occurs between a slave body and
a master body. Indeed, some parts of their surfaces occupy the same position. The contact
relations decompose into normal and tangential components. It is due to the identification
of an active contact zone by contact constraints.

Normal Contact and Impermeability

It is significant to find out that a point on the slave surface is in contact with an arbitrary
point on the master surface or not. Thus, a search for the closest point is applied. It leads to
the calculation of the normal gap gN. In a continuum model, two points are not allowed to
occupy the same position in space. The constraint in the normal direction, known as imper-
meability, is executed from the normal gap and the contact pressure. Thus, assuming that
no penetration is allowed, the whole contact problem reduces to a boundary-based problem,
by demanding that gN ≥ 0 keeps for all material points during the deformation. Contact
happens when the gap gN = 0 and the normal contact traction in the case of non-adhesion
is compressive, tN ≤ 0. Due to the complementarity condition, if there is no contact, then
no compressive traction occurs. Alternatively, if there are no compressive stresses, then the
distance must be positive. These relations are as follows

gN ≥ 0, tN ≤ 0, gNtN = 0 (8.1)

which are known as Karush-Kuhn-Tucker conditions for optimality.

Tangential Contact and Friction

Stating the relative movement between the contact surfaces, the concept of the tangential gap
gT is given. Two surfaces are so-called stick to each other if they have no relative movement
in the tangential direction, i.e., gT = 0. In contrast to the stick state, there is a tangential
displacement in the slip state between a given point on the slave surface and its projection
on the master surface.

In contact, the tangential behavior is described based on the constitutive equations of a
friction model. When surfaces are in contact, they usually transmit both shear and normal
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forces across their interface. Utilizing a friction model, the general relationship between
these two force components is defined. It usually expresses in terms of the stresses at the
interface of the contacting bodies. The most commonly used friction model developed in
the last decades is the standard Coulomb law, which is based on the framework of elasto-
plasticity and is described by

tT = −µ|tN| (8.2)

where µ is known as the coefficient of friction and is gained by experiments. In the case
of isotropic friction, it assumes that the friction coefficient µ is the same in all directions.
For a 3D simulation, there are two orthogonal components of shear stress, t1T and t2T, along
with the interface between the two bodies. These components act in the local tangent direc-
tions for the contact surfaces and are combined into an ”equivalent shear stress” tT, for the

slip/stick calculations, where tT =
√
t1T

2
+ t2T

2.

8.1.2 Treatment of Contact Constraints

Several methods have been implemented to treat the contact constraints, which are employed
frequently from optimization theory. Among them, the penalty method and the augmented
Lagrange method are discussed briefly in the following. Hence, the penalty method is a stiff
approximation of hard contact and is applied in this work. The augmented Lagrange method
uses the same kind of stiff approximation as the penalty method. It also uses augmentation
iterations to improve the accuracy of the approximation. For a detailed description of these
methods readers are referred to, Laursen (2013) and Wriggers and Zavarise (2004).

Penalty Method

Among many solution methods available for contact constraints, the penalty method seems
to be the most popular in the practical finite element implementations of contact problems.
It is frequently applied because its implementation procedure is straightforward and results
in a pure displacement formulation. In this scheme, the contact force is proportional to
the penetration distance, so some degree of penetration between the contacting bodies is
allowed, possibly gN ≤ 0. The penalty method can be implemented such that there are no
Lagrange multipliers. Because numerical softening associated with the penalty method can
relieve over constraint issues, they allow for improved solver efficiency and consequently
less computational time and cost.

Within the penalty method, the contact stresses are directly linked to the deformations by
the so-called penalty stiffness parameters (cN and cT in the normal and tangential direction,
respectively). Here, the normal contact stress is indeed followed by

tN = cN gN (8.3)

The tangential stress for slip/stick criteria corresponding to the Coulomb constitutive law is
given by

tT =

{
−cT gT, for stick
−µ|tN| for slip

(8.4)
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It is common to have convergence difficulties in the first increment of an analysis, which
can be removed by an appropriate choice of penalty stiffness parameters. Small penalty
stiffness parameters typically result in better convergence of the Newton iterations and better
robustness but can lead to stress inaccuracy due to large penetration. Increasing the stiffness
parameters improves the accuracy of the results, where the perfect case is achieved when
the values go to infinity. However, we need to note that, very high contact stiffness will lead
to numerical errors related to ill-conditioning.

Augmented Lagrange Method

The augmented Lagrange method is based on an extended penalty method while keeping
penetrations small. It may require additional iterations in some cases. However, this ap-
proach can make the resolution of contact conditions easier and avoid problems with over
constraints. There are many articles written on the application of the augmented Lagrangian
method in the finite element method, among them are Simo and Laursen (1992); Laursen
and Simo (1993); Zavarise et al. (1995); Refaat and Meguid (1997).

8.2 Single Scratch Test

Abrasion can be numerically reproduced in a controlled way by simulating a single asperity
scratch test where a pin or a conical indenter penetrates into the surface of the specimen
and slides over it. Scratch damage can range from plastic grooving in ductile material to
cracking and chipping in brittle material. The scratched surface is characterized by the
active micromechanisms of abrasion, which are influenced by the deformation behavior of
the specimen.

8.2.1 Numerical Procedure

A three-dimensional scratch process was modeled and simulated using the developed cou-
pled damage-plasticity material model, implemented as a user subroutine (UMAT) in Abaqus.
A schematic illustration of the scratch system has shown in Figure 8.1. A Cartesian system
assigns. The y-axis is pointing to the indentation direction, the z-axis is parallel to the sur-
face and shows the sliding direction and the x-axis is pointing out of this figure. The model
consists of a rigid tip with a predefined radius and a flat deformable specimen. The spec-
imen is fixed and the tip slides over the surface such that a groove forms. The width and
length of the specimen are not relevant parameters in this simulation. But they should be
large enough to eliminate the boundary effects.

In the simulations, a displacement-control loading has been applied in two steps:

• first, in the indentation step, a vertical displacement along the thickness (y-axis in
Figure 8.1) is applied to press the indenter down till it reaches the specified indentation
depth;
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Figure 8.1: Schematic representation of the scratch test in the initial undeformed configura-
tion

• second, in the scratching step, a horizontal displacement is applied to slide the indenter
in the z-direction at a constant indentation depth the same as in the previous step.

During the process, the contact area and the reaction forces are recorded. For minimizing the
number of elements and thereby the computational time, the symmetry condition regarding
the x-axis applies to the geometry.

A standard surface-to-surface contact discretization with the finite sliding tracking ap-
proach applies to the model, which allows for arbitrary separation, sliding, and rotation
of the contacting surfaces. In this algorithm, each slave (specimen) node is checked for
penetration through the master (abrasive particle) surface. The connectivity of the currently
active contact constraints changes upon the relative motion of the contacting surfaces. When
the contact is established, then incremental searching is used to track the position of the slave
nodes on the master surface.

In a contact problem, special boundary constraints are imposed in addition to the regular
boundary conditions. As mentioned in Subsection 8.1.1, for classical contact problems the
non-penetration (impermeability) condition and the law of surface friction are considered.
In the normal direction, the formulation of the non-penetration condition is applied as a
purely geometrical constraint to prevent the penetration of one body into another. In the
tangential direction, the Coulomb friction law has used to simulate the friction between
the rigid indenter and the specimen using the penalty approach. The penalty stiffness is
considered as the minimum of the master and the slave surface stiffness. In the contact
algorithm used in this investigation, the scaling factor for the penalty stiffness is kept at the
default value of 1, and the Coulomb friction coefficient is set to µ = 0.1.

The boundary conditions are summarized as follows:

1. Due to the symmetry, the displacement along the x-axis is zero on the symmetry plane.

2. Coulomb friction law is applied at the contact surface between the indenter and spec-
imen surface: when the friction stress reaches µ tN (tN is the normal contact traction),
contact surfaces slip on each other. Hence, during scratch, the local friction stress is
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equal to µ tN.

3. The other surfaces of the specimen are fixed: displacements ux = uy = uz = 0

Figure 8.2: The mesh of the spherical tip used in the numerical simulations, R=50 µm.

The tip is made of quartz (SiO2), which is much harder than the steel of the specimen.
It practically does not wear during the scratching movement. Thus it is assumed to be
almost rigid. For the tip, a reference point is assigned in the center of its base. The possible
boundary conditions and displacements are applied to this reference point. For decreasing
the computation time, the mesh of the spherical geometry should be coarse. The apex of the
tip is an exception, which is the main contacting master surface. The element size around the
apex is approximately 5 µm. The initial model for the tip used in the numerical simulations
with its discretization has depicted in Figure 8.2.

Table 8.1: Mechanical properties of the tested materials
Material Quartz(SiO2) Steel (St-52)
Young’s modulus (GPa) 73 210
Poisson’s ratio 0.17 0.33
Density (Kg/m3) 2200 7800
Hardness (GPa) 9.8 2

The surface to be scratched has a dimension of 200 × 100 × 15 µm and is made of
standard steel DIN St-52 as it is used commonly in machine components. Table 8.1 listed
the mechanical properties of quartz and the steel used in the model. Figure 8.3 shows the
specimen with its element distribution. The 8-node linear brick elements (C3D8) are used
for the discretization of the specimen. A too fine mesh or a uniform fine mesh will drastically
increase the computational time, especially in the three-dimensional models. However, a
coarse mesh is not sufficient to capture all changes. We use the following scheme to reduce
the number of elements and consequently speed up the simulations and at the same time
obtain sufficiently accurate results. The specimen is divided into three zones. In the effective
zone, right under the indenter tip, where the contact takes place, the finest mesh is used. In
the regions far from the contacting area, a coarse mesh is applied, as the contacting stresses
are almost zero there and have no influence on the results. The intermediate zone is so
defined to apply a smooth transition between the fine and the coarse mesh.

The coupled damage-plasticity material model developed in Chapter 6 is assigned to the
specimen. It results in different wear regimes in the form of plastic deformation and material
removal. The plastic part is modeled by extending the linearly elastic component of the
stress-strain curve with a linear hardening behavior beyond the yield point, see Figure 8.4,
adapted from Ribeiro et al. (2016) for steel St-52. To account for damage, the ERVE damage
model is used. It leads to volume loss of the surface and consequently to the wear of the
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Figure 8.3: (top) The specimen used in the numerical simulations, (bottom) with a cross-
section to show the element distribution and mesh size

specimen. The material input properties for the damaged part regarding the ERVE material
model are listed in Table 8.2.

Figure 8.4: True stress-true strain relationship for St-52 steel alloy, adopted from Ribeiro
et al. (2016)

The single asperity test is performed for an indentation depth of 0.002 mm. A total sliding
distance of 0.1 mm was facilitated by the tangential movement of the tip. The result is a
groove with a cross-section depicted in Figure 8.5.

Figure 8.6 depicts the Von Mises stress distribution on the contact surface (top view).



120 8 Soil-Tool Interaction

Table 8.2: Material parameters used in the single scratch test in conjunction with the ERVE
damage model

E [MPa] ν [-] rd [MPa] n [-] ∆t [s] α [1/s]
210000 0.33 0.1 20 1 0.05

(a)

(b)

Figure 8.5: A groove resulting from a single scratch test for d = 0.002 mm and R = 50 µm (a)
distribution of equivalent plastic strain in 3D view and (b) result of a microscopic
height profile measurement (blue is low and red is high)

They are recorded during the growth of the indentation depth. The distribution of the effec-
tive stress during the compression of the indenter is axisymmetric. The width of the non-zero
effective stress and the indentation depth are becoming dimensionless using the thickness of
specimen h. As is shown in Figure 8.6, with the growth of the indentation depth, the plastic
zones and the contact area also increase. The stress reduces from the center of contact to the
borders monotonously, except for the small region where the material extruded up, namely
the shoulder area in red color.

Based on the literature such as Hokkirigawa and Kato (1988) and Woldman et al. (2017),
three primary abrasive mechanisms may occur in the contact between a scratching tip and
a deformable surface: plowing, wedging, and cutting. During the system operation, a tran-
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Figure 8.6: Distribution of Von Mises stress with an increasing indentation depth

sition from one mode to another may happen and can act simultaneously. At low load and
therefore low indentation depth, a shallow groove is formed. In this situation, the material
is pushed downwards and to the shoulders, and thus no material removal is recorded.

In the wedge forming, the wedge type of wear debris is formed as a consequence of a
non-steady-state mechanism, where the scratched material forms a bow in front of the tip.
The bow will grow up till it finally breaks off and the wear occurs. In the cutting mode,
almost all materials of the groove are removed from the surface in the form of the long,
curled ribbon-like particles. This is the most severe abrasive wear stage, which typically
happens under extreme conditions, like very high loads, large indentation depth, or sharp
abrasive particles.

The shape of an abrasive particle, the difference between the hardness of the abrasive
particle and the specimen material, the load, and the shear strength at the contact interface
determine the state of the abrasive wear. Figure 8.7 shows a schematic cross-section of a
typical wear scar, where Ag is the groove area, As the area of the shoulders, w the width of
the groove, and d the indentation depth.

Referring to Woldman et al. (2017), the degree of wear fab relates the area of the groove
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As

w

Ag d

Figure 8.7: Schematic illustration of the cross-section of a wear scar

to the area of the plowed material using the following equation:

fab =
Ag − As

Ag
(8.5)

Assuming purely plastic deformation with the consistency of volume and no material re-
moval, a value of 0 corresponds to ideal micro-plowing with all material being pushed to
the sides, whereas a value of 1 corresponds to ideal micro-cutting with all material being
chipped out.

Hokkirigawa and Kato (1988) derived an equation for the degree of penetrationDp, which
is equal to the ratio of indentation depth and the half-width of the groove. It is defined as

Dp =
2d

w
(8.6)

It is a dimensionless parameter for characterizing the relative indentation depth. Note that
the degree of wear increases with increasing the degree of penetration, i.e., a higher value
of Dp indicates the cutting wear, and a lower value is linked to the plowing mechanism.

8.2.2 Study of Important Parameters

There are many effective parameters for defining the dominant wear regime and the abrasive
behavior in a single scratch test. To facilitate the analysis, some parameters are kept constant
and more influencing parameters are investigated. Whether only plastic deformation takes
place on the contact surface or material removal is also probable, will be mostly determined
by the indentation depth and the abrasive particle size, as will be discussed in detail in the
following.

Influence of Indentation Depth

In this part, a series of tests with varying indentation depth is established. They prove that
for a fixed indenter radius, the indentation depth determines the dominant wear mechanism.
The scratch simulations are done using a tip with a constant radius of 50 µm and varying
indentation depth from 1 µm to 5 µm.

During the deformation, the contact pressure is equal to the hardness of the deformable
material, i.e., the steel specimen, therefore, the size of the contact area can be expressed
as the ratio of the normal contact force and the hardness. Figure 8.8 shows the distribution
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of the normal contact force for different indentation depths. For a constant tip radius, by
increasing the indentation depth, the total contact area and the normal contact force will
increase. For all cases, the contact force will increase almost linearly till the maximum
indentation is achieved, then at the beginning of the sliding, the force will experience a drop
and is followed by a curve with a very slow slope and some fluctuations.

d = 0.005 mm
d = 0.004 mm
d = 0.003 mm
d = 0.002 mm
d = 0.001 mm
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Figure 8.8: Distribution of normal contact force for different indentation depths

Figure 8.9 shows the numerical result for the plowing mechanism. It indicates the pre-
dominantly plastic deformation without material removal. The simulated groove cross-
section results in the penetration degree of around 0.2 for the plowing stage.
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Figure 8.9: Numerical results for plowing (a) distribution of equivalent plastic strain and (b)
cross-section of the groove

Cutting is the critical abrasive wear mode, which occurs for the degree of wear larger
than 0.7, resulting in purely material removal with almost no shoulders. A transition from
plowing to cutting regime is obtained for the degree of wear between 0.2 and 0.7. It is known
as the wedge formation mode, which is a non-steady-state regime. Investigating the results
reveal that for a constant indenter size, increasing the indentation depth will cause the wear
regime to transform from micro-plowing into micro-cutting and ends up with a larger degree
of wear.
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Influence of Particle Size

The next step is investigating the influence of the abrasive particle size on the wear vol-
ume. From literature, the size effect has studied for abrasive particles up to around 100 µm.
Hence, the simulations are performed for three tip radii of 25, 50, and 100 µm with the cone
angle of 60 as shown in Figure 8.10. In these simulations, the indentation depth is constant
and equal to 3 µm.

(a) (b) (c)

Figure 8.10: Representation of the tips used in the simulations (a) R=25 µm (b) R=50 µm
and (c) R=100 µm

Figure 8.11 shows the normal contact force distribution as a function of horizontal sliding
distance. An initial indentation stage is not included in the diagram, and thus the contact
forces jump from zero to the required compressive force applied on the indenter. By increas-
ing the tip radius for a constant indentation depth, the normal contact force and the contact
area will increase to assure the constant hardness for the specimen.

R = 100 μm

R = 50 μm

R = 25 μm
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Figure 8.11: Normal contact force during scratching for the different tip radii

The simulation results are depicted in Figure 8.12. It appears that the tip with a smaller
radius produces a groove with lower shoulders and consequently causes more wear. It means
that for constant indentation depth, the wear volume increases with decreasing tip size. Note
that this effect is observed for scratching a surface with only one particle, and it opposes the
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size effect reported in the literature. In the experiments, the particle size effect is studied
using a grid of particles or tips. For a grid of particles under constant pressure, the force
per particle has a direct relation with its radius. Because the number of particles per unit
area decreases for larger particles. It results in a larger amount of wear caused by every
single particle. This effect has discussed in detail in Section 8.3, where a grid of particles is
simulated using DEM.

The cross-sectional geometry of the groove caused by a tip with a radius of 100 µm reveals
a completely plastic deformation with large shoulders and no material removal. Contrary,
in the scratch cross-section built by the tip with a radius of 25 µm, almost no shoulders are
observable, and large wear volume is recorded.

8.3 Abrasive Particle Simulation

The simulation of abrasive particles is performed using the discrete element method in
PFC3D software. The abrasive particles used in the simulations are quartz grains, as they
are one of the significant abrasive particles in the soil. Table 8.3 shows the mechanical
properties of quartz grains. Before starting the simulations, the parameter identification
procedure, introduced in Chapter 5, is carried out to determine the DEM contact parame-
ters. The simulations are divided into two categories; homogeneous materials and particle
mixture.

Table 8.3: Mechanical properties of quartz particles
Parameter Value
Diameter [µm] 150-450
Density [kg/m3] 2200
Internal friction angle [◦] 12
Elastic modulus [GPa] 73
Shear modulus [GPa] 31
Compressive strength [GPa] 1.1

8.3.1 Homogeneous Material Simulation

The setup for homogeneous material consists of a box with unit dimensions filled with
particles of equal radius. They are generated randomly inside the box and then settled down
by applying gravity. Due to the small size of particles, the settling step takes a very long time
and is the most time-consuming step in the simulation. To have a better settlement, the box
is shaken applying a small velocity to the side walls. A linear contact model is considered
between the particles. The simulations indicate that the inter-particle friction coefficient
does not have a significant effect on the number of contacting particles with the surface,
therefore, all wall and particle contacts are supposed to be frictionless. A pressure is applied
to the top surface of the particles. The number of contacting particles per unit area (Nc) is
a function of the particle’s diameter. The results are depicted in Figure 8.13. As is shown
in the following diagrams, the particle diameter has divided by the length of the contacting
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Figure 8.12: Particle size effect (left) distribution of equivalent plastic strain for (a) R=25
µm (c) R=50 µm and (e) R=100 µm and (right) cross-section of the groove for
(b) R=25 µm (d) R=50 µm and (f) R=100 µm

surface to make the horizontal axis dimensionless. Then, the number of contacting particles
is calculated as

Nc = 0.9D−2. (8.7)
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Figure 8.13: Relation between number of contacts and particle diameter for homogeneous
material.

8.3.2 Mixture of Particles

In practice, the extrapolation of these predictions to the soil that consists of a large number
of different particles is relevant. Therefore, a particle mixture with two different radii is
considered. The setup is similar to the one used for homogeneous material simulation.
In this case, two types of particles are assumed with the same mechanical properties, but
different diameters. A unit dimension box is created and randomly filled with particles A
and B with a defined volume ratio. If DA and DB are the particle diameters and θA and θB
are the volume ratios of particles A and B, respectively, then

DA ≥ DB → rAB =
DA

DB

(8.8)

and

θA + θB = 1. (8.9)

After particle generation, they settle down due to their weight. Pressure is applied to the top
surface of the particles. Finally, a parametric study is performed to derive a relation for the
number of contacting particles as a function of particle size and volume ratio. By varying
the diameter and volume ratio, a large database is created for each particle type. Figures
8.14 and 8.15 present the results for the number of contacts by A-particles and B-particles
for the special case rAB = 2 as an example. The best curve is fitted to these data points
using the MATLAB curve fitting tool. The derived equation for the number of contacts per
unit area for each particle, Nc,i, is expected to be in the form of

Nc,i = a θαi D
β
i . (8.10)

The result of curve fitting shows that despite constant a and β, the parameter α is a
function of rAB and can be found in an iterative procedure. They define as

A−particle : α = 2− 1

rAB

, (8.11a)

B−particle : α =
1

rAB

. (8.11b)
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Figure 8.14: Relation between number of contacts and particle diameter for different volume
ratio for A-Particles
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Figure 8.15: Relation between number of contacts and particle diameter for different volume
ratio for B-Particles

Finally, the equations for A- and B-particles, by considering rAB as a ratio of DA to DB

for DA ≥ DB, are defined as

Nc,A = 0.9 θ
(2− 1

rAB
)

A D−2
A , (8.12a)

Nc,B = 0.9 θ
( 1
rAB

)

B D−2
B , (8.12b)

These equations have used in the next section to estimate the total abrasive wear rate of the
particle mixture.

8.4 Estimation of Abrasive Wear Rate

The abrasiveness of individual mineral particles has modeled using single scratch simula-
tions. The extension of these predictions to the actual abrasive ground consisting of abrasive
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(Eq. (8.7))

Mixture of particles
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Figure 8.16: Flowchart for abrasive wear model

particles with different sizes and shapes is possible using particle simulations. The calcula-
tion procedure has illustrated as a flowchart in Figure 8.16.

The contribution of a particle to the total abrasive wear rate is defined by

v̇i = fab Ag,i vt, (8.13)

where vt indicates the tangential relative velocity between the abrasive particle and the tool.
It has extracted from dry sand-rubber wheel laboratory test. The average area of a groove
caused by all particles of type i, Ag,i, will be obtained from simulations in Section 8.2. It
is supposed to be a function of influencing parameters, i.e., mean particle size and normal
contact force (or indentation depth).

The total wear rate v̇ of a material is the summation of the wear rate for particles in contact
with the tool surface, i.e.,

v̇ =
n∑
i=1

Nc,i v̇i (8.14)

where n is the number of different particle types and Nc,i is the number of contacts per
unit area for particles of type i. Therefore, the abrasive wear rate is determined with a new
numerical procedure. The most important advantage of this approach is the large reduction
in the time and costs of simulations. Because the complicated 3D simulations are replaced
by simplified particle modeling and single scratch simulations.

To clarify the computational procedure of the predicted model, two specific examples,
i.e., one for homogeneous material and one for particle mixture are discussed in detail. As a
reference for calculations, we consider the dry sand-rubber wheel test (ASTM-G65), where
the rectangular steel specimen with the dimension of 18 × 12.7 mm is pressed against the
rubber wheel with a normal force of 130 N. The rubber wheel has a rotational velocity of
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200 rpm and diameter of 228.5 mm. For this standard test, quartz grains with 150− 450 µm
size range are assumed as abrasive particles.

1. Homogeneous material

We consider a homogeneous material consists of particles with all equal diameters of D
= 100 µm. The number of particles per unit area is calculated from Equation (8.7) and is
equal to 9 × 107. This quantity of particles should be scaled in the small contacting area
between the steel specimen and the rubber wheel. The single scratch using a particle with a
diameter of 100 µm is simulated and the cross-section of the created groove has depicted in
Figure 8.17. The groove area is equal to 88.4 µm2 and referring to Equation (8.5) the degree
of wear fab is 0.37, which shows a combination of plowing and wedging micromechanisms.
The tangential velocity vt of the particle is calculated from the rotational velocity of the
rubber wheel (200 rpm) and its diameter (228.5 mm). Now, the total wear rate calculated
from Equation (8.14) is 8.07× 10−7 m3/s for homogeneous material.

w = 28.5 μm

d = 4.8 μm

2A = 88.4 μmg

2
A = 55.8 μms

Figure 8.17: Cross-section area of a groove caused by particle with D = 100 µm

2. Mixture of particles

For the example with particle mixture, we consider a sample consists of particles with a
diameter of DA = 200 µm and DB = 100 µm and the volume ratio of θA = 0.7 and θB = 0.3,
respectively. The numbers of contacting particles per unit area are calculated from Equation
(8.12) and are equal to NA = 1.32×107 and NB = 4.93× 107, which should be scaled in the
contacting area between the steel specimen and the rubber wheel. Similar to the previous
example, the single scratch simulation is performed using a particle with a diameter of 200
µm, and the cross-section of the created groove is depicted in Figure 8.18. The resulted
groove has an area of 60 µm2 and the degree of wear is fab = 0.12, which is related to the
pure plastic behavior. Finally, the total wear rate for this mixture of particles calculated from
Equation (8.14) is 4.68× 10−7 m3/s.

For a particle mixture with different diameters, the total wear rate decreases by increasing
the number of bigger (rounder) particles. It means that a mixture with a higher amount
of large grains will result in less wear rate. A related point to consider is that both single
scratch tests are performed under the same contact force, i.e., fN = 2 N, which results in
more plastic deformation for large particles, and more material removal for small particles.
Moreover, according to the literature, the material loss measured from an experimental test
is lower than our predicted values. This could have two reasons: First, the predicted values
represent the groove area during the simulations, while the experimental values are based
on the groove after removal of the indenter. As in the laboratory tests, the elastic part of
deformations will disappear after the load removal, this part of indentation depth is not
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Figure 8.18: Cross-section area of a groove caused by particle with D = 200 µm

Table 8.4: Results of the wear rate calculations for homogeneous and mixture materials
Material Wear rate [×10−7 m3/s]
Homogeneous with D=100 µm 8.07
90 % D=100 µm + 10 % D=200 µm 7.67
70 % D=100 µm + 30 % D=200 µm 6.83
50 % D=100 µm + 50 % D=200 µm 5.87
30 % D=100 µm + 70 % D=200 µm 4.68
10 % D=100 µm + 90 % D=200 µm 2.93
Homogeneous with D=200 µm 0.44

considered in the groove geometry. Second, the cross-section of the groove at different
scratch positions along the sliding length is not uniform, as it could also be observed in the
height profile shown in Figure 8.5. Besides, some volume of the scratched material forms a
bow in front of the indenter and is not considered in the estimation of the wear rate. For the
predicted model, we consider ideally a section in the middle of the scratch length.

The performed study highlights the influencing parameters for the abrasive behavior and
the wear rate. They divide into three categories: abrasive medium characteristic, machinery
component properties, and the contact algorithm.

Regarding abrasive medium, the abrasivity of rocks deduce from the mineralogical com-
position, especially the contribution of hard minerals such as quartz. Due to Archard (1953),
the important mechanical and geometrical properties of particles are size, shape, and hard-
ness. Based on the literature, larger particles generate a higher contact force, remove the
material surface faster, and create a harder texture. However, our observations in the single
scratch test oppose the size effect from the literature. We have found that smaller particles,
with sharper tips, cause more wear in the form of material removal compared to the plastic
deformation caused by larger particles. The reason is that, under a constant load, a smaller
particle penetrates deeper into the material and creates a larger groove area. Our results for
the scratch simulation are in perfect agreement with the experimental results of the single
asperity scratch test performed by Woldman et al. (2013).

In general, there is a linear relation between material removal rate and particle hardness.
Harder particles act as rigid indenters compared to the softer particles and increase the sur-
face roughness. However, for the occurrence of a significant abrasion, the ratio between the
hardness of the particles and the surface is important. According to Zum Gahr (1987), for
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hardness differences higher than around 1.2 the abrasive wear rate remains constant despite
a further increase in the hardness difference. In the tunneling applications, the most abrasive
particles are quartz, which according to Table 8.1 is almost five times harder than steel sur-
faces such as construction steel. Therefore, it will be considered that the possible variation
in the hardness of sand particles has no influence on the resulting abrasive rate.

The contact algorithm implemented for simulation of the interaction between the indenter
and the steel specimen could capture the wear mechanisms to a certain extent, especially for
plowing. Nevertheless, besides all mentioned influencing parameters, the actual wear type
could be quantified by the friction coefficient. The presence of larger friction forces between
contacting bodies will result in severe wear mechanisms, such as cutting. This effect is not
included in this study and could be a possible direction for future work.
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9 Conclusions and Outlook

9.1 Conclusions

In this study, a wear model is presented for estimating the total abrasive wear rate of the
particle mixture. It achieved using the two numerical methods, DEM and FEM. Performing
a parameter identification procedure, the mixture of particles modeled with the numerical
method DEM. Furthermore, having developed a coupled regularized damage-plasticity ma-
terial model, the single scratch test is modeled in FEM code Abaqus. That gives rise to the
relations for estimating the abrasive wear rate.

In the context of parameter identification, a simple relationship is established between the
elastic parameters and the yield strength of the material on the one hand and the microscopic
contact parameters for DEM simulations on the other hand. For this purpose, microscopic
energies are defined at the level of the contact points and then related to the total specimen
free energy. Because a system always tries to minimize energy, an analytical approach
based on the minimization of free energy is introduced. It leads to anisotropic linear-elastic
material law from which the elastic modulus and the Poisson’s ratio are determined directly
as a function of the contact stiffness. The developed relations are valid for both granular
materials and bonded materials. Besides, for bonded materials, there is a similar relationship
between the yield strengths according to Rankine and Tresca and the strength of the bonds
in the normal or tangential direction. These relations have been validated by performing a
3D compression test in PFC3D. Furthermore, the Mohr circles are drawn for two specific
materials based on a set of confined compression tests.

Two coupled damage-plasticity material models have been developed. The first material
model, labeled as Model I, is equipped with a regularization framework via gradient en-
hancement of the free energy function. The enhancement is performed using an efficient
evaluation of the Laplace operator combined with strategies from meshless methods. The
second material model is labeled as Model II. It uses a variational regularization approach
based on the relaxation of the (condensed) free energy in a time-incremental setting. This
procedure is called emulated representative volume element (ERVE). The implementation
algorithms and material tangent matrix have been presented for both models.

Several numerical examples show the behavior of the material models on the global level
as well as the distribution of internal parameters. The following three boundary value prob-
lems have been considered: the plate with a circular hole, the double-notch specimen, and
the sharp-notch specimen. Simulations performed for a localized as well as regularized
damage by varying the regularization parameter. Both material models provide perfectly
mesh-independent finite element results including force-displacement curves and distribu-
tions of damage and accumulative plastic strain. Model I represents a smooth transition
between the damaged and undamaged zones and experiences a very steep drop in the force-
displacement curve. Whereas, a sharp transition zone has been observed in Model II for both
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localized and regularized cases. Nevertheless, although the stiffness reduction for Model II
occurs slower, anyhow its force-displacement curve approach zero forces with increasing
displacement. The most remarkable advantage of Model II is its straightforward implemen-
tation at the material point level. Contrarily, since the formulation of Model I operates at the
element level and due to the complicated routines for the Laplace operator, it has a difficult
implementation procedure. That is the reason for choosing Model II for the simulation of
the single scratch test.

The developed material model is implemented as a user subroutine in Abaqus and used
for simulating the single scratch test. The contact algorithm has been established for the
interaction between the rigid indenter and the surface of a steel specimen. The characteris-
tic groove shape created by sliding the indenter on the surface is quantified by the degree
of wear parameter, which has a relation with the different abrasive wear mechanisms. The
influence of the abrasive particle size, as well as the indentation depth, are investigated. The
smaller particle with a sharper tip creates scars with almost no shoulder and is related to
the cutting micromechanism. While the larger particle with a rounder tip deforms the sur-
face almost plastically, pushing materials to the groove shoulder. Moreover, homogeneous
materials as well as particle mixtures are modeled with DEM to determine the number of
contacting particles of each type with the surface. Finally, the results of the two mentioned
steps are combined to derive a numerical wear model for estimating the total abrasive wear
rate of the particle mixture.

9.2 Outlook

Although we have achieved quite good results for the behavior and shape of the groove and
wear mechanisms, the contact simulations can improve further. First, a comparative study
should perform with the experimental data of the single scratch laboratory test to examine
the accuracy of our scratch simulations. One possible direction of future work is to execute a
parametric study with a wider range of indenter size and indentation depth and consequently
extend the relations obtained for estimating abrasive wear.

Furthermore, regarding the findings described in Chapter 8, the model has some restric-
tions for capturing severe wear mechanisms. To gain a better insight into abrasive wear
mechanisms, some extensions should apply in future works. The effects of friction coeffi-
cient in contact algorithms have to be investigated thoroughly to improve the model capa-
bility in the simulation of wedging and cutting micromechanisms.

Finally, another possible objective for further work is to make use of the developed wear
algorithm for optimizing the topology of the cutting tools in mechanized tunneling appli-
cations. In association with this perspective, a topology optimization approach has already
been developed in the Institute of Mechanics of Material at the Ruhr-Universität Bochum,
which is based on the modeling of materials using thermodynamic extremal principles, see
work of Jantos et al. (2019). The process developed in this way will then apply to specific
tool designs in practice.
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