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Abstract

This doctoral dissertation examines the thermodynamically consistent dislocation plas-
ticity available on the macro- and mesoscopic scale and its applications in several
benchmark problems.

In the first part of this thesis, the recently developed thermodynamic dislocation the-
ory of Langer et al. (2010) is revisited and extended. One feature that distinguishes
the latter theory from others is that it uses an effective disorder temperature (or its
dual, configurational entropy) to describe non-equilibrium behavior. Therefore, it is
assumed that the thermodynamic system of crystal containing dislocations consists
of two weakly interacting subsystems characterized by a kinetic-vibrational temper-
ature and an effective disorder (configurational) temperature. A system of coupled
differential equations resulting from the first and second laws of thermodynamics and
dislocation dynamics is derived for the analysis of strain hardening. An extension of
the theory involving excess dislocations, developed by Le (2018), is also studied. It en-
ables the investigation of nonuniform plastic deformations of crystals on the mesoscale
and the investigation of dislocation-related microstructures and associated mechanical
responses.

The second part of the thesis deals with applications of thermodynamic dislocation
theory to crystal plasticity. Isotropic hardening by redundant dislocations as well as
kinematic hardening by excess dislocations for the crystal undergoing anti-plane con-
straint shear are investigated. The asymptotically accurate energy density of screw
dislocations in the extremely small and large range of dislocation density is calculated
and extrapolated. In the twisted wire on the microscale, the size effect due to excess
dislocations is investigated and the numerical simulation of the torque-twist curves
is compared with the corresponding experiment. The equation for the equilibrium of
microforces allows the contributions of yield stress and back stress to torque to be cal-
culated. In the macroscale torsion problem, the hardening behaviour of single crystal
copper bars and the thermal softening of polycrystalline aluminium bars are investi-
gated. Numerical results include the evolution of dislocation density and stress state
in the specimen. The temperature rise within samples during the thermal softening
process is shown. Finally, the distribution of dislocations in the twisted bar is inves-
tigated by the continuum dislocation theory with the defect energy. The development
of the plastic distortion and dislocation density and the distribution of dislocations
are compared with those of other models.
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1. Motivation and State of Arts

1.1. Motivation

The processed metals have been used by human beings for more than 5000 years since
the bronze age. It was found that plastically deformed metals have a lot of beneficial
properties, such as higher strength, as tools and weapons to be used. Despite the long
history of the processing technology in metals, it remained at the empirical procedures
until the discover of dislocations in the early 20th century, which are the primary
carriers of plastic deformation in crystallographic materials. With the development of
the microscopy techniques, people nowadays can gain knowledge of dislocations from
different perspectives through different length scales from macroscopic to atomic scales
and accumulated relatively deep understanding. However, we still lack fundamental
theories of dislocation substructure development.

dependence of the stacking fault energy on the defor-
mation temperature for steels containing nitrogen has
been reported [17], from which the reason for the
difference in microstructures becomes apparent. That
is, the decrease in stacking faults with decreasing de-
formation temperature results in a greater density of
dislocation slip bands.

In order to investigate the deformation microstruc-
tures in detail, thin films were prepared from areas very
close to the fracture surfaces then examined by trans-

mission electron microscopy and diffraction analysis.
Typical microstructures of impact specimens are shown
in Figs. 2–5. Due to the high deformation rates and
bnotch effectQ, plastic deformation only occurred near
the fracture surface. The deformation microstructures
are composed mainly of stacking faults (see Fig. 2),
network dislocations (Figs. 3 and 4 ) and mechanical
twins (Fig. 6 ).

Stacking faults are easily observed in the impact
specimen because the lower deformation temperature

Fig. 2. TEM micrographs from 32Mn–7Cr–1Mo 0.3N steel impact tested at 77 K. (a) stacking faults starting from a grain boundary; (b) stacking

faults intersecting with twin boundaries; (c) stacking fault fringe.

Fig. 3. TEM micrographs from 32Mn–7Cr–1Mo 0.3N steel impact tested at 77 K. (a) network dislocations; (b) planar dislocation array; (c)

interaction between dislocation slip band and stacking fault.
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(a) (b) (c)

Figure 1.1.: TEM of cryogenic deformation microstructures of austenitic steels:(a) Dis-
location networks, (b) Planar dislocation array, (c) Interaction between
dislocation slip band and stacking fault (Fu et al., 2005). Images reprinted
by permission

Three dislocation-related microstructures, as examples, observed from the impact
test of austenitic steels by the transmission electron microscope (TEM) are shown in
Fig. 1.1 (Fu et al., 2005), which are dislocation networks, planar dislocation array, and
the interaction with other objects. Besides, there are countless rich microstructures,
such as dislocation pile-ups, dislocation entanglements, dislocation pattern, polygo-
nization, jogs, loops, and others. The complex structures and networks of dislocations
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give rise to abundant macroscopic phenomenologies and mechanical properties. Un-
derstanding the mechanism and evolution of dislocations is one of the keys to study
crystal plasticity.

1.2. State of Arts

There are various approaches to study the dislocation-mediated plasticity of crystalline
materials, such as molecular dynamics simulations on the atomistic scale, discrete dis-
location dynamics on the microscopic scale, several continuum theories on the meso-
scopic scale presented below, and conventional plasticity theory on the macroscopic
scale. Different approaches are specialized in investigating different aspects of materi-
als. Molecular dynamics is a useful tool for the simulation of dislocation interactions
as it depends on the details of the dislocation cores. However, since the smallest cell
distance in molecular dynamics simulation is smaller than the mean free dislocation
path, yield stress and strain hardening are not characterized by dislocation interac-
tions. In addition, the atomistic methods are computationally intensive so that they
are limited to smaller regions and shorter time periods. Discrete dislocation dynamics,
which models dislocations by line segments as discontinuities in an elastic continuum
and solves their dynamics, generation, and interactions, provides detailed information
on dislocation distributions. The computational costs required to track dislocation
segments remain a disadvantage of this approach. Conventional plasticity theory con-
siders the microstructure in relation to the average variables like the plastic strain or
back-stress tensor that are scale-invariant so that it facilitates numerical implementa-
tion and allows the treatment of complex boundary conditions. However, as it does
not take into account the intrinsic length scale like the length of the Burgers vector,
various phenomena that occurred with small sample sizes could not be predicted and
described.

As far as the continuum theories of plasticity on a mesoscopic scale are concerned, the
first attempts to construct the continuous approach were made independently by Nye
(1953); Bilby (1955); Kröner (1955). They established the relationship between plastic
deformation and dislocation microstructure by introducing a second-rank dislocation
density tensor called Nye’s tensor. It acts as a link between the microscopic discon-
tinuous dislocation distribution and a continuous deformation state. Berdichevsky
& Sedov (1967) proposed a dynamic theory of continuously distributed dislocations
based on Nye’s dislocation density tensors. However, due to the absence of physically
based constitutive equations, no further work was developed until various experiments
(torsion of wires, bending of beams Fleck et al. (1994); Ma & Clarke (1995); Stölken
& Evans (1998)) were performed on small samples, and a new phenomenon “size ef-
fect” was observed. It inspired many types of continuum theories. One of them is
the strain gradient plasticity, which has many branches, such as the phenomenological
strain gradient plasticity (Aifantis, 1999; Fleck & Hutchinson, 2001; Gurtin & Anand,
2005), the strain gradient plasticity based on physical dislocation mechanisms (Gao et
al., 1999; Nix & Gao, 1997), the physically based gradient plasticity theory (Al-Rub &
Voyiadjis, 2006) and the dislocation density based strain gradient model (Brinckmann
et al., 2006), and the extensions of higher-order strain gradient plasticity (Gurtin,
2002; Kuroda & Tvergaard, 2008; Svendsen & Bargmann, 2010).
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Another approach that takes into account the excess dislocations, the Continuum
Dislocation Theory (CDT), was taken up again by Berdichevsky (2006a), which con-
tinued the work initiated in (Berdichevsky & Sedov, 1967). This approach was guided
by the Low Energy Dislocation Structure (LEDS) principle first proposed by Hansen &
Kuhlmann-Wilsdorf (1986) and supported by various experimental evidences (Hughes
& Hansen, 1997; Laird et al., 1986). The LEDS hypothesis states that the true dislo-
cation structure in the final state of deformation minimizes the energy of the crystal
under all admissible dislocation configurations, which is the result of the Gibbs varia-
tion principle applied to crystals with dislocations (Berdichevsky, 2009). Continuum
dislocation theory became successful thanks to advances in statistical mechanics for
a large number of dislocations (Groma et al., 2003; Berdichevsky, 2006b, 2016, 2017;
Zaiser, 2015). Berdichevsky & Le (2007) applied continuum dislocation theory to
model an anti-plane constrained shear and found the analytical solution for the ac-
cumulation of dislocations in a single crystal. Afterwards, the theory was applied to
many other problems, e.g., plane-strain constrained shear of single crystals having sin-
gle or double slip systems (Le & Sembiring, 2008a,b), pile-ups in bicrystals (Kochmann
& Le, 2008), development of the deformation twinning (Kochmann & Le, 2009a), poly-
gonization (Le & Nguyen, 2012), bending of the beam (Le & Nguyen, 2013), nonlinear
continuum dislocation theory (Le & Günther, 2014), martensitic phase transition (Le
& Günther, 2015), formation of grains (Koster et al., 2015), indentation (Baitsch et al.,
2015), torsion of the bar (Kaluza & Le, 2011; Le & Piao, 2016) and three-dimensional
continuum dislocation theory. However, since redundant dislocations and effective dis-
order temperature are completely ignored, the above CDT cannot properly describe
the dissipative process, isotropic hardening and sensitivity of hardening curves to tem-
perature and strain rate.

Continuum dislocation dynamics (CDD), a direct generalization of the continuum
theory by Kröner (1958), was initiated by Hochrainer et al. (2007). This theory was
applied further by Sandfeld et al. (2011); Hochrainer et al. (2014); Wulfinghoff &
Böhlke (2015) for several problems, including dislocation patterning and the size effect.
Since CDD describes the kinematic evolution of dislocation system, it has a potential of
predicting the time evolution of the dislocation network to equilibrium. Apart from the
continuum theory, worth mentioning is the critical thickness theory (CTT) proposed
by Matthews & Blakeslee (1974) and developed further by Dunstan et al. (2004, 2009);
Dunstan (2012); Motz & Dunstan (2012). It has not only the ability to analyze the
phenomenon in microstructures but also the possibility to predict the material length
scale in the strain gradient plasticity that is regarded as a phenomenological fitting
parameter based on the physical quantities (Dunstan, 2016; Liu & Dunstan, 2017).

In ideal gas or some liquids, elimination of parameters of the time scale of atomic
motion gives rise to the macroscopic parameters, such as the pressure, temperature,
and density, while it is not the case for solids. So configurational entropy and effective
temperature should be taken into account, for they are key thermodynamic parameters
in the modeling of the behavior of random structures (Berdichevsky, 2008, 2019).
He is not the first to argue that those parameters should be involved. Mehta &
Edwards (1989) were perhaps the first to point out the idea by defining the effective
temperature as the derivative of the volume (analogous to the energy) with respect to
the configurational entropy in the granular materials, and the studies were further done
by Edwards (1990, 1994). Using this idea, successful applications and encouraging
results have been made in glassy materials and amorphous plasticity (Cugliandolo,
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1997; Ono et al., 2002; Haxton & Liu., 2007; Langer, 2008; Bouchbinder & Langer,
2009b; Sollich & Cates , 2012; Kamrin & Bouchbinder, 2014), and in recent year, it was
applied to crystal plasticity (Langer et al., 2010; Langer, 2015, 2017a,b,c; Chowdhury
et al., 2016; Le & Tran, 2018; Le et al., 2017, 2018). Le (2018, 2019) extended the
theory by Langer et al. (2010) into non-uniform deformation in crystals and applied
to a number of benchmark problems (Le & Piao, 2018; Le et al., 2018; Le & Tran,
2018; Le & Piao, 2019a,b).

1.3. Scope of the Thesis

Following this introduction, Chapter 2 is dedicated to the overview of the physical,
mathematical fundamentals of this dissertation and the introduction to the thermody-
namic dislocation theory. In the first part for physical background, it includes a short
explanation of plastic deformation, the nature of dislocations, and their properties as
well as their types. Mathematical fundamentals comprise the calculus of variation,
variational methods, and some useful techniques used in this dissertation. Moreover,
the thermodynamical principles are briefly reviewed. In the last part of this chapter,
we introduce the thermodynamic dislocation theory to readers in detail. The gov-
erning system of the coupled partial differential equations is derived by a variational
approach, and comprehensive explanation for each equation of motion is clarified. Four
applications of the thermodynamic dislocation theory are studied in the following four
chapters.

In Chapter 3, we outline a method to compute the energy for a pair of screw dis-
locations in the crystal bar with a rectangular cross-section. We then compute the
asymptotically exact energy density of a large number of screw dislocations. It is based
on the conjecture that the distribution of a moderately large number of excess screw
dislocations must be locally double-periodic. A modification of the formula for the
defect energy that extrapolated in the extremely small and large range of dislocation
density is treated. With the mentioned defect energy, the thermodynamic dislocation
theory is applied to solve anti-plane constrained shear deformation. We decoupled
an equation for the microforce equilibrium from the governing system of equations,
and its analytical solution is found. The evolution of the plastic slip and dislocation
density is illustrated, and the kinematic and isotropic hardening are studied. At last,
the influence of different boundaries to hardening, as well as the Bauschinger effect,
are investigated.

Chapter 4 starts with a brief introduction to the elastic theory of torsion and the
configuration of screw dislocations in a twisted crystal bar. Then, another type of
non-uniform plastic deformation, torsion of a wire, is investigated. The derivation
of the governing equations of thermodynamic dislocation theory for the twisted wire
in the cylindrical coordinate system is systematically discussed. The modified Read-
Shockley surface energy is involved in the free energy. The simulated torque-twist
curves are compared with the data from experiments where the samples of wire are on
microscopic scales. The results comprise the size effect of crystals, the distribution of
the plastic distortion, and the contribution of back stress to the torque.
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In Chapter 5, we still deal with the problem of torsion, but on the macroscopic scale.
On this scale, equation of motion for the microforce equilibrium is neglected, and a
simple extension of the thermodynamic dislocation theory is applied. The hardening
behavior of copper bars is well described by the theory, and in order to capture the
thermal softening during high-temperature torsion of aluminum bars, an additional
equation of motion for the ordinary temperature is introduced. It turns out that
this theory is capable to address the dependency of twist rate and temperature to
the hardening. The simulations are compared with the data from the corresponding
experiments, and a satisfactory result is obtained.

Chapter 6 treats a specific case that a rank-one defect energy, instead of the one
aforementioned, is used in the continuum dislocation theory to study the distribution of
dislocations. Non-dissipated process of the twisted bar is investigated, and the results
comprise the onset of plastic deformation, stress distribution in the cross-section, and
the torque-twist curve in terms of the twist. Moreover, the distribution of excess screw
dislocations in a nanowire is studied by the proposed continuum theory and compared
with the numerical simulations by Weinberger (2011), showing an excellent agreement.
Furthermore, the evolution of plastic distortion by the proposed theory is compared
with the results by Kaluza & Le (2011) and Liu et al. (2018), which exhibit several
common features.

Chapter 7 summarizes and discusses the results studied in the preceding chapters and
shows some outlooks.
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2. Fundamentals

2.1. Crystal Plasticity and Dislocations

2.1.1. Plastic deformation

Almost all crystalline solids have a certain elasticity. Elastic deformation is defined
as the deformation that disappears as soon as the external forces vanish. The defor-
mation is proportional to the applied force, and the corresponding stress is reversible,
insensitive to the strain rate. The elastic deformation only persists at strains of about
10−5 up to 10−3. When the strain exceeds this limit, it no longer follows the elastic
rule, and the permanent, irreversible plastic deformation occurs. When the applied
force is removed after plastic deformation, the solid material does not return to its
original shape. In contrast to elasticity, the plastic reaction of crystalline solids de-
pends on temperature and strain rate. Another significant difference between the
elastic and plastic deformations can be seen in Fig. 2.1 on an atomic scale. In the
elastic deformation by shear stress, all atoms participate in the process, whereas in
plastic deformation only a few atoms are involved.

Elastic deformation Plastic deformation
 (Slip)

Elastic deformation Plastic deformation
 (Slip)

(a) (b)

Figure 2.1.: (a) Elastic and (b) Plastic deformation on atomic scale

Plastic deformation in crystalline solids is mainly achieved by slips on individual crystal
planes under shear stress, and in addition to slips, it can also be achieved by forming
material twins. The slip planes are those of the densest atomic packing, and the
slip process also tends to take place in the preferred direction, which has proved
to be almost exclusively the densely packed direction, i.e., the slip direction. The
combination of a slip plane and a slip direction is called a slip system. The crystal
structures of the most common metals can be of the following types: face-centered
cubic (FCC), body-centered cubic (BCC) and hexagonal close-packed (HCP). Each
crystal structure has different slip systems, and even in the same crystal structures,
there can be different slip planes and a different number of slip systems with different
materials. Considering, for example, the FCC structure where the {111} family is
tightly packed, there are four sliding planes, and in each plane, there are three sliding



8 2. Fundamentals

Table 2.1.: Slip systems in face-centered cubic crystal with S.P denotes slip plane
and S.D indicates slip direction. In each slip system there are three slip
directions.

S.P-1 S.D S.P-2 S.D S.P-3 S.D S.P-4 S.D
(1 1 1) [0 1̄ 1] (1 1 1̄) [0 1 1] (1̄ 1 1) [0 1̄ 1] (1 1̄ 1) [0 1 1]
l [1̄ 0 1] l [1 1̄ 0] l [1 0 1] l [1̄ 0 1]

(1̄ 1̄ 1̄) [1 1̄ 0] (1̄ 1̄ 1) [1 0 1] (1 1̄ 1̄) [1 1 0] (1̄ 1 1̄) [1 1 0]

directions, such that twelve slip systems in total, as shown in table 2.1. Note that (1 1 1)
and (1̄ 1̄ 1̄) indicate the same slip plane. Analogously, the remaining 6 slip planes are
classified by 3 different ones. For the description of the crystal structure, we use Miller
indices, where the brackets [ ] and ( ) imply specific directions and planes, and { } refers
to planes of the same type. Fig. 2.2 schematically illustrates slip systems within the
FCC unit cell and correspondingly within the cylindrical sample bar in which bar axis
is oriented toward [1 1 0].

S.P-1

S.P-2

S.P-3

S.P-4

z

z

z

z

z

z

S.D-1

[110] [110]

[110] [110]

S.P-1

S.P-2

S.P-3

S.P-4

z

z

z

z

z

z

S.D-1

[110] [110]

[110] [110]

(a) (b)

Figure 2.2.: Four slip systems in unit cell of lattice and in the corresponding cylindrical
sample: S.P-1 (red lines); S.P-2 (blue lines); S.P-3 (orange lines); S.P-4
(green lines).

In order to investigate the condition under which slip occurs, the tensile or compressive
stress applied need to be resolved into the shear stress acting on the slip plane and in
the slip direction. This stress is called resolved shear stress, whose magnitude depends
not only on the applied stress but also on φ1 and φ2, where φ1 represents the angle
between the normal vector to the slip plane and the direction of the applied stress, and
φ2 represents the angle between the slip direction and the applied stress. Consequently,
the resolved shear stress τR can be written as follows,

τR = τ cosφ1 cosφ2. (2.1)

If the applied stress τ is perpendicular to the slip plane as S.P. 2 in Fig. 2.2(a), the
angle φ2 is 90◦, and the resolved shear stress is zero. Likewise, if the applied stress is
parallel to the slip planes, as S.P 3 and S.P 4 in Fig. 2.2(b), the angle φ1 is 90◦ so that
τR is zero. In principle, the maximum resolved shear stress can be reached up to half
the applied stress, if both angles φ1 and φ2 are 45◦. All other combinations of angles
result in a resolved shear stress less than that.
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In single crystals, when the resolved shear stress reaches a particular critical value,
the slip commences on the corresponding slip system, and this particular critical value
is called critical resolved shear stress τcr. If the critical resolved shear stress of the
material is known, by (2.1), the magnitude of the yield stress τY required to deform
plastically can be obtained,

τY = msτcr, where ms =
1

cosφ1 cosφ2

. (2.2)

The factor cosφ1 cosφ2 is known as Schmid factor. Polycrystals also possess yield stress
that must be overpassed to produce plastic deformation. A polycrystalline material
consists of many grains which shapes and sizes may vary one to another. Each grain is
a single crystal, but due to the fact that slip direction of each grain is not consistently
oriented, it makes the plastic deformation more complex. For polycrystals, a similar
equation is used to evaluate the yield stress

τY = mtτcr, (2.3)

where mt is known as the Taylor factor. As a reference, mt ≈ 3 for FCC and BCC
materials.

For a single crystal specimen with slip plane inclined to bar axis and the slip direction
as shown in Fig. 2.3(a) being the activated slip system in tension test, the slip results
in the formation of steps on the surface of the crystal sample as schematically indicated
in Fig. 2.3(a). This behavior is experimentally observed that the slips in a Zn single

Slip direction

Force
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each relative to the stress axis (f and l angles) also differs. However, one slip system is 
generally oriented most favorably—that is, has the largest resolved shear stress, tR(max):

 tR(max) = s(cos f  cos l)max (7.3)

In response to an applied tensile or compressive stress, slip in a single crystal commences on 
the most favorably oriented slip system when the resolved shear stress reaches some critical 
value, termed the critical resolved shear stress tcrss; it represents the minimum shear stress 
required to initiate slip and is a property of the material that determines when yielding 
 occurs. The single crystal plastically deforms or yields when tR(max) ! tcrss, and the magni-
tude of the applied stress required to initiate yielding (i.e., the yield strength sy) is

 sy =
tcrss

(cos f cos l)max
 (7.4)

The minimum stress necessary to introduce yielding occurs when a single crystal is ori-
ented such that f = l = 45 "; under these conditions,

 sy = 2tcrss (7.5)

 For a single-crystal specimen that is stressed in tension, deformation is as in 
Figure 7.8, where slip occurs along a number of equivalent and most favorably oriented 
planes and directions at various positions along the specimen length. This slip defor-
mation forms as small steps on the surface of the single crystal that are parallel to one 
another and loop around the circumference of the specimen as indicated in Figure 7.8. 
Each step results from the movement of a large number of dislocations along the same 
slip plane. On the surface of a polished single-crystal specimen, these steps appear as 
lines, which are called slip lines. A zinc single crystal that has been plastically deformed 
to the degree that these slip markings are discernible is shown in Figure 7.9.

critical resolved 
 shear stress

Yield strength of 
a single crystal— 
dependence on the 
critical resolved 
shear stress and the 
orientation of the 
most favorably 
oriented slip system

Slip plane

Direction
of force

Figure 7.8 
Macroscopic slip in a 
single crystal.

Figure 7.9 Slip in a zinc single crystal. 
(From C. F. Elam, The Distortion of Metal 
Crystals, Oxford University Press, London, 
1935.)
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(a) (b) (c)

Figure 2.3.: Slips in tension: (a) Schematics of slips in a single crystal under tension,
(b) Slips in a Zn single crystal (Callister & Rethwisch, 2012), (c) Slip line
pattern on the surface of cylindrical Zn single crystal (Diameter 6mm) in
tension (Wrobel & Piela, 2010). Images reprinted by permission

crystal under tension occur at many points along the equivalent slip planes and slip
directions through the specimen length (Fig. 2.3(b)). A noticeable detailed image of
the slip line pattern produced during the tension of Zn single crystal with φ1 = φ2 =
45◦ is shown in Fig. 2.3(c). As it does in tension, the slip mechanism takes place
in the same manner in compression test, even on the samples of much smaller size
scales. In the Fig. 2.4(a), the material samples choose the favorably oriented planes
and directions to slip, forming small steps on the surface. Fig. 2.4(b) and (c) are the
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Slip direction

Force

extent of these is typically less than 1% strain.
For samples 10 !m in diameter and larger, most
of the plastic deformation consists of short peri-
ods of stable flow with low work-hardening
rates, separated by increments of nearly elastic
loading. There is a gradual progression between
bulk and size-limited behavior as the sample size
decreases from 40 to 5 !m in diameter. These
attributes are distinct from the common behavior
of both bulk materials and whiskers. Whiskers of
pure metals typically display much higher yield
stresses than bulk materials. In one study, the
strength of Cu whiskers 16 !m in diameter and
smaller exhibited yield stresses in the range from
0.3 to 6 GPa (6 ), whereas the yield stress for
bulk Cu is on the order of 10 to 50 MPa (de-
pending on purity levels and heat treatment con-
ditions). In addition, after yielding, whiskers do
not maintain this high flow stress; rather, the
flow stress drops to the level observed in bulk Cu
or the whisker simply fractures. The reasons for
this are understood to be related to the fact that,
unlike most common metals, the whiskers start
out defect-free before loading.

One interpretation of these results is that
decreasing sample diameter affects the mecha-
nisms for defect multiplication and storage that
are associated with plastic flow, before the dis-
location-source–limited regime attributed to
whiskers is achieved. The increases in flow
stress and extremely low hardening rates fall
outside the regimes known for bulk tests but do
not enter the regime of high stresses known for
metal whiskers. The increase in the spread and
the rise of the values of the yield stress for
smaller samples suggest aspects of self-organi-
zation and criticality events at the elastic-plastic
transition. That is, the transition appears to be
stochastic, showing a progression toward a sin-
gle catastrophic event as the ability to multiply
dislocations or the number of dislocation sources
is truncated. This occurs either through increas-
ing levels of deformation or through shrinking
the total volume of the sample.

The same method was used to examine an
intermetallic alloy, Ni3Al-Ta, which is widely
known to exhibit fundamentally different flow
mechanisms. One physical manifestation of this
behavior is an anomalous increase in strength
with increasing temperature. There is consider-
able evidence that at temperatures in the anom-
alous flow regime, the mobility of screw-char-
acter dislocations is greatly influenced by the
lateral motion of large jogs and kinks along the
length of the dislocations (22–24 ), and it is
likely that dislocation kinetics are strongly in-
fluenced by the characteristic active line length
of dislocations known to be on the order of a
few micrometers (23 , 25 ). The characteristic
scales for multiplication are unknown. In the
present study, the sample sizes are equivalent to
the length scales for the physical processes
governing flow.

We observed a dramatic size effect on
strength for a Ni3Al-1% Ta alloy deforming
under nominally single-slip conditions (Fig.
2A). The flow stress increased from 250 MPa
for a 20-!m-diameter sample to 2 GPa for a
0.5-!m-diameter sample. These flow stresses
are much higher than those found for bulk
crystals, which themselves exhibit a flow
stress of only 81 MPa. Although these stress-
es exceed those for the bulk material, the
influence of sample size occurs at dimensions
that are large by comparison to whisker-type
tests. After testing, slip traces are very fine
and are homogeneously distributed along the
gage section (Fig. 2B), except for the 0.5- and
1-!m-diameter samples, because they have
completely sheared apart during large strain
bursts. Closer inspection of the loading
curves for all of the tests before the large
strain bursts show small events of plastic
activity that occur sporadically during the
loading of the sample, separated by nearly
elastic loading, again akin to self-organized
processes. These aspects of work-hardening
behavior are similar to what we have ob-
served in the smaller Ni samples but have not
been reported for bulk samples.

Examination of the flow stress in Ni3Al-Ta
as a function of sample diameter (Fig. 3) shows
two regimes of size-dependent strengthening
that scale with the inverse of the square root of
the sample diameter—coincidently similar to
grain-size hardening. However, although such
strength scaling in metals usually arises from
the presence of internal kinematic barriers to
flow, these samples have no known internal
barriers. One may speculate that this re-
markable behavior is associated with
changes in the self-exhaustion or annihila-
tion of dislocations, specifically those of
screw character. That said, it is surprising
that significant length-scale effects are ob-
served for such large sample sizes; note
that the transition to bulk behavior is pre-
dicted from the scaling relation in Fig. 3
to occur for samples greater than 42
!m in diameter.

Finally, we examined a Ni superalloy sin-
gle crystal that consisted of a Ni solid-
solution matrix having a high volume fraction
of Ni3Al-based precipitates that are " 250 nm
in diameter and are uniformly distributed.
Both solid-solution alloying and the precipi-
tates provide additional strengthening mech-
anisms and help to determine internal de-
formation length scales. A 10-!m-diameter
microcompression sample, which had about
30 precipitates spanning the width of the
sample, displayed a mechanical response
that matched the behavior of a bulk tension
test (Fig. 4). The agreement is not surpris-
ing, because the strong internal hardening
mechanisms that control plastic deforma-
tion operate at the dimensional scale of the
precipitates and are still effective at this
sample size, thus preempting influences
from limited sample dimensions.

We have demonstrated a method to char-
acterize aspects of length-scale effects on
deformation and strength by shrinking the
traditional uniaxial compression test to the
micrometer scale. From these tests it is clear
that when the external dimensions of the

Fig. 3. Dependence of the yield strength on
the inverse of the square root of the sample
diameter for Ni3Al-Ta. The linear fit to the
data predicts a transition from bulk to size-
limited behavior at " 42 !m. #ys, the stress
for breakaway flow.

Fig. 4. Mechanical behavior at room temperature of a Ni superalloy microsample having a
near-$ 001% orientation. (A) A stress-strain curve for a 10-!m-diameter microsample tested in
compression as compared to the behavior of a bulk single tested in tension. The microsample was
machined from an undeformed region of the grip region of the bulk sample after testing. (B) A SEM
image of the microsample after testing.
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out and attached to the Cu TEM grid via an Omniprobe
nanomanipulator. The !100 nm diameter nanopillar
was fabricated on the lamella, and TEM images of unde-
formed nanopillar were obtained. The nanopillar was
compressed under the same experimental conditions in
the SEMentor, and TEM images of deformed nanopillar
were observed.

Figure 1 shows several SEM images of representative
compression and tension samples before and after defor-
mation. The compressed nanopillars show pronounced
fine and coarse parallel slip lines at the surface
(Fig. 1b and c). The measured angles between most slip
planes and the h0 0 1i loading axis are !43!, so many
slip planes are likely to be in {1 1 0} planes. The images
of tensile samples after fracture, shown in Figure 1e and
f, indicate that the top portion sheared off from the bot-
tom along a slip plane, a behavior typical of ductile sin-
gle crystals. The tension samples appear to have fewer
crystallographic slip lines parallel to the fractured sur-
face compared with the compressed nanopillars. The an-
gle between the fractured surface and the h0 0 1i loading
axis is !50!, suggesting that in tension many crystallo-
graphic slips also occurred along {1 1 0} planes since
they are expected to rotate towards the loading axis in
the course of deformation. Generally, dislocation mo-
tion via cross-slip is prevalent in bcc metals since the
screw components are able to glide in different {1 1 0}
planes or combinations of {1 1 0} and {1 1 2} planes, of-
ten resulting in wavy and ill-defined slip lines [13]. The
deformed nanopillar images, however, reveal that the
slip traces at the surface are not, in fact, of wavy charac-
ter, but rather are elliptical, implying the preferential
confinement of the dislocation loops to a single slip
plane without cross-slipping. This observation is strik-
ingly different from the ubiquitous wavy slip traces in
the single-crystalline bulk Nb samples after compression
[14], suggesting that the mean free path of a dislocation
loop’s travel prior to cross-slip in Nb is larger than the
largest pillar diameter, 900 nm. This is likely due to
the non-negligible effects of the image force inflicted
by the free surface, which accelerates the dislocation
loops towards the free surface, favoring dislocation
annihilation over cross-slip.

Figure 2a shows several true stress–strain curves of
the Nb nanopillars with various diameters in compres-
sion, showing much higher attained flow stresses by
the nanopillars with smaller diameters. It is noteworthy
that the shapes of these curves resemble those of the fcc
nanopillars rather than of the Mo nanopillars [1–10,15]
in the sense that they do not exhibit continuous strain
hardening but consist of intermittent strain bursts (lin-
ear softening segments) with loading segments in be-
tween after the initial yield point. Another distinct
feature here is the much greater number of data points
obtained during the strain bursts compared, for exam-
ple, with Au nanopillars compressed at the same data

Figure 1. SEM images of (a) nanopillar before compression, (b and c) severely compressed (up to !30% true strain) nanopillars including
pronounced crystallographic slip lines, and (d) tension sample, (e) front and (f) side views of fractured sample after tension showing fewer
crystallographic slip lines.

Figure 2. Typical true stress–strain curves (a) in compression and (b)
in tension.

J.-Y. Kim et al. / Scripta Materialia 61 (2009) 300–303 301

500nm
(a) (b) (c)

Figure 2.4.: Slips in compression: (a) Schematics of slips in a single crystal under
compression, (b) Compressed cylindrical microsample of Ni with 10-µm
diameter (Uchic et al., 2004), (c) Severely compressed nanopillar of the
single-crystal Nb (Kim et al., 2009). All images reprinted by permission

experimental evidences of slips in compression test performed with different material
samples of the diameter 10µm and 500nm showing parallel slip lines at the surface.
Note that when the sample size decreases to the microscale or lower, it exhibits an
important phenomenon, named size effect. The experimental results in two figures
illustrate the slip mechanism in various crystal structures (FCC in nickel, BCC in
niobium and HCP in zinc) and a wide range from macroscale to nanoscale. The slip
process of the crystal plastic deformation is produced by the motion of dislocations,
where the forming step on the sample surface is a result of the release of dislocations
along the same slip plane from the body. The dislocation plays a crucial role in the
plasticity of a crystalline material, and it is the next topic to discuss.

2.1.2. Concept of dislocations

The discrepancy between the theory and experiments: The theoretical esti-
mation for the stress to shear the crystal one atomic distance through the slip plane
is much high in comparison with the shear stress in experiment. This discrepancy
between the theoretical and experimental results inspired scientists an idea, at the
beginning of the 20th century, that crystals contain defects that reduce the strength
of the crystal. In 1934, this problem was explained by Taylor, Orowan, and Polanyi
simultaneously using the concept of dislocations.

Observation of dislocations: Early in the 1950s, the presence of dislocations are
revealed by growth spirals and etch pit techniques, but limited only at the surface.
Observation of dislocation may be first done with the aid of transmission electron mi-
croscopy (TEM) in 1956, and the dislocation structure detected is consistent with the
physical concept that Taylor proposed. In the last half-century, there are many exper-
imental direct observations of dislocations. One example of dislocation observation is
shown in Fig. 2.5. The rectangle and cube in Fig. 2.5(a) indicate two views of a metal
foil, where a slip plane (orange plane) is inclined inside the body. The green lines
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in the slip plane indicate dislocations. Since the thickness of the foil is small, when
one sees from the top, dislocations appear as line segments. Fig. 2.5(b) is dark-field
TEM image of the initial low-angle tilt grain boundary in strontium titanate bicrystal,
and the periodic array of edge dislocations forming a grain boundary are shown. The
thickness of the foil is estimated to be about 300 nm, and the interval of the edge
dislocations is estimated to be about 19 nm.

Slip plane or 
Grain boundary

Edge dislocation

Top view

Perspective

grain boundary dislocation (bGB), as schematically shown in Fig. 6D, the
Burgers vector of the superjog segments (bJog) should be

bJog ¼ bLattice þ bGB ¼ ½0!11$ þ ½100$ ¼ ½1!11$

This Burgers vector satisfies g · bJog = 0 under the condition of g ¼
!2 !11. Therefore, the superjog segments must have a Burgers vector of
[1!11]. It is noted that this Burgers vector has a mixed dislocation
character, whereas the lattice dislocations and the grain boundary dis-
locations have a pure screw and a pure edge character, respectively.
The dislocation arrangement schematically illustrated in Fig. 6D can
be considered as that of the intermediate stage of the intersecting pro-
cesses (33). Thus, the lattice screw dislocations will partially become
the mixed dislocations just on the grain boundary plane as a result of
the dislocation reaction. On the basis of the above discussion, the
schematic movie of the dynamic interaction process is given in the
Supplementary Materials (movie S3).

Fig. 3. Impediment mechanism of dislocation at the S5 grain boundary. (A) Sche-
matic illustrations of the formation of a residual dislocation on a grain boundary
when a dislocation is about to cross the boundary. If a lattice dislocation in the right
crystal with the Burgers vector of bRight crosses the grain boundary, the Burgers vector
must be rotated into bLeft. This results in the formation of a residual grain boundary
dislocation with the Burgers vector of bRGB, which corresponds to the difference be-
tween that of the two lattice dislocations. (B) Dark-field TEM image after extracting the
indenter tip. The first and second dislocations and the lower part of the third dislo-
cation remain trapped on the grain boundary plane despite the intervals of other
dislocations being relaxed because of the repulsive forces between them.

Fig. 4. TEM nanoindentation experiment with the low-angle tilt grain bound-
ary. (A) Dark-field TEM image of the initial low-angle tilt grain boundary. The spec-
imen was tilted from the edge-on condition to observe the grain boundary plane.
The grain boundary consists of the periodic array of edge dislocations. (B) Schematic
illustration of the geometric arrangement of the specimen, the grain boundary, the
grain boundary edge dislocations, the indenter tip, and the introduced lattice screw
dislocation. (C) Dark-field TEM image just before the nanoindentation experiment.
The indenter tip was inserted at the direction of 25° off from the [001] direction
for ease of dislocation propagation. The thickness of the specimen is about 150 nm.
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(a) (b)

Figure 2.5.: Dislocation observation: (a) Two schematic illustrations of perspective
and top view showing the arrangement of grain boundary and the edge
dislocations, (b) Dark-field TEM image of the initial low-angle tilt grain
boundary consisting of an array of edge dislocations (Kondo et al., 2016).
Image reprinted by permission

Lattice defects: In crystals, it is hard to have the atoms perfectly arranged, which
leads to the imperfection of crystals that comprises various kind of defects. Unmatched
with its name, the defects give many advantages in crystal. Proper treatments enhance
desired properties of crystalline solids and enable the materials to have numerous fea-
tures in engineering usages. According to the dimensions, the defects can be grouped
into the point, line, planar, and volume defects. Point defects may include vacancies,
self-interstitial atoms, substitutional impurity atom, and interstitial impurity atoms.
The line defects are dislocations which are one of the main ingredients in the study of
crystal plasticity. One well known planar defect is grain boundary, and the examples
of volume defects may include precipitates and voids. The dislocations interact with
other sorts of defects, for example, vacancies help the edge dislocations in the climb
mechanism, and the grain boundary impedes the movement of dislocations leading to
dislocation pile-ups.

Edge and screw dislocations: There are two primary types of dislocations, namely
edge dislocation and screw dislocation, characterized by the direction of Burgers vec-
tor to the dislocation line. Two types of dislocations are shown in Fig. 2.6(a) and
Fig. 2.7(a). Basic ideas on edge dislocation can be obtained from Fig. 2.6(a). Sup-
pose that the gray-colored plane is slip plane dividing the regularly arranged crystal
into upper and lower parts. The edge dislocation is indicated by inserting an extra
half-plane given by cyan color into the upper part, and the green line, the intersection
of two planes, is dislocation line. Normally, the symbol ⊥ represents the edge dislo-
cation, where the horizontal line denotes the slip plane and the vertical line indicates
the extra half-plane. Neither the extra plane nor the intersected line is the dislocation,
but it is a group of atoms around the dislocation line, where those atoms are extruded
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from the original position leading the lattice distorted. Therefore, the motion of the
dislocation involves the collective motion of many atoms associated. As mentioned,
to characterize the dislocation more precisely, a Burgers vector b has to be used. The
Burgers vector is defined by introducing a Burgers circuit in a crystal containing the
dislocation inside the loop, an atom-to-atom path. If one applies a sequence that closes
the circuit in a perfect crystal to a dislocation embedded crystal, then the circuit in
the latter crystal does not close. Provide that the sequence of the step-by-step circuit
in a perfect crystal is 4×3 shown in Fig. 2.6(b) by red line, applying the same sequence
in the crystal containing edge dislocation, the starting point does not coincide with
the endpoint (Fig. 2.6(a)). A vector required to complete the circuit is the Burgers
vector, and this vector is perpendicular to the edge dislocation line. As a result, the
slip planes in which the dislocation line and Burgers vector lie is well and uniquely
defined. Note that the closure failures of Burgers circuit are not driven by other crystal
defects, such as vacancies and interstitials.
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Figure 2.6.: (a) Edge dislocation, (b) Closed circuit drawn in perfect crystal.

Again suppose there is a slip plane divides the crystal upper and lower as shown
in Fig. 2.7. Instead of inserting an extra half-plane, we pull the point A front and
push the point B back by one atomic spacing, then the following screw dislocation
structure is obtained (Fig. 2.7(a)). The green line in the figure is screw dislocation
line. By applying the same method of Burgers circuit and connecting the end and
starting point, we find a Burgers vector parallel to the screw dislocation line. For
that reason, the slip plane is not uniquely defined. Hence, a screw dislocation may
move any direction perpendicular to its line and can cross on any plane out of the
original slip plane, while the cross slip of edge dislocation is rather constrained by
the slip plane. Cross slip of edge dislocation is generally achieved with the aid of the
diffusion of vacancies at elevated temperature by climb mechanism. It is necessary
to note that, instead of pure edge and pure screw dislocations, dislocations appear
in the crystal, generally, in the form of mixed type. The mixed dislocation can be
decomposed into the edge and screw components by resolving its Burgers vector into
two mutually orthogonal components.

So far, we can summarize essential rules based on geometry of dislocations. Edge dis-
location lies perpendicular to its Burgers vector but moves parallel to it. On the other
hand, screw dislocation lies parallel to the Burgers vector but moves perpendicular to
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the vector.
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Figure 2.7.: (a) Screw Dislocation, (b) Crystal with screw dislocation located at the
origin with the dislocation line oriented towards x3-axis.

Dislocation motion and plastic deformation: With the concept of dislocations,
the plastic deformation can be explained by the motion of the dislocation under applied
shear stress, as an intermediate process from non-slipped to slipped states of the crystal
shown in Fig. 2.8. An edge dislocation enters the crystal from the left surface, and
moves along the slip direction, then leaves the body and reaches the final state being
plastically deformed. In each step of the dislocation motion, only a few atoms are
required to rearrange in order to move the extra half-plane (array of hollow balls)
toward the right. Consequently, the corresponding stress is much less than that of
breaking all bonds of atoms in slip plane at one time, and the crystal performs plastic
deformation in much more efficient way as many behaviors that nature does.

Figure 2.8.: Dislocation Motion leading to plastic slip.

2.1.3. Stress and strain of dislocation

Strain and stress around a dislocation can be sought by finding the displacement field
caused by dislocation and inserting it into the kinematics and Hooke’s law (Hull, 2011).
Here, we introduce an alternative way using the stress function (Le, 2010).

Screw dislocation: Consider a screw dislocation lying on the (x1, x3) plane with
the dislocation line parallel to x3-axis as shown in Fig. 2.7(b). The plastic distortion
tensor field, −β (see Sec. 2.3.2), has only one non-zero component given by

−β32 = bH(x1)δ(x2),
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where δ(x) is Dirac delta function, defined as

δ(x) =

{
∞, x = 0,

0, x 6= 0,

and it is constrained to satisfy∫ ∞
−∞

δ(x)dx = 1.

As a consequence, δ(x) can be regarded as H ′(x), which represents the derivative of
H(x) with respect to x with H(x) being the Heaviside step function, where H(x) = 0
for x < 0 and H(x) = 1 otherwise. Therefore,

−β32,1 = bδ(x1)δ(x2) = bδ(x), (2.4)

where x denotes the position of screw dislocation on (x1, x2) plane, and the comma in
index denotes the partial derivative with respect to the corresponding coordinate. Sup-
pose that A is an area surrounded by a closed circuit containing one screw dislocation,
and da is the area element, according to Green‘s formula, we obtain

−
∫
A
β32,1da = −

∫
∂A
β32dx2 = b.

Since the stress tensor for screw dislocation contains no tensile or compressive com-
ponents but only two independent non-zero components, σ31 and σ32, the equilibrium
equation, σ · ∇ = 0, implies the existence of a stress function, Φ, satisfying

σ31 = Φ,2, σ32 = −Φ,1. (2.5)

Recalling the kinematics from Sec. 2.3.2 and with Hooke’s law, in isotropic material
we have

σ31 = 2µεe31 = µu3,1, σ32 = 2µεe32 = µ(u3,2 − β32), (2.6)

where µ is shear modulus, and εe31 and εe32 are non-zero components in the elastic
strain. Inserting (2.4) and (2.5) into (2.6), we obtain a Poisson’s equation

1

µ
∇2Φ = −bδ(x),

where ∇2 is the Laplace operator. In the full plane, this equation has been easily
solved in terms of the distance to the position of screw dislocation, r =

√
x2

1 + x2
2, and

the solution is

Φ = −µb
2π

ln r.

Note that, the stress function of the screw dislocation in a particular plane, such as
the half-plane or rectangular plane, can be found using Green’s function of Laplace
operator. Differentiating the stress function according to (2.5), we obtain the non-zero
stresses

σ31 = −µb
2π

x2

r2
, σ32 =

µb

2π

x1

r2
,
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and the corresponding elastic strains are

εe31 = − b

4π

x2

r2
, εe32 =

b

4π

x1

r2
.

The variable r in the denominator of the stresses and strains leads the two components
to infinity as r → 0. Since no material can undergo infinite stress, the elasticity theory
is no longer valid near the origin. In other words, when r is smaller than a specific
value r0, it comes to a region within which the linear-elastic solution breaks down.
This region is called the core of the dislocation, and r0 is the radius of dislocation
core. In most cases, it is thought that r0 6 1nm.

Edge dislocation: Since this thesis deals mainly with screw dislocations for crystal
plasticity and the microstructures, we omit the derivation of stresses and strains of an
edge dislocation and show only the results. The details and further information can
be found in Le (2010). The stress function of an edge dislocation is found to be the
solution of following equation

1− νp
2µ
∇2∇2Φ = −bδ,2(x)

with νp being Poisson’s ratio. Its particular solution is

Φ =
µb

2π(1− νp)
x2 ln r,

and the non-zero components of the stress tensor are

σ11 = − µb

2π(1− νp)
x2(3x2

1 + x2
2)

(x2
1 + x2

2)2
, σ22 = − µb

2π(1− νp)
x2(x2

1 − x2
2)

(x2
1 + x2

2)2
,

σ12 = − µb

2π(1− νp)
x1(x2

1 − x2
2)

(x2
1 + x2

2)2
, σ33 = − µbνp

π(1− νp)
x2

x2
1 + x2

2

.

The corresponding elastic strains are then

εe11 = − b

4π(1− νp)
x2[(3− 2νp)x

2
1 + (1− 2νp)x

2
2]

(x2
1 + x2

2)2
,

εe22 =
b

4π(1− νp)
x2[(1 + 2νp)x

2
1 − (1− 2νp)x

2
2]

(x2
1 + x2

2)2
,

εe12 =
b

4π(1− νp)
x1(x2

1 − x2
2)

(x2
1 + x2

2)2
.

We see that the crystal containing an edge dislocation is in a state of plane strain.

2.1.4. Excess and redundant dislocations and the corresponding hardening

Besides the type in accordance to the Burgers vector relative to dislocation’s line (edge
and screw dislocation), another one can be made through the geometric consequence in
which dislocations are decomposed into excess and redundant dislocation. In literature,
they have another name, so-called the Geometrically Necessary Dislocation (GND) and
the Statistically Stored Dislocation (SSD), respectively.
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Excess dislocations exist in order to fulfill the compatibility condition of the strain ten-
sor, simultaneously to accommodate the curvature of crystal lattices. In other words,
this lattice curvature emerged from gradients of plastic deformation requires excess
dislocations to be stored to maintain the lattice continued. When a crystal sample
subjects to non-uniform deformation or a gradient of stress, for instance, torsion of
bar, bending of thin beam and indentation in small object, a group of dislocations
possessing one sign will be separated from those of opposite sign and accumulate in
different regions. The density of accumulated signed dislocations is called excess dis-
location density. It is first introduced by Nye (1953) and further studied by Bilby
(1960), Kröner (1962) and Ashby (1970). In recent years, the study on excess disloca-
tion is widely investigated since the development of high-end engineering applications
requires knowledge about the properties of materials in micro or sub-micron sizes. On
such small scales, the excess dislocations play an essential role in microstructure, plas-
tic flow, and hardening of crystals, for they inherently contain an intrinsic material
length-scale, while classical continuum mechanics doesn’t, such that it fails to predict
size effect behavior. One intrinsic length-scale in crystal plasticity is the length of
Burgers vector because it characterizes the excess dislocation, and it is highly related
to the density of excess dislocations which is a state variable in the free energy of the
crystal. The other intrinsic length-scale could be grain size in polycrystals. However,
it is beyond the scope of this study, and we will use either single crystal or the poly-
crystals with same grain size in order to make the influence of Hall-Petch effect as
little as possible.

The remainder out of total dislocation density is that of redundant dislocation. Each
redundant dislocation may also possess a sign. However, each dislocation is paired
with the other of the opposite sign with the same slip system. Thus, two dislocations
form a dislocation dipole. In continuum level, the sign of redundant dislocations is
canceled out and is not taken into consideration. As a result, the Burgers vector of
redundant dislocations vanishes. Redundant dislocations are comprised of dislocation
dipoles and(or) planar dislocation loops, which are examples of dislocation structure
of zero Burgers vector(Arsenlis, 1999). With high enough resolution, the redundant
dislocation probably can be observed. However, it is not possible to identify it as
being redundant or excess dislocation. Since redundant dislocations as dipoles do
not accommodate plastic strain gradient, it does not lead to lattice curvature. Under
uniform deformation, such as uniaxial tension, redundant dislocations are evolved from
mutual trapping processes. It is believed that as long as a crystal is strained plastically,
redundant dislocations become stored. The plastic deformation in metals enhances the
dislocation formation and dislocation storage. Dislocation storage leads to material
hardening because it impedes the motion of other dislocations, and more strength is
needed to overcome the barrier. This process is regarded as short-range interaction
and is the primary mechanism of hardening by redundant dislocations−the evolution
of redundant dislocation results in the isotropic hardening.

On the other hand, excess dislocations cause additional storage of defects by act-
ing as individual obstacles to the slip of redundant dislocations, and it increases the
deformation resistance so that the material is hardened(Gao et al., 1999). Besides, ex-
cess dislocations contribute to hardening by producing back stress that influences the
equilibrium of microforces for the crystallographic slip. It is possible because excess
dislocations possess a non-zero Burgers vector within the material body, and these
dislocations induce long-range stresses resulting in back stress. This will be shown



2.1. Crystal Plasticity and Dislocations 17

M M

M

M

(a) (d)

M M

M M

(b) (e)

M

M

(c) (f)

Figure 2.9.: Schematic illustration of the mechanism of the bending and indentation:
(a) A crystal containing dislocations, (b) Dissolved dislocations from edge
dislocation dipoles under applied moment, (c) Bent beam by having addi-
tional half planes, (d) A crystal before indentation, (e) One atomic plastic
deformation formed by storing a pair of edge dislocations, (f) The crystal
indented further.

in the subsequent chapters that excess dislocations are responsible for the kinematic
hardening.

The concept that how the beam under bending requires excess dislocations for geomet-
rical needs to accommodate the lattice curvature has been specified by the mechanism
of the expansion of dislocation loops (Arsenlis (1999)). Here we introduce the dis-
solution of dipoles, which may also explain the bending mechanism as depicted in
Fig. 2.9. Assume that a crystal contains edge dislocation dipoles, Fig. 2.9(a). When
a moment is applied to the beam and exceeds the particular critical value, the dislo-
cation dipoles are decomposed into positive and negative edge dislocations, and they
start to slip along with its slip system. Red dashed lines in Fig. 2.9(b) are the slip
planes perpendicular to the paper plane. Under the applied shear, the negative edge
dislocations move toward the neutral line of beam, while the positives move to bottom
and top of the beam and leave the free surface. As a result, negative dislocations
remain in the crystal body. Since edge dislocations lead the crystal to have additional
half-planes as shown in Fig. 2.9(c) (shaped plane), they accommodate the curvature
of lattices. Gao & Huang (2003) has illustrated another example of geometrical needs
of excess dislocation in the indentation process. Fig. 2.9(d) shows the original shape
of the material surface under the indenter. Suppose the indenter produces one atomic
plastic deformation to the material, it has to store an excess dislocation to permit the
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plastic deformation as shown in Fig. 2.9(e) and more excess dislocations are generated
when the indenter deforms plastically further, Fig. 2.9(f). In this case, the positive
dislocations dissolved from dislocation dipoles congregate around the indenter to ac-
commodate the plastic deformation, while the negatives move apart from it.
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Figure 2.10.: Three types of work hardening: (a) Isotropic hardening, (b) Kinematic
hardening, (c) The combination of isotropic and kinematic hardening

Let us here briefly overview hardening behaviors caused by excess dislocations and by
redundant dislocations, namely, kinematic hardening and isotropic hardening, respec-
tively. Suppose a material has an elliptical initial yield surface, the isotropic hardening
is understood that the yield surface inflates uniformly remaining its shape unchanged,
while the center of geometry does not move as illustrated in the left of Fig. 2.10(a),
where σ1 and σ2 are the principal stresses. The right figure is the corresponding re-
sponse in the stress-strain curve including loading process OA′ and reversal process
A′B′. Its main characteristic is that the magnitude at yielding point A′ and B′ are
equal. In pure kinematic hardening, the yield surface is shifted in the absence of
expansion and rotation. Fig. 2.10(b) exemplifies a linear kinematic hardening of a
material. In the presenting case, since AB = A′B′, the sum of elastic range in tension
and compression is not changed by plastic strain so that |σA′|+|σB′ | = 2σY . Kinematic
hardening gives rise to the Bauschinger effect, a phenomenon that a specimen in the
reloading process begins to flow at reduced stress, when the specimen is plastically
deformed in one direction and then immediately reloaded in the opposite direction.

2.1.5. Size effect

Metals on small scales exhibit inconsistent physical behaviors as they do on the
macroscales. The strengthening of crystalline materials is one of the issues, and it
is called the size effect that characterizes the phenomenon that ”the smaller, the
stronger.”

One can distinguish three main types of size effects. The first type, the intrinsic
size effect, is in general caused by restricting dislocation motion, such as boundary
strengthening and particle hardening. One typical example is the Hall-Peach effect
(the effect of grain size) in metals. Hall (1951) and Petch (1953) concluded that the
flow stress increases inversely with the square root of the grain size d that can be ex-
pressed as σY ∝ d−1/2. It is widely accepted that the grain boundaries act as obstacles
hindering the dislocation movement and the pile-ups of dislocations induced by grain
boundaries require the stronger stress to yield the materials. However, this effect is not
valid for all material sizes. Note that an inverse Hall-Petch effect appears below a spe-
cific grain size with the scale of the nanometer (Chokshi et al., 1989). Besides the grain
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boundaries, the reinforcement of particles can also restrict the dislocation movement
to lead the intrinsic size effect. Another type of size effect is generally attributed to
the excess dislocations due to non-uniform deformation. Fleck et al. (1994) performed
experiments on the polycrystalline copper wires with several different wire diameters
ranging from 12 to 170µm, which exhibited strong size dependence of strength in tor-
sion, while a minor influence of wire diameter on tensile behavior. The experiment
in torsion is recently further confirmed with different circumstances (Liu et al., 2012;
Gan et al., 2014). Note that since the conventional theories of plasticity are lack of
the intrinsic material length scale, such as the Burgers vector, they can not capture
this phenomenon. On the contrary, there is a type of size effect in the absence of
gradients of the plastic strain, which is shown by the experiments performed on gold
at sub-micron scale (Uchic et al., 2004). This size effect is ascribed to the mechanism
of dislocation starvation (Greer et al., 2005), causing the nucleation of dislocations
rather than the motion of the existing ones to dominate the plasticity.

The main interest of this study is the investigation of the size effect attributed to the
excess dislocation. Aside from torsion, there are some other examples of non-uniform
plastic deformation in material science and engineering corresponding to this phenom-
ena, such as the bent beams (Stölken & Evans, 1998; Wang et al., 2003; Motz et al.,
2005; Demir et al., 2010; Hayashi et al., 2011), and indentation test (Ma & Clarke, 1995;
Nix & Gao, 1997; Kysar et al., 2010). Those advanced experiments spurred the interest
in the concept of excess dislocation densities (Nye, 1953; Bilby, 1955; Kröner, 1955)
and further inspired to the development of various theories, for example strain gradient
plasticity theory (Fleck et al., 1994; Fleck & Hutchinson, 2001; Gurtin & Anand, 2005;
Huang et al., 2004; Al-Rub & Voyiadjis, 2004; Kuroda & Tvergaard, 2008; Bardella &
Panteghini, 2015). Mention that, earlier than the works aforementioned, Berdichevsky
& Sedov (1967) proposed a dynamic theory of continuously distributed dislocations
introducing the higher-order displacement gradients (plastic strain gradients) into the
internal energy and dissipation potential. However, as criticized by Aifantis (2009b),
due to its formal complexity and weak transparency, no further work was directly
motivated. Continuum dislocation theory (CDT) accounting for excess dislocations,
proposed for instance in (Le & Stumpf, 1996; Berdichevsky, 2006a; Kaluza & Le, 2011;
Le & Nguyen, 2013; Le & Günther, 2014; Baitsch et al., 2015; Le & Piao, 2016; Liu &
Dunstan, 2017; Liu et al., 2018), is more predictive as kinematic hardening, and size
effect are captured by the first principle calculation of energy of dislocated crystals.
Also worth mentioning are the continuum dislocation dynamics (CDD) and the critical
thickness theory (CTT) (Dunstan et al., 2004, 2009; Dunstan, 2012; Motz & Dunstan,
2012) that have the potential to describe the size effect.
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2.2. Variational Methods of Continuum Mechanics

2.2.1. Calculus of variation

Let L(x, u, u,i) be a continuously differentiable function with respect to its arguments.
Suppose x = {x1, x2, x3} is a point in 3-dimensional space, and u(x) is a function of
x. Our interest is to find the functions for which the functional

I(u) =

∫
V
L(xi, u, u,i)dV , with u,i =

∂u

∂xi
, (2.7)

has an extremum on the piecewise smooth region V in 3-dimensional space, where
function L is called Lagrangian. Note that the Lagrangian can contain n unknown
functions for the set {u1(x), ..., un(x)}. On ∂Vu, one part of the boundary ∂V of region
V , the function u(x) may subject to a constraint,

u(x) = ū(x) at ∂Vu (2.8)

where the bar notation indicates that function u(x) is prescribed with a given boundary
value. A necessary condition for the differentiable functional I(u) to have an extremum
is that its variation vanishes for all admissible variations δu, namely

δI =

∫
V

(
∂L

∂u
δu+

∂L

∂u,i
(δu,i)

)
dV = 0.

Since function δ(u,i) is dependent on δu, the second term in the integrand can be
expanded by integration by parts, and the variation of the functional (2.7) becomes

δI =

∫
V

[(
∂L

∂u
− ∂

∂xi

∂L

∂u,i

)
δu+

(
∂L

∂u,i
δu

)
,i

]
dx

=

∫
V

(
∂L

∂u
− ∂

∂xi

∂L

∂u,i

)
δudx+

∫
∂V

∂L

∂u,i
ni δuda,

where ni denotes the unit normal vector to the area element da. The value δu changes
independently inside V and on the boundary ∂V , which implies that

∂L

∂u
− ∂

∂xi

∂L

∂u,i
= 0, in V . (2.9)

Eq.(2.9) is known as Euler equation of the functional (2.7). Since (2.8) implies that

δu = 0, on ∂Vu, (2.10)

on the boundary out of ∂Vu, the following relation is satisfied

∂L

∂u,i
ni = 0.

Laws of variations: The following relations are useful when dealing with the vari-
ational operator δ. Suppose that L1 and L2 are functions of dependent variable u(x)
with x being the independent variable,

δ(L1 + L2) = δL1 + δL2,

δ(L1L2) = δL1L2 + L1δL2,

δ(L1)n = n(L1)n−1δL1.
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If L is a function of several dependent variables as L(u, v, w), then

δL = δuL+ δvL+ δwL,

where δu, δv and δw denote the partial variation with respect to u, v, w, respectively.
The relations for variation of differential and integral of the variable are

δ(∇u) = ∇(δu), (2.11)

δ

(∫
V
u dV

)
=

∫
V
δudV .

2.2.2. Variational principles in the small displacement elasticity

Governing equations: The governing equations in the small displacement elasticity
theory may consist of the strain-displacement relations, equilibrium equations and
constitutive equations that are summarized as follows.
Strain-displacement equations: The attention is focused on the geometry of motion and
deformation without consideration of forces. The displacement vector u is the change
of the particle position from the reference configuration to the current configuration.
The strain tensor is connected to displacement vector by taking the symmetric part
of deformation gradient,

ε =
1

2
(∇u + u∇).

Equations of equilibrium: The stress acting on the material body is denoted by σ,
while the external force fB indicates the body force. Besides, there is one more sort of
external force acting on the boundary of the body, namely surface force f . The equation
of equilibrium shown below is the consequence of the principle of conservation of linear
momentum for the static problem,

divσ + fB = 0.

Constitutive equation: The study of mechanical behavior is described by the consti-
tutive equation, which relates the strain to the stress. They do not follow directly
from the physical law but are rather a result of experimental observation. In elasticity
theory of solids, the constitutive law is in the form of Hooke‘s law. The 81 (= 34)
components in the fourth-order tensor C can be reduced to 2 independent coefficients,
Lamé parameters µ and λ, by virtue of the assumption of hyperelastic materials,
isotropic material behavior, and the symmetry of stress and strain tensor,

σ = C : ε = 2µε+ λ(tr(ε))I.

In addition, from the principle of conservation of angular momentum, we have σ =
σT and due to the uniqueness of displacement field from a given strain field, the
compatibility equations ∇× ε ×∇ = 0 must be fulfilled. Furthermore, the variables
σ and u satisfy the boundary conditions

σ · n = f , on ∂Vt, (2.12)

u = ū, on ∂Vu.
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where ∂V = ∂Vt ∪ ∂Vu and ∂Vt ∩ ∂Vu = 0.

Principle of virtual work: We assume that the body executes an arbitrary set
of infinitesimal virtual displacement δu, then the integral of the multiplication of
equilibrium equation and the virtual displacement over the body gives us

−
∫
V

[(divσ + fB) · δu] dV = 0.

Concerning the symmetry of the stress and using (2.11) and divergence theorem, we
have ∫

V
[σ : δε− fB · δu]dV −

∫
∂Vt

(σ · n) · δuda−
∫
∂Vu

(σ · n) · δuda = 0.

Applying the boundary conditions (2.10) and (2.12)1, we arrive at the principle of
virtual work, Eq. (2.13),∫

V
(σ : δε− fB · δu)dV −

∫
∂Vt

f · δuda = 0. (2.13)

The work done by the actual forces through a virtual displacement of the actual
configuration is called virtual work. According to the forces, it can be divided into
two functions,

δWint =

∫
V
σ : δεdV ,

δWext =

∫
V

fB · δudV +

∫
∂Vt

f · δuda

where δWint is internal virtual work stored in the body, and δWext is external virtual
work. With δWint = δWext, the principle of virtual work states that a continuous body
is in equilibrium if and only if the virtual work of all forces acting on the body is zero
in a virtual displacement.

Principle of minimum total potential energy: The principle of virtual work
(2.13) can be expressed as∫
V
(σ : δε−fB ·δu)dV−

∫
∂Vt

f ·δuda =

∫
V
δψ(ε)dV+

∫
V
δϕ1(u)dV+

∫
∂Vt

δϕ2(u)da = 0,

if there exist the potential functions ϕ1 and ϕ2 and a strain-energy function ψ, such
that

σ =
∂ψ(ε)

∂ε
, ϕ1(u) = −fB · u, ϕ2(u) = −f · u,

accordingly,

δ

∫
V
ψ(ε)dV =

∫
V
σ : δεdV , −δϕ1(u) = fB · δu, −δϕ2(u) = f · δu.

Note that when the Helmholtz free energy is solely a function of ε, it is same as the
strain-energy function. Then we arrive at the principle of minimum total potential
energy (2.14), which states that if a body is in equilibrium, among all admissible fields
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satisfying (2.12), the one that makes Π a minimum corresponds to the equilibrium
solution,

δΠ = 0. (2.14)

where Π is called the total potential energy,

Π(u) =

∫
V
(ψ(ε) + ϕ1(u))dV +

∫
∂Vt

ϕ2(u)da.

2.2.3. Direct methods

Dual variational principle: It is known that an Euler equation can be derived
from different functionals. This means that the solution of a problem can be sought
by different variational principles, such as the principle of minimum total potential
energy and the principle of minimum complementary energy in elasticity theory. All
of which implies the idea of duality that the variational problem might be transformed
into the one dual to the initial problem.
Suppose that we are interested in the minimization problem of a functional I(u)

Ǐ = min
u
I(u), (2.15)

where u is an unknown function, and the minimizing element of (2.15) is denoted by ǔ,
Ǐ = I(ǔ). In order to find the corresponding dual problem, we introduce a functional
F (u, v) with u and v being its variables, such that the functional I(u) is expressed as

I(u) = max
v
F (u, v). (2.16)

Inserting (2.16) into (2.15), the initial minimization problem becomes a mini-max
problem of functional F (u, v), that is

Ǐ = min
u

max
v
F (u, v).

Provide that the order of maximization and minimization can be changed, the problem
becomes

Ǐ = max
v

min
u
F (u, v).

Note that in mini-mini problem, the change of orders always holds that

min
u

min
v
F (u, v) = min

v
min
u
F (u, v),

but converting the mini-maxi to the maxi-mini problem does not hold always true.
Therefore, in constructing the dual variational problems, one must choose the func-
tional F (u, v) so that

min
u

max
v
F (u, v) = max

v
min
u
F (u, v). (2.17)

If the minimization of F (u, v) with respect to u can be easily and explicitly found,
denoting it by J(v)

J(v) = min
u
F (v, u),
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then the maximization problem equivalent to minimization problem is constructed, as
shown in (2.18)

Ǐ = max
v
J(v). (2.18)

To check the validity of (2.17), one needs to compare J(v̌) to I(ǔ), where v̌ is the
element leading F (ǔ, v) to take its maximum. If J(v̌) = I(ǔ), then (2.17) holds. We
call (2.18) is the dual variational problem of (2.15). The dual variational principle is
meaningful because it is sometimes easier to find the stationary point of the functional
with respect to its dual variable. In constructing the functional F (u, v), Legendre
transformation, as well as Legendre-Fenchel transformation, is a useful tool.

Legendre transformation: As stated before, the Legendre transformation can be
used in constructing the dual variational principle and finding the dual variables.
Suppose that we have a twice continuously differentiable function f(x), then we can
define the dual variables x∗i to xi as

x∗i =
∂f(x)

∂xi
,

where x = {x1, x2, ...}, and x∗i = x∗i (xi) is function of xi. Provide that there is an
inverse function (matrix) of x∗, we have

xi = xi(x
∗
k).

Then Legendre transformation f×(x∗) of the function f(x) is defined in (2.19) as

f×(x∗) = x∗kxk − f(x(x∗)). (2.19)

For some functions, such as the absolute functions, the Legendre transformation is
meaningless. In this case, a generalization of the Legendre transformation can be
applied,

f ∗(x∗) = max
x

[x∗ixi − f(x(x∗))],

where f ∗(x∗) is known as the Legendre-Fenchel transformation of function f(x), and
it has a property that for any functions the corresponding Legendre-Fenchel transfor-
mation is convex. Note that the Legendre-Fenchel transformation is identical to the
Legendre transformation if the function f(x) is a strictly convex function.
An application of Legendre transformation is the derivation of the Hamiltonian equa-
tion of the mechanical system from Lagrange equation, where the Lagrange equation
is the difference between the kinetic and the potential energy, while the Hamiltonian
equation is interpreted as the sum of these two energies. Besides, the Legendre trans-
formation can be used in thermodynamic potentials. Let U(V, S) be internal energy
of an ideal gas and be a convex function, where V and S are volume and entropy of
the system, respectively. We find that the negative of the Legendre transformation of
U(V, S), denoted as −U×, with respect to the entropy gives rise to the Helmholtz free
energy F(V, T ),

F(V, T ) = −U×(V, S∗) = U(V, S(T ))− TS(T ), where S∗ =
∂U
∂S

= T,

note that the dual variable of S, denoted as S∗, is turned out to be the temperature
T . In the same manner, the enthalpy can be obtained by Legendre transformation
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σ

ε

σ(ε)

ε0

σ0

Figure 2.11.: Vertically shaded area: the strain
energy F(ε0), and the horizon-
tally shaded area: the comple-
mentary energy F c(σ0) in one
dimensional elasticity theory..

of internal energy U(V, S) with respect to the volume and the Gibbs free energy is
obtained, likewise, by that with respect to volume and entropy.
In the elasticity theory, the Helmholtz free energy F(ε, T ) is a function of the strain
ε and the temperature T , and by the Legendre transformation with respect to the
strain, we obtain the complementary energy F c as

F c(σ, T ) = F×(ε∗, T ) =

∫
V
σ : εdV − F(ε, T ), where ε∗ =

∂F(ε, T )

∂ε
= σ,

here σ is a symmetric tensor. Fig. 2.11 schematically indicates the strain energy
and the complementary energy in one-dimensional elasticity. Let the temperature
be constant, then the strain energy F(ε) and the complementary energy F c(σ) are
expressed as

F(ε0) =

∫ ε0

0

σ(ε)dε, F c(σ0) =

∫ σ0

0

ε(σ)dσ = σ0ε0 −F(ε0).

The strain energy is illustrated by the shaded area by vertical dashed lines, and the
complementary energy is equal to the area shaded by horizontal lines.

Clapeyron’s Theorem: If a functional I(u) consists of two parts, the quadratic and
linear functionals, as the case in many linear problems of continuum mechanics, the
Clapeyron‘s theorem can be applied. We denote the quadratic functional by E(u) and
the linear functional by l(u),

I(u) = E(u)− l(u), (2.20)

E(u) =

∫
V
α1u

2 dV , l(u) =

∫
V
α2u dV ,

where α1 and α2 are coefficients that are given. The Clapeyron‘s theorem states that
the minimizer element ǔ of I(u) fulfills the relation

2E(ǔ) = l(ǔ). (2.21)

Plugging (2.21) in (2.20)1, one obtains two useful forms as the consequences of Clapey-
ron‘s theorem, which express the extremum of the functional in terms of the quadratic
functional and the linear functional, respectively,

I(ǔ) = −E(ǔ) = −1

2
l(ǔ).
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In the elasticity theory of static problem, the Clapeyron‘s theorem adequately repre-
sents that the half of the work done by the externally applied forces is stored in the
body in the form of strain energy, while the rest half is dissipated.

In the subsequent chapter, we use the above introduced dual variational principle, the
Legendre transformation, and Clapeyron‘s theorem to find the defect energy of screw
dislocations.

2.2.4. Thermodynamical principles

The first law of thermodynamics: Total energy E is the sum of the kinetic energy
K and the internal energy U . The first law of thermodynamics states that the rate of
the total energy equals the sum of the rate of external work done and the rate of heat
supply. It can be expressed as

Ė = K̇ + U̇ = P +R, (2.22)

where P is the input power, and R denotes the the rate of heat supply. The rate of
kinetic and internal energy are given in the form

K̇ =
d

dt

∫
V

1

2
ρ0v

2dV =

∫
V
ρ0v̇ · vdV ,

U =

∫
V
UdV ,

where a dot ˙( ) represents the time derivative, v the velocity vector, ρ0 the material‘s
density, and U the internal energy per unit volume. The mechanical power consists of
the rate of work done by body force fB and surface force f , as shown

P =

∫
V

fB · vdV +

∫
∂V

f · vda. (2.23)

Applying Cauchy‘s relation (2.12) and the divergence theorem, the second term of
right-hand side in (2.23) can be transformed as∫

∂V
f ·vda =

∫
∂V

(σ ·n) ·vda =

∫
V
(σ ·v) ·∇dV =

∫
V

(divσ · v + σ : ∇v) dV . (2.24)

Plugging (2.24) in (2.23) and by the principle of conservation of linear momentum
(divσ + fB = ρ0v̇), the mechanical power can be rewritten as

P =

∫
V

(ρ0v̇ · v + σ : ε̇) dV .

The rate of heat supply can also be divided into two parts, where one is the heat flux
q through the surface, and the other one is the internal heat source h

R =

∫
V
hdV −

∫
∂V

q · nda =

∫
V
(h−∇ · q)dV ,

with n being the normal vector on the surface. Substituting expressions for K, U , P ,
and R into (2.22), we obtain the local form of the thermodynamics first law

U̇ = σ : ε̇+ h− divq. (2.25)
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The second law of thermodynamics: The second law of thermodynamics states
that the rate of entropy Ṡ possessed by a continuum body must be greater than the
rate of external entropy Ṡext (entropy input rate),

Ṡ > Ṡext =
R
T
, with Ṡ =

d

dt

∫
V
s dV , and Ṡext =

∫
V

h

T
dV−

∫
∂V

q · n
T

da. (2.26)

It has an alternative expression that the rate of total entropy production Σ̇ must be
greater than zero, where Σ = S − Sext. Substituting Ṡ and Ṡext into the inequality
(2.26) and applying the divergence theorem, we arrive at the second law of thermody-
namics in local form,

ṡ >
h

T
− div

q

T
or ṡp = ṡ− ṡext = ṡ− h

T
+ div

q

T
> 0, (2.27)

where ṡ is the specific entropy rate, and ṡext denotes the specific external entropy
input rate, ṡp the entropy production rate. Eq. (2.27) is known as Clausius-Duhem
inequality. Eliminating the internal heat source h from (2.27) by means of (2.25), one
obtains a new form of the second law of thermodynamics

T ṡp = σ : ε̇− U̇ + T ṡ− 1

T
q · ∇T > 0. (2.28)

Introducing the specific Helmholtz free energy ψ by ψ = U − Ts and substituting U
into (2.28), one obtains the relation

T ṡp = σ : ε̇− ψ̇ − sṪ − 1

T
q · ∇T > 0. (2.29)

Since the heat spontaneously flows from the warmer to the colder region of a body,
the last term in the left-hand side of (2.28) must be non-negative and it leads the rest
part to fulfill the relation as shown

− 1

T
q · ∇T > 0, σ : ε̇− ψ̇ − sṪ > 0,

where they are referred to as heat conduction inequality and Clausius-Planck inequal-
ity, respectively. The quantity T ṡp in (2.28) has been defined as dissipation, and it
is utilized in the principle of maximum dissipation to derive evolution equations for
internal variables (Hackl & Fischer, 2008; Hackl et al., 2011). While in this study, we
derive the equations of motion using the dissipation potential, which is often supposed
to exist as a function D. With a given dissipation potential, the following variational
equation can describe the dissipative process,

δI +

∫
V

∂D

∂żi
δzidV = 0, i = 1, 2, ..., (2.30)

for which in our study, the functional I is given by

I =

∫
V
ψ(u, zi) dV − l(u), where l(u) =

∫
V

fB · u dV +

∫
∂Vt

f · u da,

with ψ being the specific Helmholtz free energy and the linear term l(u) being the
external work done to the system. u is the displacement field, and zi are the state
variables. Eq. (2.30) follows the spirit of d‘Alembert principle that focuses on the
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equilibrium of forces, where ∂ψ/∂zi emerged from the variation of the functional I
give rise to the driving forces and the differential of D with respect to the rate of state
variables, ∂D/∂żi, refer to the dissipative force, such that

∂ψ

∂zi
+
∂D

∂żi
= 0. (2.31)

A similar form has appeared in the minimum principle for the dissipation potential
(Hackl & Fischer, 2008), where the evolution equations are found by minimizing a
potential L∗ = ψ̇ +D with respect to the state variables.
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2.3. Thermodynamic Dislocation Theory

2.3.1. Introduction to the theory

In crystalline solids, the plastic deformation is mainly carried by dislocations which
are line defect. By interacting and entangling each other, dislocations form complex
structures. Their networks give rise to rich macroscopic performances so that in con-
tinuum plasticity modeling it is common to involve the energy of dislocations into
the stored energy as a function of dislocation density, mostly in the form of scalar,
averaged tensor or its combination. On the other hand, we also know that the en-
tropy of dislocation is extremely small in comparison with the total entropy of the
crystal so that in abundant literature the entropy of dislocations has been ignored
from the thermodynamic principle since last century. However, Berdichevsky (2008);
Bouchbinder & Langer (2009b) asserted that the evolution of dislocations, as well as
the microstructure, must be associated with the entropy of its own, which is a big
deviation from the conventional approaches in solid mechanics.

Langer et al. (2010) proposed that, even though dislocation has small entropy, it is an
essential ingredient in crystal plasticity of dislocation-mediated theory. He introduced
two thermodynamically well-defined temperatures, namely ordinary temperature T
and effective temperature χ, which characterize two weakly interacted subsystems,
kinetic-vibrational subsystem and configurational subsystem, respectively. The ordi-
nary temperature depicts the ordinary thermal fluctuations, while the effective tem-
perature describes the atomically slow configurational degrees of freedom of deforming
solids. Regarding the thermodynamic system as two separated subsystems is based on
the fact that the thermal vibration is on atomic timescale, while the timescale charac-
terizing structural relaxation and defect motion is at a much lower level. Such timescale
separation leads to the decomposition of subsystems. The effective temperature, de-
fined as the derivative of configurational energy with respect to the configurational
entropy, measures the disordered state of the subsystem, and its evolution represents
how the mechanical work raises the energy of the subsystem based on the first law of
thermodynamics.

Note that the basic idea of two temperature thermodynamics framework might ap-
peared first in the statistical physics community (Cugliandolo, 1997; Berthier, 2000)
and many applications are investigated in amorphous plasticity, e.g., Shear Transfor-
mation Zone model (Bouchbinder & Langer, 2009a,b,c), soft glassy rheology(Sollich &
Cates , 2012), and cavitation near crack tips(Rycroft & Bouchbinder, 2012). In crystal
plasticity, Le et al. (2017) simulated 12 stress-strain curves in plane strain compression
tests for aluminum and steel over a wide range of temperatures and strain rates with
only a set of physics-based parameters and obtained satisfactory agreements with the
experiments. Langer (2018) showed the TDT and the Livermore molecular dynam-
ics simulations of dislocation-mediated solid plasticity are in substantial agreement
in describing the strain-rate-dependent steady plastic flow and the transient stress
peaks associated with initially small dislocation densities. Other applications include
material hardening(Langer et al., 2010), softening(Langer, 2016; Le & Piao, 2019b),
effects of grain size(Langer, 2015), yielding transitions(Langer, 2017b), adiabatic shear
banding(Le et al., 2018), non-uniform plastic deformations(Le, 2018), size effect(Le &
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Piao, 2019a), Bauschinger effect(Le & Tran, 2018).

2.3.2. The variational approach in thermodynamic dislocation theory

The aim of this section is to discuss the underlying variational principle in thermo-
dynamic dislocation theory(TDT) and to derive the governing equations. TDT starts
with identifying the energy functional, which is given by

I =

∫
V
ψ(εe, ρg, ρr, T, χ)dV −

∫
∂Vt

f · uda, (2.32)

with dV denoting the volume element, da the area element, and ψ the free energy
density per unit volume. V is the domain in space occupied by the material body,
and its boundary ∂V consists of two non-intersecting surfaces, ∂Vu and ∂Vt. The
displacement vector u(x) is a given function of coordinates on ∂Vu,

u(x) = ū(x), for x ∈ ∂Vu,

while on the boundary ∂Vt, the traction force f is specified. Provide that there is no
body force acting on the crystal. The second term in the right-hand side of (2.32)
represents the potential of external forces.

The state variables of free energy density in thermodynamic dislocation theory com-
prise the elastic strain εe, excess dislocation density ρg, redundant dislocation density
ρr, kinetic-vibrational temperature T, and the effective temperature χ. All of them
characterize the current state of the crystal material. The excess dislocation density
ρr possesses an internal length scale that is the magnitude of Burgers vector. The
failure of classical continuum mechanics in small-scale devices is due to the lack of the
internal length scale into the modeling. Both excess and redundant dislocation density
ρr depend only on the characteristics of dislocations so that they are proper choices
as state variables, while the plastic distortion is excluded from the choice because
it depends on the whole history of creating dislocations (Le et al., 2016). Besides,
Langer (2017c) has also argued about the qualification of plastic deformation as the
state variable due to the reason that the irreversible processes forget their histories of
past deformation. We set the kinetic-vibrational temperature T constant so that it
can be dropped from the lists of arguments of the free energy density. Following Le
(2018), free energy density has the following form,

ψ = ψe + ψr + ψm + ψχ, (2.33)

The first term of (2.33) is the elastic strain energy, given by

ψe =
1

2
εe : C : εe,

where C denotes the fourth rank elastic stiffness tensor. For an isotropic material, the
stress is given as

σ = C : εe = λtr(εe)I + 2µεe,

with λ and µ being Lamé parameters. The second term ψr is the self-energy of re-
dundant dislocations, and the isotropic hardening is dominantly accounted for by ψr.
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The third term ψm is the defect energy density caused by excess dislocations, which
models kinematic hardening as well as some phenomena of microstructure, such as
the size effect. The last term (2.33) is the energy due to the effective temperature χ
introduced by Langer et al. (2010).

εp
εe

ε

Figure 2.12.: Additive decomposition of the total strain

Kinematics:

Before going into deep, let us first describe the kinematics. In small deformation, we
can ignore the differences between the Lagrangian and Eulerian coordinates and further
assume that the displacement gradient (total distortions) is additively decomposed into
elastic and plastic distortions, βe and β, respectively

βt = ∇u = βe + β, (2.34)

where u(x) is displacement field, and x is a position vector of a material point in
the body V . The plastic distortion of crystal with one slip system activated can be
described as follows

β(x) = β(x)s⊗m,

with s denoting unit vector of slip direction, and m is the unit vector normal to the
slip plane (|s| = 1, |m| = 1, s ·m = 0). The plastic slip function is denoted by β(x)
and assumed to be continuously differentiable. When n slip systems are activated, the
plastic distortion is given by

β(x) =
n∑

α=1

βα(x)sα ⊗mα,

where sα and mα indicate, analogously, the unit vectors of slip direction and vectors
normal to the slip planes of the corresponding α-th slip system. By definition, since sα

and mα are mutually orthogonal, the diagonal elements of plastic distortion take the
value of zero so that tr(β) = 0, which implies volume-preserving. The total strain ε
and the plastic strain εp are the symmetric part of displacement gradient and plastic
distortion, respectively, such that

ε =
1

2
(∇u + u∇), εp =

1

2
(β + βT ).
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Accordingly, the elastic strain is equal to the subtraction of plastic term from the total
strain,

εe = ε− εp. (2.35)

Fig.2.12 illustrates the relationship between the total and elastic, plastic deformation.
As shown, plastic deformation can be regarded as irreversible shifts of the crystal at
the boundary along with specific slip system. It is accomplished by the glide of excess
dislocations through and leaving the material volume element. These dislocations do
not distort nor rotate the lattice, while the lattice distortion is associated with those
excess dislocations created by plastic distortion β inside the body, which can change
their positions in the crystal without deforming the material. On the other hand, the
elastic deformation leads to the subsequent rotation and stretching of the coherent
structure having frozen dislocations. Note that an important feature of (2.35) is that
the total strain is compatible, while the elastic and plastic strain tensors are incom-
patible. Physically the incompatibility of plastic strain tensor ensures the necessity
of excess dislocations, and the Nye‘s tensor measures the excess dislocation density.
However, this tensor does not account for the accumulation of redundant dislocations
because the resultant Burgers vector vanishes in the representative volume element.
Hence, they do not change the lattice shape in continuum limits.

The displacement gradient can be additively decomposed into a symmetric tensor and
an antisymmetric tensor,

u∇ =
1

2
(∇u + u∇) +

1

2
(∇u− u∇) = ε+ Ω,

obviously the symmetric part is the total strain tensor, and the antisymmetric part is
the total rotation tensor,

Ω =
1

2
(∇u− u∇), where Ω = −ΩT .

Analogically, the plastic rotation tensor is the antisymmetric part of the plastic dis-
tortion,

Ωp =
1

2
(β − βT ).

Accordingly, the elastic rotation tensor is

Ωe = Ω−Ωp.

Since the crystal misorientation can be mapped by Laue microdiffraction (Ziemann
et al., 2015), and the lattice rotation can be measured by the electron backscatter
technique (Kysar et al., 2010), the rotation tensor may be used in the comparison of
numerical simulation with the experiment.

Although not the scope of this work, we briefly mention the deformation gradient
normally used in finite deformation. Suppose that an intermediate imaginary con-
figuration, denoted by dp, is obtained from the reference configuration by plastically
deforming infinitesimal line segment dX with the plastic deformation gradient Fp as
their transformation, and further, dp is mapped to the current configuration vector dx
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by elastic deformation with Fe being the elastic deformation gradient. It is expressed
mathematically

dp = FpdX, and dx = Fedp. (2.36)

Then, we obtain the multiplicative decomposition of the deformation gradient

F =
∂x

∂X
=
∂x

∂p
· ∂p

∂X
= Fe · Fp. (2.37)

With the aid of the relation, F = ∂x/∂X = I + ∂u/∂X = I + βt, we can express the
deformation gradient in terms of elastic and plastic distortions as follow

F = Fe · Fp = (I + βe) · (I + β) = I + βe + β + βe · β. (2.38)

When the deformation is small, the term βe ·β is negligible, and thus the displacement
gradient, ∇u = F− I, for small strains in geometrical linear theory comes to (2.34).

Nye’s dislocation tensor:

Since the resultant Burgers vector B resulting from crystallographic slip complete the
Burgers circuit c, we have

B =

∮
c

dup =

∮
c

βdx,

where β = ∇up, and up is the relative displacement caused by slip. Using Stokes’
theorem,

Bi =

∫
S

αijnjdS

where S denotes the surface bounded by Burgers circuit with n being the plane normal
vector, α denotes Nye’s dislocation tensor that is the curl of plastic distortion,

αij = curl(β)ij.

This tensor is introduced by Nye (1953), Bilby (1955) and Kröner (1955), and further
studied by Ashby (1970). Fleck et al. (1994) expressed this tensor in the form of index
notation as

αij = εjklβil,k.

Concerning the curl computation of second-order tensor, there are different approaches,
as discussed by Das et al. (2018). The pre-curl of second-order tensor V, denoted by
(∇ × V)ij, is used in Ma et al. (2006); Sun et al. (1998), while Le et al. (2016);
Le (2016a) used the post-curl, (V × ∇)ij to compute the Nye’s dislocation tensor.
Note that pre-curl and post-curl of the same second-order tensor may lead to different
outcomes; however, with correct tensor chose and consistent application, both curl
definitions lead to the same result. Since two curl operators fulfill the following relation

post-curl(V) = −(pre-curl(V)T )T ,
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the Nye’s tensor α in different computations are,

post-curl : α = −β ×∇
pre-curl : α = (∇× βT )T

The continuity condition demands the line integral of the displacement to vanish
around any area in the material,∮

c

du =

∮
c

βtdx = 0.

It implies the relationship between plastic and elastic distortion,

curl(β)ij = −curl(βe)ij.

So the Nye’s dislocation tensor using the elastic distortion as a measure of incompat-
ibility is

αij = −εjklβeil,k.

Since Nye‘s dislocation tensor is not necessarily symmetrical, it has nine independent
components. However, those elements are not enough to determine the densities of
excess dislocation unambiguously because typical crystals have more than nine slip
systems. In such a case, the minimization is needed to estimate the excess dislocation
density(Arsenlis, 1999; Kysar et al., 2010; Das et al., 2018). On the other hand, in
the case that only limited slip systems are activated, the dislocation density can be
well estimated (Le, 2016a) with given the formula for screw dislocation density ρα|| and
edge dislocation density ρα⊥ for particular slip system

ρα|| =
1

b
|sα · tα||∂vβα|, ρα⊥ =

1

b
|sα · vα||∂vβα|, (2.39)

with tα being the unit normal vector to dS, vα = mα× tα the vector lying on the slip
plane and perpendicular to tα and ∂vβ

α = ∇βα × vα.

Variational formulation:

Back to the free energy density, Le (2018) has proposed for each term of (2.33) as
follow,

ψe =
1

2
λ(εekk)

2 + µεeijε
e
ij, ψr = γDρ

r,

ψχ = −χ(−ρ ln(a2ρ) + ρ)/L,

where the energy ψχV is the product of effective temperature χ and the the config-
urational entropy of dislocations, SC = A(ρ ln(a2ρ) + ρ). We assume that the total
dislocation density is additively decomposed into excess dislocation density ρg and
redundant dislocation density ρr,

ρ = ρg + ρr. (2.40)

γD = eD/L is the dislocation energy per unit length, where eD is the energy per
dislocation. Parameter a is a length scale of the order of atomic spacings that indicates
the minimum spacing between noninteracting dislocations. As a result,

ψ =
1

2
λ(εekk)

2 + µεeijε
e
ij + γDρ

r + ψm − χ(−ρ ln(a2ρ) + ρ)/L,
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where each term is in a unit of energy per volume. Provided that the area of the
cross-section is A and its boundary satisfies ∂A = ∂s ∪ ∂k and ∂s ∩ ∂k = 0, then with
the free energy density, one can write down the energy functional. The surface force f
is applied on the boundary ∂s, and we assume the crystal is free from the body force,
the displacement u(x) and plastic slip β(x) are subjected to the boundary condition
on ∂k

u(x) = ū(x) and β(x) = 0. (2.41)

The energy function of the crystal bar per unit depth is defined as

I[u(x), β(x), ρr(x), χ(x)] =

∫
A
ψ(εe, ρr, ρg, χ) da−

∫
∂s

f · u ds.

Note that εe and ρg are dependent variables with respect to u and β, while ρr and
χ are independent variables. The applied work to the crystal may lead to nucleation,
multiplication, and motion of dislocations, which give rise to the plastic deformations
in crystal. In this process, dislocations always suffer the resistance causing the energy
dissipation. In addition to the term for rate-independent plasticity, thermodynamic
dislocation theory proposes that the increase of dislocation density and the increase of
configurational temperature contribute to energy dissipation. The dissipation potential
proposed has the form

D(β̇, ρ̇, χ̇) = τY |β̇|+
1

2
dρρ̇

2 +
1

2
dχχ̇

2, (2.42)

where τY is the flow stress during plastic yielding, dρ, and dχ are certain functions
that to be discussed later. In such an irreversible process that dissipation potential
is involved, the governing equations can be derived from the following variational
principle: the true displacement field ǔ, the true plastic slips β̌(x), the true density of
redundant dislocations ρ̌(x), and the true configurational temperature χ̌(x) obey the
variational equation

δI +

∫
A

(
∂D

∂β̇
δβ +

∂D

∂ρ̇
δρ+

∂D

∂χ̇
δχ

)
da = 0, (2.43)

for all variations of admissible fields u(x), β(x), ρ(x) and χ(x) satisfying the constrains
(2.41). Derivation of (2.43) allows one to find out the necessary conditions which must
be satisfied at the final state of deformation in equilibrium. Expanding the first term
of (2.43), we have

δI =

∫
A

[
σij(δεij − δεpij) + γDδρ

r +
∂ψm
∂ρg

δρg +
χ ln(a2ρ)

L
(δρr + δρg)

+
ρ ln(a2ρ)− ρ

L
δχ

]
da −

∫
∂s

fiδuids,

where

σ =
∂ψ

∂εe
, σ = σT .

While plugging (2.42) into the variational equation, we have the second term of (2.43)∫
A

(
∂D

∂β̇
δβ +

∂D

∂ρ̇
δρ+

∂D

∂χ̇
δχ

)
da =

∫
A

[τY δβ + dρρ̇(δρr + δρg) + dχχ̇δχ] da.
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Since ρr and χ are independent variables, we can directly obtain two governing equa-
tions in the material body. Variation with respect to ρr and χ yields that

γD + χ ln(a2ρ)/L+ dρρ̇ = 0, (2.44)

(ρ ln(a2ρ)− ρ)/L+ dχχ̇ = 0.

Excluding the variation term with respect to ρr and χ from (2.43) and using (2.44),
we have the remaining part∫

A

[
σij(δεij − δεpij) +

(
∂ψm
∂ρg
− γD

)
δρg + τY δβ

]
da−

∫
∂s

fiδuids.

With the aid of the kinematic relations, formula for excess dislocation density and
integration by parts, we obtain∫

A

[
−σij,jδui − siσijmjδβ −

∂2ψm
∂(ρg)2

∂ρg

∂x̄
δβ̃ + τY δβ

]
da

+

∫
∂s

[
(σijnj − fi)δui +

(
∂ψm
∂ρg
− γD

)
δβ̃

]
ds, (2.45)

where the tilde accent (̃ ) denotes the rescaled variable towards the slip direction,
divided by the magnitude of Burgers vector. Summing up the terms with respect to
the variations of deformation u(x) and plastic slip β(x) in the material body we have,

σij,j = 0, (2.46)

τ − τB − τY = 0, (2.47)

where τ = siσijmj is the resolved shear stress acting on the slip system, and

τB = − ∂2ψm
∂(ρg)2

β,x̃x̃ (2.48)

is the back stress. As we can see from this formula, the back stress emerges from
the defect energy which may describe the sum of self and interaction energy of excess
dislocations. The flow stress τY is perceived to be attributed to total dislocation
density as proposed by Langer et al. (2010). Physically, (2.46) can be interpreted as
the balance of linear momentum for static problems in the absence of body force, and
(2.47) as the balance of microforces acting on dislocations. From the second term of
(2.45), we obtain information about boundary conditions acting on ∂s

σijnj = fi and
∂ψm
∂ρg

= γD, (2.49)

and as we mentioned before on the boundary ∂k, the deformation u subjects to Dirich-
let boundary condition, and plastic slip to homogeneous Dirichlet boundary condition.
System of governing equations from the variational principle becomes

τ − τB − τY = 0,

γD + χ ln(a2ρ)/L+ dρρ̇ = 0, (2.50)

(ρ ln(a2ρ)− ρ)/L+ dχχ̇ = 0.
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In the variational approach of thermodynamic dislocation theory, there is no direct
principle to construct the exact expression of dissipation function conjugate to each
state variable. However, one can notice that if we choose

dχ =
ρ− ρ ln(a2ρ)

kχ
τY q(τY ,ρ)

µ t0
[1− χ

χ0
]L
,

dρ =
−eD − χ ln(a2ρ)

kρ
τY
γD

q(τY ,ρ)
t0

[1− ρ
ρss(χ)

]L
.

(2.51)

Eqs. (2.50)2,3 become consistent with those equations for ρ and χ described in Langer
et al. (2010) as

χ̇ = kχ
τY q(τY , ρ)

µ t0
[1− χ

χ0

], (2.52)

ρ̇ = kρ
τY
γD

q(τY , ρ)

t0
[1− ρ

ρss(χ)
]. (2.53)

Since we assume the system is driven by the constant shear rate, the total strain
rate and plastic strain rate can be expressed by dimensionless form q0 and q(τY , ρ),
respectively, where t0 is the characteristic microscopic time scale, eD = γD L is assumed
to be the single-dislocation energy. χ0 is the steady-state configurational temperature,
and ρss(χ) is the steady-state dislocation density, which has a form

ρss(χ) =
1

a2
e−eD/χ.

We further adopt the flow stress τY based on Hooke‘s law, Orowan‘s equation and the
dislocation depinning mechanism proposed by Langer et al. (2010),

τ̇Y = µ[
q0

t0
− q(τY , ρ)

t0
]. (2.54)

The coefficient factor kρ and kχ, as well as the function ν(Θ, ρ, q0) and detailed expla-
nation on each equation of motion, will be discussed in the next section. Eq. (2.47)
together with (2.54), (2.53) and (2.52) yield a system of coupled partial differential
equations as

τ − τB − τY = 0,

τ̇Y = µ[
q0

t0
− q(τY , ρ)

t0
],

χ̇ = kχ
τY q(τY , ρ)

µ t0
[1− χ

χ0

],

ρ̇ = kρ
τY
γD

q(τY , ρ)

t0
[1− ρ

ρss(χ)
],

(2.55)

where the first equation in (2.55) subjects to the boundary conditions (2.41) on ∂k and
(2.49) on ∂s, and the rest equations subject to initial conditions.
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2.3.3. Equations of Motion

In this subsection, we go through each equation of motion in detail by discussing how
they are derived and the physical interpretation behind the mathematical expression.

Equilibrium of microforces on dislocations:

τY = τ − τB, (2.56)

This equation is the microforce balance on dislocations inferred from virtual displace-
ments (see Eq.(2.45)). In strictly speaking, (2.55) is the governing equations for non-
uniform plastic deformation due to the presence of back stress τB in microforce bal-
ance equation. This back stress is the resolved stress conjugate to excess dislocations.
Hence, the stress is probably caused by the accumulation of excess dislocations. When
a crystal undergoes a non-uniform deformation, such as torsion of the wire, bending of
the beam, and indentation, in order to fulfill the geometrical continuity of the sample,
excess dislocations are required to accommodate the curvature of crystal lattices. As
given in (2.48), the back stress is proportional to the second derivative of defect energy
ψm with respect to the excess dislocation density ρg. Therefore, the correct choice of
ψm plays a significant role in modeling microstructures of the crystals.

Note that there is a various formulation of this defect energy in the literature leading
to kinematic hardening as well as the size effect. Besides the quadratic potential,
the authors (Kametani et al., 2012; Wulfinghoff et al., 2014) have assumed the defect
energy to be linear with respect to the excess dislocation density, and Berdichevsky
(2016) has proposed another example of rank-one defect energy of screw dislocations.
The latter linear potential has been adopted by Le & Piao (2016), which showed
the linear defect energy leads to not only size effect but also a jump of the plastic
warping across the boundary between the dislocation-occupied and dislocation-free
region of twisted crystal bar. The third type is logarithmic defect energy proposed
by Berdichevsky (2006b), and it has been applied to continuum dislocation theory in
many applications, e.g. Dislocation pile-ups, deformation twinning, polygonization,
bending, torsion, formation of grains and indentation (Kochmann & Le, 2008, 2009b;
Le & Nguyen, 2012, 2013; Kaluza & Le, 2011; Koster et al., 2015; Baitsch et al., 2015).
Moreover, a new type of defect energy of screw dislocations is proposed by Le & Piao
(2018) based on the asymptotically exact free energy density of excess dislocation
(Berdichevsky, 2017), and the applications will be shown in the subsequent chapters.
On the other hand, uniform plastic deformation, like tension and compression tests,
mainly requires the redundant dislocations rather than the excess so that the back
stress τB vanishes. Apparently, in this case, the equilibrium of microforces becomes

τ = τY ,

such that the system reduces to

τ̇ = µ[
q0

t0
− q(τ, ρ)

t0
],

χ̇ = kχ
τq(τ, ρ)

µ t0
[1− χ

χ0

],

ρ̇ = kρ
τY
γD

q(τY , ρ)

t0
[1− ρ

ρss(χ)
],

(2.57)
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which has been proposed by Langer et al. (2010). Besides the case in the uniform
plastic deformation, the other utilization of (2.57) is when the sample stays on a
macroscopic scale. We know that in small devices of microscale or nanoscale, excess
dislocations play a significant role in the size effect phenomena because the portion
of excess dislocation density gets relatively high. But for samples in millimeter, the
effect of τB is no longer evident so that it can be ignored from the system of equations.
Two applications in torsion analysis ignoring the back stress will be shown in chapter
5.

Equation of motion for flow stress τY :

Following Langer (2015), we consider a simple situation that a slab of material with
the area A and thickness L lies in the plane of applied shear stress. We suppress
the tensor notation of stress and strain for simplicity. The dislocations driven by the
stresses move through the material body and produce the flow stress, and by Hooke‘s
law we have

τY = µ(ε− εp). (2.58)

The Orowan equation relates the strain rate to the movement of dislocations. Hence,
in the model for the plasticity based on dislocation mechanics, this relation is a good
choice to start with. One principle idea of thermodynamic dislocation theory is that
the overwhelmingly dominant mechanism controlling plastic deformation is thermally
activated depinning of dislocation, which relates to Orowan‘s relation,

ε̇p = ρbv, (2.59)

with b being the magnitude of the Burgers vector, ρ the dislocation density, and v
the average velocity of dislocation. The assumption made in the theory is that during
the motion of dislocations, each dislocation segment moves rapidly from one pinning
point to another and be trapped there. With the aid of applied stress and thermal
fluctuation, they get rid of the pinned state and move to the next pinning site. They
proceed pinning and depinning process again and again until to the final state. We
denote the average distance between two pinning sites by l = 1/

√
ρ, then the speed of

dislocation is expressed as

v =
l

tP

where 1/tP is a thermally activated depinning rate given by

1

tP
=

1

t0
e−UP (τY )/kBT .

The microscopic time t0 is of the order of 10−12s (Langer, 2017c), and T denotes the
ordinary temperature. This depinning rate emerges from the physical observation
that the applied stress and temperature influence the response of plastic deformation
(Haasen, 1958; Kocks & Mecking, 2003). It is assumed that there is a potential well
in the pinning site given by

UP (τY ) = kBTP e
−τY /τT ,

where kB is the Boltzmann factor, TP the activation temperature, and τT the Taylor
stress. TP is large so that in the absence of external stress, by thermal fluctuation
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itself, dislocations can not escape from the trap unless the temperature of materials
reaches TP , which is physically not possible in the solid-state, for TP may be higher
than the melting temperature. However, when the stress is applied, potential well
depth is reduced by the coefficient, a exponential function of the stress. Taylor stress
µT is that µ times the strain required to move a dislocation segment a small fraction
of an atomic spacing away from a pinning point,

τT = µb′/l = µ
b′

b
b
√
ρ = µT b

√
ρ, (2.60)

with b′/b being a coefficient such that µT is proportional to µ. One assumption made
on the speed of dislocations is that the time for depinning process takes much longer
than that of dislocation moving from one to another pinning site so that we neglect
this contribution to the speed in Orowan‘s relation. As a result, from (2.59), we have
the dimensionless plastic strain rate as

q(τY , ρ) = ε̇pt0 = b
√
ρ[fP (τY )− fP (−τY )], (2.61)

where

fP (τY ) = exp

[
−TP
T
e−τY /τT (ρ)

]
.

The antisymmetry is required in (2.61) for dealing with the reversal process, where the
reflection symmetry must be preserved and the second law, τY q > 0 (see Eq.(2.77)),
not be violated. From this formula, we observe that the plastic strain rate is relatively
sensitive to the temperature change and the applied stresses. Solving (2.61) for stress
as a function of ρ, q, and T, we have

τY = τT (ρ)ν(ρ, q, T ), (2.62)

where

ν(ρ, q, T ) = ln(
TP
T

)− ln

[
ln(

b
√
ρ

q
)

]
.

As shown, ν(ρ, q, T ), a logarithmic function of inverse T and double logarithm with
respect to ρ and q, is a slowly varying function of its arguments. We introduce further
the dimensionless form of total strain rate, q0 = ε̇ t0, and plugging it together with
(2.61) into the rate form of Hooke‘s law, we obtain

τ̇Y = µ

[
q0

t0
− q(τY , ρ)

t0

]
.

Since we analyze the problem driven by constant strain rate, we can replace the time
derivative with strain derivative by chain rule, ∂

∂ε
= ∂

∂t
∂t
∂ε

, and we have

∂τY
∂ε

= µ

[
1− q(τY , ρ)

q0

]
. (2.63)
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Equation of motion for the effective temperature χ:

Eq. (2.55)3 is an equation of motion for the effective temperature χ. It is a statement
of the first law of thermodynamics for the configurational subsystem as reference. We
assume that the thermodynamic system of the material body consists of two subsys-
tems, namely kinematic-vibrational subsystem and configurational subsystem. The
kinetic-vibrational degrees of freedom describe the vibration of atoms about its nor-
mal position in a substance, while the configurational degrees of freedom describe
the atomic rearrangements, taking the configurational subsystem from one inherent
structure to another, associated with irreversible plastic deformation. Although the
inherent structures might be possible to include some other defects, such as vacancies,
grain size or stacking faults, we restrict ourself in this study on dislocations, which
work as a carrier of plastic deformation. Since dislocations possess large energies
and slow time scales compared to thermal fluctuations, they are poorly coupled from
kinetic-vibrational degrees of freedom and, therefore, two subsystems are considered
as weakly interacted, connected with each other by poor heat conductor.

Kinetic-Vibrational Subsystem 

characterised by the ordinary temperature

Configurational Subsystem

characterised by the effective temperature

Ut, St UC, SC

Thermodynamic system

UR, SR

Two subsystems weakly 
interacted

Figure 2.13.: Decomposition of thermodynamic system into kinetic-vibrational and
configurational subsystems

Fig. 2.13 illustrates the decomposition of the thermodynamic system into two sub-
systems (Chowdhury et al., 2018). The total internal energy of the thermodynamic
system is the sum of that of kinematic-vibrational and configurational subsystems

Ut = UR(SR) + UC(SC , ρ). (2.64)

UR(SR) is the kinetic-vibrational energy characterized by the ordinary thermal tem-
perature given by

ΘR = kBT =
∂UR
∂SR

,

where SR is the entropy of the kinetic-vibrational subsystem. The temperature ΘR is
linked with T in degrees Kelvin, and it has the dimension of energy by Boltzmann‘s
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factor kB. UC(SC , ρ) is the configurational energy of materials containing dislocations
with SC(UC , ρ) being the entropy of its subsystem and ρ being the dislocation den-
sity. Then we have another thermodynamically well-defined temperature, effective
temperature,

χ =

(
∂UC
∂SC

)
ρ

, (2.65)

which characterizes the configurational subsystem. Assume that the configurational
energy can be written as

UC(SC , ρ) = U0(ρ) + U1(S1). (2.66)

Here U0 and S0 are the configurational energy and the entropy associated with disloca-
tions, and U1 and S1 are the energy and the entropy of all the configurational degrees
of freedom other than those pertaining to the dislocations. Likewise, we have

SC(UC , ρ) = S0(ρ) + S1(U1). (2.67)

Moreover, by taking derivative of (2.66) with respect to dislocation density ρ at given
SC and by using (2.67), one obtains(

∂UC
∂ρ

)
SC

=
∂U0

∂ρ
− χ∂S0

∂ρ
. (2.68)

The first law of thermodynamics for the system states that

VτY ε̇p = U̇t = U̇R + U̇C . (2.69)

Note that the rate of energy due to the reversible elastic strain cancels out of the
equation. Supposed that the system has no external heat source inside the material
body V , and neither has heat flux through the surface that supplies external energy to
the material body, the rate of the internal energy is balanced with the rate of external
work input. Since the fast kinetic-vibrational degrees of freedom are combined with
the external environment to serve as a single heat bath at a single temperature T,
the loss of heat energy through the surface is included in (2.69). Plugging (2.64) and
(2.65) into the first law, we get

VτY ε̇p = ΘRṠR + χṠC +

(
∂UC
∂ρ

)
SC

ρ̇. (2.70)

The first term in the right-hand side of (2.70) is interpreted as the heat flux flowing
from the configurational subsystem into the thermal reservoir. In other words, the
subsystem of dislocations absorbs energy from external work, and it exchanges heat
with its surroundings as expressed by

Q = ΘRṠR = K(χ−ΘR), (2.71)

where K is a non-negative thermal transport coefficient. While using (2.67), the second
term in the right-hand side of (2.70) can be written as

χṠC = χ

(
∂S0

∂ρ
ρ̇+

∂S1

∂χ
χ̇

)
= χ

∂S0

∂ρ
ρ̇+ Vceff χ̇ (2.72)
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where ceff = χ∂S1

∂χ
/V denotes the effective specific heat. Using (2.71), (2.72) and

(2.68), the first law is transformed into the form of the effective temperature evolution
as

Vceff χ̇ = VτY ε̇p −
∂U0

∂ρ
ρ̇−Q.

Dislocation energy U0 is given by

U0(ρ) = A ρ eD, where eD = γD L.

Since the effective temperature is much higher than the ordinary one, we can regard
that Q ≈ Kχ, and moreover, in the steady-state, all work done is dissipated as heat
such that Q = VτY ε̇p. As stated in Langer (2015), the stead-state configurational
temperature χss equals to a constant χ0 for the case that the strain rate is not extremely
fast, which implies that K = VτY ε̇p/χ0. As a result,

ceff χ̇ = τY ε̇
p

[
1− χ

χ0

]
− γDρ̇.

The second term of the right-hand side is dropped due to the reason that there is no
experimental situation where it is shown to play a significant role (Langer, 2017c).
Introducing the dimensionless factor

Kχ =
µ

ceff eD
,

and by chain rule, we obtain

∂χ

∂ε
= Kχ

eD τY q

µ q0

(
1− χ

χ0

)
. (2.73)

Equation of the motion for the dislocation density ρ:

The development of equation for the dislocation density is based on the second law of
thermodynamics. It states that the rate of change of total entropy is never negative
and it is expressed as

Ṡt = ṠC + ṠR > 0 (2.74)

where the total entropy St is the sum of entropies of two subsystems. Evaluating SC
from (2.70) and substituting it into (2.74), one obtains

1

χ

[
VτY ε̇p −

(
∂UC
∂ρ

)
SC

ρ̇

]
+

(
1− ΘR

χ

)
ṠR > 0. (2.75)

Since SR is independent of εp and ρ, each term in (2.75) should satisfy the non-
negativity to avoid the violation of the inequality (Coleman & Noll, 1963). The sec-
ond term is automatically satisfied because χ is always larger than ΘR. Concern-
ing the first term, provided that the mechanical power is always positive, instead of
(∂UC/∂ρ)SC ρ̇ 6 VτY ε̇

p, Langer (2015) has proposed the inequality(
∂UC
∂ρ

)
SC

ρ̇ 6 0, (2.76)
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which also satisfies (2.75). One of the simplest form of ρ̇ to fulfill the inequality (2.76)
is

ρ̇ = −M
(
∂UC
∂ρ

)
SC

,

where M is a non-negative rate factor. Adopting the formula proposed by Langer
(2017c) for the entropy of dislocations

S0(ρ) = −A ρ ln(a2ρ) +A ρ,

and using (2.68), one obtains

ρ̇ = −M[A eD +Aχ ln(a2ρ)] = −AMχ
[
− ln(e−

eD
χ ) + ln(a2ρ)

]
= −AMχ ln

(
ρ

ρss(χ)

)
,

where ρss(χ) = (1/a2)e−eD/χ is dislocation density in the steady-state, which leads
(2.68) to be zero. The factor AMχ is thought to be proportional to the input power,
hence we set AMχ = κρτY ε̇

p/γD, where γD is involved due to the dimensional con-
sistency. In case that ρ is closed to ρss(χ), we have

ln

(
ρ

ρss(χ)

)
=

ρ

ρss(χ)
− 1,

such that

ρ̇ = κρ
τY ε̇

p

γD

(
1− ρ

ρss(χ)

)
. (2.77)

This equation has a physical interpretation that some portion of input power converts
into the dislocation energy with κρ being a dimensionless factor. Note that the second
term in the bracket includes the annihilation mechanism of dislocations. Converting
it into strain derivative, it becomes

∂ρ

∂ε
= κρ

τY q

γD q0

(
1− ρ

ρss(χ)

)
. (2.78)

As commented by Langer (2015), this equation of motion for dislocation density, orig-
inated from the second law of thermodynamics, can recover the result (Kocks & Meck-
ing, 2003) that the onset slope for strain hardening in copper almost does not vary
with the temperature and strain rate change. It can be explained by

M0 =
1

µ

∂τY
∂ε

=
1

µ

∂τY
∂ρ

∂ρ

∂ε
= κρ

(b ν µT )2

2µ γD
, (2.79)

where from (2.60) and (2.62), we have ∂τY /∂ρ = b ν µT/(2
√
ρ) and from (2.78)

∂ρ/∂ε = κρ b µT ν
√
ρ/γD. Note that the term q/q0 is dropped from the derivative

of ρ with respect to ε because of q ≈ q0 at the onset of the hardening. The second
term in the bracket of (2.78) is vanished, for we consider the initial dislocation density
is much smaller than that in steady-state. One may wonder the validity of (2.78) in
small ρ, but it can be explained by the factor κρ which can correct the deviation. M0

is independent with strain rate, and it is affected little by temperature, for ν is a slow
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variable on temperature and γD is proportional to µ so that the temperature-dependent
shear modulus is neutralized. If we set a new conversion factor as

Kρ =
2a2µ2

b2µ2
T

M0, (2.80)

where parameter a is applied in the coefficient in order to keep Kρ dimensionless, we
obtain the governing equation for the density in the form

∂ρ

∂ε
= Kρ

τY q

a2 µ ν2 q0

(
1− ρ

ρss(χ)

)
.

At last, we end this chapter by showing the system of governing equations

τ − τB − τY = 0,

∂τY
∂ε

= µ

[
1− q(τY , ρ)

q0

]
,

∂χ

∂ε
= Kχ

eD τY q

µ q0

(
1− χ

χ0

)
,

∂ρ

∂ε
= Kρ

τY q

a2 µ ν2 q0

(
1− ρ

ρss(χ)

)
.

(2.81)
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3. Non-uniform Plastic Deformations Undergoing
Anti-plane Constrained Shear

3.1. Introduction

The aim of this chapter is to extend Berdichevsky’s formula for the free energy den-
sity of excess screw dislocations (Berdichevsky, 2017) to anti-plane shear deformation.
This asymptotically exact energy density is based on the assumption that a moderate
number of excess screw dislocations locally form a double-periodic structure (Wein-
berger, 2011). A modification, however, must be made by extrapolating this formula
to a range of extremely small and large dislocation densities in order to use it in posing
correct boundary-value problems. With the energy density of excess screw dislocations,
we develop thermodynamic dislocation theory for non-uniform plastic deformations of
crystals undergoing anti-plane constrained shear. The evolution of plastic slip, dis-
location distribution, isotropic and kinematic hardening are presented. Finally, the
stress-strain curves at different sample sizes are calculated, and the different types of
strain hardening are discussed.

Anti plane constrained shear:

L

x1

h

c

x2

x3

γh

Figure 3.1.: Anti-plane constrained shear.

Consider a single crystal layer undergoing anti-plane shear deformation. The anti-
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plane shear is defined as one in which

u1 = u2 = 0, u3 = w(x1, x2),

where u = (u1, u2, u3) denote the displacement and x1, x2, x3 are three axis in a Carte-
sian coordinate. Then the scalar components of strain tensor must have the form

ε11 = ε22 = ε33 = ε12 = 0 and ε31 =
1

2
u3,1, ε32 =

1

2
u3,2.

Let A be the cross-section of the layer perpendicular to the x3-axis. For simplicity, we
take A as a rectangle, A = (0, c)× (0, h), with c and h being the width and the height
of the cross-section, respectively. We place this single crystal in a “hard” device with
the prescribed displacement at the boundary ∂A × [0, L], with L being the depth of
the layer (see Fig. 3.1)

w = γ(t)x2 at ∂A× [0, L]. (3.1)

Hence, it is called anti-plane constrained shear. Here γ(t) corresponds to the overall
shear regarded as a given function of time t. We assume that c � h � L. The
problem is to predict the stress-strain curve as well as the dislocation density during
the plastic deformation.

3.2. Averaging Procedure and Energy of Screw Dislocations

3.2.1. A pair of screw dislocations:

+ _+
_

P Q

Figure 3.2.: A cut creating a pair of dislocations.

Let us first consider the equilibrium with a fixed amount of shear γ. If γ is large,
then dislocations may occur in the equilibrium state of this crystal layer. Assume
that a pair of screw dislocations are created by the well-known thought operations of
cutting, shifting, and relaxing the crystal as shown schematically in Fig. 3.2. Here
a cut Λ × [0, L] is made along the straight dashed line Λ=PQ in the (x1, x2)-plane,
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and the atoms on the plus side of the cut are shifted in the x3 direction through one
lattice distance. Then the atoms are rejoined again, and the whole crystal is relaxed.
By these operations, we have thus created a positive dislocation located at P and a
negative dislocation located at Q, with the dislocation lines being parallel to the x3-
axis. Since the cut cannot reach the boundary ∂A of the crystal’s cross-section due
to the smooth displacement specified there, dislocations must always occur in pairs.
In this sense, the “hard” boundary conditions model the grain boundaries serving as
obstacles and preventing dislocations from reaching them. The displacement w(x),
with x = (x1, x2), in the relaxed equilibrium state suffers a jump on the line Λ which
is equal to the magnitude of Burgers vector b,

[[w]] ≡ w+ − w− = b on Λ, (3.2)

where w+ and w− are the limiting values of w on the upper and lower side of Λ,
respectively. Gibbs variational principle states that the true displacement of the crystal
in the relaxed equilibrium state minimizes the energy functional

I =

∫
A\Λ

µ

2
(w2

,1 + w2
,2)da

among all admissible displacements satisfying (3.1) and (3.2), where µ is the shear
modulus and da = dx1dx2 denotes the area element. We get rid of the constraint (3.2)
and the cut by regarding function w(x) as the distribution (or generalized function,
Gelfand &Shilov (1964)). Then the derivatives of this generalized function are given
by

w,i = bmiδ(Λ) + we,i,

where mi is the unit normal vector to Λ, δ(Λ) the Dirac delta function with the
support Λ, and we the multi-valued displacement defined on A. In what follows the
Latin indices run from 1 to 2, and over repeated indices the summation is understood.
We call β3i = bmiδ(Λ) the plastic distortion, while βe3i = we,i the elastic distortion which
is assumed to be regular everywhere except maybe at the dislocation line. Thus,

w,i = β3i + βe3i.

Since the total strain is equal to the elastic strain outside the cut, we remove the cut
and reduce the above variational problem to the eigenstrain problem of minimizing
the energy functional

I =

∫
A

µ

2
[(w,1 − β31)2 + (w,2 − β32)2]da,

among all distributions satisfying (3.1) (Le, 2010). Changing the unknown function
as w = γx2 + u(x), with u = 0 at the boundary ∂A, we get the minimization problem

I =

∫
A
ϕ1(u)da =

∫
A

µ

2

[
(u,1 − β31)2 + (u,2 + γ − β32)2

]
da→ min

u|∂A=0
.

The energy (per unit depth) of the crystal containing this pair of dislocations is defined
as the minimum value of this functional, I

I = min
u|∂A=0

I. (3.3)
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It is convenient to deal with the dual variational problem. Following the standard
procedure (see Berdichevsky (2009)), we transform the integral I by the Legendre-
Fenchel transformation as∫

A

µ

2

[
(u,1 − β31)2 + (u,2 + γ − β32)2

]
da =

max
σ3i

∫
A

[
σ31β

e
31 + σ32β

e
32 −

1

2µ
(σ2

31 + σ2
32)

]
da, (3.4)

where the dual variables σ31 and σ32 to βe31 = u,1 − β31 and βe32 = u,2 + γ − β32 are
defined as the derivative of ϕ1(u) with respect to each variable,

σ31 =
∂ϕ1(u)

∂βe31

= µ(u,1 − β31), σ32 =
∂ϕ1(u)

∂βe32

= µ(u,2 + γ − β32). (3.5)

Inserting (3.4) into (3.3) and changing the order of the mini-maxi to maxi-mini prob-
lem, we obtain that

I = max
σ3i

min
u|∂A=0

[F1(σ3i) + l(u)], (3.6)

for which

F1(σ3i) =

∫
A

[−σ31β31 − σ32β32 + σ32γ −
1

2µ
(σ2

31 + σ2
32)]da,

l(u) =

∫
A

(σ31u,1 + σ32u,2)da.

With the aid of integration by parts, the functional l(u) can be decomposed into the
linear functional in terms of u and the other functional that gets rid of it,

l(u) = l1(u) + l2(σ3i), where l1(u) =

∫
A

(σ31,1 + σ32,2)uda,

l2(σ3i) =

∫
∂A

(σ31n1 + σ32n2)ũds,

where n1 and n2 are components of the unit normal vector n of the boundary ∂A and
ũ is a given function at the boundary. Then the minimization in (3.6) is reduced to
the minimization of l1(u),

min
u|∂A=0

[F1(σ3i) + l(u)] = F1(σ3i) + l2(σ3i) +

{
0 if σ31,1 + σ32,2 = 0,

−∞ if σ31,1 + σ32,2 6= 0.

When σ31,1 + σ32,2 vanishes, the linear function l1(u) has a finite minimum value that
is zero. Otherwise, the minimum of l1(u) is minus infinity, which is excluded from
maximization problem. As a result,

I = max
σ3i

[F1(σ3i) + l(σ3i)] (3.7)

with the constraint,

σ31,1 + σ32,2 = 0, inA.
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Before solving the maximization problem (3.7), we must check the validity of (2.17)
in this problem. Provided that ǔ is the solution of the Euler equation of I, and the
corresponding σ̌3i by (3.5) satisfies the inequality

F1(σ̌3i) + l(σ̌3i) 6 max
σ3i

[F1(σ3i) + l(σ3i)] 6 I =
µ

2

[
(ǔ,1 − β31)2 + (ǔ,2 + γ − β32)2

]
.

It turns out that, by substituting σ̌3i in terms of ǔ,i by (3.5),

F1(σ̌3i) + l(σ̌3i) =
µ

2

[
(ǔ,1 − β31)2 + (ǔ,2 + γ − β32)2

]
,

which implies that

max
σ3i

[F1(σ3i) + l(σ3i)] = I = min
u|∂A=0

I(u).

Due to the boundary condition ũ = 0, the term l(σ3i) vanishes, and by using of the
relation

max(F1) = −min(−F1),

the problem becomes solving

min
σ3i

∫
A

[σ31β31 + σ32β32 − σ32γ +
1

2µ
(σ2

31 + σ2
32)]da, (3.8)

among all shear stresses σ31 and σ32 satisfying the equilibrium equation

σ31,1 + σ32,2 = 0.

This equation is fulfilled if there exists a stress function Φ(x) such that

σ31 = Φ,2, σ32 = −Φ,1.

Substituting these formulas into (3.8) and integrating the first two terms by parts, we
obtain the dual minimization problem in terms of the stress function Φ(x),

J =

∫
A

[
1

2µ
(∇Φ)2 + αΦ + Φ,1γ

]
da→ min

Φ
, (3.9)

where

α = β32,1 − β31,2 = b[δ(x− x+)− δ(x− x−)].

Note that the energy of crystal containing these dislocations, I, equals to the minimum
of J taken with the minus sign, I = −J . It turns out that, if the jump of w is constant
on Λ, the energy is infinite. Therefore this variational problem needs a regularization.

The simplest regularization of the above variational problem is to use in (3.9) the
regularized dislocation density αr = b[δr0(x− x+)− δr0(x− x−)] instead of α, where

δr0(x− ξ) =

{
1
πr20

|x− ξ| < r0,

0 otherwise.
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Here, r0 is the radius of a small circle centered at ξ, interpreted as the dislocation
core.1 Varying the energy functional (3.9), with α being replaced by αr, we derive the
following boundary value problem

∇2Φ = µαr in A,
Φ,1 = −µγ on ∂A1 = (0, x2) and ∂A3 = (c, x2),

Φ,2 = 0 on ∂A2 = (x1, 0) and ∂A4 = (x1, h).

(3.10)

The boundary conditions in (3.10) will be simplified if we change the unknown function
as follows: Φ = −µγx1 + Ψ. Then, in terms of Ψ, the variational problem becomes

J =

∫
A

[
−1

2
µγ2 +

1

2µ
(∇Ψ)2 − µγx1αr + αrΨ

]
da→ min

Ψ
. (3.11)

This variational problem implies the Poisson equation subjected to the Neumann
boundary condition for Ψ{

∇2Ψ = µαr in A,
Ψ,n = 0 on ∂A,

(3.12)

where Ψ,n is the derivative in the normal direction to the boundary of A. Inserting
the minimizer Ψ̌, the solution of (3.12), into the functional J , we get for the energy of
crystal containing two dislocations

I = −J =

∫
A

(
µ

2
γ2 + µγx1αr −

1

2
αrΨ̌

)
da. (3.13)

Note that since J contains a quadratic and linear functional with respect to Ψ, a
simplified form is obtained by making use of Clapeyron‘s theorem as shown∫

A

(
1

2µ

(
∇Ψ̌

)2
+ αrΨ̌

)
da =

∫
A
−1

2
αrΨ̌da.

As an example, let us compute this energy in the case when a positive dislocation is
located at (c/2 − l/2, h/2) and a negative one at (c/2 + l/2, h/2) (see the details in
Appendix). We choose h = 10 micron, c = 1 micron, b = r0 = 1 Å. The dimensionless
energy of a dipole I/µb2 (with the constant term 1

2
µγ2ch being removed) as a function

of the distance l/c at three different strain are shown in Fig. 3.3(a), (b), (c). When no
displacement applied, there is only the energy of dislocation dipole stored in the crystal
shown in Fig. 3.3(a) (for γ = 0). One can observe the graph in Fig. 3.3(a) possesses the
property of rotational symmetry by an angle of 180◦. The reason is that the increasing
energy of the crystal near l/c = 0 is induced by the interaction of two dislocations of
opposite signs in the process of dipole dissolution, and the increasing crystal energy
near l/c = 1 is caused by the interaction of a dislocation with its image dislocation due
to the boundary. Hence, the behavior at two ends are caused by the same mechanism
leading to the rotational symmetry. Note that the free surface attracts the dislocation,
for there is the image dislocation of the opposite sign. Conversely, the rigid surface
repels the dislocation owing to the image dislocation of the same sign. Note that
dissociation of edge and screw dislocations under zero stress and at 0K temperature

1Other regularizations are also possible (see, e.g., Cai et al. (2006); Aifantis (2009); Po et al. (2014)).
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Figure 3.3.: Dimensionless energy of dislocation dipole as function of l/c: a) γ = 0
(yellow), b) γ = 0.001 (red), c) γ = 0.01 (black), d) Zoom in for the case
γ = 0, e) Zoom in for the case γ = 0.001, f) Zoom in for the case γ = 0.01.

has been studied and compared by different models on atomistic scale (Mianroodi et
al., 2016).

When a nonzero γ is applied, it is no longer pure dipole energy stored in the crystal
but also the interaction of dipoles with γ that is the second term in (3.13). Two cases
for γ = 0.001 and γ = 0.01 are shown in Fig. 3.3(b) and (c). In all three cases, the
energy has a local minimum at l = 0. Therefore, if no thermal fluctuation occurs,
nucleation of the dislocation dipole is not energetically preferable. However, as shown
in Berdichevsky & Le (2002), the presence of thermal fluctuation changes the situation.
Now, for each temperature, there is a certain density of the dislocation dipoles with
a fairly small mean distance between dislocations in the dipole. If the external field
is applied, the dipoles can even be dissolved into freely moving dislocations if the
energy barrier can be overcome. One can compare the magnitudes for three cases
from Fig. 3.3(d), (e), (f) (Zoom in near the origin) and Fig. 3.4. Note that the larger
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Figure 3.4.: Combination of three cases of Fig. 3.3.

the field, the smaller the energy barrier, so that the thermal fluctuation makes it easier
to dissolve the dipoles if the applied shear stress is large enough.
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Figure 3.5.: Energy of the crystal containing a dislocation dipole for different aspect
ratio h/c of the rectangular cross section: (a) h/c = 1 (black), h/c = 5 and
h/c = 10 (blue, two curves overlapped), (b) h/c = 1 (black), h/c = 0.5
and h/c = 0.1 (red).

Fig. 3.5 shows the dimensionless energy of dislocation dipole for γ = 0 with different
aspect ratio h/c of the rectangular cross-section. The black curve in Fig. 3.5 is the
energy with the aspect ratio h/c = 1. The blue curves in Fig. 3.5(a) indicate the cases
for h/c = 5 and h/c = 10 (two curves overlapped), and the red curves in Fig. 3.5(b)
represent the crystal energy with the aspect ratio h/c = 0.5 and h/c = 0.1. When
the aspect ratio is beyond a certain value, roughly about 0.5, there is a tiny change in
appearance of dipole energy. However, when the aspect ratio is below than that, the
influence to the energy is strong. This behavior is due to the hyperbolic sine in the
denominator of function Qk in Neumann function (A.2).
One question arises whether this phenomenon relate to the report by Chen & Ngan.
(2010), Keller et al. (2011) that the strengthening effect depends on the shape of the
sample, and it is revealed as the ratio h/c (the thickness of the sample h to the grain
size c) decreases from ∼ 3 or 4.
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3.2.2. A large number of screw dislocations:

Now we allow an equally large number of screw dislocations of opposite signs to enter
the crystal layer simultaneously. If h� c, we may neglect the end-effect near x2 = 0
and x2 = h, and assume that the positive and negative dislocations are well-separated
and distributed symmetrically about the straight line x1 = c/2. In this case, β31 = 0,
while

β32(x) ≡ β(x) =
N∑
i=1

bδ(Λi), (3.14)

with Λi being the straight segments parallel to the x1-axis with the middle points lying
on the line x1 = c/2. The regularized dislocation density is given by

αr(x) =
N∑
i=1

b[δr0(x− x+
i )− δr0(x− x−i )],

where x+
i and x−i are the positions of the positive and the negative dislocations, re-

spectively (the end-points of Λi). Thus, the dislocation density is a piecewise constant
and fast-changing function of the coordinates. We further assume that function αr(x)
is locally double-periodic, with the characteristic period being much smaller than c.
Following Berdichevsky (2017), we split the regularized dislocation density into the
average dislocation density denoted by ᾰr and the fluctuation denoted by άr

αr = ᾰr + άr. (3.15)

Here the averaging over the cell is defined as

ᾰr =
1

|Cx|

∫
Cx

αrda,

where Cx is the periodic cell in the (x1, x2)-plane, while |Cx| denotes its area. Thus,
ᾰr is a slowly changing function of the coordinates. We call ρg = |ᾰr|/b the density of
excess dislocations (or average dislocation density). This decomposition gives rise to
the decomposition of the stress function Ψ and the plastic slip β as well

Ψ = Ψ̆ + Ψ́,

β = β̆ + β́.
(3.16)

Note that function β defined in (3.14) is non-periodic and equals the sum of generalized
functions concentrated on the cut lines Λi. Therefore, the integral over Cx of β equals
the sum of line integrals over those segments Λi lying within this cell. It is easy to see
that (cf. (Nye, 1953))

ᾰr = β̆,1.

Inserting the decomposed dislocation density (3.15) and the decomposed stress func-
tion (3.16)1 into the energy functional (3.11), we get J = J1 + J2, where

J1 =

∫
A

[
−1

2
µγ2 − µγx1ᾰr +

1

2µ

(
∇Ψ̆

)2

+ ᾰrΨ̆

]
da,
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while

J2 =

∫
A

(−µγx1άr + άrΨ̆)da+

∫
A

(
1

µ
∇Ψ̆ · ∇Ψ́ + ᾰrΨ́

)
da

+

∫
A

[
1

2µ

(
∇Ψ́

)2

+ άrΨ́

]
da. (3.17)

Based on this decomposition, the minimization of J splits into the minimization of J1

among Ψ̆ and then J2 among Ψ́, provided Ψ̆ is known. It is easy to show that the
negative minimum value of J1 coincides with the energy of average elastic strain

−J1 =

∫
A

1

2
µ(γ − β̆)2da. (3.18)
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γ = 1 
2 m 

∫ 
c 
∫ 

c G ( y − ˜ y ) m ∑ 
i, j=1 

1 
πa 2 1 χ ( y − s i ) χ(

˜ y − s j )d 2 yd 2 ̃  y . (46) 
Let us split the sum in (46) into the sums over i = j and i ̸ = j . Due to translation invariance of the integrand, all integrals 
for i = j are equal to γ of the simple cell (33) ; denote it further by γ̊ . Thus, 

γ = γ̊ + 1 
2 m 

m ∑ 
i ̸ = j 

∫ 
C 

∫ 
C G ( y − ˜ y ) 1 

πa 2 1 χ ( y − s i ) 1 
πa 2 1 χ

(
˜ y − s j )d 2 yd 2 ̃  y . (47) 

For s i ̸ = s j , one can tend a 1 in (47) to zero. Then χ ( y − s i ) /πa 2 1 transforms to δ( y − s i ) , and we obtain for γ finally 
γ = γ̊ + 1 

2 m 
m ∑ 

i ̸ = j G (s i − s j ). (48) 
Consider the case m = 2 . Setting s 2 = 0 , s 1 ≡ s , we have for γ

γ ( s ) = γ̊ + G (s ) . (49) 
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Figure 3.6.: (a) Dependence of interaction energy on the total number of dislocations N
in continuum theory of dislocation (solid line) and Weinberger‘s numerical
results (dots) (a) for small N and (b) for large N . Image reprinted by
permission

Concerning the functional J2 we see that, due to the Euler equation for Ψ̆, the second
integral in (3.17) vanishes. The first integral is small and can be neglected. The min-
imization of the last integral in (3.17) among periodic functions Ψ́ for the hexagonal
periodic dislocation structure has been solved by Berdichevsky (2017). The combina-
tion of his result with (3.18) leads to the following statement: the energy density of
crystal containing excess dislocations equals the sum of the energy density of macro-
scopic elastic strain and energy density of excess dislocations ψm(ρg)

ψ =
µ

2

(
γ − β̆

)2

+ ψm(ρg),

where ρg = |β̆,1/b| and

ψm(ρg) = µb2ρg
[
ψ∗ +

1

4π
ln

1

b2ρg

]
. (3.19)

Here ψ∗ is a parameter depending on the periodic dislocation structure. For the
hexagonal periodic dislocation structure ψ∗ = −0.105. From (3.19), Berdichevsky
(2017) extracted the interaction energy Eint, the subtraction of self-energy from the
total energy of dislocations, as a function of dislocation number N and compared with
the numerical results by Weinberger (2011) as shown in Fig. 3.6. For the number of
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dislocations in the range between 0 ∼ 500, the results by two methods match well.
However, the formula (3.19) has an advantage of low cost in computation, even if
the crystal possesses large numbers of dislocation. Note that concerning the practical
dislocation density is 1014m−2 ∼ 1016m−2 and the cross-section area of the sample is
10µm× 10µm, there are thousands of dislocations in crystals.

3.2.3. Extrapolation of the energy density of excess dislocations:

According to (3.19), the dimensionless energy density of excess dislocations can be
written as

f(y) ≡ ψm/µ = y(ψ∗ − 1

4π
ln y), (3.20)

where y = b2ρg is the dimensionless dislocation density. The plot of this function for
y ∈ (0, 1) is shown in Fig. 3.7. Function (3.20) possesses three remarkable properties.
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Figure 3.7.: Dimensionless energy density f = ψm/µ versus dimensionless dislocation
density y = b2ρg.

First, f ′(0) = ∞. Second, f(y) is concave. Third, f(y) tends to −∞ when y → ∞.
These properties make the application of (3.20) to the determination of average plastic
slip via energy minimization within the continuum approach problematic. For the well-
posedness of the boundary value problems within the continuum approach requires the
convexity of the energy density and the regularity of its derivative with respect to ρg

(the latter is needed for the regularity of the back-stress). Looking more closely at the
assumptions made in deriving formula (3.19), we see that these assumptions can be
violated for the extremely small or large dislocation densities. Such extreme values of
dislocation densities may occur near the head and the tail of the dislocation pile-up.
In these cases, the dislocations are either at the wall or adjacent to the dislocation-free
zone, so the local periodicity is no longer valid there. Therefore the energy density
(3.19) must be extrapolated to these extremely small or large dislocation densities.

We propose the following extrapolation for the free energy density

ψm(ρg) = µb2ρg
(
ψ∗ +

1

4π
ln

1

k0 + b2ρg

)
+

1

8π
µk1(b2ρg)2. (3.21)
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with k0 and k1 being two new material constants. The small constant k0 corrects
the behavior of the derivative of energy at ρg = 0, while the last term containing
k1 corrects the behavior of the energy at large density of the excess dislocations. We
choose k0 and k1 so that: (i) the energy density is close to the asymptotic exact energy
density for moderate dislocation densities, (ii) ψm(ρg) is the convex function for all
positive ρg. The latter requirement guarantees the existence of the energy minimizer.
To investigate the convexity, we compute the second derivative of

f(y) ≡ ψm/µ = y

(
ψ∗ +

1

4π
ln

1

k0 + y

)
+

1

8π
k1y

2 (3.22)

as function of y = b2ρg. The simple calculation shows that

d2f

dy2
=
k1y

2 + (2k0k1 − 1)y + k1k
2
0 − 2k0

4π(k0 + y)2
.

For function ψm to be convex, the numerator must be positive for y > 0. Since the
roots of this quadratic function are

y1,2 =
1− 2k0k1 ±

√
1 + 4k0k1

2k1

,

it is sufficient to require the largest root to be negative. This gives the following
constraint for the coefficients k0 and k1

k0k1 > 2.
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Figure 3.8.: The dimensionless energy density ψm/µ versus the density of excess dis-
locations ρg: (i) (3.19) (dashed line), (ii) (3.21) (bold line).

Fig. 3.8 shows the comparison between two dimensionless energy densities ψm/µ de-
fined in accordance with (3.19) and (3.21) within the range ρg ∈ (0, 1014/m2) (on the
left) and the range ρg ∈ (0, 1016/m2) (on the right). Here we choose b = 10−10m,
k0 = 10−6, k1 = 2.1 × 106. We see that the two energy densities are nearly the same
in the range ρg ∈ (0, 1014/m2), but differ essentially for ρg larger than 1014/m2.
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3.3. Anti-plane Constrained Shear Deformation and Numerical
Simulations

Thermodynamic dislocation theory in anti-plane shear deformation:

Now let us briefly go through the thermodynamic dislocation theory discussed in
Sec. 2.3.3, and incorporate the formula for the energy density in it. We restrict ourself
to the isothermal processes, so the kinetic-vibrational temperature T is assumed to be
constant and can be dropped in the list of arguments of the free energy density. Our
main assumption for the free energy density is

ψ =
1

2
µ(γ − β̆)2 + γDρ

r + ψm(ρg)− χ(−ρ ln(a2ρ) + ρ)/L, (3.23)

where ρ = ρr+ρg is the total density of dislocations, and a the mean distance between
dislocations in the saturated state. The first term in (3.23) describes the energy

density of crystal due to the macroscopic elastic strain, and the breve (̆ ) over β will
be omitted for short from the average plastic slip. The second term is the energy
density of redundant dislocations, with γD being the energy of the dislocation dipole
per unit length. The third term is the energy density of excess dislocations, where
ψm(ρg) is the extrapolated energy density taken in accordance with (3.21). The last
term has been introduced by Langer (2016), with SC = −ρ ln(a2ρ) + ρ being the
configurational entropy of dislocations. With this free energy density, we can now
write down the energy functional of the crystal

I[β(x, t), ρr(x, t), χ(x, t))] =

∫
A
ψ(εe, ρr, ρg, χ)da. (3.24)

Note that the average plastic slip satisfies the kinematic boundary condition

β(0, x2, t) = β(c, x2, t) = 0. (3.25)

Under the increasing overall shear strain γ(t), the shear stress also increases, and when
it reaches the Taylor stress, dislocation dipoles dissolve into freely moving dislocations.
The latter dislocations move under the action of shear stress until they are trapped
again by dislocations of opposite sign. During this motion, dislocations always experi-
ence the resistance causing the energy dissipation. As proposed before, the dissipation
potential is in the form

D(β̇, ρ̇, χ̇) = τY |β̇|+
1

2
dρρ̇

2 +
1

2
dχχ̇

2, (3.26)

where τY is the flow stress during plastic yielding, dρ and dχ are given functions in
(2.51). The first term in (3.26) is the plastic power which is assumed to be linear with
respect to the plastic slip rate (Puglisi & Truskinovsky, 2005). The other two terms
describe the dissipation caused by the multiplication of dislocations and the increase
of configurational temperature (Langer et al., 2010).
Since the dislocation mediated plastic flow is an irreversible process, we derive the gov-
erning equations from the following variational principle: the true average plastic slip
β̌(x, t), the true density of redundant dislocations ρ̌r(x, t), and the true configurational
temperature χ̌(x, t) obey the variational equation

δI +

∫
A

(
∂D

∂β̇
δβ +

∂D

∂ρ̇
δρ+

∂D

∂χ̇
δχ

)
da = 0 (3.27)
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for all variations of admissible fields β(x, t), ρr(x, t), and χ(x, t) satisfying the con-
straints (3.25). Taking the variation of I with respect to three unknown functions β,
ρr, and χ and requiring that Eq. (3.27) is satisfied for their admissible variations and
in addition with (2.54), we get four equations

τ +
1

b
(ς signβ,1),1 − τY = 0,

τ̇Y = µ

[
q0

t0
− q(τY , ρ)

t0

]
,

χ̇ = Kχ
τY q(τY , ρ)

µ t0

[
1− χ

χ0

]
,

ρ̇ = kρ
τY
γD

q(τY , ρ)

t0

[
1− ρ

ρss(χ)

]
,

(3.28)

where τ = µ(γ−β) is the shear stress, while ς = ∂ψ/∂ρg. Eq. (3.28)1, valid under the
condition β̇ > 0, can be interpreted as the balance of microforces acting on dislocations,
with the second term taken with minus sign being the back-stress. This equation is
subjected to the Dirichlet boundary condition (3.25) while the other three equations
are subjected to initial conditions. Eq. (3.28)2 is a rate form of Hooke’s law involving
Orowan’s equation and the kinetics of dislocation depinning mechanism represented
by two formula,

q(τY , ρ) = b
√
ρ[fP (τY , ρ)− fP (−τY , ρ)], (3.29)

fP (τY , ρ) = exp
[
− 1

Θ
e−τY /τT (ρ)

]
,

where Θ is a dimensionless temperature given as Θ = T/TP . The rate of shear strain
is expressed by γ̇ = q0/t0 with t0 = 10−12s being the characteristic microscopic time
scale. Note that in the absence of the back stress, the rate of plastic deformation
β̇ equals to q/t0, but when the effect of excess dislocations taken into account, β̇ is
not necessarily so. Eq. (3.28)3 is the equation of motion for the effective (configura-
tional) temperature χ. It is a statement of the first law of thermodynamics for the
configurational subsystem. Kχ is inversely proportional to the effective specific heat,
and χ0 the steady-state value of the effective temperature χ. Eq. (3.28)4 describes
the flow of energy through the system of dislocations, as constrained by the second
law of thermodynamics, where the second law implies that the difference between the
power delivered to the system and the rate at which energy is stored in the form of
dislocations is positive. ρss(χ) = (1/a2)e−γDL/χ is the steady-state value of dislocation
density ρ at given χ, and the coefficient kρ denotes a dimensionless energy conversion
factor. In general, the solution of the problem is sought by solving (3.28) that is a
system of coupled partial differential equations satisfying the boundary conditions and
initial conditions. However, in what follows of this chapter, we separate (3.28) into two
parts, one part is the decoupled equation, and the other one is a system of ordinary
differential equations, represented as follow
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Decoupled equation

τ +
1

b
(ς signβ,1),1 − τY = 0,

A system of equations

τ̇Y = µ[
q0

t0
− q(τY , ρ)

t0
],

χ̇ = Kχ
τY q(τY , ρ)

µ t0
[1− χ

χ0

],

ρ̇ = kρ
τY
γD

q(τY , ρ)

t0
[1− ρ

ρss(χ)
].

This separation has a benefit that reduces the complexity of the computation, from the
partial differential equation to ordinary differential equation. Furthermore, by means
of the separation, the onset of dislocation pile-ups can be analytically computed, and
the size effect can be observed from the solving process. However, this method may
lead to a tiny discrepancy from the exact solution, for τ is no longer coupled with
τY in each spatial coordinate. We suppose that due to the relatively large dislocation
free zone (discussed later), the small region of non-uniformity of β affects little to the
result.

We turn back to the single crystal layer undergoing an anti-plane shear deformation
with the increasing overall shear strain γ(t) such that γ̇=const. We aim at determin-
ing the average plastic slip, the densities of total and excess screw dislocations, the
configurational temperature, and the stress-strain curve as a function of γ(t) by the
thermodynamic dislocation theory proposed.
When the applied shear stress exceeds Taylor’s stress, dislocation dipoles dissolve into
freely moving dislocations. This applied stress drive the positive dislocations to the
left and the negative ones to the right. After a short time, these free dislocations will
either be trapped by the dislocations of opposite sign or be blocked near the grain
boundaries acting as the obstacles. Thus, the dislocations of the same sign piling up
against the left and right boundaries become excess dislocations occupying the bound-
ary layers. We assume that the average plastic slip β is nearly uniform in the middle
of the specimen. Neglecting a small non-uniformity of β in the boundary layers, we
proceed the determination of τY , ρ, and χ in the first approximation to the solution of
(3.28)2 ∼ (3.28)4. After knowing τY , ρ, and χ, the variational equation (3.27) reduces
to minimizing the following ”relaxed” energy functional

Id = hL

∫ c

0

[
1

2
µ (γ − β)2 + µf(b|β,1|) + τY (γ)β

]
dx1

among β satisfying (3.25), provided the sign of β̇ is positive during the loading course.
Here we neglect the end-effect at x2 = 0 and x2 = h and assume that β depends only
on x1.

It is convenient to introduce the following dimensionless coordinates and quantities

Ĩd =
Id

µbLh
, x̃ =

x1

b
, c̃ =

c

b
, g(γ) =

τY (γ)

µ
,

in terms of which the above functional becomes

Id =

∫ c

0

[
1

2
(γ − β)2 + f(|β′|) + g(γ)β

]
dx,
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where the prime ( )′denotes the derivative of a function with respect to its argument.
Since we shall deal only with the dimensionless quantities, the tilde over the variables,
(̃ ), will be omitted for short and x1 is replaced by x for convenience. Up to an
unessential constant, this functional can be reduced to

Id =

∫ c

0

[
1

2
(γl − β)2 + f(|β′|)

]
dx, (3.30)

where γl(γ) = γ − g(γ).

Following the method of solution of the dislocation pile-up problem developed in
Berdichevsky & Le (2007) (see also Le & Sembiring (2008a,b, 2009); Kochmann &
Le (2009a); Kaluza & Le (2011); Le & Nguyen (2012, 2013); Le & Günther (2014); Le
& Piao (2016); Le & Tran (2018)), we look for the minimizer in the form

β(x) =


β1(x) for x ∈ (0, l),

βm for x ∈ (l, c− l),
β1(c− x) for x ∈ (c− l, c),

where β1(x) is an unknown increasing function, βm is a constant, l an unknown length,
0 ≤ l ≤ c/2, and β1(l) = βm at x = l. With this Ansatz, the functional becomes

Id = 2

∫ l

0

[
1

2
(γl − β1)2 + f(β′1)

]
dx+

1

2
(γl − βm)2(c− 2l). (3.31)

Varying this energy functional with respect to β1, we get the equation

−f ′′(β′1)β′′1 + β1 = γl(γ) (3.32)

in the interval (0, l) which is subjected to the boundary conditions

β1(0) = 0, β1(l) = βm.

The variation of (3.31) with respect to l and βm yield the two additional boundary
conditions at x = l

β′1(l) = 0,

2f ′(0)− (γl(γ)− βm)(c− 2l) = 0.
(3.33)

The first condition of (3.33) means the continuity of the dislocation density. It becomes
clear from this construction that the above variational problem has no solution for the
unmodified energy density f(y) from (3.20). For the modified function f(y) from
(3.21), the variational problem is well-posed, and there exists a unique minimizer.

It is evident that l → 0 when βm → 0. In this limit, we can find the critical value γc,
at which the excess dislocations begin to pile up, as the root of the equation

γ − g(γ) = 2(ψ∗ − 1

4π
ln k0)/c. (3.34)

This equation shows clearly the size effect. For γ > γc, the system (3.32)∼(3.33) has
a non-trivial solution. Since the integrand in functional (3.31) does not depend on x,
Euler’s equation (3.32) admits the first integral

1

2
(γl − β1)2 + f(β′1)− β′1f ′(β′1) = C.
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With f(y) from (3.22) and with the boundary conditions β′1(l) = 0 and β1(l) = βm,
this equation reduces to

(β′1)2

4π

(
k1 −

2

k0 + β′1

)
= (γl − β1)2 − (γl − βm)2. (3.35)

Due to the convexity of f(β′), the left-hand side of (3.35) is a monotonously increasing
function of β′1. Therefore, for each β1 < βm, there exists a unique root β′1 of this equa-
tion. The numerical solution of (3.35) will be discussed in the subsequent numerical
simulation. After finding the average plastic slip, we calculate the average shear stress
according to

τa =
1

c

∫ c

0

µ(γ − β(x))dx

=
µ

c

[
γc− 2

∫ l

0

β1(x)dx− βm(c− 2l)

]
. (3.36)
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Figure 3.9.: Functions g(γ) = τY (γ)/µ: (i) q̃0 = 10−12 (black), (ii) q̃0 = 10−14 (red),
(i) q̃0 = 10−16 (yellow).

Numerical simulations:

Assume that the crystal is loaded with the constant shear strain rate γ̇. As discussed,
the first task is then to solve the system (3.28)2 ∼ (3.28)4. Since the shear strain rate
γ̇ is constant and only g(γ) = τY (γ)/µ is required for the next task, we choose γ as the
independent variables and rewrite this system of equations in terms of the following
dimensionless quantities

g(γ) =
τY (γ)

µ
, ρ̃ = a2ρ, χ̃ =

χ

eD
, ρ̃ss(χ̃) = e−1/χ̃.
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Figure 3.10.: Normalized total density of dislocations ρ̃(γ) = a2ρ: (i) q̃0 = 10−12

(black), (ii) q̃0 = 10−14 (red), (i) q̃0 = 10−16 (yellow).

The system of ODEs becomes

dg

dγ
= 1− q̃(g, ρ̃)

q̃0

,

dχ̃

dγ
= Kχg

q̃(g, ρ̃)

q̃0

[
1− χ̃

χ̃ss(q̃)

]
,

dρ̃

dγ
=

Kρg

ν̃(Θ, ρ̃, q̃0)2

q̃(g, ρ̃)

q̃0

[
1− ρ̃

ρ̃ss(χ̃)

]
.

(3.37)
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Figure 3.11.: Relative thickness of the boundary layers l(γ).

Here q̃0 = (a/b)γ̇t0, r = (b/a)µT/µ and Kρ is a new dimensionless conversion factor
that proportional to kρ (see (2.79) and (2.80) in Sec. 2.3.3). For the loading process,
we take

q̃(g, ρ̃) =
√
ρ̃ exp

[
− 1

Θ
e−g/(r

√
ρ̃)

]
,

ν̃(Θ, ρ̃, q̃0) = ln

(
1

Θ

)
− ln

[
1

2
ln

(
ρ̃

q̃2
0

)]
.
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Note that the second term in (3.29) is neglected here as small for this loading case.
Let T = 298 K. The parameters for copper at this room temperature are chosen as
follows (Langer et al., 2010)

r = 0.0323, Θ = 0.0073, K = 350, Kρ = 96.87, χ̃ = 0.25.

We choose also the initial conditions

g(0) = 0, ρ̃(0) = 10−6, χ̃(0) = 0.18.

The plots of functions g(γ) found by the numerical integration of (3.37) for three
different resolved shear strain rates are shown in Fig. 3.9. It can be seen that g(γ) is
rate-sensitive. Besides, it is also temperature-sensitive. Fig. 3.10 shows the evolution
of the normalized total density of dislocations a2ρ versus γ for the above shear strain
rates.
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Figure 3.12.: The plastic slip β(x): (i) γ = 0.002 (black), (ii) γ = 0.005 (red), (iii)
γ = 0.01 (yellow).
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Figure 3.13.: Comparison of the plastic slip at γ = 0.002, γ = 0.005 and γ = 0.01 by
two methods: (i) Results by present method (solid line), (ii) Results by
solving (3.28) (Le et al., 2018) (dots).

Having found g(γ), we turn now to the determination of the plastic slip β(x) from the
energy minimization problem (3.30). In this problem, let us fix q̃0 = 10−12 and choose
the following parameters for copper

b = 0.255 nm, a = 2.55 nm, c = 5.1µm, ν = 0.355.
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We also choose k0 = 10−6, k1 = 2.1× 106. With these parameters and with the above
function g(γ) we find from equation (3.34) that γc = 0.00016. To solve equation (3.35),
we reduce it to the following cubic equation

k1q
3 + (k0k1 − 2)q2 − 4παq − 4πk0α = 0,

with q = β′1 and α = (γl − β1)2 − (γl − βm)2. Due to the convexity of f(β′1) for the
chosen set of parameters, this cubic equation has only one positive real root that we
denote by

β′1 = p(α) = p((γl − β1)2 − (γl − βm)2).

Integrating this equation numerically, we find

x =

∫ β1

0

dz

p((γl − z)2 − (γl − βm)2)
, (3.38)

which is the inverse function of β1(x). The length of the boundary layer equals

l(βm) =

∫ βm

0

dz

p((γl − z)2 − (γl − βm)2)
. (3.39)
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Figure 3.14.: The normalized density of excess dislocations b2ρg = β′: (i) γ = 0.002
(black), (ii) γ = 0.005 (red), (iii) γ = 0.01 (yellow).

Substituting function l(βm) from (3.39) into (3.33)2, we get an equation to determine
βm in terms of γ. Then, with this βm(γ), we find also the length l(γ) = l(βm(γ)) of the
boundary layer. The plot of function l(γ) is shown in Fig. 3.11, from which it is seen
that l(γ) is a monotonously increasing function of γ. However, for the whole range of
γ ∈ (γc, 0.08) the relative thickness of the boundary layers l remains small compared
to c̄ = 2 × 104. Next, we find with (3.38) the plastic slip as a function of x at three
chosen values of γ > γc. Their plots are shown in Fig. 3.12. We see that the plastic
slip is constant in the middle of the specimen, and changes rapidly only in two thin
boundary layers where the positive and negative excess dislocations pile up against
the grain boundaries. Le & Tran (2018) plotted the plastic slip numerically by solving
the system of partial differential equations (3.28). When we compare two results, one
can observe that two simulations match well, as shown in Fig. 3.13, except the region
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near the joint connecting the dislocation free-zone and dislocation pile-ups.
The number of excess dislocations increases with increasing shear strain. It is inter-
esting to know the distribution of normalized density of excess dislocations b2ρg = β′1.
Their distributions at three chosen values of γ > γc in the left boundary layer are
shown in Fig. 3.14. In the right boundary layer, the excess dislocations of opposite
sign are symmetrically distributed. Using the implicit equation (3.38), we reduce
equation (3.36) for the average dimensionless shear stress to

τ/µ = γ − 1

c

[
2

∫ βm

0

βdβ

p((γl − β)2 − (γl − βm)2)
+ βm(c− 2l)

]
.
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Figure 3.15.: Dimensionless average shear stress versus shear strain curve: (i) present
theory: c = 5.1 micron (black), c = 51 micron (red) (ii) LBL-theory
(yellow).

The dimensionless shear stress versus the shear strain curve computed in accordance
with this equation is shown in Fig. 3.15 for two chosen widths of the sample: (i)
c = 5.1 micron (black), (ii) c = 51 micron (red). For comparison, we also show the
stress-strain curve g(γ) computed in accordance with the LBL-theory (yellow). We see
that, in addition to the isotropic work-hardening caused by the redundant dislocations,
there is a kinematic work-hardening caused by the pile-up of excess dislocations against
the grain boundaries. The difference due to this kinematic work-hardening becomes
remarkable at large strains. Besides, it is seen that this kinematic work-hardening
decreases when the thickness of the specimen increases, thus exhibiting the size effect
(cf. Berdichevsky & Le (2007); Le & Sembiring (2008a,b, 2009); Kochmann & Le
(2009a); Kaluza & Le (2011); Le & Nguyen (2012, 2013); Le & Günther (2014); Le &
Piao (2016); Le & Tran (2018)). For single crystals of macroscopic sizes, the kinematic
work-hardening is negligibly small, and the stress-strain curve approaches that of LBL-
theory.

Different boundary conditions are shortly discussed. The task we have investigated is
solving the minimization problem of energy functional (3.24) subjected to the Dirichlet
boundary conditions (3.25) at two ends. This boundary condition leads to dislocation
pile-ups in the boundary layers, and a dislocation free zone forms between those two
layers. Suppose now there is an imaginary boundary at x1 = c/2, then this boundary
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Figure 3.16.: Comparison of the plastic slip driven by Dirichlet-Dirichlet boundary
condition in the interval x1 ∈ (0, c) (red) and that by Dirichlet-Neumann
boundary condition in the interval x1 ∈ (0, c/2) (blue).

can be regarded as being subjected to homogeneous Neumann boundary condition
because the number of dislocations is proportional to the curl of plastic slip, and
∂β(c/2, x2)/∂x1 = 0 implies the dislocation free condition at (c/2, x2). Comparing
the plastic slip driven by two Dirichlet boundary conditions with that by Dirichlet-
Neumann boundary conditions (3.40), one see from Fig. 3.16 that they coincide to
each other. The blue curves indicate the plastic slip subjected to Dirichlet-Neumann
boundary condition in the interval x1 ∈ (0, c/2), and the red curves are those presented
in Fig. 3.12.

β(0, x2) = 0,
∂β(c/2, x2)

∂x1

= 0. (3.40)

Le & Tran (2018) investigated the problem of crystal sample undergoing the anti-
plane constrained shear with boundary condition (3.41), while it considered not only
the loading process but also unloading, and further reloading in the opposite direction.
As a consequence, the response of the stress-strain curve shows clearly the Bauschinger
effect. Following the idea, we compare the Bauschinger effects by the same loading
process (Loading, Reversal, and Reloading) but with different boundary conditions as
(3.42),

Dirichlet-Dirichlet: β(0, x2) = 0, β(c, x2) = 0, (3.41)

Dirichlet-Neumann: β(0, x2) = 0,
∂β(c, x2)

∂x1

= 0. (3.42)

The blue curve in Fig. 3.17 represents the Bauschinger effect caused by (3.41) and the
red curve indicates that by (3.42). The flow stress τY /µ versus γ (isotropic hardening)
is plotted for comparison by the dashed black curve. It turns out that the crystal
sample under (3.41), by which two pile-ups of dislocation take place, is hardened most
and shows strongest Bauschinger effect, while it is less hardened for the sample under
(3.42) because there is only one boundary that dislocations pill-ups.
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Figure 3.17.: Stress-strain curves at the strain rate q̃0 = 10−13, for room temperature:
(a) with Dirichlet-Dirichlet boundary conditions (blue), Eq. (3.41), (b)
with Dirichlet-Neumann boundary conditions (red), Eq. (3.42), (c) flow
stress τY /µ versus strain γ (dashed black).

3.4. Conclusion

In this chapter, the asymptotically exact energy density of excess screw dislocation
found by the averaging procedure is extrapolated to the extremely small or large
dislocation density. This energy density is used in applying the thermodynamic dislo-
cation theory for non-uniform plastic deformations of crystals undergoing anti-plane
constrained shear. We decoupled the equation for microforce equilibrium from the
system of governing equations under the assumption that the decoupling weakly in-
fluences the result. Under the corresponding deformation, the excess dislocations pile
up in thin boundary layers near the grain boundaries. The stress-strain curves exhibit
both the isotropic hardening and kinematic hardening and show the size effect. For
single crystals of macroscopic sizes, the kinematic work-hardening is negligibly small,
and the stress-strain curve approaches that of LBL-theory. At last, different boundary
conditions are investigated, and its effect on the kinematic hardening and Bauschinger
effect are studied.
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4. Thermodynamic Dislocation Theory: Size Effect in
Torsion

4.1. Introduction

The purpose of this chapter is to explore the use of TDT for non-uniform plastic
deformations (Le, 2018; Le & Piao, 2018; Le & Tran, 2018) in modeling twisted copper
wires. Our challenge is to simulate the torque-twist curves that show the hardening
behavior and the size effect. We also want to compare these torque-twist curves with
those obtained by a simple extension of the LBL theory (Le et al., 2018) in which the
excess dislocations are ignored, by the micro-torsion tests reported in (Liu et al., 2012)
and by an empirical formula proposed therein. To make this comparison possible, we
will need to identify from the experimental data obtained in (Liu et al., 2012) a list of
material parameters for twisted copper wires. For this purpose, we will use the large
scale least-squares analysis described in (Le et al., 2017, 2018; Le & Tran, 2017). The
comparison shows that: (i) the LBL-theory cannot predict the torque-twist curves and
the size effect for wires in the micrometer range, (ii) the empirical formula proposed in
(Liu et al., 2012) is not based on the solution of the coupled boundary-value problem
of dislocated crystal in equilibrium and therefore does not allow to find both the stress
distribution and the dislocation densities inside the bar, (iii) the TDT provides an
accurate prediction of the torque-twist curves and the size effect as well as enables
one to find the distributions of stress, strain, and dislocation densities. Regarding the
distribution of the excess dislocation density: It is still early to judge its validity by
comparing it with the available results in the literature, neither with the experimental
data obtained by the EBSD measurement (Ziemann et al., 2015), nor with the discrete
dislocation dynamics simulations (Senger et al., 2011) (see the discussion in Section
4.4 and in the conclusion).

4.2. Theory of Torsion

4.2.1. Torsion of prismatic bar:

General cross-section:
A prismatic bar is a bar in which there is a uniform cross-section throughout. The
deformation of the twisted bar is assumed to have rotation ωz in the cross-section and
warping for a non-circular cross-section in the bar axis. In torsion problem, we denote
three axes of the Cartesian coordinate by x, y, z and the twist (the angle of twist per
unit length) by ω. The displacement components ux, uy in the plane corresponding to
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the rotation are then

ux = −ωyz, uy = ωxz,

and the warping displacement uz along z-direction is proportional to the twist, but
independent of z,

uz = ωϕ(x, y),

where ϕ(x, y) is referred to as the warping function. Then the strain components from
these displacements are

εxx = εyy = εzz = 0,

and

εxz =
1

2
ω

(
∂ϕ

∂x
− y
)
, εyz =

1

2
ω

(
∂ϕ

∂y
+ x

)
,

εxy =
1

2

(
∂ux
∂y

+
∂uy
∂x

)
= 0.

By constitutive equation for the isotropic linear elastic material, the stress components
are

σxx = σyy = σzz = σxy = 0,

σxz = 2µεxz = µω

(
∂ϕ

∂x
− y
)
, σyz = 2µεyz = µω

(
∂ψ

∂y
+ x

)
.

The equilibrium equation in the absence of body force is presented as

∂σxz
∂x

+
∂σyz
∂y

= 0. (4.1)

This equilibrium equation (4.1) requires the warping function to satisfy the Laplace‘s
equation

∇2ϕ = 0, in A

where the boundary ∂A fulfills traction free condition on the surface, σ · n = 0, such
that (

∂ϕ

∂x
− y
)
nx +

(
∂ψ

∂y
+ x

)
ny = 0, (4.2)

for which

nx =
dy

ds
, ny = −dx

ds
. (4.3)

Here, ds is an increment of arc length. An alternative way by introducing a stress
function Φ (Prandtl‘s stress function) can make the boundary condition much simpler,

∂Φ

∂y
= σxz = µω

(
∂ϕ

∂x
− y
)
, −∂Φ

∂x
= σyz = µω

(
∂ψ

∂y
+ x

)
. (4.4)
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Differentiating ∂Φ/∂y and ∂Φ/∂x with respect to x and y, respectively, in order to
eliminate the warping function, and subtracting the two terms, we obtain a Poisson
equation as

∇2Φ = −2µω, in A. (4.5)

Substituting (4.3) and (4.4) into (4.2), we have

∂Φ

∂y

∂y

∂s
+
∂Φ

∂x

∂x

∂s
=
∂Φ

∂s
= 0,

which implies that the stress function Φ must be subjected to a homogeneous Dirichlet
boundary condition

Φ = 0, on ∂A. (4.6)

Note that Poisson equation, (4.5) and (4.6), with different shapes of cross-section
(ellipse, rectangular, triangular) can be solved by the use of Green‘s function.
The torque is given by

Tc =

∫
A

(σxzy − σyzx)da. (4.7)

Inserting (4.4) into (4.7) and applying the integration by parts and (4.6), the torque
in terms of the stress function is expressed as

Tc = 2

∫
A

Φ(x, y)da. (4.8)

Special case with circular cross-section:
If the cross section is circular, the problem becomes simpler because the warping
function vanishes. It is convenient to use circular cylindrical coordinate (r, θ, z), and
the only non-zero component of the displacement is the circumferential displacement
in the form

uθ = rωz.

Therefore, the non-zero strain and stress components for isotropic linear material are

εθz = εzθ =
1

2
rω, σθz = σzθ = µrω.

Since the torque represents the resultant of the shear stress distribution over the
circular cross-section, it follows that

Tc =

∫
A
σθzrda =

∫
A
µωr2da = 2π

∫ R

0

µωr3dr. (4.9)

4.2.2. Configuration of screw dislocations in torsion:

In both bending and indentation indicated in Fig. 2.9, the edge dislocations are ac-
cumulated in order to accommodate the plastic deformation (Arsenlis, 1999; Nix &
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Figure 4.1.: Configurations of excess screw dislocation in torsion loaded wire: (a) stress
components in the cylindrical polar coordinate, (b) Stress acting on planes
parallel and perpendicular to wire axis, (c) Screw dislocations parallel to
wire axis on θ-face (Weertman, 2002), (d) Screw dislocations perpendicular
to wire axis on z-face (Weertman, 2002).

Gao, 1997), and the images of the plastic deformation in both tests were observed
by scanning electron microscopy (SEM) (Demir et al., 2010a; Moser et al., 2005). In
torsion, it is believed that excess dislocations coaxial with the wire axis appear in the
form of the screw (Gao et al., 1999). Weinberger & Cai (2010) reported that for prop-
erly oriented nanowire under torsion, the favored mechanism of plastic deformation
is the Eshelby dislocations (Eshelby, 1953). However, there are different viewpoints
that screw excess dislocations may lie in the planes perpendicular to the wire axis
(Weertman, 2002). Fig. 4.1(a) shows the stress components in the cylindrical polar
coordinate (r, θ, z), and Fig. 4.1(b) shows the non-zero components of a wire under
torsion, σθz, and σzθ, acting on the perpendicular (z-face) and parallel (θ-face) planes
to wire axis. Following Weertman (2002), screw dislocations may form a dislocation
array on the plane parallel to the wire axis as Fig. 4.1(c) and a dislocation net on the
plane perpendicular to the wire axis as Fig. 4.1(d). It was further stated that under
the assumption that the solid possesses zero yield stress, the dislocations are driven
into the center of the wire from the outer surface.

Senger et al. (2011) analyzed the evolution of dislocation microstructure in torsion
loaded single-crystalline aluminum wires by discrete dislocation dynamics (DDD) sim-
ulations. Authors found that for wire axis oriented in the 〈234〉, which almost lie on
the glide plane, screw dislocations roughly equivalent long with the sample height are
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Figure 6. Influence of cross-slip events in a 0.5×1.5×0.5 µm3 sample with a ⟨1 0 0⟩ orientation.
(a ) Normalized torsion moment and dislocation density as a function of the plastic torsion angle.
Corresponding dislocation microstructure at a plastic torsion angle of ϕpl = 3.1◦ in a sample with
(b ) and without (c) cross-slip. In (b ) and (c), the outer shape of the samples is deformed by elastic
and plastic displacement (magnified by a factor of 5). Top view of the samples are shown with (d )
and without (e) cross-slip.

Figure 7. Dislocation microstructure in 1.0 × 3.0 × 1.0 µm3 samples with (a ) ⟨2 3 4⟩ (ϕpl = 3.2◦,
ϕtot = 4.7◦) and (b ) ⟨1 0 0⟩ orientation (ϕpl = 3.7◦, ϕtot = 5.6◦).

Figure 7 shows the dislocation microstructure for 1 µm samples. The pile-up size of the
straight long segments in the centre of the sample is larger in the ⟨2 3 4⟩ orientation (figure 7(a ))
compared with the ⟨1 0 0⟩ orientation. In the ⟨1 0 0⟩ orientation, dislocations on all four glide
planes overlap along the entire specimen height (figure 7(b )). Dislocation microstructure

9

Figure 4.2.: Dislocation microstructure in the sample of micro-scale (1 × 1 × 3µm3):
(a) wire axis oriented in the 〈234〉 which almost parallel to glide plane, (b)
wire axis oriented in the 〈100〉. (Senger et al., 2011). Images reprinted by
permission

generated parallel to the wire axis as shown in Fig. 4.2(a). While when the wire is
oriented in the 〈100〉, dislocations perpendicular to wire axis are observed as indicated
in Fig. 4.2(b), where 〈 〉 refers to directions of the same type in Miller indices. One
question may arise that how two configurations of dislocation affect the torque-twist
response. In Fig. 4.3, the authors compared normalized torsion moment as a func-
tion of the plastic torsion angle φpl for two orientations (red: 〈234〉 and blue: 〈100〉).
Fig. 4.3(a) indicates the case with cross slip activated, while Fig. 4.3(b) is the one
without the cross slip behavior. As we can observe, despite different configurations of
screw dislocation, the corresponding torque-twist curves look similar in two cases, ex-
cept a small discrepancy appearing in the region of small-angle that the torque caused
by screw dislocations perpendicular to wire axis is more significant than that parallel
to the axis.

4.3. Thermodynamic Dislocation Theory in Torsion:

Suppose a thin polycrystalline copper wire with a circular cross-section A, of radius R
and length L, is subjected to torsion (see the wire with its cross-section in Fig. 4.4). As
discussed, for this particular geometry of the wire and under the condition R� L it is
natural to assume that the circumferential displacement is uθ = ωrz, with ω being the
twist angle per unit length, while the displacement uz does not depend on the warping
function and is vanished. Thus, the total shear strain of the wire γ = 2εθz = ωr and
the shear strain rate γ̇ = ω̇r turn out to be non-uniform as they are linear functions
of radius r.

Now, let this system be driven at a constant twist rate ω̇ ≡ $0/t0, where t0 is a
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Figure 4.3.: Comparison of torque-twist curves by two different configuration of screw
dislocations, red for 〈234〉 (screw dislocations parallel to wire axis) orien-
tation and blue for 〈100〉 (screw dislocations perpendicular to wire axis):
(a) with the cross slip activated, (b) without the cross slip activated. The
data are taken from (Senger et al., 2011).
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Figure 4.4.: Torsion of a wire.

characteristic microscopic time scale. Since the system experiences a steady-state
torsional deformation, we can replace the time t by the total twist angle (per unit
length) ω so that

t0 ∂/∂t→ $0 ∂/∂ω. (4.10)

In what follows, we build up equations of motion for wires under torsion based on
Sec. 2.3.3.

The microforce equilibrium:
The equation for the plastic distortion β reads

τ − τB − τY = 0, (4.11)

with τ(r, t) = σθz being the shear stress. This equation is the equilibrium of microforces
acting on excess dislocations, where the first term τ = µ(γ − β) = µ(ωr − β) is the
applied shear stress, the second term the back-stress due to the interaction of excess
dislocations, and the last one the flow stress. Note that if the inertia of dislocations



4.3. Thermodynamic Dislocation Theory in Torsion: 77

is essential and should be included, dynamic non-local flow rules are suggested where
the left-hand side of Eq. (4.11) is used as the driving force (Le & Stumpf, 1996).
In this sense, this equation can be interpreted as a balance of micromomentum for
stationary plastic distortion fields. Since dislocations can reach the free boundary and
form an array of dislocations there, we add the surface energy (Huang et al., 2010; Le
& Nguyen, 2012) to the energy functional (per unit length)

I =

∫
A
ψ(γ − β, ρr, ρg, χ) da+

∫
∂A

Γ(β) ds,

where

ψ(γ − β, ρr, ρg, χ) =
1

2
µ(γ − β)2 + γDρ

r + ψm(ρg)− χ(−ρ ln(a2ρ) + ρ)/L

is the bulk free energy density of macroscopically isotropic material, with γD = eD/L,
and

Γ(β) =
µb

4π
β

(
ln
eβ∗
β

+
1

2
κβ
)

(4.12)

the modified Read-Shockley surface energy density of an array of screw dislocations
(having the surface dislocation density β/b and forming the twist boundary). The log-
term in (4.12) was obtained by Read & Shockley (1950), while the β2-term by Vitek
(1987). The state variables that describe this system are the elastic strain γ − β, the
densities of redundant dislocations ρr and excess dislocations ρg, and the disorder tem-
perature χ (cf. (Langer, 2016; Kröner, 1992)). The ordinary temperature is discarded
from the state variables, for it is assumed to be constant. All four quantities, γ − β,
ρr, ρg, and χ, are functions of r and ω. We also introduce the dissipation function

D(β̇, ρ̇, χ̇) = τY β̇ +
1

2
dρρ̇

2 +
1

2
dχχ̇

2.

We require that the equations (4.11), (4.23) and (4.25) obey the variational equation,
(see Sec. 2.3.2)

δI +

∫
A

(
∂D

∂β̇
δβ +

∂D

∂ρ̇
δρ+

∂D

∂χ̇
δχ

)
da = 0. (4.13)

Let us show the derivation of (4.11) and corresponding boundary condition at the
free boundary r = R by solving the variational equation (4.13) with regard to plastic
slip β using the standard calculus of variations. Eliminating the term containing the
variation of ρr and χ from (4.13) and divided by 2π, we obtain∫ R

0

[
µ (β − rω) δβ + τY δβ +

(
∂ψm
∂ρg

+ χ ln(a2ρ) + dρρ̇

)
δρg
]
rdr

+ r
∂Γ

∂β

∣∣∣∣
r=R

δβ − r ∂Γ

∂β

∣∣∣∣
r=0

δβ = 0. (4.14)

We assume that the active slip planes are perpendicular to the vector eθ, then all screw
excess dislocations lie parallel to the wire axis, and the only non-zero component of
the tensor of dislocation density, αij = εjklβil,k, is

αzz = β,r + β/r.
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Supposed that dB = αzzda repents the resultant Burgers vector of an infinitesimal
area da of the cross-section, the areal screw dislocation density becomes

ρg =
1

b
|αzz| =

1

b

∣∣∣∣β,r +
β

r

∣∣∣∣ , (4.15)

where b is the magnitude of the Burgers vector. The variation with respect to ρr from
(2.44), which is free from the coordinate system, follows the relation,

χ ln(a2ρ) + dρρ̇ = −γD, (4.16)

Inserting (4.15) and (4.16), as well as the boundary condition at the center β(0) = 0,
into (4.14), the functional becomes∫ R

0

[
µ (β − rω) + τY −

1

b

∂2ψm
∂(ρg)2

∂ρg

∂r

]
δβ rdr+ r

[
1

b

(
∂ψm
∂ρg
− γD

)
+
∂Γ

∂β

]∣∣∣∣
r=R

= 0.

Suppose that β takes positive, which describes the loading process only, then

∂ρg

∂r
=

1

b
(β′′ + β′/r − β/r2). (4.17)

As a result, from the variation of β on the interval (0, R), we obtain (4.11) and formula
for back stress

τB = − 1

b2

∂2ψm
∂(ρg)2

(β,rr + β,r/r − β/r2).

The free energy density of screw excess dislocations ψm has been developed in the
previous chapter by extrapolating the Berdichevsky‘s energy at the extremely small
or large dislocation densities to guarantee the existence of solution within TDT, and
it is given by (see Sec. 3.2.3)

ψm(ρg) = µb2ρg
(
ψ∗ +

1

4π
ln

1

k0 + b2ρg

)
+

1

8π
µk1(b2ρg)2, (4.18)

with ψ∗ = −0.105, k0 being a small constant correcting the behavior of the derivative
of energy at ρg = 0, and k1 another constant correcting the behavior of the energy at
large densities of the excess dislocations. Using (4.18) we find that τB is given by

τB = −µb2k1ξ
2 + (2k0k1 − 1)ξ + k1k

2
0 − 2k0

4π(k0 + ξ)2
(β,rr + β,r/r − β/r2),

where ξ = b|β,r + β/r|. The variation with respect to β on the surface from (4.13)
gives rise to the natural boundary condition at r = R,(

∂ψm
∂ρg

+ b
∂Γ

∂β

)∣∣∣∣
r=R

= γD. (4.19)

With ψm from (4.18) and Γ from (4.12), we get

∂ψm
∂ρg

= µb2

[
− ξ

4π(k0 + ξ)
− ln(k0 + ξ)

4π
+
k1ξ

4π
− 0.105

]
,

and

b
∂Γ

∂β
=

1

4π
µb2

(
ln
β∗
β

+ κβ
)
.
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Equation of motion for flow stress:
To derive the equations of motion for the system we begin with Hooke’s law in rate
form

∂τ

∂t
= µ

(
∂γ

∂t
− ∂β

∂t

)
, (4.20)

with β(r, t) = 2εpθz the plastic distortion, and µ the shear modulus. Let us first ignore
the excess dislocations. The central, dislocation-specific ingredient of TDT (Langer et
al., 2010) is the thermally activated depinning formula for q(τ, ρ)/t0 representing the
plastic distortion rate β̇ as a function of the stress τ and the total dislocation density
ρ

q(τ, ρ)

t0
=

1

t0
b
√
ρ[fP (τ, ρ)− fP (−τ, ρ)], (4.21)

where

fP (τ, ρ) = exp
[
− 1

Θ
e−τ/τT (ρ)

]
.

As argued in Langer et al. (2010), Eq. (4.21) is an Orowan relation of the form β̇ =
ρ b v in which the speed of the dislocations v is given by the distance between them
multiplied by the rate at which they are depinned from each other. That rate is
approximated here by the activation terms fP (τ, ρ) and −fP (−τ, ρ), in which the
energy barrier eP = kBTP (implicit in the scaling of Θ = T/TP ) is reduced by the
stress-dependent factor e−τ/τT (ρ), where τT (ρ) = µT b

√
ρ is the Taylor stress with µT

being proportional to µ. The pinning energy eP is large, of the order of electron volts,
so that Θ is very small. As a result, q(τ, ρ) is an extremely rapidly varying function
of τ and Θ. This strongly nonlinear behavior is the key to understanding yielding
transitions and shear banding as well as many other important features of crystal
plasticity. For example, the extremely slow variation of the steady-state flow stress
as a function of strain rate discussed in (Langer et al., 2010) is the converse of the
extremely rapid variation of q as a function of τ in Eq. (4.21).

Replacing γ̇ in Eq. (4.20) by ($0/t0)r, β̇ by q(τ, ρ)/t0, and the partial time derivative
by ($0/t0) ∂/∂ω, we arrive at

∂τ

∂ω
= µ

[
r − q(τ, ρ)

$0

]
.

As mentioned before, for the theory ignoring the excess dislocations q(γ)/t0 equals
the plastic distortion rate β̇. However, if the excess dislocations are accounted for,
q(γ)/t0 does not equal β̇, and we associate (4.21) to the plastic shear rate caused by
the depinning of redundant dislocations only. In this case, the equation for the flow
stress in rate form is proposed as follows

∂τY
∂ω

= µ

[
r − q(τY , ρ)

$0

]
. (4.22)

Here, the flow stress τY is interpreted as the stress required to separate redundant
dislocations from each other.

Equation of motion for the dislocation density:
It has been shown in Sec. 2.3.2 that the variation of (4.13) with respect to ρ and χ yields
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two governing equations, provided the coefficients dρ and dχ appropriately chosen. The
equation for the total dislocation density ρ = ρr +ρg describes the energy flow. It says
that some fraction of the power delivered to the system by external driving force is
converted into the energy of dislocations, and that that energy is dissipated according
to a detailed-balance analysis involving the disorder temperature χ. In terms of the
twist angle ω, this equation reads:

∂ρ

∂ω
= Kρ

τY q

a2ν(Θ, ρ,$0r)2 µ$0

[
1− ρ

ρss(χ)

]
, (4.23)

with ρss(χ) = (1/a2)e−eD/χ being the steady-state value of ρ at given χ, eD a charac-
teristic formation energy for dislocations, and a denoting the average spacing between
dislocations in the limit of infinite χ (a is a length of the order of tens of atomic
spacings). Note that Eq. (4.23) reduces to the equation proposed by Langer et al.
(2010) if the density of excess dislocations ρg vanishes. The coefficient Kρ is an en-
ergy conversion factor that, according to arguments presented in (Langer et al., 2010;
Langer, 2017a), should be independent of both strain rate and temperature. The other
function that appears in the prefactor in Eq. (4.23) is

ν(Θ, ρ, q0) ≡ ln
( 1

Θ

)
− ln

[
ln
(b√ρ
q0

)]
. (4.24)

Equation of motion for the effective temperature:
The equation for the disorder temperature χ is a statement of the first law of thermo-
dynamics for the configurational subsystem (Langer et al., 2010):

∂χ

∂ω
= Kχ

τY eD q

µ$0

(
1− χ

χ0

)
. (4.25)

Here, χ0 is the steady-state value of χ for strain rates appreciably smaller than inverse
atomic relaxation times. Since the maximum shear strain rate (reached the outer
radius of the bar) for the small twist rate in our torsion test is small, we assume that
the conversion factor Kχ is a constant.

In this chapter, we will also consider a simple extension of LBL-theory to non-uniform
deformations proposed in (Le et al., 2018), where the excess dislocations are ignored.
Since the back-stress τB = 0 in this case, we identify τY with τ in Eqs. (4.22), (4.23),
and (4.25). This system of equations becomes close, and after its integration, we use
τY = τ to compute the torque.

Method of solution:

For the purpose of numerical integration of the system (4.22), (4.23), (4.25), and (4.11)
let us introduce the following variables and quantities

r̃ = r/R, τ̃ = τ/µ, τ̃Y = τY /µ, τ̃B = τB/µ,

ω̃ = Rω, χ̃ =
χ

eD
, η =

b

R
, ρ̃ = a2ρ.

The variable r̃ changes from 0 to 1. The dimensionless quantity ω̃ has the meaning
of the maximum shear strain achieved at the outer radius. The calculation of the
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dimensionless torque T̃c = Tc/R
3 as the function of ω̃ = ωR is convenient for the

later comparison with the experimental data from (Liu et al., 2012). Then we rewrite
Eq. (4.21) in the form

q(τY , ρ) =
b

a
q̃(τ̃Y , ρ̃),

where

q̃(τ̃Y , ρ̃) =
√
ρ̃[f̃P (τ̃Y , ρ̃)− f̃P (−τ̃Y , ρ̃)].

We set µ̃T = (b/a)µT = µs, and assume that s is independent of temperature and
strain rate. Then

f̃P (τ̃Y , ρ̃) = exp
[
− 1

Θ
e−τ̃Y /(s

√
ρ̃)
]
.

We define $̃0 = (a/b)R$0 so that q/(R$0) = q̃/$̃0. Function ν in Eq. (4.24) becomes

ν̃(Θ, ρ̃, $̃0r̃) ≡ ln
( 1

Θ

)
− ln

[
ln
( √ρ̃
$̃0r̃

)]
.

The dimensionless steady-state quantities are

ρ̃ss(χ̃) = e−1/χ̃, χ̃0 = χ0/eD.

Since t−1
0 is a microscopic attempt frequency, of the order 1012 s−1, we take (a/b)t0 =

10−12s.

In terms of the introduced quantities, the governing equations read

ω̃r̃ − β − τ̃B − τ̃Y = 0,

∂τ̃Y
∂ω̃

= r̃ − q̃(τ̃Y , ρ̃)

$̃0

,

∂ρ̃

∂ω̃
= Kρ

τ̃Y q̃

ν̃(Θ, ρ̃, $̃0r̃)2 $̃0

[
1− ρ̃

ρ̃ss(χ̃)

]
,

∂χ̃

∂ω̃
= Kχ

τ̃Y q̃

$̃0

(
1− χ̃

χ̃0

)
,

where τ̃B is equal to

τ̃B = −k1ξ
2 + (2k0k1 − 1)ξ + k1k

2
0 − 2k0

4π(k0 + ξ)2
η2(β,r̃r̃ + β,r̃/r̃ − β/r̃2), (4.26)

with ξ = η|β,r̃ + β/r̃|.

We use the method of lines to discretize the equations in the interval (0, 1). By dividing
it into n sub-intervals of equal length ∆r̃ = 1/n, we approximate the first and second
spatial derivative of β(r̃) in equation (4.26) by the finite differences

∂β

∂r̃
(r̃i) =

βi+1 − βi−1

2∆r̃
,

∂2β

∂r̃2
(r̃i) =

βi+1 − 2βi + βi−1

(∆r̃)2
,
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where βi = β(r̃i). For the end-point r̃ = 1, we introduce βn+1 at a fictitious point
r̃n+1 = (n+ 1)∆r̃ and pose the discretized boundary condition

f1(ξn) + f2(βn) = γ̃D, (4.27)

with ξn = η βn+1−βn−1

2∆r̃
, γ̃D = γD/(µb

2),

f1(ξ) = − ξ

4π(k0 + ξ)
− ln(k0 + ξ)

4π
+
k1ξ

4π
− 0.105, (4.28)

and

f2(β) =
1

4π

(
ln
β∗
β

+ κβ
)
. (4.29)
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Figure 4.5.: Solution of Eq. (4.27) with (i) original Read-Shockley’s f2(β) =
1

4π
ln(β∗/β) for β < β∗ and 0 otherwise: red, (ii) modified f̃2(β) from

(4.30): black.

To avoid the singularity of f2(β) at β = 0, which is difficult to handle numerically, we
replace f2(β) from (4.29) by

f̃2(β) =
1

4π

(
ln

β∗
β + δ

+ κβ
)
, (4.30)

with δ being a small positive number, such that Eq. (4.27) yields the curve in the (ξ, β)-
plane starting from the origin (see Fig. 4.5). With f1(ξ) and f̃2(β) from Eq. (4.28)
and Eq. (4.30), respectively, we find that δ = β∗/(k0 exp(4π(γ̃D + 0.105))). With βn+1

found from (4.27), it is possible again to discretize the first and second derivative
of β(r̃) at r̃ = 1 and write the finite difference equation for β(r̃) at that point. In
this way, we reduce the four partial differential equations to a system of 4n ordinary
differential-algebraic equations that will be solved by Matlab-ode15s.

After finding the plastic distortion β(r̃), we compute the dimensionless torque as a
function of the twist angle according to

T̃c = Tc/R
3 = 2πµ

∫ 1

0

[ω̃r̃ − β(r̃)]r̃2dr̃.
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Figure 4.6.: Torque-twist curves with twist rate Lω̇ = π
30
/s and for room temperature,

for four different radii R = 9 micron (black), R = 15 micron (blue),
R = 21 micron (green) and R = 52.5 micron (red): (i) TDT (bold lines),
(ii) experimental points taken from Liu et al. (2012) (circles).

4.4. Parameter Identification and Numerical Simulations

The experimental data of Liu et al. (2012) include four torque-twist curves for poly-
crystalline copper wires with different radii R = 9 micron, R = 15 micron, R = 21
micron, and R = 52.5 micron. It was mentioned in (Liu et al., 2012) that all wires
were annealed for 2.4 hours in a vacuum furnace with argon shielding at 410◦C to
ensure that each sample had the same mean grain size. Torsion tests were performed
at room temperature, and for all tests, the twist rate Lω̇ was π/30 per second (6◦/s).
We show these data together with our theoretical results based on the TDT in Fig. 4.6.
In this figure, the circles represent the experimental data in (Liu et al., 2012), while
the bold lines are our theoretical simulation based on the TDT. For comparison, we
show in Fig. 4.7 the torque-twist curves simulated by the TDT (bold lines) and the
LBL-theory (dashed lines) in the larger range of the twist angle ω̃ ∈ (0, 2.5).

In order to compute the theoretical torque-twist curves, we need values for ten system-
specific parameters. The ten basic parameters are the following: the activation tem-
perature TP , the stress ratio s, the steady-state scaled disorder temperature χ̃0, the two
dimensionless conversion factors Kρ and Kχ, the two coefficients k0, and k1 defining the
function τ̃B in Eq. (4.26), and the three coefficients β∗, κ, and γ̃D entering Eq. (4.27).
We also need initial values of the scaled dislocation density ρ̃i and the scaled disor-
der temperature χ̃i; all of which characterize the microstructure of the material prior
to the plastic deformation and are determined by the sample preparation depending
on many factors. For example, the history of metal forming, sample preparation by
cutting the metal piece that produces plastic deformation, and heat treatment may
affect grain size, the initial dislocation density ρ̃i, and the initial disorder temperature
χ̃i, which may vary from sample to sample. Note that the size of the sample can also
play a role in this history of preparation. Our assumption is that the grain size is
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Figure 4.7.: Torque-twist curves with twist rate Lω̇ = π
30
/s and for room temperature,

for four different radii R = 9 micron (black), R = 15 micron (blue),
R = 21 micron (green) and R = 52.5 micron (red): (i) TDT (bold lines),
(ii) LBL-theory (dashed lines).
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Figure 4.8.: Stress distributions τ(r̃) at twist rate Lω̇ = π
30
/s and for room temper-

ature, at ω̃ = 0.198 and for four different radii R = 9 micron (black),
R = 15 micron (blue), R = 21 micron (green), and R = 52.5 micron
(red).



4.4. Parameter Identification and Numerical Simulations 85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
β

r~

R=9 micron
R=15 micron
R=21 micron
R=52.5 micron

Figure 4.9.: Plastic distortion β(r̃) at twist rate Lω̇ = π
30
/s and for room temperature,

at ω̃ = 0.198 and for four different radii R = 9 micron (black), R = 15
micron (blue), R = 21 micron (green), and R = 52.5 micron (red).
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Figure 4.10.: Total density of dislocations ρ(r̃) at twist rate Lω̇ = π
30
/s and for room

temperature, at ω̃ = 0.198 and for four different radii R = 9 micron
(black), R = 15 micron (blue), R = 21 micron (green), and R = 52.5
micron (red).
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Table 4.1.: The initial values of ρ̃i and χ̃i
R (µm) 9 15 21 52.5
ρ̃i 4.589× 10−4 2.605× 10−4 2.282× 10−4 1.707× 10−4

χ̃i 0.158 0.151 0.149 0.143

characterized by the initial disorder temperature. Perhaps, more information from the
microstructure is required for the initially textured materials under torsion, but we
will not address this topic here. Thus, for four samples, we will need to identify eight
initial values.
The other parameters required for numerical simulations but known from the exper-
iment are: the ambient temperature T = 298K, the shear modulus µ = 48GPa, the
length L = 25mm of the wires, the magnitude of Burgers vector b = 2.55Å, the twist
rate Lω̇ = π/30/s, and consequently, $0 = 0.419× 10−12/m. We take a = 10b, which
is close to the distance between dislocations in the saturated state.
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Figure 4.11.: Density of excess dislocations ρg(r̃) at twist rate Lω̇ = π
30
/s and for room

temperature, at ω̃ = 0.198 and for four different radii R = 9 micron
(black), R = 15 micron (blue), R = 21 micron (green), and R = 52.5
micron (red).

In the papers dealing with the uniform deformations (Langer et al., 2010; Langer, 2015,
2016, 2017a), it was possible to begin evaluating the parameters by observing steady-
state stresses σss at just a few strain rates q0 and ambient temperatures T0 = TP Θ̃0.
Knowing σss, T0 and q0 for three stress-strain curves, one could solve equation

σ = σT (ρ̃)ν(Θ̃, ρ̃, q0),

which is the inverse of Eq. (4.21) for TP , s, and χ̃0, and check for consistency by
looking at other steady-state situations. With that information, it was relatively easy
to evaluate Kρ and Kχ by directly fitting the full stress-strain curves. This strategy
does not work here because the stress state of twisted bars is non-uniform. We may
still have local steady-state stresses as a function of the radius r, but it is impossible
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to extract this information from the experimental torque-twist curve. Furthermore,
the similar parameters for copper found in (Langer et al., 2010; Langer, 2015, 2016,
2017a) cannot be used here, since we are dealing with torsional deformations having
the energy barrier TP and other characteristics different from those identified in the
above references.
To counter these difficulties, we have resorted to the large-scale least-squares analysis
developed in (Le & Tran, 2017). That is, we have solved the discretized system of or-
dinary differential-algebraic equations (DAE) numerically, provided a set of material
parameters, and initial values are known. Based on this numerical solution we then
computed the sum of the squares of the differences between our theoretical torque-
twist curves and a large set of selected experimental points and minimized this sum
in the space of the unknown parameters. The DAEs were solved numerically using
the Matlab-ode15s, while the finding of least squares was realized with the Matlab-
globalsearch. To keep the calculation time manageable and simultaneously ensure the
accuracy, we have chosen n = 1000 and the ω̃-step equal to 0.44× 10−4.
We have found that the torque-twist curves taken from Liu et al. (2012) can be fit-
ted with a single set of system-specific parameters. These are: TP = 19205 K, s =
0.0686, χ0 = 0.2089, Kρ = 57.02, Kχ = 242.8, k0 = 6.386 × 10−7, k1 = 6.947 ×
106, β∗ = 0.192, κ = 0.198, γ̃D = 1.462. The identified initial values for the four
samples are shown in Table 4.1. To obtain the actual initial dislocation densities, we
must divide these values by a2, resulting in the order of 1013 dislocations per square
meter. We observe that the initial dislocation density and the disorder temperature
decrease with increasing radius. As already discussed, the initial dislocation densities
depend on many factors, some of which are unknown. In addition, (Liu et al., 2012)
did not provide information about initial dislocation densities. Therefore, identifying
these parameters on the basis of least squares analysis seems to be the only way to
estimate them.

The agreement between theory and experiment seems to be well within the bounds
of experimental uncertainties. There are only two visible discrepancies: (i) near the
yielding transition, the torques are slightly above those predicted by theory for R = 9
micron and R = 15 micron, (ii) at large twist angles, the torques are slightly below
those predicted by theory for R = 21 micron and R = 52.5 micron. The comparison
also shows that the LBL-theory fails in predicting the torque twist curves and the
size effect, except in the vicinity of the yielding transition where the density of excess
dislocations is negligibly small. Indeed, looking at the torque-twist curves predicted
by the LBL-theory in Fig. 4.7 we see that the differences in torque due to the different
initial dislocation density and disorder temperature do not increase as the twist angle
increases. Besides, all torque-twist curves approach the steady-state at large twist
angles. This contradicts the behavior of the experimental torque-twist curves obtained
in (Fleck et al., 1994; Liu et al., 2012).

Liu et al. (2012) proposed the following empirical formula

T̃c =
6πΣ0ω̃

N

N + 3


[

1

3
+

(
l

R

)2
](N+3)/2

−
(
l

R

)N+3


for the torque-twist curves containing the internal length scale l, the reference stress
Σ0 and the hardening parameter N . By choosing appropriate parameters, they can fit
the experimental torque-twist curves in Fig. 4.6 (we do not show their curves to avoid
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Figure 4.12.: Distributions of flow stress τY (r̃) at twist rate Lω̇ = π
30
/s and for room

temperature, at ω̃ = 0.198 and for four different radii R = 9 micron
(black), R = 15 micron (blue), R = 21 micron (green), and R = 52.5
micron (red).

the strong overlap). Unfortunately, this empirical formula is not based on the solution
of the boundary-value problem of the equilibrium of crystals containing dislocations
and therefore does not allow to find both the stress distribution and the dislocation
densities within the wire.

αzz 

r

Figure 4.13.: Distributions of αzz = ω,r + ω/r, where ω is the average misalignment
taken from Figure 7b of (Ziemann et al., 2015) for γpl(R) = 0.01.

The results of numerical simulations for other quantities are shown in Figs. 4.8-4.16.
We plot in Fig. 4.8 the shear stress distributions τ(r̃) = µ(ω̃r̃ − β) at ω̃ = 0.198.
Contrary to the similar distribution obtained by the phenomenological theory of ideal
plasticity, the stress in the plastic zone does not remain constant but rises with increas-
ing r̃ and reaches a maximum at r̃ = 1. The slope of this stress distribution is small in
the middle ring (r̃1, r̃2) (0 < r̃1 < r̃2 < 1) of the cross-section but increases rapidly near
the free boundary. Another interesting behavior is that the stress near the center is
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highest for the largest wire, while it is lowest in the periphery. This behavior can later
be explained by the presence of back stress. Fig. 4.9 shows distributions of the plastic
distortion β(r̃) at the above twist angle ω̃ = 0.198. Remarkably, all four distributions
of plastic distortion are nearly linear and almost indistinguishable functions of r̃ except
very near the free boundary r̃ = 1. Since the latter attracts excess dislocations, β(r̃)
should decrease in this region, leading to the decreasing density of excess dislocations.
Besides, due to the different values of the factor η for different radii, the density of
excess dislocations derivable from β(r̃) depends on the radius of the wire as will be
seen later. Fig. 4.10 shows the total densities of dislocations at the above twist angle
ω̃ = 0.198. Note that the total density of dislocations is highest for the wire with the
smallest radius. The entanglement of dislocations and the initial dislocation density
and disorder temperature play a decisive role here. The higher dislocation density
leads to the stronger entanglement and the higher yield stress, which, together with
the higher disorder temperature, causes a stronger dislocation multiplication. Fig. 4.11
presents the density of excess dislocations at the above twist angle ω̃ = 0.198. Under
the applied shear stress excess dislocations of the positive sign move to the center of
the wire and pile up against the middle ring (r̃1, r̃2) (cf. (Weinberger, 2011; Kaluza
& Le, 2011; Le & Piao, 2016; Liu et al., 2018)). The highest and almost constant
density of excess dislocations is achieved in the middle ring, while this density rapidly
decreases as r̃ approaches 0 or 1.
The formation and accumulation of excess dislocations in twisted wires can be ex-
plained as follows. Since the flow stress during the plastic deformation exceeds the
Taylor stress, redundant dislocations in the form of dislocation dipoles begin to dis-
solve according to the kinetics of thermally activated dislocation depinning (Langer et
al., 2010). Under the applied shear stress, positive dislocations then move towards the
center and negative dislocations towards the boundary. For the dissolved dislocation
dipoles within the sample and far from the free boundary, these freely moving disloca-
tions are soon trapped by dislocations of the opposite sign. But the dislocation dipoles
near the free boundary behave differently. Now the positive dislocations move inwards
and become excess dislocations, while the negative dislocations leave the sample and
become image dislocations. At small angles of twist, the applied shear stress near
the center is still small and cannot move dislocations. Therefore, excess dislocations
occupy a small outer ring (r̃1, 1) (0 < r̃1 < 1). As the angle of twist increases, the
shear stress increases as well, and when it becomes large enough, it can drive these
excess dislocations to the center. Thus, we can say that the dissolution of dipoles near
the free boundary results in excess dislocations of positive sign. They then move to
the center and pile up against the middle ring, increasing the kinematic hardening.
As far as the experimental measurement of excess dislocations is concerned, the inter-
esting work of Ziemann et al. (2015) for twisted Au microwires should be mentioned.
Here, the cross-sections of the individual 〈100〉 oriented grains of 25 micron Au mi-
crowires were characterized by Laue micro diffraction. The diffraction data were used
to calculate the misalignment of each data point with respect to the neutral fiber at
the center of the cross-section from which some qualitative information could be ob-
tained on the density of excess dislocations. Unfortunately, as mentioned by Ziemann
et al. (2015), “the misorientation data do not allow to distinguish between pure elastic
distortions and distortions caused by dislocations”, so the quantitative determination
of the excess dislocation density as the curl of the plastic distortion (or, equivalently,
the curl of the elastic distortion taken with minus sign) could not yet be performed.
Provided the measured average misalignment represent the true lattice rotation ω, we
can compute the density of excess dislocation according to ρg = |ω,r + ω/r|/b. The
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Figure 4.14.: Distributions of back stress τB(r̃) at twist rate Lω̇ = π
30
/s and for room

temperature, at ω̃ = 0.198 and for four different radii R = 9 micron
(black), R = 15 micron (blue), R = 21 micron (green), and R = 52.5
micron (red).

plot of αzz = ω,r + ω/r computed from one representative curve taken from Ziemann
et al. (2015) is shown in Fig. 4.13. We see that this plot agrees qualitatively with our
distribution in the sense that αzz achieves a maximum in the middle ring and decreases
when r goes to zero and R. We also tried to compare our result with that obtained
by discrete dislocation dynamics (DDD) simulations reported in (Senger et al., 2011).
However, since the quantitative distribution of the excess dislocations in (Senger et
al., 2011) is absent, no comparison is possible so far.

It is interesting to examine the influence of the size of samples and the initial values of
dislocation density and disorder temperature on the flow and back stress. Figs. 4.12
and 4.14 show the distributions of flow and back stress, respectively, at ω̃ = 0.198.
The flow stress depends linearly on r̃ in a small elastic zone near the center of the
wire. In the plastic zone, it is largest for the smallest wire. This behavior should be
explained by the entanglement of dislocations as well as the initial dislocation density
and disorder temperature. As shown in Table 4.1, the initial dislocation density ρ̃i and
the initial disorder temperature χ̃i are the highest for the smallest wire. Thus, the
Taylor stress for the smallest wire is highest, and the entanglement of dislocations leads
to the highest flow stress for the smallest wire. The back stress vanishes in the middle
ring (r̃1, r̃2) of the cross-section because the density of excess dislocations is nearly
constant there and changes rapidly near the center (0, r̃1) and the periphery (r̃2, 1) as
seen in Fig. 4.14. The distribution of back stress shows the influence of the sample size.
Since nearly the same number of excess dislocations is distributed in the wires, that
wire with the smallest cross-section area must have the largest magnitude of the back
stress. Note however that, as the excess dislocations pile up against the middle ring
(r̃1, r̃2), the back stress is positive in the periphery (r̃2, 1) and negative near the center
(0, r̃1) of the wires. This leads to the different behavior of the stress there, as can be
seen in Fig. 4.8. Figs. 4.15 and 4.16 show the contribution of the flow stress and back
stress to the torque versus the twist angle. While the contribution of flow stress to
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Figure 4.15.: Contribution of flow stress τY (r̃) to the torque versus twist angle at twist
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/s and for room temperature, at four different radii R = 9

micron (black), R = 15 micron (blue), R = 21 micron (green), and
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Figure 4.16.: Contribution of back stress τB(r̃) to the torque versus twist angle at
twist rate Lω̇ = π

30
/s and for room temperature, at four different radii

R = 9 micron (black), R = 15 micron (blue), R = 21 micron (green),
and R = 52.5 micron (red).
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torque is controlled by the entanglement of dislocations, which depends on the initial
dislocation density and disorder temperature (in short, on the microstructure of the
material), the contribution of back stress is controlled by the nucleation and pile-up of
excess dislocations, which depend on the radius of the wire. The torque generated by
the back stress from the pile-up of excess dislocations contributes a maximum of 26%
to the total torque in the range of the considered twist angles. Note that as the twist
angle increases, the differences in torque generated by the flow stress decrease, while
the differences in torque generated by excess dislocations increase almost linearly as
seen in Fig. 4.16.
At last, it is mentioned that the comparison between the experimental data and the
simulation by TDT matches well shown in Fig. 4.6. However, one may observe that a
small discrepancy happens at the beginning of plastic deformation and disappear in the
latter. It is probably due to the assumption that all screw excess dislocations lie parallel
to the wire axis. As discussed in Fig. 4.3, the different configuration types of screw
dislocations may affect the torque-twist response in the yielding transition. Therefore,
it would be interesting for further investigations on the twisted wire containing the
grains in which both parallel and perpendicular screw excess dislocations to wire axis
exist.

4.5. Conclusion

The results obtained show the principal applicability of TDT to torsion tests. We
found that the behavior of the torque-twist curves is controlled not only by the mi-
crostructure of material (the grain size, the initial dislocation density, and the initial
disorder temperature), which affects isotropic hardening but above all the sample size,
which affects the nucleation and pile-up of excess dislocations and kinematic hard-
ening. For wires of micron sizes under torsion, the back stress contributes at most
26% to the torque for ω̃ < 0.44, but this contribution increases almost linearly with
the increasing twist angle. It is still early to assess the validity of the distribution of
excess dislocations by comparing it with the available results in the literature, neither
with the experimental data obtained by the EBSD measurement nor with the dis-
crete dislocation dynamics simulations, so more careful theoretical and experimental
investigations are required.



93

5. Thermodynamic Dislocation Theory in Macro-scale

5.1. Introduction

The aim of this chapter is to explore the use of a simple extension of TDT in modeling
the twisted bars made of single crystal copper and polycrystal aluminum alloy. For bars
of macro sizes, the theory takes into account the spatial variation of state variables and
ignores the excess dislocations. Our challenge is to simulate the torque-twist curves
exhibiting the hardening and thermal softening behaviors, respectively, and to compare
them with the experimental results provided by Horstemeyer et al. (2002) (hardening)
and by Zhou & Clode (1998) (thermal softening). To make this comparison possible,
we need to identify from the experimental data a list of material parameters for each
material under torsion. For this purpose, we will use the large scale least-squares
analysis described in (Le & Tran, 2017). We start in Sec. 5.2 with a brief summary
of the proposed equations of motion discussed in the previous chapters. In addition,
an equation for the ordinary temperature is taken into account for inhomogeneous
temperature distribution in the sample body. Two applications, the hardening and
thermal softening behaviors in the twisted bar, are investigated in Sec. 5.3 and Sec. 5.4.
In each section, we discretize the corresponding system of governing equations and
develop the numerical method for its solution. The parameter identification based on
the large scale least-squares analysis and results of numerical simulations are presented.
Finally, Sec.5.5 concludes the chapter.

5.2. Equations of Motion

Description of experiments and sample bars:
Horstemeyer et al. (2002) and Zhou & Clode (1998) investigated torsion experiments
on solid specimens with a geometric shape of a stepped cylinder (see Fig. 5.1), and
discovered the hardening and thermal softening behaviors of twisted bars, respectively.
In the hardening experiment, two samples of single crystal copper with bar axis parallel
to 〈110〉 crystallographic direction are used. In the experiment for thermal softening,
five polycrystal samples of aluminum alloy 5252 performed at the elevated temperature
and at different strain rates are used. Both ends of the specimen, subjected to torsion
(see Fig. 5.2), have a larger radius, and the gauge section has a relatively thin circular
cross-section of radius R and length L. For this particular geometry of bars and under
the condition R� Lt, it is natural to assume that the circumferential displacement is
uθ = ωrz, with ω being the twist angle per unit length. Thus, the total shear strain
of the bar γ = 2εθz = ωr and the shear strain rate γ̇ = ω̇r turn out to be non-uniform
as they are linear functions of radius r. Now, let this system be driven at a constant
twist rate ω̇ ≡ $0/t0, where t0 is a characteristic microscopic time scale. Since the
system experiences a steady-state torsional deformation, we can replace the time t by
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Figure 5.2.: Gauge section of crystal sample.

Microforce equilibrium: It turns out that the influence of excess dislocations to
microforce equilibrium can be ignored not only in the uniform deformation but also
in the sample of macro scales undergoing a non-uniform deformation. Therefore, the
back-stress τB vanishes in this problem, and apparently, the equilibrium of microforces
becomes

τ = τY .

In what follows, we identify τY with τ in the related governing equations, and it is
valid in both applications in Sec. 5.3 and Sec. 5.4.

The equations of motion for the flow stress, total dislocation density, and the effective
temperature are identical to those in Sec. 4.3. Here we briefly annotate governing
equations, and for more details, see Sec. 4.3 and Sec. 2.3.3.

Flow stress: The equation of motion for flow stress starts from the Hooke’s law in rate
form. By introducing the dimensionless plastic distortion rate q(τ, ρ), the governing
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equation reads

∂τ

∂ω
= µ

[
r − q(τ, ρ)

$0

]
, (5.1)

with τ(r, t) = σθz being the shear stress and µ the shear modulus. The dimensionless
plastic strain rate, as a function of stress τ and total dislocation density ρ, involves
thermally activated depinning mechanism introduced by Langer et al. (2010) as

q(τ, ρ) = b
√
ρ[fP (τ, ρ)− fP (−τ, ρ)], (5.2)

where

fP (τ, ρ) = exp
[
− 1

Θ
e−τ/τT (ρ)

]
.

The central idea of (5.2) is that the energy barrier, which prevents the dissolution of
dislocations from dipoles, is reduced by applied stress owing to the stress-dependent
factor e−τ/τT (ρ), and in addition, the increasing ambient temperature (T = ΘTP ) helps
dislocations depinning from pinning sites. Here, τT (ρ) = µT b

√
ρ is the Taylor stress

with µT being proportional to µ.

Dislocation density: The equation of motion for total dislocation density ρ describes
energy flow, and it emerges from the second law of thermodynamics that the total
entropy of two subsystems is never negative. In terms of the twist ω, this equation
reads:

∂ρ

∂ω
= Kρ

τ q

a2ν(Θ, ρ,$0r)2 µ$0

[
1− ρ

ρss(χ)

]
, (5.3)

with ρss(χ) = (1/a2)e−eD/χ being the steady-state value of ρ at given χ, eD a charac-
teristic formation energy for dislocations, and a denoting the average spacing between
dislocations in the limit of infinite χ (a is a length of the order of tens of atomic spac-
ings). The coefficient Kρ is an energy conversion factor that should be independent of
both strain rate and temperature. The other quantity that appears in the prefactor
in Eq. (5.3) is

ν(Θ, ρ,$0r) ≡ ln
( 1

Θ

)
− ln

[
ln
(b√ρ
$0r

)]
. (5.4)

The effective temperature: The equation of motion for effective temperature χ
is a statement of the first law of thermodynamics for the configurational subsystem
(Langer et al., 2010):

∂χ

∂ω
= Kχ

τeD q

µ$0

(
1− χ

χ0

)
. (5.5)

Here, χ0 is the steady-state value of χ for strain rates appreciably smaller than inverse
atomic relaxation times, i.e., much smaller than t−1

0 . The dimensionless factor Kχ is
inversely proportional to the effective specific heat ceff . Since the maximum strain
rate (reached the outer radius of the bar) for the small twist rate in our torsion test is
small, we assume that Kχ is a constant.
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The ordinary temperature: As the first law of thermodynamics states, the irre-
versible external work done to the material system is partly stored in the dislocation
energy, and the rest is dissipated into the heat. If applied strain rate is small and the
material is of high thermal conductivity, such as copper, the heat is conducted fast
through the body so that there is no significant temperature change inside. While at
a relatively high strain rate of the deformation in the material of low thermal conduc-
tivity, the generated heat by plastic deformation causes inhomogeneous temperature
distribution in the material body. Therefore, the equation of motion for ordinary
temperature Θ = T/TP is required to describe this process, and it reads

∂Θ

∂ω
= K1(Θ)

τq

µ(Θ)$0

− K2

$0

(Θ−Θ0). (5.6)

Here, K1(Θ) = βQµ(Θ)/(TP cp ρd) is a thermal energy conversion factor, with cp being
the thermal heat capacity per unit mass, ρd the mass density, and 0 < βQ < 1 a dimen-
sionless factor known as the Taylor-Quinney factor. Rittel et al. (2017) reported that
the Taylor-Quinney factor varies greatly with investigated material and the loading
mode, hence we bring this factor into the parameter K1 that to be identified. The first
term on the right-hand side of Eq. (5.6) represents the portion of plastic power dissi-
pated into heat. As indicated here, K1(Θ) will be found to be temperature-dependent.
K2 is a thermal transport coefficient that controls how rapidly the system relaxes to-
ward the ambient temperature T0, that is, Θ → Θ0 = T0/TP . This coefficient turns
out to be small for the situations reported here. Nevertheless, it cannot be neglected,
especially for small twist rates. In principle, after long enough times of steady de-
formation, systems must reach steady-state temperatures determined by the balance
between heating and cooling terms in Eq. (5.6).

5.3. Hardening of Copper Bars in Torsion

5.3.1. Discretization and parameter identification

Discretization:
Torsion experiment of copper bars under a low strain rate (Horstemeyer et al., 2002)
leads the sample free from temperature variation in the material body. Therefore, the
equation of motion for ordinary temperature (5.6) is not under consideration. For the
purpose of numerical integration of the system of equations (5.1)-(5.5), let us introduce
the following variables and quantities

r̃ = r/R, τ̃ = τ/µ, ρ̃ = a2ρ, χ̃ =
χ

eD
, φ = Rω/η, η =

πR

180◦L
. (5.7)

The variable r̃ changes from zero to 1. The variable φ has the meaning of the total
twist angle measured in degree (in (Horstemeyer et al., 2002) φ changes from zero to
φ∗ = 73.35◦). The calculation of the torque as a function of φ is convenient for the
later comparison with the torque-twist curve from (Horstemeyer et al., 2002). Then
we rewrite Eq. (5.2) in the form

q(τ, ρ) =
b

a
q̃(τ̃ , ρ̃), (5.8)
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where

q̃(τ̃ , ρ̃) =
√
ρ̃[f̃P (τ̃ , ρ̃)− f̃P (−τ̃ , ρ̃)]. (5.9)
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Figure 5.3.: The torque-twist curves at the twist rate φ̇ = 0.25◦/s and for room temper-
ature: (i) sample 1: TDT-theory: black curve, experiment (Horstemeyer
et al., 2002): black circles (ii) sample 2: TDT-theory: red/dark gray curve,
experiment (Horstemeyer et al., 2002): red/dark gray circles

We set µ̃T = (b/a)µT = µs and assume that s is independent of temperature and
strain rate. Then

f̃P (τ̃ , ρ̃) = exp
[
− 1

Θ
e−τ̃/(s

√
ρ̃)
]
. (5.10)

We define $̃0 = (a/b)R$0 so that q/(R$0) = q̃/$̃0. Function ν in Eq. (5.4) becomes

ν̃(Θ, ρ̃, $̃0r̃) ≡ ln
( 1

Θ

)
− ln

[
ln
( √ρ̃
$̃0r̃

)]
. (5.11)

The dimensionless steady-state quantities are

ρ̃ss(χ̃) = e−1/χ̃, χ̃0 = χ0/eD. (5.12)

Using q̃ instead of q as the dimensionless measure of plastic strain rate means that
we are effectively rescaling t0 by a factor b/a. Since t−1

0 is a microscopic attempt
frequency, of the order 1012 s−1, we take (a/b)t0 = 10−12s.

In terms of the introduced quantities, the governing equations read

∂τ̃

∂φ
= η

[
r̃ − q̃(τ̃ , ρ̃)

$̃0

]
,

∂ρ̃

∂φ
= ηKρ

τ̃ q̃

ν̃(Θ, ρ̃, $̃0r̃)2 $̃0

[
1− ρ̃

ρ̃ss(χ̃)

]
,

∂χ̃

∂φ
= ηKχ

τ̃ q̃

$̃0

(
1− χ̃

χ̃0

)
.

(5.13)
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Figure 5.4.: Stress distribution τ(r) at the twist rate φ̇ = 0.25◦/s and for room tem-
perature: (i) φ = 10◦ (black), (ii) φ = 30◦ (red/dark gray), (iii) φ = 50◦

(yellow/light gray).

To solve this system of differential equations subject to initial conditions numerically,
we discretize the equations in the interval (0 < r̃ < 1) by dividing it into n sub-
intervals of equal length ∆r̃ = 1/n and writing the corresponding equations at n
nodes r̃i = i∆r̃, i = 1, . . . , n. In this way, we reduce the three differential equations
depending on r̃ to a system of 3n ordinary differential equations at n nodes that will
be solved by Matlab-ode15s.

The torque as function of the twist angle can be easily computed by the following
formula, once the governing equations are solved

Tc = 2πµR3

∫ 1

0

τ̃ r̃2dr̃. (5.14)

Parameter identification:
Following the procedure in Sec. 4.4, we list the five system-specific parameters and
two initial conditions from each sample required to simulate the theoretical torque-
twist curves. The five basic parameters are the following: the activation temperature
TP , the stress ratio s, the steady-state scaled effective temperature χ̃0, and the two
dimensionless conversion factors Kρ and Kχ. We also need initial values of the scaled
dislocation density ρ̃i and the effective disorder temperature χ̃i; all of which are de-
termined by the sample preparation. The other parameters required for numerical
simulations but known from the experiment are: the ambient temperature T = 298K,
the shear modulus µ = 48GPa, the length L = 17.6mm and radius R = 6.35mm
of the bar, the length of Burgers vector b = 2.55Å, the twist rate φ̇ = 0.25◦/s, and
consequently, $̃0 = 1.57427× 10−15/s. Since a corresponds to the smallest admissible
distance between dislocations in the state of maximum disorder in crystal, we take
a = 10b. Note that a only affects the dislocation density, not the torque-twist curves.

It is believed that the energy barrier TP and other characteristics in torsion deformation
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Figure 5.5.: Stress-twist curves at particular position of r at the twist rate φ̇ = 0.25◦/s
and for room temperature: (i) r = 3.18mm (black), (ii) r = 4.76mm
(red/dark gray), (iii) r = 6.35mm (yellow/light gray).

of the single crystal may differ from those of polycrystals. Therefore, although the same
materials are used in the experiment and the same deformation mode are applied, the
parameters found in the previous chapter can not be used here. For the same reason
that the deformation in this work is non-uniform and no steady-state situation appears
in the experimental torque-twist curve, we cannot utilize the strategy used in (Langer
et al., 2010) that directly evaluate some required parameters from the experiment.

Large scale least-squares:
We have resorted to the large scale least-squares analyses (Le & Tran, 2017) in order
to find the parameters. That is, we have solved the system of ordinary differential
equations (ODEs) numerically, provided a set of material parameters is known. Based
on this numerical solutions, we then computed the sum of the squares of the differences
between our theoretical torque-twist curves and a large set of selected experimental
points and minimized this sum in the space of the parameters. We form the sum of
squares as

fmin(TP , s, χ̃0, Kρ, Kχ, χ̃i, ρ̃i) =
N∑
i=1

(T ∗c (φi)− (T ex
c )i)

2

where (T ex
c )i denotes the data points of torque measured in the experiment at selected

twist angle φi and (T ∗c )i corresponds to the numerical output of the torque at φi. N
is the total number of points. Note that, solving the system of equation (5.13) with
given seven parameters provides us the flow stress in terms of the twist angle in degree
and by (5.14) we compute the torque at desired twist angle. The parameters are
supposed to make fmin as small as possible. Since fmin has many local minima, the
parameters for global minimum cannot be guaranteed. However, we will see that the
found values are reliable, for the corresponding fmin is small enough. The ODEs were
solved numerically using the Matlab-ode15s, while the finding of least squares was
realized with the Matlab-globalsearch. To keep the calculation time manageable and
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Figure 5.6.: Total density of dislocations ρ(r) at the twist rate φ̇ = 0.25◦/s and for
room temperature: (i) φ = 10◦ (black), (ii) φ = 30◦ (red/dark gray), (iii)
φ = 50◦ (yellow/light gray).

simultaneously ensure the accuracy, we have chosen n = 1000 and the φ-step equal
to φ∗/7335. We have found that the torque-twist curves for both samples taken from
(Horstemeyer et al., 2002) can be fitted with just a single set of system parameters.
These are: TP = 26976 K, s = 0.0152, χ0 = 0.2496, Kρ = 50.3, Kχ = 377. The initial
parameters for sample 1 are: ρ̃i1 = 6.04 × 10−5, χ̃i1 = 0.187, while for sample 2 we
have: ρ̃i2 = 6× 10−5, and χ̃i2 = 0.2. The precision of the fit could be measured by the
minimum of the sum of squares, which is equal to fmin = 48.442 N2m2 in this case. Note
that fmin also depends on the number of points selected from the experimental torque-
twist curves. The mean square of the deviation (or the square of the error per point)
can be characterized by fmin/N . We took 48 points from each curve of (Horstemeyer et
al., 2002), so the mean square of the deviation is approximately 0.5 N2m2. Numerous
numerical results of the least-squares analysis with the disturbed torque-twist curves
(not shown here) confirm that our method for parameter identification is robust against
small experimental uncertainties.

5.3.2. Numerical simulations:

With the identified parameters, we can now simulate the torque-twist curves for the
single crystal copper bars. The result is presented in Fig. 5.3. In this figure, the
circles represent the selected experimental points in (Horstemeyer et al., 2002) while
the solid curves are our theoretical simulation. One can see that even the initial
yielding transition appears to be described accurately by this theory. There are only
two visible discrepancies: for sample 1 and for φ ∈ (0◦, 25◦), the torques are slightly
above those predicted by the theory, and for large twist angles (φ > 70◦) they are
slightly below those predicted by the theory. For sample 2, the torques are slightly
above those predicted by the theory for φ ∈ (60◦, 70◦). Nothing about this result leads
us to believe that there are relevant physical ingredients missing in the theory.
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Figure 5.7.: The torque-twist curves for the bars twisted at different twist rates and

for room temperature: (i) φ̇ = 0.25◦/s (black), (ii) φ̇ = 2.5◦/s (red/dark
gray), (iii) φ̇ = 25◦/s (yellow/light gray).

The results of numerical simulations for other quantities using the above set of param-
eters and the initial values of sample 1 are shown in Figs. 5.4-5.8. We plot in Fig. 5.4
the shear stress distribution τ at three different twist angles φ = 10◦ (black), φ = 30◦

(red/dark gray), and φ = 50◦ (yellow/light gray). In a small elastic zone near the cen-
ter of the cross-section, the stress depends linearly on r. In the plastic zone, the stress
does not remain constant, but increases with increasing r and reaches a maximum at
r = R, as opposed to the similar distribution obtained by the phenomenological theory
of ideal plasticity. This exhibits the hardening behavior due to the entanglement of
dislocations. In Fig. 5.5, it shows that the stress at three particular positions of r axis
increase as the twist angle increases. It is not only those three points but all points
in the cross-section showing the hardening behavior. However, it is not the case for
the softening that will be shown in the next section. Fig. 5.6 presents the density of
dislocations at the above three different twist angles. The density of dislocations is an
increasing function of r and achieves the highest value at r = R.

Another interesting question is how strongly the twist rate and ambient temperature
affect the torque-twist curve. Fig. 5.7 shows the three torque-twist curves for three
samples loaded at the room temperature and three different twist rates φ̇ = 0.25◦/s
(black), φ̇ = 2.5◦/s (red/dark gray), and φ̇ = 25◦/s (yellow/light gray). The radius
of the samples is R = 6.35mm, while all other parameters remain unchanged. We
see that the twist rate affects the strain hardening: the higher the twist rate, the
higher the slope of the torque-twist curve. Fig. 5.8 shows the three torque-twist curves
for three samples loaded at the same twist rate φ̇ = 0.25◦/s but at three different
ambient temperatures: T = 25◦C (black), T = 250◦C (red/dark gray), and T = 500◦C
(yellow/light gray). Thus, the higher the temperature, the lower the slope of the
torque-twist curve and the smaller the hardening. As far as the size effect is concerned,
we could not find reliable experimental data for single crystal copper under torsion at
different bar radii, in contrast to twisted polycrystalline copper wires of different radii
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Figure 5.8.: The torque-twist curves for the bars twisted at the same twist rate

φ̇ = 0.25◦/s and for three different ambient temperatures: (i) T = 25◦C
(black), (ii) T = 250◦C (red/dark gray), (iii) T = 500◦C (yellow/light
gray).

(Liu et al., 2012).

5.4. Thermal Softening during High-temperature Torsion of
Aluminum Bars

5.4.1. Discretization and parameter identification

Discretization:
The experiment (Zhou & Clode, 1998) was performed over a wide range of strain
rate, and the inhomogeneous temperature distribution is observed in the sample body.
Hence, we need to add (5.6) into the governing equations. For the purpose of numer-
ical integration of the system of equations (5.1)-(5.6), let us introduce the following
dimensionless variables and quantities

r̃ = r/R, ρ̃ = a2ρ, χ̃ =
χ

eD
, ω̃ = Rω. (5.15)

The dimensionless variable r̃ changes from zero to 1. The dimensionless variable ω̃ has
the meaning of the maximum shear strain achieved at the outer radius. Since shear
modulus µ(Θ) varies with different temperature, the stress is kept unnormalized, which
makes the normalization differ from those in Sec. 5.3. The calculation of the rescaled
torque T̃c = Tc/R

3 as a function of ω̃ = ωR is convenient for the later comparison
with the experimental data from (Zhou & Clode, 1998). Then we rewrite Eq. (5.2) in
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the form

q(τ, ρ) =
b

a
q̃(τ, ρ̃), (5.16)

where

q̃(τ, ρ̃) =
√
ρ̃[f̃P (τ, ρ̃)− f̃P (−τ, ρ̃)]. (5.17)

We set µ̃T = (b/a)µT = µ(Θ)s and assume that s is independent of temperature and
strain rate. Then

f̃P (τ, ρ̃) = exp
[
− 1

Θ
e−τ/(µ(Θ)s

√
ρ̃)
]
. (5.18)

We define $̃0 = (a/b)R$0 so that q/(R$0) = q̃/$̃0. Function ν in Eq. (5.4) becomes

ν̃(Θ, ρ̃, $̃0r̃) ≡ ln
( 1

Θ

)
− ln

[
ln
( √ρ̃
$̃0r̃

)]
. (5.19)

The dimensionless steady-state quantities are

ρ̃ss(χ̃) = e−1/χ̃, χ̃0 = χ0/eD. (5.20)

Using q̃ instead of q as the dimensionless measure of plastic strain rate means that
we are effectively rescaling t0 by a factor b/a. Since t−1

0 is a microscopic attempt
frequency, of the order 1012 s−1, we take (a/b)t0 = 10−12s.

In terms of the introduced quantities the governing equations read

∂τ

∂ω̃
=µ(Θ)

[
r̃ − q̃(τ, ρ̃)

$̃0

]
,

∂ρ̃

∂ω̃
=Kρ

τ q̃

µ(Θ)ν̃(Θ, ρ̃, φ̃0r̃)2 $̃0

[
1− ρ̃

ρ̃ss(χ̃)

]
,

∂χ̃

∂ω̃
=Kχ

τ q̃

µ(Θ)$̃0

(
1− χ̃

χ̃0

)
,

∂Θ

∂ω̃
=K1(Θ)

τ q̃

µ(Θ)$̃0

− K̃2

$̃0

(Θ−Θ0),

(5.21)

where K̃2 = (a/b)K2. To solve this system of differential equations subject to initial
conditions numerically, we discretize the equations in the interval (0 < r̃ < 1) by
dividing it into n sub-intervals of equal length ∆r̃ = 1/n and writing the corresponding
equations at n nodes r̃i = i∆r̃, i = 1, . . . , n. In this way, we reduce the four differential
equations depending on r̃ to a system of 4n ordinary differential equations at n nodes
that will be solved by Matlab-ode23s.

The torque as function of the twist angle can be computed by the following formula

Tc = 2πR3

∫ 1

0

τ r̃2dr̃. (5.22)

Parameter identification:
Since an additional governing equation is taken into account, eight system-specific
parameters and two initial conditions for each sample need to be specified to simulate
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Figure 5.9.: Torque-twist curves for ambient temperature T0 = 773 K, and for five
different twist rates Rω̇ = 19.7/s (black), Rω̇ = 6.44/s (blue), Rω̇ =
1.84/s (red), Rω̇ = 0.21/s (green) and Rω̇ = 0.02/s (cyan): (i) TDT
(bold lines), (ii) experimental points taken from Zhou & Clode (1998)
(circles).
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Figure 5.10.: Stress-twist curves at r = 5mm for ambient temperature T0 = 773 K, and
for five different twist rates Rω̇ = 19.7/s (black), Rω̇ = 6.44/s (blue),
Rω̇ = 1.84/s (red), Rω̇ = 0.21/s (green) and Rω̇ = 0.02/s (cyan).
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Table 5.1.: The initial values of ρ̃i and χ̃i
Rω̇ (1/s) 19.7 6.44 1.84 0.21 0.02

ρ̃i 7.94× 10−5 9.49× 10−5 7.66× 10−5 1.47× 10−6 1× 10−6

χ̃i 0.245 0.24 0.234 0.225 0.2488

the theoretical torque-twist curves. These basic parameters include the following six:
the activation temperature TP , the stress ratio s, the steady-state scaled effective
temperature χ̃0, and the three dimensionless conversion factors Kρ, Kχ, and K̃2. In
addition, we need a formula for the thermal conversion factor K1(θ) in Eq. (5.6) which
is assumed to be a linear function of Θ

K1(Θ) = K0 [1 + c1 TP (Θ−Θ0)] . (5.23)

The numbers K0 and c1 are the two remaining parameters to be determined from the
data. We also need initial values of the scaled dislocation density ρ̃i and the effective
disorder temperature χ̃i; all of which are determined by the sample preparation. Con-
cerning the initial values of the shear stress and the ordinary temperature, we assume
that τi = 0 and Θi = Θ0, where T0 = TP Θ0 = 773 K is the ambient temperature. The
other parameters required for numerical simulations but known from the experiment
are: the length L = 10 mm and radius R = 5 mm of the bars, and the length of Burg-
ers vector b = 2.86 Å. Since a corresponds to the smallest admissible distance between
dislocations in the state of maximum disorder in crystal, we take a = 10b.
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Figure 5.11.: Stress-twist curve for four different position in r axis at ambient tem-
perature T0 = 773 K and twist rate Rω̇ = 19.7/s: r = 5mm (black),
r = 3.5mm (blue), r = 2mm (red), r = 0.5mm (green).

Finally, for the temperature-dependent shear modulus µ(Θ) we use a formula proposed
by Varshni (1970)

µ(Θ) = µ1 −
[ Sv

exp(T1/TP Θ)− 1

]
, (5.24)
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where µ1 = 28.8 GPa, Sv = 3.44 GPa, and T1 = 215 K. (These values taken from
(Chen et al., 1998) is actually for the aluminum alloy 5182, but since the chemical
composition of the aluminum alloy 5252 is very close to that of 5182, we use the same
parameters for our alloy.)

We apply the large-scale least-squares analyses utilized in Sec. 4.4 and Sec. 5.3 to
find the required parameters. The ODEs were solved numerically using the Matlab-
ode23s, while the finding of least squares was realized with the Matlab-globalsearch.
To keep the calculation time manageable and simultaneously ensure the accuracy, we
have chosen n = 100 and the ω̃-step equal to ω̃∗/8000. Our results appear to be robust
against the experimental uncertainties. We have found that the torque-twist curves
for five samples taken from (Zhou & Clode, 1998) can be fitted with just a single
set of system parameters. These are: TP = 23628 K, s = 0.052, χ0 = 0.2489, Kρ =
10.16, Kχ = 327.72, K0 = 0.152, c1 = 0.0057, K̃2 = 1.762 × 10−13. So far as we can
tell, our values of K0 and c1 are consistent with values of the Taylor-Quinney factor
β of the order of unity or less, at least in the range T < 900 K (which is close to
the melting temperature). The identified initial values of dislocation densities and
disorder temperatures for five samples are shown in Table 5.1, where the first row
indicates the twist rates at which the samples are twisted. To obtain the actual initial
dislocation densities, we must divide ρ̃i by a2, resulting in the order between 1012 and
1013 dislocations per square meter.
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Figure 5.12.: Stress distributions τ(r) at ω̄∗ = 1.5 for ambient temperature T0 = 773 K,
and for five different twist rates Rω̇ = 19.7/s (black), Rω̇ = 6.44/s (blue),
Rω̇ = 1.84/s (red), Rω̇ = 0.21/s (green) and Rω̇ = 0.02/s (cyan).

5.4.2. Numerical simulations

With the identified parameters we can now simulate the torque-twist curves for bars
made of aluminum alloy 5252 undergoing torsional deformations at five different twist
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rates Rω̇ = 19.7/s, 6.44/s, 1.84/s, 0.21/s, and 0.02/s, and for ambient temperature
T0 = 773 K. In order to compare with the experimental curves, we use the rescaled
torque and twist angle (or effective strain) defined as followed (Zhou & Clode, 1998)

T̄c =
12
√

3

8πR3
Tc, ω̄ =

0.722Rω√
3

. (5.25)

Here, the bar accent (̄ ) indicates the rescaled variables. The result is presented in
Fig. 5.9. In this figure, the circles represent the selected experimental points in (Zhou
& Clode, 1998) while the solid curves are our theoretical simulation. One can see that
even the initial yielding transition appears to be described accurately by this theory.
There is only one visible discrepancy: for the twist rate Rω̇ = 0.21/s the torques are
slightly above those predicted by the theory at small ω̄. Nothing about this result
leads us to believe that there are relevant physical ingredients missing in the theory.
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Figure 5.13.: Density of dislocations ρ(r) at ω̄∗ = 1.5 for ambient temperature T0 =
773 K, and for five different twist rates Rω̇ = 19.7/s (black), Rω̇ = 6.44/s
(blue), Rω̇ = 1.84/s (red), Rω̇ = 0.21/s (green) and Rω̇ = 0.02/s (cyan).

The results of numerical simulations for other quantities are shown in Figs. 5.10-
5.14. Fig. 5.10 shows the stress-twist curves at the end of cross-section, r = 5mm,
for five different twist rates. The shape of the outcomes is roughly the same as the
results shown in Fig. 5.9 that for the highest three twist rates the stress-twist curves
at r = 5mm show thermal softening behavior, while in the rest two curves it is not
remarkable. Fig. 5.11 also shows stress-twist curves but at different position of r for
the twist rate Rω̇ = 19.7/s. We can observe that the stress keeps increasing in the
inner circle of the cross-section as can be seen from the green curve. When it comes
to r = 2mm, the stress-twist curve exhibits a steady-state respond. Probably, the
hardening by dislocation entanglement and the thermal softening due to temperature
increase cancel out. However, beyond a certain position in r, it shows clear thermal
softening behavior as shown in the curves for r = 3.5mm and r = 5mm. We plot in
Fig. 5.12 the shear stress distribution τ(r) at the maximal twist angle ω̄∗ = 1.5. In a
small elastic zone near the center of the cross-section, the stress depends linearly on r.
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Figure 5.14.: Temperature rise ∆T (r) at ω̄∗ = 1.5 for ambient temperature T0 = 773 K,
and for five different twist rates Rω̇ = 19.7/s (black), Rω̇ = 6.44/s (blue),
Rω̇ = 1.84/s (red), Rω̇ = 0.21/s (green) and Rω̇ = 0.02/s (cyan).

In the plastic zone, the stress does not remain constant, but increases with increasing
r and reaches a maximum at r = R, as opposed to the similar distribution obtained
by the phenomenological theory of ideal plasticity. Fig. 5.13 presents the distributions
of the density of dislocations ρ(r) at the maximal twist angle ω̄∗ = 1.5. The density of
dislocations is an increasing function of r but quickly achieves a nearly constant value
in the outer ring r0 < r < R, especially for the high twist rates.

Finally, we present in Fig. 5.14 the distribution of the temperature rise ∆T (r) at
the maximal twist angle ω̄∗ = 1.5. The temperature rise is a monotonously increasing
function of the radius and achieves the maximum at r = R. We see that the higher the
twist rate, the higher is the temperature rise. At the highest twist rate Rω̇ = 19.7/s,
the temperature rise at the outer radius is about 30 K. Our theory predicts that the
larger temperature increases occur at higher twist rates because the plastic power is
larger there. This is confirmed by the calculations of the temperature distribution
based on the finite element method provided in Zhou & Clode (1998).

As discussed, when experimental results show a steady-state response in stress-strain
curve, parameters TP , s, and χ0 can be directly extracted. And it makes relatively
easier to identify the parameters left. However, when it is not the case, all parameters
must be identified using the introduced large-scale least-square method. For compari-
son, we show in Table 5.2 all values of 5 basic parameters identified from experiments
in different circumstances (Dislocation type, chemical element, loading mode). Those
basic parameters are believed to vary with type of dislocation, investigated material
and loading mode, analogous to the Taylor-Quinney factor. Although each set of pa-
rameters are different, they are not randomly given, but remain in the same order.
In some cases, like aluminum in two different circumstances, parameters are almost
same. Nevertheless, it is still too early to draw a conclusion and, therefore, more
investigation on those parameters are needed.
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Table 5.2.: Comparison of Parameters

Experiment: Type of dislocation, material
and loading mode:

Parameters:

Shi et al. (1997) Edge dislocation,
Aluminum polycrystal,
Tension

TP = 24000 K, s = 0.040,
χ0 = 0.249, Kρ = 24.25,
Kχ = 300

Zhou & Clode (1998) Screw dislocations,
Aluminum polycrystal,
Torsion

TP = 23628 K, s = 0.052,
χ0 = 0.2489, Kρ = 10.16,
Kχ = 327.72,

Liu et al. (2012) Screw dislocation,
Copper polycrystal,
Torsion

TP = 19205 K, s = 0.0686,
χ0 = 0.2089, Kρ = 57.02,
Kχ = 242.8

Horstemeyer et al. (2002) Screw dislocation,
Copper single-crystal,
Torsion

TP = 26976 K, s = 0.0152,
χ0 = 0.2496, Kρ = 50.3,
Kχ = 377

5.5. Conclusion

The results show the principal applicability of a simple extension of TDT to twisted
bars of macro sizes where excess dislocations and kinematic hardening can be ignored.
Two applications, hardening and thermal softening of bars under torsion, are studies
using TDT and the results are very satisfactory. Note that we are now using thermo-
dynamic dislocation theory not only to verify its validity but also as a tool to discover
the properties of structural materials. One of the main reasons for the success of this
theory is the extreme sensitivity of the plastic strain rate to small changes in the tem-
perature or the stress. This allows the yielding transition and strain hardening to be
correctly captured, as can be seen in the torque-twist curves. The proposed theory
can serve as a useful guide for the future experimental investigation on the sensitivity
of torque-twist curves to twist rate and ambient temperature. In particular, it would
be very interesting to perform torsion tests with extremely high twist rates when the
samples are bonded to Kolsky bars (cf. (Marchand & Duffy, 1988)). In this case,
our theory would predict the runaway instability and shear band formation due to the
thermal softening.
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6. Distribution of Dislocations in Twisted Bar

6.1. Introduction

The aim of this chapter is to find the dislocation distribution in equilibrium as a
function of the given torque by continuum dislocation theory (Baitsch et al., 2015;
Berdichevsky, 2006a; Berdichevsky & Le, 2007; Kochmann & Le, 2008, 2009a; Koster
et al., 2015; Le, 2016a,b; Le & Günther, 2014; Le & Nguyen, 2013; Le & Sembiring,
2008a,b, 2009) and compare with the similar results obtained by numerical simula-
tions in Weinberger (2011). To simplify the analysis, we assume that the crystal is
elastically isotropic, and all dislocations are screw. Besides, the side boundary of the
bar is traction free and may, therefore, attract dislocations. Various formulation of the
defect energy appeared in the literature, such as quadratic defect energy (Wulfinghoff
et al., 2013), rank-one (Kametani et al., 2012; Klusemann et al., 2013; Wulfinghoff
et al., 2014) and logarithmic defect energy (Berdichevsky, 2006b), a nonlinear func-
tion that is product of linear and logarithmic function (Zaiser, 2015; Wulfinghoff &
Böhlke, 2015; Berdichevsky, 2016). We adopt the defect energy formulation found by
Berdichevsky (2016) that is asymptotically exact in the continuum limit. If the dis-
sipation is neglected, the displacement and the plastic distortion should be found by
the energy minimization. First, we show that the dislocation distribution minimizing
the energy of the bar with zero torque is uniform. This agrees well with the result
obtained by Weinberger (2011). Next, for the bar loaded by a non-zero torque, we
find an energetic threshold for the dislocation nucleation. If the twist exceeds this
threshold, excess dislocations appear to minimize the energy. It turns out that there
is a dislocation-free zone at the outer ring of the bar’s cross-section. The non-uniform
distribution of dislocations in equilibrium, as well as the twist angle, are found in
terms of the given torque. Furthermore, the evolution of plastic warping is compared
with those reported in Kaluza & Le (2011) and Liu et al. (2018). In case the dissi-
pation due to the resistance to dislocation motion is taken into account, the energy
minimization should be replaced by a variational equation. The solution is shown to
have an elastic core region in the middle of the cross-section. Dislocations are concen-
trated in a ring between two dislocation-free zones. This leads to the change of the
stress distribution, increasing the dissipative threshold of the torque. We show that
the dislocation-free zones, as well as the threshold in twist angle, depend on the radius
of the bar’s cross-section exhibiting the size effect. We compare the torque-twist curve
with the experimental curve obtained in Horstemeyer et al. (2002) that shows a good
agreement in the range of small plastic twist angles. We compare dislocation distri-
butions in a bar of macroscale and a microwire, which shows that the size of samples
influences the dislocation distribution.
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Figure 6.1.: A single crystal bar loaded in torsion and its cross section

6.2. Asymptotically Exact Energy of the Bar

Consider a single crystal bar (or wire) of length L loaded in torsion by given torques
±Tc acting at its ends. Let A be the cross-section of the bar by planes z = const. For
simplicity, we consider A to be a circle of radius R (see Fig. 6.1). The side boundary of
the bar ∂A× [0, L] is free from tractions. The length of the bar is assumed to be much
larger than the radius (L� R) to neglect the end effects. If the torque Tc is sufficiently
small, it is natural to assume that the bar deforms elastically so that the twist is
proportional to the torque, provided the bar is initially dislocation-free. If Tc exceeds
some critical value, then screw dislocations may appear. We assume that the active
slip planes are perpendicular to the vectors eθ in the cylindrical coordinate system,
while the slip directions, as well as the dislocation lines, are parallel to the z-axis.
Mention that this assumption is not likely to be realistic for single crystals. However,
since the Burgers vector is parallel to a screw dislocation, any crystallographic plane
containing the dislocation is a possible slip plane. Thus, the screw dislocations in single
cubic primitive crystals with the Burgers vector parallel to [001] and slip planes of type
{mn0}, m,n being any irreducible pair of integers, may approximately be regarded
as showing a continuously varying crystal orientation (see Fig. 6.1). Likewise, the
screw dislocations in single hcp-crystals with the Burgers vector parallel to [0001] and
slip planes of type {112̄0} may also be considered as satisfying this assumption to
some degree. Our aim is to determine the distribution of dislocations as a function
of Tc by the continuum dislocation theory. For screw dislocations with the slip planes
perpendicular to the vector eθ, the tensor of plastic distortion, βij, has only one non-
zero component βzθ ≡ β. Function β can be interpreted as the plastic warping, and, by
the symmetry reasoning, we assume that β depends only on r-coordinate: β = β(r).
The only non-zero components of the plastic strain tensor are given by

εpθz = εpzθ =
1

2
β(r).

For the bar of circular cross-section loaded in torsion, the only non-zero components
of the displacement vector are uθ, which depends only on r and z: uθ = uθ(r, z). With
the previous equation, we obtain for the components of the elastic strain tensor

εerr = εeθθ = εerz = εezz = 0,

εerθ =
1

2
(uθ,r − uθ/r), εeθz =

1

2
(uθ,z − β),
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where the comma in indices denotes the partial derivative with respect to the corre-
sponding coordinate. The only non-zero component of the dislocation density tensor
introduced by Nye (1953); Bilby (1955); Kröner (1955), αij = εjklβil,k, is

αzz = β,r + β/r.

Mention that αzzda presents the resultant Burgers vector of all excess dislocations,
whose dislocation lines cross an infinitesimal area da perpendicular to the z-axis.
Thus, the number of screw excess dislocations per unit area becomes

ρ =
1

b
|αzz| =

1

b
|β,r + β/r|, (6.1)

with b being the magnitude of Burgers vector. We require the dislocation density to
remain finite everywhere including r = 0, so function β(r) must satisfy the regularity
condition

β(0) = 0. (6.2)

Hence, the center line of the bar can be considered as an obstacle hindering the motion
of dislocations which have to pile up against it.

Following Kröner (1992), we regard the elastic strain εeij and the dislocation density
αij of excess dislocations as the state variables of the continuum dislocation theory.
In addition to these state variables, one should also include the density of redundant
dislocations ρr and the effective temperature χ into the list of state variables. In the
specific problem that the dissipation is neglected, we may first ignore the density of
redundant dislocations and the effective temperature in the free energy. However,
when the dissipation is taken into account, with the lack of those two state variables,
the hardening behavior can not be properly described. The free energy per unit vol-
ume of the crystal with dislocations is allowed to depend only on the position vector
x = (x, y, z) as well as on these state variables. Provided that there are only excess
dislocations, we lay down in the continuum limit

ψ(x, εeij, αij) = ψe(ε
e
ij) + ψm(x, αij). (6.3)

The first term of (6.3) corresponds to the energy contribution due to the elastic strain
that also includes the energy of interaction of dislocations, while the second term
describes the self-energy of dislocations whose explicit dependence on x accounts for
the influence of the free boundary (Eshelby, 1953). Berdichevsky (2016) has solved
the eigenstrain problem of a bar containing a large number of screw dislocations of
the equal sign and found the free energy density of an elastically isotropic dislocated
crystal bar which we present in the form

ψ(x, εeij, αij) =
1

2
µ(εerθ)

2 +
1

2
µ(εeθz)

2 +
µb2

4π
f(r/R)ρ, (6.4)

where µ is the shear modulus, f(r/R) = ln(1 − r2/R2) + ln R
r0

+ 1/4, with r0 being
the cut-off radius of the dislocation core. The first two terms of (6.4) correspond
to the energy contribution due to the elastic strain, the third term is the self-energy
of dislocations, with µb2

4π
ln(1 − r2/R2) being dislocation-boundary interaction energy

and µb2

4π
(ln R

r0
+ 1/4) the self-energy of one dislocation without dislocation-boundary

interaction. The summand 1/4 in the last term is due to the method of regularization



114 6. Distribution of Dislocations in Twisted Bar

of plastic distortion within the cut-off radius of the dislocation core as a “smeared
out” delta function, so altogether we can present this self-energy without dislocation-
boundary interaction as µb2

4π
(ln R

r0
+ 1/4) = µb2

4π
ln R

rc
and interpret rc as the “effective”

radius of the dislocation core. Note that function f(r/R) is well defined only for r
having a distance larger than r0/2 to the side boundary r = R. For r ∈ (R− r0/2, R)
we set f(r/R) = 1/4. The plot of function f(x) for R/r0 = 104 is show in Fig. 6.2.
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Figure 6.2.: Function f(x) for R/r0 = 104.

According to Berdichevsky’s classification, the first two terms are the main terms,
while the last term belongs to the small correction term that is comparable with
the error in obtaining the first two terms in the continuum limit for the ensemble of
randomly distributed dislocations and should, therefore, be neglected. However, if we
do averaging in the spatial way in which the volume of the bar is divided into a large
number of boxes such that the number of dislocations in each box is proportional to
the dislocation density times the box volume, the errors in obtaining all three terms
through averaging have the same order of smallness that tends to zero as sizes of the
boxes go to zero. Thus, the last term in the average energy density (6.4), although
small compared to the first two due to the smallness of b, has the right of existence
in the continuum theory obtained by the spatial averaging procedure. We will see
that this small correction term enables one to uniquely determine the distribution of
dislocations in terms of the torque.

We assume that the distributed tractions tθ = ±t(r) leading to the torques ±Tc act
at the ends z = 0, L of the bar. Under the assumption of axial symmetry, the energy
functional of the twisted bar reads

I(uθ, β) = 2π

∫ L

0

∫ R

0

[
1

2
µ(uθ,r −

1

r
uθ)

2 +
1

2
µ(uθ,z − β)2

+
µb

4π
f(r/R)|β,r + β/r|

]
rdrdz − 2π

∫ R

0

t(r)[uθ(r, L)− uθ(r, 0)]rdr. (6.5)

We consider first the case of a free bar with zero traction t(r) = 0 causing no torque.
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In this case, the true displacement and plastic warping minimize the energy functional

I(uθ, β) = 2π

∫ L

0

∫ R

0

[
1

2
µ(uθ,r −

1

r
uθ)

2 +
1

2
µ(uθ,z − β)2

+
µb

4π
f(r/R)|β,r + β/r|

]
rdrdz (6.6)

among all admissible uθ and β. Since functional (6.6) is non-negative, the minimizer
vanishes identically: uθ = 0 and β = 0. There is another interesting question in the
case of zero torque, first raised by Eshelby (1953) and studied later in Weinberger
(2011): provided N screw dislocations exist in the free unloaded bar, how to find the
energy minimizing dislocation distribution. Within the proposed theory, the problem
reduces to finding uθ and β that minimize (6.6) under the constraint

2π

∫ R

0

ρrdr =
2π

b

∫ R

0

|β,r + β/r|rdr = N. (6.7)

This problem can be solved by the variational-asymptotic method (see, e.g., Le (1999)).
Since the last term in functional (6.6) is small due to the smallness of b, we neglect it in
the first approximation. Then the minimizer that makes the two first terms vanishing
reads

uθ = ω0rz, β = ω0r, (6.8)

where ω0 can be interpreted as the twist per unit length due to screw dislocations in
the free bar. This leads to the uniform dislocation distribution ρ = 2ω0/b.

1 Assuming
that ω0 > 0 and substituting ρ into (6.7), we obtain

2π

∫ R

0

2ω0/brdr =
2ω0

b
πR2 = N ⇒ ω0 =

Nb

2πR2
.

If we denote the dimensionless twist per unit length as ω̃0 = ω0/(b/πR
2), then ω̃0 =

N/2. This agrees well with the result obtained by Weinberger (2011) for large N ,
as shown in Fig. 6.3. Note that, here the notations for denoting the dimensionless
energy Ē and the normalized twist per unit length β̄ in Weinberger (2011) were used.
The minimum of energy is found by substituting (6.8) into the energy functional (6.6)
where the last term should now be kept because it becomes at this step the principal
term. This yields the energy per unit length

E = 2π
µb2

4π

∫ R

0

2ω0/bf(r/R)rdr =
µb2

2π
(
N

2
ε0 + Ē),

where ε0 = ln R
r0

+ 1/4 = ln R
rc

and

Ē = N

∫ 1

0

ln(1− r̃2)r̃dr̃ = −N
2
.

The comparison with the dimensionless energy Ē obtained by Weinberger (2011) is
shown in the same Figure, where r̃ is the dimensionless radius. In contrast to the
twist, there is a difference in the slope of Ē : in our continuum theory, this slope is
−1/2, while Weinberger’s numerical simulations give −2 for large N .

1The more accurate analysis shows that this uniform dislocation distribution for the free bar is
asymptotic exact in the limit N →∞.
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Figure 6.3.: The normalized energy and normalized twist per unit length as functions
of the number of dislocations: (i) bold line: The proposed continuum
theory, (ii) points: numerical simulations Weinberger (2011).

Assume now that a non-zero torque Tc is applied. In this case, the true displacement
and plastic warping should be found from minimizing functional (6.5). This variational
problem can again be solved by the variational-asymptotic method. In the first step,
we keep in (6.5) only the first term as the main asymptotic term (Le, 1999). Then the
true displacement uθ reads

uθ(r, z) = ωrz,

where ω = φ/L corresponds to the twist of the bar per unit length, and φ being the
total twist angle. Except for the two edges of the bar where uθ and β may depend
on the detailed distribution of t(r), the energy per unit length in the main part of the
bar reduces then to

I(β) = 2π

∫ R

0

[
1

2
µ(rω − β)2 +

µb

4π
f(r/R)|β,r + β/r|

]
rdr. (6.9)

If the resistance to dislocation motion is negligible (and, hence, the dissipation is zero),
the true plastic warping minimizes functional (6.9) among all admissible function β(x)
satisfying the regularity condition (6.2).

If the resistance to dislocation motion cannot be neglected, then the energy minimiza-
tion must be replaced by the variational equation (Sedov, 1965)

δI + 2π

∫ R

0

∂D

∂β̇
δβrdr = 0, (6.10)

where, in case of rate-independent theory,

D(β̇) = K|β̇|.
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Function D(β̇) represents the dissipation potential due to plastic warping, with K
being called critical resolved shear stress, and the dot above a function denoting its
time derivative. For β̇ = 0 the variational equation (6.10) needs not be satisfied: it
is replaced by the equation β̇ = 0. Note that the dissipation terms due to redundant
dislocations and the effective temperature are not taken into account.

6.3. Dislocation Distribution at Zero Dissipation

We first analyze the situation when the resistance to dislocation motion is negligible
(and, hence, the dissipation is zero). In this case, the determination of β(r) reduces
to the minimization problem (6.9). It is convenient to introduce the following dimen-
sionless variable and quantities

r̃ =
r

R
, ω̃ = Rω, Ĩ =

I

2πµR2
, c0 =

b

4πR
. (6.11)

The dimensionless variable r̃ changes in the interval (0, 1). Assuming for definiteness
that the dimensionless dislocation density β,r̃+β/r̃ is positive, functional (6.9) reduces
to

Ĩ(β) =

∫ 1

0

[
1

2
(r̃ω̃ − β)2 + c0f(r̃)(β,r̃ + β/r̃)

]
r̃dr̃, (6.12)

where f(r̃) = ln(1 − r̃2) + ε0. We minimize functional (6.12) among functions β(r̃)
satisfying the regularity condition β(0) = 0. Because the last gradient term is linear
in β,r̃, we allow the plastic warping to have jumped at some point r̃ = l.
Under the action of sufficiently large Peach-Koehler force due to the positive torque
(see, e.g., Le (2010)) positive excess dislocations move toward the middle line of the bar,
while the negative move to the free boundary and disappear. Supposed that only excess
dislocations inside the bar are considered, then the motion of the negative dislocations
lead the bar to have a dislocation-free zone near the side boundary: β,r̃ + β/r̃ = 0. In
the dislocation-free zone, the equation is satisfied only if β = β0/r̃ for some constant
β0. This leads to the following Ansatz for the minimizer

β(r̃) =

{
β1(r̃) for r̃ ∈ (0, l),

β0/r̃ for r̃ ∈ (l, 1),
(6.13)

where l is an unknown length, 0 ≤ l ≤ 1. We admit that β(r̃) may have a jump
at r̃ = l. We have to find β1(r̃) and the constants, β0, and l. Thus, the functional
becomes

Ĩ =

∫ l

0

[
1

2
(r̃ω̃ − β1)2 + c0f(r̃)

(
β1,r̃ +

β1

r̃

)]
r̃dr̃+

∫ 1

l

1

2

(
r̃ω̃ − β0

r̃

)2

r̃dr̃. (6.14)

Varying energy functional (6.14) with respect to β1(r̃) we obtain the (non-differential)
equation for it in the interval (0, l)

−(r̃ω̃ − β1)r̃ − c0f
′(r̃)r̃ = 0,

yielding

β1(r̃) = r̃ω̃ + c0f
′(r̃). (6.15)
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Due to the specific linear dependence of energy functional on β1,r̃ leading to the (non-
differential) equation for β1(r̃), β1(l) cannot be varied arbitrarily, so δβ1(l) = 0. How-
ever, the variation of (6.14) with respect to l and β0 yields two additional conditions

1

2
(ω̃l − β1(l))2 + c0f(l)

(
β1,r̃ +

β1

l

)
− 1

2

(
ω̃l − β0

l

)2

= 0,∫ 1

l

(r̃ω̃ − β0

r̃
)dr̃ = 0.

(6.16)

From (6.16)2 we find that

β0 = − ω̃(1− l2)

2 ln l
. (6.17)

Because l < 1, β0 > 0 if ω̃ > 0. Plugging (6.15) and (6.17) into (6.16)1, we obtain the
transcendental equation to determine l

1

2
c2

0(f ′(l))2 + 2ω̃c0f(l) + c2
0f(l)

[
f ′′(l) +

f ′(l)

l

]
− 1

2
ω̃2

(
l +

1− l2

2l ln l

)2

= 0. (6.18)

We may either solve this equation with respect to l in terms of ω̃ or use l as the
parameter and find ω̃ in terms of l. With respect to ω̃, equation (6.18) can be presented
as the quadratic equation

a(l)ω̃2 − 2b(l)ω̃ − c(l) = 0, (6.19)

where

a(l) =

(
l +

1− l2

2l ln l

)2

, b(l) = 2c0f(l),

c(l) = c2
0(f ′(l))2 + 2c2

0f(l)

[
f ′′(l) +

f ′(l)

l

]
.

Provided the discriminant b2(l)+a(l)c(l) is positive, we take the positive root of (6.19)
yielding

ω̃(l) =
b(l) +

√
b2(l) + a(l)c(l)

a(l)
.

The smallest l = lm that gives a real double root ω̃m = b(lm)/a(lm) is found from the
equation

b2(lm) + a(lm)c(lm) = 0.

As will be seen later, this lm indicates the onset of dislocation nucleation.

Having β(r̃) according to (6.13), (6.15), (6.17), we find the signed dislocation density
from (6.1). For r̃ ∈ (0, l) we have

ρ =
1

b
(β,r +

β

r
) =

1

bR

(
β,r̃ +

β

r̃

)
=

1

bR

[
2ω̃ + c0(f ′′(r̃) +

f ′(r̃)

r̃
)

]
.
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For r̃ ∈ (l, 1) we know that ρ = 0. With this dislocation density we can also compute
the total number of dislocations in a bar

N = 2π

∫ R

0

ρrdr = 2π
R

b
(ω̃l2 − χ 2l2

1− l2
).

The dimensionless shear stress distribution τ(r̃) = σθz(r̃)/µ is given by

τ(r̃) =

{
−c0f

′(r̃) for r̃ ∈ (0, l),

r̃ω̃ + ω̃(1−l2)
2 ln l r̃

for r̃ ∈ (l, 1).
(6.20)
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Figure 6.4.: Evolution of the plastic warping β(r̃): (a) l = 0.5 (ω̃ = 0.00083), (b)
l = 0.7 (ω̃ = 0.00265), (c) l = 0.9 (ω̃ = 0.02351).

Note that the jump in shear stress across the cylindrical surface r̃ = l does not vio-
late the equilibrium condition. The torque is computed as the resultant moment of
this shear stress or, alternatively, is obtained by differentiating functional (6.12) with
respect to ω̃. This gives

T̃c =
∂Ĩ

∂ω̃
=

Tc
2πµR3

=

∫ 1

0

(r̃ω̃ − β)r̃2dr̃.

To compute the dimensionless torque T̃c we substitute β(r̃) from (6.13) into this inte-
gral. Using the above solution for β(r̃) we easily find that

T̃c = −c0(l2 + ln(1− l2)) +
ω̃

4
(1− l4) +

ω̃(1− l2)2

4 ln l
.

For the twist ω̃ < ω̃m the plastic warping β(r̃) must be identically zero, so we have
the purely elastic solution with uθ(r̃) = r̃ω̃ and β(r̃) = 0. In this case the torque T̃c is
proportional to the twist ω̃:

T̃c =
ω̃

4
.

Fig. 6.4 shows the evolution of β(r̃) as ω̃ increases. For the simulation we took R =
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Figure 6.5.: Distribution of normalized dislocation density ρ̃(r̃): (a) l = 0.5 (ω̃ =
0.00083), (b) l = 0.7 (ω̃ = 0.00265), (c) l = 0.9 (ω̃ = 0.02351).

0.2 0.4 0.6 0.8 1.0

- 0.002

- 0.001

0.001

0.002

r̃

τ

Figure 6.6.: Distribution of dimensionless shear stress τ(r̃): (a) l = 0.5 (ω̃ = 0.00083),
(b) l = 0.7 (ω̃ = 0.00265), (c) l = 0.9 (ω̃ = 0.02351).

1µm, b = r0 = 1 Å. We see that β(r̃) increases as ω̃ increases. Besides, the plastic
warping exhibits a jump at r̃ = l that also increases as ω̃ increases. Since the total
strain is continuous, such a jump indicates the misorientation of the lattice across the
surface r̃ = l.
Fig. 6.5 shows the distributions of the normalized dislocation density ρ̃(r̃) = bRρ(r̃)
as ω̃ increases. One can see that the dislocation-free zone diminishes as ω̃ increases.
For small ω̃ the dislocation density remains nearly constant. For large ω̃, we see some
influence of the free boundary on the distribution of dislocations: the density slightly
decreases with r̃.
Fig. 6.6 shows the distributions of the dimensionless shear stress given by (6.20) as
ω̃ increases. We observe that the shear stress is nearly zero in the dislocation zone.
This agrees well with the fact that the main contribution to the Peach-Koehler force
comes from the shear stress, while the contribution of this force due to the boundary
is noticeable only near the free boundary.
Fig. 6.7 presents on the left the normalized torque T̃c as a function of the dimensionless
twist ω̃, where on the right the zoom of this curve near the origin is also shown. One
can see that at the onset of the dislocation nucleation (at ω̃ = ω̃m ≈ 0.000032 for the
above chosen parameters) the torque jumps down. The reason of this “torque-drop”
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Figure 6.7.: The torque-twist curve: (a) Left: the whole curve, (b) Right: Zoomed
near the origin.

is that at ω̃ = ω̃m the plastic warping jumps from zero to a small but positive function
leading to the reduction of the stress and also the torque. After the torque-drop there
is a “work hardening” section followed by the softening behavior as shown on the left
of Fig. 6.7.
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Figure 6.8.: Distribution of normalized dislocation density ρ̃(r̃) in nanowire of 5 nm
radius: (a) l = 0.37, (b) l = 0.495, (c) l = 0.66.

Weinberger (2011) reported the distribution of screw dislocations in a nanowire under
torsion. It is observed that the applied torque leads the uniformly distributed screw
dislocations to shrink into a smaller radius circle, and when the torque is beyond
a specific value, the configuration of dislocation distribution seems unchanged. For
comparison, we took the same paramter values used in Weinberger (2011), R = 5 nm,
b = 2.83 Å, r0 = 2.83 Å, and plotted the normalized dislocation density as a function
of r̃ by present theory for three given values of l in Fig. 6.8, where each l corresponds
to a dimensionless twist angle. It is found that the magnitude of ρ̃ is bigger than that
in the wires of micro size (Fig. 6.5), and the density at high twist angle (or high l)
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Table 6.1.: Normalized radius l at which dislocation-free zone starts predicted by two
different theories

Normalized radius at which
dislocation-free zone starts:

(N = 10) (N = 20) (N = 50)
l10 l20 l50

Present theory 0.37 0.495 0.66
Data from Weinberger (2011) 0.375 0.5 0.67

shows gradual decreasing behavior with increasing r̃ until it reaches dislocation-free
zone.

(a) (b) (c)

Figure 6.9.: Distribution of screw excess dislocations: (a) l10 = 0.37, (b )l20 = 0.495 ,
(c) l50 = 0.66.

The configurations of distributed screw dislocations in a nanowire with the number of
dislocations 10, 20, 50 are shown in Fig. 6.9, where the structures of dislocation net
are adopted from Weinberger (2011). Table 6.1 compares the the normalized radius,
at which dislocation-free zones start, in a nanowire by two methods. The length of the
zone that dislocations occupies for a given number of dislocations can be accurately
calculated by continuum dislocation theory with the formula

ρ̃(l) =
b

πR
N. (6.21)

For simplicity, we consider here the normalized dislocation density remain constant
with respect to r̃. Note that the ratio of the occupied area by dislocations to the
cross-section for a certain number of dislocations is proportional to square of l. As
indicated, the values of l for the number of dislocations 10, 20, 50 are l10 = 0.37,
l20 = 0.495, and l50 = 0.66, respectively.
For the other method, three radii, l10, l20, l50, are computed from each state under
highest torque from Fig. 12 of Weinberger (2011) (the figure showing the effect of
torque on the dislocation distribution) by the formula

l = rw/Rw

where rw is radius of the circle that dislocations occupied, and Rw the radius of the
cross-section. Both rw and Rw are measured from Fig. 12 of Weinberger (2011). The
comparison of the results by two methods shows excellent agreement with each other.
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Figure 6.10.: • Left column: The distribution of plastic warping β at different values
of surface shear strain, Rω = 0.02 (black), Rω = 0.01 (red), Rω = 0.005
(blue). (a) Prediction by proposed theory with the aid of logarithmic de-
fect energy (see Kaluza & Le (2011)), (b) Prediction by critical thickness
theory (see Liu et al. (2018)), (c) Prediction by proposed theory with the
aid of rank-one defect energy.
• Right column: The distribution of dislocation density of excess screw
dislocation at different value of surface strain, Rω = 0.02 (black),
Rω = 0.01 (red), Rω = 0.005 (blue). (d) Prediction by proposed theory
with the aid of logarithmic defect energy (see Kaluza & Le (2011)), (e)
Prediction by critical thickness theory (see Liu et al. (2018)), (f) Predic-
tion by proposed theory with the aid of rank-one defect energy.
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Kaluza & Le (2011) investigated the same problem with the defect energy in logarith-
mic formulation proposed by Berdichevsky (2006b), given by

ψm = µk ln
1

1− ρ
ρs

∼= µk

[
ρ

ρs
+

1

2

(
ρ

ρs

)2
]

(6.22)

where k is a material constant, ρs the saturated dislocation density. This logarithmic
term ensures that the defect energy increases linearly for small dislocation density,
which shows the agreement that the energies are devoted by the non-interacting dislo-
cations. When ρ approaches ρs, the defect energy tends to infinity that behaves as an
energy barrier against the over-saturation. For small to moderate ρ, the defect energy
may be approximated by the sum of linear and quadratic terms, as shown in (6.22).
The Ansatz function (6.13) is applied and through the same procedure of the energy
minimization, and one can obtain the governing equations (6.23) by varying the energy
functional with respect to β1, constant β0, and l:

β1,rr +
1

r
β1,r − (1 +

1

r2
)β1 = −rω,

(β1,r + β1/r)|r=l = 0,

Rω − 1

2
ω(R2 − l2) + β0 ln

R

l
= 0,

(6.23)

where the boundary conditions must satisfy

β1(0) = 0, β1(l) =
β0

l
.

Note that, since the differential equation for β1 making β1(l) vary arbitrarily enables
(6.23)2, it leads the dislocation density to be continuous. The analytical solution of
(6.23) has been given by Kaluza & Le (2011) as

β1(r) = rω − 2ω
I1(r)

I ′1 + I1(l)/l
,

β0 = β1(l)l,

Rω − 1

2
ω(R2 − l2) + ω

[
l − 2I1(l)

I ′1 + I1(l)/l

]
l ln

R

l
= 0,

(6.24)

where I1(r) denotes the modified Bessel function of the first kind of order one, and
the prime represents the derivative with respect to its argument. At the given ω, one
can compute the corresponding l by solving (6.24)3, and β1(r) and β0 can be explicitly
described with the computed l.
Fig. 6.10 shows the comparison of the results by continuum theory with logarithmic
defect energy and by critical thickness theory investigated by Liu et al. (2018) to those
by rank-one defect energy in the continuum theory. The comparison is performed at
three different surface strains, Rω = 0.02 (black), Rω = 0.01 (red), Rω = 0.005 (blue),
and the sample radius is 1 µm.
Fig. 6.10(a), (d) show the evolution of the plastic warping and dislocation density by
the continuum theory with logarithmic defect energy. The parameters are given as
k = 10−4 and ρs = 3 × 1014 m−2. Fig. 6.10(b), (e) show those by critical thickness
theory reported in Liu et al. (2018) and Fig. 6.10(c), (f) the results by the continuum
theory with rank-one defect energy. One could observe that all magnitudes of plastic
warping and dislocation density from figures of three models are in the same order.
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Besides, some other common features can be found. The plastic warping are continuous
in Fig. 6.10(a) and (b), while in Fig. 6.10(c), there exists a jump at the position
that the dislocation-free zone starts. Plastic warping in Fig. 6.10(a) and (c) show
a monotonously decreasing behavior at dislocation-free zone, while it is constant in
Fig. 6.10(b). Fig. 6.10(b) and (c) show a linear increase of β in dislocation accumulated
region, while Fig. 6.10(a) is not. On the other hand, in Fig. 6.10(d), the dislocation
density decreases slowly near the origin and fast when it approaches the dislocation-
free zone. While the densities in Fig. 6.10(e) and (f) seem constant in the dislocation
distributed zone. The predicted positions that dislocation-free zones start by three
models are all different.

6.4. Dislocation Distribution at Non-zero Dissipation

Berdichevsky (2016) rightly pointed out that the solution found by the continuum the-
ory in the case of zero dissipation contradicts the classical plasticity theory and to the
observed behavior of real metals, where a plastic region is formed near the boundary
while no plastic deformation develops in the middle of the bar. This contradiction
can be resolved if we take into account the resistance to dislocation motion leading to
the non-vanishing dissipation. As mentioned in Section 6.2, the plastic warping must
then evolve in accordance with the variational equation (6.10) under the constraint
β(t, 0) = 0. We regard ω as a given function of time (the “driving” variable) and try
to determine β(t, r). Provided the sign of β̇ does not change during the evolution of β,
the variational equation (6.10) reduces to minimizing the following “relaxed energy”
functional

I(β) = 2π

∫ R

0

[
1

2
µ(rω − β)2 +

µb

4π
f(r/R)|β,r + β/r|+Ksign β̇ β

]
rdr,

among all admissible function β(r) satisfying the boundary conditions β(0) = 0. Fi-
nally, if β̇ = 0, then the plastic warping is frozen, while the stress and the torque
should be found with this frozen β. Note that, the dissipation terms for redundant
dislocations and effective temperature are not taken into account.

Let us assume that the dislocations have the positive sign: β,r + β/r > 0. Besides,
we consider the loading process for which sign β̇ = 1 so that the last term in (6.25)
becomes Kβ. It is convenient to introduce the dimensionless quantities (6.11) and
γc = K

µ
in terms of which the functional reads

Ĩ(β) =

∫ 1

0

[
1

2
(r̃ω̃ − β)2 + c0f(r̃)(β,r̃ + β/r̃) + γcβ] r̃dr̃. (6.25)

Functional (6.25) is similar to functional (6.9). However, the additional term γcβ
changes the behavior of the solution radically. Indeed, in the case of non-zero dissi-
pation, dislocations cannot move if the shear stress is less than the critical resolved
shear stress K. Since the stress near the middle line of the bar is always small, new
dislocations cannot be formed there. Based on this deliberation, we look for the plastic
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warping in the form

β(r̃) =


0 for r̃ ∈ (0, l1),

β1(r̃) for r̃ ∈ (l1, l2),

β2/r̃ for r̃ ∈ (l2, 1),

(6.26)

where β1(r̃), l1, l2, β2 are unknowns. The zone r̃ ∈ (0, l1) corresponds to the elastic
core. The dislocation zone forms the ring r̃ ∈ (l1, l2). We admit that β(r̃) may have
jumps at r̃ = l1 and r̃ = l2. Note that this solution Ansatz is consistent with the
boundary condition β(0) = 0.

According to (6.26), the functional becomes

Ĩ =

∫ l1

0

1

2
(r̃ω̃)2 r̃dr̃ +

∫ l2

l1

[
1

2
(r̃ω̃ − β1)2 + c0f(r̃)

(
β1,r̃ +

β1

r̃

)
+ γcβ1

]
r̃dr̃

+

∫ 1

l2

1

2

[(
r̃ω̃ − β2

r̃

)2

+ γcβ2/r̃

]
r̃dr̃. (6.27)

Varying energy functional (6.27) with respect to β1(r̃), we obtain the (non-differential)
equation for it on the interval (l1, l2)

−(r̃ω̃ − β1)r̃ − c0f
′(r̃)r̃ + γcr̃ = 0,

yielding

β1(r̃) = r̃ω̃ − γc + c0f
′(r̃). (6.28)

Due to the specific linear dependence of energy functional on β1,r̃ leading to the (non-
differential) equation for β1(r̃), β1(l1) and β1(l2) cannot be varied arbitrarily at r̃ = l1
and r̃ = l2, so δβ1(l1) = δβ1(l2) = 0. However, the variation of (6.27) with respect to
l1, l2, and β2 yields three additional conditions

1

2
ω̃2l21 −

[
1

2
(ω̃l1 − β1(l1))2 + c0f(l1)

(
β1,r̃ +

β1

l1

)
+ γcβ1(l1)

]
= 0,[

1

2
(ω̃l2 − β1(l2))2 + c0f(l2)(β1,r̃ +

β1

l2
) + γcβ1(l2)]

]
− 1

2

(
ω̃l2 −

β2

l2

)2

− γcβ2

l2
= 0,∫ 1

l2

(
−r̃ω̃ +

β2

r̃
+ γc

)
dr̃ = 0.

(6.29)

From (6.29)3 we find that

β2 = − ω̃(1− l22)− 2γc(1− l2)

2 ln l2
. (6.30)

Because l2 < 1, β2 > 0 if ω̃ > 0, plugging (6.28) and (6.30) into (6.29)2, we obtain the
transcendental equation to determine l2, which can be transformed into the quadratic
equation

a(l2)ω̃2 − 2b(l2)ω̃ − c(l2) = 0 (6.31)
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in terms of ω̃, where

a(l2) =

(
l2 +

1− l22
2l2 ln l2

)2

, b(l2) = 2c0f(l2) + γc

(
l2 +

1− l22
2l2 ln l2

)(
1 +

1− l2
l2 ln l2

)
,

c(l2) = c2
0(f ′(l2))2 + 2c0f(l2)

[
−γc
l2

+ c0f
′′(l2) + c0

f ′(l2)

l2

]
− γ2

c

(
1 +

1− l2
l2 ln l2

)2

.

We use l2 as parameter and find the twist ω̃ through l2. Provided the discriminant
b2(l2) + a(l2)c(l2) is positive, we take the positive root of (6.31) yielding

ω̃(l2) =
b(l2) +

√
b2(l2) + a(l2)c(l2)

a(l2)
. (6.32)

The smallest l2 = l2m that gives a real double root κm = b(l2m)/a(l2m) is found from
the equation

b2(l2m) + a(l2m)c(l2m) = 0.

As will be seen later, this l2m indicates the onset of dislocation nucleation. Finally,
the length l1 must be found from equation (6.29)1 which, after substitution of β1(l1)
from (6.28) and of ω̃ from (6.32), reads

1

2
ω̃2l21 −

1

2
(γc − c0f

′(l1))
2 − c0f(l1)

[
2κ− γc

l1
+ c0f

′′(l1) + c0
f ′(l1)

l1

]
− γc [ω̃l1 − γc + c0f

′(l1)] = 0.
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Figure 6.11.: The plot of l1(l2).

It turns out that this equation for l2 ≥ l2m has two roots. However, the smaller
root corresponds to the minimizer of the relaxed energy functional. The plot of l1
as a function of l2 for l2 ∈ (l2m, 1) is shown in Fig. 6.11. We see that l1(l2) is a
monotonically decreasing function. At the onset of dislocation nucleation (at l2 = l2m)
l1 achieves a maximum which is not much less than l2. This means that the dislocation
zone at the onset of the dislocation nucleation is a thin ring. As l2 (and ω̃) increases,
l1 decreases, so the ring occupied by dislocations expands during the loading process,
while the elastic core region diminishes.
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Figure 6.12.: Evolution of the plastic warping β(r̃): (a) l = 0.5 (ω̃ = 0.00088), (b)
l = 0.7 (ω̃ = 0.0027), (c) l = 0.9 (ω̃ = 0.02356).

Having β(r̃) according to (6.26) and (6.28), we find the signed dislocation density from
(6.1). For r̃ ∈ (0, l1) and r̃ ∈ (l2, 1) we have ρ = 0. For r̃ ∈ (l1, l2)

ρ =
1

b

(
β,r +

β

r

)
=

1

bR

(
β,r̃ +

β

r̃

)
=

1

bR

[
2ω̃ − γc

r̃
+ c0

(
f ′′(r̃) +

f ′(r̃)

r̃

)]
.

The dimensionless shear stress distribution τ(r̃) = σθz(r̃)/µ is given by

τ(r̃) =


r̃ω̃ for r̃ ∈ (0, l1),

γc − c0f
′(r̃) for r̃ ∈ (l1, l2),

r̃ω̃ +
ω̃(1−l22)−2γc(1−l22)

2 ln l2 r̃
for r̃ ∈ (l2, 1).
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Figure 6.13.: Distribution of normalized dislocation density ρ̄(r̃): (a) l = 0.5 (ω̃ =
0.00088), (b) l = 0.7 (ω̃ = 0.0027), (c) l = 0.9 (ω̃ = 0.02356).

In the elastic zone, the stress obeying Hooke’s law is a linear function of r̃. In the zone
occupied by dislocations, due to the smallness of c0, the stress is nearly constant and
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equals the critical resolved shear stress. The torque is computed as the derivative of
the functional (6.25) with respect to ω̃ giving

T̃c =
∂Ĩ

∂ω̃
=

∫ 1

0

(r̃ω̃ − β)r̃2dr̃.

Substituting β(r̃) from (6.26) into this integral, we easily find that

T̃c =
ω̃

4
l41 +

1

3
γc(l

3
2 − l31)− c0

(
l22 − l21 + ln

1− l22
1− l21

)
+
ω̃

4
(1− l42)

+
ω̃(1− l22)− 2γc(1− l2)

4 ln l2
(1 − l22).
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Figure 6.14.: Distribution of dimensionless shear stress τ(r̃): (a) l = 0.5 (ω̃ = 0.00088),
(b) l = 0.7 (ω̃ = 0.0027), (c) l = 0.9 (ω̃ = 0.02356).

For the twist ω̃ < ω̃m, the plastic warping β(r̃) must be identically zero, so we have
the purely elastic solution with uθ(r̃) = r̃ω̃ and β(r̃) = 0. In this case, the torque T̃c
is proportional to the twist ω̃:

T̃c =
ω̃

4
.

Fig. 6.12 shows the evolution of β(r̃) as ω̃ increases. For the simulation we took
R = 1µm, b = r0 = 1 Å, and γc = 10−4. For these chosen parameters we found that
l2m = 0.3089. As in the previous case, β(r̃) increases with ω̃. Besides, the plastic
warping exhibits jumps at r̃ = l1 and r̃ = l2. The difference to the case of zero
dissipation is that there is an elastic zone with β = 0. The radius of the elastic zone
diminishes with the increasing twist.

Fig. 6.13 shows the distributions of the normalized dislocation density ρ̃(r̃) = bRρ(r̃)
as ω̃ increases. One sees that the dislocation-free zones at the origin as well as near the
free boundary diminish as ω̃ increases. For ω̃ close to the threshold value at the onset
of dislocation nucleation, the dislocation density remains nearly constant except near
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Figure 6.15.: The torque-twist curve: (a) The whole curve, (b) Zoomed near the origin.
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Figure 6.16.: The size effect: (a) Left: function l2m(R), (b) Right: function ω̃m(R).

the origin. For large ω̃, we see some influence of the free boundary on the distribution
of dislocations: the density slightly decreases with r̃. Note that the dislocation density
is continuous at r̃ = l1 and discontinuous at r̃ = l2.

Fig. 6.14 shows the distributions of the dimensionless shear stress given by (6.20) as
ω̃ increases. We observe that the shear stress increases first as a linear function in
the elastic zone, then remain nearly constant (which is equal to K) in the dislocation
zone, and finally jumps down and increases linearly in the outer dislocation-free ring.
Fig. 6.15(a) presents the normalized torque T̃c as a function of the dimensionless twist
ω̃, while in Fig. 6.15(b), the zoom of the curve near the origin is shown. One can see
that at the onset of the collective dislocation nucleation (at ω̃ = ω̃m ≈ 0.00027 for
the above chosen parameters), the torque jumps down. The reason for this “torque-
drop” is that at ω̃ = ω̃m, the plastic warping jumps from zero to a small but positive
function, leading to the reduction of the stress and also the torque. After the torque-
drop, there is a “work hardening” section followed by the softening behavior, as shown
in Fig. 6.15(a). Note that the softening effect is much less pronounced as in the case
without dissipation.

We use the analytical solution found above to investigate the dependence of the
dislocation-free zones and the threshold twist angle on the radius of the bar’s cross-
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Figure 6.17.: Torque-twist curve: (a) Left: The presented theory, (b) Right: Experi-
ment (taken from Horstemeyer et al. (2002))

section. The left of Fig. 6.16 presents the dependence of l2m on the radius R (mea-
sured in meter), while the right figure indicates the function ω̃m(R) for R in the range
1 ∼ 10µm. We see that, as R increases, the outer dislocation-free zone at the onset of
dislocation nucleation becomes narrower, while the threshold value of the twist angle
ω̃m decreases. This exhibits clearly the size effect.
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Figure 6.18.: The theoretical torque-twist curve zoomed near the origin.

Fig. 6.17 shows the comparison between the torque-twist curved computed from the
presented theory and obtained in experiments conducted by Horstemeyer et al. (2002).
For the numerical simulation of the theoretical curve we took µ = 10 GPa, b = 2.55 Å,
R = 6.35 mm, K = 10 MPa, and for the comparison with experiments, we present the
torque in Nm, while the twist angle in degree. We see that the threshold torque, com-
puted from the presented theory, Tmc = 4.06 Nm, agrees quite well with that observed
in the experiment at the onset of the plastic deformation. There exists a tiny torque
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Figure 6.19.: The plot of l1(l2) in a cylindrical bar with 6.35 mm radius.

drop at the onset of dislocation nucleation followed by a short hardening behavior, as
shown in Fig. 6.18. However, the theoretical curve at the larger twist angles exhibits
no hardening behavior, in contrast to the experimental curve. This discrepancy in the
hardening behavior could be explained by the simple dissipation function that does
not take into account redundant dislocations and effective temperature.

(a)

(b)

Figure 6.20.: Evolution of the distribution of excess screw dislocations: (a) in a bar
of 6.35 mm radius, (b) in a microwire of 6.35 µm. The applied twist
increases from left to right.

We have analyzed the distribution of screw dislocations in a microwire, Fig. 6.11.
It indicates that the dislocations are nucleated in a thin ring, (l1, l2), at the middle
position of the cross-section. This distribution seems contradict to the prediction of
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classical plasticity theory that plastic region takes place from the surface. However, it
turns out that the size of the wire (or bar) influences the distribution of dislocations.
Fig. 6.19 shows the plot of function l1 in terms of l2 exhibiting the onset of the nucle-
ation and the distribution of dislocations in a bar of macroscale with 6.35 mm radius.
The predicted position at which the dislocations nucleate is lm = l1 = l2 = 0.9435
under the constraint 0 6 l1 6 l2 6 1. With the increasing twist, l2 increases up to
1 and l1 decreases toward 0. This process is schematically presented in Fig. 6.20(a),
which in agreement with the classical plasticity theory. For comparison, the evolu-
tion of dislocation distribution in a microwire with 6.35 µm radius is illustrated in
Fig. 6.20(b).

6.5. Conclusion

In this chapter, we have shown that the torsion of a bar with circular cross-section can
be analytically solved within the asymptotically exact continuum dislocation theory. If
the resistance to dislocation motion is negligible, then dislocations are concentrated in
a circle of radius less than the radius of the cross-section. The outer ring is dislocation-
free. The plastic warping suffers a jump across the boundary between dislocation and
dislocation-free regions, indicating misorientation of the crystal lattice. There is a
threshold torque for dislocation nucleation. The torque drop takes place at the onsets
of dislocation nucleation followed by the short hardening and subsequent softening.
The normalized radius, at which the dislocation-free zone starts, predicted by con-
tinuum dislocation theory is compared with the result of Weinberger (2011). The
evolutions of plastic warping, as well as the dislocation density, are compared with
those investigated by Kaluza & Le (2011) and Liu et al. (2018). The configurations of
the plastic warping and the density of dislocation by three models show several com-
mon features. If the resistance to dislocation motion is taken into account, then there
exists the elastic zone in the middle of the cross-section. Dislocations are concentrated
in a ring, whose size increases as the twist increases. The torque drop is also observed
at the onsets of dislocation nucleation, but the hardening and softening effects are
much less pronounced compared to the case without dissipation. The threshold value
of the torque decreases with the increasing radius of the bar’s cross-section exhibiting
the size effect. No hardening behavior is observed at large twist angles, which is due
to the absence of redundant dislocations and effective temperature in the dissipation
potential. Last but not least, it would be quite convincing if this theoretical result
for the dislocation distribution could be compared with the experimental observations
and measurements. It is hoped that this chapter would serve as motivation for exper-
imentalists using EBSD-technique (see, e.g., Kysar et al. (2010)) or, alternatively, the
etch pits method to observe the dislocation zone in twisted bars and to measure the
dislocation density.
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7. Summary and Outlook

Microstructures of the crystalline materials characterize the properties on engineering
scales. There are various sorts of macroscopic methods based on the phenomenologi-
cal modeling that reproduce the properties of materials. However, the insights of the
microstructure remain unclear. On the other hand, the microscopic methods possess
the ability to attain the detailed information on the microstructures and the dynam-
ics of discrete dislocations, but they are weak in acquiring the evolution of collective
microstructures and in predicting the corresponding properties in the engineering ap-
plication. Another challenge of them is the high cost of computation. This dissertation
is concerned with the thermodynamic dislocation theory that first proposed by Langer
et al. (2010) and further developed by Le (2018). The presented work attempts to
bring together the advantages of microscopic and macroscopic methods so that it not
only is utilized in the engineering scale but also describe the microstructures of the
solid.

One main difference of the thermodynamic dislocation theory from the others is that it
involves the entropy of dislocations, which has been ignored from the thermodynamic
principle due to the fact that the entropy of dislocation is extremely small. However,
in this theory, it is supposed that the entropy of total dislocations is an essential ingre-
dient of the dislocation-mediated plasticity theory. The entropy of dislocations leads
the thermodynamic system to have a well-defined temperature (the effective temper-
ature), which is much higher than the ordinary temperature. Therefore, the system is
characterized by two weakly interacted subsystems, the kinetic-vibrational subsystem
and the configurational subsystem, and a set of physics-based parameters are intro-
duced. We showed the development of this theory and explored the applications in
various types of problem, such as problems on different scales and in different defor-
mations. A feature of the thermodynamic dislocation theory on the mesoscopic scale
is that it deals with the different types of boundary conditions and relates them to
the physical property of the surfaces and interfaces. For example, the fixed bound-
aries behave as the obstacles such that the plastic warping possesses a homogeneous
Dirichlet boundary condition, while at the free boundary, the plastic warping is sub-
jected to the Neumann boundary condition. The results that are based on the solution
of the boundary-value problem of the equilibrium of crystals containing dislocations
allow one to find out the explicit outcomes. This dissertation discussed mainly three
categories of the problem. One category is when the effect of excess dislocations on
microforce equilibrium is ignored. It happens when the sample undergoes a uniform
deformation that no excess dislocations are created or when the length of samples is
on the macroscopic scale. The second category is crystal sample on microscale under-
goes non-uniform deformation, such that the excess dislocations must be taken into
account. In this case, the boundary value problem of the microforce equilibrium is
added to the governing equations. The last one is a special case for the continuum
dislocation theory using rank-one defect energy.
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The main accomplishments of this dissertation comprised the following:
• We demonstrated a variational formulation for the thermodynamic dislocation the-
ory. An equilibrium of microforces containing the flow stress, back stress, and the
resolved shear stress is derived from the variational formulation. This approach al-
lows one to investigate the isotropic and kinematic work hardening. The isotropic
work hardening is caused by the redundant dislocations, and the kinematic hardening
is caused by the pile-up of excess dislocations against the grain boundaries. On the
engineering scale, the isotropic hardening is dominant, while when the length scale
decreases down, the kinetic hardening becomes non-negligible.
• Dipole energy with respect to the distance between two dislocations is studied. The
result showed that there exists an energy barrier that prevents the dipole from being
dissolved into freely moving dislocations. When an external force is applied, the bar-
rier is decreased, such that the thermal fluctuation helps dislocations to overcome the
barrier.
• The asymptotically exact energy density of screw dislocations is found by the aver-
aging procedure, where it is a product of linear and logarithmic functions. Its extrap-
olation in the extremely small and large region of dislocation density allows it to be
used in the continuum approach.
• Size effect describing the phenomenon that ”the smaller, the stronger,” attributed
to excess dislocations due to non-uniform deformation is studied. A modified Read-
Shockley energy is involved in the energy functional, and it leads to a new type
of boundary (the natural boundary) condition. The torque-twist simulation on mi-
crowires based on thermodynamic dislocation theory exhibiting size effect is compared
to the corresponding experiment. The contributions of the flow stress and back stress
are explicitly computed.
• Hardening and thermal softening behaviors, on single crystal copper bars and poly-
crystal aluminum bars, have been studied by thermodynamic dislocation theory, and
the simulations are also compared to the experiments. It turns out that the hardening
is due to the entanglement of the dislocations, and the thermal softening is caused
by temperature rise inside the material body. The satisfactory simulation owes to the
sensitivity of the theory to temperature and strain rates.
• In the continuum dislocation theory, the rank-one defect energy leads to a jump
on the plastic warping and the torque in twisted wire. The evolutions of the plastic
warping and dislocation density by continuum dislocation theory with the logarith-
mic defect energy and by critical thickness theory showed comparable results and
exhibited several features in common. The distribution of dislocations in the circu-
lar cross-section of nanowires achieved an excellent agreement with numerical results
by the microscopic methods. The analytical solution for the problem enabled one to
predict the onset of the plastic deformation.

Despite the preliminary success of the theory and its satisfactory agreements to ex-
periments, there are still spaces to improve. One could be the proof of the newly
introduced parameters, such as the activation temperature TP , the input power con-
version factor Kρ, the dimensionless factor Kχ, and others (not listed all here). Since
there is rare experimental evidence, although they are mostly physics-based, it is crit-
icized for the curve fitting suspicion. Another one is introducing other defects into the
theory in order to cover extensive problems.

Several topics are interesting to investigate in the future:
• It is found that the aspect ratio of the rectangular cross-section influences the en-
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ergy of the crystal containing a dislocation dipole. When the ratio is beyond specific
value, the energy of the crystal does not show big differences. However, when the ratio
decreases from that critical value, the energy of the crystal increases distinctly. This
phenomenon might be related to the size effect reported by Chen & Ngan. (2010);
Keller et al. (2011) that there exists a strengthening effect depending on the shape
and size of the sample.
• Torsion of bars at the same temperature, but at different strain rates have been solved
well within the thermodynamic dislocation theory. However, the cases in twisted bars
at the same strain rate, but different temperatures does not give acceptable results.
The reason is probably the grain growth, and grain boundaries (or entropy of the grain
boundary) are not taken into account.
• The experiments of cyclic loading (loading, unloading, and reloading) have been
performed on the copper microwires and exhibited the Bauschinger effect. The inves-
tigation using thermodynamic dislocation theory is on the list.
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A. Green‘s function

The solution of the boundary-value problem (3.12) is found as follows

Ψ̌(x) = −
∫
A
N(x, ξ)µαr(ξ)dξ,

where N(x, ξ) is the Neumann function satisfying the equation{
−∇2N = δ(x− ξ)− 1/|A| in A,
N,n = 0 on ∂A.

Substituting this solution into formula (3.13) for the energy of the crystal containing
a dislocation dipole, we obtain

I =
1

2
µγ2|A| − µγlb+

1

2
µ

∫
A

∫
A
αr(x)N(x, ξ)αr(ξ)dξdx. (A.1)

The first two terms in (A.1) can be interpreted as the energy caused by the external
field, while the last term is the energy of the dislocation dipole. Plugging αr =
b[δr0(x− x+)− δr0(x− x−)] into (A.1) to get

I =
1

2
µγ2|A| − µγlb+

1

2
µb2

[∫
C+

∫
C+

1

πr2
0

1

πr2
0

N(x, ξ)dξdx

+

∫
C−

∫
C−

1

πr2
0

1

πr2
0

N(x, ξ)dξdx− 2

∫
C+

∫
C−

1

πr2
0

1

πr2
0

N(x, ξ)dξdx

]
.

Here C+ and C− are the circles of radius r0 centered at x+ and x−, respectively.
The first two double integrals in the square brackets correspond to the self-energies
of positive and negative dislocations, the last double integral being the interaction
energy between them. To accelerate the numerical integration we use the Neumann
function for the rectangle in the form of rapidly converging logarithmic series found
by Marshall (1999)

N(x, ξ) =
1

c
ny(x2, ξ2) +

1

2π
[G(

π

h
(x2 + ξ2)) +G(

π

h
|x2 − ξ2|)],

where x = (x1, x2), ξ = (ξ1, ξ2),

ny(x2, ξ2) =

{
1
3
h− ξ2 +

x22+ξ22
2h

, 0 ≤ x2 < ξ2,
1
3
h− x2 +

x22+ξ22
2h

, otherwise,
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and

G(y) =− 1

4
ln
[
1− 2e−hy/c cos

π

c
(x1 − ξ1) + e−2hy/c

]
− 1

4
ln
[
1− 2e−hy/c cos

π

c
(x1 + ξ1) + e−2hy/c

]
− 1

4

∞∑
m=1

{
ln
[
1− 2e−(h/c)(2mπ+y)π

c
(x1 − ξ1) + e−(2h/c)(2mπ+y)

]
+ ln

[
1− 2e−(h/c)(2mπ+y)π

c
(x1 + ξ1) + e−(2h/c)(2mπ+y)

]
− 1

4

∞∑
m=1

{
ln
[
1− 2e−(h/c)(2mπ−y)π

c
(x1 − ξ1) + e−(2h/c)(2mπ−y)

]
+ ln

[
1− 2e−(h/c)(2mπ−y)π

c
(x1 + ξ1) + e−(2h/c)(2mπ−y)

]}
.

The result of numerical integration with Mathematica is shown in Fig. 3.4. Marshall
(1999) also constructed an alternative representation
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2

π
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[Qk(x2, η2) cos(
kπx1

c
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kπξ1

c
)], (A.2)

where
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cosh kπ

c
(h−ξ2) cosh

kπx2
c

k sinh kπh
c

, 0 ≤ x2 < ξ2,

cosh kπ
c

(h−x2) cosh
kπξ2
c

k sinh kπh
c

, otherwise.
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Wulfinghoff, S., Böhlke, T. (2015). Gradient crystal plasticity including dislocation-
based work-hardening and dislocation transport. International Journal of Plasticity
69, 152–169.

Zaiser, M. (2015). Local density approximation for the energy functional of three-
dimensional dislocation systems. Physical Review B 92(17), 174120.

Zhou, M., Clode, M. (1998). A finite element analysis for the least tem- perature rise
in a hot torsion test specimen. Finite Elements in Analysis and Design 31, 1–14.

Zhu, Y., Wang, H., Zhu, X., Xiang, Y. (2014). A continuum model for dislocation dy-
namics incorporating Frank-Read sources and Hall-Petch relation in two dimensions.
International Journal of Plasticity 60, 19–39.

Zhu, Y., Xiang, Y. (2015). A continuum model for dislocation dynamics in three
dimensions using the dislocation density potential functions and its application to
micro-pillars. Journal of the Mechanics and Physics of Solids 84, 230–253.

Ziemann, M., Chen, Y., Kraft, O., Bayerschen, E., Wulfinghoff, S., Kirchlechner, C.,
Tamura, N., Bölke, T., Walter, M., Gruber, P.A., (2015). Deformation patterns
in cross-sections of twisted bamboo-structured Au microwires. Acta Materialia 97,
216-222.



Curriculum Vitae 165

Curriculum Vitae

Personal Data

Name Yinguang Piao

Date of Birth April 20, 1989

Place of Birth Yanji, Jilin, China

Nationality China

Marital Status Married

School Education

09/2001–07/2004 Yanji Experimental Middle School

09/2004–07/2007 Yanbian Number One high School

University Education

09/2007–07/2011 Mechanical Engineering,
Yanbian University, China,
Bachelor of Science (B.Sc.)

02/2009–02/2010 Mechanical Engineering,
Korea Advanced Institute of Science and Technology (KAIST),
South Korea,
Bachelor of Science (B.Sc.)

10/2011–03/2014 Computational Engineering,
Ruhr-Universität Bochum (RUB), Germany,
Master of Science (M.Sc.)



Mitteilungen aus dem Institut für Mechanik
RUHR-UNIVERSITÄT BOCHUM
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