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Abstract

The facts that the subsurface condition is very uncertain and that tunneling with tunnel

boring machines is a ground-dependent complex controlled process make direct moni-

toring of the soil and structure responses induced by tunneling necessary. Model-based

inference and mapping of the ground conditions driven by monitored data add values to

the observed quantities and therefore can assist in choosing appropriate tunneling strate-

gies and applying preventive measures for safe and cost-effective tunneling especially in

urban areas. In this thesis, I proposed to use a set of efficient methods based on the

sequential Bayesian filtering to solving inverse problems in mechanized tunneling. In par-

ticular, the sequential Bayesian inference based on the Kalman filtering is utilized either

as a complete inversion algorithm or in combination with other numerical ingredients to

achieve fast and reliable inversion results. It is shown that the nonlinear Kalman filters are

suitable for estimating the mean values of the elastoplastic soil parameters from tunneling

induced settlements. As far as the probability distributions of the soil parameters are of

concern, data assimilation scheme based on the particle filter can be applied to quantify

uncertainties sequentially along the excavation steps. By utilizing its efficiency in local

navigation, coupling the Kalman filter with simulated annealing algorithm results in an

accelerated hybrid global optimization method, which is of benefit for solving highly non-

linear inversion of the tunnel seismic waves. Also for tunnel seismic prediction where the

geological disturbance is of arbitrary geometries, the level-set method is effectively used

in combination with the Kalman filter for identifying both geometric and material prop-

erties of the anomalies. The proposed methods are verified through solving back analysis

based on the synthetic measurements of the tunneling induced settlements and waveform

inversion based on model-generated recordings of the tunnel seismic waves. Concerning

the used data types, the results suggest that tunneling induced settlements are well suited

for the interpretation of the geomechanical properties in homogeneous subsurface while

the seismic waves based inversion is more suitable for identification of anomalies ahead

of the tunnel face in heterogeneous subsurface conditions. In addition to the inversion

studies, I set up a small-scale wave propagation laboratory experiment in the course of
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ii Abstract

this work as a basis for validation of the forward modeling and inversion results against

imperfect experimental data.
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1 Introduction

1.1 Motivation

Tunneling began very early in human histories. Nowadays, tunneling is necessary for

transportation and utility supplies especially in highly populated areas. Modern tunneling

requires high standards for safety of the construction personnel and low degrees of surface

settlement. The later is necessary to protect the critical infrastructure existing on the

ground surface. However, due to the increased population in urban areas, tunnel diameters

are expected to be larger to accommodate the traffic demand. At the same time, advance

rates of the excavation are leveled up as much as possible to save costs. These expectations

are in contradiction to the safety requirements mentioned above. Tunneling can be fast

and safe in known ground conditions; however, the ground situation in the subsurface is

often very uncertain.

Despite much of technological enhancements in tunnel boring machines in recent years

to cope with difficult ground conditions, ground and face collapses and damages to sur-

rounding civil structures are not rarely seen. When anomalies ahead of the tunnel faces

are concerned, urban subsurface contains, besides natural formations, historic remnants

and dense networks of utilities supporting structures, water supply, and electricity for the

cities. Ground surface settlements and machine behavior in the case the TBM encounters

unknown geological/ artificial objects are much harder to predict than those in the case

of homogeneous ground because the incidents often happen without warnings. For exam-

ple, in 2013 a 30-centimeter diameter steel pipe had blocked a large-size TBM in Seattle

which resulted in extended downtime and massive cost overrun. Consequently, tunnel

builders are willing to invest in monitoring the tunneling-induced mechanical changes on

the surface and mapping ground conditions in the subsurface to assist them in choosing

appropriate tunneling strategies and applying preventive measures. Monitoring is becom-

ing easier with advanced sensing technologies and data management platforms. Although

monitoring is a topic of itself to study what quantities to measure, which instruments are

1



2 1 Introduction

needed, where and how frequent it is necessary to measure, etc., I assume in this work

that the settings for monitoring are good enough.

Interpretations of the monitored/ measured data remain a demanding task especially if

one wishes to look for unobserved quantities indirectly from the observables. For example,

we want to know the elastoplastic soil properties from the measured settlements induced

by tunnel excavation. Or we would like to reconstruct a map of the actual geological

situation just ahead of the tunnel face by measurements of reflections and transmissions

of the elastic waves. For computational models aided tunneling, well-determined soil

parameters and the geological situation in return increase reliability of the widely used

finite element and finite difference methods for further analyses and predictions of the

excavation process.

Although the literature contains rich bodies of theories and computational methods for

solving inverse problems, no particular method can beat the others for any applications.

While gradient-based optimization methods are fast, they can easily be trapped at a

local minimum if the starting point does not lie close to the global minimum. Statistical

global optimization methods promise to be able to find the global minimum, but their

computation burdens are often too much to be applicable because of an overly large

number of function evaluations.

Generic inverse problems are naturally interpreted in the form of Bayesian statistical

inference, i.e. the posterior probability density ρ(m|dobs) of the concerned uncertain

parametersm given the observation data dobs is inferred from the prior probability density

ρprior(m) and the likelihood function ρ(dobs|m) according to Bayes’s theorem:

ρ(m|dobs) ∝ ρ(dobs|m)ρprior(m). (1.1)

In Eq. 1.1, the likelihood function ρ(dobs|m) is a probability function weighting how likely

the model parameters set m is to explain the observation data dobs. Given a numerical

model h(m), one aims to judge how well the model parametersm results in a set of model

outputs that match the corresponding on-site measurements. Assume that uncertainty in

observation data dobs and uncertainty in prior estimated parameters m̂0 are modeled as

Gaussian quantities with covariance matrices R and P0 respectively, Eq. 1.1 is rewritten

as

ρ(m|dobs) ∝ exp

[
−1

2

(
‖h(m)− dobs‖2

R−1 + ‖m−m0‖2
P−1

0

)]
. (1.2)

One can employ a probabilistic model parameter updating technique such as the Markov-

chain Monte Carlo method to estimate the probability distribution of ρ(m|dobs). Note
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that ρ(m|dobs) is generally not Gaussian because the model h(m) that maps from the

model parameter space to the observation space is in most cases nonlinear. Alterna-

tively, one may follow the deterministic approach to seek for the parameters set m∗ that

minimizes the negative log-posterior in Eq. 1.2, i.e.

m∗ = arg min
m

1

2

(
‖h(m)− dobs‖2

R−1 + ‖m−m0‖2
P−1

0

)
(1.3)

The function to minimize in Eq. 1.3 is so called the data misfit functional regularized by

the prior. On the right hand side of Eq. 1.3, the first term is the data misfit and the

second term is the regularization. Both of them are weighted by the corresponding inverse

uncertainty covariances.

The Kalman filtering approach for off-line parameter estimation aims to estimate itera-

tively the posterior probability density function ρ(m|dobs) but restricts itself to estimating

only the first two statistical moments, i.e. the multivariate mean and covariance of the

hidden model parameter set. Because the nonlinear Kalman filters can provide an unbi-

ased posterior estimate (mean), its mean solution is equivalent to the solution of Eq. 1.3 or

the maximum a posteriori estimate of Eq. 1.2. In addition, the Kalman filters can approx-

imate the distribution of the posterior density function Eq. 1.2 in the form of Gaussian

distributions. The Gaussian approximation is key to achieving feasible Bayesian inference

for computationally demanding applications. As long as the full probability distributions

are concerned, the particle filter can be used to estimate the full posterior Eq. 1.2.

This dissertation describes how the sequential Bayesian filtering is suitable for solving

inverse problems with particular applications for subsurface characterization in mecha-

nized tunneling. In particular, it is shown how the Kalman filters and particle filter are

formulated and become effective in solving back analysis problem driven by tunneling-

induced settlements. For mapping the geological structure ahead of the tunnel face, a

derivative-free variant of the Kalman filtering is used in combination with other numeri-

cal ingredients to facilitate waveform inversion of the tunnel seismic waves.
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Figure 1.1: Surface settlement trough (Leca & New (2007))

1.2 Overview of inverse analyses for ground condition

characterization

1.2.1 Settlements based identification of soil parameters

1.2.1.1 Tunneling-induced settlements

Ground surface settlements induced by tunneling depend on a number of factors, in-

cluding (1) geological, hydro-geological and geotechnical conditions, (2) tunnel geometry

and depth, (3) excavation methods, and (4) the quality of workmanship and manage-

ment (Leca & New (2007)).

Tunnel excavations modify stress state of the ground, thus inducing surface settlements.

Besides the in-situ condition of the subsurface, the degree of settlements is influenced by

the tunneling process itself from parameters such as rate of advancement, face-support

pressure, grouting pressure, etc. Assuming that the tunneling process is very well con-

trolled with the best engineering practices, then surface settlements are due to geome-

chanical properties of the soil being excavated. Fig. 1.1 shows the typical settlement

trough resulting from tunnel excavation.

Taken into account certain geometrical and geomechanical simplifications, empirical and

analytical methods can be very useful for calculating deformations due to tunneling (Lo-

ganathan & Poulos (1998); Bobet (2001)). Numerical methods such as finite element and
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finite difference methods, however, can take into account complex geomechanical behav-

ior as well as interactions among soil, machine, and surrounding structures (Kasper &

Meschke (2004); Lambrughi et al. (2012); Zarev et al. (2011); Do et al. (2014)).

Together with advancement in modeling capability, more fully deployment of state-of-

the-art monitoring systems and the model-based inference methods for extracting added

information from the measurements have witnessed strong growths as well. An interaction

platform to manage and process raw monitoring data, then perform updating of the

ground conditions driven by data, and finally assist in the decision-making of tunnel

driving process will help make tunneling faster and safer.

1.2.1.2 Settlements based inversion

In numerical modeling of geotechnical problems, the modeling equation is of the form

d = h(x,m, f), where d stores modeling outputs obtained from the model function h(·)
(usually a finite element (FE) model), x is the current physical state of the model, m

contains the model parameters (for example material parameters), and f represents the

external loads and boundary conditions. In the numerical model, it is assumed that the

applied loads, the initial and boundary conditions are already well determined. It remains

the cumbersome task to find a set of actual model parameters m. Beside measuring the

model parameters with the help of sophisticated laboratory tests, model calibration by

inverse analysis is preferred in many cases to match the model outputs d to the in-situ

measurement data dobs. This inverse problem is mentioned under several technical terms

such as parameter identification, model calibration, inverse analysis (or back analysis in

geotechnical engineering).

Being viewed from the optimization perspective, inverse analysis can be considered as a

general optimization problem, i.e. to find a set of model parameters m that minimizes

a mathematical norm that represents the difference between the model outputs and the

measurement data h(m) − dobs. However, this optimization problem is very challenging

due to following reasons: (i) the fact that geomechanical models are highly nonlinear leads

to inverse problems that can have many local minima satisfying the minimization criterion,

(ii) model calculation of realistic large-scale elasto-plastic material laws is time-consuming

and may not be exact due to model simplification and errors coming from numerical

approximation, and (iii) in-situ measurement data may be incomplete and susceptible to

noise which exacerbates convergence of inverse analysis to a unique solution. The first

difficulty is intrinsic to the inverse analysis of geotechnical problems. Global optimization
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methods such as the Monte Carlo simulations and meta-heuristic algorithms can overcome

this challenge, but they result in extremely high computation cost. In spite of the advance

in mathematical modeling, numerical computation, and parallelization techniques, the

second disadvantage is still severe for solving inverse analysis due to the requirement of

a large number of forward model calculations. Therefore, it is crucial to employ inverse

analysis methods that require only a moderate number of forward model calculations.

The third challenge concerns measurement uncertainty which cannot be avoided either.

For that reason, an inverse method that is able to incorporate and quantify uncertainty to

obtain robust and reliable estimates of the model parameters offers an essential advantage.

In geomechanics, there exist a variety of methods which are suitable to solve inverse

problems. Categorization of the commonly employed methods was made early by the

work of Gioda & Sakurai (1987) in which inverse analysis methods are surveyed under

deterministic and probabilistic viewpoints. The fact that deterministic methods such as

conjugate gradient and quasi-Newton methods require very good initial model parame-

ters so as to avoid converging to local minima makes them unappealing to solving inverse

problems. Probabilistic approaches, on the contrary, allow for more freedom in the choice

of initial model parameters and are more consistent in attaining global minimum. Among

the prominent works that employed probabilistic inverse analysis methods, Ledesma et al.

(1996) introduced a solid and unified probabilistic framework that utilizes prior informa-

tion obtained from site investigation stage.

Inverse problems can be viewed as optimization problems whose objective functions are

highly nonlinear, non-smooth, and can have multiple local minima. Therefore, derivative-

free optimization algorithms based on deterministic and random generated candidate

models in the parameter have been used widely. Meier et al. (2008) and Knabe et al.

(2013) had performed extensive study of the particle swarm optimization method and

used it for calibrating constitutive models and identifying soil parameters for complex

geotechnical models. Levasseur et al. (2008) introduced the genetic algorithm for estimat-

ing constitutive parameters of the Mohr-Coulomb model from a sheet pile wall retaining

an excavation in-situ test. On application in the underground structure, Miranda et al.

(2011) and Moreira et al. (2013) have applied the evolutionary algorithm to identify pa-

rameters of rock mass surrounding underground space structures.

In general, when an optimization method is applied to minimize the discrepancy between

model generated outputs and corresponding in situ data, it is required that the measure-

ments reflect the true in situ changes of the observables and the numerical model used

is able to simulate the exact geomechanical phenomena. However, measuring campaigns
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in large geotechnical sites are prone to acquiring data with some degree of uncertain-

ties. Besides, it is a fact that constitutive models and numerical methods are limited by

theoretical assumptions and numerical approximation that make numerical results not

the exact reality. These uncertainties and inaccuracies exacerbate performance of the

optimization methods. For such reasons, Bayesian filtering approaches are preferred to

optimization methods because they can tolerate uncertainties and even can utilize prior

engineering knowledge which is often obtainable by initial site investigations. Early re-

ports on applying Bayesian methods to inverse problems in geomechanics include Cividini

et al. (1983) and Gioda & Sakurai (1987). Another Bayesian scheme which is based on

sequential filtering of Gaussian density, the Kalman filter, has also been applied success-

fully for identification of soil parameters. The early extensive works that introduced and

adapted the Kalman filter to solving inverse problems performed by Murakami (1991)

and Hoshiya & Sutoh (1993) have shown that the Kalman filter is very effective for this

kind of problem in geomechnics. Later, Kalman filter and its variants have been reported

to be applied in back analyses for Mohr-Coulomb’s geomaterial parameters and in-situ

stress state by Hommels et al. (2009) and Yang et al. (2011) respectively. A probabilistic

Bayesian filtering based on the particle filter has been introduced to identifying elasto-

plastic soil properties for soil-water coupled problem in geomechnics (Murakami et al.

(2013)).

1.2.2 Elastic waves based mapping ahead of the tunnel face

1.2.2.1 Elastic waves

The motion of wave propagation obeys Newton’s second law. The stress-strain relation

that describes the small-strain deformation of the continuous media follows Hooke’s law

of elasticity. Therefore, two elastic constants (e.g. P-wave speed and S-wave speed)

and density are required to define material properties of the elastic elements in the wave

propagation medium. In addition, internal material damping can be taken into account by

the dimensionless quality factor Q. The quality factor is defined as inversely proportional

to the energy loss in each cycle caused by anelasticity (Aki & Richards (2002)). It is

noted that, compared to the elastic constants and density, anelastic attenuation factor

Q is harder to determine and decreases very fast with increasing frequency (physical

dispersion).

Elastic waves propagate in the body of a medium in the form of longitudinal waves (P

waves) and transversal waves (S waves) with P waves faster than S waves. P waves and S
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Figure 1.2: Motions of P and S waves (Stein & Wysession (2009))

waves differ in the directions of particle displacement with respect to the direction of wave

propagation. As visually illustrated by Stein & Wysession (2009) in Fig. 1.2, in P-wave

propagation, material particles oscillate in the same direction as the direction of wave

propagation; while in S-wave propagation, material particles oscillate in the direction

perpendicular to the direction of wave propagation. S waves themselves are separated

into two modes depending on the polarization of the particle displacements in the plane

in which the S waves propagate. If the S-wave displacement is in the plane of wave

propagation, it is called the shear vertical (SV) waves; if the S-wave displacement is

perpendicular to the plane of wave propagation, it is called the shear horizontal (SH)

waves. When in interactions with heterogeneities, P and SV waves are coupled together

whereas SH waves are separate.

Waves propagating along the surface are Rayleigh waves which travel more slowly than

body waves. In addition to Rayleigh waves, Love waves can exist as a result of the

interactions of SH waves on the surface in case of a layered half-space. As Rayleigh waves

only travel along the surface at the depth no more than several wavelengths, they are

less attenuative than P waves and S waves. Concerning the geometrical damping alone,

Rayleigh wave magnitude traveled a distance r is decayed to only 1/
√
r compared to 1/r

decay rule of body waves. The particle motion of Rayleigh waves is a combination of

the motions of P waves and SV waves resulting in the motion of a point on the surface

a retrograde ellipse. In a layered half-space, different wavelengths of the Rayleigh waves

penetrate at different depths and therefore travel with different velocities causing very

strong geometrical dispersion. Due to low attenuation and high dispersion characteristics,
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Rayleigh waves are useful for geotechnical site investigations (Xia et al. (1999); Park et al.

(1999); Socco et al. (2010)); however, for the same reasons, circulating and scattered

Rayleigh waves can obscure the low-amplitude reflected body waves and may need to

be suppressed artificially (Halliday et al. (2007)). One further advantage of using surface

waves is that most energy excited by an impact on the surface is transferred to the medium

in the form of surface waves. According to a calculation for soil having Poisson’s ratio of

0.25 (Miller & Pursey (1955)), the ratio of wave energy by a vertically osculating source

on a homogeneous, isotropic, elastic half-space is transferred to the subsurface with the

ratio nearly 67:26:7 with respect to the energy of Rayleigh waves, S waves, and P waves

respectively. Wave mode conversion from one wave type to another can happen when the

wavefront is incident on an interface at a boundary surface or a heterogeneity with an

angle other than normal to the direction of wave propagation.

Depending on scales, geometries, inner structures, and the excited frequencies, elastic

wave propagation can result in complex waveforms recorded at certain positions (often

on the surface). Interpretation of the information encrypted in the recorded waveforms

allows for characterization of the seismic source and the structure of the medium through

which the elastic waves traverse. In engineering applications such as in geotechnical site

investigation and non-destructive evaluation of civil materials based on seismic and ultra-

sonic waves, wave source is often induced artificially with a known dynamic function, the

task, therefore, pertains to characterizing the internal material structure or the subsur-

face. Depending on the characterization scales and purposes, various elastic waves based

techniques can be employed: multichannel analysis of surface waves (MASW) (Park et al.

(1999)) is very successful for vertical shear wave profile mapping based on dispersion

characteristics of the surface waves; coda wave analysis (Snieder (2006)) can be applied in

characterization of small perturbations in granular materials such as natural geomateri-

als (Dai et al. (2012)), road pavements (Papadopoulos et al. (2016)), and concrete (Stähler

et al. (2011)); acoustic emission (AE) (Grosse & Ohtsu (2008); Saenger et al. (2011)) is

used to quantify damage in a brittle structure being loaded quasi-nondestructively or

destructively; and for applications in damage detection in plate-like structures the use

of Lamb waves (Su & Ye (2009)) is very widespread. Most elastic waves based material

characterization methods are attractive in practice because their data acquisition pro-

cesses require either very minimal invasion into the internal structure of the investigated

medium or are completely nondestructive.

The so-called tunnel seismic waves are elastic waves propagating in the subsurface envi-

ronment influenced by the tunnel under excavation. Bohlen et al. (2007) detailed the
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behavior of tunnel seismic wave propagation especially the Rayleigh-to-shear wave mode

conversion at the tunnel face. An example of a seismogram resulting from a tunnel seismic

survey is seen in Fig. 1.3.

1.2.2.2 Ahead-of-tunnel prediction using tunnel seismic waves

Conventional site investigation by drilling boreholes helps to draw a general image of the

geological structures along the borehole axis, but that image is likely to misrepresent the

exact geological condition due to limited sampled positions. Due to high costs and re-

stricted boring space which deep tunneling and tunneling under urban areas encounter,

many industrial and academic research groups have had a great interest in developing

nondestructive ahead of the tunnel face prediction systems. Nondestructive investiga-

tion means only excitation sources and receiving sensors, which are usually placed on

the ground surface, on the side walls, or on the cutter head of the tunnel boring ma-

chine (TBM), are used for the acquisition of measurement data. The recorded signals in

the form of seismic or electromagnetic/ electrical waves, which travel through geological

structure or back reflected from it, holds the signature of the geological structures of

concern such as geological layer changes, fault zones, erratic rocks, boulders, construction

remnants, etc. Therefore, these seismic signals can be used to reconstruct the spatial and

material properties of those hidden geological structures. Most standard nondestructive

ahead-of-tunnel investigation systems to date are based on interpretation of reflected elas-

tic/ acoustic waves (seismic waves) and analysis of electromagnetic/ electrical resistivity

signals (Mooney et al. (2012)). However, due to insufficient signal penetration depth and

spread of radar and geoelectric sources, the use of seismic waves for ahead of tunnel face

prediction (tunnel reconnaissance) is more preferable (Kneib et al. (2000); Bohlen et al.

(2007)).

The principle of a generic tunnel seismic prediction system is depicted in Fig. 1.4. In

principle, the current tunnel seismic prediction systems require either active source(s)

(excited by a sledgehammer or explosive) or passive seismic source (induced by vibrations

of the TBM itself) or both kinds of excitation as in Ashida (2001) and an array of receiving

geophones placed in the tunnel wall and/ or on the cutter head of the tunnel boring

machine. Energy generated from a seismic source propagates the tunnel geomaterials

(soils and rocks) in the form of body waves which comprise pressure wave (P-wave) and

shear wave (S-wave). When these body waves encounter the geologic heterogeneities (fault

zones, erratic rocks, boulders, etc.), the partial energy of the incident waves is reflected/

refracted to the tunnel excavation area and is recorded by the geophones installed there.
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Figure 1.3: Tunnel seismic survey at in the Piora adit of Gotthard Base Tunnel (More

details in Bohlen et al. (2007))
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Figure 1.4: Principle of a generic tunnel seismic prediction system

The image of the geological features ahead of the tunnel face is then reconstructed by

well-established geophysical interpretation methods such as seismic migration or seismic

travel time tomography. An overview of the development of acoustic and seismic waves

based ahead of tunnel prediction systems is summarized below in light of the technological

development and the development of the imaging strategies.

Early application of seismic methods in tunnel advance exploration made use of the ver-

tical seismic profiling (VSP) technique (Sattel et al. (1992); Brückl et al. (2001)) and

adapted it to work in the horizontal direction along the tunnel axis. According to the

technical descriptions in the mentioned reports, direct and reflected waves are separated,

and the later are used to map hazardous zones ahead of the tunnel face by means of seis-

mic migration. This method was further used for TBM driving and renamed in-tunnel

horizontal seismic profiling (HSP) (Inazaki et al. (1999)). One of the most widely used

advance exploration systems to date for hard rock environments is the Tunnel Seismic

Prediction (TSP) system (Dickmann & Sander (1996)) in which measurement instru-

mentation and interpretation software are integrated into a compact commercial package

by Amberg Technologies. The sources and receivers of the TSP system are placed in

small boreholes along the tunnel wall as illustrated in Fig. 1.5. Also for application in

hard rock, GeoForschungsZentrum Potsdam cooperated with other research institutes and

Herrenknecht AG to further develop an optimized source and receiver system as well as
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the seismic interpretation software for the so-called Integrated Seismic Imaging System

(ISIS) (Borm et al. (2003)). Other available seismic tomography systems with a sim-

ilar working principle include the Tunnel Reflector Tracing (TRT) (Neil et al. (1999);

Yamamoto et al. (2011)), the True Reflection Tomography (TRT) (Otto et al. (2002)),

the True Reflection Underground Seismic Technique (TRUST) (Benecke et al. (2008)),

the Tunnel Seismic Tomography (TST) (Zhao et al. (2006)), and the Tunnel Geological

Prediction (TGP) (Jiao et al. (2015)).

Targeting at tunneling in soft soils by the earth pressure balance (EPB) boring machines,

the Sonic Softground Probing (SSP) was developed (Kneib et al. (2000); Gehrig et al.

(2010)). The main difference between the SSP and other tunnel seismic systems is that

the sources and the receivers are completely placed on the cutting wheel of the boring

machine (Fig. 1.5).

All of the seismic prediction systems mentioned above require the active seismic source(s)

to initiate acoustic/ seismic wave propagation. One particular family of the tunnel seismic

systems that does not need a separate source is the Tunnel Seismic While Drilling (TSWD)

system which uses the seismic waves generated by the TBM cutting wheel as the passive

seismic source (Petronio & Poletto (2002); Gehrig et al. (2010); Petronio et al. (2003,

2007); Brückl et al. (2008)).

Besides the conventional seismic migration adopted from geophysics, several other effec-

tive imaging strategies based on increasingly advanced computational power have been

proposed. With regard to the identification of small obstacles (such as boulders, founda-

tions, and artificial relics) in the vicinity ahead of the tunnel face, Swinnen et al. (2007)

applied the refined focusing operators to standard seismic migration used in hydrocarbon

exploration to improve the resolution of the imaged structure in front of the TBM.

By performing 3D finite-difference modeling, Bohlen et al. (2007) and Jetschny et al.

(2010) discovered that the tunnel surface waves (Rayleigh waves) arriving at the tunnel

face are converted to P-wave and S-wave. The converted body waves, of which S-wave

is dominant, continue to travel to geological structures ahead of the tunnel face and

are reflected/ refracted by the geological heterogeneities. The reflected body waves are

scattered back into surface waves at the tunnel face and are guided along the tunnel

sidewalls. They proposed to use Rayleigh waves instead of body waves for the imaging

purpose to have the advantage of placing explosive source and geophones well behind the

cutter head and shield of the TBM. Validation of the developed prediction sequence with

tunnel seismic data sets is reported in Jetschny et al. (2011) . Finite difference method
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had been used also by Kneib & Leykam (2004) and Essen et al. (2007) to model seismic

wave propagation in underground tunnel environment.

Tzavaras et al. (2012) implemented 3D versions of various advanced seismic imaging meth-

ods, namely the Kirchhoff Prestack Depth Migration (KPSDM), the Fresnel Volume Mi-

gration (FVM), and the Reflection-Image-Spectroscopy (RIS). The authors concluded

that the integration of the two approaches (FVM and RIS) exploits their advantages and

delivers more pronounced and clearer image of the tunnel environment. Bellino et al.

(2013) introduced a simple and fast technique for automatic projection of peaks of the

seismic events onto the tunnel space domain. The analysis procedure taking into account

multiple sources and sensors is able to detect locations at geological changes and the ve-

locity model is approximated by simple regression analysis of the travel times of direct

waves and refracted waves. Cheng et al. (2014) applied the 2D reverse time migration

(RTM) by numerically solving the decoupled elastic wave equation to image the primary

geological reflectors ahead of the tunnel face.

Lambrecht & Friederich (2013) implemented the discontinuous Galerkin method to model

the elastic wave propagation in tunnel environment. The advantage of the discontinuous

Galerkin method is that the model can be meshed by triangular (2D)/ tetrahedral (3D)

elements. This ability gives flexibility for meshing the highly inhomogeneous subsurface

with an embedded tunnel. However, due to long computation time, simulation of elastic

wave propagation using this method is preferably executed in parallel mode on a computer

cluster. With a similar aim, Musayev et al. (2014) implemented forward modeling and

inversion of acoustic waves in the frequency domain for 2D and 3D tunnel models.

Very recently, attempts to perform elastic full waveform tomography have been made

to take benefits of utilizing information from the whole seismogram which undoubtedly

promises to produce a more detailed image of the geologic heterogeneities. Recent reports

regarding applications of full waveform inversion of seismic data recorded in underground

galleries Bretaudeau et al. (2013); Lüth et al. (2014) have shown positive results.

To characterize the geological anomalies ahead of the underground tunnel, the authors

are interested in inverting the full waveforms because of its potential to produce a high-

resolution image of the subsurface. The cost function to minimize in this study is targeted

to be the full waveform misfit, which measures differences between the recorded and the

modeled information encrypted in the respective waveforms, because of the two main

reasons. Firstly, the full waveforms (body waves and surface waves) contain the most

information about the hidden geological structure that can be obtained from the reflected

seismic waves. Therefore, inversion of the full waveforms promises high-resolution imag-
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Figure 1.5: Illustrations of the Tunnel Seismic Prediction (TSP) system and the Sonic

Softground Probing (SSP) system developed by Amberg Technologies and Herrenknecht

AG, respectively

ing of the subsurface. In contrast, travel time tomography and seismic migration rely

only on arrival times and/or amplitudes of the reflected waves for imaging the geological

structure. The advantage of having rich information is beneficial to the underground

tunnel settings because the underground working space is strictly constrained for placing

the receivers, usually on the tunnel side wall or the tunnel face, which limits the amount

of valuable recorded data. Secondly, waveform inversion is not yet fully developed, for

example, not only one answer is accepted to the question what form of misfit functional

better represents the mismatch and also facilitates global convergence for the inversion or

the question what inversion method guarantees global convergence while keeps the compu-

tation time acceptable in engineering applications. Besides, several general questions are

yet to answer such as what method of model parameterization can help accelerate conver-

gence, how prior knowledge about the geologic model should be taken into account, and

what numerical inversion methods yield high accuracy while remaining computationally

feasible despite the fact that measurements are contaminated by noise and that the initial

model is far from the true model.

1.3 Contributions of this thesis

This thesis reports the findings achieved within this doctoral work. Large pieces of this

dissertation are reported in the below articles.
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• L. T. Nguyen, T. Nestorović, K. Fujisawa, A. Murakami, Particle filter-based data

assimilation for identification of soil parameters with application in tunneling, Pro-

ceedings of the 14th International Conference of the International Association for

Computer Methods and Advances in Geomechanics, Kyoto, Japan, 2014

• L. T. Nguyen, T. Nestorović, Nonlinear Kalman filters for model calibration of soil

parameters for geomechanical modeling in mechanized tunneling, ASCE Journal of

Computing in Civil Engineering, 2015

• L. T. Nguyen, T. Nestorović, Unscented hybrid simulated annealing for fast inversion

of tunnel seismic waves, Computer Methods in Applied Mechanics and Engineering,

2016

This dissertation is organized as follows.

Chapter 1 has introduced the motivation for the inversion methods studied in this work in

which the Bayesian filtering concept is key to the inversion approaches used and developed

in the course of this work. Besides, the basis of the forward problems of excavation-

induced settlements and elastic wave propagation is summarized, and an overview of

inverse problems for solving back analysis of elastoplastic soil parameters and subsurface

imaging in the tunneling context has also been detailed.

Chapter 2 discusses the use of nonlinear Kalman filters for soil parameters identifica-

tion. It will be shown that the nonlinear Kalman filters can be applied very effectively to

calibration of the geomaterial parameters for geomechanical modeling in mechanized tun-

neling using tunneling-induced settlements and horizontal displacements. The data curves

measured along tunnel excavation steps which exhibit nonlinear relationships with respect

to soil parameters and are prone to measurement inaccuracies are utilized in combination

with finite element modeling to estimate the underlying soil parameters using sequential

inference framework: the nonlinear Kalman filtering. Comparative performance of the

two types of nonlinear Kalman filter shows that they are effective for soil parameters

identification in terms of convergence speed and accuracy: the extended Kalman filter

(EKF) and the sigma-point Kalman filter (SPKF). The effectiveness of the two Kalman

filters for inverse analysis is demonstrated through computer simulations for identifying a

number of important constitutive parameters of the Hardening Soil model in the context

of mechanized tunneling. In details, the state-space representation of the forward model is

presented as a basis for deployment of the Kalman filters. After that, sequential Bayesian

filtering that leads to algorithms of the two Kalman filters is introduced. Before going to

the main application in this work, the capability of the EKF and SPKF is demonstrated



1.3 Contributions of this thesis 17

for identification of hidden parameters of a noisy time series and localization of the global

optimum of the multimodal Ackley’s function. In the application section that follows, a

short description of the finite element model for the tunnel excavation and generation of

noisy synthetic measurement data are given. Also, the authors discuss inverse analysis

outcomes that result from different computer-experiment settings. Finally, several final

remarks and suggestions for the optimal use of the two nonlinear Kalman filtering tech-

niques for model calibration of soil parameters in modeling of mechanized tunneling and

other geotechnical structures are given.

Chapter 3 presents a data assimilation (DA) method that employs the particle filter for

identifying the soil parameters in tunneling application. The idea of DA is to incorporate

observation data into numerical modeling to improve prediction capability of the numeri-

cal model which is prone to inexactness due to limitations of modeling procedure such as

lack of knowledge of physical phenomena and inaccuracy due to mathematical approxi-

mation. When applied for parameter identification, the uncertain model parameters are

described as stochastic variables whose distributions will come closer to the "true" prob-

ability densities through assimilation process as more observation data become available.

DA is not an iterative process but rather a sequential process. In other words, identi-

fication is done in parallel with acquiring data from fields during loading, construction,

or excavation steps. The major advantage of particle filter over the Gaussian Kalman

filters is that the resulted estimation quantities are represented in the form of probability

distributions rather than their centered means and variances only. In the demonstrative

application, data being used for assimilation are settlements and horizontal displacements

induced by tunnel excavations. As the tunnel boring machine advances, more information

is taken into the assimilation process to reduce estimation bias. By using noisy synthetic

data, it is observed that those mean model parameters identified in the end of excavation

steps are very close to the true parameter values.

Chapter 4 introduces a global optimization strategy for inversion of tunnel seismic waves.

A new hybridized global optimization method that combines simulated annealing global

search with unscented Kalman filter minimization is proposed to solve waveform inversion

for predicting ahead of the underground tunnel. The authors demonstrate in this work

fast and reliable convergence of this new algorithm through validation of an optimization

of multi-minima test function and an inversion of synthetic tunnel seismic waveforms to

predict geological structure ahead of a tunnel face. Concerning the engineering applica-

tion, the successful identification of the true model by minimizing a multimodal misfit

functional for wide feasible bounds of the model parameters confirms that waveform inver-
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sion by the improved global optimization method is promising for practical applications

with real measurement data.

Chapter 5 proposes a waveform inversion scheme supported by the level-set method

for locating and characterizing the disturbance zones ahead of the underground tunnel

face. The inversion process is completely free from gradient calculations as the unscented

Kalman filter is used for the efficient inversion. The conceptual methodology is validated

through successful reconstructions of single- and multiple-disturbance objects in a simple

2D frequency domain model. In the tunneling application, the special characteristics of the

tunnel seismic waves in the time domain are described and the results of SPECFEM2D

simulation and a qualitative evaluation of the simulated tunnel seismic waveforms are

shown. The computer model and its simulated tunnel seismic waves are eventually used

to reconstruct the geological scenarios in which disturbance of a single object and multiple

discontinuous objects in a parsimonious and flexible manner. Although further validations

with laboratory or in-situ measurements and the use of fully 3D model are needed to

prove the practicality of this approach, the current results are encouraging and promising

to apply FWI in tunneling practice as an advanced tool for looking ahead of the tunnel

face.

Chapter 6 concludes the thesis and points out the potentials of the inference schemes for

being integrated into a tunnel information system. Furthermore, a small-scale laboratory

experiment set-up is described for validation of the numerical methods against laboratory

measurements.



2 Nonlinear Kalman filters for model

calibration of soil parameters

2.1 Background

There is one special family of inverse methods that has been successfully adopted from

the field of state and parameter estimation of generic dynamic systems to solve param-

eter identification problem in geotechnical engineering and civil engineering in general –

the Kalman filter and its variants. From perspective of state and parameter estimation

of nonlinear dynamic and quasi-static models, the state variables and parameters of the

nonlinear model are recursively updated as new measurements become available. With

this principle, the Kalman filter estimates the Gaussian densities (means and covariances)

of the quantities being estimated by repeatedly performing time update and measurement

update to reduce the variance of the estimation error and therefore converges the esti-

mated quantities to unbiased true state and model parameters (Kalman (1960); Jazwinski

(1970); Gelb (1974)). Since the first closed form solution to the state estimation (filtering)

problem for linear models, the Kalman filter (Kalman (1960)), there have been extensive

further developments of this filtering scheme. Later, the effort to extend the Kalman filter

to be working with even nonlinear system models was successfully achieved by applying

Taylor series expansion of the models around the working point (Jazwinski (1970)). The

successful extended Kalman filter (EKF) has become until today the standard state/ pa-

rameter estimation method for slightly nonlinear dynamic systems and structures. More

recently, Julier & Uhlmann (1997) contributed to the development of the Kalman fil-

ter with the so-called unscented Kalman filter (UKF) based on the intuition that the

approximation of a Gaussian distribution is easier than the approximation of an arbi-

trary nonlinear function. Because of its deterministic samples (points), it is preferably

referred to as sigma-point Kalman filter (SPKF). The SPKF algorithm has been shown to

outperform the EKF in different state and parameter estimation problems ranging from

machine learning (Van Der Merwe (2004); Haykin et al. (2001); de Oliveira (2012)) to

19
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electric battery management system (Plett (2006)), and structural dynamics (Mariani &

Ghisi (2007); Chatzi & Smyth (2009)).

2.1.1 State-space representation of the forward model for parameter

identification

State-space representation of the forward model provides a convenient way to describe

mathematical models of systems and structures whose outputs depend on the progressive

change of the state variables, the model parameters, and external inputs/ loads. State-

space models are mostly used to describe dynamical system models for problems of state

estimation and control because they allow for intuitive, tractable, and on-line analysis of

the systems in the time domain. Examples of using state-space models for this area of

engineering can be seen in Nestorović-Trajkov et al. (2005, 2006). This representation

leads to an intuition that state-space formulation can be very well used for representing

models that require updating of their parameters in a recursive manner. In practice

of recursive parameter identification that represents the forward model as state-space

model (Hoshiya & Sutoh (1993); Wan & Van Der Merwe (2000); Van Der Merwe & Wan

(2001)), state-space model is described by a stationary process transition Eq. 2.1a and

the modeling observation equation Eq. 2.1b

mk = mk−1 + wk−1, (2.1a)

dk = h (xk,mk) + vk, (2.1b)

where vectormk contains the model parameters and xk is the physical state of the model at

recursive step tk. Vector d extracts modeling outputs at predefined positions in the model

from the modeling observation Eq. 2.1b. In Eq. 2.1a, the stationary process transition

is added by a modest amount of pseudo-noise wk to act like parameter updating from

one iterative step to the next. Inexactness of the modeling observation function h(·) in

Eq. 2.1b is characterized by an amount of uncertainty vk. Additive uncertainties wk

and vk are assumed to be uncorrelated and white Gaussian having zero-mean and time-

invariant covariance matrices Q and Rm respectively.

The modeling observation function h(·) for geomechanical models is a highly nonlin-

ear function relating the current physical state x and the parameters set m (Murakami

(1991); Hoshiya & Sutoh (1993)) to the modeling outputs d. By the state-space presenta-

tion described here, the forward model h(·) can be built separately from the identification
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implementation, and it can also be modeled by different numerical methods or program-

ming languages. In this work, forward modeling is done by FE software Plaxis 3D, and

model parameters for geomechanical tunnel excavation are those that constitute a complex

elastoplastic material model. Solving the modeling function h(·), which is also termed

forward problem, can be done rather fast and reliable nowadays thanks to the use of

advanced FE codes and computers. However, because solving the forward problem in a

recursive manner, as it is in the context of inverse analysis, needs quite a large number of

forward calculations, the decisive factor that makes one inverse analysis method prefer-

able to the others is that convergence can be achieved after an acceptably small number

of forward calculations.

2.1.2 Recursive Bayesian filtering and nonlinear Kalman filters for

parameter identification

In this section, the authors first introduce how inverse analysis can be solved by parameter

identification technique in sequential Bayesian filtering scheme. Later, the adaptation of

the EKF and the SPKF algorithms to solving inverse analysis problems will be given.

By in-situ measurement, a set of measurement data contaminated with measurement un-

certainty is recorded. The measurement uncertainty may probably be provided by the

instrument manufacturer. If not, one can assume measurement uncertainty to have devi-

ated from a recorded value a small percentage of the maximum measured amplitude. In

either case, it is reasonable to describe measurement uncertainty as Gaussian distribution

ρD(d) ∼ N (dobs,Robs). (2.2)

All prior knowledge about the model parameters is summoned to provide a good initial

model. Prior information is apparently not precise and can, therefore, be defined as

Gaussian distribution as well

ρM(m) ∼ N (mprior,Pprior). (2.3)

When the given state-space model Eq. 2.1, the measurement data Eq. 2.2, and the prior

knowledge about the model parameters Eq. 2.3 are in place, it is ready to perform param-

eter estimation using the filtering scheme, in particular the Kalman filters, to estimate

the model parameters. Bayesian filtering (Ho & Lee (1964); Tarantola (2005)) provides a

unifying framework for deriving the Kalman filters by means of conditional probability

ρ(mk|Dk) =
ρ(dk|mk)ρ(mk|Dk−1)

ρ(dk|Dk−1)
, (2.4)
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where Dk is a series of modeling data up to and including recursive step k. The term

on the left hand side of Eq. 2.4 is the posterior distribution of the estimating parameters

given all the modeling data up to recursive step k. On the right hand side of Eq. 2.4,

the first term in the numerator is called the likelihood which is defined in terms of the

modeling Eq. 2.1b. The second term in the numerator is named the prior which depends

on the prior knowledge Eq. 2.3 and the state transition Eq. 2.1a. The denominator in

Eq. 2.4 is labeled the evidence which is the integral of the numerator over the parameter

space. The evidence is considered a scaling factor and therefore does not need to be

calculated explicitly in many cases.

The maximum a posteriori (MAP) is employed to solve Eq. 2.4. With Gaussian as-

sumptions for the statistical quantities, MAP is equivalent to minimization of the misfit

function Eq. 2.5

S(mk) =
1

2

(
(h(mk)− dobs)tR−1(h(mk)− dobs) + (mk − m̂k|k−1)tP−1

k|k−1(mk − m̂k|k−1)
)
,

(2.5)

where m̂k|k−1 is the vector of estimated parameters before the modeling data dk are

taken into account (also called the a prior estimate) and Pk|k−1 denotes the estimation

error covariance of the estimation error term mk − m̂k|k−1. The covariance matrix R is

the sum of measurement uncertainties and modeling observation uncertainties, i.e. R =

Robs + Rm (Tarantola (2005)).

When modeling data are taken into account given the prior estimated parameters m̂k|k−1,

the MAP results in a recursive a posterior estimate of the parameters vector m̂k:

m̂k = m̂k|k−1 + Kk

(
dobs − h(m̂k|k−1)

)
, (2.6)

where K is the Kalman gain matrix resulted from minimization of Eq. 2.5. Calculation

of K is of vital importance and is adapted for the particular approximation scheme. The

a posterior error covariance Pm
k associated with m̂k is also dependent on the employed

estimation scheme in such a way that the computation is facilitated.

Similar to the scheme applied in state estimation, Kalman filters estimate the model

parameters by executing prediction step (time update) and correction step (measurement

update) of the estimated parameters m̂ and the corresponding estimation error covariance

matrix Pm recursively. The prediction step is performed based on the prior model and

the state transition equation to predict the estimate, whereas the correction step requires

measurement data and model calculated data to drive the estimated parameters to a point

closer to the misfit’s minimum. See Table 2.1 for the notations used to denote the mean

estimate and its error covariance in each of the two steps in each iteration.
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Table 2.1: Notations of the Gaussian moments in recursive estimation step k

Gaussian moments Prediction step Correction step

Mean parameter values : m̂ m̂k|k−1 m̂k

Estimation error covariances: Pm Pm
k|k−1 Pm

k

It is worth mentioning that Monte Carlo simulation based sequential filtering schemes

such as the ensemble Kalman filter and the Particle filter can be employed to estimate

the posterior distribution Eq. 2.4. Because fully random sampling is used in these schemes,

the burden on the computation of forward modeling is enormous. For an exposition of

the application of this stochastic filtering approach to geomechanical inverse problems,

the reader can refer to Murakami et al. (2013); Shuku et al. (2012); Nguyen et al. (2014).

In this work, the authors demonstrate that the use of the two deterministic nonlinear

Kalman filters (the EKF and the SPKF) for model calibration of geomaterial parameters

in geotechnical FE modeling is effective regarding convergence speed and reliability. In

the following, the two nonlinear Kalman filters employed in this work — the extended

Kalman filter and the sigma-point Kalman filter — are summarized.

2.1.3 The extended Kalman filter

The EKF is a linearized Kalman filter that can be applied to nonlinear state-space models.

The EKF requires linearization of the state transition equation and the modeling equation

around the current estimate. In the state-space model Eq. 2.1, because the state transition

equation is linear, it needs only to calculate the Jacobian of the modeling function in

Eq. 2.1b in order to approximate h(·) to the linear form. The Jacobian of h(·) at the

current estimate of m is defined as

Hk =
∂h(mk)

∂mk

∣∣∣∣
mk=m̂k|k−1

, (2.7)

where the current estimate is the a prior estimate m̂k|k−1. In fact, when the modeling

function h(·) is a numerical model, there is no analytic calculation of the partial deriva-

tives. Rather, the finite difference scheme is employed to approximate the Jacobian by

taking the ratios of the change of each model output to the perturbation of each parame-

ter by a finite small amount from the current estimate. If the paramter vector m contains

n elements, this approximation of the Jacobian requires n function calls to the model-

ing function h(·). This n function calls together with one further function call needed
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in the posterior estimation Eq. 2.6 make totally n + 1 function calls (or forward model

calculations) for one EKF iterative step.

When the approximated Jacobian is used as the observation matrix for linear models,

the equations for the EKF are the same as those originally derived for the Kalman fil-

ter (Kalman (1960); Jazwinski (1970)). The EKF algorithm for identifying parameters of

a model represented by the state-space formulation Eqs. 2.1 is summarized in Algorithm 1.

Algorithm 1: The EKF algorithm for parameter identification

Initialization:

m̂0 = mprior

Pm
0 = Pprior

k ← 1

while S (Eq. 2.5) < TOLERANCE do
Prediction step:

m̂k|k−1 = m̂k−1

Pm
k|k−1 = Pm

k|k + Q

Correction step:

Kk = Pm
k|k−1H

t
k{HkP

m
k|k−1H

t
k + R}−1

m̂k = m̂k|k−1 + Kk

(
dobs − h(m̂k|k−1)

)
Pm
k = Pm

k|k−1 −KkHkP
m
k|k−1

k ← k + 1

end

As proposed by Hoshiya & Sutoh (1993), to make the EKF’s convergence rate faster for

inverse analysis problems, the error covariance Pm is multiplied by a modification weight

W in every correction step as expressed in Eq. 2.8. This multiplication is equivalent to

making the fictitious difference between the true parameters and the estimated parameters

more significant. The inflated covariance matrixPm is inherited and magnifies the Kalman

gain K in the successive iterative step. In this way it intensifies the effect of Kalman gain

on the residual dobs−h(m̂k|k−1) and therefore makes convergence rate of the filter faster.

The choice of the weight magnitude is problem-dependent, one can begin with a small
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positive number larger than one and increase it as long as the EKF keeps converged.

Pm
k =

(
Pm
k|k−1 −KkHkP

m
k|k−1

)
W (2.8)

2.1.4 The sigma-point Kalman filter

Although the EKF is one of the most widely used methods for state estimation of nonlinear

systems, its inherent linearization makes it difficult to implement and only reliable for

slightly nonlinear system models. Julier & Uhlmann (1997) developed an alternative

type of the Kalman filter for nonlinear models that obviates the need for linearization

of the state-space model: the unscented Kalman filter. Later, Van Der Merwe (2004)

has combined and systematized this new filter together with some other independent

works that derived the derivativeless deterministic sampling based approximation of the

Gaussian statistics to belong to the family of SPKF. This family of the Kalman filter is

based on the principle that a set of deterministically sampled points, called sigma-points,

can be used to represent the mean and covariance of the estimated quantities. Update

mechanisms are inherited from the linear Kalman filter (Kalman (1960)).

The sigma-points consist of 2n+1 discretely distributed points around the current estimate

on the n-dimension space. The distribution of these sigma-points around the current

estimate is determined by square-root decomposition of the prior covariance and the

spread of them can be assigned by setting a scaling parameter ζ as follows.

σ = ζ
√

Pk−1, (2.9)

(Mk−1)0 = m̂k−1, (2.10)

(Mk−1)i = m̂k−1 + (σ)i, for i = 1:n (2.11)

(Mk−1)i+n = m̂k−1 − (σ)i, for i = 1:n (2.12)

where the scaling parameter is calculated as ζ =
√
n+ λ. The parameter λ remains free to

tune. It is suggested to select n+λ = 3 when m is assumed Gaussian (Julier & Uhlmann

(1997)). The notation (·)i denotes the i-column of the matrix within parentheses.

Each sigma-point is associated with a weight. The weights are defined as in Eq. 2.13 such

that the sum of weights is unity.

W0 =
λ

n+ λ
,Wi = Wi+n =

1

2(n+ λ)
, for i = 1:n (2.13)

Direct nonlinear transfer of the sigma-points through the nonlinear state-space functions

helps reserve second order accuracy of the Gaussian approximate estimated quantities as
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opposed to first order truncation of the Taylor series employed by the EKF. The recursive

prediction step and correction step of the SPKF are summarized in Algorithm 2.

Algorithm 2: The SPKF algorithm for parameter identification

Initialization:

m̂0 = mprior

Pm
0 = Pprior

k ← 1

while S (Eq. 2.5) < TOLERANCE do
Prediction step:

Generate the sigma-points Eq. 2.9-2.12:(Mk−1)i

(Mk|k−1)i = (Mk−1)i

m̂k|k−1 =
2n∑
i=0

Wi(Mk|k−1)i

Pm
k|k−1 =

2n∑
i=0

Wi

(
(Mk|k−1)i − m̂k|k−1

) (
(Mk|k−1)i − m̂k|k−1

)t
+ Q

(Dk|k−1)i = h
(
(Mk|k−1)i

)
d̂k|k−1 =

2n∑
i=0

Wi(Dk|k−1)i

Pd
k|k−1 =

2n∑
i=0

Wi

(
(Dk|k−1)i − d̂k|k−1

)(
(Dk|k−1)i − d̂k|k−1

)t
+ R

Pmd
k|k−1 =

2n∑
i=0

Wi

(
(Mk|k−1)i − m̂k|k−1

) (
(Dk|k−1)i − d̂k|k−1

)t

Correction step:

Kk = Pmd
k|k−1(Pd

k|k−1)−1

m̂k = m̂k|k−1 + Kk

(
dobs − d̂k|k−1

)
Pm
k = Pm

k|k−1 −KkP
d
k|k−1K

t
k

k ← k + 1

end



2.2 Application for parameter identification and optimization to test models 27

As it can be seen from the SPKF Algorithm 2, the means of predicted parameters and

model outputs are calculated as a weighted summation over the sigma-points and the

corresponding predicted model outputs. The predicted model outputs Dk|k−1 are the

results of direct nonlinear transfers of the representative sigma-points Mk|k−1 through

the nonlinear model function h(·). The predicted estimation error covariances of the es-

timated parameters Pm, of the model outputs Pd, and of the cross-covariance between

them Pmd are calculated as the weighted summation of the squares of distances between

each sigma-point and respective model output to the corresponding mean estimates. The

correction equations for the SPKF take into account the means and covariances approx-

imated using the sigma-points and the nonlinear model outputs in the prediction step

without calculation of the Jacobians in the state-space model needed.

For application in the calibration of FE model in geomechanics, value for each parame-

ter can be limited to a certain range depending on initial categorization of geomaterial

samples. Therefore, it is advantageous to apply a feasible range for each parameter in

the identification process. The advantage of giving constraints to the parameter space

is threefold: (i) it helps to exclude the unreasonable convergence points, which are local

minima, of the objective function, (ii) it allows the FE code to run uninterruptedly during

the iterative estimation process as the parameters are clipped in the reasonable regions,

and (iii) it may help to accelerate the estimation process by filtering algorithms since the

estimation bias is not allowed to explode. Here, the ’clipping’ constraints handling for

both the EKF and the SPKF described in Kandepu et al. (2008) is applied.

2.2 Application for parameter identification and

optimization to test models

2.2.1 Identification of hidden parameter in a nonlinear noisy time

series

A time series model previously studied by Van Der Merwe (2004) and Chatzi & Smyth

(2013) described in Eq. 2.14 is selected for a study of parameter identification using the

EKF and the SPKF.

xk = mxk−1 + 1 + sin (ωπ(k − 1)) + uk−1, (2.14)

where, uk ∼ N (0, C) is the additive process noise with negligibly small variance C,

ω = 0.04 and m is the hidden parameter that requires identification. A non-stationary
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observation model below serves as the measurement equation:

dk =

0.4(xk)
2 + nk if k ≤ 30,

0.5xk − 2 + nk if k > 30.
(2.15)

The measurement noise nk is drawn from Gaussian distribution N (0, σ2). The Kalman

filters are to estimate the hidden parameter m for the cases of low and high noise levels

in the measurements. The state-space equations are reformulated by setting stationary

transition of the parameter as described in the last section in the following manner.

mk = mk−1 + wk−1, (2.16)

where, w ∼ N (0, Q) is the pseudo noise that drives the parameter from one time step to

the next time step. According to the authors’ practice (Nguyen et al. (2013)), the variance

Q can be set so that standard deviation of process noise to be around ten percent that of

the initial estimate error, i.e. Q = 0.01P0. The state transition equation is then evaluated

as

xk = mk−1xk−1 + 1 + sin(ωπ(k − 1)). (2.17)

The process noise for the state transition is intentionally ignored for the purpose of fitting

the model response to noisy measurement data. Estimation results for measurement noise

levels are presented in Fig. 2.1. As can be observed, both EKF and SPKF equally well

estimate the true parameter in the case of low measurement noise level. For the low

measurement level, zero-mean Gaussian noise with standard deviation σ = 10−4, the

estimated values are biased by small distances from the true parameter very soon after

estimation starts. At the beginning of the changed observation model at time t = 30, it

happens that the estimates fluctuate by a large amount but gradually come to unbiased

positions when more measurement data are received. For the higher noise level, zero-mean

Gaussian noise with standard deviation σ = 10−3, of the measurements it is observed that

more significant bias of the estimates along time steps is resulted both for the EKF and

the SPKF.

2.2.2 Optimization of nonlinear multi-minima Ackley’s function

In this example, the authors would like to evaluate the capability of the nonlinear Kalman

filters in performing optimization of a nonlinear multimodal function. The test function
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Figure 2.1: Estimate of hidden parameter for a noisy time series - initial parameter value

m = 3, true parameter value m = 0.5, a) Gaussian noise σ = 10−4, b) Gaussian noise

σ = 10−3
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Table 2.2: Position of the estimated minimum point of the Ackley’s function after 20

iterations. Points marked with † signify wrong final estimates.

Starting point (x1, x2) EKF estimate SPKF estimate

(1,1) (−7.83 ∗ 10−15,−7.83 ∗ 1015) (6.64 ∗ 10−05, 8.03 ∗ 10−06)

(-3,2) (−0.89,−1, 18)† (7.47 ∗ 10−06, 1.00 ∗ 10−05)

(3,-2) (0.89, 1, 18)† (−7.47 ∗ 10−06,−1.00 ∗ 10−05)

(4,2) (−5,−5)† (−1.22 ∗ 10−06,−1.88 ∗ 10−07)

(4,4) (3.73, 3.73)† (−0.000107, 0.000191)

is chosen to be the two-variable Ackley’s function which has the following mathematical

expression

d = −20exp

(
−0.2

√
0.5(x2

1 + x2
2)

)
− exp (0.5(cos(2πx1) + cos(2πx2))) + 20 + exp(1).

(2.18)

This Ackley’s function has a global minimum at (x1 = 0, x2 = 0) and many local minima

in the variable space which makes finding the global minimum by numerical optimization

algorithms a challenging task, specifically for algorithms that are based on gradients.

The EKF and SPKF are identically configured to run in an iterative manner similar to that

of the previous parameter identification problem of time series but with the measurement

that is evaluated from Eq. 2.18 at the global minimum point. For the purpose of solving

the optimization problem, the measurement noise is set to be negligibly small. It has been

observed that the EKF can easily be trapped within regional minima, as one example

with initial state variables at x1 = 4, x2 = 4 in Fig. 2.2 shows. The SPKF, however,

consistently drives the state variables to the global minimum point despite the arbitrary

choice of the starting point as listed in Table 2.2.

2.3 Model calibration of soil parameters in mechanized

tunneling

Geomechanical analysis of tunnel excavation that is considered in this work is the quasi-

static non-Markov process, i.e. the state of the model is about equilibrium along the

analysis, and the current state depends not only on the previous state but also on the
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Figure 2.2: a) Ackley’s function and final estimates of its global minimum, initial point

x1 = 4, x2 = 4. b) History of the normalized objective functions
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history of analysis steps before given constant geomechanical parameters. As a conse-

quence, the manner by which the nonlinear Kalman filters are employed to identify the

model parameters is adapted from recursive steps in time to entire iterative steps. That

means the geomechanical model analysis is performed entirely in one iterative step and

the identification process is run until the discrepancy between model calculated outputs

and the in-situ measurement data cannot become smaller. Alternatively, the measure

of this data misfit can be quantified by Eq. 2.5. The iterative run of the Kalman filter

algorithms, thus, can run until this misfit measure is smaller than a predefined tolerance.

2.3.1 Forward model and noisy synthetic measurement data

The FE model was provided by the C2-subproject within the Collaborative Research

Center SFB 837 at the Ruhr-University Bochum. In this model, a shield tunnel boring

machine (TBM) advancing in homogeneous soil is modeled using the FE analysis software

PLAXIS 3D. The model domain is 60 m long, 40 m wide, and 45 m deep. The tunnel of

diameter D = 8.5 m and under an overburden depth equal to 1D. The overall model is

depicted in Fig. 2.3. Except that the ground surface is stress-free, all other boundaries of

the FE model are constrained by zero displacements. Only a half of the model is analyzed

because of the symmetric geometrical, loading and material conditions about the vertical

plane along the tunnel axis.

The homogeneous soil behaves according to the Hardening Soil constitutive model which

has complex stress dependent stiffness moduli, yield surface and flow rule as described

in Schanz et al. (1999). The slurry shield TBM is 9 m long modeled by circular elastic plate

elements. Each concrete lining ring has the length of 1.5 m also modeled by elastic plate

elements. For detailed descriptions regarding support pressure, soil excavation, grouting,

erection of tunnel linings, and shield skin-ground and tunnel lining-ground contacts used

in the FE model the reader is referred to Zarev et al. (2011).

Assuming that properties of the elastic materials are known, a set of soil’s stiffness and

failure parameters is chosen for identification: stiffness for un-/reloading Gur, secant

stiffness in standard drained triaxial test E50, and friction angle φ.

Observation positions and orientations at observation surface at 39 m from beginning

position of the tunnel head (before excavation) and perpendicular to the tunnel axis are

depicted in Fig. 2.3 as well.

Tunneling-induced displacements are simulated for 30 excavation steps, and each step

advances the TBM 1.5 m forward. Calculated outputs obtained from the FE model are
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a)

b)

Figure 2.3: a) FE model of the 3D tunnel excavation and b) Measurement points at

observation section
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Figure 2.4: Pure calculated and synthetic noisy measurements at Point O

registered at every excavation step. To produce the synthetic observation data, the model

calculated displacements, given a set of ’true’ model parameters, are added by an amount

of zero-mean Gaussian noise. The true model parameters for this model are predefined as

Gur = 41600[kN/m2], φ = 35[◦], E50 = 35000[kN/m2]. (2.19)

In contrast to the use of field measurement data whose noise level is difficult to estimate,

using synthetic data makes it possible to control the amount of noise that contaminates

data. Different levels of noise variances are used to examine the robustness of the EKF and

the SPKF against noisy measurement data. It is taken into account that measurement

noise has standard deviations of three percent and five percent the mean value of the

noise-free FE calculated outputs for each measurement point. Synthetic measurement

data with three percent additive Gaussian noise at measurement Point O are plotted in

comparison with pure FE analysis response in Fig. 2.4.
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2.3.2 Results and discussion

Let us assume a very bad situation in which one has quite little knowledge of the soil

parameters. The feasible ranges for the considered soil parameters are defined such that

the lower bounds and upper bounds are considerably distant from true parameters as

follows

20833 ≤ Gur[kN/m
2] ≤ 62499, (2.20)

17500 ≤ E50[kN/m
2] ≤ 52500, (2.21)

32 ≤ φ[◦] ≤ 52.5. (2.22)

The same initial estimation error covariance P0, the covariance matrix of the process

noise Q, and covariance matrix of measurement noise R are set for all the inverse analysis

experiments.

The initial estimation error covariance P0 expresses how much confidence is associated

with particular sets of initial parameters in a Gaussian distribution sense. If it is very

uncertain about the model parameters, the covariances can be set arbitrarily large to

cover the high uncertainty on the initial choice of parameters. Taken into account the

assumption that the parameters are uncorrelated, the initial state error covariance matrix

for the parameters m = [Gur;φ;E50] is set: P(0|0) = diag (40002, 52, 50002) .

The authors’ practice for setting the covariance matrix of the process noise Q is that it

can be set in such a way that its square roots are ranging from five percent to ten percent

the values of initial estimation error standard deviations. In this work, it is chosen to

be around seven percent, i.e. the covariance matrix of the process noise can be set as

Q = 0.005P0.

The covariance matrix of measurement noise R reflects the accuracies of the measurement

data and the modeling observation equation. In fact, the values in R do not necessarily

reflect the true covariances of these sources of uncertainties. The same as for the ini-

tial estimation error covariance P0, if appropriate measurement setup with high-quality

measurement devices and a reliable numerical model are given, small values for diagonal

elements in R can be assigned and vice versa. For setting up the nonlinear Kalman fil-

ters in this study, every measurement datum is assigned to have the same covariance, i.e.

R = 0.012 ∗ I(m,m), with I(m,m) the identity matrix having a dimension equal to the

size of the measurement data, m.

Two initial sets at the extremes of feasible ranges are chosen for evaluating the perfor-

mance of the EKF and SPKF. Identification results obtained at the final iterative step
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Table 2.3: Identified soil parameters - Initial case 1 with three percent measurement noise

Parameter Initial EKF SPKF

Mean SD Mean SD Mean SD

Gur[kN/m
2] 20833 4000 41588.02 552.30 41476.61 296.64

E50[kN/m
2] 17500 5000 34856.67 958.45 34643.40 387.50

φ[◦] 32 5 34.96 0.25 34.91 0.35

Table 2.4: Identified soil parameters - Initial case 2 with three percent measurement noise

Parameter Initial EKF SPKF

Mean SD Mean SD Mean SD

Gur[kN/m
2] 62499 4000 41633.92 558.93 41735.41 297.10

E50[kN/m
2] 52500 5000 34944.11 974.28 35133.16 389.89

φ[◦] 52.5 5 34.98 0.25 35.03 0.35

are presented in Table 2.3 and Table 2.4 for two different initial cases. Very good con-

vergence of the means to the true parameter values is observed, whereas the standard

deviations (SDs) become significantly small at the end of EKF and SPKF identification

processes. Of the estimated results obtained by the EKF or the SPKF, the estimation

error covariances (or SDs) does not necessarily represent neighborhood region in which

the model parameter may be situated because the initial error covariance matrix P0 as

well as covariances of process noise Q and measurement noise R are not necessarily true

when setting up the EKF and SPKF. However, besides the misfit function, the estima-

tion error covariance matrix can be helpful for tracking the performance of the EKF and

SPKF along iterative steps as the diagonal elements in this matrix should become smaller

in converging iterative identification processes.

Graphical plots of the converging soil parameters for the presented two initial cases

Figs. 2.5 and 2.6 demonstrate fast and robust convergence. Convergence rates of the

EKF and the SPKF are quite the same for the Initial case 1 in which the set of soil pa-

rameters is unbiasedly identified at the fifth iteration. Regarding the number of forward

calculations needed for five iterative steps, the EKF has used 20 calls to FE analysis and

the SPKF has used 35 of them. Few numbers of calls to FE runs are advantageous for

back-analysis as each FE analysis of a complex geotechnical model such as in modeling

of mechanized tunneling consumes a considerable amount of time.
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Table 2.5: Identified soil parameters - Initial case 1 with five percent measurement noise

Parameter Initial EKF SPKF

Mean SD Mean SD Mean SD

Gur[kN/m
2] 20833 4000 42483.47 6317.98 42288.64 392.62

E50[kN/m
2] 17500 5000 37036.86 1130.50 36646.55 600.89

φ[◦] 32 5 35.52 2.82 35.42 0.37

For the Initial case 2, Fig. 2.6, the EKF requires several more iterations than the SPKF to

obtain convergence. It is observed that the estimated parameter values at a few beginning

steps of EKF filtering process exhibit significant oscillations, the value of parameter E50

is even out of bounds for the first three iterative steps of the EKF. The SPKF, however,

keeps the convergence speed steady for both initial cases.

To experiment how detrimental higher level of measurement noise affects the performance

of the EKF and the SPKF identification of Initial case 1 is rerun with five percent mea-

surement noise. It can be observed from Fig. 2.7 that more iterations are required for both

the Kalman filters to get to convergence. The converged parameter values are much more

biased than those in the three percent measurement noise case. The summary results

in Table 2.5 also show significant standard deviations of the identified parameter values

which indicate less reliable parameter estimates compared to the previous cases of three

percent measurement noise.

Besides the observation that the estimation error covariance gets reduced significantly in

either case of measurement noise levels, converging development of the misfit (the first

term in Eq. 2.5) during inverse analysis process shown in Figs. 2.8 and 2.9 confirms con-

vergence in a sense that misfit between measured and simulated settlements is minimized.

In general, it does not need so many calls to FE analysis of the investigated geotech-

nical model for performing model calibration with the EKF or the SPKF. The overall

computation time depends mostly on how much time it takes for an analysis of the FE

model. For the presented tunneling model in this work, computer experiments for inverse

analysis require on average two days to obtain the identified soil parameters on a stan-

dard personal computer (Intel(R) Core(TM)2 Duo 1.97 GHz, 4 GB RAM). Speed-up of

the inverse analysis process can be achieved by running the FE analyses in parallel by

multiple computers for purpose of approximating the Jacobian for the EKF or evaluating

the transfer of the sigma-points for the SPKF.
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Figure 2.5: Iterative development of soil parameters for Initial case 1 with three percent

measurement noise a) EKF and b) SPKF
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Figure 2.6: Iterative development of soil parameters for Initial case 2 with three percent

measurement noise a) EKF and b) SPKF
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Figure 2.7: Iterative development of soil parameters for Initial case 1 with five percent

measurement noise a) EKF and b) SPKF
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3 Particle filter-based data assimilation

for uncertainty quantification

3.1 Data assimilation for inversion of model parameters

3.1.1 State-space formulation

I apply in this work the sequential data assimilation (DA), i.e. DA process is fetched

whenever field measurement data become available to update the numerical modeling.

This sequential scheme is especially suited for numerical simulation of long time loading

or multiple-step geomechanical analyses such as soil consolidation, construction of em-

bankments, and tunnel excavations. To describe the assimilation process, let us represent

the forward modeling of geomechanical problems in state-space equations as follows.

xk = f(xk−1) + wk; wk ∼ N (0,Qk), (3.1a)

dk = h(xk) + vk; vk ∼ N (0,Rm
k ), (3.1b)

where state vector xk stores the state variables (e.g. displacements) at analysis step tk.

This state vector is also augmented by the model parameters (i.e. constitutive param-

eters). The modeling function f(·) represents the numerical model (e.g. finite element

model) that transfers the state from one calculation step to the next. Output vector dk

represents the observed degrees of freedom resulted from observation operator h(·) which

is simply a selection matrix in case of linear observation. Additive uncertainties wk and

vk are assumed to be uncorrelated and white Gaussian having zero-mean and covariance

matrices Qk and Rm
k respectively.

By in situ observation, a set of observation data contaminated with observation uncer-

tainty dobsk is obtained. The amount of measurement noise can be represented also by

zero-mean Gaussian with covariance matrix Robs
k . As a consequence, this covariance

matrix is added to the one from observation Eq. 3.1b Rm
k to form a single observation

covariance matrix, i.e. Rk = Robs
k + Rm

k (Tarantola (2005)).

43
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Because geomechanical analysis is a non-Markov process, i.e. state vector x at tk depends

not only on its values at tk−1 but also on values from all previous analysis steps, the

ensemble Kalman filter (EnKF) and other ensemble based estimation methods that require

re-sampling in the parameter space are not suitable for straightforward implementation

of the DA process (Evensen (2003); Nakano et al. (2007)). Instead, the particle filter with

sequential importance sampling, which can be applied to non-Markov process is proposed

for identification in geomechanics (Murakami et al. (2013)). The particle filter requires

neither linearization in the state-space equations nor the assumption of Gaussian densities

for the state variables and noises therein.

3.1.2 Sequential data assimilation using particle filter

I have employed the particle filter (Gordon et al. (1993)) with sequential importance

sampling (Doucet et al. (2000)) for updating the posterior distribution in each assimilation

step. As it is a type of sequential Monte Carlo method, the particle filter is very suitable

for working with nonlinear models having uncertain parameters represented by arbitrary

probability density function. The particle filter operates by executing prediction step and

filtering (correction) step in a sequence. As measurements at time tk are received, the

posterior probability density of model parameters given all the data up to time step tk,

Dk, is calculated by the Bayes’ rule Eq. 3.2 in the filtering step below.

ρ(xk|Dk) = C−1ρ(dk|xk)ρ(xk|Dk−1), (3.2)

where C =
∫
ρ(dk|xk)ρ(xk|Dk−1)dxk is a normalizing constant. The probability den-

sity ρ(dk|xk) in Eq. 3.2 is called the likelihood that quantifies how likely the model is

in explaining the measurement data. Evaluation of this term, which is crucial for the

implementation of the particle filter, will be presented below. The third term in Eq. 3.2,

ρ(xk|Dk−1) is the prediction probability density which is resulted from the initial proba-

bility density of the model parameters and the forward modeling Eq. 3.1a.

Prediction step to calculate the prior probability density of the state variables at time

step tk given observation data up to the previous time step tk−1 is represented by the

integral as Eq. 3.3.

ρ(xk|Dk−1) =

∫
ρ(xk−1|Dk−1)ρ(xk|xk−1)dxk−1, (3.3)

Direct evaluations of integrals in Eqs. 3.2 and 3.3 are not practically possible in high

dimensional space and arbitrary probability density functions. Instead, in the particle
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filter estimation, the integrals are effectively approximated by direct Monte Carlo simu-

lations. The probability distribution function (PDF) in the model space is represented

at time step tk by an ensemble of Ns particles {x1
k,x

2
k, · · · ,xNsk }. Each particle in the

ensemble is associated with a weighting factor so as to form the corresponding set of

weights {w1
k, w

2
k, · · · , wNsk }. Sum of weighs at any time step tk must satisfy unity condi-

tion
∑Ns

i=1w
i
k = 1. Thus, the filtered PDF at at any time step tk−1 is approximated by

weighted summation Eq. 3.4.

ρ(xk−1|Dk−1) ≈
Ns∑
i=1

wik−1δ(xk−1 − xik−1|k−1), (3.4)

where δ is Dirac delta function.

Monte Carlo approximation of Eq. 3.3 to the corresponding prior PDF is made using the

state transition Eq. 3.1a and the weighted summation Eq. 3.4 as follows.

ρ(xk|Dk−1) ≈
∫ Ns∑

i=1

wik−1δ(xk−1 − xik−1|k−1)

ρ(xk|xk−1)dxk−1

=
Ns∑
i=1

wik−1δ(xk − xik|k−1). (3.5)

In practice, the prediction Eq. 3.5 does not need to be evaluated but most importantly

the new state vectors are calculated by the forward modeling Eq. 3.1a for each particle in

the ensemble xik|k−1. In the sequel, the posterior PDF is approximated from the filtering

Eq. 3.2 as observation Eq. 3.1b and measurement data are taken into account, i.e.

ρ(xk|Dk) ≈
1∑Ns

j=1 ρ(dk|xjk|k−1)wjk−1

Ns∑
i=1

ρ(dk|xik|k−1)wik−1δ(xk − xik|k−1)

=
Ns∑
i=1

w̃ikw
i
k−1δ(xk − xik|k−1), (3.6)

where

w̃ik =
ρ(dk|xik|k−1)∑Ns

j=1 ρ(dk|xjk|k−1)wjk−1

. (3.7)

The likelihood ρ(dk|xk)is evaluated for each particle as follows.

ρ(dk|xik|k−1) =
1

((2π)r|Rk|)1/2

∗ exp{−0.5(dobsk − h(xik|k−1)tR−1
k (dobsk − h(xik|k−1))}, (3.8)
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where r is the number of observables. From Eq. 3.6, it can be observed that each particle’s

weight is updated as a product of w̃ik and the weight in the previous time step wik−1, i.e.

wik = w̃ikw
i
k−1. (3.9)

I employ the importance sampling approach without resampling (sequential importance

sampling), and the proposal PDF is chosen to be the same as the PDF of the state tran-

sition ρ(xk|xk−1) for practical implementation of the particle filter. At initialization, the

particles are sampled uniformly using the Latin hypercube sampling strategy (Forrester

et al. (2008)) in the feasible ranges of parameter values. All initial particles have the

same values of weight. The whole DA process employing the particle filter for parameter

identification of geomechanical problems is illustrated in Fig. 3.1.

3.2 Identification of elasto-plastic soil parameters for

tunnel model

3.2.1 Tunnel model and tunnel-induced settlements

The FE model was provided by the C2-subproject within the Collaborative Research

Center SFB 837 at the Ruhr-University Bochum. In this model, a shield tunnel boring

machine (TBM) advancing in homogeneous soil is modeled using the FE analysis software

PLAXIS 3D 2011. The model dimensions are 60 m long, 40 m wide, and 45 m deep. The

tunnel is of diameter D = 8.5 m and under an overburden depth equal to 1D. The overall

model is depicted in Fig. 3.2. The homogeneous soil behaves according to the Hardening

Soil constitutive model (Schanz et al. (1999)). The slurry shield TBM is 9 m long modeled

by circular elastic plate elements. Each concrete lining ring has the length of 1.5 m and

is also modeled by elastic plate elements. For detailed descriptions regarding modeling

of support pressure, soil excavation, grouting, erection of tunnel linings, to shield skin-

ground and tunnel lining-ground contacts used in the FE model the reader is referred

to Zarev et al. (2011). Assuming that properties of the elastic materials are known, two

important soil parameters are chosen for identification: shear modulus for un-/reloading

Gur and friction angle φ. Four observation positions and their orientations at observation

surface which is located at 39 m from the initial position of the tunnel head (before

excavation takes place) and perpendicular to the tunnel axis are depicted in Fig. 3.2.

The tunneling-induced displacements are calculated for 30 excavation steps, and each step

advances the TBM 1.5 m forward. Note, data assimilation is carried out sequentially for
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Figure 3.1: Particle filter using the sequential importance sampling (Murakami et al.

(2013))
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Figure 3.2: FE model of the 3D tunnel excavation and observables at observation cross-

section

each tunnel excavation step; so, the total number of filtering steps here equals 30. In ad-

dition, the filtering performance is examined by using the noise-contaminated synthetic

observation data. To produce the noisy synthetic observation data, the FE model cal-

culated displacements are added by an amount of Gaussian noise having zero mean and

standard deviations equal to three percent of root mean square values of them for each

observation point.

3.2.2 Results and discussion

I use an ensemble of 150 particles uniformly distributed on the 2-dimensional parameter

space. For efficient sampling in the parameter space, a Latin hypercube sampling is used

to sample in the feasible ranges: 20000 ≤ Gur[kN/m
2] ≤ 50000, and 20 ≤ φ[◦] ≤ 40.

Covariance matrix of observation uncertainty is set the same value for each observation

point, i.e. R = diag(1.2, 1.2, 1.2, 1.2).

From uniformly distributed weights before DA, the development of distributions of weights,

which represent the PDFs of model parameters, are representatively plotted at DA steps

10, 20, and 30 in Fig. 3.3. As can be observed, the PDFs become less scattered as more

measurement data, i.e. more tunnel excavation steps, are assimilated. At the end of

assimilation analysis, excavation step 30, each PDF is bell-shaped with a prominent peak

and a narrow variance which means very certain estimates of model parameters.
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Figure 3.3: Development of model parameters’ PDFs along DA process
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Figure 3.4: Parameter means and SDs along DA process

Identification results in form of PDFs are very advantageous for design engineers to pick

up highly probable parameter values for performing further design analyses. Besides,

when the resulted PDFs are bell-shaped, means and standard deviations are readily cal-

culated from the ensemble weights. In this study, for example, development of means and

standard deviations of the PDFs are shown in Fig. 3.4. It can be observed that as mean

values become closer to the true model parameters, the corresponding standard deviations

of the distributions also become narrower which reflect converging estimates of the soil

parameters.

For the nonlinear inverse problem as in this work, it is not evident to predefine the amount

of observed information that is required to ascertain convergence. With DA scheme, the

accumulation of information is utilized sequentially, and convergence is recognized when

no substantial changes of the mean values occur for several consecutive DA steps. In our

application, it can be expected that the more observation points are used, the faster the

convergence DA process can result. With the current observation configuration, less than

20 DA steps are needed to attain convergence as can be seen in Fig. 3.4.

It is worth noting that feasible ranges for generating the initial PDFs must include the

expected parameter values and have an amount of appropriate margins to allow scattered

distribution of the particles. The feasible ranges should be chosen not so wide to avoid

using a large number of particles which makes DA computationally expensive.

I have made an effort to include less sensitive parameters such as the stiffness modulus

in standard drained triaxial test E50 and cohesion c but the results were very scattered

distributions of the particles at the end of DA process. One reason could be that with
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such limited observable points, the data obtained is not informative enough to accurately

identify so many model parameters.





4 A global optimization approach for

inversion of the tunnel seismic waves

4.1 Concept

Solving for model parameters of a model described by partial differential equations given a

set of noisy measurement data such as the model for wave propagation in the subsurface is

a challenging nonlinear inverse problem. A standard approach to solving this problem is to

minimize a measure of misfit between model outputs and measurement data by employing

an optimization method. To solve inversion problems in geotechnical and geophysical

engineering, local optimization methods such as quasi-Newton and conjugate-gradient

are most often used to achieve feasible calculation time of the inverse problem because

forward modeling of the wave propagation is computationally costly and the number of

model parameters in practical applications is formidably large. The recipe for success

of local optimization is that only a few number of optimization iterations are required,

and the gradients can be approximated by mathematical tools such as the adjoint state

method (Tromp et al. (2005)) or the reciprocity principle (Sheen et al. (2006)). The

very significant limitation of the local optimization method for waveform inversion is that

the initial model must be very close to the sought-for model to avoid the solution being

trapped in one of the local minima on the misfit topography.

With regard to the application for predicting geological structure ahead of the under-

ground tunnel face, in which there are a limited number of major fault scenarios that are

commonly envisaged such as inclined fault zones and large blocks of erratic rocks, the

number of model parameters can be substantially reduced using appropriate parameteri-

zation of the model regarding the concerned subsurface situation. The limited number of

model parameter gives rise to a feasibility study of the application of global optimization

methods for predicting ahead of the tunnel face.

53
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The cost function to minimize in this study is targeted to be the full waveform misfit,

which measures differences between the recorded and the modeled information encrypted

in the respective waveforms, because of the two main reasons. Firstly, the full waveforms

(body waves and surface waves) contain the most information about the hidden geological

structure that can be obtained from the reflected seismic waves. Therefore, inversion of

the full waveforms promises high-resolution imaging of the subsurface. In contrast, travel

time tomography (Krauß et al. (2014)) and seismic migration (Dickmann & Sander (1996);

Kneib et al. (2000)) rely only on arrival times and/or amplitudes of the reflected waves for

imaging the geological structure. The advantage of having rich information is beneficial

to the underground tunnel settings because the underground working space is strictly

constrained for placing the receivers, usually on the tunnel side wall or the tunnel face,

which limits the amount of valuable recorded data. Secondly, waveform inversion is not yet

fully developed, for example, not only one answer is accepted to the question what form

of misfit functional better represents the mismatch and also facilitates global convergence

for the inversion or the question what inversion method guarantees global convergence

while keeps the computation time acceptable in engineering applications. Besides, several

general questions are yet to be answered such as what method of model parameterization

can help accelerate convergence, how prior knowledge about the geologic model should

be taken into account, and what numerical inversion methods yield high accuracy while

remaining computationally feasible despite the fact that measurements are contaminated

by noise and that the initial model is far from the true model.

It is known that the waveform misfit is often very multimodal. Therefore, minimizing the

misfit functional by global optimization methods is a preferable methodology to be ap-

plied in near surface engineering including tunnel reconnaissance based on the reflection/

refraction of elastic waves propagation in the subsurface. However, one problem for the

deployment of global optimization methods is the excessive number of forward simulations

of the computationally expensive elastic/ viscoelastic wave propagation that is required.

This difficulty can be overcome by either improving the calculation speed of the forward

model through the use of advanced computational methods and high power computing

facility or by improving the convergence rate of a concerned global optimization method.

In this work, the authors propose a new hybridized global optimization method that is

based on heuristic global search and local fine-tuning to invert the tunnel seismic wave-

forms for characterizing geological structure ahead of the tunnel face. A highly accurate

and computationally efficient forward modeling of tunnel seismic waves propagation is

achieved by utilizing a robust implementation of an open-source spectral finite element

code.
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Simulated annealing (SA) is a metaheuristic search algorithm to find near-optimal solu-

tions of an energy function. A probabilistic perturbation and acceptance of the candidate

sample with probability give SA the chance to escape from local minima. This perturba-

tion and acceptance/ rejection steps are run for many cycles under control of a gradually

decreasing temperature defined by a cooling schedule. The SA algorithm imitates anneal-

ing process for metals and glass that consists of heating the material to a high temperature

and then cooling the material gradually to allow for rearrangement of the material struc-

tures to happen. The best crystalline configuration of the material, which has minimum

energy, is expected to be achieved at the end of the annealing process.

Although SA possesses simplicity and physically sound principle from statistical mechan-

ics, this method is not preferred so much as other metaheuristic optimization methods

such as particle swarm optimization, genetic algorithm, or other evolutionary strategies to

be used for solving inverse problems in engineering and sciences where the forward mod-

eling is computationally expensive. The reason for that is because the SA relies only on

rejection/ acceptance of a single candidate at each run cycle which results in running ex-

cessively many annealing cycles until the global minimum is found. The global minimum

can easily be missed if the annealing temperature decreases too fast or the probability

distribution to generate sample candidates is set inappropriately.

Efforts to hybridize SA algorithm with other global and local optimization methods have

been made elsewhere in order to improve convergence or accuracy for specific applica-

tions. Martin & Otto (1996) proposed combining SA with local search heuristics to solve

combinatorial optimization problems in that a search heuristic is employed to improve

each random candidate by SA to a lower energy position before acceptance/ rejection

decision is made. Jeong & Lee (1996) combined genetic algorithm with SA to create an

adaptive simulated annealing genetic algorithm that can fix poor hill-climbing capability

of the genetic algorithm for applications in system identification. An effort is made in this

work to improve the performance of the SA algorithm based on the unscented Kalman

filter for use in tunnel seismic inversion. It will be shown in this work that execution time

and accuracy of SA algorithm can be improved by incorporating the unscented Kalman

filter (UKF) as an effective local minimization method into it. The UKF, which belongs

to the sigma-point Kalman filter family, is a derivative-free estimator for nonlinear state-

space models that can be efficiently adapted for solving parameter identification of static

and dynamic models (Van Der Merwe (2004)). The new unscented hybrid simulated an-

nealing (UHSA) algorithm is robust because it combines the exploration power of SA with

the exploitation efficiency of UKF. Herein, the authors imply exploration as the capability
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to randomly sample the full parameter space and exploitation is the power to navigate

regionally to a lower point in the local area with the help of information provided by the

data misfit landscape.

The working concept of the new hybridized optimization is illustrated in an exemplary

multimodal misfit landscape in 1-dimensional space, Fig. 4.1. At any annealing cycle, if

a random move (1) is accepted by the SA algorithm, this point is then improved locally

by the UKF procedure to attain to the near local minimum point (1*). This improved

point is biased from the centered local minimum because the misfit value evaluated in

this local minima region is larger than the minimum of misfit and also because the UKF

runs only for some iterations before SA proposes the next random move. SA proposes

the next random move (2) which can be accepted for sure or with probability according

to a chosen Markov chain Monte Carlo algorithm that will be discussed in the following

section. If this accepted move is in the global minima region, the UKF will exploit the

region and the global minimum (2*) is found with high accuracy. If the global optimal

point is found, acceptance rates in later annealing cycles become very small owing to the

Metropolis sampling (Metropolis et al. (1953)) that is used in the SA algorithm. The

UHSA algorithm bases on early convergence to the minima to achieve fast convergence

to the global minimum. The early convergence to the local minima is achieved thanks

to the UKF local improvements of the random moves and the Metropolis’s acceptance/

rejection mechanism that will be explained in the next section. Thus, applying the UHSA

algorithm to invert for the complicated model does not require very long annealing cycles

compared with the standard SA.

The advantages of the new algorithm are:

• Simplicity: The UHSA can be implemented quite easily by a modern program-

ming language because the standard procedure for SA algorithm is well known.

The "plug-in" of the UKF in the SA is straightforward and requires very minimal

implementation effort as the UKF consists of only a few matrix operations.

• Speed and accuracy: The intrinsic slow convergence rate of SA to solve global non-

linear optimization problems is overcome thanks to effective local search supported

by the UKF. Furthermore, rather than collecting random candidates in the final es-

timation results, the UHSA seeks to improve them locally, which results in a much

higher accuracy of the final estimated quantities.

• Guarantee: The statistical assurance of SA algorithm for finding the global minimum

is maintained for the UHSA.
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Figure 4.1: Global-local optimization concept of the new hybridized algorithm

• Derivativelessness: UHSA is a nonlinear derivative-free inverse method which is

suitable for non-convex, non-smooth misfit topographies.

Compared with the standard SA algorithm, the UHSA has additional algorithmic param-

eters belonging to the UKF to be tuned. However, most of them can be set utilizing prior

knowledge about the model parameters and accuracy of the measured data. Attention

should be paid to the designation of the sigma-points for the unscented transformation.

4.2 Unscented hybrid simulated annealing

The forward model is described by a nonlinear black-box function

d = h (m) + v, (4.1)

wherem ∈ Rn denotes n parameters of the parametrized model, d ∈ Rr stores the model

outputs at r observation points resulting from the nonlinear model h : Rn 7→ Rr. For

time-dependent problem such as wave propagation, the model h(·) is solved in time steps

for the simulation period; and the resulting batch data are stored in d. v ∈ Rr represents

modeling error caused by assumptions made in building the mathematical model and
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by the numerical approximations. This error can be assumed to be zero-mean Guassian

distribution with covariance Rm.

The misfit s : Rn 7→ R to be minimized is constructed for each receiver j by squares of

differences between the measured data dobs(t) and the modeled outputs d(t) in the time

window of interest [0, τ ]:

sj =
1

2

τ∫
0

‖dobsj (t)− dj(m, t)‖2dt, j ∈ {1, 2, .., r}. (4.2)

Before describing the new derivative-free global optimization algorithm, an adaptation of

the UKF procedure for local exploitation in the parameter space is developed next.

4.2.1 Unscented Kalman filter for local minimization

UKF is a very successful state and parameter estimator for nonlinear dynamic models in

which the posterior estimates are inferred from noisy observation data. It aims to over-

come the inherent limitations of the traditional extended Kalman filter that works only for

slightly nonlinear models and requires linearization of the nonlinear models. The lineariza-

tion of highly nonlinear models is often numerically non-trivial and inaccurate. Owing

to its high accuracy and simplicity, the UKF has attracted great attention and has been

applied to state and parameter estimation problems in fields ranging from training neural

networks in machine learning (Van Der Merwe (2004); Haykin et al. (2001); de Oliveira

(2012)) to monitoring electrical parameters of a battery (Plett (2006)), identifying model

parameters and hidden state variables for nonlinear structural dynamics (Mariani & Ghisi

(2007); Chatzi & Smyth (2009)), state and parameter estimation of nonlinear biological

dynamics (Attarian et al. (2013)), and calibration of soil parameters for geotechnical

modeling in mechanized tunneling (Nguyen & Nestorović (2015a)).

As for the Kalman filter family, the quantities being estimated in the form of a joint

Gaussian distribution are inferred from noisy measurement data by updating the numer-

ical model recursively. For linear models, the linear Kalman filter (Kalman (1960)) is

the optimal estimator. For nonlinear models, a kind of linearization is made to solve the

suboptimal estimation problem. The linearized Kalman filter results from applying the

Taylor series expansion to linearize the model (Jazwinski (1970)). Mapping of the Gaus-

sian mean and covariance through the linearized model suffers badly from linearization

inaccuracy. A more accurate way to keep high accuracy of the linearized mapping is to
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employ the unscented transformation (Julier & Uhlmann (2004)). The unscented trans-

formation is a statistical linearization method to approximate a multivariate Gaussian

distribution by a set of sampled points. Unlike Monte Carlo sampling, the number of

samples required by the unscented transformation is minimal, and the sample positions

are set deterministically about the current estimate and its covariance. The samples used

in the unscented transformation are the so-called sigma-points.

The predicted mean and covariance before measurement update are denoted as m̂ and Pm

respectively. If n model parameters are to be estimated, 2n+ 1 sigma-points are defined

as follows for the unscented transformation to approximate a Gaussian distribution of the

predicted estimate centered at m̂ with covariance Pm. The 2n + 1 sigma-point vectors

Mi are assigned as:

M0 = m̂, (4.3)

Mi = m̂+
(√

(n+ λ)Pm
)
i
, for i = 1 : n (4.4)

Mn+i = m̂−
(√

(n+ λ)Pm
)
i
, for i = 1 : n. (4.5)

The parameter λ remains free to tune so as to adjust the spread of the sigma-points about

the predicted mean estimate in directions of principle variances. It is suggested to select

n + λ = 3 if m is Gaussian (Julier & Uhlmann (1997)). The notation (·)i denotes the

i-column of the matrix within parentheses.

Each sigma-point is associated with a weight. The weights are defined as in Eq. 4.6 such

that the summation of weights is unity:

W0 =
λ

n+ λ
,Wi = Wi+n =

1

2(n+ λ)
, for i = 1 : n. (4.6)

Misfit measures for all r receivers are obtained by mapping the sigma-points through

the misfit functional Eq. 4.2. The mapping for r multiple receivers s = (s1, s2, . . . , sr),

s : Rn 7→ Rr, is done for each sigma-point to create the corresponding misfit vectors Si

as written in Eq. 4.7.

Si = s (Mi) , for i = 0 : 2n. (4.7)

This direct nonlinear mapping of the sigma-points helps to preserve second order accuracy

of the Gaussian distribution as opposed to the first-order truncation of the Taylor series

employed by the linearized Kalman filter.

A fictitious stationary state transition equation perturbed by a minimal amount of zero-

mean Gaussian noise with covariance Q emulating iterative time updating of the pa-

rameter vector being estimated completes the state-space model formulation that allows
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straightforward application of the Kalman filtering scheme. After the nonlinear mapping

of the sigma-points through the nonlinear model, the mean of the predicted misfit ŝ,

the covariance of the predicted parameters Pm, the covariance of the misfit at the pre-

dicted model P s, and cross-covariance between them Pms are approximated by weighted

summation rule as follows:

ŝ =
2n∑
i=0

WiSi, (4.8)

Pm =
2n∑
i=0

Wi (Mi − m̂) (Mi − m̂)t +Q, (4.9)

P s =
2n∑
i=0

Wi (Si − ŝ) (Si − ŝ)t +R, (4.10)

Pms =
2n∑
i=0

Wi (Mi − m̂) (Si − ŝ)t . (4.11)

A set of measurement data contaminated by measurement noise can practically be de-

scribed by Gaussian distribution ρD(d) ∼ N (dobs,Robs). Then, covariance matrix R in

Eq. 4.10 is obtained by an addition of the covariance for measurement uncertainty and the

covariance for modeling uncertainty, i.e. R = Robs +Rm (Tarantola (2005)). Posterior

mean m̂+ and covariance Pm
+ of the estimated model parameters are updated following

the Kalman filter’s measurement update step:

m̂+ = m̂+K (0− ŝ) (4.12)

Pm
+ = Pm −KP sKt (4.13)

with the Kalman gain K calculated as

K = Pms (P s)−1 . (4.14)

The zero vector term in the innovation term 0 − ŝ in the measurement update Eq. 4.12

results from the fact that the misfit for each receiver (described in Eq. 4.2) is expected

to be zero. Each element in the innovation term represents the least square difference

between the expected and the current estimated model.

The authors suggest iterative runs instead of a single run of the UKF procedure Eqs. 4.3-

4.13 to benefit from the superior convergence of the Kalman filter that is similar to that of

the Gauss-Newton method for least squares optimization (Bell & Cathey (1993); Bertsekas

(1996)).
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To initialize the UKF procedure, some prior knowledge about the model is provided in

the form of Gaussian distribution ρ0(m) ∼ N (m0,P0). In the first iteration of the UKF,

this prior information is assigned to the predicted mean and covariance: m̂ = m0, and

Pm = Pm
0 . In the successive iterations, the predicted estimated mean and covariance are

updated by taking the respective values from the posterior estimate, i.e. m̂ = m+ and

Pm = Pm
+ .

This completes the UKF procedure for minimizing the misfit functional locally. The

combined algorithm for fast global optimization is described next by plugging the UKF

procedure in the SA algorithm.

4.2.2 Unscented hybrid simulated annealing

The introduction of simulation of annealing process in statistical mechanics for solving

computer optimization problems by the work of Kirkpatrick et al. (1983) has been very

fruitful. Applications of the standard SA in seismic waveform inversion can be found

in Sen & Stoffa (1991); Sambridge & Mosegaard (2002); Tran & Hiltunen (2011).

On the core of the SA algorithm is the Metropolis algorithm which is designed to sample

a probability distribution in high dimensional space whose mathematical description is

unknown and only its function values can be evaluated. The Metropolis procedure is based

on the energy change ∆E of the system resulting from a small random perturbation to

decide if the candidate is accepted or not. Probability of acceptance follows the Boltzmann

distribution P (∆E) = exp
(
− ∆E
KBT

)
, where KB is the Boltzmann constant and T is the

current temperature of the system. If ∆E ≤ 0, the move is always accepted, otherwise

the move is accepted with the probability P (∆E).

For solving inverse problems, the misfit functional is used in place of the energy function.

The misfit functional is defined for r receivers as the summation of misfits calculated from

each receiver (Eq. 4.2), i.e. S : Rn 7→ R,

S =
r∑
j=1

sj. (4.15)

The misfit functional can take values of arbitrary magnitude depending on the type of

measurement data and the concerned misfit definition. In order to make the acceptance

probability independent of the misfit magnitude, I adapt normalized misfit differences as

proposed in Balling (1991),

P = exp

(
− ∆S

∆SavrgTc
)

)
, (4.16)
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where ∆S is a misfit difference between the proposed move compared to that from the

previous accepted value, and Tc is the current temperature. The Boltzmann constant

∆Savrg is set to be the averaged misfit differences of all accepted moves up to the current

temperature.

It is guaranteed that the global convergence can be achieved if annealing temperature at

cycle c decreases according to Tc+1 = T0
ln(c+1)

. But this slow annealing schedule leads to

too slow convergence for practical applications. The faster cooling schedule following the

exponential relation

Tc+1 = αTc, (4.17)

where α ∈ (0, 1), is used instead (Blum & Roli (2003)).

Random moves simulating perturbation are generated according to a distribution function

that is chosen based on proposal by Ingber (1993) under consideration of the upper bound

U i and the lower bound Li of each dimension mi, for i = 1, .., n.

mi
c+1 = mi

c + yi
(
U i − Li

)
, (4.18)

with yi ∈ [−1, 1] which is generated by the uniform distribution variable ui ∈ [0, 1] as

follows:

yi = sgn

(
ui − 1

2

)
Tc

[(
1 +

1

Tc

)|2ui−1|

− 1

]
. (4.19)

Eq. 4.18 is repeated until mi
c+1 ∈ [Li, U i], for i = 1, .., n.

A limitation that hinders the use of the SA algorithm for solving inverse problems of time-

consuming forward models is that global convergence of SA is not secured if the number

of annealing cycles is not sufficient. On the contrary, fast annealing by decreasing the

temperature rapidly (quenching) has a high risk of convergence at a local minimum.

A new scheme for accelerating convergence speed of SA is proposed in this work. The

authors coupled the UKF described above with the standard SA simulation if the random

move is accepted to improve locally the intermediate candidate to a better position in

the parameter space. Improved accepted samples give rise for the annealing simulation to

more quickly reject high energy random moves which are less important in the search for

the global minimum. Moreover, The UKF local search increases the accuracy of the found

model parameters because it utilizes information of the sample points (sigma-points) in

the neighborhood of the sampled candidate to find the best possible low energy point

in the vicinity. Therefore, the sensitivity of SA to annealing scheduling and proposal

distribution is relaxed when SA runs in combination with the UKF local search. To
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maximize the utilization of the local search, the SA should be able to sample in the

entire search space, and its acceptance rate should be kept relatively large to increase

the probability of escaping from local minima. However, the number of sampling points

needs not to be as many as that of the standard SA because the UKF can improve the

bad sample points. The new UHSA algorithm is summarized in Algorithm 3 for running

Nc annealing cycles enhanced by Nk iterations of the UKF.

Algorithm 3: Unscented hybrid simulated annealing

// Initialization

Settings for the UKF: P0,R,Q, Nk

Settings for the SA: T0, α,Nc

Choose a starting point for annealing process mc

c← 1

// run Nc cycles of SA

while c < Nc do

Random move to propose mp following Eq. 4.18

Calculate acceptance probability P : Eq. 4.16

// Check if the proposed move is accepted

if rand.uniform(0, 1) < P then

Set initial estimate for the UKF: m̂0 = mp

// Improve the accepted move by Nk iterations of UKF

for k = 1..Nk do

// Run the UKF with function s(·) defined in Eq. 4.2

m̂k,Pk = UKF (s(·), m̂k−1,Pk−1,R,Q)

end

Store the improved point mc = m̂k

end

Lowering temperature Tc: Eq. 4.17

c← c+ 1

end

The balance between exploration and exploitation in the parameter space can be adjusted

by choosing the number of UKF iterations. A fewer number of UKF iterations allows for

more exploration capability of the SA process. In a limit case, setting zero UKF iteration

converts the UHSA to the standard SA algorithm. Over-exploitation for each accepted

random move allows the algorithm to attain the minimum of the misfit very early but leads

to low acceptance probability for later annealed moves. When applied in solving inverse
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problems involving complex numerical model, the computation time depends mostly on

time to run the forward model. As described in Algorithm 3, in each annealing step,

the UHSA requires one forward model run for calculating the acceptance probability and

a fixed number of forward model runs for local exploitation by the UKF if the random

move is accepted. The number of forward model runs called by the UKF is determined

by (the number of sigma-points)× (the number of iterations), which is (2n+ 1)×Nk.

When initializing the UKF, it is worth noting that setting of the initial covariance P0

needs not to be close to the true estimation error covariance because the UKF only

aims for attaining the local minima in the vicinity of the randomly accepted candidate

model. Practically, P0 is a diagonal matrix whose square roots of the elements are set

inversely proportional to the degree of multimodality of the misfit landscape, but typically

not exceeding one tenth of the range for each dimension. Elements in the covariance

Q can be set so that their standard deviations should be around ten percent of the

corresponding standard deviations in the P0 as suggested in Nguyen & Nestorović (2015a).

Data uncertainty matrix R is assigned according to the noise level of the data recorded

by the receivers.

4.3 Finding global minimum of a multimodal

optimization test function

In order to test the efficiency of the UHSA algorithm, the new algorithm is employed

to find the global minimum of the multimodal Schwefel’s function. The n-dimensional

Schwefel’s function has the form

f(x1, x2, .., xn) = 481.982887n+
n∑
j=1

(
−xisin

(√
|xi|
))

. (4.20)

Finding the global minimum of the Schwefel’s function is challenging because there ex-

ist several local minima on the parameter space and the second minimal point is de-

ceptively very distant from the global minimum. The global minimum is located at

xmin = (420.968746, 420.968746, .., 420.968746), where f(xmin) = 0. Parameter space of

the Schwefel’s function takes feasible range in [−512, 512] for each parameter. Contour

plot of the 2-dimensional Schwefel’s function is plotted in the background of Fig. 4.4.

Five comparative SA and UHSA runs, each with the same random seed and algorithmic

settings, are set to evaluate the performance of the UHSA algorithm compared with the
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Figure 4.2: Comparison of best minimal values of Schwefel’s function with siminar runs

of standard SA and UHSA

standard SA. The standard SA is run using the same computer code but with the number

of UKF iterations set to zero. The UHSA is run with 10 UKF iterations. The annealing

processes are run for 2000 cycles. The fast cooling schedule Eq. 4.17 is set to begin with

6 degrees and to finish at 0.01 degree. The covariance matrices are set as follows for the

UKF: P0 = diag(42, 42), Q = diag(0.42, 0.42), R = 0.12.

Starting the algorithm with initial point m0 = (x1 = 0, x2 = 0), convergence of various

annealing runs plotted in Fig. 4.2 demonstrates that UHSA converges much earlier and

more precise than the standard SA thanks to the ability to exploit the local neighbor-

hood of the UKF procedure. Early acceptance of the candidates at the local minima

results in lower acceptance rate for the whole annealing process. The ’no-free-lunch’ rule

holds in that a large number of function evaluations are needed in the early annealing

cycles to have this early convergence advantage. However, the use of a large number

of function evaluations in the early stage pays off for the later annealing cycles as the

acceptance probability according to the Boltzmann distribution defined in Eq. 4.16 has

been substantially reduced.
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Figure 4.3: Comparison of number of function calls of standard SA and UHSA. Dark

points indicate cycles at which convergence criterion is met. Note that the convergence

criterion is not met by the standard SA

The number of evaluations of Schwefel’s function during the annealing process is showed in

Fig. 4.3. Overall, the UHSA requires a larger number of function calls than the standard

SA along the annealing cycles. However, high accuracy convergence of the UHSA is

achieved very early while the standard SA can not reach convergence criterion even until

the end of the annealing process. The number of function calls until convergence for each

annealing run is marked with a black dot in Fig. 4.3. Here, the convergence criterion is

met when the value of Schwefel’s function is less than 0.1. As can be seen in Fig. 4.3,

the convergence criterion is not achieved by the standard SA within the set number of

annealing cycles although the function is evaluated for 2000 times (one in each annealing

cycle). Many more annealing cycles are needed for the standard SA to converge, but the

number of function evaluations may explode greatly. Conversely, the UHSA needs in the

worst case 6604 functions evaluations, and only 184 function evaluations in the best case.

For analysis of the optimization results, not only is it important that the global minimum

is found, but the local minima also help provide a clear insight into the landscape of
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the function in the exploratory parameter space. This information is very well presented

by the distribution of all accepted moves. Representative distributions of the accepted

candidates displayed in Fig. 4.4 show clearly that the SA assisted by UKF local search is

more powerful than the standard SA in locating global as well as local minimal regions.

The standard SA can find the near-global solution, but many of the accepted moves are

scattered over unimportant regions. The UHSA, however, is able to locate very well the

function’s minimal regions. Interestingly, the UHSA results in a very high concentration

of the candidates for the dominant minimal regions. And at the global minimum, many

moves are reached precisely at the center of the minimal valley.

4.4 Tunnel seismic waveform inversion

4.4.1 Forward modeling of tunnel seismic waves

In principle, the current tunnel seismic prediction systems require either active source(s)

(excited by sledgehammers or explosives) or passive seismic source (induced by vibrations

of the tunnel boring machine) or both kinds of excitation as in Ashida (2001) and an

array of receiving geophones placed in the tunnel wall and/or on the cutter head of

the tunnel boring machine. Energy generated from a seismic source is propagated to

the tunnel geomaterials (soils and rocks) in the form of body waves which consist of

pressure waves (P-wave) and shear waves (S-wave). When these body waves encounter

geologic heterogeneities (fault zones, erratic rocks, boulders, etc.), the partial energy

of the incident waves is reflected/ refracted to the tunnel area and is recorded by the

receivers installed there. It is noted that a portion of the body waves is converted to

surface waves (Rayleigh waves) when the waves come into contact with the free surfaces

such as the surface in the tunnel chamber area and the ground surface. The rest of this

Subsection 4.4.1 describes the forward modeling of tunnel seismic waves using the spectral

element method implemented in the open-source SPECFEM2D software (Komatitsch &

Vilotte (1998)).

4.4.1.1 The spectral element method

SPECFEM2D by Komatitsch & Tromp (1999), a computer code that implements the

spectral element method (SEM), is employed to simulate viscoelastic wave propagation.

The peculiarity of SEM for solving waves propagation problem is that its solver is very
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Figure 4.4: Representative final distributions of the accepted moves (black points) after

700 annealing cycles of standard SA (upper) and UHSA (lower) of the 2-dimensional

Schwefel’s function
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time-saving thanks to effective high-order finite element interpolation technique that is

used. In geotechnical engineering applications, SEM has been applied to engineering

scale models such as elastic wave propagation as in Zheng et al. (2014) and elasto-plastic

behaviour of geotechnical structures as in Gharti et al. (2012).

SEM solves the linear elastic wave equation, Eq. 4.21, for displacement vector u:

ρ∂2
tu = ∇ · σ + f , (4.21)

where ρ is density distribution in the body Ω, f denotes external excitation. The stress

tensor σ is related to the small strain tensor ε by Hook’s law for isotropic materials as

written in Eq. 4.22:

σ = 2µε+ λtr(ε)δ. (4.22)

The two constants λ and µ are the first and second Lamé constants. The other equivalent

pairs of parameters such as Young’s modulus E and Poisson’s ratio ν, or pressure wave

velocity vp and shear wave velocity vs can also be used in place of the Lamé constants

depending on parameterization of the model. In case the material is not perfectly elastic,

attenuation is taken into account such that the stress is determined by the entire strain

history and the anelastic attenuation is characterized by the quality factor Q (Tromp

et al. (2008)).

Similar to the standard finite element method, the weak form formulation derived from

Eq. 4.21 on the modeled domain Ω is discretized into ne non-overlapping elements Ωe,

such that Ω = ∪nee Ωe. Since the surface integrals need to be calculated at the absorbing

boundary Γ, a number of nb surface elements Γb, such that Γ = ∪nbb Γb, resulting from

element discretization of the domain are taken into account. The SEM implemented in

SPECFEM2D package is restricted to quadrilateral finite elements of which the reference

element is defined on a unit square. Geometrical mapping between points in physical coor-

dinates and points in the reference coordinates is adequately approximated by Lagrangian

polynomials of degree 1 or 2.

Displacement field and its derivatives defined on the elements are, however, effectively

approximated by higher-order Lagrangian interpolants defined over the Gauss-Lobatto-

Legendre points. The Lagrangian polynomials of degree 4 to 10 are optimal to use in a

SEM implementation for wave propagation problem because this choice provides a very

good trade-off between accuracy and computation cost (Komatitsch & Tromp (1999);

Tromp et al. (2008)). Combination of the higher-degree Lagrangian interpolants and the

Gauss-Lobatto-Legendre integration rule leads to diagonal structure of the mass matrix
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in the assembly system

MÜ +CU̇ +KU = F , (4.23)

where U denotes displacement field, M the global mass matrix, C the global absorbing

matrix, K the global stiffness matrix, and F the source term. The diagonal mass matrix

M allows for simple explicit time-marching scheme to solve Eq. (4.23).

To ensure spatial accuracy and time stepping stability, attention should be paid in design-

ing the mesh and choosing of minimal time step. The smallest element size 4h should be

designed so as to resolve the smallest wave period regulated by the relation expressed in

Eq. (4.24)

4h < min(vs)

κfc
, (4.24)

where min(vs) is the smallest shear wave velocity, fc denotes central frequency of the

source. The value of κfc defines the upper power frequency. For Ricker wavelet, κ is 2.5.

It is found that approximately 5 mesh points per minimum wavelength is very accurate

when the Lagrangian polynomial degree of order 8 is used (Komatitsch & Vilotte (1998)).

Given the minimum mesh size 4h defined in Eq. (4.24), the time stepping size 4t must

satisfy the condition Eq. (4.25) in order for the explicit time-marching scheme to be stable.

4t < C
4h

max(vp)
, (4.25)

where max(vp) is the maximum pressure wave velocity. C denotes the Courant constant.

By heuristic rule C ' 0.5 for regular meshes, C reduces to approximately 0.3 to 0.4 for

irregular meshes (Komatitsch et al. (2005)).

4.4.1.2 2D tunnel seismic model

A simple geometrically parameterized model of the underground influenced by a tunnel is

set up for the purpose of studying the tunnel seismic wavefields. This model also serves as

a basis to perform a feasibility study of the characterization of the position and dip angle

of the geological layer change ahead of the tunnel face by means of waveform inversion.

The 2-dimensional modeled subsurface domain consists of a host ground and a fault zone

which are supposed to be in contact along a straight interface (Figure 4.5). The tunnel

diameter D is 8.5 m and the tunnel length is 30 m. Distance from the ground surface to

the tunnel crown is 4D. The model extends 125 m along the tunnel axis and the overall

height is 76.5 m. The ground surface, the tunnel side walls, and tunnel face are modeled

as free surfaces, all other faces in the model are absorbing boundaries. A point source



4.4 Tunnel seismic waveform inversion 71

Host ground

receivers

*
source

L

Fault zone

α

Figure 4.5: 2-dimensional tunnel model in ground with a dip fault zone for SEM simulation

of wave propagation

with central frequency fc = 200 Hz is located at the tunnel crown at 2 m from the left

boundary of the model. Thirty one receivers are placed in a line along the tunnel bottom

at interval spacing of 1 m. A geological layer change occurs 50 m ahead of tunnel face and

with dip angle of -10 degree. Material properties are defined as in Table 4.1. To account

for attenuation, materials are assumed to have viscoelastic quality factors QP = QS = 50.

Table 4.1: Material properties for simulation of tunnel seismic waves

Properties Host ground Fault zone

ρ [kg/m3] 2700 1900

vp [m/s] 3500 2200

vs [m/s] 2000 1200

Simulated wavefields at selected time frames having important tunnel seismic events are

illustrated in Figure 4.6. Although this model does not take into account elastic wave

propagation in full 3-dimension and the dispersion effect caused by the excavation damage

zone is neglected, the important seismic events agree well with those from the detailed
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a) b)

c) d)

Figure 4.6: Simulated total displacement wavefields: a) waves just after starting to prop-

agate from the source (t=10 ms), b) waves conversion at the tunnel face (t=26 ms), c)

waves being reflected at the layer change (t=52 ms), and d) reflected waves reaching the

tunnel face (t=72 ms)

3-dimensional finite difference modeling performed by Bohlen et al. (2007). Direct body

waves (P-wave and S-wave) travel in all directions into the subsurface and become atten-

uated gradually. The Rayleigh waves travel strongly along the tunnel wall to the tunnel

face where most of its energy is scattered into the secondary body waves and the rest

scattered Rayleigh waves keep circulating around the tunnel wall. The converted body

waves (mainly S-wave) propagate further ahead of the tunnel. Part of the propagating

wave energy is reflected at the heterogeneity (dip layer interface) and travels back to the

tunnel face in the form of body waves. As these reflected body waves reach the tunnel

face, much of their energy is converted back to Rayleigh waves. These waves travel along

the tunnel wall and are recorded by the receivers.

Synthetic reference data are generated with distance from the tunnel face to the geological

layer change L = 50 m (measured at center line of the tunnel axis) and dip angle α =

−10◦(counterclockwise from the perpendicular line to the tunnel axis).
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4.4.2 Inverse analysis

4.4.2.1 Misfit functional

The waveform misfit between measured waveforms dobs and simulated seismic data u is

defined as

S(m) =
1

2

r∑
j=1

τ∫
0

‖dobs(xj, t)− u(xj, t,m)‖2dt. (4.26)

In Eq. 4.26, model parameters are elements of vectorm = (L, α). The misfit functional is

calculated in the concerned duration τ and for r receivers. Other efficient measures of the

waveform misfit based on separation of phase and amplitude information are proposed

in Bozdağ et al. (2011). It has been shown in Chi et al. (2014) that the envelope misfit is

more convex than the traditional waveform misfit Eq. 4.26. The envelope misfit is defined

as

S(m) =
1

2

r∑
j=1

τ∫
0

‖Dobs(xj, t)−U (xj, t,m)‖2dt. (4.27)

In Eq. 4.27,Dobs(xj, t) and U(xj, t,m) are the instantaneous amplitudes of the measured

and modeled waveforms respectively. The instantaneous amplitude of a waveform is a

complex norm of its analytic signal whose real part is the signal itself, and the imaginary

part is the signal’s Hilbert transform. The plots of one waveform and its envelope are

compared in Fig. 4.7. Owing to its milder convexity, the inversion in this study is based

on the envelope misfit Eq. 4.26.

By simulations over a gridded parameter space, a contour of the envelope misfit landscape

can be viewed in Fig. 4.8. It can be seen that the misfit topography exposes a dominant

region containing the global minimum point at the reference model and several areas of

local minima elsewhere in the parametrized model space. The multimodal property of the

waveform misfit can be explained by the so-called cycle-skipping artifact, i.e. the wrong

cycle of the modeled and measured waveforms are fitted together when the phase difference

between the two waveforms is greater than half of a cycle (Virieux & Operto (2009)). This

problem happens because smaller local mismatch is likely achieved by fitting waveforms

to the closest wave cycle. Also, it can be seen in Fig. 4.8 that the valley that contains

the global minimum is very hilly along the parameter L while it elongates with gentle

slopes along the parameter α. The known characteristics of the misfit landscapes prompt

difficult convergence behavior in the inversion process (Nguyen & Nestorović (2015b)).
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Figure 4.7: Vertical displacement waveform and its envelope at one receiver placed on the

tunnel wall, D: direct surface wave, S: scattered surface wave, R: reflected surface wave
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A dot denotes the reference model
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4.4.2.2 Test 1: Inversion for an inclined layer change

The UHSA algorithm is set forth to invert the synthetic tunnel seismic waveforms of the

above described underground scenario. With respect to time-consuming forward simula-

tion of wave propagation problem and the multimodal property of the misfit landscape,

the authors aim to run a limited number of annealing cycles and focus more heavily on

the local minimization of the UKF procedure to fast achieve the misfit minimum. Thus,

50 annealing cycles and 8 UKF iterations are set for the inverse simulation. Annealing

simulation is performed with high initial temperature, T0 = 10 degrees, and ends with

T50 = 0.1 degree to allow for high acceptance ratio. Parameters of the UKF are configured

as follows: P0 = diag(0.12, 0.12), Q = diag(0.012, 0.012), R = 0.12Ir, where Ir ∈ Rr×r is

an identity matrix with size equal to the number of receivers r = 31. The initial model

(L = 60 m, α = 15◦) is intentionally placed distantly from the true model parameters in

order to challenge the search capability of the UHSA algorithm on a multimodal misfit

landscape. The parameters L and α take values in feasible ranges in [30 m, 50 m] and

[−25◦, 25◦] respectively.

Results for one run of the UHSA for inversion of tunnel seismic waves plotted in Fig. 4.9

show typical convergence behavior of the UHSA algorithm. The misfit is minimized

quickly in a few cycles, but the global minimum cannot be found until the 38-th cy-

cle. Until this global convergent state, 900 forward model runs of the computationally

demanding wave propagation have been used, mostly by the UKF procedure for local

exploitation of the misfit topography. Since global minimum is achieved negligible incre-

ments of the number of forward model runs are observed because of very low acceptance

rates.

Waveforms at every fifth receiver are plotted in Fig. 4.10 for a visual comparison between

the reference model and the initial model, and the reference model and the identified

model. The starting model generates waveforms which are noticeably different from those

generated by the reference model in that the reflected waves arrive much later. The direct

waves and waves converted at the tunnel face, which arrive much earlier to the receiver

array, generated by the two models show similar waveforms because they are not affected

by the position and angle of the layer change far ahead of the tunnel face. It can be seen

that waveforms resulting from the identified model are different from those of the initial

model in that the reflected waves are shifted to the true model. In addition to small misfit

value at the end of the inversion process, insignificant residual between waveforms of the

identified model and the true model confirms global convergence of the inverse analysis.
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Figure 4.9: Results for one run of UHSA’s 50 cycles: best minimum misfit and number

of forward model runs (upper) and values of model parameters (lower) along annealing

cycles
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Figure 4.10: Selected waveforms resulting from the reference model (dashed-black line),

the starting model (blue line), and the identified model (red line)
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Figure 4.11: 2-dimensional tunnel model in ground an artificial concrete remnant. The

overall modeled area is 125 m × 76.5 m. The concrete size and position are represented

by the geometrical parameters L = 20 m, U = 35 m, T = 10 m, H = 15 m

4.4.2.3 Test 2: Inversion for a concrete remnant

It is usually encountered when tunneling in urban areas also remnants of civil engineering

structures remain after they had been demolished. Here, it is assumed that a large

concrete block placing in proximity to the tunnel face as shown in Fig. 4.11. In this

case, the parameters of interest to the tunnel engineers are the anomaly’s position (L and

U) and size (T and H) as well as its material properties. With this more complicated

hindrance situation, the authors aim to test the algorithm capability further to deal with

a problem of a relative higher number of parameters.

An arbitrarily shaped anomaly is more realistic for a geological disturbance. However, the

number of parameters required to parametrize the anomalous structure increases quite an

extent and therefore the runtime the inversion takes will be tremendously significant for

the computer hardware available to the authors (Linux PC, 3.3 GHz).

The amount of energy reflected back by a small block of remnant concrete is expected

to be much lower than the geological situation in Test 1 above. In order to mitigate

reverberating waves traveling back and forth between the ground surface and the free
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surface at the tunnel crown, the source is placed at the tunnel invert. Thus, most of

the excitation energy propagates in direction ahead of the tunnel face and the bottom

absorbing boundary. The receivers are placed along the tunnel crown wall to reduce

displacement magnitudes of the direct waves from the source.

Material properties of the reference model are shown in Table 4.2. No attenuation is taken

into account in this Test 2 to reduce computational time of the forward model because

of a hurdle in a high number of forward model evaluations required for this rather high

dimensional inverse analysis.

Table 4.2: Material properties of the reference model in Test 2

Properties Host ground Concrete remnant

ρ [kg/m3] 1900 2300

vp [m/s] 1000 4100

vs [m/s] 600 2300

The overall modeled subsurface and the tunnel area have the same dimensions as in

the Test 1. The parameter values of the reference model are given as mtrue = (L =

20 m, U = 35 m, T = 10 m, H = 15 m, vp = 4100 m/s, vs = 2300 m/s). The feasible

bounds for the model parameters are taken to be in ranges of [5 m, 50 m], [5 m, 40 m],

[5 m, 40 m], [5 m, 30 m], [3500 m/s, 5000 m/s], and [1000 m/s, 2500 m/s] for L, U , T , H,

vp, and vs respectively.

The UHSA is set to run 200 annealing cycles and with only 4 UKF iterations to achieve

tractable computation time in approximately one week run on a standard computer.

Starting and end temperatures of the annealing process are set the same values as for

the Test 1. The UKF is configured to have rather scattered sigma-points with P0 =

diag(1.02, 1.02, 1.02, 1.02, 10.02, 10.02). The other covariance matrices are set accordingly

Q = diag(0.22, 0.22, 0.22, 0.22, 2.02, 2.02), R = 0.12Ir, where Ir ∈ Rr×r is an identity

matrix with size equal to the number of receivers r = 31. The inverse analysis is started

with the initial estimate m0 = (L = 40.0 m, U = 20.0 m, T = 30.0 m, H = 5.0 m, vp =

3300.0 m/s, vs = 1200.0 m/s).

With this parsimonious configuration of the UHSA, the globally convergent solution can-

not be found at the end of the annealing cycle as the misfit value shown in Fig. 4.12 is

not minimized. This misfit value decreases significantly in the first until the 83rd cycle,

but no further improvement can be made until the end of the 200 annealing cycles. For

the complete inverse analysis, only 4547 calls to the forward model are used.
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Figure 4.12: Results for one run of UHSA’s 200 cycles: best minimum misfit and number

of forward model runs along annealing cycles
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Fig. 4.13 shows positions, sizes and wave velocities of the concrete remnant indicating

the starting model and the identified model in comparison with the reference model. It

can be seen that the distance and depth to the disturbance are found. Considering the

height, the thickness and the velocities of the concrete remnant, the identified state is

not exactly those of the reference model. In other words, a local minimum solution is

found at the end of the annealing process. Wrong global convergence of the last four

parameters can be explained by their less sensitivity to affect the reflected waves. More

SA cycles and more UKF iterations may be needed to achieve higher accuracy of the

identified model. However, the use of higher SA cycles and UKF can be realized when a

high power computing facility is available. One other way to improve the overall inversion

speed of the UHSA is to parallelize the mappings of the sigma-points; mappings of all the

sigma-points are done simultaneously using multiple computers.

Placement positions of the receivers have a strong influence on the convergence due to

the information coverage of the received signals. However, placement of receivers in this

particular application is constrained to be on the tunnel sidewall. In the case drilling

boreholes is allowed, receivers can be placed well a distance from the tunnel face to record

the direct propagating waves. It is then expected that higher accuracy imaging of the

anomaly is achieved.

Nevertheless, the waveforms resulting from the identified model displayed in Fig. 4.14

show significant mismatch reduction through the inversion process. In a similar manner

to the Test 1, the reflected waves are improved the most by the inversion. The low-

amplitude wiggly waves resulting from the reverberations between the interface and the

free surfaces can be hardly fitted. Because the envelope misfit definition is used, the effect

of these low-amplitude waves to the inversion is lessened.
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Figure 4.13: Positions, sizes and wave velocities of the concrete remnant for the starting

model (blue) and the identified model (red) in comparison with the reference model (black)
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Figure 4.14: Selected waveforms resulting from the reference model (black line), the start-

ing model (blue line), and the identified model (red line)





5 Full-waveform inversion supported by

parametric level-set representation

5.1 An effective approach to reconstructing multiple

geological disturbed zones

As full-waveform inversion belongs to the model-based reconstruction methodology, which

is usually run in an iterative manner to update material properties of the subsurface, a

considerable amount of time and computation power is needed to obtain the reconstruc-

tion results. Engineering applicability, on the other hand, demands reliable and immediate

reconstruction of the disturbance scenarios. Speedy inversion can be achieved by start-

ing the inversion process with a very good initial model and using a derivative-based

method such as conjugate gradient, Levenberg-Marquardt, Broyden-Fletcher-Goldfarb-

Shanno (BFGS) methods, or other local optimization methods. This family of gradient-

based optimization can produce an entirely wrong reconstruction result (local minimum)

if little is known about the structure of the disturbance, which is usually the case, or if

the numerical calculations of the high dimensional derivatives are not exact enough.

At the other end of the inversion methodology are the global optimization methods that

can avoid the solution being trapped at one of the local minima and the statistical Bayesian

inference that can construct the posterior probability density of the concerned hidden

quantities. Stochastic algorithms can feasibly realize this family of methods via a meta-

heuristic optimization process or a Markov-chain Monte Carlo (MCMC) sampling strat-

egy. Although being actively researched, these approaches are still very computationally

demanding and therefore are not preferred for large models and models of complex physics

that require high computational power.

Most often, the continuous material properties of the inversion domain are discretized

depending on the spatial discretization and sometimes on the numerical integration scheme

used to solve the forward problem. This method for assigning the material properties leads

85
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to overly too many spatial unknowns in the corresponding inverse problem. For such a

pixel based representation of the material distribution, gradient-based optimization is

the method of choice to minimize the data misfit given the condition that the initial

model must be close enough to the true scenario to avoid the solution being trapped in

one of the local minima. The gradients of the misfit functional in high dimensions can

be economically computed by the adjoint-wavefield approach (Virieux & Operto (2009)).

However, the pixel-based FWI by this approach often leads to blurred reconstructions, i.e.

the borders surrounding regions of sharp material contrasts cannot be clearly delineated.

At the other extreme, the hidden structure can be directly parameterized with a few pa-

rameters using a set of lines or the basic geometric functions. However, this way of param-

eterization is limited to very simple objects only, and it requires careful constraining the

parameters to avoid self-intersecting of the geometric elements. Moreover, re-arrangement

of the geometric components in the computational domain during the inversion process

often requires re-meshing the computational grid to assure convergence of the forward

solves.

Therefore, it is very beneficial for the inversion process to have a parameterization method

that can flexibly define arbitrarily irregular objects using only a limited number of pa-

rameters. Such an efficient method helps to free the researchers and users from using

only the gradient-based optimization option and encourages the use and development

of other possible holistic inversion approaches based on global optimization and MCMC

procedures.

5.1.1 Level-set method for flexible representation of the disturbance

The original idea of the level set method is to define a smooth function φ(x, t) that

represents the interface ∂D of the multiply connected region D in the computational

domain Ω as a set where φ(x, t) = 0. The subsequent motion of the interface ∂D is

analyzed by convecting the level-set function φ(x, t) influenced by a velocity field v and

under control of the Hamilton-Jacobi Eq. 5.1. The velocity field v is dependent on space,

time, and the coupled external physics (Osher & Fedkiw (2001)).

∂φ

∂t
+ v · ∇φ = 0. (5.1)

One of the advantageous features of the level set method is that topological breaking and

merging of the region D are taken into account naturally by the evolution of the level
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set function. In inverse problems, this means no additional parameter(s) is assigned to

control the number of multiple objects, which is unknown, during the iterative updating

process. One further advantage of the level set method over the pixel-based representation

is that it results in crisp delineation between the background and the objects.

For the purpose of identifying multiple disturbances, which are defined as interfaces of

inclusions in a host domain, I only use the level sets to represent the arbitrarily multiple

disturbances. It is noted that one can approach to solve for the evolution Eq. 5.1 provided

that shape derivatives are calculated based on minimizing a data misfit functional.

Material distribution is assumed to have piece-wise constant values that define the back-

ground domain and the possibly multiple disturbance regions embedded in the back-

ground. Then, the subsurface region can be characterized by the spatial distribution

function χD(x) as

χD(x) =

{
1, if x ∈ D,
0, if x ∈ Ω\D.

(5.2)

Given the characteristic function Eq. 5.2, the material properties are assigned to the whole

investigated domain by the following simple multiplication rule

m(x) = miχD (x) +mo (1− χD(x)) , (5.3)

where mo is the material properties belonging to the background, and mi are those of

the disturbance. It is noted that mo and mi can have multiple components, for example

material’s dynamic elasticity can be defined by pressure wave speed vp, shear wave speed

vs and density ρ.

The level-set function comes in play to flexibly define the interface ∂D between the back-

ground and the disturbance. The level-set function φ : Ω 7→ R is a smooth function

defined on x ∈ Ω. Often, the zero-level of φ is used to define the interface ∂D. Then, the

regions inside and outside of the disturbance are delineated such that
φ(x) > 0, ∀x ∈ D,
φ(x) = 0, ∀x ∈ ∂D,
φ(x) < 0, ∀x ∈ Ω\D.

(5.4)

Similar to Eq. 5.3, material distribution in the whole space Ω is assigned by transferring

the level-set function through the Heaviside function H(·) = 0.5 (1 + sign(·)):

m(x) = miH (φ(x)) +mo{1−H (φ(x))}. (5.5)
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Because the level set function φ(x) is used in this application only for representing the

geometries, the Hamilton-Jacobi Eq. 5.1 is not evolved in time. Instead, the level set

function φ(x) is updated based on minimizing the discrepancy between the measured

data and the modelled output. To facilitate the model updating process supported by

the level-set representation, I adopt here the parametric level set (PaLS) representation

suggested by Aghasi et al. (2011) which is based on aggregating a number of weighted

instants of a predefined radial basis function (RBF) ψ(·). The RBF in this work is chosen

to be the C2-smooth Wendland’s function ψ(r) = (1 − r)4(4r + 1) defined on r ∈ [0, 1]

and equal zero if r > 1. The selected PaLS function is then written as

φ(x) =
Nb∑
i=1

αiψ

(
1

β2
i

‖x− xi‖
)
, (5.6)

where xi are centers of the RBFs - conveniently called as bumps, αi controls the mag-

nitudes and directions of the bumps, and βi is dilation factor defining the radial size of

each of Nb bumps. The variables xi can be set as free to tune if precise reconstruction

of highly curved interfaces is required. In this work, in order to save computation power

while achieving a fairly good representation of the geological situation, I populate these

centers at fixed grid positions in region that are important to investigate, e.g. in tunnel-

ing — some of ten meters in the planned course ahead of the tunnel face. Therefore, in

addition to the material properties of the disturbance, α ∈ RNb and β ∈ RNb are the free

parameters to be tuned during the inversion process in the applications in this work.

5.1.2 The proposed inversion technique

Generic inverse problems are naturally interpreted in the form of Bayesian statistical

inference, i.e. the posterior probability density ρ(m|dobs) of the concerned uncertain

parametersm given the observation data dobs is inferred from the prior probability density

ρprior(m) and the likelihood function ρ(dobs|m) according to Bayes’s theorem:

ρ(m|dobs) ∝ ρ(dobs|m)ρprior(m). (5.7)

The likelihood function ρ(dobs|m) is a probability function weighting how likely the model

parameters set m is to explain the observation data dobs. Assume that uncertainty in

observation data dobs and uncertainty in prior estimated parameters m̂0 are modeled as

Gaussian quantities with covariance matrices R and P0 respectively, Eq. 5.7 is rewritten

as

ρ(m|dobs) ∝ exp

[
−1

2

(
‖h(m)− dobs‖2

R−1 + ‖m−m0‖2
P−1

0

)]
. (5.8)
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One can employ a probabilistic model parameter updating technique such as the MCMC

method to estimate the probability distribution of ρ(m|dobs). Note that ρ(m|dobs) is gen-

erally not Gaussian because the model h(m) that maps from the model parameter space

to the observation space is in most cases non-linear. Or one may follow the deterministic

approach to seek for the parameters setm∗ that minimizes the negative exponential term

in Eq. 5.8, i.e.

m∗ = arg min
m

1

2

(
‖h(m)− dobs‖2

R−1 + ‖m−m0‖2
P−1

0

)
(5.9)

The function to minimize in Eq. 5.9 is so called the data misfit functional regularized

by the prior. The data misfit term and the regularization term are weighted by the

corresponding inverse uncertainty covariances. For more exposition to the connection

between the statistical approach and deterministic approach, the reader is advised to

refer to Martin et al. (2012).

The Kalman filtering approach for off-line parameter estimation aims to estimate itera-

tively the posterior probability density function ρ(m|dobs) but restricts itself to estimating

only the first two statistical moments, i.e. the multivariate mean and covariance of the

hidden model parameter set. Because the nonlinear Kalman filter can provide an unbiased

posterior estimate (mean), its mean solution is equivalent to the solution of Eq. 5.9 or

the maximum a posteriori estimate of Eq. 5.8. In addition, the Kalman filter can approx-

imate the distribution of the posterior density function Eq. 5.8 in the form of Gaussian

covariance. Therefore, with respect to the fullness of the estimated quantities, we can

state Kalman filtering is in between the deterministic minimization for a single solution

and the statistical inference for the complete posterior density function.

To employ the Kalman filtering in FWI, I assign the data misfit for each sensing node xj

as a nonlinear mapping which integrates the squared magnitude discrepancy between the

measured trace and the modeled trace along the entire recorded time t ∈ [0, T ] (in time

domain inversion):

sj = G(m,xj) =
1

2

∫ T

0

‖h(m,xj, t)− dobs(xj, t)‖2dt. (5.10)

For a number of r receivers, the collective data misfits form the observation vector s ∈ Rr

given the model parameters m ∈ Rn is formed by the nonlinear mapping G : Rn 7→ Rr:

s = G(m) = {s1, s2, · · · , sr}. (5.11)
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Then, evaluation of the data misfit function at the updating step k is cast as a pseudo-

dynamic state-space system in which the state transition is stationary (Wan & van der

Merwe (2001)):

mk = mk−1 +wk−1, (5.12a)

sk = G(mk) + vk. (5.12b)

In Eqs. 5.12a and 5.12b, vk ∈ Rr is the summed modeling and measurement uncertainty

and wk−1 ∈ Rn is the pseudo-uncertainty of the state transition. The uncertainties vk

and wk−1 are uncorrelated zero-mean Gaussian quantities. The covariance of vk, R, and

ovariance of wk−1, Q, are assumed fixed during the filtering process. If the components in

uncertain quantities v and w are statistically independent, leading to diagonal covariance

matricesR andQ respectively. A set of measurement data contaminated by measurement

noise can practically be described by Gaussian distribution ρD(d) ∼ N (dobs,Robs). Then,

covariance matrix R is obtained by adding the covariance for measurement uncertainty

and the covariance for modeling uncertainty, i.e. R = Robs +Rm (Tarantola (2005)).

I propose to use a special variant of nonlinear Kalman filtering — the unscented Kalman

filter (UKF) (Julier & Uhlmann (1997)) — to estimate the hidden parameters so as to

obtain minimized value of the data misfit function Eq. 5.11. The proposed methodology

is written shortly as the UKF-PaLS. Hence, the FWI task is accomplished by the use the

UKF for updating the model m(x) described in Eq. 5.5 which is equivalent to tuning a set

of uncertain parameters consisting of PaLS parameters and material properties m ∈ Rn:

m = {α1, α2, · · · , αNb, β1, β2, · · · , βNb,mi,mo}. (5.13)

The state-space model/ filtering process is initialized with an Gaussian estimate centered

at m̂ = m0 with covariance Pm = P0. Then the value for the covarianceQ of the pseudo-

uncertainty quantity wk−1 is set to be as a small fraction of P0 (Nguyen & Nestorović

(2015a)).

The UKF improves the linearization error of the conventional extended Kalman filter by

directing mapping of the estimated quantity through the nonlinear model using the un-

scented transformation. The unscented transformation is a statistical linearization method

to approximate a multivariate Gaussian distribution by a set of sampled points. Unlike

Monte Carlo sampling, the number of samples required by the unscented transformation

is minimal, and the sample positions are set deterministically about the current estimate

and its covariance. The samples used in the unscented transformation are so called the

sigma-points.
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If n model parameters are to be estimated, 2n + 1 sigma-points are defined as follows

for the unscented transformation to approximate a Gaussian distribution of the current

estimate centered at m̂ with covariance Pm:

M0 = m̂, (5.14)

Mi = m̂+
(√

(n+ η)Pm
)
i
, for i = 1 : n (5.15)

Mn+i = m̂−
(√

(n+ η)Pm
)
i
, for i = 1 : n. (5.16)

The parameter η remains free to tune so as to adjust the spread of the sigma-points about

the predicted mean estimate in directions of principle variances. The notation (·)i denotes
the i-column of the matrix within parentheses.

Each sigma-point is associated with a weight. The weights are defined as in Eq. 5.17 such

that the summation of weights is unity:

W0 =
η

n+ η
,Wi = Wi+n =

1

2(n+ η)
, for i = 1 : n. (5.17)

Misfit measures for all r receivers are obtained by mapping the sigma-points through the

data misfit function Eq. 5.11, i.e.

Si = G (Mi) , for i = 0 : 2n. (5.18)

This direct nonlinear mapping of the sigma-points helps to preserve second order accuracy

of the Gaussian distribution as opposed to first order truncation of the Taylor series

employed by the linearized Kalman filter.

After the nonlinear mapping of the sigma-points through the nonlinear model, the mean of

the predicted misfit ŝ, covariance of the predicted parameters Pm, covariance of the misfit

at the predicted model P s, and cross-covariance between them Pms are approximated by

weighted summation rule as follows:

ŝ =
2n∑
i=0

WiSi, (5.19)

Pm =
2n∑
i=0

Wi (Mi − m̂) (Mi − m̂)t +Q, (5.20)

P s =
2n∑
i=0

Wi (Si − ŝ) (Si − ŝ)t +R, (5.21)

Pms =
2n∑
i=0

Wi (Mi − m̂) (Si − ŝ)t . (5.22)
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The posterior mean m̂+ and covariance Pm
+ of the estimated model parameters are up-

dated following the Kalman filter’s measurement update step:

m̂+ = m̂+K (0− ŝ) (5.23)

Pm
+ = Pm −KP sKt (5.24)

with the Kalman gain K calculated as

K = Pms (P s)−1 . (5.25)

The zero vector term in the innovation term 0 − ŝ in the measurement update Eq. 5.23

results from the fact that the data misfit function Eq. 5.11 is expected to be zero.

To initialize the UKF procedure, some prior knowledge about the model is provided in

form of Gaussian distribution ρ0(m) ∼ N (m0,P0). In the first iteration of the UKF, this

prior information is assigned to the current estimated mean and covariance: m̂ = m0, and

Pm = P0. In the successive iterations, the estimated mean and covariance are updated

by taking the respective values from the posterior estimate, i.e. m̂ = m+ and Pm = Pm
+ .

5.2 Inversion tests with cross-hole acoustic wave

measurements

5.2.1 Acoustic waves in frequency domain

I first test the proposed approach to reconstruct the internal structure based on the

acoustic wave in the frequency domain, the Helmholtz equation, because its forward model

takes considerably less time to compute. The 2D model with an embedded disturbance

and the resulting wavefield at 25 Hz is illustrated in Fig. 5.1. The cross-hole experiment

is set up with 51 sources on the left side and 51 receivers on the right side of the model.

The forward modeling code accompanying the paper van Leeuwen & Herrmann (2013)

is used to compute the simulated wavefields utilized in the inversion. The 2D model is

discretized into 101 × 101 grid points. The synthetic measurements along the depth are

added by 3% of the RMS to simulate the inherent measurement noise.

The first reference model with a square disturbance at the center and the resulting scat-

tered wavefield are plotted in Fig. 5.1
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Figure 5.1: The true model and the scattered wavefield resulting from one source at the

center of the height. The filled colors in the model indicate acoustic wave velocities; the

filled colors in the scattered wavefield show the real part of the wavefield magnitudes.

5.2.2 Inversion results

The initial model is scattered in the square region of investigation (ROI), which covers an

area much larger than the ’suspected’ disturbance, with a grid of 8×8 equidistant bumps

(Nb = 64) as shown in the upper-left sub-figure in Fig. 5.2. The total number of hidden

parameters for the inverse problem is 129 (64 for α, 64 for β, and 1 for unknown acoustic

wave speed of the disturbance vi). The wave velocity of the disturbance is set very close

to the background wave velocity. The UKF-PaLS is set with the following initial and

uncertainty settings in particular:

• Initial estimate: m0 = {α0,β0, (vi)0}. In that, α0 = 10 × I(Nb, 1), β0 = 20 ×
I(Nb, 1), (vi)0 = 2020. I(Nb, 1) is an Nb-dimensional vector of all ones.

• Initial estimation error covariance: Pm
0 = diag(P α

0 ,P
β
0 , P

vi
0 ). In that, P α

0 = 402 ×
I(Nb, 1), P β

0 = 202 × I(Nb, 1), P vi
0 = 302. diag foms a diagonal matrix composed

the given elements.

• Data and model uncertainty covariances: R = (0.4)2 × I(r, r), Q = (0.1)2 × Pm
0 .

I(r, r) is an r × r identity matrix.

The reconstructions after 1, 8, and 16 iterations are shown in the other sub-figures in

Fig. 5.2 as well. It is observed that the reconstructions of the shape and material properties

of the disturbances improve over iterations. The satisfactory reconstruction after the 16th

UKF iteration has consumed only 16× (2× 129 + 1) = 4144 forward model solves, which

is very positive for solving an inverse problem of 129 dimensions.
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Figure 5.2: Initial model and the reconstructions after 1, 8, and 16 iterations
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Figure 5.3: Noisy synthetic measurements and model outputs of the initial and the recon-

structed models

Fig. 5.3 shows the noisy synthetic measurements, the observation data resulting from

the initial model and the reconstructed model. It can be seen that the response of the

reconstructed model can fit to a great extent the corresponding noisy measured data.

Next, to test the reconstruction capacity of the method with reconstructing multiple

objects, in the second reference model, the square disturbance is broken into two triangles

which are placed at a short distance to create two objects of the same material as shown

in Fig. 5.4. The algorithmic settings of the inversion process are kept the same as in

the case of reconstruction of the square disturbance; thus, the computational cost is not

changed compared to the previous inversion test.

The reconstructed wave velocity field is observed to improve in the iterative inversion

steps as can be seen in Fig. 5.5. The final reconstruction resembles the true model shown

in Fig. 5.4 to a great extent although there exist several small-size objects which are not

sensitive to the output wavefield due to the very small object-size to wavelength ratios.

Because of the same reason, the areas at the small-angle corners of the disturbance objects

cannot be resolved very well. The amount of data fit in the measurements can be observed

in Fig. 5.6. Overall, the convergence for the second reference model is slower, and the

resulting final image contains more artifacts compared to that for the first reference model.

It is noted that for waveform inversion in the frequency domain, the reconstructed image

of the disturbance can be improved by starting the inversion at a lower frequency. The

inversion result is then used as an initial model for the next inversion at a higher frequency.
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Figure 5.4: The true model and the scattered wavefield resulting from one source at the

center of the height

Figure 5.5: Initial model and the reconstructions after 1, 8, and 16 iterations
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Figure 5.6: Noisy synthetic measurements and model outputs of the initial and the recon-

structed models

The inversion process is then repeated with increased frequencies and ends at a frequency

that can resolve the small and highly curved objects. But at the same time, this multiple

frequencies inversion requires finer discretization of the model and longer computational

time as the frequency increases.

Increasing the number of RBFs in the level-set Eq. 5.6 and freeing the RBFs’ centers help

resolve small-size, highly curved, or small-angle objects but at the same time increases the

number of hidden parameters to a great extent. In the application for predicting ahead of

the tunnel face, mapping these very detailed geometric features are not as important as the

prediction of the existence of the disturbance and its quantitative estimate regarding the

overall shape, distribution, and material property. Therefore, I follow this parsimonious

parameterization approach in the main application that follows.

5.3 Application to tunnel reconnaissance

5.3.1 Tunnel seismic waves

The term tunnel seismic waves in this work is understood in a broad sense to refer to

all kinds of elastic waves recorded on the tunnel walls and acquisition borehole short

ahead of the tunnel face. I use the term tunnel surface waves to exclusively mention the

surface waves recorded on the tunnel wall only which result from wave mode conversion
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happening at the tunnel face as detailed in the works of Bohlen et al. (2007) and Jetschny

et al. (2010, 2011).

The tunnel surface waves are preferably excited on the tunnel wall. The tunnel surface

waves that propagate ahead to the tunnel face are converted into body waves (P-wave

and S-wave). If there exists impedance change caused by a geological heterogeneity, a

partial energy of the body waves are reflected/ refracted and travel back to the tunnel

and the rest continues to travel through the heterogeneity and beyond. The reflected

body waves undergo mode conversion when they encounter the tunnel face again. This

mode conversion generates the tunnel surface waves that travel along the tunnel walls

and are recorded by the geophones installed there. Analysis of the tunnel surface waves

can result in a good reconstruction of the first geological reflector but likely to miss the

further impedance interface(s) of the object because multiple reflections/ refractions of

elastic waves in an attenuating medium result in very small amplitudes of the recorded

events.

To have a better setting for FWI, I suggest also measuring direct transmission waves at

a line of receivers buried in a vertical borehole at an appropriate distance ahead of the

tunnel face. Besides, several sources placed at possible positions are excited to illuminate

the ROI from different angles.

The fact that the elastic waves in a heterogeneous medium undergo reflections, refrac-

tions, and mode conversions and possibly multiples of them complicate the direct in-

terpretation of the recorded waveforms. This section features the special characteristics

of the tunnel seismic waves by using numerical simulations using the spectral element

method (SEM) implemented in the open-source SPECFEM2D software (Komatitsch &

Vilotte (1998)). Because SEM is more efficient in computational time and accuracy

than finite element or finite difference methods in solving the elastic wave equation, the

SPECFEM2D is a preferred tool to study elastic wave propagation problems. Wang &

Cai (2015) used SPECFEM2D to study the influence of wavelength of the seismic waves

generated from fault slip rock bursts to excavation diameter on ground motion around

mine tunnels. Nguyen & Nestorović (2016) used SPECFEM2D as a forward solver to

study the effectiveness of a proposed hybrid global optimization method in solving low

dimensional tunnel seismic inverse problems.

Fig. 5.7a illustrates a representative disturbance situation in which a hard anomaly is

located just a short distance from the tunnel face. As only a small area around and

ahead of the tunnel face is taken into account in the model, all boundaries on the left,

right, and bottom of the model are modeled with absorbing boundary conditions. Surface
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a)

b)

Figure 5.7: A representative disturbance situation: a) the model with a single anomaly

of rectangular shape and b) the resulting seismogram. Receivers 0 - 20 are placed on the

tunnel wall, and receivers 21 - 41 are placed in the borehole at 70 m ahead of the tunnel

face.
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boundaries and the tunnel wall surrounding the excavated tunnel are modeled as free

reflection surfaces. The Ricker seismic source of 180 Hz and receivers in the excavated

tunnel are placed at some distance behind the tunnel face for convenience as the working

space in the excavation chamber just behind the tunnel face is very occupied. In addition

to the line of receivers along the tunnel wall, a series of receivers placed in a borehole well

distant ahead record the direct waves traveling through possible disturbances.

The material surrounding the tunnel is assumed to be homogeneous soft ground, and the

disturbance is a hard material. Wave speeds used in the simulations of elastic tunnel

seismic wave propagation are tabulated in Table 5.1.

Table 5.1: Material properties for the simulations of tunnel seismic wave propagation

Properties Host ground Disturbance

ρ [kg/m3] 1900 1900

vp [m/s] 1000 3300

vs [m/s] 600 1800

The resulting seismogram in Fig. 5.7b shows that direct interpretation of the subsurface

structure is hardly possible even in this simplified geological structure. The waveforms in

a seismogram contain the signature of the hidden structure we want to map. However,

the seismograms become harder to interpret visually as the degree of heterogeneity of

the subsurface increases. That is why automatic mapping of the subsurface region of

interest by FWI is attractive. FWI benefits from the high fidelity sensing instrumenta-

tion, the increasing power of computing facility, and on-going development in advanced

mathematical and computational methods.

5.3.2 Qualitative analysis of the recorded waves

To signify the content of the recorded waveforms in Fig. 5.7b, we can analyze the scat-

tered waveforms resulting from subtracting the recorded waveforms to the background

waveforms. The background waveforms, which are generated from the model without dis-

turbance, is plotted in Fig. 5.8a. The recorded waveforms are plotted again in Fig. 5.8b

for comparison. In the obtained scattered waveforms in Fig. 5.8c, the events that are not

caused by the disturbance are muted and therefore reveal very clearly the events caused

by the disturbance. It can be seen from the scattered waveforms that, for receivers in

the tunnel walls, the reflection from the front boundary of the disturbance is much very
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strong while that of the back boundary can be hardly seen. For the waveforms received

in the borehole, it can be observed that transmission waves arrive sooner and much more

weakly because the fast material disturbance accelerates the waves. Therefore, it can be

seen in the scattered waveforms that very strong direct waves are ’masked’ in the recorded

waveforms. By visual comparison of the peak amplitudes, it can be stated that, at least

for this simulation case, waveforms received in the borehole are more sensitive to the

geological disturbance than waveforms received on the tunnel wall.

The scattered waveforms in Fig. 5.8c shows the strong first reflected wave (Rayleigh

wave) registered by receivers on the tunnel wall (receivers 0-20) and the masked direct

wave (mainly S-wave) registered by receivers in borehole (receivers 21-41). Also, the

registered waveforms on the tunnel wall also show no significant reflected wave from the

back interface of the disturbance object but more multiple reflections traveling back and

forth between the object and the tunnel face. Therefore, a line of receivers placed in the

borehole is necessary to reconstruct the anomalous object.

5.3.3 Inversion results and discussions

Two geological scenarios shown in Fig. 5.9 are set up for FWI tests. The first scenario

(Fig. 5.9a) is the same as the situation shown previously in Fig. 5.7. The second scenario

(Fig. 5.9b) is different in that the disturbance consists of two separate areas. The sec-

ond scenario is expected to be harder for the reconstruction process because the area in

between the disturbed structure does not have direct reflection contact with the incident

waves. The wave paths, in this case, are reflected multiple times in this area, making

amplitudes of the transmission waves weaker.

Wave velocities of the background soil can be readily derived from the first arrivals of the

direct waves within known source and receiver positions; therefore, I assume in this study

that the material properties of the background is known and seek for the velocities as well

as the location and the geometry of the geological disturbance.

To avoid ’inverse crime,’ the synthetic waveforms are generated not using the PaLS but

by exact definition of the disturbance using geometric parameters of Gmsh software

(Geuzaine & Remacle (2009)). This means the best model that is achieved by PaLS

assignment can hardly resemble the true model.

The source frequency is selected such that wavelength of the fastest S-wave is smaller than

the size of the disturbance objects. For clear reconstruction of high-curvature sections and
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a)

b)

c)

Figure 5.8: Relative-amplitude seimograms of a) the background waveforms (without dis-

turbance), b) the recorded waveforms (with disturbance), and c) the scattered waveforms

generated from the disturbance scenario in Fig. 5.7
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a)

b)

Figure 5.9: True models for FWI tests: a) Test 1: one-object disturbance, and b) Test

2: two-object disturbance. The filled colors represent S-wave velocities, crosses denote

positions of the seismic sources and triangles the receivers
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sharp-angled corners of the disturbance, the frequency of the Ricker source function is

centered at 360 Hz. First inversion tests with a single source placed on the tunnel wall

failed to reconstruct the expected disturbance (I did not show the results due to limited

space). To improve the reconstruction quality, additional sources are placed at the tunnel

face, in the borehole at a depth of the tunnel axis, and on the ground surface as shown

in Fig. 5.9 to illuminate the disturbance object from different angles.

For FWI in time domain, direct use of the measured waveforms dobs(xj, t) and the mod-

elled waveforms h(m,xj, t) to define data misfit in Eq. 5.10 can lead to highly multi-modal

challenge in the topography of the misfit function because of the cycle-skipping effect. The

cycle-skipping artifact is caused by wrong cycle of the modeled and measured waveforms

being fitted together when the phase difference between the two waveforms is greater than

one half of a cycle (Virieux & Operto (2009)). To reduce the possible cycle-skipping in the

FWI process, the envelope misfit (Bozdağ et al. (2011)) is used instead of the waveform

misfit Eq. 5.10. The envelope D(xj, t) of the original waveform d(xj, t) at a receiver point

xj is defined as

D(xj, t) =

√
<(d̃(xj, t)) + =(d̃(xj, t)), (5.26)

where d̃(xj, t) is the analytic signal constructed from the signal itself and its Hilbert

transform H(·):
d̃(xj, t) = d(xj, t) + iH(d(xj, t)), (5.27)

with the Hilbert transform is defined using the Cauchy principle value Pv:

H(d(xj, t)) =
Pv
π

∫ +∞

−∞

d(xj, τ)

t− τ
dτ. (5.28)

5.3.3.1 FWI test 1 — single disturbance

The model has a structured mesh of 3864 rectangular 4-node elements. By level-set

parameterization of 5 × 6 bumps distributed at the ROI just ahead of the tunnel face,

the dimension of the inverse problem is reduced to 61 only (30 for α, 30 for β, and 1 for

S-wave velocity of the disturbance vs). P-wave velocity of the disturbance is assumed to

be vp =
√

3.36× vs. Other material properties are constant as shown in Table 5.1.

The UKF for time domain FWI in this application is configured with the following initial

and uncertainty settings:

• Initial estimate: m0 = {α0,β0, (vs)0}. In that, α0 = 3×I(Nb, 1), β0 = 2×I(Nb, 1),

(vs)0 = 1000.
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• Initial estimation error covariance: Pm
0 = diag(P α

0 ,P
β
0 , P

(vs)0
0 ). In that, P α

0 =

42 × I(Nb, 1), P β
0 = 32 × I(Nb, 1), P

(vs)0
0 = 1202.

• Data and model uncertainty covariances: R = (0.1)2 × I(r, r), Q = (0.1)2 × Pm
0 .

The iterative updates of the model resulting from the inversion process are plotted in

Fig. 5.10 for several selected iterative steps. It is evident that the reconstructed dis-

turbance progresses to expected reference model as the iteration increases. After 25

iterations, the object has been adequately reconstructed. In details, the object is well re-

constructed at its vertical interfaces because most interactions of the incident wavefronts

happen there. The particulars of the horizontal interfaces are not in good agreement, and

the wave velocity of the disturbance is slightly over-estimated compared to the reference

model.

Measures of the total data misfit, which is the misfit summed over all receivers, indicates

a sharp reduction in the misfit value. The envelope misfit value is reduced by nearly 70%

after 25 iterations as shown in Fig. 5.11.

Comparison of the selected waveforms resulting from the initial model, the estimated

model, and the synthetic reference model is plotted in Fig. 5.12. It can be seen that

a considerable amount of the waveform mismatch in the initial model is reduced in the

identified model.

Computational cost for the UKF-PaLS depends on the number of forward solves it takes

to complete the iterative inversion steps. In this FWI test, in which the inverse problem’s

dimension is n = 61, it takes (2 × n + 1) × 30 = 3690 forward solves to complete the 30

iterative steps.

5.3.3.2 FWI test 2 — multiple disturbances

With the same initial and algorithmic settings, I continue to test the UKF-PaLS approach

with solving the more challenging FWI test 2 (Fig. 5.9b). The iterative reconstructions

displayed in Fig. 5.13 show that the final reconstruction can locate the overall position of

the disturbance but fails to detail the object’s geometry, i.e. to delineate the two discon-

tinuous geometries. The difficulty of using FWI in this scenario is attributed to elastic

wave transmission through multiple heterogeneities and elastic wave multiple refractions

in the space between the two distinct objects. The total data misfit showed in Fig. 5.14

can not be reduced by more than 67% of the initial misfit value.
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Figure 5.10: The initial model, the reconstructions after 10 and 30 iterations, and the true

model resulting from the FWI test 1
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Figure 5.11: Data misfit along UKF iterations resulting from the FWI test 1

The waveforms resulting from the reconstructed model show reduced mismatch compared

the waveforms resulting from the initial model; however, 23% mismatch still remains

compared to the initial model. Fig. 5.15 visualizes the amount of fit to the target model

achieved the waveform inversion compared to that of the initial model at selective observed

positions. The FWI in this test consumes (2× 61 + 1)× 40 = 4920 forward solves as the

UKF-PaLS inversion process is run in 40 iterations.

5.3.3.3 Discussion

For the successful application of FWI in tunneling practice, one needs above all a very

efficient inversion method besides a high-fidelity forward solver of the wave propagation

problem and a complete set of high signal-to-noise ratio measurement data. The choice

of an efficient and flexible parameterization method like the level-set representation helps

to achieve accelerated inversion speed and quality reconstruction.

After all, the proposed approach is associated with some limitations. If there are some

objects located outside of the ROI (including the case of geological layer change), the

FWI may not be able to reconstruct the object inside the ROI. This limitation can be

remedied by either expanding the fixed spatial allocations of the RBFs or allowing the
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Figure 5.12: Selected waveforms resulting from the reference model (black line), the start-

ing model (blue line), and the identified model (red line) resulting from the FWI test

1. Receivers 0, 10, and 20 are placed on the tunnel wall; receives 30, 40, 50, and 60 are

placed in the borehole
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Figure 5.13: The initial model, the reconstructions after 10 and 40 iterations, and the true

model resulting from the FWI test 2
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Figure 5.14: Data misfit along UKF iterations resulting from the FWI test 2

centers of all RBFs to be updated in the inversion process. However, this expansion comes

with much increasing computational demand. Also, this FWI approach does not invert

for heterogeneity of the wave velocities, e.g. gradient material change in a particular

direction, within the disturbance as material properties are assigned to the disturbance

uniformly.
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Figure 5.15: Selected waveforms resulting from the reference model (black line), the start-

ing model (blue line), and the identified model (red line) resulting from the FWI test

2





6 Conclusions and outlook

6.1 Conclusions

Nonlinear Kalman filters and particle filter for soil parameters identification

Overall, the EKF and SPKF presented in this work are very capable of doing model

calibration for geomechanical modeling in mechanized tunneling. Fast convergence of the

parameters being identified and ability to tolerate measurement uncertainty are the main

advantages of the two Kalman filter algorithms. One other prominent advantage is that

the choice of initial model parameters must not be very close to the true parameter set

as for other gradient-based optimization methods. These nonlinear Kalman filters are

potential to apply for calibrating model parameters to modeling geotechnical structures

other than tunneling as well.

In particular, the use of the EKF requires approximations of the derivatives of measure-

ment data with respect to the model parameters due to identification. These approxima-

tions may be inaccurate for highly nonlinear and non-smooth FE responses. On the other

hand, the use of SPKF for parameter identification frees us from doing this brute-force

numerical calculation of the derivatives. But, in order to have this great advantage, more

cost is paid for forward calculation of the model: 2n + 1 runs for the SPKF compared

with n + 1 runs for the EKF in every iteration, with n number of parameters. How-

ever, the number of forward simulations required is still much less than those required

by other global optimization algorithms such as metaheuristic and generic Monte Carlo

optimization methods.

Also, particle filter based data assimilation is shown to be suitable for identification of

unknown constitutive parameters in modeling of mechanized tunnel excavation. The as-

similated results in the form of probability distributions are very convenient for judgment

and utilization of the identified parameters for further prediction and analysis of the forth-

coming tunnel excavation steps. The advantage of using the particle filter as a mechanism

113
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to update the posterior distributions is that it can intrinsically work with nonlinear mod-

els and non-Gaussian densities representing model parameters and uncertainties. Besides,

this method is very noise tolerant as it shows high accuracy of the identified parameters

even with a level of observation noise.

Although noisy information can be incorporated into the filters in the form of covariance

of zero-mean Gaussian distribution, the authors have observed that a large amount of

measurement uncertainty can cause great difficulty in achieving the true parameters set

especially for the parameters that contribute low sensitivity to the model outputs.

Careful design of measurement campaigns in tunneling and other geotechnical projects

will help provide Kalman filters inverse analysis with quality data. As the tunnel boring

machine advances, the nonlinear Kalman filtering schemes introduced in this work can be

continuously employed for updating the relevant hidden parameters about the soils and

rocks surrounded the TBM.

Global optimization approach for inversion of the tunnel seismic waves

An improvement of the SA algorithm is proposed to solve tunnel seismic waveform inver-

sion whose purpose is to develop an efficient method for prediction ahead of underground

tunnel face. The multimodal misfit functional can be effectively searched for the global

minimum by combining the exploration and exploitation capabilities of SA algorithm and

UKF procedure respectively. The benefits of using waveform inversion by the proposed

derivative-free global optimization include i) information of the full waveforms can be uti-

lized which promises high-resolution of the imaged geological structure ahead of the tunnel

face, ii) no good initial model and no gradient calculations are required to run waveform

inversion, and iii) not only the global minimum model is found but also other dominant

local minima which may help in expert judgment of the likely geological situations.

Overall, the UHSA algorithm does not require so many sample points in the parameter

space compared with the standard SA algorithm because ’bad’ random sample points can

be improved locally by the UKF. This local improvement is essential to accelerate the

convergence of the proposed algorithm.

Although the demonstrated example of the tunnel seismic model is very simply parame-

terized, inversion based on modeling of tunnel seismic wave propagation with a standard

PC still takes considerable calculation time. A high power computing facility is likely to

allow the application of this method to the characterization of more complicated geological

scenarios, or even for more realistic waves propagation in 3-dimensional space.
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The proposed method in this work can benefit from future development of the SA and

UKF algorithms. Within the current standard implementation of the two constituted

algorithmic components, the method can perform better by improving local convergence

behavior of the UKF. For example, measurement data can be partitioned into several

data blocks, then in each iterative run of the UKF, the data blocks are successively fed to

the filter. This data partition scheme may work well because with little data used at the

beginning of the filtering ease convergence. Later data increments are expected to guide

the solution to the global minimum.

Full-waveform inversion supported by parametric level-set representation

This work presents an inversion scheme enhanced by the PaLS parameterization of the

geometry to achieve effective and fast inversion of multiple arbitrarily shaped distur-

bances ahead of the tunnel face. This parameterization technique is very well suited for

reconstructing the object of complex geometries while allows for implicit handling of the

object’s interfacial boundary on a fixed computational mesh. The use of the UKF as an

inversion method results in an efficient derivative-free inversion process. The proposed

combination of parameterization and inversion methodology for FWI — the UKF-PaLS

— is effective in reconstruction capability and computing requirements. As computational

time is one of the largest difficulties preventing the application of FWI in tunneling prac-

tice, the use of the proposed inversion scheme can help to achieve reliable reconstruction

of arbitrary objects while keeping the computational time acceptably low.

More validations with experimental or in-situ data are important to prove the robustness

of the method against measurement errors. One other important work is to take into

account the wave propagation simulation in 3D with a detailed study of the influence

of the excavation damaged zone close to the tunnel wall and the hydrostatic confining

pressure for deep tunneling to build the high fidelity initial model.

Fast and quality reconstruction results achieved using only a few seismic sources and

receivers are encouraging to use FWI in tunneling practice and is especially appropriate

for tunneling projects in high-risk ground conditions where repeated data acquisition and

ground reconnaissance are required as the TBM advances.
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6.2 Outlook

6.2.1 Integration into a tunnel information system

It can be foreseen that inverse problems encountered in tunneling and geotechnical site

investigation continue to benefit from the booming developments in mathematical in-

verse theory, the increasing availability of high power computing facilities, and sensing

technologies (fiber optical sensor and others) as well as the new real-time monitoring

concepts.

From the computational viewpoint, advanced numerical approximations and material

models being continuously developed increase the capability to mimic physical phenomena

using computer simulations. This ability is very decisive for the model-based identification

realized by inverse analysis. The second computational advance that is vital for this

identification methodology lends itself to intensive developments of efficient computational

inversion methods based either on deterministic optimization or probabilistic sampling

approach or a combination of the two.

When dealing with data measured on construction sites, sophisticated data processing

tools are needed to increase signal-to-noise ratios and to filter out the unwanted frequency

content in data.

An ultimate system to facilitate data exchange and to automate the modeling and up-

dating of the geological conditions are desired for modern tunneling. Such a system has

started to exist in the name of tunnel information modeling (TIM). Reconnaissance can

be integrated as an advanced module in such a TIM system.

6.2.2 Validation against laboratory measurements

Validation plays a crucial role in developments of numerical methods. The most convinc-

ing performance evaluations are to validate the inversion results again in-situ measure-

ments. However, those real measurement data either are often not available, incomplete,

or the in-situ situation is not well documented. Therefore, it is very helpful to carry

out small-scale laboratory controlled experiments by which it allows to set up the test

scenarios of interest. Such an experiment set-up has been developed in the framework

of the sub-project A2 Development of effective concepts for tunnel reconnaissance using

acoustic methods within the Collaborative Research Center SFB 837 ’Interaction model-
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Figure 6.1: Sketch of the small-scale wave propagation experiment

ing in mechanized tunneling’ at the Ruhr-University Bochum. The small-scale laboratory

set-up for tunnel seismic experiments is sketched in Fig. 6.1.

Because of the small scales of the laboratory experiments, the chosen frequencies are in

the range of ultrasound waves. The below instruments are used for ultrasound excitations,

receivers, and acquisition of the ultrasound waveforms.

• Laser interferometer: Bossa Nova Quartet 500mW, frequency range 100 kHz – 50

MHz, 24-bit resolution, stand-off distance 100mm (DOF 5.5mm), aperture diameter

50mm, spot size 60 micro (wavelength 532 nm). The device can measure sub-

nanometer displacements.

• Ultrasonic transducers: Various low-frequency (in the range of 50 kHz to 600

kHz) piezoelectric transducers manufactured by Karl Deutsch, General Electrics,

Olympus are acquired. Arbitrary source function is loaded to the signal generator

(Keysight 33500B Series) and then is amplified by the Amplifier (E&I Model 1040L,

53dB fixed gain) before feeding to the ultrasonic transducer.

• A self-built scanning system placed on an isolation table (Newport S-2000 Series).

• Acquisition hardware (NI PCI-5922) with a user interface built with Labview.

With the data acquisition set-up in Fig. 6.1, the laser sensor is used to scan in a line on

the specimen’s top surface. For visual investigation of the effect of the fault in front of

the tunnel face, two corresponding samples of sandstone are prepared: one without fault

and one with an inclined cut mimicking the geological dipped fault or layer change as

shown in Fig. 6.2. I make surface scans of a length of 120 mm with an interval of 2 mm.

Using a 100 kHz ultrasonic transducer, a Ricker wavelet source is transmitted into the
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Figure 6.2: Small-scale specimens without fault (left) and with a dipped fault (right)

specimens. The two experiments are carried out in atmospheric condition under the same

contact condition between the ultrasonic transducer and the specimen.

The measured vertical displacement waveforms for the finite no-fault sandstone sample

is is shown in Fig. 6.3. Fig. 6.4 shows the resulting seismogram measured on the faulted

sandstone specimen. It can be seen in both the measured seismograms resemble in early

direct arrivals, but the later arrivals differ substantially between the two scenarios as the

result of reflections from the fault surface.

I note that before the ultrasonic data can be used in waveform inversion, it is important

to match the modeled waveforms to the measured waveforms on a simple test specimen

such as a homogeneous cylinder of aluminum, granite, or sandstone. It is needed to

characterize the actual source wavelet coming out of the piezoelectric transducers because

the transducer-specimen coupling condition and the characteristics of the transducer itself

modify the input source wavelet.
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Figure 6.3: Measured seismogram on the no-fault sandstone specimen
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Figure 6.4: Measured seismogram on the sandstone specimen with the inclined layer

change
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Nguyen, L. T. & Nestorović, T. (2015a), ‘Nonlinear Kalman filters for model calibration

of soil parameters for geomechanical modeling in mechanized tunneling’, Journal of

Computing in Civil Engineering p. 04015025.
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