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Summary

This thesis reports the research progress about the morphological evolution in the polycrys-
talline. Among the different transport processes in solids, the formation of thermal grooves
along the free surface are predominately governed by the surface diffusion at a temperature
below the melting temperature. The quadruple point is a geometrical identity, having an im-
portant role in the stability of thin sheets and protective coatings. There is not much more
information available about its growth kinetics. We use finite element approach to solve the
equations expressing the kinetics of thermal grooving in a three dimensional space, using the
thermodynamic extremal principle for maximum dissipation. In this model, two coupled dissi-
pation phenomena motion of matter along the free surfaces of the grains and motion of matter
along the triple line channels are assumed taking place simultaneously. The finite element code
is implemented in JAVA. The morphological evolutions and growth kinetics of grooves along
the triple lines and pit formation at the quadruple points in a polycrystalline are analyzed in two
different perspectives.

The grain boundary energies distribution are function of boundary plane inclination and misori-
entations between the neighboring grains. In the first part of this work, we discuss the grooves
growth kinetics and their shapes using anisotropic grain boundary energies. Grain boundaries
are inherently more complex than free surfaces, and they need more geometrical parameters to
calculate relevant thermodynamics constant including the grain boundary energies. The com-
plete description of these energies require eight independent parameters. In this work, we cal-
culate grain boundary energies using an ansatz under the assumption of planner boundaries and
negligible torque term at a boundary junction. With this approach, we have set of energies for
{1 0 0} oriented boundaries in Cu. and Al. The surface energy is assumed constant over the
distribution of grains. With this, the kinetics of thermal grooving over the range of scalar pa-
rameters in the ansatz function are studied. Comparative studies show the effect of diffusion
coefficients on the shapes and kinetics of the process.

The second part of this report is based on some experimental observations during the secondary
annealing process in the thin film coatings and the surface of the pure materials. For some partic-
ular oriented grains, we observe the formations of low energy planes along the thermal grooves.
These singular faces formations are characterized due to the surface energy anisotropy. We use
the analytical form of surface energy as a function of grain orientations in the normal direc-
tion. It is observed that growth kinetics are different in comparison with the normal grooves.
Our model is stable even in the critical range of anisotropy. Within this particular settings, we
have formation of singular grooves along the grain boundary and at the quadruple points. With
an increasing anisotropy, we observe significant increase in the pit depths at the triple lines
junctions. There is not much difference in the depth of grooves along the triple lines with the
low anisotropy results. These studies effectively reproduce many experimentally observable
phenomena.
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1. Introduction

An intersection of a grain boundary with the free surfaces of the polycrystalline terminates with
a groove formation. The precise measurements of these topographies are important in estimat-
ing the material characteristics parameters (e.g. strength of the material, crack resistance, and
optical and electronic properties), surface diffusion coefficients, and mapping of relative grain
boundary energies. These parameters vary with the grain orientation and boundary plane in-
clination (Hackl et al., 2017; Lin et al., 2016; Kelly et al., 2018). Hackl et al. (2013) establish
the strong correlation between the boundary plane inclinations and groove shapes. This study
also shows that kinetics parameters participating in the dissipation process, influence the topo-
graphical formations along the grooves. Alongside this, Fischer et al. (2012) give a detail study
about the effect of moving triple points in the polycrystalline. In three dimensional space, we
have quadruple points at the intersection of grain boundaries. With the progressing annealing
time, thermal grooves deepen and widen, and the pit at the quadruple point grows at a faster
rate due to the parallel diffusion processes along the constituting boundaries. In case of the thin
sheets and coatings, these geometrical elements hold significant position. If these pits’ depths
extend below the thickness of the polycrystalline film, we observe the formations of the tiny
holes and micro cracks. These defects cause the initiation of dewetting process with accelerated
rate for any further increase in the temperature (Thompson, 2012; Amram et al., 2014). Alto-
gether, the workability of micro-electronics and stability of thin films coatings are influenced
by the thermal grooving shapes and growth rates. Among the different transport mechanism,
the surface diffusion plays a major role in the groove formations and the dewetting phenomena
well below the melting temperature. The prime objective of this work is to model the groove
kinetics process for diffusion dominated phenomena in the three dimension space and study the
effect of grain orientations and boundary plane inclinations using anisotropic driving forces.

The kinetics of grooving was first modeled by Mullins (1956) for small slope approximation. He
studied different transport mechanisms including surface diffusion, evaporation–condensation,
and bulk diffusion. According to his observations, the surface diffusion is the dominating trans-
port mechanism below the roughening temperature. It was analytically shown that all dimen-
sions for surface diffusion processes follow the same power law, while for the evaporation–
condensation, the transport and morphological growth took place with 1/2 power law of the
annealing time. Mullins model is based on some simplifications including isotropic surface
energy and the assumption for the bisection of dihedral angle at the groove root. Cahn and
Taylor (1994) modeled the thermal grooving with coupled surface and interface motion. They
included the surface energy as single driving force governing the kinetics of the system. The
normal motion of the surface for diffusion dominated process was calculated from the gradient
of the total surface energy in the H−1 inner product, and the motion of grain boundary was mod-
eled as function of the mean curvature, calculated by the gradient of the total surface energy on
the moving surface in L2 inner product. They suggested several methods to solve these sets
of differential equations under the two limiting cases ranging from the surface diffusion con-
trolled to grain boundary mobility dominated evolution. Their model satisfied the conditions
for the conservation of mass and volume. This brief overview encompassed anisotropy in the
surface energy and diffusion coefficients. The extreme anisotropy in the surface energy causes
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the formation of planer grooves along the grain boundary. It was proposed that these formations
can disappear with the creations of the new faces at different locations with the progressing an-
nealing time. These alternative formations induced the maximization of total dissipation in the
system (Suo, 1997).

Afterwards, Klinger and Rabkin extensively studied the kinetics of the thermal grooves based on
the experimental observations for moving and stationary grain boundaries in different materials.
They coupled the previous grooving models with other concurrent phenomena including both
surface and interface diffusion, and surface diffusion with moving grain boundaries. Formations
of singular faces at groove roots were characterized due to the variations in surface energy
with grain orientation. These facets formations slowed down the overall dissipation process,
due to decrease in the diffusion kinetics (Klinger and Rabkin, 2001). In case of moving grain
boundaries, the amount of sliding was determined as function of the boundary plane inclination.
In some experiments, they also observed diffusional humps without particularly attached grain
boundaries. They also correlated these formations with the anisotropy in the surface energy. The
rates of decay in boundary-free grooves were evaluated as 1/4 exponent of the annealing time
(Rabkin et al., 2001, 2004). In contrast with the Mullins model under symmetry conditions,
Klinger (2002) extended approach is applicable to the bi-grain structure. In their model, the
bulk diffusion due to concentration gradient was responsible for the flow of net flux between
the grains. The mass deficit in the multilayer thin film was attributed to interface diffusion
between the layers. For the case of anisotropic surface energy and diffusion coefficient, they
observed a decrease in the growth rate of the diffusion humps (Amram et al., 2014).

Surface diffusion also plays important role in the production of ordered nanoparticles. The over-
all decrease in the energy of system is governed by the coupled surface and the interface diffu-
sions, causing the grain boundary sliding. It was observed in thin film experiments that some
regions showed accelerated grooving with moving boundaries. These expedite phenomena were
also correlated with the anisotropic surface energy (Barmak et al., 2013; Kosinova et al., 2014;
Jiang and Zhao, 2018). Based on the Mullins model for the inclined grain boundaries, Zhang
and Wong studied coupled surface grooving and grain boundary migration to measure the mo-
bility of particular grain boundaries. They used Sun and Bauer method in these measurements.
It was concluded that the grain boundaries with small inclination remain attached with the
groove tips. Under these conditions, the boundary motions took place with two different rates
influenced by the grain boundary plane inclination (Zhang and Wong, 2002; Zhang et al., 2002).
Beck et al. (2010) solved coupled problems using the traveling wave solution.

Xin and Wong (2003); Min and Wong (2006a,b); Du and Wong (2006) used the shooting method
to solve the differential equations for self similar and singular grooves profiles. They studied the
evolution kinetics for different energy functions and equilibrium crystal shapes. Any singularity
at critical anisotropy, was homogenized by using the Dirac δ function in the surface stiffness
function. Hackl et al. (2013) used the similar approach with posing the initial conditions within
the flat region out side the groove and employing the matching conditions at the groove root.
With these configurations, the solution was stable subject to the initial guess. A linear homo-
topy method was implemented to find solution independent of the initial guess over the range
of the boundary inclination. Ramasubramaniam and Shenoy used the variational approach to
model a thermal grooving process. By using the analytical form of anisotropic surface energy,
the limiting cases for the planer grooves were studied as function of grain boundary plane incli-
nation and grain orientations. They established a correlation between boundary orientation and
the dihedral angle for the two dimension only.
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Ogurtani et al. (2008) simulated grooving models for the singular facet formations under a
strong anisotropic Gibbs surface energy. They found good estimates of the diffusion coeffi-
cients in Aluminum and Tungsten. Thermal grooving under the combined effect of capillary
forces, and tensile stresses (Akyildiz et al., 2012), and additional stresses due to the electric field
(Akyildiz and Ogurtani, 2011) are in the range of numerical experiments with additional driving
forces, which were also contributing to the overall entropy production of the system. Derkach
et al. (2014) simulation experiments for micro pinning and groove shapes for a regular hexago-
nal structure provide the overview for grain size effects on the pit growth at the quadruple points
and surface kinetics for the particular polycrystalline geometry.

Phase field modeling is not a new approach in the research field, but it is widely used for mate-
rial process simulations due to the availability of high speed computational power. With some
additional regularization for the sharp grain boundaries, there are some scientific works in the
literature studying the kinetics of the thermal grooving processes. Schiedung et al. (2017) used
a multi-phase field modeling approach to study the vanishing hill and valley structure along
the free surface both in two and three dimensions with isotropic surface energy. The polycrys-
talline model and the energetic arguments for the process kinetics were evaluated in CALPHAD.
Chakraborty et al. (2018) studying the phase-field model for grooving due to thermal and elec-
tric current, and Joshi et al. (2017) investigating the stability of a membrane with cylindrical
nanopores due to surface diffusion produced curvature dependent profiles with the center of
curvature in the smallest grain. Using a finite element modeling approach for sintering and
surface grooving, Barrett et al. (2010a) showed an accelerated growth kinetics for anisotropic
surface energies.

In addition to these numerical methods, there are other models based on variational theory.
Thermodynamics extremal principles are excellent tools for modeling the irreversible processes.
Using these principles, we describe the kinetics of the system with rather simple set of coupled
equations. These equations replace the classical phenomenological relations (Svoboda et al.,
2005; Fischer et al., 2014). Irreversible processes, diffusional control grain growth with sharp
interfaces (Svoboda and Riedel, 1992; Svoboda et al., 2002; Fischer et al., 2003), bulk diffusion
through the interfaces (Svoboda et al., 2004), non-isothermal coupled, and non–coupled pro-
cesses in materials (Hackl, 1997; Hackl and Heinen, 2008; Hackl et al., 2011; Kochmann and
Hackl, 2011; Klinge et al., 2015) were effectively modeled by engaging these principles. The
prime benefits of these principles are no need to define any additional boundary condition at
the free boundaries, and no additional constraints at the intersecting boundaries. All conditions
include in the Lagrange formulations satisfied by these set of coupled evolution equations.

A variational model for thermal grooving in two dimensions (Hackl et al., 2013), and model for
the motion of triple junctions and grain boundaries (Fischer et al., 2012) successfully explain
the effect of boundary inclinations on surface morphologies and grain boundaries mobility as a
function of grain size and shape. Both of these models are based on the principle of maximum
dissipation.

In the present chapter, the general introduction of the previous existing models for thermal
grooving process are discussed in brief with their limitations. There is no model to the author
knowledge that work unconditionally over the complete range of anisotropy for the static grain
boundaries. This research work is based on Hackl et al. (2017) three dimensions model for
thermal grooving, which is modeled using the principle of maximum dissipation potential with
additional constraints for the conservation of mass and continuity of domain at the meeting
boundaries. We will study the morphological evolution in a polycrystal using anisotropic sur-
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face energy, and orientation dependent grain boundary energies. This model is stable over the
complete range of anisotropy in the surface energy function without introducing any homoge-
nization or linearization.

In chapter (2), we will discuss the equilibrium criteria for the irreversible processes. We will
also explain some thermodynamic extremal principles and their applications in modeling the
material processes with additional constraints. This brief introduction will be helpful in un-
derstanding the effectiveness of TEPs in modeling the irreversible processes with and without
additional constraints.

Chapter (3) will explain the model for thermal grooving in three dimensions. In this model,
the dissipation is considered due to the motion of flux along the free surface. Additionally, the
diffusion along a triple line channel is balanced with the fluxes of the neighboring grains. The
vertical motion of the surface is modeled as vector Laplacian of the chemical potential. These
curvature dependent equations enable us to use this model for both an isotropic and anisotropic
surface energy function without any homogenization and limitations for the stationary grain
boundaries. Finite element modeling is done to solve these coupled equations. Identification
and calculation of process parameters are primary factors in numerical experiments. Thermo-
dynamic forces, specific Gibbs energies of the geometrical elements and diffusion coefficients
are identified as basic parameters influencing the thermal grooving process.

We will work in two different regimes. In the first part, we will study the morphological evolu-
tion in the polycrystalline with isotropic surface energy. Other forces, grain boundary energies
will be calculated as a function of grain misorientation. Chapter (4) starts with the motivation
for analyzing the effect of anisotropic grain boundary energies for the thermal grooving. We
will calculate the energy distributions for selected RVE using an ansatz function. We will also
study the effect of scalar coefficients in the ansatz function for the groove’s shape and overall
process kinetics. The material characteristics parameters, diffusion coefficients along the sur-
face and along the triple line channels also influence the overall grooving phenomena. We will
make comparisons between the groove geometries and growth rates over the range of diffusion
coefficients.

In the second part of this research work, we will study the effects of surface energy anisotropy
on the morphologies of a periodic representative volume element (RVE). Chapter (5) will start
with brief review of the previous experimental and simulation work from the literature as an
inspiration of this study. We will explain about the Wulff-plot for the anisotropic surface energy
function. This is important to develop understanding for the cause and effect of any anisotropy
on the surface morphology and thermal grooves. Other forces grain boundary energies will be
constant. We will study the effects of grain orientations on the groove’s shapes and growth
kinetics. The grooving phenomena will be discussed for three different orientations in highly
textured RVE. Effects of moderate to critical anisotropy in surface energy will be discussed for
each particular set of orientations. We will make the comparisons for varying relative diffusion
coefficients. We will identify the causes for the formation of many experimentally observed
groove shapes with these simulation experiments.
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2. Thermodynamic Extremal Principle

A constitutive modeling of the non-equilibrium process establishes the relationships between
internal state variables and material characteristic parameters (e.g. diffusion coefficient, ther-
mal conductivity). With these set of equations, we develop our understanding about the con-
ditions and constraints for the equilibrium state of the system. We are also able to identify
the key process controlling parameters. In general, these models are combinations of algebraic
and differential equations. The modeling of any irreversible process using a thermodynamic
extremal principle starts with the phenomenological model interrelating the contributing forces
and fluxes. Identification of driving forces and corresponding fluxes determine the complexity
of the model. Thermodynamic extremal principles use variational approaches to find explicit
evolution equations for the process parameters. The objective of this chapter is to discuss the
thermodynamic extremal principles in relation with the entropy production and establish the
interrelationships between them.

2.1. Introduction.

In many of the processes of engineering and physics, we have to consider both mechanical and
thermal energy, participating actively in governing the kinetics of the system. These systems
establish the equilibrium state by dissipating some part of the mechanical energy in form of heat
and contributing in entropy production of the system. It is important to find the relationship for
law of conservation of energy and entropy production for a generic process as it will be helpful
in identification of process parameters participating actively in the dissipation phenomena. Let
us assume a body Ω with a current volume v subjected to both mechanical and thermal energy.
It is acted upon by a body force b and surface traction t along the part of its boundaries, ∂Ω. In
addition to these forces, the body includes a heat source r and heat flux q in the non-overlapping
parts of the boundary. The total energy of the system, E = U + K must be conserved. We have

d

dt
(U + K) = P +Q, (2.1)

with P and Q, total power of the system, including both mechanical and thermal contributions
from the external sources. Equation (2.1) is referred as the balance of energy (mechanical and
thermal), and is also termed as first law of thermodynamics. In this equation, the rate of internal
energy, U̇ germinates from the part of energy supplied that is not converted into kinetic energy,
K of the system. The quantitative measurements of these state variables in integral form are
given as

U =

∫
Ω

ρu dv, (2.2a)

K =

∫
Ω

1

2
ρv · v dv, (2.2b)
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P =

∫
Ω

ρb · v dv +

∫
∂Ω

t · v da, (2.2c)

and

Q =

∫
Ω

ρr dv +

∫
∂Ω

q · n da. (2.2d)

Combining equations (2.1) and (2.2), and after simplifications, the local form for the balance
of energy is given as

ρu̇ = σ : ε̇+ ρr−∇ · q, (2.3)

with σ and ε̇ are stress and strain tensor respectively. Thus according to equation (2.3), any
increase in the internal energy of the system is caused by the contribution from the potential en-
ergy, due to the relative positions or increase in the kinetic energy, due to the thermal agitations
(Holzapfel et al., 2002; Hackl and Heinen, 2008). The internal energy may have contributions
due to chemical reactions. We can include these contributions as product of chemical potential
and rate of concentration for each constituent.

Equation (2.3) is a mathematical expression for the first law of thermodynamics. This relation
expresses the conversion of energy from one state to another, but does not include any informa-
tion about the direction of a process. Clausius by introducing the concept of entropy explained
the second law of thermodynamics. This law enable us to determine the directional flow of the
energy to attain the state of equilibrium. According to this principle, the total entropy produc-
tion per unit time of the system must be positive. The total entropy, S of the system can be
divided into two parts.

S =

∫
Ω

ρs dv = Ss + Sp, (2.4)

with s, the specific entropy per unit volume of the system. The internal variables Ss and Sp are
entropy transferred, and total entropy production in the system respectively. Mathematically,
the rate of entropy transferred into a certain region of a continuum body is given by the heat
transferred across its surface boundary and the heat generated or annihilated inside the volume.
With this, we have

Ṡs =

∫
Ω

ρ
r

T
dv −

∫
∂Ω

q · n
T

da. (2.5)

Substituting equation (2.5) in the rate form of equation (2.4) for the total entropy production
per unit time, we have

Ṡp =

∫
Ω

ρṡ dv −
∫
Ω

ρ
r

T
dv +

∫
∂Ω

q · n
T

da ≥ 0. (2.6)

For reversible processes equation (2.6) hold equal sign and the total entropy of the system is
equal to the heat supplied to the body as given in equation (2.5). The entropy production rate
for the irreversible processes can be calculated indirectly using equation (2.6). This production
corresponds to the heat generated during the energy transformation. This contribution in the
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total entropy give indirect measurement for the total dissipation in the system. Using the di-
vergence theorem for the area integral in equation (2.6) and combining volume terms, the local
form of the entropy production is

ṡp = ρṡ + ∇ · q
T
− ρ

r

T
≥ 0. (2.7)

In this equation, the entropy flux is related to the heat sources and fluxes proportionality to
the temperature T. After the work of Coleman and Noll (1963), the combine form of first and
second law, i.e. Clausius-Duhem inequality is used to calculate the entropy production in solid
mechanics. Combing equations (2.3) and (2.7) gives

ṡp = σ : ε̇+ ρ (Tṡ− u̇) +
1

T
q · ∇T ≥ 0. (2.8)

Under the assumption of constant temperature, using equation (2.8) we can define different en-
ergy potentials. For reversible processes, there is no entropy production and we have a condition
for the conservation of energy given as

1

ρ
σ : ε̇ + Tṡ − u̇ = 0. (2.9)

Equation (2.9) defines the specific internal energy u in term of state variables u (ε, s). Since en-
tropy is not direct measurable quantity, we use the Legendre transformation to define potentials
as function of measurable independent quantities.

• Defining a linear relationship between internal energy and entropy, the specific Helmholtz
free energy f = u− Ts, equation (2.8) defines the entropy production rate as

ṡp = σ : ε̇− ρ
(

sṪ + ḟ
)

+
1

T
q · ∇T ≥ 0. (2.10)

Using the criterion of reversible processes, we do not have any dissipative phenomenon, and
equation (2.10) hold the equality. Under the condition of constant temperature, we define the
Helmholtz free energy as a function of independent measurable state variables T and ε. With
ḟ = ρ−1(σ : ε̇)− sṪ, using the chain rule we have σ = ρ (∂f/∂ε) and s = −∂f/∂T. We can
write the rate of Helmholtz free energy as

ḟ (ε, T) =

(
∂f(ε,T)

∂ε

)
T

: ε̇ +

(
∂f(ε,T)

∂T

)
ε

Ṫ (2.11)

• Another thermodynamics potential is defined based on the internal energy from equation (2.9),
as

u̇(ε, s) = σ : ε̇+ Tṡ =

(
∂u(ε, s)

∂ε

)
s

: ε̇ +

(
∂u(ε, s)

∂s

)
ε

ṡ. (2.12)

Equation (2.11), Helmholtz free energy at constant temperature, and equation (2.12) internal
energy at constant entropy are equal to the strain energy of the system. These two type of en-
ergy functions are useful in modeling thermoelastic material behaviors without any memory
or plastic strains.

• Gibbs free energy potential is used for a process with controlled pressure and temperature.
By defining specific Gibbs energy, g = f − 1

ρ
σ : ε, the rate of Gibbs energy for reversible

processes after using ḟ from equation (2.10) for constant temperature, becomes

ġ(σ,T) = −ε : σ̇ − sṪ = −
(
∂g(σ,T)

∂σ

)
T

: σ̇ −
(
∂g(σ,T)

∂T

)
σ

Ṫ. (2.13)
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• Another thermodynamic potential enthalpy, h = u−σ : ε is useful in establishing a relation-
ship between temperature, pressure and entropy. Using equation (2.12), the rate of specific
enthalpy for non dissipative processes with zero temperature gradient is

ḣ(σ, s) = Tṡ − ε : σ̇ =

(
∂h(σ, s)

∂s

)
σ

ṡ −
(
∂h(σ, s)

∂σ

)
s

: σ̇. (2.14)

It is concluded from the above discussion, that with the Legendre transformations, we can define
useful potentials as a function of measurable state variables. The selection of particular energy
potential is based on the process parameters that influenced the kinetics of the system.

2.2. Local equilibrium and entropy flux.

In the previous section, different energy potentials were defined using the assumption of equi-
librium thermodynamics. There is hardly any system in the universe without irreversibility.
We have dissipation in the system contributing to the total entropy as additional value given
by entropy production. Equation (2.8) gives the quantitative measurement of the dissipation in
the system. Modeling of irreversible processes is a difficult task due to the lack of information
about the dissipative processes contributing in entropy production. We can use the Clausius-
Duhem inequality to model irreversible processes. All classical formulations for irreversible
processes are based on a local equilibrium hypothesis. The basic assumption in modeling irre-
versible processes are in intuitive discretization of the system into small cells, such that each
cell is considered as a macroscopic thermodynamic subsystem. Every cell is to be considered
in a state of local equilibrium (Balluffi et al., 2005; Kreuzer, 1981; Jou et al., 2010).

Other assumptions for modeling the processes for irreversible thermodynamics are

1. All variables in a reversible process are equally significant in the modeling in the modeling
of irreversible process. The state parameters e.g. temperature, entropy are accurately defined
as they are in equilibrium. The local values of these quantities are constant in each cell, but
they can have different values from cell to cell. They are allowed to change as a function of
time t and space r over a complete domain.

2. The definition of energy potentials (e.g. equations (2.11) to (2.14)), defined for reversible
processes are also valid for the irreversible processes. For the irreversible process, we have
additional contribution from the internal variable participating in the entropy production of
the system due to the dissipative phenomenon.

Based on these assumptions, we explain the general dissipation phenomena for any process
using certain energy potentials defined previously and the Clausius-Duhem inequality. The
choice of energy potential depends upon the process constraints being modeled. In case of plas-
tic strains and control temperature, we can define the dissipation function by incorporating the
Helmholtz free energy and Clausius-Duhem inequality, equations (2.8) and (2.11), respectively.

For irreversible processes with non-zero entropy production rate, it is assumed that the free
energy potential has additional contributions from the internal state variables, participating ac-
tively in the dissipative process. The identification and classification of these parameters is not
straightforward. We define the Helmholtz free energy, f = f(εe, T,Y), with Y being the vector
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of additional internal variables contributing to the entropy production. The rate of Helmholtz
free energy ḟ using the chain rule is

ḟ(εe, T,Y) =
∂f(εe, T,Y)

∂ε
: ε̇e +

∂f(εe, T,Y)

∂T
Ṫ +

∂f(εe, T,Y)

∂Y
• Ẏ. (2.15)

Equation (2.15) has additional contributions due to the internal variables participating in the
entropy production flux. The • operator represents an appropriate operation between the ex-
tensive quantity, ∂f(εe, T,Y)/∂Y and conjugate flux of intensive variable, Ẏ with single scalar
output. In case of plastic strains in a system, we split up the total strain, ε = εe + εp, with εe

and εp are elastic and plastic strains respectively. Using this expression in the Clausius-Duhem
inequality gives a general expression for entropy production rate as(

σ − ρ ∂f

∂ε

)
: ε̇e + σ : ε̇p − ρ

(
s +

∂f

∂T

)
Ṫ − ρ

∂f

∂Y
· Ẏ − 1

T
q · ∇T ≥ 0. (2.16)

Using the state equations for reversible processes in equation (2.11), the quantitative measure-
ment of the dissipation in irreversible inelastic evolution simplifies to

ṡp = Qmech + Qthermal = σ : ε̇p − ρ
∂f

∂Y
· Ẏ − 1

T
q · ∇T ≥ 0. (2.17)

With reference to equation (2.17), the total dissipation includes the contributions from inter-
nal heat generation Qthermal = T−1q · ∇T, and dissipation in irreversible strains Qmech =
σ : ε̇p − ρ (∂f/∂Y) · Ẏ. Hackl et al. (2011) evaluated similar dissipation functions for both
coupled, and non-coupled non isothermal processes. They included an additional contribution
due to the concentration, C of each constituent in a multicomponent system. This assumption
modifies the Helmholtz-free energy potential as f = f (ε,T,C,Y). Using the Clausius-Duhem
inequality, the dissipation includes an additional contribution due to the motion of fluxes. The
relation for total entropy production per unit time, by using the chain rule is

ṡp = σ : ε̇p − ρ
∂f

∂Y
· Ẏ − 1

T
q · ∇T − 1

T

n∑
i=1

Ji · ∇µi ≥ 0,

= Qmech + Qthermal + Qchemical. (2.18)

The additional contribution, Qchemical is regarded as a dissipation due to motion of matter as
flux Ji, controlled by the force vector ∇µi. The magnitude of these fluxes are calculated using
some constitutive law, that express a relationship between the flux and the contributing forces.
Intuitively if we observed each contribution in equation (2.18), it is a scalar product between
force and corresponding flux. For example in case of thermal dissipation, the gradient of tem-
perature field, ∇T acts as thermodynamics force and T−1q is a conjugate flux. The positive
definitiveness of Qthermal can be proved by using Fourier law, q = −κ · ∇T with κ being the
thermal conductivity tensor, we have

Qthermal =
1

T
(∇T · κ · ∇T) (2.19)

Similarly, Qmech, the mechanical dissipation is also a function of force like quantities, σ and
ρ(∂f/∂Y) and conjugate rate terms ε̇p and Ẏ are correlated as fluxes. The convexity of this dis-
sipation is ensured by using appropriate flow rules for respective quantities. For the dissipation
due to non-elastic strains, we need a rule to calculate the plastic strain. In the literature, we can
find these principles. For example, for a finite strain elastoplascity rule see Hackl (1997), for
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an evolution principle with elasto-plastic deformation in a laminate, see Kochmann and Hackl
(2011), for a general constitutive relation for coupled and non-coupled processes, see Hackl
et al. (2011). Conclusively, we can write a general equation for the entropy production flux
or the total dissipation in any system as summation of scalar product between thermodynamic
forces, which are in general related with the gradient of thermodynamic intensive variables and
conjugate fluxes, generally expressed in time derivatives of extensive quantities. Thus we can
write a general expression of the dissipation in the system as

Q = X • J. (2.20)

Here X is the vector of forces and J is the vector of fluxes participating in the dissipative phe-
nomena. We can have different pairs of tensorial quantities contributing in it. The • represents
a general scalar product operator necessary for the respective force-flux couple to obtain the
single scalar output.

Remark 1. The above derivation for total entropy production per unit time is done using the
Helmholtz free energy potential. We have defined other free potentials in equations (2.11)
to (2.14). For the sake of completeness, we express the criterion for the entropy production rate
using Gibbs energy potential for processes with controlled pressure and temperature. In case
of irreversibility, the additional internal variables vector, Y also contributes to the dissipation.
The modified Gibbs potential is written as non-linear function of σ, T, and Y, g = g(σ, T,Y).
The rate of specific Gibbs energy, ġ(σ, T,Y) using the chain rule is expressed as

ġ(σ, T,Y) =
∂g(σ, T,Y)

∂σ
: σ̇ +

∂g(σ, T,Y)

∂T
Ṫ +

∂g(σ, T,Y)

∂Y
• Ẏ. (2.21)

In case of processes with constant σ and T, the total non-thermal entropy production rate is
given by the product of forces, ∂g(σ, T,Y)/∂Y and rate of intrinsic variables, Ẏ acting as
fluxes in the system. With this simplification, we can develop a correlation between the ex-
pression of entropy production rate using the Gibbs energy potential and equation (2.20). The
thermodynamic forces are X → ∂g(σ, T,Y)/∂Y, a vector of forces and J → Ẏ, a vector of
fluxes.

ṡp =
∂g(σ, T)Y

∂Y
• Ẏ = X • J ≥ 0 (2.22)

These dissipation potentials, equations (2.20) and (2.22) ensure the positive definitiveness under
the assumption that there exist linear constitutive relationships between these fluxes and forces.
These quadratic forms are known as Rayleigh-Onsager dissipation potentials. In the next sec-
tions, we will discuss these dissipative potentials and dissipative functions based on Onsager
(1931) and Fischer et al. (2014) respectively.

2.2.1. Linear phenomenological relationships.

After formulating the functional form of total dissipation as scalar tensor product of force and
flux, it is important to establish the constitutive relations between them to ensure convexity.
Usually for the set of independent forces, we can use well established empirical laws, but these
laws are not available in every case. Onsager postulated two theorems to formulate linear con-
stitutive relationships between dissipative forces and fluxes. These formulations can be used
for coupled and uncoupled processes. To model these constitutive equations, the selection of
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force and the flux is at one’s own choice. In general, these decisions are based on the cause and
effects observed in the experiments. It is found experimentally that for the coupled processes,
forces and fluxes are interwoven with each other. We need some phenomenological relation-
ships between these forces and relative extensive quantities along with the externally imposed
constraints. These constraints are related to the process requirements or external loadings. On-
sager defined the reciprocal relations in coherence with the Thompson reciprocal functions.
According to his statement, for any number of independent fluxes, each flux is related through a
linear relationship with the coupled forces and vice versa. Using this postulate with set of forces
X, and conjugate fluxes J, we can include the contribution of each flux in the individual force
with linear relationship to first order near the equilibrium. Thus each force, Xi as a function of
all participating fluxes is given as

Xi = Xi (J) = Xi (J1 · · · Jn) . (2.23)

By using Taylor expansion to the first order differential with vanishing values of conjugate
fluxes near to the equilibrium, we have

X1 (J1 · · · Jn) =
∂X1

∂J1

J1 +
∂X1

∂J2

J2 + · · ·+ ∂X1

∂Jn
Jn

X2 (J1 · · · Jn) =
∂X2

∂J1

J1 +
∂X2

∂J2

J2 + · · ·+ ∂X2

∂Jn
Jn

...

Xn (J1 · · · Jn) =
∂Xn

∂J1

J1 +
∂Xn

∂J2

J2 + · · ·+ ∂Xn

∂Jn
Jn. (2.24)

Equation (2.24) is written as

X = RJ, (2.25)

where R is a symmetric n × n matrix. The diagonal components, Rii = ∂Xi/∂Ji are coeffi-
cients, expressing relationships between the forces and conjugate fluxes. Non-diagonal com-
ponents, Rij = ∂Xi/∂Jj are coupling coefficients, which are adding cross effects of other
participating fluxes Jj to the active force Xi.

It is not possible to make the direct measurements of the individual fluxes participating during
the laboratory experiments, which are contributing in the dissipation phenomena. Conversely,
it is more convenient to express each flux as a function of measurable participating forces in the
system. Using the assumption of linear relationship between the flux Ji to all forces, Xj with
j = [1, 2 · · · , n], the inverse relations for active fluxes under the condition of vanishing forces
near the equilibrium are

J1 (X1 · · ·Xn) =
∂J1

∂X1

X1 +
∂J1

∂X2

X2 + · · ·+ ∂J1

∂Xn

Xn

J2 (X1 · · ·Xn) =
∂J2

∂X1

X1 +
∂J2

∂X2

X2 + · · ·+ ∂J2

∂Xn

Xn

...

Jn (X1 · · ·Xn) =
∂Jn
∂X1

X1 +
∂Jn
∂X2

X2 + · · ·+ ∂Jn
∂Xn

Xn. (2.26)

Equation (2.26) in an abbreviated form is written as

J = LX, with Lij =
∂Ji
∂Xj

. (2.27)
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L is n×n symmetric matrix with ∂Ji/∂Xj = ∂Jj/∂Xi. The diagonal coefficients, ∂Ji/∂Xi are
direct coupling terms, and can be replaced with constants in the constitutive relations, if they
exist for the particular case. The off-diagonal coefficients, ∂Ji/∂Xj are adding coupling effects
due to secondary participating forces,Xj in the primary flux, Ji. The coefficient matrices R and
L are related with each other through an invertible kinetic. The product of these two coefficients
matrices is RikLkj = δij , with δij representing the Kronecker delta function.

By using these linear force–flux relationships, we can ensure the positive definiteness of total
entropy production per unit time of the system. Substituting equations (2.25) and (2.27) in
equation (2.22), a expression for quantitative dissipation measurement, we have

ṡp = RijJiJj = LijXiXj ≥ 0. (2.28)

If we rewrite the above equations as summation of a symmetric and an anti-symmetric coeffi-
cient matrix. We have

ṡp = RiiJiJi +
1

2
(Rij + Rji)JiJj

= LiiXiXi +
1

2
(Lij + Lji)XiXj ≥ 0. (2.29)

Equation (2.29) expresses a general condition for the coupling coefficients in the matrices as

RiiRjj >
1

4
(Rij + Rji)

2 and LiiLjj >
1

4
(Lij + Lji)

2. (2.30)

2.3. Dissipation potential and dissipation functions.

The total dissipation in the system is measured from the total entropy production rate as stated
in the previous section. Thus, the quantitative measurement is given by equation (2.6) with
respective constraints for positive definiteness. Onsager defined two dissipation potentials based
on the quadratic form of entropy flux, equation (2.28). The first dissipation potential is defined
as a function of fluxes. It is given as

Φ(J, J) =
1

2

∑
i,j

JiRijJj. (2.31)

Equation (2.31) defines a quadratic form as a function of fluxes only. Complementary to this, a
second dissipation potential is defined as a function of forces only. It is given as

Ψ(X,X) =
1

2

∑
i,j

XiLijXj. (2.32)

In order to ensure the positive definiteness of these potentials, the coefficients matrices of these
two potentials must also satisfy the conditions given by equation (2.30) for coupling coeffi-
cients. Using these potentials in conjunction with equation (2.28) define the relationships to the
entropy flux of the system.

ṡp = 2Φ = 2Ψ ≥ 0, (2.33)

provided the linear kinetic relations, equations (2.25) and (2.27) are also satisfied. The inequal-
ity condition also add additional constraint of positive definiteness of both matrices R and L
(Rii ≥ 0 and Lii ≥ 0).
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The Onsager linear relations and dissipation potentials are based on the assumption that forces
and fluxes are related under linear kinetics. In most of the practical problems, it is not possible
to define these dissipation potentials. Hackl et al. (2011) overcome this setback by introducing
a functional form of the dissipation in the system. This function is considered as a quadratic
form of measurable extensive quantities. Similar dissipation functions were also used in Hackl
and Fischer (2008); Hackl et al. (2011). For example, plasticity is modeled as a function of
deviatoric stress and strain, whereas diffusion is modeled as a function of fluxes or rates of
mass transfer along the surfaces. Fischer et al. (2014) described a general form of dissipation
function Q(J,Y) in relation with entropy flux as

Q(J,Y) = Tṡp. (2.34)

Q is the dissipation function and depends on the fluxes, Ji and state variables Y. In reference to
the second law of thermodynamics, the condition of an irreversible process, that total entropy
of the system must be positive, holds true for equation (2.34). The positive definiteness of the
dissipation function is ensured by assuming that it is twice differentiable with respect to J.

Remark 2. A comparison of equation (2.33) and equation (2.34) establishes a necessary equiv-
alence criterion between dissipation functions and dissipation potentials:

Q(J,Y) = 2Φ(J, J) = 2Ψ(X,X). (2.35)

2.4. Thermodynamic extremal principles (TEP).

In the previous sections, general relations for dissipation functions and potentials were dis-
cussed in the general framework of thermodynamics. Thermodynamic extremal principles
(TEPs) are an excellent tool widely used in many fields as an alternative to determine the kinet-
ics of the system. TEPs are also helpful in formulating the evolution equations of the system
with coupled dissipative mechanisms. These principles employ the variational formulations to
find the phenomenological equations expressing the equilibrium state of the system for the set
of dissipative phenomena and boundary constraints. The general statement for TEPs can be
formulated as

“ For all admissible fluxes Ji, with the conditions for conservation, and boundary and contact
conditions at the edges and interfaces, only the fluxes that maximize the total dissipation are
selected, subject to the conditions that all dissipation potentials (Φ(Ji, Jj),Ψ(Xi, Xj))) or dis-
sipation functions (Q(J),Q(J,Y)) obey the equivalence condition given by equation (2.35)”
(Hackl and Fischer, 2008)

There are different formulations of TEPs in the literature. These principles differ from each
other on the basis of Lagrange formulation and the methods to include process constraints. De-
tailed descriptions of these principles will be discussed in the forthcoming parts of this section.

2.4.1. Onsager’s extremal principle of maximum dissipation.

Onsager defined a variational principle in irreversible thermodynamics with the name “The
principle of least dissipation of energy”. According to its statement, for an isolated system, Ω
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with no net flow of flux across its boundaries, ∂Ω the Lagrangian of the system is written as

LOns = ṡp − Φ(Ji, Jj)

= XiJi −
1

2

∑
i,j

JiRijJj. (2.36)

Variation of equation (2.36) with respect to fluxes J, provides a stationary point. Under the
assumption of positive definiteness of dissipation potential Φ, a stationary point represents the
maximum point value of the dissipation for selected process variablesXi. The general evolution
equations after variation w.r.t fluxes is

∂LOns
∂Ji

= Xi − RijJj = 0. (2.37)

Equation (2.37) is written in a matrix form, and is expressing the linear relationship between the
force vector, X and all participating fluxes Jj . A condition for the maximum dissipation holds
true only for the case that Rij is symmetric and positive definite. Additionally, equation (2.37)
satisfies this relation, in accordance with equation (2.25). Using an equivalence criterion be-
tween dissipation potentials and dissipation function, equation (2.35) with equation (2.37), the
alternative form of a stationary condition is given as

Xi −
1

2

∂Q

∂Ji
= 0. (2.38)

It is important to mention that the unique value of the force vector Xi is subject to the positive
definiteness of the dissipation function Q(Ji,Y) and the constraint of vanishing fluxes at the
equilibrium, which is also the basic assumption of Onsager’s force–flux linear relationships.

2.4.2. Ziegler’s thermodynamic extremal principle.

Ziegler’s extremal principle is often termed as “maximum entropy production principle”. This
principle is a modified form of the Onsager Lagrange function. According to this principle,

“If irreversible force, Xi is prescribed, the actual flux, Ji maximizes the entropy production if
and only if, the relation for the entropy production flux equivalence criterion, ṡp =

∑
iXiJi” is

satisfied (Martyushev and Seleznev, 2006).

The Ziegler Lagrangian function with the dissipation function is written as:

LZie = Q(Ji, · · · )− λ {Q(Ji, · · · )− ṡp} . (2.39)

Here, λ is Lagrange multiplier and its value is calculated using a variational formulation. The
variation of equation (2.39) with respect to the participating fluxes J gives

∂LZie
∂Ji

= (1− λ)
∂Q

∂Ji
+ λXi = 0, (2.40)

here Xi is the collection of conjugate force vectors relevant to the participating fluxes. Multi-
plying equation (2.40) with Ji, and using the equivalence criterion for dissipation function and
entropy flux, we have

1− λ
λ

= − Q
∂Q
∂Ji
· Ji

. (2.41)
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Using equation (2.41) with equation (2.40) for the Lagrange parameter, the steady state force
vector Xi is given as

Xi −
1

T

Q
∂Q
∂Ji
· Ji

∂Q

∂Ji
= 0. (2.42)

Usually, Q(Ji, · · · ) is homogeneous function of order n, ( (∂Q/∂Ji).Ji = nQ). So, we can also
evaluate λ = n/(n− 1). With this, equation (2.42) becomes

Xi −
1

T

1

n

∂Q

∂Ji
= 0. (2.43)

If we compare equation (2.43) with equation (2.33), there exists a linear relationship between
these two principles. Ziegler and Onsager extremal principles are analogous for n = 2, subject
to the constraints satisfying the boundary and interface conditions. Ziegler’s variational prin-
ciple is the more general form of the extremal principle. For many problems in real life, we
have additional constraints and these restrictions can be included in the Lagrangian along with
basic TEPs formulations. As dissipation function and entropy production rate are functions of
J, it is more convenient if the additional constraints are first formulated as linear function of the
corresponding flux Ji. Thus, for a system with ‘m’ number of additional constraints, defined

as
N∑
i=1

aikJi = 0 with k = 1, 2 · · · ,m and aik as function of state variables other than J. The

modified Lagrangian with additional constraints reads

LZie = Q(Ji, · · · )− λ {Q(Ji, · · · )− ṡp}+ βk aik Ji, (2.44)

with βk as the Lagrange parameters for the additional constraints. Now the modified Lagrangian
is function of fluxes only. Variation of equation (2.44) w.r.t. Ji gives the steady state condition
for Xi as

Xi −
1

n

∂Q

∂Ji
+ βkaik = 0. (2.45)

Equation (2.45) represents the matrix form with N number equations for JN fluxes. After

multiplying each with Ji, we have (N + m) number of equations with constraints (
N∑
j=1

ajkJj =

0). After this appropriate operation, we have (N + m) number of equations with (N + m)
number of unknowns, Xi with (i = 1, · · · , N ) and βk with (k = 1, · · · ,m). This system of
equations is easy to solve using ordinary methods of linear algebra.

Remark 3. Hackl et al. (2011) modeled the system of equations for both coupled and non-
coupled processes. In contrast to the Ziegler’s principle, they did not assume an orthogonality
condition between dissipation surface and forces (see Fig. (2.1)). Hackl et al.’s model is valid
for any homogeneous dissipation function. Additionally, in case of non-coupled processes, the
total dissipation function is the summation of all individual dissipative function, expressed as
pairs of respective forces and fluxes (see chap. 9 DeHoff, 2006). We have modified Lagrangian
with λi Lagrange parameters, where i is the number of individual dissipation processes in the
system. For every ith process, equation (2.41) becomes

1− λi
λi

= − Qi

∂Qi

∂Ji
· Ji

, (2.46)

and the condition for the balance of forces, equation (2.42) takes the following form

Xi −
1

T

Qi

∂Qi

∂Ji
· Ji

∂Qi

∂Ji
= 0. (2.47)
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Figure 2.1.: A simple dissipation potential, Φ(J1, J2) shown as quadratic function of fluxes
J1, J2 under linear theory. At the maximum dissipation, we have state of vanishing
fluxes.

Remark 4. As it is assumed in the previous section that Q(J, · · · ) is of order n > 1, than we
can define two identities that are useful in defining the relations in linear irreversible kinetics.∑

j

∂Q

∂Jj
Jj =

∂Q

∂J
· J = nQ (2.48)

similarly another related useful identity,∑
j

∂2Q

∂Jj∂Jj
Jj = (n− 1)

∂Q

∂Ji
(2.49)

equation (2.49) is useful in defining Onsager symmetry matrix. Using equation (2.49) with
equation (2.43) gives X

X =
1

n(n− 1)

∂2Q

∂Ji∂Ji
Ji,

= R(Ji) · J, R(Ji) =
1

n(n− 1)

∂2Q

∂Ji∂Ji
, (2.50)

with R being a symmetric matrix. Equation (2.50) enables us to define the coefficient matrix as
a function of the dissipation function, subject to the condition that Q must be twice differentiable
w.r.t. fluxes. If we are able to find L(J) = (R)−1, this enables us to establish the relationship
for an individual flux with the force vector Xj (Ji = Lij(Ji)Xj). Conclusively, the Ziegler’s
principle is considered as a more general form of the TEPs, and it is capable of formulating the
system kinetics with additional constraints (Fischer et al., 2014).

2.4.3. The minimum principle for the dissipation potential (MDPD).

There is no single individual person or research group associated with the formulation of this
principle. Cocks and Gill (1996) distinguishably contributed in establishing this theory for ma-
terial processes with a particular emphasis in powder metallurgy. Hackl and Fischer (2008)



2.4. Thermodynamic extremal principles (TEP). 17

discussed this principle in detail for inelastic materials and compared it with Ziegler and On-
sager thermodynamic extremal principles for establishing the equivalence between dissipation
functions and dissipation potentials. For the cases, where the equivalence criterion does not
hold true, a reconstruction of the dissipation function enables us to re-establish these relations.
Hackl (1997) used this principle for microstructure evolution modeling. A generalized defini-
tion of this principle is
“ For all admissible fluxes Ji, with the conditions for the conservation, boundary and contact
conditions at edges and interfaces, only these fluxes are taken which minimize Ė + Φ.”

Here Ė is rate of the total energy of the system and Φ is dissipation potential defined in the
previous section. Thus, the Lagrange, according to this principle is written as

LMPDP = Ė + Φ. (2.51)

The energy E(Y) is function of state variables. Thus minimization with respect to these state
variables yields

∂E

∂Y
+
∂Φ

∂Ẏ
= 0 (2.52)

This principle is a true minimization principle. In comparison with equation (2.36), if the energy
rate Ė is replaced with −ṡp, it is the conjugate inverse of the Onsager principle of maximum
dissipation.

2.4.4. Prigogine’s principle of minimum entropy production.

In comparison with the maximization principles discussed earlier, Prigogine principle seems
contradictory to maximum entropy production for an isolated system. The previously cited
extremal principles are based on maximization of the entropy production in a closed system but
this principle is valid for stationary processes with some unconstrained forces. So the scope of
this principle is limited in comparison with other TEPs. The system establishes a steady state
condition with minimum entropy production for external constraints. These restricted state
parameters prevent the system to achieve the equilibrium state. This principle states
“In the stationary non equilibrium system, which is consistent with the external restrictions
(constant irreversible forces Xζ ∀ ζ = 1, · · · , j; j < n with n being the total number of forces
in the system), the entropy production is minimum, if the fluxes are expressed as a function of
forces with an additional constraint for the symmetry condition of the coefficient matrix L”.

According to this statement, the variational form of Prigogine’s principle is

ṡp(X)→ min
XΥ

∀ Υ = j + 1, · · · , n for constant forces, Xζ . (2.53)

We can express the entropy production in the form of forces by using an equivalence criterion
with dissipation potentials. Hence, Combining equation (2.28) with equation (2.53), ṡp(X) =
LijXiXj , the Lagrange is a function of forces only. Hence, the variation of this potential w.r.t
free forces XΥ expresses the stationary condition for steady state as

∂

∂XΥ

ṡp(X) =
∂

∂XΥ

(LiΥXiXΥ) = 2
N∑
i=1

LiΥXi = 0, (2.54)
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Thus, from the linear relationship between forces and fluxes (equation (2.27)), JΥ vanishes
under the stationary condition with external constraints. which from the Onsager’s potential
for forces, gives JΥ = LiΥXi = 0. From this condition, it is clear that for the system with
constraint forces, we have a steady state with the vanishing fluxes for unconstrained forces.

Remark 5. Prigogine’s extremal principle can be considered as a corollary of Onsager TEP
within the framework of linear thermodynamics relationship between force and flux. Alternative
derivation of this principle can also be done using the Gyarmati’s formulation of Onsager’s TEP
with free forces and fixed fluxes, which is valid for stationary processes in the presence of free
forces. It is also worth mentioning that Prigogine’s TEP is not applicable to all steady state
systems, limiting to linear nonequilibrium irreversible processes. There are several examples
e.g. Peltier element, Benard effect and structure instability during biochemical evolution that
shows the condition for vanishing fluxes, and equation (2.54) is not satisfied (Fischer et al.,
2014; Martyushev and Seleznev, 2006).
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3. Thermal grooving

The grain boundary interactions with the free surface minimizes total energy of the system
by different mechanisms. Surface diffusion, bulk diffusion, and evaporation–condensation are
active transport mechanisms participating develop the surface topography at the different tem-
perature regions. These processes minimize the total energy of the system due to mass transfer.
Among these, surface diffusion participates actively below the roughening temperature in the
solids, above which the facets disappears from the crystal surfaces. It is dominant process for
the thermal grooves formations along the grain boundaries (Blakely, 1963; Stone et al., 2005;
Akyildiz and Ogurtani, 2017). There are different models in the literature, discussing the kinet-
ics and shapes of the thermal grooves with different coupled transport mechanisms. In most of
these models, contact conditions at the interfaces and intersecting points, and boundary condi-
tions along the edges are expressed by using the additional set of equations/constraints. These
relations are defined based on the assumptions for numerical homogenization and limitations.
Hackl et al. (2017) engaged the thermodynamic extremal principle to model thermal grooving
in three dimensions. The dissipation function includes the contributions from two parallel trans-
port mechanisms over the domain. Along the side, a finite element model is also formulated
using the thermodynamic extremal principle. The objective of this chapter is to discuss this
model and its implementation for the polycrystal.

3.1. Introduction.

The study of thermal grooving is not only useful in evaluating the grain boundary energies
distribution using relative value of the grain boundary energies from the equilibrium dihedral
angle but is also important to develop understanding of the kinetics of processes occurring at
the free surface, such as grain growth due to bulk diffusion, dewetting with increasing temper-
ature, and sintering. Mullins’s (1961) analytical model for thermal grooving is used in many
research works to evaluate the processes parameters, e.g. grain boundary energy and diffusion
coefficients. He showed that the thermal grooving causes stagnation in the grain growth due
to the boundaries pinning at the free surfaces up to the critical range of boundary plane in-
clination. Later on, Allen (1982) proved that depth of the groove decreases for moving grain
boundary and shape of such groove differ significantly from the stationary grooves. There are
many other models (for references, see section (5.1)) and improvements after the Mullins initial
work, but they have not considered any contribution from the diffusion along a triple line chan-
nel, which plays an important role in micro structure morphology. Hoffman and Cahn (1972),
while discussing equilibrium condition for three meeting boundaries at the free surface in pri-
vate discussion with Nielsen, accepted that the role of the triple line energy in morphological
evolution is subject to the existence of equilibrium relations between the boundaries and the
interface line energy, which was unidentified in the scientific community till that time. The
experimental works of Gottstein et al. (2010) discussed the importance and existence of triple
line energy for the first time, and they explained the methods to measure these energies. The
effects of triple line energy on the groove kinetics and equilibrium dihedral angle are discussed
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Figure 3.1.: Top thin layer of a polycrystal with three grains meeting at the common quadruple
point Pi. Other geometrical elements grain boundaries ηi, triple lines Γi,Σi, are
also shown.

with peculiarity (see Fortier et al., 1991; Zhao et al., 2010, 2012a,b).

Thermodynamic extremal principles have proved their effectiveness in modeling the diffusion
dominated processes (for interface and bulk diffusion, see Svoboda et al., 2001; Fischer et al.,
2003, 2012). For thermal grooving in two dimensions, Hackl et al. (2013) model is based
on the principle of maximum dissipation. The effect of boundary plane inclinations on the
groove shapes were discussed in detail for different diffusion coefficients. They established
a relationship between the actual and measured dihedral angle for exact estimation of grain
boundary orientation and energy.

In three dimensions, in addition to grain boundary inclination, the misorientation between the
grains also influences the groove shape and overall kinetics in the polycrystalline. In order to
understand the kinetics of grooving in three dimensions for multi-grains, Hackl et al. (2017)
used the principle of maximum dissipation to formulate the set of phenomenological equations
of the thermal grooving. This model includes coupled dissipation processes with additional
constraints for the conservation of mass and consistent contact between the boundaries. The
model includes

. the specific surface energy (γ),

. the specific grain boundary energy (γη),

. the specific external triple line energy (γΓ),

. the specific internal triple line energy (γΣ)

The dissipation is considered due to two coupled transport mechanisms,

. mass diffusion along the free surface,

. mass diffusion along the groove channel at the triple line.

3.2. Geometrical model and kinematics.

To model the grooving at the free surface, we consider only the upper half of a polycrystal.
Grain boundaries between these grains are assumed planer to exclude the torque effects at the
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boundary junctions. Figure (3.1) shows the element of three grains. ωi is representing a free
surface of each grain. A grain boundary ηi is formed at intersection of two grains ωj and ωk
(ηi = ωj ∩ ωk). A triple line Γi is a geometrical element coexisting at the intersection of grain
boundaries, a internal grain boundary and free surfaces (Γi = ωj ∩ ωk ∩ ηi). An internal triple
line, Σi is a geometrical element at an intersection of all three internal grain boundaries. A
quadruple point Pi is characterized as an intersection point of Γi and Σi lines at the free surface
(Pi = Γi ∩ Γj ∩ Γk ∩ Σi)

1.

In general, we can have more than three grains in the polycrystalline periodic structure. So here
onward, set S represents a collection of all surfaces, set T represents a collection of all triple
lines, and set Q is a collection of all quadruple points in the array. In this model, the free surface
ωi of each grain is defined using the surface normal vector ni. Similarly, each triple line Γi is
ascribed to a normal vector nΓi, and a tangent vector tΓi. It is also assumed that each line lies in
the respective grain boundary ηi plane and vertical motion of this line is within this plane. Thus,
both of these elements share a common normal vector nΓi. An additional unit vector, mΓij is
tangent to the surface ωj , such that the orthogonality condition

mΓij = ±tΓi × nj. (3.1)

with neighboring triple lines Γi must be satisfied. The direction of mΓij is chosen in such a
way that it must be directed away to Γi. The motion of internal triple line, Σi is considered in
the tangential direction tΣi, a unit vector pointing outward for the positive motion. Figure (3.2)
shows the graphical representation of these vectors.

Figure 3.2.: Condition for the continuity along the grain boundary ηk. The triple line velocity
along the grain boundary plane, vΓn,k must be in the state of an equilibrium with
surface velocities in accordance with equations (3.2) and (3.3)

With these, vn,i is the velocity of surface points in the normal, ni direction. As the triple line
and grain boundary motion is restricted in the common plane, thus the triple line Γi moves in
the grain boundary plane with normal velocity vΓn,i, directed in nΓi direction. To ensure the
contact condition between all boundaries along the triple line, the compatibility condition reads

vn,j = vΓn,i sinαij, (3.2)

with sinαij is a angle between nj and nΓi. Subsequent motion of the triple line Γi within grain
boundary ηi causes reductions in the areas Aj of the forming surfaces ωj . These reductions are

1A quadruple point is considered to be formed at an intersection of three grains. So in principle, it is a junction
point at a free surface between four triple lines, and six grain boundaries meeting together.
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related with tangential velocities of the free surfaces vt,j . This velocity is given as

vt,j = − vn,j
tanαij

= −vΓn,i cosαij. (3.3)

The vertical motion of the surface is attributed to the motion of matter along it. Additionally,
the motion of matter along different triple lines channels along the boundary edges contribute
to increase or decrease in the total surface area of the forming grains. Thus, the time rate of
area of the free surface, ωi includes the additional contributions due to the motion of quadruple
points, Pi at the corners. With this

Ȧi =
d

dt

∫
ωi

dAi =

∫
ωi

dȦi +
∑

j, ωi∈AΓj

∫
Γj

vt,j dsj ∀ AΓj
= {ωi ∈ S|Γj ⊂ ∂ωi}. (3.4)

AΓj
is a set of external triple lines at the free boundaries of the grain ωi. Combining equa-

tion (3.4) and equation (3.3) yields

Ȧi =

∫
ωi

Kivn,i dAi −
∑

j, ωi∈AΓj

∫
Γj

vΓn,j cosαji dsj. (3.5)

Here, Ki is twice the mean curvature and is equal to the trace of curvature tensor given by
equation (3.56) and dsj is small arc length of the triple line.
At both ends of the triple lines, it is assumed that the quadruple points Pi move along Σi. If vΣi

is the velocity vector of Pi in tΣi direction, than the condition for coupled motion of the triple
lines in contact with free surfaces is

vΓn,j = vΣi sinαΓij, (3.6)

with αΓij is the angle between nΓj and tΣi. The positive motion of Pi in tΣi direction engenders
the variations in the lengths of adjoining lines with tangential velocity vΓt,j . In relation with the
relative inclination between internal and external triple lines, we have

vΓt,j = − vΓn,j

tanαΓij

= −vΣi cosαΓij. (3.7)

The rate of change in the length of each triple line has contribution from the motion of line,
governed by the curvature and additional contribution from the motion of each quadruple point,
Pi at both ends. With these two concatenated phenomena, the overall rate is

ṡi =
d

dt

∫
Γi

dsi =

∫
Γi

dṡi +
∑

j,Γi∈APj

vΓt,j ∀ APj
= {Γi ∈ T |Pj ⊂ ∂Γi}. (3.8)

APj
is a set of triple lines meeting at Pj . Using equation (3.7)2 and the definition of the line

integral from basic calculus, equation (3.8) yields

ṡi =

∫
Γi

KΓi vΓn,i dsi −
∑

j,Γi∈APj

vΣj cosαΓji. (3.9)

Here KΓi is the curvature of Γi. Next step is to calculate the rate of growth of the internal triple
line. As stated earlier that motion of Σi is only along the tangential direction, thus

ṡi = vΣi. (3.10)
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3.3. Conservation of matter.

This model is based on the diffusional based dissipation processes. Thus the total mass of the
system must be conserved at all the time. In this model, the morphology of the polycrystal is
considered due to two types of motion.

(i) motion of matter along the free surface ωi.

(ii) motion of matter in the triple line channel Γi along the grain boundary.

Figure (3.3) illustrates these fluxes along the free surface. Flux Ji relevant to each surface ωi, is
a vector quantity, and is measured in the unit m3/m sec = m2/sec. The motion of free surface
in normal direction is directly proportional to the flux. So, according to the balance condition
for the conserved quantities, there must be state of equilibrium without any production density.
It is expressed as

vn,i +∇s · Ji = 0, (3.11)

with ∇s· is the surface divergence operator. The second flux, jΓi in tΓi direction is a flow of
matter in the triple line channel between the two surfaces ωj,k and is measured in the unit
m3/sec.

Figure 3.3.: Motion of flux, Ji along the grains surfaces is governed in accordance with the
linear force and flux relationship, equation (3.29). The thermodynamics forces,
∇sµ determine their direction to maximize the dissipation. Conditions for balance
of matter, equations (3.13) and (3.14) must be satisfied along the triple lines, Γi and
at quadruple point Pi respectively.

In order to establish the condition for the conservation of matter along these channels, we as-
sume a small line element dsi between the grains ωj,k. Net flow of matter is the difference of
fluxes between the ends of this line element, jΓi(si + dsi) − jΓi(si). The surfaces fluxes also
contribute in it. If (Jj ·mΓij + Jk ·mΓik)dsi expresses the net flow of flux from the neighboring
grains ωj and ωk, than the balance condition along dsi is

jΓi(si + dsi)− jΓi(si) + (Jj ·mΓij + Jk ·mΓik)dsi = 0. (3.12)

For the limit dsi → 0, equation (3.12) in derivative form is given as
djΓi
dsi

+
∑

j, ωj∈AΓi

Jj ·mΓij = 0. (3.13)

In addition to this, the net flow of fluxes at the point of meeting triple lines, Pi must satisfy the
zero flux condition. Thus the continuity of mass flux at Pi implies∑

j,Γj∈APi

SΣij jΓj = 0. (3.14)



24 3. Thermal grooving

Here SΣij = ±1, taken as positive, when flux is flowing away at Pi and vice versa.

3.4. Total energy of the system and its rate.

In order to establish the Lagrange formulation for the principle of maximum dissipation in ac-
cordance with equation (2.51), we calculate the rate of total energy of the system. In our poly-
crystalline model, the total energy, G includes the contribution from the geometrical elements,
free surfaces ωi, grain boundaries ηi, triple lines Γi, and internal triple lines Σi.

G =
∑

Gi +
∑

Gηi +
∑

GΓi +
∑

GΣi. (3.15)

Here Gi is the surface Gibbs energy of grain ωi, and is given as

Gi =

∫
ωi

γi dAi, (3.16)

with γi is the specific surface energy. It is assumed that this energy is independent of time,
therefore the rate of this quantity, Ġi has only contribution from the time derivate of dA. Using
equation (3.5) in coordination with equation (3.16), we have

Ġi =

∫
ωi

γiKi vn,i dAi −
∑

j, ωi∈AΓj

∫
Γj

γi vΓn,j cosαij dsj. (3.17)

Grain boundary energy of each boundary, Gηi is given as

Gηi =

∫
ηi

γηi dAi, (3.18)

with γηi is the specific grain boundary energy and is also independent of time. As the motion of
triple line and grain boundary are in the same direction, thus the rate of area of the boundary is
expressed with the normal velocity and triple line length. The rate of equation (3.18) is given as

Ġηi =

∫
Γi

γηi vΓn,i dsi, (3.19)

with vΓn,i is the velocity in nΓi direction. Similarly, GΓi is the line energy of external triple
lines Γi, and is given as

GΓi =

∫
Γi

γΓi dsi, (3.20)

with γΓi is the specific line energy. The rate ĠΓi, in association with equation (3.9) becomes

ĠΓi =

∫
Γi

γΓiKΓi vΓn,i dsi −
∑

j,Γi∈APj

γΓi vΣj cosαΓji, (3.21)
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and the Gibbs energy of the internal triple line, GΣi is given as

GΣi =

∫
Σi

γΣidsi, (3.22)

with γΣi is the specific line energy for Σi. The rate ĠΣi is given as

ĠΣi = γΣi vΣi. (3.23)

The rate of total Gibbs energy of the system, Ġ in reference with equation (3.15) becomes

Ġ =
∑
ωi ∈ S

∫
ωi

µi vn,i dAi

−
∑

Γi ∈T

∫
Γi

( ∑
j, ωj∈AΓi

γj cosαij − γηi − γΓiKΓi

)
vΓn,i dsi

−
∑

Pi ∈Q

( ∑
j,Γj∈APi

γΓj cosαΓij − γΣi

)
vΣi, (3.24)

with µi = γiKi is representing the chemical potential in usual meaning of thermodynamics.
Equation (3.24) expresses the rate of thermodynamic potential as a product of forces and fluxes.
As there is no contribution from the rate term of extensive variables, thus conjugate rate term
(−Ġ) is congruent with the entropy production rate in the irreversible thermodynamics (Fischer
et al., 2014).

3.5. Dissipation functions.

In this model, the dissipation is considered due to two types of mass transfer processes, coupled
with each other under the constraint for the conservation of mass.

(i) Diffusion along the surface.

(ii) Diffusion along the triple line channel.

The diffusion along the surface is characterized with the motion of flux Ji, while the diffusion
in the triple line channel is linked with the motion of flux jΓi, tangential to the grain boundaries.
If Di, the diffusion coefficient along the free surface and DΓj , the line diffusion coefficient are
two material characteristics parameters. We can define the dissipation function as the sum of
total diffusion along the surface and total diffusion along the triple line channel. With this, we
define a dissipation function in accordance with the constraint given in Fischer et al. (2014) as
a quadratic function of fluxes. The total dissipation, Q is given as

Q =
∑
ωi ∈ S

1

Mi

∫
ωi

|Ji|2 dAi +
∑

Γi ∈T

1

MΓi

∫
Γi

|jΓi|2 dsi. (3.25)

Here, Mi = (Ω Di)/(Rg T) and MΓi = (Ω DΓi)/(Rg T) are termed as surface and line mobilities
respectively. T is the absolute temperature, Rg is the gas constant and Ω is molar volume. To
this point, we have defined all basic model parameters for thermodynamic extremal principle.
The next section engage the variational formulation for modeling the kinetics of the thermal
grooves.
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3.6. TEP and phenomenological equation for grooving.

In accordance with the principle of maximum dissipation for coupled processes in remark (3),
the dissipation function, Q and −Ġ must be in a state of equilibrium. Thus

Q + Ġ = 0. (3.26)

According to Fischer et al. (2014); Hackl et al. (2011), we can add additional constraints in
the Lagrange formulation for TEP with additional Lagrange parameters. According to equa-
tion (2.44), we include additional constraints for conservation of matter along the surface, con-
servation of matter along the boundaries, continuity condition along the grain boundary, and
contact condition at a quadruple point. With these, the final form of the Lagrange is

L = L1 + L2 + L3 (3.27)

with

L1 = Q + λ1

(
Q + Ġ

)
, (3.28a)

L2 =
∑
ωi ∈ S

∫
ωi

β1,i (vn,i +∇s · Ji) dAi

+
∑

Γi ∈T

∫
Γi

β2,i

djΓi
dsi

+
∑

j, ωj∈AΓi

Jj ·mΓij

 dsi, (3.28b)

L3 =
∑

Γi ∈T

∫
Γi

β3,ij (vn,j − vΓn,i · sinαij) dsi

+
∑

Pi ∈Q

 ∑
j,Γj∈APi

β4,ij (vΓn,j − vΣi · sinαΓij)Pi

 . (3.28c)

In above set of equations (3.28a) to (3.28c), description of Lagrange multipliers are

• λ1 is the Lagrange multiplier related to the equilibrium relation between the dissipation func-
tion Q and entropy flux −Ġ.

• β1,i are functions for each surface ωi, relating the surface motion in ni direction, and flux Ji.

• β2,i are functions for the balance of fluxes along the boundaries.

• β3,ij are functions for the compatibility conditions between the set of surfaces AΓi
along the

triple line Γi

• β4,ij are constants for compatibility condition between set of triple lines APi
meeting at Pi.

Ji, jΓi, vn,i, vΓn,i, and vΣi are the kinetic variables with respect to them variation are carried
out. After some simplifications, the stationary conditions of the process states:

on ωi ∈ S :

Ji = −Mi∇sµi, (3.29)
vn,i +∇s · Ji = 0; (3.30)
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equation (3.29) gives the constitutive relation between force and flux along the surface. The
rate of flow of matter along the surface is equal to product of gradient of chemical potential and
surface diffusion factor, Mi. So we have a relation similar to the Fick’s law of diffusion. The
second relation express the condition for the conservation of mass. The steady state conditions
along the external triple lines state

on Γi ∈ T :

jΓi = −MΓi
dµΓi

dsi
, (3.31)

µΓi = µi = µ for ωj ∈ AΓi
, (3.32)

γηi+ γΓi KΓi =
∑

j, ωj∈AΓi

γj cosαij. (3.33)

Here, equation (3.31) expresses the Fick’s law for diffusion along the triple line channel. Ac-
cording to equations (3.29) and (3.31), we have a condition of vanishing flux at constant chem-
ical potential in the system. Equation (3.32) express the condition of constant potential along
the grain boundaries. Gamsjäger (2007) also formulated such condition for the migrating sharp
interfaces using TEPs. Equation (3.33) defines the condition for energy balance between the
thermodynamic forces. Nielsen also discussed the role of triple line energy in the surface evolu-
tion in Hoffman and Cahn (1972) but accepted unawareness about the method to measure these
forces. Later Gottstein and Shvindlerman (Gottstein et al., 2005; Barrales Mora et al., 2008)
discussed conscientiously about the existence and role of the triple line energy in establishing
the equilibrium dihedral angle and developing the surface morphology in the polycrystalline.
For each quadruple point, we have

at Pi ∈ Q : ∑
j,Γj∈APi

SΣij jΓj = 0, SΣij ± 1, (3.34)

γΣi =
∑

j,Γj∈APi

γΓj cosαΓij. (3.35)

Equation (3.34) is zero flux condition at Pi for steady state, which satisfy the null gradient
condition for the chemical potential. Secondly equation (3.35) establishes the relation between
triple lines energies at P. Equations (3.29) to (3.35) are set of coupled differential equations,
that cannot be solved using ordinary methods. In the next section, a finite element formulation
for solving these set of equations will be discussed.

3.7. Finite element model for thermal grooving.

In this section, the finite element model using thermodynamic extremal principle is discussed
based on the formulation already done by Hackl et al. (2017). For this modeling process, we
start by defining the Lagrange function in the reference configuration and reduce the character-
istics parameters by using previously derived relations for extensive variables. As per author
knowledge, the thermodynamic extremal principle was not previously used for the finite ele-
ment modeling.
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Relation between current to reference configuration.

Let us consider the polycrystalline grain structure in the reference configuration. All free sur-
faces are represented as ωi0 ∈ S0. Similarly, Γi0 ∈ T0, and Pi0 ∈ Q0 are sets of triple lines, and
quadruple points in the reference configuration respectively. The model is setup in a quasi two-
dimensional space with Cartesian coordinates (x1, x2, x3), such that the geometry is defined
in (x1, x2) plane and x3 is a continuous displacement field along the geometry. This parameter
also represents the displacement of triple lines and quadruple points. With these assumptions,
the geometries of the free surfaces ωi are defined as

ωi = {(x1, x2, x3)|x3 = u(x1, x2)∀ (x1, x2) ∈ ωi0} for ωi ∈ S. (3.36)

Similarly, for all triple lines Γi, we have

Γi = {(x1, x2, x3)|x3 = uΓi(x1, x2)∀ (x1, x2) ∈ Γi0} for Γi ∈ T. (3.37)

It is important to mention here that u(x1, x2) = uΓi(x1, x2), due to the continuity in displace-
ment field. Thus, here onward a single variable u(x1, x2) defines the displacement field over the
complete domain. Now, a relation between small area element dAi to dAi0, a area in reference
configuration is given as

dAi = Ji (u) dAi0, with Ji (u) =
√

1 + |∇u|2. (3.38)

∇u, gradient of displacement field is calculated in the reference configuration. A relation be-
tween dsi and dsi0 for line element Γi is

dsi = JΓi (u) dsi0, with JΓi (u) =

√
1 + (u′)2. (3.39)

u′ = du/dsi is derivative in the direction of Γi. The rate of the Jacobians J̇i, and J̇Γi are
calculated by taking time derivatives of equation (3.38)2 and equation (3.39)2 respectively.

d

dt
Ji (u) =

∇u·∇u̇
Ji (u)

, (3.40)

and
d

dt
JΓi (u) =

u′·u̇′

JΓi (u)
, (3.41)

with · represents a dot product and upper dot, ˙ represents a time derivative. With these basic
definitions, we write the total Gibbs energy, equation (3.15) in reference configuration as

G =
∑

ωi0 ∈ S0

∫
ωi0

γiJi (u) dAi0 +
∑

Γi0 ∈T0

∫
Γi0

(
γηiu + γΓi JΓi (u)

)
dsi0 +

∑
Pi0 ∈Q0

γΣi u (Pi0) , (3.42)

and its rate Ġ

Ġ =
∑

ωi0 ∈ S0

∫
ωi0

γi∇u·∇u̇
1

Ji (u)
dAi0 +

∑
Γi0 ∈T0

∫
Γi0

(
γηiu̇ + γΓi u

′·u̇′ 1

JΓi (u)

)
dsi0 +

∑
Pi0 ∈Q0

γΣi u̇ (Pi0) . (3.43)
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The dissipation function Q, equation (3.25) in reference configuration is expressed as

Q =
∑
ωi ∈ S

1

Mi

∫
ωi0

|Ji|2 Ji (u) dAi0 +
∑

Γi ∈T

1

MΓi

∫
Γi0

|jΓi|2 JΓi (u) dsi0. (3.44)

In addition to above, other required relations in reference configuration are

vn,i =
1

Ji (u)
u̇, (3.45)

and

djΓi
dsi

=
1

JΓi (u)
j′Γi. (3.46)

Using equation (3.45), relation for conservation of matter along ωi, equation (3.11) becomes

1

Ji (u)
u̇ + ∇s · Ji = 0, (3.47)

and using equation (3.46), balance of matter along Γi, equation (3.13) is written as

1

JΓi (u)
j′Γi +

∑
j, ωj∈AΓi

Jj ·mΓij = 0. (3.48)

With the condition of continuity of chemical potential from equation (3.32), the modified La-
grange in reference configurations is

Lu,µ =
1

2

(
Q + λ1

(
Q + Ġ

))
−
∑
ωi ∈ S

∫
ωi

µ

(
1

Ji (u)
u̇+∇s · Ji

)
dAi−

∑
Γi ∈T

∫
Γi

µ

 1

JΓi (u)
j′Γi +

∑
j, ωj∈AΓi

Jj ·mΓij

 dsi. (3.49)

Applying the Gauss-Theorem and integration by parts for equation (3.49), we have

Lu,µ =
1

2

(
Q + λ1

(
Q + Ġ

))
−

∑
ωi ∈ S

∫
ωi

µ

(
1

Ji (u)
u̇

)
dAi +

∑
Γi ∈T

∫
Γi

µ

 ∑
j, ωj∈AΓi

Jj ·mΓij

 dsi +

∫
ωi

∇sµ · Ji dAi − µ
∑

j,Γj∈APi

SΣij jΓj +

∑
Γi ∈T

∫
Γi

1

JΓi (u)
µ′ jΓi dsi −

∑
Γi ∈T

∫
Γi

µ

 ∑
j, ωj∈AΓi

Jj ·mΓij

 dsi (3.50)

In equation (3.50), µ is introduced as the Lagrange parameter due to the fact that it is continuous
function and factor of 1/2 is used to simplify the calculations in further steps. Secondly, if we
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go through the previous variational derivation, we can use λ1 = −22. The remaining terms after
simplification and using equations (3.38) and (3.39) give

Lu,µ =− Ġ− 1

2
Q

−
∑

ωi0 ∈ S0

∫
ωi0

(µ u̇− Ji (u)∇sµ · Ji ) dAi0

+
∑

Γi0 ∈T0

∫
Γi0

µ′ jΓi dsi0. (3.51)

Equation (3.51) has µ, Ji, jΓi, and u̇ as kinetic variables. We can eliminate the fluxes, Ji and jΓi
using relative definitions in reference configuration. Thus combining equations (3.43), (3.44)
and (3.51), and using respective relation for both fluxes, we get

Lu,µ = −
∑

ωi0 ∈ S0

∫
ωi0

γi∇u·∇u̇
1

Ji (u)
dAi0

−
∑

Γi0 ∈T0

∫
Γi0

(
γηiu̇ + γΓi u

′·u̇′ 1

JΓi (u)

)
dsi0 −

∑
Pi0 ∈Q0

γΣiu̇ (Pi0)

+
∑

ωi0 ∈ S0

1

2

∫
ωi0

Mi|∇sµ|2 Ji (u) dAi0 +
∑

Γi0 ∈T0

1

2

∫
Γi0

MΓi|µ′|2
1

JΓi (u)
dsi0

−
∑

ωi0 ∈ S0

∫
ωi0

µu̇ dAi0. (3.52)

Lu,µ is now function of u̇ and µ only. Calculation of ∇sµ can be transformed to alternative,
mathematically simple relation as

∇sµ = ∇µ− (ni · ∇µ)ni, (3.53)

with ∇µ = (µx, µy, 0), is a vector holding derivative of µ along the planer axis. ni is surface
normal vector, can be calculated using simple calculus (Struik, 1961)

nTi =
1

Ji (u)
(−u,x, −u,y, 1) , (3.54)

with u,x and u,y are derivatives with respect to principle axis. Now using equation (3.53) with
equation (3.54) for |∇sµ|2 gives

|∇sµ|2 =
1

Ji (u)
∇µ ·K (u) · ∇µ, (3.55)

with K (u) is the curvature tensor, and is expressed as

K (u) =

(
1 + u2

,y −u,x u,y
−u,x u,y 1 + u2

,x

)
. (3.56)

2The value is derived in equation 54 in Hackl et al. (2017)
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Combining equations (3.52) and (3.55), gives

Lu,µ = −
∑

ωi0 ∈ S0

∫
ωi0

γi∇u·∇u̇
1

Ji (u)
dAi0

−
∑

Γi0 ∈T0

∫
Γi0

(
γηiu̇ + γΓi u

′·u̇′ 1

JΓi (u)

)
dsi0 −

∑
Pi0 ∈Q0

γΣiu̇ (Pi0)

+
∑

ωi0 ∈ S0

1

2

∫
ωi0

Mi∇µ ·K (u) · ∇µ dAi0 +
∑

Γi0 ∈T0

1

2

∫
Γi0

MΓi|µ′|2
1

JΓi (u)
dsi0

−
∑

ωi0 ∈ S0

∫
ωi0

µu̇ dAi0 (3.57)

Now, variation of equation (3.57) with respect to u̇ gives

−
∑

ωi0 ∈ S0

∫
ωi0

γi∇u·∇δu̇
1

Ji (u)
dAi0

−
∑

Γi0 ∈T0

∫
Γi0

(
γηiδu̇ + γΓi u

′·δu̇′ 1

JΓi (u)

)
dsi0

−
∑

Pi0 ∈Q0

γΣi δu̇ (Pi0)

−
∑

ωi0 ∈ S0

∫
ωi0

µ δu̇ dAi0 = 0. ∀ δu̇. (3.58)

Equation (3.58) gives the condition for balance of thermodynamic forces, which are in this case,
Gibbs energies of the geometrical elements. Now variation of equation (3.57) with respect to µ
gives

∑
ωi0 ∈ S0

∫
ωi0

Mi∇µ ·K (u) · ∇δµ 1

Ji (u)
dAi0 +

∑
Γi0 ∈T0

∫
Γi0

MΓiµ
′δµ′

1

JΓi (u)
dsi0 −

∑
ωi0 ∈ S0

∫
ωi0

δµ u̇ dAi0 = 0 ∀ δµ (3.59)

Equation (3.59) gives steady state condition of fluxes in the system. The kinetic parameter u̇ in
equation (3.59) is approximated as

u̇ =
un+1 − un

∆t
. (3.60)

Here, ∆t = tn+1 − tn is used. We use semi implicit scheme for numerical experimentations in
equations (3.58) and (3.59). In this configurations, all Jacobian’s and normal vectors are calcu-
lated at current time tn, whereas u and µ are calculated at tn+1. Substituting equation (3.60) for
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steady state conditions gives

−
∑

ωi0 ∈ S0

∫
ωi0

γi∇un+1·∇δu̇ 1

Ji (un)
dAi0

−
∑

Γi0 ∈T0

∫
Γi0

(
γηiδu̇ + γΓi

(
un+1

)′·δu̇′ 1

JΓi (un)

)
dsi0

−
∑

Pi0 ∈Q0

γΣi δu̇ (Pi0)

−
∑

ωi0 ∈ S0

∫
ωi0

µn+1 δu̇ dAi0 = 0, ∀ δu̇. (3.61)

and

∑
ωi0 ∈ S0

∫
ωi0

Mi∇µn+1 ·K (un) · ∇δµ 1

Ji (un)
dAi0 +

∑
Γi0 ∈T0

∫
Γi0

MΓi

(
µn+1

)′
δµ′

1

JΓi (un)
dsi0

∑
ωi0 ∈ S0

1

∆t

∫
ωi0

δµ
(
un+1 − un

)
dAi0 = 0 ∀ δµ (3.62)

Now for the finite element space, we introduce φ, set of shape function in (x1, x2) plane given
as

φ (x1, x2) =

(N1 N1 N2 N2 N3 N3 N4 Nm

x1 φ1 0 φ2 0 φ3 0 φ4 · · · 0

x2 0 φ1 0 φ2 0 φ3 0 · · · φm

)
, (3.63)

with m is the total number of the nodes of each element in discretized space. For variables
un, un+1, δu̇, δµ, and µn+1 approximated value with shapes functions are

f (x1, x2) =
m∑
I→1

f̂ φI (x1, x2) = f̂ ·φ, (3.64)

where f̂ = f̂ is vector of state variables at each node in finite element approximation. Sub-
stituting equation (3.64) in the variational forms, equations (3.61) and (3.62) for the respective



3.7. Finite element model for thermal grooving. 33

variables. We have discretized form in the finite element space as

− δ̂u̇

 ∑
ωi0 ∈ S0

∫
ωi0

γi∇φI ·∇φJ
1

Ji (un)
dAi0

 ûn+1

− δ̂u̇

 ∑
Γi0 ∈T0

∫
Γi0

(
γΓi φI

′φJ
′ 1

JΓi (un)

)
dsi0

 ûn+1

− δ̂u̇

 ∑
ωi0 ∈ S0

∫
ωi0

φI φJ dAi0

 µ̂n+1 =

δ̂u̇

 ∑
Γi0 ∈T0

∫
Γi0

γηi φI dsi0 +
∑

Pi0 ∈Q0

γΣi φI (Pi0)

 ∀ δ̂u̇. (3.65)

and

δ̂µ

 ∑
ωi0 ∈ S0

∆t

∫
ωi0

Mi∇φI ·K (un) · ∇φJ
1

Ji (un)
dAi0

 µ̂n+1 +

δ̂µ

 ∑
Γi0 ∈T0

∆t

∫
Γi0

MΓiφI
′φJ
′ 1

JΓi (un)
dsi0

 µ̂n+1 −

δ̂µ

 ∑
ωi0 ∈ S0

∫
ωi0

φI , φJ dAi0

 ûn+1 =

−δ̂µ

 ∑
ωi0 ∈ S0

∫
ωi0

φI φJ dAi0

 ·ûn ∀ δ̂µ (3.66)

Rearranging equations (3.65) and (3.66) in suitable form for numerical implementation gives

Kn
IJ =

(
Kn

AA Kn
AB

Kn
BA Kn

BB

)
, (3.67)

with

Kn
AA =


∑

ωi0 ∈ S0

∫
ωi0

γi∇φI ·∇φJ
1

Ji (un)
dAi0

−
∑

Γi0 ∈T0

∫
Γi0

γΓi φI
′φJ
′ 1

JΓi (un)
dsi0

 (3.68)

Kn
AB = Kn

BA =
∑

ωi0 ∈ S0

∫
ωi0

φI , φJ dAi0 (3.69)

Kn
BB = ∆t


∑

ωi0 ∈ S0

∫
ωi0

Mi∇φI ·K (un) · ∇φJ
1

Ji (un)
dAi0

+
∑

Γi0 ∈T0

∫
Γi0

MΓiφI
′φJ
′ 1

JΓi (un)
dsi0

 (3.70)
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and

Un+1 =

(
ûn+1

µ̂n+1

)
, (3.71)

and

P n =


∑

Γi0 ∈T0

∫
Γi0

γηi φI dsi0 +
∑

Pi0 ∈Q0

γΣi φI (Pi0)

−

 ∑
ωi0 ∈ S0

∫
ωi0

φI φJ dAi0

 ·ûn
 . (3.72)

Here Kn
IJ is global stiffness matrix, with all Jacobin calculated at tn, P n is Global load vector

and Un+1 is vector of state functions. The equation with global stiffness matrix reads

Kn
IJ ·Un+1 = P n (3.73)

These set of equations are implemented in open source finite element code in JAVA for nu-
merical experimentation. Results of different parametric studies will be discussed in the next
chapters.

3.8. Dimensionless formulation.

The dimensionless formulation is helpful in understanding the evolution kinetics in relatively
easy way. It also make it convenient to identify the parameters influencing the kinetics of the
process.

For our thermal grooving model, we have two process parameters, u and µ. If all material
parameters are constant within the geometrical elements. Then, the displacement field is written
as

u = f (a, b, t, γ, γη, γΓi, γΣi,Mi, MΓi) . (3.74)

For our formulation of surface energy, γi = γ0 = γ, is constant factor representing isotropic
surface energy and Mi = M is constant mobility factor for all grains in the polycrystalline. This
enable us to write equation (3.74) in the dimensionless state as

u = f(b, t, γηi , γΓi
, γΣi

,MΓ), (3.75)

with following definitions:

u =
u

a
, b =

b

a
, t =

Mγ

a4
t, γηi =

ηi
γ
,

γΓi
=

Γi
γa

γΣi
=
γΣi

γa
,MΓ =

MΓi

Ma
. (3.76)

Similarly, the chemical potential the dimensionless state is define as

µ =
a

γ
µ (3.77)

We will express our results in the dimensionless space for the morphological evolution and
growth kinetics.
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4. The role of grain boundary energy

In chapter (3), we explained our model for the thermal grooving along the free surface and its
finite element formulation for numerical simulations. The thermodynamics forces, grain bound-
ary and surface energies have prime role in establishing the equilibrium dihedral angles along
the grooves. It was observed that grain boundary energy varies with the boundary plane incli-
nation and misorientation between the neighboring grains. The changes in the grain boundary
energy effect the materials behavior including intergranular brittleness and creep. Any varia-
tion in these forces also influence the groove shapes and dissipation rates. The objective of this
work is to study the effect of change in grain boundary energy on the groove growth kinetics
and morphology of the polycrystalline.

4.1. Introduction.

A grain boundary separates the two regions of different orientations from the same crystals
structure. The grain boundary energies are function of boundary inclination and grains misori-
entation. In two dimensions, we need four parameters, misorientation between two grains ϕ,
spatial orientation of grain boundary plane Ψ, and translation vector t(t1, t2) of two crystals for
its identification. Whereas in three dimensions, we need eight parameters, three Euler angles
(ϕ1,Φ, ϕ2) for orientation relationship between grains, two parameters for grain boundary plane
using a normal vector n, and a translation vector t(t1, t2, t3) to distinguish a grain boundary.
The properties, in particular the energy and the mobility of a grain boundary depend upon these
parameters. Among the eight parameters, five of them, orientation relationship and spatial ori-
entation of the boundary plane are influenced by the external processes during the production
where are translation vector is evaluated during the crystals growth or grain boundary motion
for achieving the state of minimum energy (chap. 2 in Gottstein and Shvindlerman, 2009).

We usually classify the grain boundaries into two general types, based on the rotation angle with
constant crystallographic orientation of the boundary plane. If grain boundary and rotation axis
are parallel, the grain boundary is classified as tilt grain boundary. In contrast to it, if the grain
boundary plane is perpendicular to the rotation axis, it is referred as twist grain boundary. Based
on misorientation angles between the grains, we have different set of grain boundary energies
for different tilt angles. In order to find the energies for unknown set of Euler angle, Sutton and
Balluffi (2009, sec. 5 therein) established a linear interpolation for tilt and twist set of grain
boundary energies using experimental measured set of data from Wolf (1990a,b,c). According
to these findings, Grain boundaries with {1 1 1} orientations have minimum energy.

There are different methods for measuring the grain boundary energies using the experimen-
tal setups but these data sets are limited due to difficulty in measuring the accurate interfacial
energies and steady state conditions (Amouyal et al., 2005; Olmsted et al., 2009; Ratanaphan
et al., 2015). Alternative to these, there are numerical methods to calculate the grain boundary
energies using computational schemes. These results have good correlation with experimen-
tally calculated grain boundary energies (Saylor and Rohrer, 2004; Rohrer et al., 2010; Holm
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Figure 4.1.: A comparison between Read and Shockley model and computed grain boundary
energies in LAMMPS for 〈1 0 0〉 tilt grain boundaries in Cu. and Al. The analytical
model provide good approximation up to 15◦ tilt angle.

et al., 2011; Rohrer, 2011b; Bulatov et al., 2013). There is no single method that expresses the
excellent correlation between the experimental and computationally calculated grain boundary
energies for all materials. Read and Shockley used dislocation based model to calculate the
grain boundary energies. This formulation is

γη = E0θ(A− ln θ), (4.1)

with

E0 =
µb

4π(1− ν)
, and A =

4π(1− ν)Ec
µb2

− lnα. (4.2)

E0 is function of only elastic parameters with µ as shear modulus and ν is a Poisson ratio and
b is a radius of the dislocation core. Additional parameter A is the function of dislocation core
energy, Ec. The principle parameter in equation (4.1) is misorientation angle θ. This model is
widely accepted as providing a good prediction of energies for the low angle grain boundaries.
Figure (4.1) shows the grain boundary energy plot using equation (4.1) for Al and Cu. This
formulation gives good approximation for θ < 15◦. For grain boundaries with θ ≥ 15◦, the
model predicts decrease in the grain boundary energies but both in experiments, and computed
grain boundary energies, there is no such decrease. Thus this dislocation based model cannot
predict high angle grain boundary energies. Wolf (1989); Shekhawat et al. (2016) generalized
the Read and Shockley model, by replacing θ with sin θ. These extended models predict good
approximation of the energy for high angle grain boundary. There does not appear any theoret-
ical justification for this replacement (Sutton and Balluffi, 2009). Weins et al. (1969); Ashby
et al. (1978); Gleiter (1982) hard sphere models calculate the grain boundary energies based
on the assumption that all grain boundaries (symmetric, and asymmetric tilt and twist grain
boundaries) are made up of eight fundamental polyhedrons. Thus, the grain boundary energy
is summation of assigned energies for each polyhedron constructing the particular boundary in
the polycrystalline structure. Wolf models for zero-temperature energies, (Wolf, 1989, 1990a,b)
were based on the atomistic simulations for broad crystallographic domains. They showed that
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grain boundary energies strongly depends on the misorientation between the grains. It was sug-
gested that symmetrical grain boundaries have higher energies than asymmetrical grain bound-
aries (Wolf, 1990c). Bulatov et al. (2014) calculated the grain boundary energies only for f.c.c.
materials. They fitted the data in completed five dimensions using a function of 43 numerical
parameters.

(a)
(b)

Figure 4.2.: Illustration of balance of the boundary energies at the triple junction. It explains
the quantities used in equations (4.3) and (4.4). (a) Contribution of grain boundary
energies in normal, (n) and tangential, (tηj) directions in accordance with the Her-
ring relation. (b) Balance of grain boundary energies in the tangential directions for
the cases, when torque terms contributions are too small.

In addition to these, there are some other models that calculate the grain boundary energy dis-
tributions from the geometries of the triple junctions in the polycrystalline. These models are
based on the criterion of a local equilibrium. Rohrer et al. (Barmak et al., 2006; Saylor and
Rohrer, 2001; Holm et al., 2011; Ratanaphan et al., 2015) calculated the grain boundary dis-
tribution in different materials form the constructions of triple junctions as a function of five
macroscopic state parameters. Similarly Adams et al. (1998); Archibald et al. (2004) used sta-
tistical multi-scale approach to calculate the grain boundaries energies distribution from the
shapes of thermal grooves. They used two different trial functions to approximate the relative
grain boundary energies over the range of distribution angles. We find it an optimum method
to calculate relative grain boundary energies under the assumption of constant surface energy.
We will use an disorientation dependent ansatz function. The limitation and application of this
method will be discussed in the next section.

4.2. Grain boundary energy using an ansatz function.

In the polycrystalline, triple junctions are in the state of equilibrium. The grain boundary ener-
gies in tangential direction, and torque terms due to the anisotropy acting in the normal direction
to its plane are balancing each other. The equilibrium condition for each grain boundary junc-
tion is expressed by the Herring’s relation.

3∑
i=1

(γηitηi +
∂γηi
∂Ψ

nηi) = 0. (4.3)
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Figure (4.2a) shows vector balance of forces at the triple junction. In case of moving boundaries,
the interface with a higher energy pulls itself in the tangential direction and ultimately break it
down into two low energy interfaces. Contrary to this, ∂γηi/∂Ψ is the contribution of torque
due to the anisotropy in grain boundary energy. This factor defines the capability of the grain
boundary to rotate about the central axis Ψ. In case of anisotropic grain boundaries, the system
lowers it energy either by twisting or in some cases by forming the serrated grain boundaries
of lower energy in the particular orientation. Equation (4.3) stands for the balance of forces
at the triple junction. In our model, we have no dissipation due to the motion of the triple
junction and there is no bulk or interface diffusion. Thus the planer grain boundaries remain
flat during the thermal grooving process. Hence, the contribution due to the torque term in the
Herring’s relation can be neglected, and we only need an expression for the balance of forces
in the tangential direction. Under these circumstances, the balance condition is expressed by a
Young’s relation at each triple point in the domain.

γηi
sin θi

=
γηj

sin θj
=

γηk
sin θk

, (4.4)

with θi is the angle opposite to γηi . Figure (4.2b) shows the state of equilibrium at the triple
junction with negligible torque. Now, we have three forces that establish the state of an equi-
librium. We will use an ansatz function to find the grain boundary energies as a function of
misorientation angle. The ansatz function reads

γηi = A+B sin(ψjk), (4.5)

with A and B are scalar parameters and ψjk is the minimum misorientation angle between
ωj and ωk lattice without any consideration for the misorientation of grains axis. Wolf has
used similar expression with the concept of burger vector and dislocation core energy. He has
calculated the grain boundary energies over the complete range of misorientation for different
types of grain boundaries in different materials (Sutton and Balluffi, 2009).

(a) (b)

Figure 4.3.: Residuals and relative grain boundary energies calculated for four grains geometry,
Fig. (4.4). (a) Evolution of residuals R with different values of A in the energy
potential using the condition for negligible torque at each Pi, equation (4.4). (b)
Grain boundary energies distribution fitted to experimental data for relative grain
boundary energies, Rohrer (2011a, see fig.8a therein). For Cu., A = 0.30, and for
Al., A = 0.35, we have good fit for [1 0 0] tilt grain boundaries.

With this, we write grain boundary energy potential for the set of grain boundaries in the poly-
crystalline. This matrix has two set of equation for each triple point, and grain boundary ansatz
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function. In this model, the surface energy is assumed isotropic for all surfaces. So, we have
a constant factor γi = γ for every boundary, ηi. Equation (4.5) can be written as a multiple of
constant surface energy. Thus we have the modified form as

γηi = γ(A+B sin(ψjk)). (4.6)

For our four grains periodic model (Fig. (4.4)), we have 10 grain boundaries and 8 junctions.
Consequently, we have 28 set of equations with 10 unknown energies. This over determine
system of equations can be solved using least square method with minimizing the residual
function. In order to have a positive value of γηi , we impose an additional constraint between
two scalar parameters. In these calculations, we useA−3B = 0. For each value ofA, we have
a set of energies with minimum residual. These sets can be correlated with the grain boundary
energies of different materials at constant boundary inclination and different misorientations.
Figure (4.3a) shows the residuals for limiting values ofA. According to Wolf (1990c), we can fit
experimentally observed grain boundary energies with different set of parameters. ForA = 0.30
and A = 0.35, our calculated grain boundary energies are congruent with the experimental
results for {1 0 0} oriented grains for Al and Cu taken from the literature (see Fig. (4.3b)).

4.3. Four grains periodic RVE.

4.3.1. Model geometry and kinetics parameters.

In this section we will explain about the geometry of our model for this particular problem.
We will use four grains periodic RVE. This structure is created using Voronoi tessellation with
random distribution of points. This method has been used for generating RVE for finite ele-
ment simulations in materials sciences and also in the phase-field modelings (see Barbe and
Quey, 2011; Barrales Mora et al., 2012; Głowiński, 2015). This modeling approach provides us
realistic physical representation of the microstructures.

Periodic grains structure shown in Fig. (4.4) includes four irregular hexagonal grains. Each
grain is made up of unequal sides. The central grain, ω1 is alternatively surrounded by other
three grains ω2, ω3, and ω4. This periodic RVE incorporate eight quadruple points and twelve
grain boundaries. The domain is discretized with regular quadrilateral elements. The meshing
is done in such a way that no element intersect with the grain boundaries. Also, the nodal dis-
tribution along the opposite sides are congruent. This discretization is convenient in apply the
periodic boundary conditions without any additional linearization. We have total 5244 nodes
with 5688 quadrilateral elements. In the next sections, we present the results for thermal groov-
ing for different values of grain boundary energies and varying relative diffusion coefficient
MΓ.

4.3.2. Simulation results and discussion.

4.3.2.1. Anisotropic grain boundary energy with A = 0.30.

After setting up the model with quadrilateral mesh, we applied periodic boundary conditions
for the state variables u and µ. The value of surface energy was assumed constant and isotropic.
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Figure 4.4.: Four grains periodic RVE with irregular hexagons. The model is created using
Voronoi tessellations for a unit dimensions. RVE includes eight quadruple points Pi and twelve
boundaries Γij . On the right, a discretized domain of total 5688 quadrilateral. There are equal
number of boundaries on the opposite sides. This discretization is helpful in engaging the
periodic boundary condition.

Other parameters, relative internal and external triple line energies were kept constant and have
same numerical values as in Hackl et al. (2017). With these numerical settings, we started
our simulations with exponential time stepping due to the fact that diffusion is faster in the
beginning and slows down with the proceeding time. In all these finite element simulations,
linear shape function was used for both state parameters.

We started with a flat surface. Initially all quadruple points and grain boundaries were at high
chemical potential. We ignored some initial steps and consider them as settling time. During
these steps, the flux vectors orientated them in the appropriate directions in accordance with
equations (3.29) and (3.31). Figure (4.5) shows evolution of u and µ fields along the free
surface at different instance of tn. The formations of grooves started at the quadruple points
and along the triple lines. These sites have high chemical potential in comparison with the rest
of the RVE. Directions of the fluxes were determined by the vector functions −∇sµ along the
surfaces and dµΓ/ds along the triple lines. Additionally, the fluxes magnitudes were influenced
by the diffusion coefficients for two dissipation processes. We observed formation of pits with
varying depths at quadruple points. The groove profiles along the grain boundaries exhibited
different growth rates. As diffusion coefficients were constant, thus only controlling parameter
was relative grain boundary energy. As system proceeded towards the state of an equilibrium,
we had condition of vanishing fluxes with constant chemical potential over the entire domain (
see Fig. (4.5h)).

From these observations, it is important to discuss the evolution along different cross sections in
the polycrystalline. Figure (4.6) shows u along chosen cross sections with the progressing time
t
n. Morphological evolutions along AA are shown in figures (4.6a) and (4.6b). We have groove

profiles with exponential growth kinetics. The process started with the formation of diffusional
humps along the grain boundaries. The grooves depths along the triple lines, increased with the
progressing time. There was also widening in the groove width with increasing depth. Similarly,
figures (4.6c) and (4.6d) show evolutions of surface along BB. This cross section includes a
quadruple point. It was observed in many experiments in the literature that growth of the pit
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.5.: Morphological evolution of four grains RVE using a set of grain boundary energies
forA = 0.30 in equation (4.6). In this simulations MΓ = 2.5×10−2. Figures (4.5a–
d) show distribution of u, and figures (4.5e–h) show −µ field along the surface at
t
20
, t

35
, t

55 and t75, the equilibrium state. The surface proceed towards the constant
curvature profile with the progressing time. In (e), at t20, −µ is maximum along
the boundaries. The grooves increase in depths with diminishing differentials of µ.
(h) shows a constant distribution of µ at t75 along the surface. It expresses the state
of an equilibrium in the system.
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is faster in comparison with the grooves in the rest part of the geometry. We had congruent
behavior in these numerical experiments. The left groove in Fig. (4.6c) shows the depth of
the quadruple point and it is faster than the grooves along the boundary. Groove on the right
between ω3 and ω4 shows anomalous growth kinetics. Figure (4.6d) shows this shallow groove.
Initially, we observed formation of less deep groove in comparison with the area of diffusional
humps surrounding it. These mass accumulations were due to influx of matters from the rest
parts of the geometry. We also observed the variation in the groove kinetics. Initially, the groove
formation was taking place at a slower rate but after t50, the influx of material dominates the
grooving process along this triple line, and we had increase in the dihedral angle at the groove
pit. Such positive motions along the grain boundaries were also observed in some experiments
(see Sachenko et al., 2002).

In other parts of the RVE, we also observed positive influx of matter to maximize the dissipation.
Figures (4.6e) and (4.6f) show evolution along the CC for progressive tn. These plots show
groove profiles after initial settling steps. We observed grooves growth with relatively slower
rates. Formation of diffusion plateaus along the grain boundaries represent the removal of
material along the triple line with the reduction in the total grain boundary energy. Although,
we had constant diffusion coefficients for all grains, the grain boundary at the right between
ω2 and ω3 evolve with slower growth kinetics. At the later stage, it was observed that due
to high influx of material, increase in dihedral angles took place. These reverse motion of
the fluxes conduced to increase in the dihedral angle. With these topographical observations,
it is concluded that the variations in equilibrium dihedral angles observed in the experiments
reflect steady-state measurements and when the external constraints removed, the system try to
establish a new steady state with the motion of fluxes favorable to minimize the total energy.

In addition to these, it is necessary to compare the growth kinetics of quadruple points in the
RVE. This study is helpful in marking out the critical locations in the polycrystalline, effecting
its workability and expected life. Figure (4.7) shows growth rates of all quadruple points Pi’s
and some points on the triple lines. The overall growth took place with t1/4 with different co-
efficients. This power law express the analytical solution for diffusion controlled process along
the surface given by Mullins. The pit depths increased at the higher rates. Thus the quadruple
points have faster increase in depth than the triple lines. In some parts of the geometry, we also
observed variations in growth rates. Initially, one of the triple line growth followed 0.3578t

0.25

but after ward due to relatively high chemical potential in this region, the flux moved at higher
rate (0.4705t

0.25). This faster decrease in the depth of groove is due to influx of matter towards
the site of low chemical potential.

4.3.2.2. Effect of MΓ on groove shapes and growth kinetics.

In our model, the rates of matter (Ji, jΓi) are function of chemical potential and material diffu-
sion coefficients. The objective of this section is to elaborate the effect of MΓ, which is the ratio
between line diffusion and surface diffusion coefficients.

The change in MΓ, effects the polycrystalline morphology. The increasing value of this di-
mensionless parameter interprets surface diffusion dominating process. With relatively low
value of surface diffusion coefficients, the groove shape have narrow-downing of dihedral an-
gle. Contrary to this, at low value of MΓ, material along the surface moves with relative ease
in comparison to the converse problem. This causes the widening of the dihedral angle and we
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6.: Evolution along different cross sections for the anisotropic factor A = 0.30 and
MΓ = 2.5 × 10−2. (a),(b) surface profiles along AA. Deepening of the grooves
start along the boundaries. We observe variations in the growth kinetics in some
parts of the RVE. (c),(d) shows evolution along the cross section BB. Left groove
is at the quadruple point and growth rate is faster with deeper depth. The groove
on the right side is along the triple line. At this site, we observe slow growth
kinetics with bulging of surface near to the equilibrium. (e),(f) illustrate evolution
along CC. Formation of diffusional humps are visible along this cross section with
formation of the grooves along the triple line. We have different growth kinetics
with formation of planer face along the free surface at this value of MΓ.

observe grooves with continuous curvatures.

Figure (4.8) plots the evolution of u at different instances of tn for different values MΓ. It
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Figure 4.7.: Growth rates of quadruple points, Pi and points on the triple lines Γi. (a) shows
depths on log-log scale. These depths are fitted for t1/4 power law. Overall, P’s
depths increase at the faster rates. Some fluctuations at pits depth are also evident
for the system near to the equilibrium. Triple lines grow with faster growth rates
in the second phase. (b) shows depth evolutions using log-linear scale. Initially,
we observed normal formation of grooves and pit at very slow rates in this partic-
ular region. At the later stage, the influx of mater to minimize the energy caused
formation of the protrusions at these regions.

shows the deepening of grooves with an increasing value of surface diffusion coefficient. For
low value of it, there was formation of flat region along the free surface with the steeping
of the dihedral angle. Formation of diffusional humps were not evident in these numerical
experiments. Contrary to this, In the experiments with the higher surface diffusivity coefficients,
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(a)

(b)

Figure 4.8.: Effect of MΓ on surface cross sections. (a) is the evolution of surface alongBB, (b)
is the evolution of surface along CC at t45, and t55. For any increase in MΓ, there
are accelerated increase in depths at the quadruple points, and we have diffusion
humps with relatively low profiles. The groove shapes and kinetics are governed
by P growth. At lower value of MΓ, we have wider grooves with larger dihedral
angles.

material is relaxed to flow along the free surface and we have widening of grooves with faster
kinetics. Alongside this, the heights of the diffusional humps were also prominent on both sides
of the groove. Variations in the diffusion coefficients not only effect the growth kinetics of the
surface morphologies but also the growth kinetics of the quadruple points. Figure (4.9) shows
plots for growth rates of different quadruple and triple points. With the change in the diffusion
coefficients, we observed variations in the growth kinetics, but the steady state positions of the
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Figure 4.9.: Over all effect of change in MΓ on depths of pits and triple points at grooves
bases. (a) evolutions on log-log scale. (b) evolutions on log-linear scale for ex-
truded points. Increase in MΓ, increases the quadruple points Pi growth rates. With
different kinetics path, the system attains constant state of the equilibrium.

system remained constant. Likewise, the geometrical parts with the positive influx to maximize
the dissipation, behaved in the congruent way, followed by variations in overall kinetics.
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4.3.2.3. Effect of varying A in an ansatz function.

Grain boundary energies of different materials are correlated under the linear relationship. They
are scaled under material parameters. There are many studies in the literature establishing the
relationship between the material characteristics parameters and grain boundary energies based
on the basic crystal structure. For example in case of f.c.c materials, see Holm et al. (2010,
2011), for b.c.c materials, see Ratanaphan et al. (2015), for the grain size correlation with
material properties specifically grain boundary energies, see Kim et al. (2012). In our ansatz
function, different set of parameters A and B in equation (4.5) we have sets of grain boundary
energies for common polycrystalline structure. These sets are portraying the thermodynamics
forces for different materials. Simulation results with these sets enable us to select the best
material for the maximum workability under the design constraints (in this particular case, we
have constraint of the geometry). With these perspectives, this section compares results for the
different set of relative grain boundary energies with different diffusion coefficients and factor
A in the ansatz function. There can be infinite number of different grain boundaries forces
depending upon the orientation relationship between the grains (Kim et al., 2011; Cantwell
et al., 2014), but here we will assume that the one with the minimum residual of the grain
boundary energy potential, and it represents the steady state structure.

Figure (4.10) illustrates comparative morphological study of the polycrystalline at the different
instances of tn. In these simulations, we had constant surface diffusion coefficients and triple
lines energies. A comparison is made for the three different sets of grain boundary energies
calculated for varying scalar factor A in the ansatz function. An increasing value of this factor
for a constant geometry, represents grain boundary energies for stiffer materials. Morphological
kinetics of the surface showed that with an increasing value of A we had dominating surface
diffusion due to high value of grain boundary energies. It is also evident from the height of
diffusional hump in the neighborhood of the grooves along the grain boundaries. With an
increasing value of A, the height of the humps increased.

The quadruple junctions kinetics are important in determining the workability of the polycrys-
talline materials. Figure (4.11) illustrates the comparative study for the evolution of Pi for
three sets of grain boundary energies at different MΓ. With an increase in the scalar factor A
in the ansatz function, the depths of the quadruple points increased linearly. This behavior is
in accordance with the observation in Kim et al. (2012). Also the growth rate varied linearly
with constant diffusion coefficients. Secondly, this plot also compares the evolution kinetics for
different diffusion coefficients. For the surface diffusion dominating process (with high value
of MΓ), we have faster rate of increase in pit depths. As per previous observations, the overall
behavior is congruent regarding the equilibrium positions of the quadruple points and surface
morphologies.
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(a)

(b)

Figure 4.10.: Comparison of surface morphologies and grooves shapes for sets of grain bound-
ary energies at different values of A in equation (4.6). (a) evolution along BB,
(b) evolution along CC at different instances of tn. In these simulations surface
energy is constant and MΓ = 2.5 × 10−2. With an increasing value of A in an
ansatz function, we have sets of higher energy grain boundaries. Conclusively,
steeper grooves are formed with decreasing dihedral angles. Also the height of
diffusional humps increase due to conservation of matter in the system.
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Figure 4.11.: Comparison for growth kinetics at quadruple points for the sets of grain boundary
energies at different values of A. The pit depths are plotted against t using log-log
scale. With the increasing values of A, we observed linear relationship between
pit depths and boundary energies. For each set, any increase in MΓ, increases
the diffusion kinetics along the triple lines. Ultimately, the system reach at the
constant equilibrium state.
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5. Singular grooves and surface energy anisotropy

Shapes and growth rates of the thermal grooves are focus of research in material sciences and
other scientific fields form several decades. These grooves develop at the expense of mass
transfer and energy dissipation. The topographies of the polycrystallines are due to coupled or
uncoupled processes including bulk diffusion, surface diffusion, and evaporation-condensation.
The bulk diffusion is accompanied by grain growth with moving grain boundaries. In case of
stationary grain boundaries, the thermal grooves express the steady state conditions between
grain boundaries and surface energies with the equilibrium dihedral angles. We can also cal-
culate the grain boundaries characteristics distributions, grain boundary energies, and diffusion
coefficients under the assumption of constant surface energy.

From the Mullins’s model, it was shown that we have formations of self similar symmetric
grooves profiles under the assumption of isotropic surface energy, but many experiments in
the literature reported asymmetric groove profiles due to parallel dissipation processes, and
moreover in some cases there are planar facets of unequal lengths along the grain boundaries.
Grooves with these planer facets on either or both faces are termed as singular grooves due to
the non existence of measurable curvature, and they were indicating their singular character.
These formations are characterized due to change in the surface energy with the orientations.
The diffusional humps of small amplitudes were also attached to the planer faces, indicating low
diffusional activities in these areas. Using these planar grooves shapes for the calculating the
material parameters, we are not able to predict the correct value of the relative grain boundary
energy and diffusion coefficients. Additionally, we can have symmetric or asymmetric profiles
for the grains with different orientations along the grain boundary. Keeping in views these,
the prime objective of this work is to study the morphological evolutions in the polycrystalline
using orientation dependent surface energy for the diffusion control processes. We will use
the same set of equations for thermal grooving already discussed in chapter (3). The effect of
grain orientations and diffusion coefficients on growth kinetics and shapes of the grooves will
be discussed in detail.

5.1. Introduction.

Thermal grooving has a key role in the morphological evolution and the stability of a thin
layer coating as well as at micro scale in micro electromechanical systems (MEMS). With the
miniaturization of materials, we gain high strength at the expense of decrease in the fracture
resistance (Kozic et al., 2018). Different topographical structures, for example hill and valley
formations at free surfaces, groove profiles with secondary diffusional humps, oscillations at the
groove roots, asymmetric groove profiles and singular surfaces along the grain boundaries (see
Fig. (5.1)) are reported during secondary annealing processes in literature. These phenomena
have strong correlation with the anisotropic surface energy (Klinger and Rabkin, 2001; Munoz
et al., 2004; Shaffir et al., 2009; Zhao et al., 2012b; Stamelou et al., 2017). Some of these ob-
servations are also considered as a consequence of anisotropic diffusion coefficient (Sachenko
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et al., 2002; Schiedung et al., 2017; Saylor and Rohrer, 2004; Amram et al., 2014). In overall,
thermal grooving effects the efficacy and workability of many electronic components, protective
coatings and epitaxial layer in the thin films. During the processes well below the roughening
temperature (secondary annealing, high working temperature), tiny holes are formed due to the
diffusion phenomena, which is dominating transport mechanism in these temperature regions.
These micro holes are suitable sites for cracks initiation and degradation of thin films (Ken-
nefick and Raj, 1989; Miller et al., 1990; Nemetz et al., 2019) and failure of microelectronics
(Lee et al., 1987; Kozic et al., 2018). Additionally, it was also observed that in the absence of
external driving forces, grooves formations cause the pinning of the grain boundaries (Mullins,
1958; Frost et al., 1990; Génin et al., 1992; Lou and Player, 2002; Ma et al., 2017) and grain
growth under the limiting conditions of the dihedral angles (Svoboda et al., 1991; Svoboda and
Riedel, 1992; Fischer et al., 2012). Thus it is important to understand the kinetics of these pro-
cesses for different orientations. We use anisotropic surface energy to explain these grooves
formations, combined with different set of material characteristics parameters.

(a)

(b)

(c)

(i)

(iii)(ii)

(d)

Figure 5.1.: Morphological evolutions due to surface energy anisotropy varying with grains ori-
entations for different materials. (a): cross section of TEM image with V grooves
along the free surface of SrRuO3 with the depth of 17nm to 55nm grown over
SrTiO3 and annealed for 20 min. (Liu et al., 2016). (b): AFM image of the grain
boundary groove in tungsten sample after 128 hr. annealed at 1350 ◦C. Image shows
secondary diffusional hump along the grain boundary (Sachenko et al., 2004). (c):
AFM image of hill and valley structure along the free surface, annealed at 1350 ◦C,
after 128 hr. (Zhang et al., 2004). (d): AFM image of cross sections at different
time steps, (i) is the groove profile after 60min annealing at 1650 ◦C with asymmet-
ric groove profile, (ii) and (iii) in this figure are groove profiles along two different
sections l1 and l2, after 120min at 1650◦C with planar groove profiles on the right
side and normal profile on the left side (Munoz et al., 2004).
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Gibbs and Herring (1951) models on the growth kinetics of a single crystal are the pioneer-
ing works that explain the singular facets formations using anisotropic surface energy. Later
on Hoffman and Cahn (1972) developed the comprehensive modeling approach for diffusion
control growth in two dimension using anisotropy surface energy. In addition to this, Mullins
(1961); Brailsford and Gjostein (1975) explained the formation of linear facet along the grain
boundary for symmetric grooves. It was concluded that under the anisotropic surface energy
grooves growth, the over all kinetics took place with 1/4 power law of the annealing time with
relatively faster rates. In case of moving grain boundaries, there are possibilities of emergence
as well as fading out of the singular facets at the expense of new planar faces formations (Carter
et al., 1995). Cahn and Taylor (1994) model for morphological changes along the free surface
is based on the coupled diffusional processes for minimizing the total energy of the system.
This model can be used for both isotropic and anisotropic surface energy due to curvature based
formulation.

Sachenko et al. (2002) modeled two dimensional grooving to simulate the serrated topography
along the free surface of Tungsten. These formations were characterized with the anisotropy in
the surface diffusion coefficient. Zhang et al. (2002) simulated the problem with time varying
surface energy. In this case, the overall kinetics took place at faster rate. An extended three
dimensional model, Zhang and Gladwell (2005) simulated the thermal grooving process for a
symmetric groove shape of a single square grain. In case of moderate anisotropy, they accepted
the results for {1 1 1} orientations as a quasi-steady state. They found the termination of sim-
ulations due high numerical error. Savina et al. (2003) simulated the thermal grooving due to
coupled surface diffusion and evaporation-condensation. The model is based on higher-order
Cahn-Hilliard equation. The coarsening due to coupled process varied inversely with increasing
effect of evaporation-condensation.

The numerical simulations Amouyal et al. (2008); Derkach et al. (2016) are based on the ex-
perimental observations for thermal grooving and dewetting in solids. They effectively used
numerical experiments to measure the diffusion coefficients within a tolerance. Rabkin et al.
(2006) observed the formation of secondary diffusional humps during annealing process. They
established a relationship between grain boundary migration and surface energy anisotropy for
blunted and singular grooves.

Ogurtani and Oren (2005); Ogurtani (2007); Ogurtani et al. (2008) used the principle of maxi-
mum entropy production to develop the thermal grooving models with additional external forces
in two dimension. The flux along a surface includes the contributions from electric and mag-
netic forces in accordance with Onsager first principle. Afterwards, Akyildiz et al. (2011) in-
cluded anisotropic surface energy model (Ramasubramaniam and Shenoy, 2005) to study the
asymmetric groove shapes in the annealing experiments.

Simulation experiments, Zhang and Wong (2002); Xin and Wong (2004); Min and Wong (2006a,b)
included the anisotropic surface stiffness to study the effect of grain boundary orientation on
grooves shapes and growth kinetics. In these two dimensional model, they used non-linear
shooting method to solve the set of coupled differential equations to establish the condition for
formation of singular faces along the groove with moving grain boundaries.

Diffusion based single crystal models, Zhang (2006, 2009a) explain the effect of surface energy
anisotropy on the equilibrium shapes. It was concluded that for the crystals with {1 1 1} orien-
tations, steady states were achieved at comparatively faster rates. Also for similar orientations,
vanishing serrated topographies were observed along the free surface. Other research works,
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Barrett et al. (2008, 2010b) are finite element based models for thermal grooving and sintering.
They expressed the evolution kinetics for both isotropic and anisotropic grooving with moving
grain boundaries.

Based on this review, there is no work in literature to the author knowledge that includes uncon-
ditionally anisotropic surface energy for thermal grooving. Derkach et al. (2014) work in three
dimension expressed results only for isotropic surface energy. So, to explain the thermal groov-
ing in complete three dimensions for any general shape of polycrystalline, we use Hackl et al.
(2017) thermal grooving model with anisotropic surface energy function. Since, the model pa-
rameters are geometry dependent (see equations (3.57) and (3.59) ), and are function of surface
mean curvature along the free surface. Therefore, this model can be unconditionally used for
both isotropic and anisotropic surface energy function. The main reason of the stability of this
model is the fact that in case of critical to severe anisotropy, any discontinuity in the curvatures
of the surface is countered with the continuity of chemical potential, which is the basic require-
ment of the under laying physics for the motion of flux, equation (3.29). The contents of this
chapter start with a brief explanation of Wulff-Gibbs energy plot. In next section, we will ex-
plain analytical form of the anisotropic surface energy that is use in these simulations. Finally,
the effect of grain orientations on grooves shapes and kinetics of the geometrical elements will
be discussed for a chosen polycrystalline geometry.

5.2. Gibbs and Wulff plots of surface energy.

The surface energy, γ is a scalar quantity and is assumed isotropic in most of the simulations.
However, It is experimentally evident that there are variations in it with the crystal orientations.
So, it can be modeled as a function of surface geometry in coordination with the crystal ref-
erence system. A free surface can be considered as a geometrical entity formed by cutting the
crystal along a line inclined at some angle θ. Figure (5.2) shows a two dimensional cross section
of a free surface. The rectangular elements represent the atoms with the dimension a separated
by breaking bonds between them.

Figure 5.2.: A representative surface in the two dimensions. Each atom is illustrated with a
square of dimension ‘a’ and is inclined at an angle θ with the horizontal. The upper
half represent the remaining atoms to form the complete crystal of unit dimensions
(Meier, 2014, fig. 4.1 ).

The total number of broken bonds in the vertical direction per unit length are determined as

NV =
1

a
. (5.1)
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and number of bonds in the horizontal direction per unit projected length are calculated as

NH =
tan θ

a
. (5.2)

So surface-free energy density is the summation of bond energy of these free atoms per unit
length of the surface. Hence, with total number of bonds 1/a + tan θ/a, we have

γ(θ) =
Eaa
2

(1/a + tan θ/a)

1/cos θ
,

=
Eaa
2

(cos θ + sin θ) (5.3)

Equation (5.3) is an equation of a circle. It can be plotted for all four quadrants as shown in
Fig. (5.3)

Figure 5.3.: A polar plot of surface energy function using equation (5.3) for all four quadrants.
The inner rectangle represents the equilibrium shape of the crystal (Meier, 2014)

This construction of surface energy is termed as Wulff-plot. The extension of this plot in three
dimensions is generated by rotating a vector of magnitude of surface energy through all hkl
orientations in the crystal reference system (Meier, 2014). Cahn and Hoffman (1974) introduced
the vector function, ξ as an alternative method to plot the scalar surface energy. This model plots
the scalar surface energy function in such a way that we can find the crystal shape over the range
of orientations in two and three dimensions. With these formulations, one can also explain the
range of orientations for which there exist a set of normal vectors expressing the state of an
equilibrium with minimum surface energy. The surface energy vector, ξ is defined as

ξ · n = γ, (5.4)
ξ · dn = dγ. (5.5)

Equation (5.4) expresses a normal component. ξn shows the tendency of surface to minimize
its energy by contraction. Equation (5.5) gives a relation for a change in the surface energy with
orientations (∂γ/∂θ, See equation (A.7)). This component contributes to the torque term along
the central axis, which is given by a relation n× t, with t is parallel to dn. The ξ must satisfy
an auxiliary condition n · dξ = 0 (equation (A.6)1), defining the orthogonality condition. Cahn
and Hoffman (1974) related this term with the minimization of chemical potential at constant
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(a)

(b)

(c)

(d)

Figure 5.4.: γ and ξ plots for two different energy functions. (a): γ-plot over complete
orientations in hkl directions, using anisotropic surface energy function, γ =
1 + c(n4

1 + n4
2 + n4

3) with c = 0.4. The surface has maximum energy, (1 + c)
along the principle axis of the crystal. (b): ξ-plot for (a) with cross sections. (c)
and (d) are γ and ξ plots respectively. These are plotted using the anisotropic sur-
face energy, γ = 1 − c(n4

1 + n4
2 + n4

3) with c = 0.4. The surface has minimum
energy, (1− c) along the principle axis of the crystal.

temperature and pressure in coherence with Gibbs-Duhem equation of classical thermodynam-
ics.

With these definitions, for any surface element of area A, the total energy is γA = ξ ·A. Any
change in the area and its energy is given as

d(γA) = d(ξ ·A) = ξ · dA+A · dξ
= ξ · dA (∵ n · dξ = 0)

= ξ. (ndA+ Adn) (5.6)

The first term (ξn · ndA) is amount of work required to minimize the total surface energy with
reducing area and the second term (Aξt · dn = A (∂γ/∂θ) dθ) is amount of torque required
to rotate the crystal in the direction, which minimizes the total surface energy. Faceting along
the free surface during crystal growth or grooves with planar faces appear due to anisotropy in
surface energy. With these facets formations, overall area of the surface of the crystal increases
but there is reduction in the surface energy contribution by splitting high orientation surface into
low orientation surfaces. Formation of these low energy facets can be explained using ξ vector
plot.
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Figure (5.4) shows γ and ξ plots of the single crystal in three dimensions. These two γ-plots
are plotted using two different energy functions. In figures (5.4b) and (5.4d), ξ plots show
formations of ears like protrusions along the edges. If a crystal surface orientation lies in these
ranges, probabilities of facets formations along the grooves and free surfaces are relatively
high. Formation of small facets along the free surface is explained graphically in Fig. (5.5).
For the range of vectors, m1 to mn, we have a limiting range of orientation due to intersecting
boundaries. All ξ in these ranges have minimum value of surface energy, given as

ξ(0) = ξ(1) = ξ(2) · · · = ξ(n) (5.7)

This equilibrium condition restrict surface normal vectors of different orientations to ξ(0) en-
ergy. Thus, high γ orientation will break up into a set of facets of lower γ orientation. Range of
these orientations are categorized under unstable, missing or forbidden orientations (Einstein,
2015; Sekerka, 2015).

(a) (b)

Figure 5.5.: An illustrative explanation of planar facets formations at surface. The surfaces
with different orientations ni have constant minimum value of ξ. (a) explains that
for the orientations over the range of self intersecting region, there are existence
of surfaces with different orientations having minimum energy in accordance with
equation (5.7). (b) shows the formation of planar facets for the orientations lies in
the self intersecting region. Each surface with different orientation has minimum
energy ξ0

It was observed that in some cases we do not have formations of flat or singular faces in the
limiting case of these orientations. It is complex to precisely pinpoint the orientation for the
appearance of singular faces along the surface. Sekerka modeled a condition for the formation
of planar facets as a function of Gaussian curvature. In two dimensions, if we plot a circle of
diameter ξ over the γ-plot, with one end of diameter at origin, and rotate it over the range of
orientations. The inclination angles for which the circle is not tangent to the γ-plot and intersect
it, lies over the range of missing orientation. Elegantly, in 1/γ-plot, the tangent circle becomes a
tangent line at the outer side of it. In a similar way in three dimensions, the intersecting spheres
become the intersecting planes over 1/γ plot.

Figure (5.6a) shows γ-plot with an intersecting Herring’s circle at point P . If the orientation
RP is a point of tangency, it will appear at orientation RQ in ξ plot, and if it is intersecting than
this orientation will be missing on the equilibrium shape. Figure (5.6b) shows 1/γ plot. The
tangent line at point P lies outside the plot boundaries. In the range of missing orientations, this
tangent line lies inside the region. The range of orientation angles between A and B shown by
dotted, express the range for intersecting circle. We observe the formations of extended regions
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(a) (b)

Figure 5.6.: Polar plots of surface energy in two dimension. (a): γ plot for c = 0.5. A circle
of diameter ξ is tangent at point P . Hence, surface energy vector γ(n) at point P
appears at pointQ on ξ(n) plot. (b): 1/γ plot in two dimension for the same energy
function. For the corresponding point P , we have tangent line at the inner side of
the close region. The orientation lies in ξ plot and if this tangent line is outside of
the plot region, we have that orientation in the intersection region. With this, the
orientation range A to B shown by dotted line shows missing orientation in ξ plot
for the equivalent anisotropy. These missing orientations lies inside the intersecting
region formed at the edges of the ξ plot.

over these angles in ξ plot. It follows that if 1/γ-plot is convex, then all of these orientations
will be on the equilibrium crystal and if it is not convex, then the orientation will be categorize
as missing and will not appear on the equilibrium crystal shape. It concludes that when the
system is at verge of missing orientation, the curvature of 1/γ-plot changes from convex to
concave and in case of three dimensions, one of the principle curvatures or both change their
signs. This condition is calculated using a Gaussian curvature (G) of 1/γ-plot, which can be
calculated using the normal vector of the surface.

The normal vector of 1/γ-plot, in term of ξ vector is

N γ−1 =
ξ(n)

|ξ|
. (5.8)

We can calculate principle curvatures from the derivative of normal vector (Dietz and Iseri;
Weatherburn, 1927). Based on derivation in appendix (A.2), the Gaussian curvature of the
surface in term of ξ is calculated using equations (5.8) and (A.14).

G = K1K2 =
ξ · ξx × ξy

H |ξ|3
. (5.9)

With this, the limit of missing orientation is given by the condition ξ · ξx× ξy = 0. The portion
between these two tangent planes and the origin correspond to the restricted orientations in the
equilibrium crystal structure.
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5.3. Anisotropic surface energy function.

In most of the numerical simulations, we assume isotropic surface energies in the model, but
was reported in many experimental observations that surface energy of the crystal varies with
the orientations. There are many method to calculate the anisotropic distribution of the surface
energy in the single crystal. We can use the experimentally evaluated surface energy from zero-
creep technique, or from multiphase-equilibrium (MPE) technique. Saylor and Rohrer (2001)
reconstructed anisotropic surface energy distribution of the range of orientation from thermal
grooving data. For the numerical simulations, there are analytical anisotropic surface energy
models that are also symmetric. McFadden et al. (2000) modeled dendrite growth using ana-
lytical form of anisotropic surface energy. Zhang (2009b) used positive coefficient anisotropic
surface energy function for simulating the behavior of single crystal. Dantzig analytical model
is best suited for amorphous crystals shapes. For numerical simulations in this literature, we
will use anisotropic surface energy model with negative coefficient. The mathematical form of
this cubic symmetric energy model is

γ(n) = γ0

(
1− c(n4

1 + n4
2 + n4

3)
)
, (5.10)

with γ0 is constant isotropic surface energy and ni are surface normal vectors. The scalar
parameter, c has a value [0, 1]. For c = 0, the surface energy is isotopic. With an increasing
value of c, we have anisotropy in the surface energy. It has minimum value, γ0(1 − c) along
the principle axis, {1 0 0} directions in the crystal reference system as shown in figures (5.7a–
d). For c ≤ 2/9, we observed no formations of ear like edges along the diagonal of ξ-plot
(see Fig. (5.7e)). For 2/9 < c < 1/3, we have formation of ears along the diagonals, in {1 1 0}
directions in crystal reference system (see Fig. (5.7f)). For c < 1/3, these extended areas extend
in {1 1 1} directions (see figures (5.7g) and (5.7h)). Zhang (2006) used equation (5.10) in
single crystal growth simulations to study the effect of anisotropy. It was also revealed in these
simulations that formations of singular facets depend upon the grain orientations and anisotropy
factor. We use this energy function to study the effect of anisotropy on surface morphology and
growth kinetics in three grains periodic RVE (Fig. (5.8)).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5.7.: Polar plot for anisotropic surface energy function, γ(n) = 1− c(n4
1 + n4

2 + n4
3) for

different values of c. (a) c = 0.2, (b) c = 0.35, (c) c = 0.4, (d) c = 0.6. Figures (5.7e–h) are
ξ-plots. (e) for c = 0.2 shows smooth vector surface without any overlapping region. (f) for
c = 0.35 shows self intersection regions along the edges in {1 1 0} directions. (g) for c = 0.4
& (h) for c = 0.6 have overlapping extended regions in {1 1 1} direction. The surface energy
anisotropy is characterized as critical anisotropy for c > 0.6.
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5.4. Three grains periodic RVE.

5.4.1. Model geometry and kinetics parameters.

In this section, a model geometry and method to calculate the grain boundary energies will be
discussed. Although our variational model (Hackl et al., 2017) and software code implemented
in Java, are capable of handling the multi grains models with an equal ease, we decided to work
with three grains periodic structure. The prime concern of using this model is to develop a better
understanding for the effects of surface energy anisotropy on the growth kinetics and evolutions
of dihedral angles with the morphological changes.

(a) (b)

Figure 5.8.: Three grains periodic model with regular hexagons. The model has two types of
quadruple points, one with rotational symmetry about the meeting internal triple
line i.e. with all grain boundaries 120◦ far apart, and second with mirror sym-
metry of the lattice about the internal triple line i.e. two of the boundaries have
150◦ include angle. The model is discretized using both rectangular and triangular
elements.

Simulation model shown in Fig. (5.8) includes three regular hexagonal grains of unequal sides.
The central grain ω1 is surrounded by ω2 and ω3 alternatively. The length of this RVE is a and
height is b =

√
3/2a. This model has mirror symmetry about the minor diagonal. There are in

total six quadruple points (P1 to P6), at ω1 edges. We have two types of configurations at these
quadruple points. In the first configuration, all three grain boundaries are 120◦ far apart and in
the second configuration, two of the grain boundaries are separated with 150◦, hence making
an angle of 105◦ with the third grain boundary. There are total six grain boundaries, (η1 to η6)
formed at intersections between ω1 with ω2 and ω3 alternatively. Corresponding external triple
lines (Γ1 to Γ6) are assumed to lie in the planes of respective boundaries. Additionally, there
are three common grain boundaries between ω2 and ω3. These are labeled from η7 to η9 with
relevant triple lines (Γ7 to Γ9). Internal triple lines (Σ1 to Σ6) at six quadruple points are also
there.

Internal and external triple lines energies are assumed constant for these simulations. For each
triple line, the energy is γΓ = 16.8 × 10−9γ0 and for each quadruple point, internal triple line
energy is γΣ = 6.3 × 10−9γ0. These relative energy values are taken from Hackl et al. (2017),
which are based on experimental data from the literature. For specific grain boundary energies,
it is assumed that all grain boundaries are planar and their energies have no dependence on
boundary plane inclination. Under these assumptions, Herring’s (1951) relation at meeting
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grain boundaries reduces to the Young’s relation at each quadruple point. The balance equation
at each Pi reads

3∑
i

γηitΓi = 0, (5.11)

with tΓi is a vector tangent to grain boundary. The direction of tΓi is chosen such that the triple
line vector at each junction must satisfy the relation, tΣi = nΓj × tΓj and directed outward for
all three boundaries (as grain boundary and triple line are in common plane thus tηi = tΓi)
(Adams et al., 1999; Rohrer, 2011a).

With six quadruple points, we have twelve equations for nine unknown grain boundary energies.
This is an over determine system of equations. In order to calculate unknown grain boundary
energies with a constraint to satisfy the equation (5.11) at each Pi, we define an objective func-
tion that minimize the residualR (equation (5.12)). It is written as

min
R

1

2

P∑∣∣∣ 3∑
i

γηitΓi

∣∣∣2
2
. (5.12)

Wolfram Mathematica R©11is used to calculate these unknown energies with Minimization func-
tion. It converges to a global minimum for the linear system of equations. We get two different
types of grain boundary energies. The relative value of these energies are γη1 = 0.4376γ0

and γη2 = 0.2265γ0, with R = 4.76852 × 10−21. The other parameters, diffusion coefficient
along the surface and diffusion coefficient along the triple lines are taken isotropic in all these
simulations.

The surface energy of each grain is calculated using equation (5.10). Each grain is considered,
having fix orientation with respect to the flat surface. These orientations are given by the set
of Euler angles (φ1, Φ, φ2) for each grain. Set of normal vectors (m) in crystal reference
system are calculated using transformation matrix, equation (5.13). In each simulation, we
assign a fix value of c to each grain. The orientation angles are defined such that we have highly
textured grain structure. In these arrangements, all grains belong to a same family with different
orientations as shown in figures (5.9a) and (5.9b).

m1

m2

m3

 =

 cosφ2 sinφ2 0
− sinφ2 cosφ2 0

0 0 1

 cos Φ 0 sin Φ
0 1 0

− sin Φ 0 cos Φ

 cosφ1 sinφ1 0
− sinφ1 cosφ1 0

0 0 1

n1

n2

n3

 (5.13)

The model is discretized using combination of four node quad and three node triangular ele-
ments, see Fig. (5.8b). Division of nodes at the boundary edges are kept constant with reference
to the relevant grains boundaries on both sides. This discretization is helpful in implementing
the periodic grain boundary conditions for the state variables. Simulations were tested for mesh
independence. In the final version, we have 6566 quadrilateral and 62 triangular elements with
in total 6496 nodes. Linear shape functions are used in finite element calculations. In the next
sections, we will discuss the morphological evolutions for anisotropy surface energy in different
orientated textured model.
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(a) (b)

Figure 5.9.: The thin sheet of polycrystalline material with constituent grains. (a) is made up of
crystalline with no preferred orientation. Such random orientations are quite rare
in the solid materials. (b) represents a polycrystalline with oriented texture. These
structured are often observed in rolled sheets. The existence of anisotropy in metals
properties can be attributed to grains orientations.

5.4.2. Simulation results and discussion.

5.4.2.1. Three grains with {1 0 0} orientation.

In order to orientate the grains for {1 0 0} with the planar surface in these simulations, Euler
angles for three grains are tabulated in the surface energy function, table (5.1). For each grain,
we set different anisotropy in the surface energy function and this was achieved by setting
different value of c in equation (5.10) for each grain. In this set of simulations, central grain,
ω1 had cω1 = 0.8 and other two grains ω2 and ω3 had cω2 = 0.7 and cω3 = 0.75 respectively.
Reference to section (5.3), ω1 had minimum surface free energy in the principle direction, (1−
0.8)γ0 in comparison with the neighboring grains. Thus, most of the matter moved towards the
central grain based on the energetic arguments.

Table 5.1.: Three grains orientation
PPPPPPPPPGrain

Angle
φ1 Φ φ2

ω1 −45.0◦ 0.0◦ −10.0◦

ω2 45.0◦ 0.0◦ 30.0◦

ω3 45.0◦ 0.0◦ −30.0◦

We started with a flat surface. The chemical potential was maximum at P’s and along the grain
boundaries. Figure (5.10) shows u and Ji contours at different instant of time tn. Initially in a
settling phase, fluxes orientated them in the appropriate directions. Overall gradient of chemical
potential in the system was very high. It determined the directions of the fluxes in accordance
with equation (3.29) for diffusion along the surfaces, and equation (3.31) for diffusion along the
triple lines.

Onward after the settling of fluxes, the grooves started forming along the sites of intersecting
boundaries. It is evident in figures (5.10a–c), that the grooves emerged along the grain bound-
aries and at quadruple points. It was observed that the material removed from the surfaces at
these sites due to grooving, moved equally in both directions. As the system proceeded towards



64 5. Singular grooves and surface energy anisotropy

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5.10.: Contour plots of u and Ji fields for {1 0 0} oriented grains. In these results
cω1,2,3 = {0.8, 0.7, 0.75} respectively, and MΓ = 2.5× 105. Figures (5.10a–d) are
u contours at t20

, t
40
, t

50
, and at the equilibrium, (t

70
). We have groove of varying

growth rates and relatively deeper grooves at the quadruple points. Figures (5.10e–
h) show surface flux vectors, Ji at t20

, t
40
, t

50
, and near to an equilibrium at t65.

Initially these fluxes have higher magnitude along the grain boundaries and matter
flows are directed in both sides along the grooves (see (f)). We have vanishing
fluxes with subsiding thermodynamics forces in accordance with equation (3.29).
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(a) (b)

(c) (d)

Figure 5.11.: Evolution of surface along two different cross sections at proceeding tn. In this
simulation grains are oriented in {1 0 0} direction and MΓ = 2.5 × 10−5. With
these configurations (a), and (b) shows evolution along the lower horizontal pe-
riodic boundary. Whereas, (c) and (d) show evolution of surface along section
AA in the RVE. The dissipation starts with the formations of grooves along the
grain boundaries. We have groove profiles of constant mean curvatures with two
different dissipation phenomena.

the equilibrium condition, the diffusion humps increased in their volumes and traveled towards
the geometrical center of the grains. Overall directions of the fluxes along a surface were di-
rected toward a central grain. This was due to the lowest surface energy in it. Figure (5.10h)
shows a state of vanishing flux near to the equilibrium at t65. It is clear in this figure that we
observed vanishing differential in the chemical potential. Figure (5.10d) is a contour plot for
u at t70 with constant mean curvature. This shows the surface morphology due to the thermal
grooving with nonzero constant chemical potential over the entire domain.

In order to explain the evolution kinetics of the grooving process and motion of the fluxes,
Fig. (5.11) shows line views along two different cross sections. Initially, diffusional humps
formations were along the grain boundaries with the plateaus in the middle region of each
grain. As the process proceeds, these flat regions converged towards the surfaces of constant
mean curvatures. In both cross sections, we had surface morphology with the constant mean
curvature satisfying the relation µi = γiKi.

According to the analytical solution for growth of triple point Mullins (1956), and analytical
solution for the growth rate of quadruple points Génin et al. (1992), the growth rates of Pi’s must
be faster than Γi’s. These growth rates are expected to obey t̄

1
4 law together with anisotropic
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Figure 5.12.: Rate of the growth of Pi and points on the Γj for {1 0 0} oriented grains with
MΓ = 2.5 × 10−5. (a) shows growth rates of these points using log-log scale.
Although we have anisotropic surface energy, we have symmetric growth kinetics.
The depth is fitted for 1/4 power law. These curves have similar coefficients. (b)
shows growth rates of points showing the protrusion formation. These evolutions
are plotted on semi-log scale. The fluctuations are due to influx of the matter to
achieve the state of minimum energy.
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Figure 5.13.: Effect of MΓ on growth kinetics of Pi’s and points on Γ’s for {1 0 0} oriented RVE.
Figure (5.13a) shows growth of quadruple points and triple points with increas-
ing depths on log-log scale. Figure (5.13b) shows evolution of points depicting
backpedal behavior due to influx of matter. With an increasing value of MΓ, we
have relaxation in the motion of mater along the triple line due to relative increase
in MΓi, mobility along the triple line. The ultimate effects are fast growth kinetics
along the triple line and comparatively slow growth in groove depths due to the
surface diffusion.
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(a)

(b)

Figure 5.14.: Effect of MΓ on surface profiles and grooves growth rates at different time t. (a):
surface profiles along the major diagonal. (b): surface profiles along the minor
diagonal. For higher value of MΓ, the groove growth is determined by the dif-
fusion along the surface, and we have deeper grooves along the quadruple points
and increase of the equilibrium dihedral angles.
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(a)

(b)

Figure 5.15.: Evolution of surface with cω1 = 0.8 and varied cω2,3 in the peripheral grains at
different instants of tn. (a) shows evolution along the major diagonal and (b) gives
evolution along the minor diagonal. We observe thermodynamically consistent
behavior. Any increase in surface energies, due to decrease in the value of c in
equation (5.10), increase the volume of diffusional hump at a middle grain.
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Figure 5.16.: Evolution of Pi’s, with constant cω1 = 0.8, and varying set of
{
cω2,3

}
using

log-log scale. The figure shows evolution of quadruple points depth for decreas-
ing anisotropy in the peripheral grains. We observe a linear relation ship with
anisotropic factor c in equation (5.10). The plot also compare the effect of MΓ on
pit growth. We observe consistent behavior in reference with Fig. (5.13).

surface energy in the model.

In Fig. (5.12), depth evolution of quadruple and triple points (these points are taken at an inter-
section of Γ with RVE boundaries.) are plotted. The maximum growth rate of quadruple point
is 0.65458t

1
4 , which is almost double of the growth rate of the points on Γ’s. It is also evident

that there is not much difference between the growth rates of the quadruple points. We also
observe slight variations in the growth rate as the system reached towards an equilibrium. The
growth rate of quadruple points reduced down whereas triple lines demonstrated increase in the
growth rate kinetics in the later stage. It was also observed that one of the quadruple points
showed negative diffusion with progressivity. Initially, there was a removal of the material at
this junction but at later stage, some fluxes directed towards this node, and caused accumulation
of material at this junction. We found decrease in the depth of quadruple point. Figure (5.12b)
shows depth evolution of these points on semi-log scale. In the beginning, depth of the quadru-
ple point decreases up to −0.015. Later on, a plateau of an apex height 0.007, was formed.

Simulations with different values of MΓ, a ratio between MΓi/Mi explain the effects of diffusion
coefficients on the grooves growth kinetics and morphological characteristics. It was observed
that with the changes in this parameter, kinetics of the overall grooving process varies, but
finally these solutions attained the constant equilibrium state. The growth rates of quadruple
and triple points are compared for different values of MΓ in Fig. (5.13). These points followed
separate paths with different growth rate, but ultimately reached to constant depth.

In Fig. (5.14), evolution of surface along major and minor diagonals are plotted at t40
, t

50
, and

t
65. These results reveal the limiting ranges of MΓ. The values for this parameter range between

2.5× 10−3 to 2.5× 103. These approximations are helpful in determining the surface diffusion
coefficients for different materials at particular temperatures. For the small value of MΓ, the
surface diffusion dominates and growth rate was higher along the pit. This high rate was due



5.4. Three grains periodic RVE. 71

high diffusion coefficient along the triple line channel. From Fig. (5.14a), kinetics of chosen
triple points show that initial dominance of line diffusion caused slow growing surface profiles,
but at the later stage the surface diffusion dominated and growth kinetics accelerated with the
widening of dihedral angle.

We simulated our model for different set of anisotropies in {1 0 0} oriented model. Here, we
are reporting the results for the cases with constant value of cω1 = 0.8 om the central grain
and different anisotropies in the peripheral grains [cω2 , cω3 ]. Figure (5.15) shows the evolution
of surface along the diagonals of the RVE. Growth kinetics minimized the total energy of the
system by establishing the thermodynamic equilibrium. Overall growth behavior was function
of the difference in the surface energies. The grains with the higher energy potentials mini-
mized their energies at the expense of maximum dissipation through the motion of matter, and
ultimately producing deeper grooves. This behavior caused production of diffusion humps with
higher plateau in the grains of comparatively lower energies.

Figure (5.16) shows growth rates of Pi’s for different sets of [cω2 , cω3 ]. It was observed that
increase in cωi

of peripheral grains produced deeper grooves pits. Accumulated with the effect
of varying MΓ, process kinetics demonstrated analogous behavior as discussed in the previous
case shown in Fig. (5.13). Thus, the growth rate of each point varied with change in the diffusion
coefficients but it attained the constant depth of the equilibrium.
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5.4.2.2. Three grains with {1 1 0} orientation.

It has been shown in the Fig. (5.7) that with an increasing anisotropy in surface energy, we ob-
served formation of intersecting regions along the edges in ξ plots. These formations excluded
the range of orientations from a equilibrium crystal shape. Thus, if crystals/grains lie in the
vicinity of these orientations, we observe discontinuity in the gradient function of ξ and it is
expected that we have formations of lower energy planes along the grain boundary in thermal
grooving or serrated facets at the free surface. These low energy planes can appear in dif-
ferent configurations with rough grooves as explained by Ramasubramaniam and Shenoy (see
Fig. (5.17)). In section (5.4.2.1), we observed groove for {1 0 0} textured RVE with normal pro-
files for constant mean curvature along the surface of each grain, and even with critical values
of c in the surface energy function we had normal groove shapes facilitating the growth kinetics
along the quadruple points. A General representation of these profiles is shown in Fig. (5.17a).

(a) (b) (c)

Figure 5.17.: A schematic description of different grooves profiles observed in the annealing.
(a) shows a groove with continuous curvature on its both edges. (b) illustrates groove with
planar face on one of its forming edge. (c) illustrates the groove with planar faces on both of it
forming edges. The dihedral angle includes by these boundaries are function of boundary plane
inclination and grains misorientation.

Table 5.2.: Three grains orientation
PPPPPPPPPGrain

Angle
φ1 Φ φ2

ω1 −30.0◦ −45.0◦ 0.0◦

ω2 0.0◦ 45.0◦ 45.0◦

ω3 30.0◦ 45.0◦ 0.0◦

For the numerical simulations results that we will discuss in this section, we assumed that all
grains were oriented in such a way that they all belongs to {1 1 0}. Set of Euler angles used
for three grains are given in table (5.2) to fix the orientations with the normal. Although we
simulated our numerical experimentation over the complete range of an anisotropy factor c, but
we will discuss two cases in particular for the kinetics of grooving in the following sections.
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{1 1 0} oriented grains with low to moderate anisotropy.

In order to study the kinetics of thermal grooving under low to moderate anisotropy in the poly-
crystalline, the scaler factors in surface energy function equation (5.10) for three grains were
fixed to cω{1,2,3} = {0.3, 0.4, 0.6} respectively. In this configuration, the circumferential grains
had mild anisotropy, whereas the central grain, ω1 had no anisotropy. Conclusively, the central
grain energy vector plot did not have any intersecting volume. We started our simulations with
initially flat surfaces. At the beginning, all the fluxes orientated themselves in accordance with
the relations given by equations (3.29) and (3.31). We exclude some initial steps as settling
time from the plotting and afterwards the dissipation processes proceeded with pits and ther-
mal grooves formations due to mass transport along the surface geometry and the triple line
channels.

(a) (b)

Figure 5.18.: Distribution of process parameters along the grooves roots at the equilibrium state.
(a) shows u profiles along the grooves roots. We have groove profiles with varying
depths along the boundaries. Quadruple points have deeper depths. (b) shows
constant µ along the Γi at equilibrium, which is the conditions for vanishing fluxes
in the system in accordance with equations (3.29) and (3.31).

Figure (5.19) shows displacement, u and chemical potential, µ fields along the free surface with
progressing time. Figure (5.19e) exhibits µ at t20. It is evident that the chemical potential was
maximum values along the grain boundaries. Consequently, the material must removed form
these sites to minimize the total energy of the system. The process started with the formations
of grooves and pits along the triple lines and at quadruple points respectively. The rates of pits
formations were faster at the quadruple points in comparison with the grooves in the geom-
etry. The diffusional humps formations along the boundary grooves showed ordinary shapes
with constant mean curvatures. Figures (5.19a–d) show u field in quasi two dimensions. We
observed surfaces with varying groove profiles. Also, figures (5.19e–h) show µ field distribu-
tion along the free surface. As system progressed towards the equilibrium, we had the state of
constant chemical potential with the vanishing fluxes. For the sake of completeness, Fig. (5.18)
shows the overall groove profiles along the surface (Fig. (5.18a)) and constant chemical po-
tential along the triple lines (Fig. (5.18b)). With these plots, it is ensured that our simulation
model satisfied the condition of constant chemical potential over the complete domain as stated
in equation (3.32). With the increasing anisotropy, we expect the formation of singular faces
due to splitting of the high energy surfaces into low energy faces, but we did not observe such
profiles for these configurational settings. To elucidate this claim, figures (5.20–.22) show mor-
phological growths along the different cross sections in the RVE. Grooving along the surface
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5.19.: Thermal grooving with moderate anisotropic surface energies. In this configura-
tions cω1,2,3 = {0.3, 0.4, 0.6} and MΓ = 2.5 × 105. Figures (5.19a–d) show field
values of u and we have formation of groove profiles with continuous surface cur-
vatures. Figures (5.19e–h) show evolution of µ at t20

, t
35
, t

45 and t70. Initially
with high gradient, the diffusion proceeds to establish the constant distribution of
µ along the surface.
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(a) (b)

Figure 5.20.: Evolution of u along the major diagonal. (a) shows evolution of grooves with the
diffusional humps along the grain boundaries. We do’nt observe any secondary
diffusional hump with low to moderate anisotropy. (b) shows evolution of groove
with single diffusional hump. The humps formations are in accordance with the
surface energy model.

showed normal growth kinetics. Based on energetic arguments, there must be maximum flow
of flux towards ω3 due to its lowest energy, and maximum flow of matter must be from the
central grain ω1. In figures (5.20a) and (5.20b), evolution of surface along the major diagonal
consolidate this statement. We observed different groove profiles, e.g. surfaces with secondary
diffusional humps, flat region on the grain free surface. All these formations are due to differ-
ence in anisotropy of the surface energy function.

(a) (b)

Figure 5.21.: Evolution of u along the minor diagonal. The three grain have low to moderate
anisotropy with MΓ = 2.5× 10−3. In (a), a deeper pits are formed at P1. Also we
have formation of high curvature plane along the free surface of the central grain.
(b) shows the formation of raised plateau with comparatively lower height with
the other orientations of same anisotropy.

Figures (5.21a) and (5.21b) show evolution along the minor diagonal. The central diffusional
hump depicts the growth along the free surface of ω1, whereas lines on both sides depict the
growth along the triple line Γ8 in accordance with Fig. (5.8a). The quadruple points at triple
line junctions show different behavior. Initially we observed development of pit at left quadruple
point. At the stage near to equilibrium, we observed positive motion at this region. A hump with
increase in the dihedral angle was formed and consequently width of the groove also increased.
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Asymmetric shapes of ω1 surface during the evolution corresponded to difference in the surface
energies of neighboring grains.

(a) (b)

Figure 5.22.: Evolution of grooves along the horizontal boundary between ω2 and ω3. Evolution
along this section simulate the grooving in two dimensions. We have formation
of asymmetric grooves with flat surface. (b) shows grooves with continuous mean
curvature and vanishing flat plateau along the free surface.

Figure (5.22) shows morphology along the horizontal edge of the RVE. This boundary is shared
by ω2 and ω3. As ω3 had the lowest energy, there must be maximum flow of flux to this grain.
This cross section demonstrate two dimensions thermal grooving with anisotropic surface en-
ergy. We had formation of asymmetric groove profiles with different inclination with the hori-
zontal.

Overall growth rates in different parts of the RVE were constant. Figure (5.23) shows the
growth rates of pit depths at quadruple points and groove depths along the triple lines. Up to
moderate range of anisotropy in the surface energy, we had approximately similar growth rates
for symmetric elements. We also observed slight variations in the groove depth as shown in
Fig. (5.23a) for the triple lines. These fluctuations were also observed in some experiments in
the literature. Figure (5.23b) plots a comparison for varying relative diffusion coefficients MΓ.
The system reached to constant equilibrium depths with different kinetics at different values of
MΓ.
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Figure 5.23.: Growth rate of quadruple points and triple points. (a) shows growth rate for MΓ =
2.5×10−3 on log-log scale. The fitted curves shows that grooving took place with
t
0.25 growth law. (b) shows growth kinetics of Pi and points on Γi for different

values of MΓ. The overall steady state have constant grooves and pit depths with
varying growth rates.
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{1 1 0} oriented grains with moderate to critical anisotropy.

In section (5.4.2.2), we observed grooves without any singularity for low to moderate surface
energy anisotropy in {1 1 0} textured RVE. It is evident from the results that groove profiles
showed continuous curvature along the surfaces of the grains. With increase in the anisotropy
factor c of the surface energy, we observed formation of intersecting regions in the polar plots
as shown in Fig. (5.7). These volumes restricted the surface to some particular lowest energy
faces over the range of orientations in the intersecting regions.

The increase of c in surface energy function cause increase in the volume of overlapping region,
thus adding wide range of orientation vectors in the set of missing range. In this section, we will
discuss the results for the moderate to the critical range of c in the surface energy function. In
these results, we fixed the anisotropies, cω{1,2,3} = {0.8, 0.75, 0.82} for three grains respectively.
In reference with section (5.3), grains ω1 and ω3 lied in the critical range of anisotropy, while
ω2 had mild range of anisotropy in surface energy. With this energetic configuration, ω3 had
the lowest energy and ω2 had the highest energy. It was expected that ω3 and ω1 observed some
increase in reference with ω2 on the basis of energetic arguments. Other model parameters
grain boundary energies, external and internal triple lines had same values in accordance with
the previous simulations.

Figure (5.24) shows the grooves formations due to surface diffusion and flux vectors field at
different instants of tn. In initial settling steps, surface flux vectors orientated themselves in
accordance with the surface gradient of chemical potential, ∇sµ. The formations of grooves
began at the locations of relatively high chemical potential, ultimately they were showing the
highest value of flux vector at these sites. Figure (5.24a) shows initiation of grooves along the
boundaries and at quadruple points for t20. As the diffusion progressed, the depths at grooves
increased at different rates. At t30, planar faces appeared along Γ1 and Γ3, triple lines between
ω1 and ω3. The lengths and as well as heights of these singular planar faces increased with
proceeding time tn. Two more planar faces emerged along Γ4, and Γ7, are shown in Fig. (5.25),
from the different perspective. Γ4 is the triple line between ω1 and ω3 and Γ7 lies between ω2

and ω3. These faces have unequal depth along the grain boundaries with maximum height at
common quadruple point P6. The height of all other planar faces also varied longitudinally.
Planner faces along cross sections SS & V V in Fig. (5.24) showed maximum height in the mid
plane. It was observed experimentally that if crystalline orientations are in a window around
45◦ from the initial flat surface i.e. {1 1 0} with normal, we expect formations of planar facets
in some part of the thin film (Zhang et al., 2004).

Surface morphology with singular grooves renders different growth kinetics to the grooving
process. The quadruple points and triple lines attached to the region of singular grooves show
faster growth rates with deeper grooves. Figures (5.26a) and (5.26b) show growth kinetics at
section SS. This section starts from the free boundary in ω3 and ends in the middle of ω1.
Along this section, the planar face has maximum height. Planner facets formed in ω3, while
ω1 observed normal groove profiles. There was increase in length of the face with progressing
depth of the groove. It was also observed that there was no change in the dihedral angle formed
along this boundary. Figures (5.26c) and (5.26d) show groove growth kinetics along section
tt. This section existed over ω1 and ω2 as shown in Fig. (5.25b). Planner groove was formed
at the ω2 side, while face shared by ω1 evolved with normal continuous profile. Length of the
planar low energy face also increased with grooving. There was also no change in the dihedral
angle. After t65, it was observed that these groove profiles had more than one planar face.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5.24.: Evolution of u and Ji fields along the surface. In these results, cω1,2,3 =

{0.8, 0.75, 0.82} respectively and MΓ = 2.5 × 10−3. Figures (5.24a–d) show
the contour plots of u at t20

, t
40
, t

60 and at t75, the equilibrium state. We observed
formation of grooves with flat faces along the cross sections SS and V V . These
planar faces proceeds both in longitudinal and lateral directions with increasing
length and width. Figures (5.24e–h) show Ji vector field at t20

, t
40
, t

60 and t70,
near to the equilibrium state. Initially, the flux directions are along the both sides
of the grooves. The flux flow is higher in the region of planar grain boundaries,
thus ultimately causing accelerated growth kinetics in these parts of the geometry.
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(a) (b)

Figure 5.25.: Contour plots for u from another view to show the other two planar grooves along
Γ4 and Γ7. (a) is at t60. (b) is at t75. It is also clear in this perspective view that
two planar faces merge at Γi junction, and causes accelerated growth rate.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.26.: Evolution of grooves with planar faces along the different cross sections. (a),(b)
show evolution of grooves along ss. Similarly, (c),(d) show groove formation
along tt, and (e),(f) show groove shape along vv. The length of these planar
faces increases with progressing time. It is observed that these planar faces move
parallel, as the depth of the grooves increase.

This situation arose due to combine effect of the facets in the neighboring boundaries. These
two planar grooves met with each other and produced multi facet profile (see cross section uu
in Fig. (5.25a), which merged at the quadruple point P6). Figures (5.26e) and (5.26f) show
kinetics along cross section vv. This section is chosen along the Γ4, between ω1 and ω3. We
observed planar facet formation for the face shared by ω3 and normal groove profile along ω1.
We had maximum facet length along this cross section with u = 0.05. After establishing a
state of equilibrium between grain boundary energy and the surface with lowest energy in this
orientation, there was no change in the dihedral angle for proceeding grooving process.

It was also observed that overall growth kinetics slowed down in these simulations in compar-
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(a)

(b)

Figure 5.27.: Growth kinetics of Pi and points on Γi using log-log scale. (a): the depth evo-
lution for selected points at MΓ = 2.5 × 10−2 for {1 1 0} oriented grains. We
observed symmetric growth in correlation with the structure symmetry. The depth
evolutions are fitted for 1/4 power law. The growth of Pi are faster in comparison
with the rest of the geometry. (b): comparison of pits depths growth for different
set of cω2,3 in the peripheral grains. The central grain has constant c = 0.8. We
observe thermodynamically consistent behavior. The behavior is consistent for
any change in MΓ with different set of cω2,3 .
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ison with {1 0 0}. The depths of quadruple points were deeper than {1 0 0} oriented structure.
Figure (5.27) shows overall growth rates and depths of quadruple and triple points in this nu-
merical experiment. The depths of both triple and quadruple points were deeper than {1 0 0}
results, but the growth rates were 30∼50 percent slower. We also observed some oscillatory
behaviors in groove depths of some triple lines due to in flux of matter to attain the equilibrium
state. Figure (5.27a) shows that over all kinetics took place under 1/4 power law for diffusion
dominated processes.

As it was observed in the previous cases that overall effects of changing MΓ reflected by the
variations in growth rates, but ultimately the system reached to common equilibrium state.
Figure (5.27b) shows comparison for combine effects of change in MΓ and anisotropies in
the polycrystalline. The kinetics of quadruple points are compared for different sets of c in ω2

and ω3. With increasing anisotropies in the peripheral grains, pits depths also increased.

(a) (b)

(c)

Figure 5.28.: Evolution of surface along different cross sections for varying MΓ. (a) is evolution
along ss, (b) is evolution along tt, and (c) is evolution along uu. With varying
growth rate, we observe decrease in the length of planar face of decreasing value
of MΓ, due to MΓi dominated process.

To compare the morphological changes due to variations in MΓ, Fig. (5.28) makes comparisons
between groove profiles at different cross sections. Low value of MΓ corresponds to high sur-
face diffusion coefficient, and within this configuration, we observed faster grooves formations,
which caused smooth surface profiles. In case of planar facets, higher diffusion rate along the
surface, should increase the height of planar edges. Similar behaviors were observed in these
numerical experiments.
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Figures (5.28a–c) show grooves profiles along ss, tt and uu cross sections. The angular differ-
ences between surfaces of infinite curvatures to continuous curvatures profiles decreased with
increasing value of MΓ. These effects reflect the smooth transition and dominating surface dif-
fusion process in topographic growth. Evidently for low value of surface mobility Mi, planar
faces showed slow kinetics but the steady state shapes of these profiles remained unchanged.

(a) (b)

(c)

Figure 5.29.: Evolution of surface along different cross sections with varying cω{2,3} and con-
stant cω1 = 0.8. (a) Evolution along ss, section between ω1 & ω3, (b) evolution
along tt, between ω1 & ω2 and (c) evolution along uu, section between ω2 & ω3

Figure (5.29) reveals growth kinetics for varying anisotropy, c in the circumferential grains
(ω2 and ω3). In these simulations, the central grain ω1 had c = 0.8. With the increasing
anisotropies, not only the depth of grooves and quadruple points increased, but also the lon-
gitudinal lengths of the planar faces increased. It was also observed that with the increasing
anisotropies, there were small changes in the dihedral angles along the grain boundaries and in-
creased in the face length of the planar faces. These simulations with mild anisotropies showed
groove profiles without any planar facet formations.
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5.4.2.3. Three grains with {1 1 1} orientation.

ξ plot for anisotropic surface energy function, Fig. (5.7) showed that for the increasing value of c
beyond 2/9, ears like augmented regions extend in {1 1 1} directions. These regions encompass
the set of orientations termed under missing orientation for the particular value of anisotropy
in the surface energy function. The objective of these simulations is to study the morphologies
for grains orientated in this direction with the normal. Set of Euler angles to fix the grains in
{1 1 1}with the normal are tabulated in table (5.3). Other simulation parameters grain boundary
energies, internal and external triple line energies were kept consistent in accordance with the
previous simulations.

Table 5.3.: Three grains {111} orientation with the normal direction
PPPPPPPPPGrain

Angle
φ1 φ2 φ3

ω1 −45.0◦ 45.0◦ 45.0◦

ω2 −40.0◦ 40.0◦ 45.0◦

ω3 40.0◦ −40.0◦ −45.0◦

Surface free energy of each grain was calculated using equation (5.10). As stated earlier in
section (5.3) that for c > 1/3, areas of intersection ξ vectors, extend in {1 1 1}. We observed
formation of ear like regions at the corners. Thus grains with surface energy of c > 1/3 include
missing orientations. In congruence with the section (5.4.2.2), we will discuss two particular
case for {1 1 1} oriented RVE in the fore coming sections.

{1 1 1} oriented grains with low to moderate anisotropy.

The prime objective of this section is to discuss the morphology and growth kinetics for {1 1 1}
oriented grains with the normal. We will discuss the results for low to moderate values of
anisotropic surface energy of the grains in the RVE. The Euler angles of the grains with the
surfaces are given in table (5.3). These orientations engender {1 1 1} textured RVE. Grain
boundary energies, and both internal and external triple line energies were kept constant as
described in section (5.4). The scalar factors in the surface energy function had cω{1,2,3} =
{0.3, 0.4, 0.6} respectively. With this configuration for three grains periodic model shown in
Fig. (5.8), ω2 and ω3 had surface energy with the moderate anisotropy, whereas the central grain
lied with no anisotropy in the surface energy function.

The grooves evolutions and pits formations always initiate at the sites of relatively higher chem-
ical potentials in accordance with the under laying physics of the model. Different orientations
of the grains effect groove shapes and growth rates. Figure (5.30) shows u and Ji fields along
the free surface at different instants of tn. Figures (5.30e–g) focus the Ji vector fields with
progressing time. It is clear from these vector plots that initially with the deepening of grooves
along the grain boundaries, the matter started depositing on the both sides at the surfaces of the
grains along the grooves. The vector lines in figures (5.30e) and (5.30f) show aligned move-
ments of the fluxes. Consequently, we had formations of grooves along these grain boundaries
as shown in figures (5.30a) and (5.30b). Formation of diffusional humps and accelerated pits
formations at the quadruple points are also visible in these figures. With the progressing time,
system tried to establish a state of an equilibrium with maximum dissipation. Consequently, the
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5.30.: Contour plot for u and Ji fields. In these results cω1,2,3 = {0.3, 0.4, 0.6} re-
spectively with MΓ = 2.5 × 10−3. (a),(b),(c), and (d) show u plots, we observe
normal growth kinetics in this configurations. Formations of diffusional humps
are clearly visible in these evolution plots. (e),(f),(g), and (h) show vector plots,
Ji at t20

, t
40
, t

60, and t80 near to the equilibrium, respectively. In the beginning
of grooving process, the direction of flux vectors are normal to the grain bound-
ary plane, but with proceeding steps, all vectors orientated to establish a constant
value of µ over the complete domain.
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flux vectors orientated themselves in the appropriate directions to minimize the total energy of
the system. Figure (5.30g) shows that some of these vectors made themselves directed in the
directions parallel to Γ6 and Γ8 planes. So afterward we found the upward motion at P1 in the
RVE. Figure (5.30h) shows vanishing flux at t75, near to equilibrium state. Overall difference
in µ is of the order ×10−6.

(a)

(b)

Figure 5.31.: Evolution of grooves along the major diagonal with low to moderate anisotropy in
{1 1 1} oriented grains. (a) shows formation of observable secondary diffusional
humps. The grooves depth are deeper in comparison with the previous cases. (b)
shows the formation of grooves after the merging of the diffusional humps from
all sides of the grains. The height of humps show thermodynamically coherent
results as a function of surface energy.

The thermal grooves with {1 1 1} oriented grains were deeper than the {1 1 0} textured surface.
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The main reason of the higher depth values is the higher surface energies of the grains in {1 1 1}
directions. These grooves evolved with constant mean curvatures with different growth kinetics.
Figures (5.31–.33) show morphologies of surfaces at different cross sections. Figures (5.31a)
and (5.31b) show evolution along the major diagonal. We had asymmetric groove profiles with
comparatively deeper grooves. Due to these pronounced effects, we also observed variations in

(a)

(b)

Figure 5.32.: Figures show evolution along the minor diagonal with low to moderate anisotropy
in equation (5.10) for {1 1 1} oriented grains. MΓ is 2.5× 10−3. The pit growth at
P1, a dip on left in (a), is much slower due to higher rate of flux along the surface.
While on the other side of the grain, a deeper pit is formed. (b) shows evolution
of grooves with the formation of protrude region due to influx of the materials to
attain the equilibrium state.

the surface morphologies along this cross section. Diffusional humps were higher than {1 1 0}
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oriented model and the formations of secondary humps were also more evident in these orien-
tations. If we look in the plot, the difference between the maximum depth of the groove along
this sections is 0.01 with {1 1 0} results. The differences in the growth kinetics are much more
clearly observable along the triple lines /grain boundaries. Figure (5.32) shows the growth ki-
netics along the minor diagonal. In these orientations, it is clear that the formation of pit at
quadruple point P1 took place with relatively slower rate. This slow decrease in the depth of
grooves and pits along this sections displayed low value of chemical potential. There was high
influx of matters from rest parts of the geometry with groove formations. Figure (5.33) shows

(a)

(b)

Figure 5.33.: Evolution of horizontal periodic boundary shared by ω2 and ω3. This section illus-
trate grooving in two dimensions. (a) shows formation of secondary diffusional
humps with a symmetric groove profiles. (b) shows evolution of the grooves in
the equilibrium state.
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surface morphology along the horizontal boundaries encompassed by ω2 and ω3. The motion
growth kinetic was different from Fig. (5.22). It is evident from this figure, that groove depth
increased at faster rate along the triple line. The formation of secondary diffusional humps are
also clear along this cross section.

In these simulations, we observed fast growth rates at groove pits with different groove profiles.
Periodic surfaces far away from the grain boundaries showed stagnation growth kinetics in the
beginning of process. Different parts in the geometry observed variations in the growth kinetics.
Figure (5.34) shows evolution of quadruple points and triple points in the RVE. The increase
in the pit depth took place at faster rate in comparison with the {1 1 0} oriented grains. Also,
the grooves depth along the triple lines were similar with {1 1 0} oriented grains. The region
influenced by the influx of matter to attain the equilibrium state showed formation of the plateau
at the boundary junction, which expressed the state of grains merging at this point to form one
big grain and also categorized as stable junction.
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Figure 5.34.: Evolution of Pi and triple points for {1 1 1} oriented grains. In these results M̄Γ =
2.5 × 10−3. (a) shows negative depth on log-log scale. Overall growth along
these points are symmetric due to low anisotropy. (b) shows slower growth in the
initial diffusion process, but the influx of material is faster in comparison with the
previous simulations results.
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{1 1 1} oriented grains with moderate to critical anisotropy.

Section (5.4.2.3) discussed the results for cω{1,2,3} = {0.3, 0.4, 0.6 }. For these low to moderate
ranges of anisotropies in {1 1 1} textured polycrystalline model, we observed grooves profiles
without any formation of low energy planes at any location. In comparison, with {1 1 0} ori-
ented grains with analogous anisotropy, {1 1 1} oriented grains showed slower morphological
growth.

In this section, we will focus our discussion for moderate to critical range of anisotropy in
the surface energy function. We had c ≥ 0.75 and it was expected that we had formations of
planar grooves with low energy planes. Figure (5.35) shows u and −µ fields for cω{1,2,3} =
{0.8, 0.75, 0.82 } in equation (5.10). Under these settings, two grains ω1 and ω3 had anisotropy
coefficients above the critical range whereas ω2 had coefficient at critical value. Initially, the
surface morphological evolution followed similar trends as had been observed in the previous
numerical experiments with different orientations. The diffusion started with the pits formations
at the quadruple points and grooves along the grain boundaries. Figures (5.35a) and (5.35b)
show u along the surface at t20 and t40 respectively. In figures (5.35e) and (5.35f), we observed
the distribution of µ at these instances of tn, and we found that maximum chemical potential
was along the triple lines Γ1 and Γ7. Initiation of thermal grooves at these positions is evident
in the corresponding u plots. In contrast with {1 1 0} oriented grains, in this configuration we
observed formations of grooves with planar low energy edges on both faces of the groove.

As we have already discussed in section (5.3), that these formations are due to the existence of
low energy vector, ξ0 in the range of orientations which are in the intersecting regions formed in
{1 1 0} and {1 1 1} directions. We must have continuous value of the chemical potential along
the surface as the basic requirement for continuity of the flux over the domain equation (3.29). In
accordance with the definition of chemical potential µi = Kiγi, we have high value of curvature
at these grooving sites. There is maximum flow of flux at the faster rate to establish the state
of the equilibrium. The matter should follow the direction in accordance with equation (3.29).
From the Fig. (5.35g), the distribution of −µ along the surface has maximum value near to
P1. We observed the surface fluxes directed them in this direction to establish the equilibrium
state. With this influx of matter, the quadruple point showed the positive motion along with the
fluctuation in the depth of the triple line grooves attached to this quadruple point. Also along
Γ7 between ω2 and ω3, there was formation of a planar groove of comparatively smaller size.
In rest of the geometry, we had evolution of grooves profiles with relatively slower kinetics.
Planner grooves grow with faster rates in compression with the rest parts of the geometry. The
quadruple points in near vicinity of these low energy planes, showed accelerated growth in their
depths.

A semi planar groove at Γ7 showed low energy face along ω2, whereas surface along ω3 grew
with constant mean curvature. Figure (5.36) shows a qualitative comparison between this
groove shape and AFM image of the groove profile from Derkach et al. (2014). At t56, groove
depth is 0.055, which is approximately equivalent to experimental observations.

Munoz et al. (2004) observed such sharp changing of angles during the diffusion process in
silver. They found that these grooves formations were due to low-surface energy faces profiles
which although increase the overall surface area but reduce the total energy contribution as
explained in section (5.2).

Figure (5.37) shows the morphological evolution of the surface along the major diagonal of the
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5.35.: Contour plots of u and −µ with cω1,2,3 = {0.8, 0.75, 0.82} in {1 1 1} oriented
grains. (a),(b),(c), and (d) are u field and (e),(f),(g), and (h) are −µ distributions
at t20

, t
40
, t

60, and t
80 respectively. Initially the flux is relatively higher along

the grain boundaries with the grooves start forming along these locations. With
the progressing time, we have formation of planar faces along one of the grain
boundaries. The corresponding site has discontinuity in the Gaussian curvature.
Secondly, the formation of low energy faces have high curvature in accordance
with relation (µ = Kγ) to maintain the constant value of µ along the surface.
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(a) (b)

Figure 5.36.: Qualitative comparison between numerical simulations and experimental results.
(a) is evolution of surface along horizontal free edge with planar face of two dif-
ferent angle. (b) is an AFM image of Cu thin film after second annealing (Derkach
et al., 2014). Both figures shows non-symmetric groove profile with the facet for-
mations along the grain boundary, while on the other side, we have normal groove
profiles. At t56, we have the depth of 0.055, which is in good approximation with
50nm experimental observations.

(a) (b)

Figure 5.37.: Evolution of planar grooves using cω1,2,3 = {0.8, 0.75, 0.82} for {1 1 1} oriented
grains. For these results MΓ = 2.5× 10−3. We observe these planar faces moves
parallel with the increasing depth. Additionally, the secondary diffusional humps
are prominent in the initial grooving process (t26

to t
38) and diminish with pro-

gressing time.

RVE. It is clear from these plots that these formations are not numerical artifacts due to dis-
cretization error, but exist over more than one element length. We observed the parallel motion
of singular faces with progressing time. It was due to fact, that once for the critical range of
anisotropy, we had formation of low energy singular faces along the groove, it retained the an-
gle without any change with the progressing grooving phenomena. Additionally, the grooving
process started with the formation of diffusional humps as in the previous cases. Angular dif-
ference between the planar face and diffusion hump curvature attached to it, reduced as system
proceeded towards the equilibrium groove profiles.

Figure (5.38) shows u along the minor diagonal. Along this cross section, initially depth rate
at P1 was slower in comparison with rest of the geometry. As shown in figures (5.35e–g),
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(a)

(b)

Figure 5.38.: Evolution of surface along the minor diagonal of RVE. We observe slower pit
formation along the quadruple point on the left. This stagnation behavior is due to
high in flux of matter from the groove with planar edge. The central part represents
the ω1 free surface, the oscillatory behavior is visible along the surface in the initial
groove formation phase. The ends along this sections are representing periodic
triple line.

this junction was comparatively at higher chemical potential so the rate of flow flux should be
slower in accordance with the equation (3.29). Secondly, all three grain boundaries are 120◦

far apart, so this quadruple point is in most stable condition with the lowest grain boundary
energies. Later on, influx of matter towards this junction incited upward motion at this part of
the geometry (see Fig. (5.35g)).

Figure (5.39) compares the groove growth kinetics at different points in the RVE. Overall
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Figure 5.39.: Evolution of pit and grooves depth for {1 1 1} oriented grain with critical
anisotropy. The depths at Pi are increasing much faster than the previous cases.
(a) shows depth evolution on log-log scale. We also observe some fluctuations
in the growth rate along the grooves. These behavior is dominant in the areas of
planar grooves. (b) shows evolution of points depicting turnabout behavior. The
protrusion height and growth rate is double than {1 1 0} textured model.

growth must follow the 1/4 power law with normal grooving behavior. As discussed earlier
that we observed influx of matter in some parts of the geometry to attain the equilibrium. Fig-
ure (5.39b) shows the depth of P1’s and point on Γ8 using semi log scale. It is evident that
there was no groove formation along the Γ8 also the upward motion of quadruple point revealed
merging of grains due to stable triple junction with minimum grain boundary energies of the
meeting boundaries. Figure (5.39a) shows the overall trends of growth kinetics at triple and
quadruple points in the RVE. In contrast with the previous sets of simulations, the quadruple
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(a)

(b)

Figure 5.40.: System behavior to establish the state of an equilibrium for different set of cω1,2,3

and MΓ. (a) shows the dissipation path and minimum energy of the system for
different set of cω2,3 with cω1 = 0.8. With an increasing c, the total energy of the
system also reduces and dissipation process slows down. (b) shows dissipation
and energy path for different values of MΓ. With an increasing value of MΓ, the
process is governed by diffusion along the surface, and we have slow dissipation
rate but ultimately system attain the constant value of minimum total energy.

points kinetics took place with different rates. Initially we had relatively slower trends in the
pits formations. At the later stage, a point in near vicinity of the planar groove showed approx-
imately double growth rate in comparison with the rest part of the geometry. The other pits
growths took place with normal comparable coefficients.

Génin et al. (1992) analytical model showed that quadruple points evolutions obey 1/4 power
law in the annealing time but with relatively larger coefficients. We have similar results for
our fitted curve to evolution kinetics. Munoz et al. (2004) observed experimentally that overall



5.4. Three grains periodic RVE. 97

△

△

△

△
△

△
△

△
△

△
△

△
△ △ △

△

△

△

△
△

△
△

△
△

△
△

△
△ △ △

△

△

△

△
△

△
△

△
△

△
△

△
△ △ △

△

△

△

△
△

△
△

△
△

△

△
△

△ △ △

△

△

△

△
△

△
△

△
△

△
△

△ △ △ △

△

△

△

△
△

△
△

△
△

△
△

△ △ △ △

□

□

□

□

□
□

□
□

□
□

□
□

□
□ □

□

□

□

□

□
□

□
□

□
□

□
□

□
□ □

□

□

□

□
□

□
□

□
□

□
□

□
□

□ □

□

□

□

□
□

□
□

□
□

□
□

□
□ □ □

□

□

□
□

□
□

□
□

□
□

□
□ □ □ □

□

□

□
□

□
□

□
□

□
□

□
□ □ □ □

□

□

□
□

□
□

□
□

□
□

□ □ □ □ □

□

□

□
□

□
□

□
□

□
□

□ □ □ □ □

□

□

□
□

□
□

□
□

□
□

□
□ □ □ □

□

□

□
□

□
□

□
□

□
□

□
□ □ □ □

□

□
□

□
□

□
□

□
□

□
□

□ □ □ □

□

□
□

□
□

□
□

□
□

□
□

□ □ □ □

□

□

□

□

□
□

□
□

□
□

□
□

□
□ □

□

□

□

□

□
□

□
□

□
□

□
□

□
□ □

□

□

□

□
□

□
□

□
□

□
□

□
□

□ □

□

□

□

□
□

□
□

□
□

□
□

□
□ □ □

□

□

□

□
□

□
□

□
□

□
□

□ □ □ □

□

□

□
□

□
□

□
□

□
□

□
□ □ □ □△

□

(a)

△ △ △ △ △
△

△
△ △ △ △

△

△

△

△

△ △ △ △ △
△

△
△ △ △ △

△

△

△

△

△ △ △ △ △ △ △ △ △ △ △

△

△

△
△

△ △ △ △ △ △ △ △ △ △
△

△

△

△
△

△ △ △ △ △ △ △ △ △ △

△

△

△
△ △

△ △ △ △ △ △ △ △ △ △

△

△

△
△ △

□ □ □ □
□

□
□

□

□

□

□

□

□

□

□

□ □ □ □
□

□
□

□

□

□

□

□

□

□

□

□ □ □
□

□
□

□
□

□

□
□

□

□

□

□

□ □ □
□

□
□

□
□

□
□

□

□

□

□
□

□ □ □ □ □ □ □ □ □ □

□

□

□
□ □

□ □ □ □ □ □ □ □ □ □

□

□

□
□ □

△

□

(b)

Figure 5.41.: Effect of different values of MΓ on the growth rate of Pi and points on Γi. Figure
shows two behavior in two different plots. The effect of decreasing value of MΓ

shows MΓi controlled evolution. The growth along the quadruple points slows
down, but ultimately achieve constant steady state position.

morphological growth slowed down at critical anisotropy which is also evident form the growth
kinetics of the triple points. The fitted curves for triple points are multiple of smaller coefficients
in {1 1 1} textured RVE. Zhang (2006) showed in simulation experiments that overall energy
minimization rate slows down with an increasing surface energy anisotropy. This behavior is
due to formation of low energy faces, which increase the overall area of the surface but total
energy of the system is lower than initial condition. Figure (5.40a) shows dissipation rates and
overall decrease in total energy of the system for different sets of anisotropies in the peripheral
grains. In these results, cω1 was constant. With the increase in anisotropy, overall surface free
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(a)

(b)

Figure 5.42.: Effect of increasing MΓ on the planar groove shapes and equilibrium dihedral
angles. (a) shows evolution of the planar grooves. For any increasing in the surface
diffusion coefficient, we have decreasing dihedral angle, and also length of planar
face decrease. The difference of angle between the planar and normal profile
decreases at the meeting edge. (b) shows evolution of normal groove. We observe
the congruent effects for any variation in the diffusion coefficient in the model.

energy of the system also decreases. With this, the total reduction in the system energy was
relatively lower, and overall dissipation rates slowed down. Dissipation rates and reductions in
total energy of system with varying MΓ are shown in Fig. (5.40b).

As already shown in earlier sections, that system always attained a constant steady state profile
for different MΓ. Consistent behaviours were also observed for the overall entropy production
flux and total energy reductions in the system. For surface diffusion dominated process, we
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observed faster dissipation rate in comparison with diffusion along triple line controlled pro-
cess. Entropy production flux was calculated in accordance with equivalence criterion between
dissipation and energy rate, i.e. Q + Ġ = 0.

It is necessary to compare the growth kinetics of quadruple points and points lies far away on
the triple lines for different MΓ in the numerical simulations. Figure (5.41) shows the quadruple
and triple points depths for different MΓ in the problem. We observed concurrence behaviors as
with the dissipation rates and overall reductions of total energy of the system.

We have already seen in previous sections that MΓ also influence the groove shapes at constant
instance of tn. Figure (5.42) shows comparative studies of small cross sections in the RVE. Fig-
ure (5.42a) compares a planar groove profiles at three different instances with varying MΓ. The
overall effect of decreasing value of this parameter is increase in the planar face length and the
dihedral angle. These effects are aftermath of the ease of material flow along the surface. Where
as at higher value of this parameters, the depth of the quadruple points increase with an equal
ease and groove shapes are dominated by diffusion along the triple lines channels. Analogous
behaviors were also observed in other grooves and quadruple points (see Fig. (5.42b)).
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6. Conclusion

Thermal grooving at the surface of solids is an important phenomenon, being studied since
decades. The morphology of the polycrystal surface varies with the grain misorientation and the
boundary plane inclination. There are much research works reporting the formations of grooves
with continuous curvature in general and planar low energy faces in particular orientations
at certain part of the geometry with progressing time. These morphologies are functions of
anisotropy in grain boundary and surface energies. The contribution of torque in boundary
plane due to the anisotropy in its energy causes formations of serrated grain boundary planes
to minimize the total energy potential. Whereas high anisotropy in the surface energy produces
the planar grooves with low energy faces along the thermal grooves or hillocks formations at
the free surface of the grain. In this report, I studied two different types of anisotropy separately,
ranging from the effects of grain boundary plane inclination to the effect of grain orientations
on the shapes of thermal grooves and their growth kinetics.

Thermodynamic extremal principles are excellent tools to model the irreversible process. These
principles are also useful in formulating the weak form for the finite element modeling of the
process kinetics. In this sharp interface model, the two conditions, the balance of thermo-
dynamic forces and fluxes established the equilibrium state. The balance of thermodynamic
forces determined the groove dihedral angle as a function of triple line energy and its curvature,
whereas the motion of flux determined the domain morphology. With curvature based formu-
lation, this model converged without any constraint for time step size, even with the domain
of discontinuous surface curvatures. The chemical potential was continuous and solution con-
verged without any regularization for the surfaces with singular grooves. Zhang and Gladwell
(2005) used the strong form of diffusion equation to study the kinetics of thermal grooving.
They solved their model using finite difference method but their numerical simulations did not
converge for the critical range of anisotropy and solution terminated due to high numerical error.
This curvature based finite element formulations produced converging solution for any number
of grains without any geometrical constraints.

In chapter (4), a method to calculate the grain boundary energies using the ansatz function was
purposed under the local equilibrium condition at each triple junction. For two different set
of scalar parameters, the relative values of the grain boundary energy were in good agreement
with [100] tilt boundaries for Cu and Al reported in Rohrer (2011a). Under the assumption of
isotropic surface energy, the groove formed with the low diffusional humps. The growth kinetics
varied linearly with increasing value of scalar coefficient A in the ansatz function. For the set of
grain boundaries with higher values, the depth of grooves and pits also increased linearly. This
study demonstrated the behavior of different materials under the geometrical constraints. We
are able to select the optimum manufacturing material for maximum stability and workability
of thin sheet objects and protective coatings.

In chapter (5), the thermal grooving phenomena was studied using an orientation dependent
surface energy. The growth kinetics and grooves shape varied as a function of anisotropy for
each fixed orientation. For the highly textured RVE, we observed the formation of surfaces
with constant mean curvature and singular grooves with low surface energy. Anisotropy in sur-
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face energy also influenced the pits shape and growth rate at the quadruple points. For low
oriented textured RVE, surfaces of constant mean curvature were formed. The kinetics of ther-
mal grooving for low oriented textured RVE showed faster rate in comparison with {1 1 0} and
{1 1 1} textured RVE. Formations of singular grooves were sensitive to the grain orientations
and anisotropy in the surface energy. In case of {1 1 0} and {1 1 1}, we observed different kinet-
ics. For low to moderate anisotropy (c ≤ 0.6) in the surface energy function, thermal grooves
formed with constant mean curvature profile. The growth rate of groove and pit formation de-
creased in these orientations in comparison with {1 0 0} textured RVE. For the critical range of
anisotropy (c > 0.6) in {1 1 0} and {1 1 1} textured RVE, we observed formation of low energy
faces with planer profiles in some part of the geometry. The kinetics of the process was dif-
ferent from the remaining part of the geometry. These grooves showed deeper profiles at faster
growth rate. The width of planer grooves increased at slower rates in comparison with the nor-
mal grooves in the remaining parts. Deeper pits were formed at the ends of the grain boundaries
with planer grooves. The growth rate of these pits showed tremendous increase. In addition to
these, groove with varying curvature formed along the grain boundary. The variation caused
formation of groove with varying dihedral angle to establish the state of equilibrium between
the thermodynamic forces at the boundary junction.

Some additional numerical simulations e.g. on the effect of relative diffusion coefficient MΓ

for groove shapes and process kinetics engender additional useful information. For the high
value of MΓ, the surface diffusion coefficients has a low value and kinetics was dominated by
the diffusion along the free surface. The groove formed with low height diffusional humps and
planer surfaces appeared along the free surface of the grain. The pits growth took place at slower
rate. It is important to mention that for the planer groove formations at higher value of MΓ, we
observed decrease in the angular difference at the junction between singular and continuous
surface curvature. For the low value of MΓ, opposite was true. Concluding, for different set
of relative diffusion coefficient, the system followed different growth kinetics but it ultimately
reached to the constant equilibrium state following different paths.

Our simulation model is stable over the complete range of anisotropy in the surface energy.
The curvature based formulation reproduce many of the experimentally observed morphologies
during the secondary annealing process reported in the literature. This model has the potential
for further exploration. Diffusion along the triple line is important aspect. The role of triple line
energy become significant in determining the equilibrium dihedral angle with increasing groove
curvature. A constant value of triple line energy was used in these simulations and preliminary
studies for the stability of the model were completed. The effects of relative values of triple
line energy are still to be investigated in detail. Both the role of positive and negative values of
triple line energy under the limiting case is of prime interest in the research community for the
morphological stability of the polycrystal.

Secondly in {1 1 1} orientation, the surface energy varies in both direction. The numerical
experimentations were performed with the assumption of isotropic grain boundary energies.
There is need to include the anisotropic grain boundary energies with moving triple junction
due to recrystallization. Hackl et al. (2019) model for interface kinetics explains the effect
moving triple lines along the free surface. A coupled model will enable us to study the complete
anisotropic system. We can study the kinetics of the polycrystalline structure with moving grain
boundaries to establish a state of equilibrium.

Our simulation experiments exhibit good agreement with the experimentally observed mor-
phologies, but the quantification of characteristic material parameters requires additional nu-
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merical simulations with bulk diffusion. By introducing the additional dissipation in the vari-
ational model and by identifying suitable numerical methods, we can use a thermodynamic
extremal principle for grain growth with coupled bulk and surface diffusion.
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A. Appendix.

A.1. ξ, surface energy vector.

In order to effectively describe the anisotropic surface energy γ(n), Hoffman and Cahn (1972;
1974) purposed a vector formulation for surface energy based on Gibbs vector fields approach
for the surfaces. Formulation in this section are derived, based on the explanations for anisotropic
surface energy in Sekerka (2015, chap 14 therein). The surface energy varies with orientations,
which are characterized by unit normal vector, n. Thus, we write γ (n), with n is surface nor-
mal vector directed outward. Since the vector components of unit vector, (n1,n2,n3) are not
independent, so we cannot take the partial derivatives with respect to one of them with other
two fixed.Therefore, the vector field ξ was introduced to evaluate the derivatives without any
coordinate dependency.

Let introduce a three dimensional vector field r = rn, with r is the magnitude of r. An
additional field, γ̄(r) = rγ(n) defines ξ vector. Here, γ̄(r) is a homogeneous function degree
1, and can also be express as

γ̄(r) = ri
∂γ̄(r)

∂ri
. (A.1)

We define ξ(n) = ∂γ̄(r)/∂ri, a vector function of surface normal vectors only. Equation (A.1)
gives γ̄(r) = r · ξ. Hence we have

ξn = γ(n) = n · ξ (A.2)

Additionally if we take a derivative of γ̄(r), we have

dγ̄ = d (r · ξ)

= ξ · dr + r · dξ. (A.3)

In general, if we take the derivative of a basic definition of γ̄, we have

dγ̄ =
∂γ̄(r)

∂ri
dri = ξ · dr (A.4)

Equations (A.3) and (A.4) give the definition for ξ vector in relation with surface normal vector
n as

n · dξ = 0, (A.5)
dγ(n) = ξ · dn (A.6)

Equation (A.2) defines the normal component ξn, and equation (A.6) defines the tangential
component of ξ. As dn is normal to n, it represents the rotation of a surface through an angle
dθ = |dn| (see Fig. (A.1)). The derivative, dn/dθ is also in the tangential direction, parallel to
dn, which is different from tangential component ξt direction.
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Figure A.1.: An illustrative description of surface normal vector n, tangent vector dn, and rota-
tion contribution dθ contributing to surface rotation for anisotropic surface energy.

The value of ξt is given by the maximum value of (∂γ/∂θ)max pointing in the direction of
maximum angular rate of increase of γ (Hoffman and Cahn, 1972; Sekerka, 2015). Therefore,
ξ in components form is given as

ξ = γn+

(
∂γ

∂θ

)
max

t0, (A.7)

with t0 is the component of dn in the direction of maximum increase in the surface energy with
orientation.

A.2. Gaussian Curvature of a surface.

This formulation is based on the derivation given in Struik (1961). It is assumed that we have a
small patch of parametric surface S(x, y,u(x, y)) in 2D, with u(x, y) is the position vector for
a point on it. T is a tangent space to the surface defined at each point p(x, y) with two linearly
independent orthogonal vectors, T x = ∂T /∂x, and T y = ∂T /∂y. The normal vector at each
point is given byN = T x × T y. With this, we can find the unit normal vector n(x, y) as

n =
T x × T y

|T x × T y|
(A.8)

Divergence of surface normal vector (∇ ·n) defined the total curvature of the surface within an
algebraic sign. So, If we define

E = T x · T x, F = T x · T y, G = T y · T y

and
L = −n · T xx, M = −n · T xy, N = −n · T yy (A.9)

than the derivatives nx = ∂n/∂x, and ny = ∂n/∂y are given as[
nx
ny

]
=

1

EG− F2

[
LG−MF MG− NF
ME− LF NE−MF

] [
T x

T y

]
(A.10)
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In equation (A.10), coefficient matrix is called Weingarten matrix. The mean curvature and
Gauss curvature are related to the trace and determinant of itStruik (1961). Thus mean curvature
K,

K =
1

2
(K1 + K2) =

LG− 2MF + NE

2 (EG− F2)
(A.11)

and Gaussian curvature G is

G = K1K2 =
1

EG− F2

(
(LG−MF)(NE−MF)− (MG− NF)(ME− LF)

)
(A.12)

Alternative to equation (A.12), we can define it, using the derivative of normal vectors. From
equation (A.10), the cross product of two derivative reads

nx × ny = K1K2(T x × T y) = K1K2 Hn

(A.13)

taking dot product with n, we have

G = K1K2 =
1

H
(n · nx × ny) (A.14)
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