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Abstract

The facts that the subsurface condition is very uncertain and that tunneling with tunnel
boring machines is a ground-dependent complex controlled process make direct moni-
toring of the soil and structure responses induced by tunneling necessary. Model-based
inference and mapping of the ground conditions driven by monitored data add values to
the observed quantities and therefore can assist in choosing appropriate tunneling strate-
gies and applying preventive measures for safe and cost-effective tunneling especially in
urban areas. In this thesis, I proposed to use a set of efficient methods based on the
sequential Bayesian filtering to solving inverse problems in mechanized tunneling. In par-
ticular, the sequential Bayesian inference based on the Kalman filtering is utilized either
as a complete inversion algorithm or in combination with other numerical ingredients to
achieve fast and reliable inversion results. It is shown that the nonlinear Kalman filters are
suitable for estimating the mean values of the elastoplastic soil parameters from tunneling
induced settlements. As far as the probability distributions of the soil parameters are of
concern, data assimilation scheme based on the particle filter can be applied to quantify
uncertainties sequentially along the excavation steps. By utilizing its efficiency in local
navigation, coupling the Kalman filter with simulated annealing algorithm results in an
accelerated hybrid global optimization method, which is of benefit for solving highly non-
linear inversion of the tunnel seismic waves. Also for tunnel seismic prediction where the
geological disturbance is of arbitrary geometries, the level-set method is effectively used
in combination with the Kalman filter for identifying both geometric and material prop-
erties of the anomalies. The proposed methods are verified through solving back analysis
based on the synthetic measurements of the tunneling induced settlements and waveform
inversion based on model-generated recordings of the tunnel seismic waves. Concerning
the used data types, the results suggest that tunneling induced settlements are well suited
for the interpretation of the geomechanical properties in homogeneous subsurface while
the seismic waves based inversion is more suitable for identification of anomalies ahead
of the tunnel face in heterogeneous subsurface conditions. In addition to the inversion

studies, I set up a small-scale wave propagation laboratory experiment in the course of
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this work as a basis for validation of the forward modeling and inversion results against

imperfect experimental data.
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1 Introduction

1.1 Motivation

Tunneling began very early in human histories. Nowadays, tunneling is necessary for
transportation and utility supplies especially in highly populated areas. Modern tunneling
requires high standards for safety of the construction personnel and low degrees of surface
settlement. The later is necessary to protect the critical infrastructure existing on the
ground surface. However, due to the increased population in urban areas, tunnel diameters
are expected to be larger to accommodate the traffic demand. At the same time, advance
rates of the excavation are leveled up as much as possible to save costs. These expectations
are in contradiction to the safety requirements mentioned above. Tunneling can be fast
and safe in known ground conditions; however, the ground situation in the subsurface is

often very uncertain.

Despite much of technological enhancements in tunnel boring machines in recent years
to cope with difficult ground conditions, ground and face collapses and damages to sur-
rounding civil structures are not rarely seen. When anomalies ahead of the tunnel faces
are concerned, urban subsurface contains, besides natural formations, historic remnants
and dense networks of utilities supporting structures, water supply, and electricity for the
cities. Ground surface settlements and machine behavior in the case the TBM encounters
unknown geological/ artificial objects are much harder to predict than those in the case
of homogeneous ground because the incidents often happen without warnings. For exam-
ple, in 2013 a 30-centimeter diameter steel pipe had blocked a large-size TBM in Seattle
which resulted in extended downtime and massive cost overrun. Consequently, tunnel
builders are willing to invest in monitoring the tunneling-induced mechanical changes on
the surface and mapping ground conditions in the subsurface to assist them in choosing
appropriate tunneling strategies and applying preventive measures. Monitoring is becom-
ing easier with advanced sensing technologies and data management platforms. Although

monitoring is a topic of itself to study what quantities to measure, which instruments are
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needed, where and how frequent it is necessary to measure, etc., I assume in this work

that the settings for monitoring are good enough.

Interpretations of the monitored/ measured data remain a demanding task especially if
one wishes to look for unobserved quantities indirectly from the observables. For example,
we want to know the elastoplastic soil properties from the measured settlements induced
by tunnel excavation. Or we would like to reconstruct a map of the actual geological
situation just ahead of the tunnel face by measurements of reflections and transmissions
of the elastic waves. For computational models aided tunneling, well-determined soil
parameters and the geological situation in return increase reliability of the widely used
finite element and finite difference methods for further analyses and predictions of the

excavation process.

Although the literature contains rich bodies of theories and computational methods for
solving inverse problems, no particular method can beat the others for any applications.
While gradient-based optimization methods are fast, they can easily be trapped at a
local minimum if the starting point does not lie close to the global minimum. Statistical
global optimization methods promise to be able to find the global minimum, but their
computation burdens are often too much to be applicable because of an overly large

number of function evaluations.

Generic inverse problems are naturally interpreted in the form of Bayesian statistical
inference, i.e. the posterior probability density p(m|d°®) of the concerned uncertain
parameters m given the observation data d° is inferred from the prior probability density

pprior(m) and the likelihood function p(d°®®|m) according to Bayes’s theorem:

p(m]d™) oc p(d™*|m) pprior (). (1.1)

In Eq. 1.1, the likelihood function p(d°**|m) is a probability function weighting how likely
the model parameters set m is to explain the observation data d°®®. Given a numerical
model h(m), one aims to judge how well the model parameters m results in a set of model
outputs that match the corresponding on-site measurements. Assume that uncertainty in
observation data d°® and uncertainty in prior estimated parameters my are modeled as
Gaussian quantities with covariance matrices R and P, respectively, Eq. 1.1 is rewritten

as
0ODS 1 0DS
p(m|d°™) o exp [—5 (Hh(m) —d |5 + ||m — mol\%l)] ) (1.2)

One can employ a probabilistic model parameter updating technique such as the Markov-
chain Monte Carlo method to estimate the probability distribution of p(m|d°®). Note



1.1 Motivation 3

that p(m|d°®) is generally not Gaussian because the model h(m) that maps from the
model parameter space to the observation space is in most cases nonlinear. Alterna-
tively, one may follow the deterministic approach to seek for the parameters set m* that

minimizes the negative log-posterior in Eq. 1.2, i.e.

* . obs
m’ = argmin - (Ilh(m) = @ [3es + m = mol3,-+) (1.3)

The function to minimize in Eq. 1.3 is so called the data misfit functional regularized by
the prior. On the right hand side of Eq. 1.3, the first term is the data misfit and the
second term is the regularization. Both of them are weighted by the corresponding inverse

uncertainty covariances.

The Kalman filtering approach for off-line parameter estimation aims to estimate itera-
tively the posterior probability density function p(m|d°>) but restricts itself to estimating
only the first two statistical moments, i.e. the multivariate mean and covariance of the
hidden model parameter set. Because the nonlinear Kalman filters can provide an unbi-
ased posterior estimate (mean), its mean solution is equivalent to the solution of Eq. 1.3 or
the maximum a posteriori estimate of Eq. 1.2. In addition, the Kalman filters can approx-
imate the distribution of the posterior density function Eq. 1.2 in the form of Gaussian
distributions. The Gaussian approximation is key to achieving feasible Bayesian inference
for computationally demanding applications. As long as the full probability distributions

are concerned, the particle filter can be used to estimate the full posterior Eq. 1.2.

This dissertation describes how the sequential Bayesian filtering is suitable for solving
inverse problems with particular applications for subsurface characterization in mecha-
nized tunneling. In particular, it is shown how the Kalman filters and particle filter are
formulated and become effective in solving back analysis problem driven by tunneling-
induced settlements. For mapping the geological structure ahead of the tunnel face, a
derivative-free variant of the Kalman filtering is used in combination with other numeri-

cal ingredients to facilitate waveform inversion of the tunnel seismic waves.
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Figure 1.1: Surface settlement trough (Leca & New (2007))

1.2 Overview of inverse analyses for ground condition

characterization

1.2.1 Settlements based identification of soil parameters
1.2.1.1 Tunneling-induced settlements

Ground surface settlements induced by tunneling depend on a number of factors, in-
cluding (1) geological, hydro-geological and geotechnical conditions, (2) tunnel geometry
and depth, (3) excavation methods, and (4) the quality of workmanship and manage-
ment (Leca & New (2007)).

Tunnel excavations modify stress state of the ground, thus inducing surface settlements.
Besides the in-situ condition of the subsurface, the degree of settlements is influenced by
the tunneling process itself from parameters such as rate of advancement, face-support
pressure, grouting pressure, etc. Assuming that the tunneling process is very well con-
trolled with the best engineering practices, then surface settlements are due to geome-
chanical properties of the soil being excavated. Fig. 1.1 shows the typical settlement

trough resulting from tunnel excavation.

Taken into account certain geometrical and geomechanical simplifications, empirical and
analytical methods can be very useful for calculating deformations due to tunneling (Lo-
ganathan & Poulos (1998); Bobet (2001)). Numerical methods such as finite element and
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finite difference methods, however, can take into account complex geomechanical behav-
ior as well as interactions among soil, machine, and surrounding structures (Kasper &
Meschke (2004); Lambrughi et al. (2012); Zarev et al. (2011); Do et al. (2014)).

Together with advancement in modeling capability, more fully deployment of state-of-
the-art monitoring systems and the model-based inference methods for extracting added
information from the measurements have witnessed strong growths as well. An interaction
platform to manage and process raw monitoring data, then perform updating of the
ground conditions driven by data, and finally assist in the decision-making of tunnel

driving process will help make tunneling faster and safer.

1.2.1.2 Settlements based inversion

In numerical modeling of geotechnical problems, the modeling equation is of the form
d = h(x,m, f), where d stores modeling outputs obtained from the model function h(-)
(usually a finite element (FE) model), x is the current physical state of the model, m
contains the model parameters (for example material parameters), and f represents the
external loads and boundary conditions. In the numerical model, it is assumed that the
applied loads, the initial and boundary conditions are already well determined. It remains
the cumbersome task to find a set of actual model parameters m. Beside measuring the
model parameters with the help of sophisticated laboratory tests, model calibration by
inverse analysis is preferred in many cases to match the model outputs d to the in-situ
measurement data d°®. This inverse problem is mentioned under several technical terms
such as parameter identification, model calibration, inverse analysis (or back analysis in

geotechnical engineering).

Being viewed from the optimization perspective, inverse analysis can be considered as a
general optimization problem, i.e. to find a set of model parameters m that minimizes
a mathematical norm that represents the difference between the model outputs and the
measurement data h(m) — d°*. However, this optimization problem is very challenging
due to following reasons: (i) the fact that geomechanical models are highly nonlinear leads
to inverse problems that can have many local minima satisfying the minimization criterion,
(ii) model calculation of realistic large-scale elasto-plastic material laws is time-consuming
and may not be exact due to model simplification and errors coming from numerical
approximation, and (iii) in-situ measurement data may be incomplete and susceptible to
noise which exacerbates convergence of inverse analysis to a unique solution. The first

difficulty is intrinsic to the inverse analysis of geotechnical problems. Global optimization
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methods such as the Monte Carlo simulations and meta-heuristic algorithms can overcome
this challenge, but they result in extremely high computation cost. In spite of the advance
in mathematical modeling, numerical computation, and parallelization techniques, the
second disadvantage is still severe for solving inverse analysis due to the requirement of
a large number of forward model calculations. Therefore, it is crucial to employ inverse
analysis methods that require only a moderate number of forward model calculations.
The third challenge concerns measurement uncertainty which cannot be avoided either.
For that reason, an inverse method that is able to incorporate and quantify uncertainty to

obtain robust and reliable estimates of the model parameters offers an essential advantage.

In geomechanics, there exist a variety of methods which are suitable to solve inverse
problems. Categorization of the commonly employed methods was made early by the
work of Gioda & Sakurai (1987) in which inverse analysis methods are surveyed under
deterministic and probabilistic viewpoints. The fact that deterministic methods such as
conjugate gradient and quasi-Newton methods require very good initial model parame-
ters so as to avoid converging to local minima makes them unappealing to solving inverse
problems. Probabilistic approaches, on the contrary, allow for more freedom in the choice
of initial model parameters and are more consistent in attaining global minimum. Among
the prominent works that employed probabilistic inverse analysis methods, Ledesma et al.
(1996) introduced a solid and unified probabilistic framework that utilizes prior informa-

tion obtained from site investigation stage.

Inverse problems can be viewed as optimization problems whose objective functions are
highly nonlinear, non-smooth, and can have multiple local minima. Therefore, derivative-
free optimization algorithms based on deterministic and random generated candidate
models in the parameter have been used widely. Meier et al. (2008) and Knabe et al.
(2013) had performed extensive study of the particle swarm optimization method and
used it for calibrating constitutive models and identifying soil parameters for complex
geotechnical models. Levasseur et al. (2008) introduced the genetic algorithm for estimat-
ing constitutive parameters of the Mohr-Coulomb model from a sheet pile wall retaining
an excavation in-situ test. On application in the underground structure, Miranda et al.
(2011) and Moreira et al. (2013) have applied the evolutionary algorithm to identify pa-

rameters of rock mass surrounding underground space structures.

In general, when an optimization method is applied to minimize the discrepancy between
model generated outputs and corresponding in situ data, it is required that the measure-
ments reflect the true in situ changes of the observables and the numerical model used

is able to simulate the exact geomechanical phenomena. However, measuring campaigns
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in large geotechnical sites are prone to acquiring data with some degree of uncertain-
ties. Besides, it is a fact that constitutive models and numerical methods are limited by
theoretical assumptions and numerical approximation that make numerical results not
the exact reality. These uncertainties and inaccuracies exacerbate performance of the
optimization methods. For such reasons, Bayesian filtering approaches are preferred to
optimization methods because they can tolerate uncertainties and even can utilize prior
engineering knowledge which is often obtainable by initial site investigations. Early re-
ports on applying Bayesian methods to inverse problems in geomechanics include Cividini
et al. (1983) and Gioda & Sakurai (1987). Another Bayesian scheme which is based on
sequential filtering of Gaussian density, the Kalman filter, has also been applied success-
fully for identification of soil parameters. The early extensive works that introduced and
adapted the Kalman filter to solving inverse problems performed by Murakami (1991)
and Hoshiya & Sutoh (1993) have shown that the Kalman filter is very effective for this
kind of problem in geomechnics. Later, Kalman filter and its variants have been reported
to be applied in back analyses for Mohr-Coulomb’s geomaterial parameters and in-situ
stress state by Hommels et al. (2009) and Yang et al. (2011) respectively. A probabilistic
Bayesian filtering based on the particle filter has been introduced to identifying elasto-
plastic soil properties for soil-water coupled problem in geomechnics (Murakami et al.
(2013)).

1.2.2 Elastic waves based mapping ahead of the tunnel face
1.2.2.1 Elastic waves

The motion of wave propagation obeys Newton’s second law. The stress-strain relation
that describes the small-strain deformation of the continuous media follows Hooke’s law
of elasticity. Therefore, two elastic constants (e.g. P-wave speed and S-wave speed)
and density are required to define material properties of the elastic elements in the wave
propagation medium. In addition, internal material damping can be taken into account by
the dimensionless quality factor (). The quality factor is defined as inversely proportional
to the energy loss in each cycle caused by anelasticity (Aki & Richards (2002)). It is
noted that, compared to the elastic constants and density, anelastic attenuation factor
() is harder to determine and decreases very fast with increasing frequency (physical

dispersion).

Elastic waves propagate in the body of a medium in the form of longitudinal waves (P

waves) and transversal waves (S waves) with P waves faster than S waves. P waves and S
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5 waves: ground motion is perpendicular to wave direction

Direction of wave propagation l Onset of waves

e s ra e e e e J

P waves: ground motion is parallel to wave direction

Figure 1.2: Motions of P and S waves (Stein & Wysession (2009))

waves differ in the directions of particle displacement with respect to the direction of wave
propagation. As visually illustrated by Stein & Wysession (2009) in Fig. 1.2, in P-wave
propagation, material particles oscillate in the same direction as the direction of wave
propagation; while in S-wave propagation, material particles oscillate in the direction
perpendicular to the direction of wave propagation. S waves themselves are separated
into two modes depending on the polarization of the particle displacements in the plane
in which the S waves propagate. If the S-wave displacement is in the plane of wave
propagation, it is called the shear vertical (SV) waves; if the S-wave displacement is
perpendicular to the plane of wave propagation, it is called the shear horizontal (SH)
waves. When in interactions with heterogeneities, P and SV waves are coupled together

whereas SH waves are separate.

Waves propagating along the surface are Rayleigh waves which travel more slowly than
body waves. In addition to Rayleigh waves, Love waves can exist as a result of the
interactions of SH waves on the surface in case of a layered half-space. As Rayleigh waves
only travel along the surface at the depth no more than several wavelengths, they are
less attenuative than P waves and S waves. Concerning the geometrical damping alone,
Rayleigh wave magnitude traveled a distance r is decayed to only 1/4/r compared to 1/r
decay rule of body waves. The particle motion of Rayleigh waves is a combination of
the motions of P waves and SV waves resulting in the motion of a point on the surface
a retrograde ellipse. In a layered half-space, different wavelengths of the Rayleigh waves
penetrate at different depths and therefore travel with different velocities causing very

strong geometrical dispersion. Due to low attenuation and high dispersion characteristics,
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Rayleigh waves are useful for geotechnical site investigations (Xia et al. (1999); Park et al.
(1999); Socco et al. (2010)); however, for the same reasons, circulating and scattered
Rayleigh waves can obscure the low-amplitude reflected body waves and may need to
be suppressed artificially (Halliday et al. (2007)). One further advantage of using surface
waves is that most energy excited by an impact on the surface is transferred to the medium
in the form of surface waves. According to a calculation for soil having Poisson’s ratio of
0.25 (Miller & Pursey (1955)), the ratio of wave energy by a vertically osculating source
on a homogeneous, isotropic, elastic half-space is transferred to the subsurface with the
ratio nearly 67:26:7 with respect to the energy of Rayleigh waves, S waves, and P waves
respectively. Wave mode conversion from one wave type to another can happen when the
wavefront is incident on an interface at a boundary surface or a heterogeneity with an

angle other than normal to the direction of wave propagation.

Depending on scales, geometries, inner structures, and the excited frequencies, elastic
wave propagation can result in complex waveforms recorded at certain positions (often
on the surface). Interpretation of the information encrypted in the recorded waveforms
allows for characterization of the seismic source and the structure of the medium through
which the elastic waves traverse. In engineering applications such as in geotechnical site
investigation and non-destructive evaluation of civil materials based on seismic and ultra-
sonic waves, wave source is often induced artificially with a known dynamic function, the
task, therefore, pertains to characterizing the internal material structure or the subsur-
face. Depending on the characterization scales and purposes, various elastic waves based
techniques can be employed: multichannel analysis of surface waves (MASW) (Park et al.
(1999)) is very successful for vertical shear wave profile mapping based on dispersion
characteristics of the surface waves; coda wave analysis (Snieder (2006)) can be applied in
characterization of small perturbations in granular materials such as natural geomateri-
als (Dai et al. (2012)), road pavements (Papadopoulos et al. (2016)), and concrete (Stahler
et al. (2011)); acoustic emission (AE) (Grosse & Ohtsu (2008); Saenger et al. (2011)) is
used to quantify damage in a brittle structure being loaded quasi-nondestructively or
destructively; and for applications in damage detection in plate-like structures the use
of Lamb waves (Su & Ye (2009)) is very widespread. Most elastic waves based material
characterization methods are attractive in practice because their data acquisition pro-
cesses require either very minimal invasion into the internal structure of the investigated

medium or are completely nondestructive.

The so-called tunnel seismic waves are elastic waves propagating in the subsurface envi-

ronment influenced by the tunnel under excavation. Bohlen et al. (2007) detailed the
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behavior of tunnel seismic wave propagation especially the Rayleigh-to-shear wave mode
conversion at the tunnel face. An example of a seismogram resulting from a tunnel seismic

survey is seen in Fig. 1.3.

1.2.2.2 Ahead-of-tunnel prediction using tunnel seismic waves

Conventional site investigation by drilling boreholes helps to draw a general image of the
geological structures along the borehole axis, but that image is likely to misrepresent the
exact geological condition due to limited sampled positions. Due to high costs and re-
stricted boring space which deep tunneling and tunneling under urban areas encounter,
many industrial and academic research groups have had a great interest in developing
nondestructive ahead of the tunnel face prediction systems. Nondestructive investiga-
tion means only excitation sources and receiving sensors, which are usually placed on
the ground surface, on the side walls, or on the cutter head of the tunnel boring ma-
chine (TBM), are used for the acquisition of measurement data. The recorded signals in
the form of seismic or electromagnetic/ electrical waves, which travel through geological
structure or back reflected from it, holds the signature of the geological structures of
concern such as geological layer changes, fault zones, erratic rocks, boulders, construction
remnants, etc. Therefore, these seismic signals can be used to reconstruct the spatial and
material properties of those hidden geological structures. Most standard nondestructive
ahead-of-tunnel investigation systems to date are based on interpretation of reflected elas-
tic/ acoustic waves (seismic waves) and analysis of electromagnetic/ electrical resistivity
signals (Mooney et al. (2012)). However, due to insufficient signal penetration depth and
spread of radar and geoelectric sources, the use of seismic waves for ahead of tunnel face

prediction (tunnel reconnaissance) is more preferable (Kneib et al. (2000); Bohlen et al.

(2007)).

The principle of a generic tunnel seismic prediction system is depicted in Fig. 1.4. In
principle, the current tunnel seismic prediction systems require either active source(s)
(excited by a sledgehammer or explosive) or passive seismic source (induced by vibrations
of the TBM itself) or both kinds of excitation as in Ashida (2001) and an array of receiving
geophones placed in the tunnel wall and/ or on the cutter head of the tunnel boring
machine. Energy generated from a seismic source propagates the tunnel geomaterials
(soils and rocks) in the form of body waves which comprise pressure wave (P-wave) and
shear wave (S-wave). When these body waves encounter the geologic heterogeneities (fault
zones, erratic rocks, boulders, etc.), the partial energy of the incident waves is reflected/

refracted to the tunnel excavation area and is recorded by the geophones installed there.
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Figure 1.4: Principle of a generic tunnel seismic prediction system

The image of the geological features ahead of the tunnel face is then reconstructed by
well-established geophysical interpretation methods such as seismic migration or seismic
travel time tomography. An overview of the development of acoustic and seismic waves
based ahead of tunnel prediction systems is summarized below in light of the technological

development and the development of the imaging strategies.

Early application of seismic methods in tunnel advance exploration made use of the ver-
tical seismic profiling (VSP) technique (Sattel et al. (1992); Briickl et al. (2001)) and
adapted it to work in the horizontal direction along the tunnel axis. According to the
technical descriptions in the mentioned reports, direct and reflected waves are separated,
and the later are used to map hazardous zones ahead of the tunnel face by means of seis-
mic migration. This method was further used for TBM driving and renamed in-tunnel
horizontal seismic profiling (HSP) (Inazaki et al. (1999)). One of the most widely used
advance exploration systems to date for hard rock environments is the Tunnel Seismic
Prediction (TSP) system (Dickmann & Sander (1996)) in which measurement instru-
mentation and interpretation software are integrated into a compact commercial package
by Amberg Technologies. The sources and receivers of the TSP system are placed in
small boreholes along the tunnel wall as illustrated in Fig. 1.5. Also for application in
hard rock, GeoForschungsZentrum Potsdam cooperated with other research institutes and

Herrenknecht AG to further develop an optimized source and receiver system as well as



1.2 Overview of inverse analyses for ground condition characterization 13

the seismic interpretation software for the so-called Integrated Seismic Imaging System
(ISIS) (Borm et al. (2003)). Other available seismic tomography systems with a sim-
ilar working principle include the Tunnel Reflector Tracing (TRT) (Neil et al. (1999);
Yamamoto et al. (2011)), the True Reflection Tomography (TRT) (Otto et al. (2002)),
the True Reflection Underground Seismic Technique (TRUST) (Benecke et al. (2008)),
the Tunnel Seismic Tomography (TST) (Zhao et al. (2006)), and the Tunnel Geological
Prediction (TGP) (Jiao et al. (2015)).

Targeting at tunneling in soft soils by the earth pressure balance (EPB) boring machines,
the Sonic Softground Probing (SSP) was developed (Kneib et al. (2000); Gehrig et al.
(2010)). The main difference between the SSP and other tunnel seismic systems is that
the sources and the receivers are completely placed on the cutting wheel of the boring
machine (Fig. 1.5).

All of the seismic prediction systems mentioned above require the active seismic source(s)
to initiate acoustic/ seismic wave propagation. One particular family of the tunnel seismic
systems that does not need a separate source is the Tunnel Seismic While Drilling (TSWD)
system which uses the seismic waves generated by the TBM cutting wheel as the passive
seismic source (Petronio & Poletto (2002); Gehrig et al. (2010); Petronio et al. (2003,
2007); Briickl et al. (2008)).

Besides the conventional seismic migration adopted from geophysics, several other effec-
tive imaging strategies based on increasingly advanced computational power have been
proposed. With regard to the identification of small obstacles (such as boulders, founda-
tions, and artificial relics) in the vicinity ahead of the tunnel face, Swinnen et al. (2007)
applied the refined focusing operators to standard seismic migration used in hydrocarbon

exploration to improve the resolution of the imaged structure in front of the TBM.

By performing 3D finite-difference modeling, Bohlen et al. (2007) and Jetschny et al.
(2010) discovered that the tunnel surface waves (Rayleigh waves) arriving at the tunnel
face are converted to P-wave and S-wave. The converted body waves, of which S-wave
is dominant, continue to travel to geological structures ahead of the tunnel face and
are reflected/ refracted by the geological heterogeneities. The reflected body waves are
scattered back into surface waves at the tunnel face and are guided along the tunnel
sidewalls. They proposed to use Rayleigh waves instead of body waves for the imaging
purpose to have the advantage of placing explosive source and geophones well behind the
cutter head and shield of the TBM. Validation of the developed prediction sequence with

tunnel seismic data sets is reported in Jetschny et al. (2011) . Finite difference method



14 1 Introduction

had been used also by Kneib & Leykam (2004) and Essen et al. (2007) to model seismic

wave propagation in underground tunnel environment.

Tzavaras et al. (2012) implemented 3D versions of various advanced seismic imaging meth-
ods, namely the Kirchhoff Prestack Depth Migration (KPSDM), the Fresnel Volume Mi-
gration (FVM), and the Reflection-Image-Spectroscopy (RIS). The authors concluded
that the integration of the two approaches (FVM and RIS) exploits their advantages and
delivers more pronounced and clearer image of the tunnel environment. Bellino et al.
(2013) introduced a simple and fast technique for automatic projection of peaks of the
seismic events onto the tunnel space domain. The analysis procedure taking into account
multiple sources and sensors is able to detect locations at geological changes and the ve-
locity model is approximated by simple regression analysis of the travel times of direct
waves and refracted waves. Cheng et al. (2014) applied the 2D reverse time migration
(RTM) by numerically solving the decoupled elastic wave equation to image the primary

geological reflectors ahead of the tunnel face.

Lambrecht & Friederich (2013) implemented the discontinuous Galerkin method to model
the elastic wave propagation in tunnel environment. The advantage of the discontinuous
Galerkin method is that the model can be meshed by triangular (2D)/ tetrahedral (3D)
elements. This ability gives flexibility for meshing the highly inhomogeneous subsurface
with an embedded tunnel. However, due to long computation time, simulation of elastic
wave propagation using this method is preferably executed in parallel mode on a computer
cluster. With a similar aim, Musayev et al. (2014) implemented forward modeling and

inversion of acoustic waves in the frequency domain for 2D and 3D tunnel models.

Very recently, attempts to perform elastic full waveform tomography have been made
to take benefits of utilizing information from the whole seismogram which undoubtedly
promises to produce a more detailed image of the geologic heterogeneities. Recent reports
regarding applications of full waveform inversion of seismic data recorded in underground
galleries Bretaudeau et al. (2013); Liith et al. (2014) have shown positive results.

To characterize the geological anomalies ahead of the underground tunnel, the authors
are interested in inverting the full waveforms because of its potential to produce a high-
resolution image of the subsurface. The cost function to minimize in this study is targeted
to be the full waveform misfit, which measures differences between the recorded and the
modeled information encrypted in the respective waveforms, because of the two main
reasons. Firstly, the full waveforms (body waves and surface waves) contain the most
information about the hidden geological structure that can be obtained from the reflected

seismic waves. Therefore, inversion of the full waveforms promises high-resolution imag-
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Figure 1.5: Illustrations of the Tunnel Seismic Prediction (T'SP) system and the Sonic

Softground Probing (SSP) system developed by Amberg Technologies and Herrenknecht
AG, respectively

ing of the subsurface. In contrast, travel time tomography and seismic migration rely
only on arrival times and/or amplitudes of the reflected waves for imaging the geological
structure. The advantage of having rich information is beneficial to the underground
tunnel settings because the underground working space is strictly constrained for placing
the receivers, usually on the tunnel side wall or the tunnel face, which limits the amount
of valuable recorded data. Secondly, waveform inversion is not yet fully developed, for
example, not only one answer is accepted to the question what form of misfit functional
better represents the mismatch and also facilitates global convergence for the inversion or
the question what inversion method guarantees global convergence while keeps the compu-
tation time acceptable in engineering applications. Besides, several general questions are
yet to answer such as what method of model parameterization can help accelerate conver-
gence, how prior knowledge about the geologic model should be taken into account, and
what numerical inversion methods yield high accuracy while remaining computationally
feasible despite the fact that measurements are contaminated by noise and that the initial

model is far from the true model.

1.3 Contributions of this thesis

This thesis reports the findings achieved within this doctoral work. Large pieces of this

dissertation are reported in the below articles.
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e L. T. Nguyen, T. Nestorovi¢, K. Fujisawa, A. Murakami, Particle filter-based data
assimilation for identification of soil parameters with application in tunneling, Pro-
ceedings of the 14th International Conference of the International Association for

Computer Methods and Advances in Geomechanics, Kyoto, Japan, 2014

e L. T. Nguyen, T. Nestorovi¢, Nonlinear Kalman filters for model calibration of soil
parameters for geomechanical modeling in mechanized tunneling, ASCE Journal of

Computing in Civil Engineering, 2015

e L. T. Nguyen, T. Nestorovi¢, Unscented hybrid simulated annealing for fast inversion

of tunnel seismic waves, Computer Methods in Applied Mechanics and Engineering,
2016

This dissertation is organized as follows.

Chapter 1 has introduced the motivation for the inversion methods studied in this work in
which the Bayesian filtering concept is key to the inversion approaches used and developed
in the course of this work. Besides, the basis of the forward problems of excavation-
induced settlements and elastic wave propagation is summarized, and an overview of
inverse problems for solving back analysis of elastoplastic soil parameters and subsurface

imaging in the tunneling context has also been detailed.

Chapter 2 discusses the use of nonlinear Kalman filters for soil parameters identifica-
tion. It will be shown that the nonlinear Kalman filters can be applied very effectively to
calibration of the geomaterial parameters for geomechanical modeling in mechanized tun-
neling using tunneling-induced settlements and horizontal displacements. The data curves
measured along tunnel excavation steps which exhibit nonlinear relationships with respect
to soil parameters and are prone to measurement inaccuracies are utilized in combination
with finite element modeling to estimate the underlying soil parameters using sequential
inference framework: the nonlinear Kalman filtering. Comparative performance of the
two types of nonlinear Kalman filter shows that they are effective for soil parameters
identification in terms of convergence speed and accuracy: the extended Kalman filter
(EKF) and the sigma-point Kalman filter (SPKF). The effectiveness of the two Kalman
filters for inverse analysis is demonstrated through computer simulations for identifying a
number of important constitutive parameters of the Hardening Soil model in the context
of mechanized tunneling. In details, the state-space representation of the forward model is
presented as a basis for deployment of the Kalman filters. After that, sequential Bayesian
filtering that leads to algorithms of the two Kalman filters is introduced. Before going to

the main application in this work, the capability of the EKF and SPKF is demonstrated
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for identification of hidden parameters of a noisy time series and localization of the global
optimum of the multimodal Ackley’s function. In the application section that follows, a
short description of the finite element model for the tunnel excavation and generation of
noisy synthetic measurement data are given. Also, the authors discuss inverse analysis
outcomes that result from different computer-experiment settings. Finally, several final
remarks and suggestions for the optimal use of the two nonlinear Kalman filtering tech-
niques for model calibration of soil parameters in modeling of mechanized tunneling and

other geotechnical structures are given.

Chapter 3 presents a data assimilation (DA) method that employs the particle filter for
identifying the soil parameters in tunneling application. The idea of DA is to incorporate
observation data into numerical modeling to improve prediction capability of the numeri-
cal model which is prone to inexactness due to limitations of modeling procedure such as
lack of knowledge of physical phenomena and inaccuracy due to mathematical approxi-
mation. When applied for parameter identification, the uncertain model parameters are
described as stochastic variables whose distributions will come closer to the "true" prob-
ability densities through assimilation process as more observation data become available.
DA is not an iterative process but rather a sequential process. In other words, identi-
fication is done in parallel with acquiring data from fields during loading, construction,
or excavation steps. The major advantage of particle filter over the Gaussian Kalman
filters is that the resulted estimation quantities are represented in the form of probability
distributions rather than their centered means and variances only. In the demonstrative
application, data being used for assimilation are settlements and horizontal displacements
induced by tunnel excavations. As the tunnel boring machine advances, more information
is taken into the assimilation process to reduce estimation bias. By using noisy synthetic
data, it is observed that those mean model parameters identified in the end of excavation

steps are very close to the true parameter values.

Chapter 4 introduces a global optimization strategy for inversion of tunnel seismic waves.
A new hybridized global optimization method that combines simulated annealing global
search with unscented Kalman filter minimization is proposed to solve waveform inversion
for predicting ahead of the underground tunnel. The authors demonstrate in this work
fast and reliable convergence of this new algorithm through validation of an optimization
of multi-minima test function and an inversion of synthetic tunnel seismic waveforms to
predict geological structure ahead of a tunnel face. Concerning the engineering applica-
tion, the successful identification of the true model by minimizing a multimodal misfit

functional for wide feasible bounds of the model parameters confirms that waveform inver-



18 1 Introduction

sion by the improved global optimization method is promising for practical applications

with real measurement data.

Chapter 5 proposes a waveform inversion scheme supported by the level-set method
for locating and characterizing the disturbance zones ahead of the underground tunnel
face. The inversion process is completely free from gradient calculations as the unscented
Kalman filter is used for the efficient inversion. The conceptual methodology is validated
through successful reconstructions of single- and multiple-disturbance objects in a simple
2D frequency domain model. In the tunneling application, the special characteristics of the
tunnel seismic waves in the time domain are described and the results of SPECFEM2D
simulation and a qualitative evaluation of the simulated tunnel seismic waveforms are
shown. The computer model and its simulated tunnel seismic waves are eventually used
to reconstruct the geological scenarios in which disturbance of a single object and multiple
discontinuous objects in a parsimonious and flexible manner. Although further validations
with laboratory or in-situ measurements and the use of fully 3D model are needed to
prove the practicality of this approach, the current results are encouraging and promising
to apply FWI in tunneling practice as an advanced tool for looking ahead of the tunnel

face.

Chapter 6 concludes the thesis and points out the potentials of the inference schemes for
being integrated into a tunnel information system. Furthermore, a small-scale laboratory
experiment set-up is described for validation of the numerical methods against laboratory

measurements.



2 Nonlinear Kalman filters for model

calibration of soil parameters

2.1 Background

There is one special family of inverse methods that has been successfully adopted from
the field of state and parameter estimation of generic dynamic systems to solve param-
eter identification problem in geotechnical engineering and civil engineering in general —
the Kalman filter and its variants. From perspective of state and parameter estimation
of nonlinear dynamic and quasi-static models, the state variables and parameters of the
nonlinear model are recursively updated as new measurements become available. With
this principle, the Kalman filter estimates the Gaussian densities (means and covariances)
of the quantities being estimated by repeatedly performing time update and measurement
update to reduce the variance of the estimation error and therefore converges the esti-
mated quantities to unbiased true state and model parameters (Kalman (1960); Jazwinski
(1970); Gelb (1974)). Since the first closed form solution to the state estimation (filtering)
problem for linear models, the Kalman filter (Kalman (1960)), there have been extensive
further developments of this filtering scheme. Later, the effort to extend the Kalman filter
to be working with even nonlinear system models was successfully achieved by applying
Taylor series expansion of the models around the working point (Jazwinski (1970)). The
successful extended Kalman filter (EKF) has become until today the standard state/ pa-
rameter estimation method for slightly nonlinear dynamic systems and structures. More
recently, Julier & Uhlmann (1997) contributed to the development of the Kalman fil-
ter with the so-called unscented Kalman filter (UKF) based on the intuition that the
approximation of a Gaussian distribution is easier than the approximation of an arbi-
trary nonlinear function. Because of its deterministic samples (points), it is preferably
referred to as sigma-point Kalman filter (SPKF). The SPKF algorithm has been shown to
outperform the EKF in different state and parameter estimation problems ranging from
machine learning (Van Der Merwe (2004); Haykin et al. (2001); de Oliveira (2012)) to

19
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electric battery management system (Plett (2006)), and structural dynamics (Mariani &
Ghisi (2007); Chatzi & Smyth (2009)).

2.1.1 State-space representation of the forward model for parameter

identification

State-space representation of the forward model provides a convenient way to describe
mathematical models of systems and structures whose outputs depend on the progressive
change of the state variables, the model parameters, and external inputs/ loads. State-
space models are mostly used to describe dynamical system models for problems of state
estimation and control because they allow for intuitive, tractable, and on-line analysis of
the systems in the time domain. Examples of using state-space models for this area of
engineering can be seen in Nestorovié¢-Trajkov et al. (2005, 2006). This representation
leads to an intuition that state-space formulation can be very well used for representing
models that require updating of their parameters in a recursive manner. In practice
of recursive parameter identification that represents the forward model as state-space
model (Hoshiya & Sutoh (1993); Wan & Van Der Merwe (2000); Van Der Merwe & Wan
(2001)), state-space model is described by a stationary process transition Eq. 2.1a and

the modeling observation equation Eq. 2.1b

my, = my_| + Wg_q, (2.1a)

dk =h (Xk, mk) + Vi, (21b)

where vector my, contains the model parameters and x;, is the physical state of the model at
recursive step tx. Vector d extracts modeling outputs at predefined positions in the model
from the modeling observation Eq. 2.1b. In Eq. 2.1a, the stationary process transition
is added by a modest amount of pseudo-noise w;, to act like parameter updating from
one iterative step to the next. Inexactness of the modeling observation function h(-) in
Eq. 2.1b is characterized by an amount of uncertainty v,. Additive uncertainties wy
and vy are assumed to be uncorrelated and white Gaussian having zero-mean and time-

invariant covariance matrices Q and R™ respectively.

The modeling observation function h(-) for geomechanical models is a highly nonlin-
ear function relating the current physical state x and the parameters set m (Murakami
(1991); Hoshiya & Sutoh (1993)) to the modeling outputs d. By the state-space presenta-

tion described here, the forward model h(-) can be built separately from the identification
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implementation, and it can also be modeled by different numerical methods or program-
ming languages. In this work, forward modeling is done by FE software Plaxis 3D, and
model parameters for geomechanical tunnel excavation are those that constitute a complex
elastoplastic material model. Solving the modeling function h(-), which is also termed
forward problem, can be done rather fast and reliable nowadays thanks to the use of
advanced FE codes and computers. However, because solving the forward problem in a
recursive manner, as it is in the context of inverse analysis, needs quite a large number of
forward calculations, the decisive factor that makes one inverse analysis method prefer-
able to the others is that convergence can be achieved after an acceptably small number

of forward calculations.

2.1.2 Recursive Bayesian filtering and nonlinear Kalman filters for

parameter identification

In this section, the authors first introduce how inverse analysis can be solved by parameter
identification technique in sequential Bayesian filtering scheme. Later, the adaptation of

the EKF and the SPKF algorithms to solving inverse analysis problems will be given.

By in-situ measurement, a set of measurement data contaminated with measurement un-
certainty is recorded. The measurement uncertainty may probably be provided by the
instrument manufacturer. If not, one can assume measurement uncertainty to have devi-
ated from a recorded value a small percentage of the maximum measured amplitude. In

either case, it is reasonable to describe measurement uncertainty as Gaussian distribution

pp(d) ~ N (d?, R*). (2.2)

All prior knowledge about the model parameters is summoned to provide a good initial
model. Prior information is apparently not precise and can, therefore, be defined as

Gaussian distribution as well

pM(m) ~ j\[(Inprior7 Pprior). (23)

When the given state-space model Eq. 2.1, the measurement data Eq. 2.2, and the prior
knowledge about the model parameters Eq. 2.3 are in place, it is ready to perform param-
ete