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Abstract

Due to their non-convex free energy and their distinctive lattice symmetries, martensitic
materials typically form a laminate microstructure over a broad spectrum of length scales,
to which most of their thermomechanical response and characteristics are owed. Surfaces and
interfaces that are formed within this laminate microstructure contribute to almost every
aspect of its behavior. These effects have been investigated either from a general perspective,
such as regularity and scaling laws, or on particular aspects, such as optimal morphologies
of accommodation patterns and boundaries. The present work develops an all-around model
capable of reflecting micro-, meso-, and macroscopic features of the martensitic laminate
microstructure employing energy methods with particular emphasis on surface and interface
effects.

Our continuum micromechanical model has three major components. First, the elastic
energy is formulated based on an ansatz of a first-order laminate. This ansatz enforces the
coherence condition between martensite variants (almost) strictly. The stiffness tensors of the
variants are oriented exactly as their lattices. Second, twin interface energies are estimated
analytically using crystallographic and atomistic considerations of a sharp and coherent
interface, viz an interfacial monolayer. Third, an ansatz for grain boundary energy is derived
based on the microstrain energy of a self-similar construct within a thin boundary layer.
The energy minimization framework, implemented as a nonlinear finite element scheme,
is a competition between these three contributions. The model successfully predicts the
thermomechanical response at the mesoscale, i.e. a single grain, and also the geometrical
characteristics of refinement and accommodation of the microstructure.

In addition to the numerical treatment, a brief analytical study of a simplified formulation
is presented, whose results comply with some of the well-known theoretical and experimental
observations on scaling laws and the closely related energy estimates.



Kurzfassung

Aufgrund ihrer nicht-konvexen freien Energie und ihrer charakteristischen Gittersymmetrien
bilden martensitische Materialien typischerweise eine Laminat-Mikrostruktur über ein bre-
ites Spektrum von Längenskalen, aus der die meisten ihrer thermomechanischen Merkmale
abgeleitet werden können. Oberflächen und Grenzflächen, die innerhalb der martensitis-
chen Laminat-Mikrostruktur gebildet werden, beeinflussen fast jeden Aspekt ihres Verhal-
tens. Diese Effekte wurden entweder aus einer allgemeinen Perspektive, wie Regularität
und Skalierungsgesetze, oder hinsichtlich bestimmter Aspekte, wie zum Beispiel optimale
Morphologien der Anpassungsmuster und Grenzflächen, untersucht. Die vorliegende Arbeit
entwickelt ein Allround-Modell bezüglich der Grenzflächen, welches die mikro-, meso- und
makroskopischen Eigenschaften der martensitischen Laminat-Mikrostruktur unter Verwen-
dung von Energiemethoden simuliert.

Das mikromechanische Kontinuumsmodell hat drei Hauptkomponenten. Eine Kompo-
nente formuliert die elastische Energie auf Basis eines Laminat-Ansatzes erster Ordnung,
der die Kohärenzbedingung zwischen Martensitvarianten nahezu exakt berücksichtigt. Dabei
werden die Steifigkeitstensoren von Martensitvarianten genau nach ihren Kristallgittern ori-
entiert. Der zweite Bestandteil schätzt die Zwillingsgrenzflächenenergien unter kristallo-
graphischer und atomistischer Berücksichtigung einer scharfen und kohärenten Grenzfläche,
nämlich einer Monoschicht, analytisch ab. Ein Ansatz für die Korngrenzenergie wird durch
die letzte Komponente erstellt. Dieser Ansatz basiert auf der Mikrodehnungsenergie eines
selbstähnlichen Konstrukts in einer dünnen Grenzschicht.

Im Rahmen der Energieminimierung, die als nichtlineares Finite-Elemente-Schema im-
plementiert wird, wird das thermomechanische Gleichgewicht durch eine Konkurrenz zwis-
chen diesen drei Beiträgen erreicht. Das Modell sagt die thermomechanische Antwort auf der
Mesoskala, sprich ein einzelnes Korn, sowie die geometrischen Eigenschaften der Verfeinerung
und Anpassung der Mikrostruktur erfolgreich voraus.

Zusätzlich zu der numerischen Behandlung wird eine kurze analytische Untersuchung
einer vereinfachten Formulierung dargestellt. Hierbei entsprechen die Ergebnisse dieser Un-
tersuchung einigen hinlänglich bekannten theoretischen und experimentellen Beobachtungen
über die Skalierungsgesetze und über die damit verbundenen Energieabschätzungen.
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Nomenclature
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�
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Chapter 1

Introduction

This chapter makes the connection between the fundamental concepts and the particular
objective of this dissertation. We mainly borrow from axiomatic thermomechanics, crys-
tallography, continuum theory of martensitic transformation, homogenization methods, and
also partly from the usual mathematics that goes with them such as functional analysis.

1.1 Thermomechanics of solid microstructure

Macroscopic characteristics of solid materials are manifestations of the aggregate behavior
of their microscopic structure. In this sense, material science tries to understand and ex-
plain the thermal, mechanical, and electromagnetic properties of solids by bridging across
a spectrum of length scales ranging from interatomic distances, i.e. ∼ 10−10 m, up to struc-
tural dimensions, i.e. ∼100 m, or maybe higher in geomechanical problems. Regardless of the
length scales, most often the fundamental assumption is that the underlying solid system
is at the thermodynamic limit, which is to say that we are interested in those properties of
the solid that are determined by a collection of many atoms (∼ 1023). Exceptions are the
ab intio computations where many-particle systems are simulated with each particle having
several degrees of freedom, as required. But even in those computations often the ultimate
objective is to simulate the aggregate behavior of the solid in terms of first principles, in
order to deepen our understanding in a reductionistic sense.

A system is said to have reached the thermodynamic limit if under the assumption of
homogeneity the number of particles, n, in any of its subsystems is proportional to the
volume, V , of that subsystem. The subtlety of this assumption is that n is a discrete
quantity whereas V is a continuous one. Continuity of V means that a volume element
dV can be defined. But since n ∝ V , the smallest physically meaningful volume is equal
to V

n
, which bounds dV from below. This contradicts the mathematical definition of an

infinitesimal element which requires that dV → 0. From a practical perspective, however,
V
n

is diminutive especially in liquids and solids and also for gases in most circumstances.
This gives birth to the concept of continuum, where all physical quantities of the system are
assumed to be continuous. An infinitesimal element of any extensive macroscopic quantity,

1
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especially the volume element, corresponding to a continuum solid body

• is large enough so that the thermodynamic limit is reached, i.e. spatial fluctuations of
macroscopic quantities remain undetected, and yet

• it is small enough so that the macroscopic quantities can be assumed homogeneous
across the element.

A closely related concept is that of equilibrium. A thermodynamic system is said to have
reached equilibrium if its macroscopic state is well-defined. That is, if a set of independent
state variables corresponding to the system are fixed, then there will be no apparent evolution
of the system over time. When a system is at equilibrium, its hypothetical subsystems
must be in equilibrium with each other. Then, corresponding to the thermodynamic state
variables, there shall exist thermodynamic potentials that determine whether two systems in
contact with each other, such as two subsystems of a system, can be in equilibrium or not.
Conceptually, for a system to reach equilibrium one has to wait long enough so that any
perturbation within the system dissipates. Alternatively, the so called quasi-static conditions
can be assumed, which is basically equilibrium under non-equilibrium! This requires that
any disturbance within the system or at its boundaries propagates with a wave length much
larger than the dimensions of the system1.

From the above descriptions it is already clear that the equilibrium of a system is not
absolute. Even in the absence of large gradients and sudden changes the temporal fluctua-
tions in the system might become noticeable in certain observations. The same is true for
homogeneity of a system—being relative. A solid medium is usually made up of various
phases at the microscale. Even a monophase solid is often made up of grains, which at
least differ in their lattice orientations. Mathematically, the spatial and temporal averages
of the microscopic degrees of freedom pertaining to these inhomogeneities and fluctuations
are the thermodynamic state variables and potentials whose existence are postulated within
the axiomatic framework of thermodynamics. The idea of traversing time and length scales
through averaging procedures can be generalized to continuum theory of solids, where both
macroscopic solid and its microstructure2 are assumed to be continua. This encompasses a
variety of methods, depending on the type of inhomogeneity and the objective of averaging.

The averaging procedure can be employed to obtain effective macroscopic properties of
the solid. This is termed homogenization. Here, specific distributions (often probabilistic)
are assigned to the microstructural inhomogeneities, which are seen as texture. Then a

1In thermomechanics of solids, the thermodynamic variables are classified as external and internal. The
external variables are determined and controlled by the system’s surrounding. The internal variables are
of two types. First, internal state variables which have no inertia and their changes cannot correspond to
external work. Therefore, the power expended by them can only be dissipative, and their variations do not
pertain to any flux, and the energy content of the system does not change under such variations. Second,
internal degrees of freedom which have inertia and expend external work, therefore have flux and obey
balance equations. They usually express history-dependent behavior [21]. In other words internal variables
describe those degrees of freedom that can be altered without any change in the surrounding [101].

2Solid microstructures are basically small-scale inhomogeneities possessing varying degrees of regularity
and order.
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weighted average of the macroscopic property is obtained based on the solution of an aux-
iliary microscopic optimization or boundary value problem. Homogenization by itself does
not yield much information on why and how a certain composition and pattern is formed
at the microscale; and it does not usually answer the fundamental questions such as sta-
bility, optimality, and uniqueness of the particular configurations that emerge. Of course,
through homogenization one can eventually generate enough data to be able to hone the
macroscopic behavior of the material by modifying its microstructure. But this would be a
rather phenomenological approach that is more suited to practical purposes [100].

To answer fundamental questions, such as why and how a specific microstructure appears,
we can still use the ideas behind homogenization, but we need to augment the averaging
procedure with additional features. Namely, we need to confine the phenomenological and
heuristic postulates to a bare minimum or avoid them entirely if possible. This is facilitated
by relying on the thermomechanics of the microstructure, which in principle should eliminate
the need for heuristic assumptions. This, at the same time, will enable us to make the
connection between the micro- and macroscale both ways. Notice that in homogenization
the focus is almost entirely on micro-to-macro transition. Further, we have to study the
optimality of the macroscopic effective properties with respect to microscopic degrees of
freedom, rather than just methodically compute them.

The thermodynamic concept of a phase is central to understanding microstructures. Gen-
erally, a phase is a body of a substance that is homogenous with respect to all its observable
properties, both chemical and physical [101]. Different phases of a pure substance are dis-
tinguished by the so called order parameter, which is a thermodynamic state variable. This
newly introduced state variable is not necessarily an additional one, i.e. does not necessarily
add to the number of degrees of freedom. An order parameter is sometimes simply one of
the readily identified state variables and some other times it replaces one of them. In any
case, it is crucial to understand that the choice of an order parameter is neither unique nor
straightforward. Nevertheless, it is often directly or indirectly related to a first derivative of
the Gibbs free energy.

A solid phase of a pure chemical composition appears as a crystalline lattice. A widely
used order parameter for a crystal is the lattice displacement field which is defined as the
displacement of the lattice points from their original position, i.e. the lattice configuration
of lowest energy. All crystal lattices are translationally symmetric, that is, their energy
does not alter under collective lattice translation. Therefore, the lattice displacement field is
replaced by lattice deformation gradient. Consequently, the most suitable thermodynamic
potential do describe the equilibrium state of such a solid system is the Helmholtz free
energy, designated by Ψ(F, θ), in which F denotes the deformation gradient tensor and θ is
the temperature.

Remark 1. The terms “energy” and “energy density” are often used interchangeably through-
out this text. The precise meaning shall be clear from the context in each particular case,
at least through physical dimensions.

The free energy density of a stable monophase crystalline should be convex so that there
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exists a ground state corresponding to a unique minimum of the free energy. This minimum
energy, unambiguously called the ground energy, corresponds to ψ0(θ) = ψ(I, θ). There are,
however, crystalline solids whose free energies are non-convex depending on temperature.
Fig. 1.1 schematically illustrates an instance of a non-convex energy versus the order param-
eter, i.e. lattice deformation gradient, for varying temperatures. At high temperatures, it
has metastable phases at F◦i and F◦j , and a stable phase at F = I. At low temperatures the
two phases at F◦i and F◦j become stable, and F = I becomes metastable instead. In between
these two regimes, there is a certain temperature θc, called transformation temperature, at
which all the the states of local minima have equal energies. However, this state is very
short-lived and the transition from high temperature regime to low temperature regime is
spontaneous, such that ψ is not differentiable with respect to θ, which signifies a first oder
phase transformation3.

��
�

��
�

��
�

ψ(F, θ)

θ > θc
θ = θc
θ < θc

F
F◦i F◦j

Fig. 1.1: Schematic free energy of a cubic lattice above, at, and below transformation temperature.

High temperatures are associated with intense lattice vibrations and hence disorder,
because stronger thermal fluctuations make it less likely that the system becomes trapped
in a subset of microstates that can pertain to a stable or metastable macrostate. In a given
thermodynamic system, disorder is synonymous with symmetry. An ultimate example is a
liquid phase. All liquids possess full symmetry, viz continuous translational and rotational
symmetry, because they have no lattice structure which implies complete disorder. So, the
above solid-to-solid phase transition accompanies development of order in the system, in the
sense of reducing symmetry. Therefore, solid-to-solid phase transformations are said to be
symmetry breaking, which is mathematically identified when the symmetry group of a stable
low temperature phases is a strict subgroup of the symmetry group of the globally stable
high temperature phase, i.e. G(F◦i ) < G(I). We summarize these concepts in the following
definition. The high-symmetry phase is called austenite and the low-symmetry phase is
called martensite.

3The order of a phase transition equals the order of lowest derivative of the free energy that is discontinuous
at the transition state with respect to the varying state variable, or at the phase boundary with respect to
order parameter. For instance, discontinuity of ψ with respect to θ means a discontinuity of entropy which
is identified as the latent heat.
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Definition 1. martensitic phase transformation is a reversible diffusionless
first-order symmetry breaking solid-to-solid phase transformation.

Reversibility of the transformation will be clarified later when we lay down its crys-
tallographic aspects. The importance of the reversibility is that it results in a symmetry
connection between the low-symmetry states of energy minima, which are therefore called
martensite variants. In Fig. 1.1 these variants correspond to F◦i and F◦j . We will explain
later how the symmetry groups of the variants are connected to each other and to that of
austenite. In the present context, the most significant result of these crystallographic con-
siderations is the possibility of the so called twin-compatible variants and/or phases. This
condition is best formulated in terms of a kinematic constraint, called coherence condition,
on transformation strains4. Two coherent phases or variants are capable of forming twins,
which is the very basis of the laminate microstructure that is central to our work. As it
so happens, this kinematic constraint has the form of a rank-one connection between the
transformation strains which has some deep mathematical implications, as we will briefly
address.

1.2 Mathematics: convexity and related topics

The most general mathematical formulation of a thermomechanical problem is in the form
of minimization of an energy functional in terms of ψ. As mentioned, whenever ψ is a
(strictly) convex function of the order parameter, provided some additional assumptions
such as coercivity of ψ, the existence and uniqueness of a minimizer is guaranteed [41,
pp. 106]. Further, assuming that the minimizers are smooth enough, e.g. belong to C2,
the convexity of ψ ultimately causes the Euler–Lagrange equation(s) to be elliptic, and the
unique minimizer to be their solution. In the case of non-convex energy densities, such as
martensite, the existence of a minimizer to the energy functional can still be investigated but
its uniqueness becomes almost intractable. Instead, the focus is turned towards regularity
of minimizer(s). It turns out that the existence of a minimizer does not necessarily require
strict convexity of the energy density, but rather relies on a much broader condition called
weak lower semicontinuity [5, 41]. Consequently, the notion of convexity can be generalized
to polyconvexity, quasiconvexity, and rank-one-convexity5, in order of weakness (as opposed
to strictness in a mathematical sense), that is,

Convexity ⊆ Polyconvexity ⊆ Quasiconvexity ⊆ Rank-1-Convexity . (1.1)

It is then immediate that for every function f : Rn×m → R, for which the respective convex
envelopes can be defined, we have

Cf ≤ Pf ≤ Qf ≤ Rf , (1.2)
4Transformation deformation gradients F◦i , and transformation strains ηi are sometimes used interchange-

ably throughout this text. The meaning should be obvious from the context.
5Rank-one-convexity and ellipticity are equivalent for C2 functions.
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where for every ξ ∈ Rn×m, the convex envelope is defined as

Cf(ξ) = sup {g(ξ) : g ≤ f and g is convex} ,

and similarly for polyconvex Pf , quasiconvex Qf , and rank-one-convex Rf envelopes.
A well-known theorem of the calculus of variations states that if the energy functional is

coercive and follows a monomial growth rate, the notions of polyconvexity and weak lower
semicontinuity coincide. This guarantees the existence of a minimizer for quasiconvex en-
ergies. Furthermore, if ψ is a quadratic form in terms of the order parameter, then the
notions of quasiconvexity and rank-one-convexity are equivalent, which again guarantees the
existence of minimizer(s) for the energy functional, particularly if a linear hyperelastic ma-
terial is adopted. We mentioned also that the martensitic variants are rank-one-connected
through the kinematic coherence condition. At the same time, these variants pertain to
the extreme points of the energy landscape—being at the local minima. It follows that ac-
cording to Minkowski theorem6 the rank-one-convex envelope constructed from the coherent
martensitic variants coincides with the general rank-one-convex envelope of the free energy.
This construct is often termed the relaxed energy, and the process of constructing it is called
energy relaxation. The relaxation procedure is usually based on either the quasiconvex en-
velope or the rank-one-convex envelope. So, the basic idea behind the majority of material
models for martensitic phase transformation is to substitute the non-convex energy with a
piecewise quadratic energy which is then replaced by its relaxed counterpart. In practical
terms, relaxation of free energy can be viewed as a homogenization approach, and therefore
carries some of the common traits of homogenization with it. One last remark is in order
here. The relaxation theorems are mathematically stated for arbitrary domains, which ren-
ders them ineffective for applied purposes. Fortunately, however, it can be shown that if a
function is quasiconvex with respect to periodic perturbations (test functions) over the unit
hypercube, then it is quasiconvex for arbitrary domains and vice versa [41, pp. 173].

Although the energy relaxation makes certain that the energy functional attains a mini-
mum, it has it’s own drawbacks. First of all, the relaxed energy is bound to underestimate
the global energy of the solid because, as its name suggests, it poses weaker conditions on the
free energy density. These weaker conditions correspond to replacing the kinematic coherence
condition with a much more lenient requirement, called the average compatibility conditions.
This, however, is not a serious shortcoming in most circumstances, since calculation of the
energy upper-bounds show very little difference to the relaxed energy, which sets an energetic
lower bound. This implies that using the lower bound, i.e. relaxed energy, is good enough
an estimate to the free energy in most situations [63, 64]. Similarly, the relaxed energy fails
to capture most of the small-scale characteristics of the solid, because their corresponding
microscopic degrees of freedom are averaged out through the relaxation procedure. Most
notably, the average compatibility conditions leave out a precise representation of the solid
surfaces and interfaces, which play a crucial role at small length scales. Notice that the
surface energy density scales as ψγ ∝ 1/l, in which l is the characteristic length scale of the

6Minkowski theorem asserts that the convex hull of a compact set coincides with the convex hull of its
extreme points [41, pp. 338].
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thermomechanical solid; whereas the free energy density is independent of l. This means
that eventually the surface energies become decisive as the length scale drops, so much so
that the energetic competition between at least three contributions must be accounted for,
namely

• the free energy of the bulk of solid, which is often identified as elastic strain energy in
the present context,

• the energy of the coherent phase boundaries, which we call twin interfaces,

• and the boundary energy of the intended micro-domain, which itself originates in part
from microstrain energies yet at a smaller length scale.

Before we proceed, let us further emphasize the significance of interface phenomena in
solid materials in general. Solid interfaces and surfaces act as barriers to various dynamic
and transport processes which hinder the evolution of thermomechanical solid system to-
wards a state of global energetic minimum. Most solid systems at best march into energetic
minima only locally in such a way that the overall energy of the solid body is the resultant of
a bifurcation into any of the innumerable meso- or microstates, which are generally indistin-
guishable from each other for a macroscopic observer. So in this sense, we can identify the
surface and interface phenomena as the major factor in formation of solid microstructures,
which ultimately determines the macroscopic behavior of solid materials.

The present work is concerned with developing a continuum micromechanical model for
the laminate microstructure of martensitic materials that takes the surface and interface
energies into account. This is accomplished by enforcing the coherence condition almost
strictly at the microscale, which translates to a periodic kinematic ansatz in the form of a
first-order laminate. We assign different elastic stiffness tensors to the two twin-compatible
martensitic variants in their exact orientations relative to each other and to the parent
phase, which is unprecedented as far as we know. The twin interface energies are estimated
analytically based on crystallographic theory and lattice potentials of the martensitic phase
transformation based on its exact lattice correspondence. Some of the derivations relate to
the particular case of NiTi (49.75 at. % Ni), but in principle they should be generalizable
to other martensitic materials. The grain boundary energies are estimated based on a self-
similar ansatz. This ansatz is assumed isotropic, i.e. the relative orientation of neighboring
grains and the crystallographic orientation of grain boundaries are neglected.

1.3 A short survey of the literature

A brief look at the relevant literature in a semi-chronological order is presented here. This
is a mere personal tale of how the author has encountered and traced some of the references
back in time and is neither comprehensive nor historically accurate. The general continuum
micromechanical theory of polycrystalline can be traced back to Hill 1965 [73] whose work
relied mostly on the famous papers of Eshelby 1953–1961 [48, 49, 50]. These together with
the mathematical theory of polycrystalline solids that was established by Hashin and Shtrik-
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man 1961–1962 [68, 69, 70] in a variational framework were the basis for many of the later
developments.

The pioneering works of Khachaturyan, Shatalov and Roitburd 1966–1974 [93, 92, 136,
137] set the stage for understanding the thermomechanical aspects of martensitic phase
transformation and its microstructure. From a mathematical standpoint, the various no-
tions of convexity were rigorously investigated by Ball et al 1976–1984 [5, 10, 13] which
to some extent were based on the earlier work of Morrey 1952 [110]. Later on these ideas
found extensive use in the rationalization of continuum micromechanics of polycrystalline,
especially the martensite, and were further developed by Ball, James, Chu, and Carstensen
1987–2004 [11, 12, 9, 7, 8, 6]. Of particular relevance to our work are the extensions and
developments by Kohn, Otto, and Müller 1991–1997 [96, 98, 112, 97, 99]. Their work covers
a lot of ground spanning from polyconvexity, relaxation methods, scaling laws, and energy
estimates all the way to coherence conditions, interface effects, and pattern formation. The
reviews by Müller 1999 [113] and by Conti 2000 [38] give relatively accessible roundups
of these concepts. Along the same lines, the exposition by Dacorogna 2012 [41] is much
recommended for the mathematically inclined reader.

Among the above mentioned works, the more recent ones rely to a large extent on
the works of Ericksen 1979–1991 [42, 43, 44, 45, 46], and Pitteri and Zanzotto 1984–1998
[125, 126, 127, 128] who took especial interest in making a precise connection between the
crystallographic theory of martensitic phase transformation and the continuum theory. They
thoroughly studied the symmetry implications of non-degenerate continuum mechanics of
solid phase mixtures and transformations. This is particularly significant to our work since
we especially focus on interface phenomena which dependent on coherence conditions and
the entailing symmetry connections between the martensitic variants. The works of Bhat-
tacharya et all 1991–2003 [22, 23, 24, 26, 25] can be also categorized in this group.

The general crystallography of martensitic phase transformation was well established as
early as 1956 by Bilby and Christian [28]. In the particular case of NiTi, Otsuka et al
1999–2005 [121, 133, 134, 122] have done precise and comprehensive research.

Other than the above mentioned works of Kohn, Müller and Otto which investigate
various mathematical aspects of interface effects in the martensitic microstructure, the com-
putational work of Hackl et al 2004 [66] studies the twin interface energy and predicts general
accommodation traits by branching of the microstructure near the boundaries. Also Stup-
kiewicz et al 2002–2012 [146, 144, 145] present a relatively versatile model on twin interface
and the grain boundary effects especially the optimal morphologies of the laminate at the
boundaries.

The present work sets itself apart by making various extensions and generalizations based
on fewer and less restrictive assumptions. It develops an all-around model, including surface
and interface effects, capable of reflecting micro-, meso-, and macroscopic features of the
martensitic laminate microstructure simultaneously.



Chapter 2

Fundamentals

This chapter revisits some of the topics that will be used throughout this work. It serves
merely as an entry point. It neither tries to be comprehensive, nor does it mean to give an
exhaustive index of the concepts that will show up in the sequel. Some more elementary
formulas and topics have been moved to the appendices so that they do not interrupt the
flow of the text.

2.1 Laminate microstructure in martensite

The choice of martensitic materials for this dissertation is motivated by their extraordinary
properties that originate from what we have explained so far about their microscopic features.
Most conspicuously, the martensitic laminate microstructure has been identified as the origin
of shape-memory (SM) phenomenon. We demonstrate a contrived example, in terms of a
scalar displacement gradient, of how shape-memory and other closely related concepts work,
in order to set the stage for a full tensorial representation that will follow. Consider the
following energy minimization problem

min
u

{
E(u) =

∫ L

0

∫ 1

0

(
(∂xu)2 − 1

)2
dx dy

∣∣∣∣ u : Ω → R, u(∂Ω) = 0

}
, (2.1)

where Ω = (0, 1)× (0, L). The energy density ψ =
(
(∂xu)2 − 1

)2
has two minima at ∂xu =

±1, where it attains ψmin = 0 (see Fig. 2.1). Since ψ is not convex, the energy functional
E(u) does not posses an optimal solution in a classical sense. Hence, we construct a periodic
ansatz of the deformation field u for all N ∈ N, as

uN(x, y) =

{
x− n/N x ∈ [n/N, (n+ 0.5)/N)

−x+ (n+ 1)/N x ∈ [(n+ 0.5)/N, (n+ 1)/N ]
(2.2)

where n = 1, 2, . . . , N .
Fig. 2.2 shows the laminate construct (2.2) for N = 5. The displacement gradient is

equal to +1 or −1 almost all-over the domain except within the two jagged boundary layers

9
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ψ

∂xu−1 +1

Fig. 2.1: Double-well energy corresponding to ψ =
(
(∂xu)

2 − 1
)2.

next to y = 0 and y = L. This means the stored energy equals zero except at the boundary
layers, whose total area is proportional to 1/N . If we assume that the energy density ψ

remains finite within boundary layers, we can conclude that the total stored energy at the
boundary vanishes as N →∞. Therefore,

lim
N→∞

E(uN)→ 0 , (2.3)

which states that the minimization problem (2.1) has a minimizing sequence in the form of
the laminate ansatz (2.2).

Despite its mathematical validity, the above result gives rise to a physical problem which
is when N tends to infinity the width of each twin, 1/N , tends to zero. This is unrealistic
since the lath width (twin width) cannot be smaller than the corresponding interplanar lattice
spacing. Here, the twin interface energy comes to rescue. The energy functional in (2.1),
assuming sharp twin interfaces, is rewritten as [97, 99]

E(u) =

∫ L

0

∫ 1

0

(
(∂xu)2 − 1

)2
+ γ

∣∣∂2xu∣∣ dx dy . (2.4)

If we substitute the ansatz (2.2) into the latter functional, the resultant interface energy
will be equalt to 2Lγ N , which grows indefinitely as N → ∞. Hence, the interface energy
counterbalances the elastic energy and sets a finitely small lower bound to the lath width,
1/N .

The jagged construct at the vicinity of the boundaries, at y = 0 and y = L, is con-
ceivably the simplest model for the boundary. Except for very particular cases where the so
called average coherence condition between the laminate and its neighboring phase across the
boundary is fulfilled, the laminate microstructure is not so uniform as in (2.2) [23, 146, 83].
It is well established, both empirically and theoretically, that the martensitic laminate mi-
crostructure accommodates its discrepancies with the surrounding phases by

• varying its lath width, often called branching, and

• by varying the volume fractions of variants, often called needles,
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u(x, y)

x

y

x

y

Fig. 2.2: The laminate microstructure composed of equal fractions of variants with ∂xu = +1 and
∂xu = −1, illustrated in three dimensions (left) and its top view (right).

as it approaches the boundaries that are not parallel to the twin interfaces. In thermome-
chanical terms, the accommodation is again an effort to minimize the overall energy of the
laminate when the boundary energy is taken into account. Accordingly, the energy func-
tional (2.4) shall be further modified to reflect the accommodation strains. A simple version
can be given as

E(u) =

L∫
0

1∫
0

ϕ(x, y) dx dy +

−∞∫
0

1∫
0

β(x, y) dx dy +

+∞∫
L

1∫
0

β(x, y) dx dy , (2.5)

where ϕ(x, y) =
(
(∂xu)2 − 1

)2
+ (∂yu)2 + γ |∂2xu| and β(x, y) = c1 (∂xu)2 + c2 (∂yu)2. The

integrals outside the laminate domain relate to strain energy propagated into the surround-
ing medium, which is caused by the deformation mismatch between the laminate and its
surroundings. The two boundary energy terms can be simplified using dimensional consid-
erations and Fourier analysis to (see [76, 18])

EΓ (u) = c

(∑
k

|k| (û0(k))2 +
∑
k

|k| (ûL(k))2
)
. (2.6)

The amplitude û of the frequency k = 1/N is significantly larger than all the others, for ap-
parent physical reasons. This makes the corresponding term to have the decisive magnitude
in the boundary energy, i.e. EΓ (u) ≈ c/N

(
(û0(1/N))2 + (ûL(1/N))2

)
. Therefore, it is clear

that the boundary energy favors

• smaller lath width, and

• low amplitude oscillation of the deformation field

towards the boundary, which are synonymous to laminate branching and formation of nee-
dles, respectively [38] (see Fig. 2.3 and Fig. 3.1). The question of whether these configurations
are dynamically accessible from the energy well (ground state) is a subtle one ([99] pp. 280,
and [5] pp. 399).
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FIGURE 1.1. Three-dimensional plot of one function with finite energy.
The plotted function is the one used in the construction below in the case
of free boundary conditions.

we will always assume that they are compatible (i.e., they join continuously at the
corners, uL(0) = uB(0), etc., |uT (x) − uB(x)| ≤ ly , |u(L ,R)y| ≤ 1—otherwise, no
u with finite energy exists). The planar interface with the austenite is represented
by

uL(y) = u(0, y) = 0 .(1.4)
We will also assume that the surface energy σ is small enough, i.e., that ly ≥
2c1σ 1/3l2/3x , where c1 is a numerical constant specified later. We shall denote by lx
and ly the width and height of the rectangular domain under consideration; when
subrectangles are involved, we shall also use l for horizontal and h for vertical
lengths.
An example of a candidate minimizer is depicted in Figure 1.1. The above

model is essentially geometric in nature in the sense that the minimizer u is fully
determined by its value on one boundary (e.g., y = 0) and by the position of the
domain boundaries.
In [13], after proving existence of the minimizer, Kohn and Müller considered

the problem with free uB,T,R boundary conditions and proved that
d1σ 2/3l1/3x ly < min I < d2σ 2/3l1/3x ly(1.5)

where d1 and d2 are numerical constants. The proof of existence is essentially
based on the following compactness result, which we will need in Section 3:

LEMMA 1.1 (Compactness) Let " ⊂ R2 be open and let u j : " → R be a se-
quence such that u j ⇀ u in W 1,2(") and such that u jyy lies in a compact subset of
W−1,2("). Then

u jy → uy in L2loc(") .(1.6)

PROOF: The proof is by compensated compactness applied to v j = (u jx , u jy);
see [13] for a self-contained argument.

Fig. 2.3: An example construct of microstructural accommodation by branching [38, c© permission
obtained].

2.1.1 Important features of accommodation

The accommodation patterns are not unique and there are many equally favorable branching
patterns that fulfill the above minimization problem. Additionally, the two accommodation
responses, i.e. branching and needles, compete. Branching becomes the energetically favored
accommodation response when [98, 38]

‖CΓ‖
‖Cm‖

�
(

γ

‖Cm‖L

)1/3

, (2.7)

which takes place in one of the following physical situations

• The laminate is extended very long L� h.

• The surface energy is very small γ � 1.

• The surrounding phase is much stiffer than the martensite ‖CΓ‖ � ‖Cm‖.

Whenever branching is dominant, the laminate’s characteristic length, i.e. the lath width,
scales as

h(x) ∼
(

γ

‖Cm‖

)1/3

x2/3 , (2.8)

where x is the distance from the boundary. Depending on the softness of the boundary,
complex branching patterns may couple with needles near the boundary and the total stored
energy scales as the minimum between the energy of the laminate with rigid boundary and
the one of the elastically deformable boundary [99, pp. 278]:

E(6)
γ ∼ min

{
‖CΓ‖1/2 γ1/2L1/2, γ2/3L1/3

}
. (2.9)
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Fig. 2.4: Schematic illustration of shape-memory phenomenon and the underlying mechanisms of
temperature-induced martensitic phase transformation [25, c© permission obtained].

2.1.2 Shape-memory and pseudoplasticity

Fig. 2.4 is a schematic illustration of the shape-memory effect in martensitic materials and
how it relates to the microstructure. The specimen goes through a cycle between three states
as follows.

1. The specimen is kept at temperatures much higher than the transformation temper-
ature, having an entirely austenitic composition. It is then shaped into a particular
form, which is designated as state (a) on the figure.

2. Keeping the specimen constrained to stay in its form, it is cooled down to temperatures
well below the transformation temperature. In order to fulfill the kinematic constrains
of its fixed shape, the material forms laminate microstructure as it transitions from
state (a) to (b). Now, if the constraints are removed, the specimen keeps its trained
shape on its own.

3. With temperatures below the transformation, if the specimen goes through deforma-
tions large enough to endure plasticity, the microstructure reconfigures to state (c).
The plastic slip systems are strongly influenced by the presence of the twin interfaces,
in such a way that heating the specimen again back to temperatures well above the
transformation temperature will cause the crystal structure to relapse into its original
trained shape in the austenite phase.

4. In a final step, cooling down the specimen back to martensite without the presence of
any constraints will result in the microstructure in state (b).

This is how the material remembers its shape through the cycle of heating → training →
cooling → plastic deformation → heating.
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The plastic deformation in the shape-memory cycle differs substantially from what is
commonly understood as plasticity, because the material finally restores its original (trained)
shape by heating. This is why the recoverable plastic deformation of martensite below
transformation temperature is often called pseudoplastic deformation. Formulation of a
material model on pseudoplasticity and the shape-memory effect requires a special treatment
of dissipation due to its differences from the ordinary plastic behavior in solids. Ideally, a
thorough investigation of the dissipation in martensite would require an exact representation
of evolution of the twin interfaces. Because at the microscopic level the appearance and
disappearance of twin interfaces is a major cause of dissipation. In this respect, our kinematic
ansatz of the laminate will set the stage for such material models, since it enforces the
coherence condition almost strictly at the twin interfaces.

2.1.3 Superelasticity

We already showed how a solid mixture of phases fulfills homogeneous boundary conditions
and at the same time approaches a global energetic minimum. For a double-well free energy
density as Fig. 2.1 this is astonishing because satisfying homogeneous boundary conditions
pertains to ∂xu = 0, for which the free energy of a monophase solid would be far from
minimum. This can be further generalized to situations where a nonzero homogenous strain,
i.e. 〈∂xu〉 6= 0, is prescribed. Assume that the laminate ansatz (2.2) is modified to

uN(x, y) =

{
x− n/N x ∈ [n/N, (n+ λ)/N)

−x+ (n+ 2λ)/N x ∈ [(n+ λ)/N, (n+ 1)/N ]
(2.10)

where λ is the volume fraction of variant ∂xu = +1. Then, the average displacement gradient
of the laminate along the x-axis is not zero anymore, but rather

〈∂xu〉 = 2λ− 1 . (2.11)

Notice that the ansatz (2.10) still fulfills the sequential convergence to the minimum energy,
as (2.3), which means that deforming the laminate in this particular direction does not cost
elastic energy. This is the origin of the so called superelastic or pseudo-elastic behavior, where
loading the austenite slightly above the transformation temperature indicates an almost
linearly elastic behavior followed by a deformation-induced martensitic transformation. This
transformation causes a plateau in the stress–strain curve (Fig. 2.5), as if the material is
deforming plastically. However, unloading the specimen will result in an almost complete
return to the austenitic phase manifested in the complete recovery of the original shape.

For a comprehensive narrative of the shape-memory, superelasticity, and pseudoplasticity
in martensitic materials and their respective underlying mechanisms, the interested reader
may refer to [88, 65, 19].
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Fig. 2.5: Superelastic behavior in a tensile test of NiTi in an experiment by McNaney et al [107,
c© permission obtained].

2.2 Remarks on continuum mechanics

Since the Helmholtz free energy depends on the deformation field, we shortly address some
of the terminology and concepts of continuum mechanics which are particularly relevant to
our upcoming discussions. For further reading please refer to the textbooks by Chou and
Pagano [35], Holzapfel [75], Ogden [118], Marsden and Hughes [106], Ciarlet [37], in order
of sophistication and mathematical rigor.

The basic kinematic assumption of continuum mechanics is that the position of a solid
body B at any given time t can be expressed via a differentiable map χ : R3 × R+ → R3,
which gives the space–time trajectory of all the particles of the body as a function of initial
position in the so called reference configuration, B0, and time:

x = χ(X, t) , X ∈ B0 , x ∈ B(t) . (2.12)

The existence of a reference configuration is simply postulated. It can be the state of B at
any time for which all the relevant thermomechanical variables are known. Accordingly, the
state of the body at the present time, B(t), is called the current configuration. In kinematical
contexts, the reference and current configurations are sometimes termed undeformed and
deformed configurations, repectively.

An intensive thermodynamic state variable or potential, denoted by φ, corresponding to
B can be expressed as a field variable in either of the two forms:

1. φ(X, t), which is known as the Lagrangian description of φ, and X is called material
coordinates.

2. φ(x, t), which is known as the Eulerian description of φ, and x is the spatial coordinates.

The general motion of a continuum can be decomposed into three modes, namely trans-
lation, rotation, and deformation. The principle of objectivity states that translations and
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rotations may not alter the free energy of the solid body. Hence, we focus on deformation.
Intuitively, deformation occurs when the relative distance between any two particles of B
changes. The pointwise measure of this change is called strain, which is a tensor field over B.
The following table lists some of the more common strain measures and their corresponding
thermodynamic conjugate with respect to the Helmholtz free energy. Notice that σ is the
Cauchy stress tensor, F is the deformation gradient, and J is the Jacobian determinant of
x(X).

Strain Stress Configuration

Almansi (true) Cauchy (true)
Current

e =
1

2

(
I− F−TF−1

)
σ

Almansi (true) Kirchhoff
Reference

e τ = Jσ

Deformation gradient 1st Piola–Kirchhoff
Reference

F =
∂x

∂X
P = JσF−T

Green–Lagrange 2nd Piola–Kirchhoff
Reference

E =
1

2

(
FTF− I

)
S = JF−1σF−T

Tab. 2.1: Various strain measures and the corresponding conjugate stresses.

2.2.1 Rotation, stretch, and shear

There are particular modes of deformation that are important to any continuum mechanical
study of solid-to-solid phase transformations. We mention the following theorem, without
proof, which tells us how the deformation gradient is uniquely decomposed into rotation and
stretch tensors.

Theorem 1. polar decomposition theorem. Every non-singular F ∈ R3×3 with
detF > 0, can be uniquely represented as

F = QU = VQ , (2.13)

with Q ∈ SO(3), and the symmetric positive-definite tensors U and V are called the right
and left stretch tensors.

Another important mode of deformation is the so called simple shear, which is when the
deformation gradient F can be represented as

F = I + a⊗ b , such that detF = 1 , and a · b = 0 . (2.14)

The following lemma will be utilized in our upcoming derivations.
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Lemma 1. For any two vectors a,b ∈ Rn, such that a · b = 0, we have

(I + a⊗ b)−1 = I− a⊗ b .

Proof. Multiply (I− a⊗ b) by (I + a⊗ b) from left and right to obtain I.

2.2.2 Coherent solid interfaces

Two adjacent variants of a solid phase that have evolved by transformation from a single
parent phase might be able to form a coherent interface through transformation. Such a
configuration is called a twin and the two phases are said to be twin-compatible. A solid
interface is considered to be coherent when the displacement field suffers no discontinuity
across the interface. This in turn requires that any area element of the interface is deformed
equally in either of the two adjacent phases, which means

Cof F1 · N̂ = Cof F2 · N̂ , (2.15)

where F1 and F2 are the deformation gradients of the two neighboring phases with respect to
the common parent phase, and N̂ is the unit normal vector to the interface in the reference
configuration, i.e. the parent phase. The above condition if usually restated in a more
accessible form, as

F2 = F1 + a⊗ N̂ , (2.16)

where a is a vector whose obvious physical interpretation is the jump in deformation gradient
across the interface, that is,

a = JFKN̂ = (F2 − F1) · N̂ . (2.17)

It is crucial to keep in mind that the coherence condition does not bear information on the
orientation of the parent phase. This has pros and cons, depending on the context. We will
return to this topic shortly.

2.3 Basic crystallography

In this work we have adopted the conventions and notations of Hermann’s textbook [72] for
the most part, and also partially those of Bhattacharya’s [25].
A crystal lattice, also known as Bravais lattice, is an infinite periodic array of lattice points
(atoms), designated by L(ai, rj), which can be expressed as

r = rj + liai , (2.18)

with ai, rj ∈ R3, i ∈ {1, 2, 3}, j ∈ {1, . . . , p}, and li ∈ Z. The ai’s are the lattice vectors
and rj’s form the atom basis, such that rj = xijai, xij ∈ R and

∣∣xij∣∣ < 1. The magnitude
of the lattice vectors are called lattice parameters, or lattice constants and are shown by
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{`1, `2, `3}, i.e. `i = ‖ai‖. In the case of monatomic crystals the atom basis has only one
element which can be taken zero by a proper choice of lattice vectors, so each lattice point
can be represented as r = liai. Accordingly, a unit cell is defined as the subdomain A ⊂ L
whose repetition covers the entire lattice and at least includes one lattice point. The most
apparent choice of a unit cell would be A ≡ {a1,a2,a3}, whose volume equals

VA = |a1 · (a2 × a3)| . (2.19)

The choice of unit cell is obviously not unique. Therefore, the so called primitive unit cell, A◦,
is defined such that its volume is the minimum of all possible unit cells. A more illuminating
definition of a primitive unit cell is given as follows:

A◦ =
{
{a1,a2,a3}

∣∣∣ @ r ∈ L(ai) : r = xiai , x
i ∈ [0, 1)

}
. (2.20)

All these definitions are trivially generalized to lattices in R2. For instance, a primitive unit
cell in a two-dimensional lattice has the minimum area, i.e. A◦ = arg minA |a1 × a2|.

A lattice direction or lattice edge can be represented by a vector which can be decomposed
onto the lattice vectors: e = l1a1 + l2a2 + l3a3. The l1, l2, l3 are known as the Miller indices,
which are collectively denoted by [l1l2l3] to show the lattice direction. A lattice plane, also
called a crystallographic plane or a netplane, is a plane passing through at least three non-
coplanar lattice points. A stacking of lattice planes generates the original lattice. Thus, as
soon as the atom basis of the lattice plane is identified, it is considered a crystal monolayer.
A lattice plane is determined by its normal vector, n̂, which does not necessarily posses its
simplest representation in the same lattice coordinates as the crystal itself. Therefore, it
may be adapted via a lattice transformation T ∈ Z3×3. The alternate lattice, L′

(
a′i, r

′
j

)
, is

defined such that a′i = Tai and r′j = T rj, where T ∈ Z3×3, detT = 1. The transformation
T is then an apparent symmetry of the lattice. In general, a symmetry transformation of a
lattice belongs to R3×3. Suppose that two lattice directions e1 and e2, parallel to the lattice
plane, are known. Then

n̂ = α(e1 × e2) = αT i1ai × T
j
2aj = α {l1 (a2 × a3) + l2 (a3 × a1) + l3 (a1 × a2)} . (2.21)

where α = |a1 × a2|−1, is a normalizing factor, and l1 = T 2
1 T

3
2 −T 3

1 T
2
2 , and so forth. The li’s

are Miller indices of the lattice plane, denoted by (l1l2l3), expressed in the so called reciprocal
basis. The reciprocal basis, indicated as {a1,a2,a3}, is defined such that

ai = εijkaj × ak/VA . (2.22)

It should be readily clear that ai · aj = δji .
We itemize some useful assertions without proof. It should not take much effort to verify

them though.

• Every reciprocal lattice point [l1l2l3] corresponds to a lattice plane whose unit normal
is n̂ = (l1a

1 + l2a
2 + l3a

3)/ |l1a1 + l2a
2 + l3a

3|.

• The reciprocal of reciprocal lattice is the lattice itself,
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• The lattice plane marked by Miller indices (l1l2l3) corresponds to a plane in the lattice
coordinates that passes through the points a1/l1, a2/l2, and a3/l3. In a cubic lattice,
where the lattice and its reciprocal coincide, this comes naturally. But for a lattice cell
chosen arbitrarily, the reciprocal coordinates simplify the geometrical representation.

• The distance between two adjacent lattice planes equals

d(l1l2l3) =
(
l21 + l22 + l23

)−1/2
. (2.23)

• The density of atoms on a monolayer equals

%(l1l2l3) =
n(l1l2l3)

|e1 × e2|
= n(l1l2l3)d(l1l2l3)/VA . (2.24)

2.3.1 Lattice symmetries

The symmetries of a Bravais lattice can be classified as translational and point symmetries,
denoted by R(ai) and G(ai) respectively. Point symmetries have three subclasses, namely

• shears,

• reflections,

• and rotations,

that map the lattice to itself. Among these three types of transformation, we confine our at-
tention to rotations only, and here is why. Reflections, although mathematically interesting,
do not relate to any realistic deformation map. We therefore neglect them. Furthermore,
the shears in G(ai) correspond to plastic deformations driven by dislocation and slip in the
lattice, which violate the Cauchy–Born hypothesis. We know, on the other hand, that there
is no plastic deformation involved in the martensitic transformation, which renders slips and
dislocations irrelevant. Therefore, we only consider a subset of the lattice symmetry group
which we call the point group, denoted by G+(ai), that excludes shears and reflections from
G(ai).

Two lattice directions or planes are crystallographically equivalent if there exists a trans-
formation R ∈ G+(ai) that maps one direction to the other, or one plane to the other, i.e.
R · e = e′ or R · n̂ = n̂′. Under the action of the lattice point group G+(ai), the equiva-
lence class of all lattice directions corresponding to [l1l2l3] is denoted by 〈l1l2l3〉, and the
equivalence class of all lattice planes corresponding to (l1l2l3) are denoted by {l1l2l3}.

Bravais lattices can be classified based on their distinctive symmetry properties. There
are five Bravais lattices in two dimensions: oblique, rectangular, centered rectangular, hexag-
onal, and square. In three dimension, there are fourteen Bravais lattices: cubic, body-
centered cubic, face-centered cubic, tetragonal, body-centered tetragonal, orthorhombic,
base-centered orthorhombic, body-centered orthorhombic, face-centered orthorhombic, mon-
oclinic, base-centered monoclinic, triclinic, rhombohedral, and hexagonal. For illustrations
and symmetry groups see [67].
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2.3.2 Types of martensitic transformation

Identifying the lattice structure of the austenite (before transformation) and the martensite
(after transformation) is not complicated for crystallographers. Nonetheless, determining the
lattice correspondence between the two phases is not an easy task. Lattice correspondence
means knowing exactly which crystallographic directions and planes in the austenite relate
to their counterparts in the martensite after transformation. For this reason, the choice of a
unit cell is just short of an art, because the unit cells that are chosen to describe a martensitic
transformation are not necessarily the simplest ones when austenite and martensite are to be
described irrespective of the transformation. We will explain this issue in the next chapter.

Here, we only give a short list of different types of martensitic transformations. For
detailed illustrations and derivations refer to [129, 25]. The four most common types of
martensitic transformation are the following:

• cubic → tetragonal,

• cubic → orthorhombic,

• cubic → monoclinic-I along 〈1 1 0〉 (NiTi belongs to this type),

• cubic → monoclinic-II along 〈1 0 0〉,

and less common types are

• cubic → rhombohedral/trigonal (NiTi R-phase),

• tetragonal → orthorhombic,

• tetragonal → monoclinic.

We will later study the martensitic transformation of NiTi (49.75 at. % Ni) and will derive
the transformation matrices and their polar decompositions.

2.3.3 Cauchy–Born hypothesis: lattice-continuum link

The Cauchy–Born hypothesis states that the solid crystal lattice deforms in accordance with
the corresponding continuum deformations. That means for a monatomic lattice L(ai) under
the deformation x→ X:

F =
∂x

∂X
⇔ ai(x) = F(X)ai(X) . (2.25)

This hypothesis results in a fundamental connection between lattice and continuum frame-
works; namely, for any thermodynamic state variable or potential φ of the continuum and
its lattice counterpart φ∗ we have

φ(F, θ) = φ∗(Fai(X) , θ) = φ∗(ai(x) , θ) . (2.26)

In the case of multi-lattices, i.e. crystals consisting of two or more elements, with a crystal
system L(ai, rj) the above hypothesis has to be modified to accommodate the lattice shifts
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during deformation. Under the assumption of equilibrium, this is accomplished by finding
the configuration of the atom basis that minimizes the free energy, viz

ψ∗(ai(x) , θ) = min
rj

ψ∗(ai, rj, θ) . (2.27)

Then for other thermodynamic variables or potentials, say φ∗ , we have φ∗(ai(x) , θ) =

φ∗(ai, r̄j, θ), where r̄j = arg minrj
ψ∗(ai, rj, θ). Therefore, the lattice–continuum link re-

mains valid for multi-lattices via the modified version of the Cauchy–Born hypothesis.

2.4 Helmholtz free energy and its symmetries

Let’s denote the Helmholtz free energy of the lattice by ψ∗(ai, θ), and its continuum counter-
part by ψ(F, θ). Thermal expansions are negligible compared to distortions due to marten-
sitic transformation at and around the transformation temperature. Also since the marten-
sitic transformation is diffusionless, it can be fully described by a deformation gradient
tensor, denoted by Fi, as the identifying quantity that together with its associated transfor-
mation temperature θam can fully characterize the martensitic transformation. In continuum
mechanical formulations we sometimes use transformation strains instead of transformation
deformation gradients, that is, η = sym(F− I).

The ground state pertains to the undeformed lattice ψ∗(ai(X) , θ), which we assume
zero without loss of generality. The Cauchy–Born hypothesis resulted in the fundamental
connection (2.26) between lattice and continuum frameworks which can be applied to the
free energy, as

ψ(F, θ) = ψ∗(Fai(X) , θ) = ψ∗(ai(x) , θ) . (2.28)

2.4.1 Frame indifference (objectivity)

Since the free energy is a scalar quantity, it must be invariant under rigid rotations of the
reference frame, thus

ψ∗(Rai(x) , θ) = ψ∗(ai(x) , θ) , ∀R ∈ SO(3) , (2.29)

which based on (2.28) gives

ψ(RF, θ) = ψ(F, θ) , ∀R ∈ SO(3) . (2.30)

SO(3) is the set of proper orthogonal 3 × 3 matrices. The above condition is often called
the principle of of objectivity, which is one of the fundamental requirements that every well-
formulated continuum thermomechanical model has to fulfill.

2.4.2 Material symmetry

As we mentioned, every Bravais lattice {ai} is invariant under the action of its point group
G+(ai), therefore

∀R ∈ G+(ai) : Rai = ai ⇒ ψ∗(FRai, θ) = ψ∗(Fai, θ) , (2.31)



22 FUNDAMENTALS

which, according to (2.28), yields

ψ(FR, θ) = ψ(F, θ) , ∀R ∈ G+(ai) . (2.32)

It is often more convenient to use an alternative form of this formulation which simultane-
ously borrows from the objectivity, viz

ψ
(
RTFR, θ

)
= ψ(F, θ) , ∀R ∈ G+(ai) . (2.33)

2.5 Symmetries of martensitic transformation

Since the martensitic transformation is symmetry breaking and reversible, it can be con-
cluded that the point group of martensite is a subgroup of the point group of austenite, i.e.
G+(ami ) ≤ G+(aai ). This can be proven by contradiction, because otherwise the symmetry
group of the austenite will not be finite (see [129, pp. 42]), that is to say, there will be
infinitely many variants of martensite. Then, according to Lagrange theorem on cardinality
of subgroups7, we obtain the number of distinct martensite variants

Nm.v. =
#G+(aai )
#G+(ami )

. (2.34)

It then follows that the transformation stretches, called Bain matrices, are symmetry-
connected through the point group of the parent phase via

Uj = RTUiR , ∃R ∈ G+(aai ) . (2.35)

Also, from material symmetry and objectivity, it is concluded that the energy wells cor-
responding to distinct martensite variants have equal minima at any given temperature
[126, 128]. Furthermore, at the transformation temperature, θam, the austenite phase and
the martensite variants shall be at equilibrium. From Clapeyron equation for phase equilibria
we can conclude that the austenite and all martensite variants have the same free energy
minima. This can be verified easily by starting from free energy of the lattice and going to
continuum framework by Cauchy–Born hypothesis [25, pp. 58–60].

Since the free energy is objective, according to the polar decomposition theorem, 1, we
can always identify each martensite energy well by its symmetric positive definite stretch
Ui. This extends the possibility of forming twins between martensite variants, through the
coherence condition (2.16), to

R2Q2U2 −R1Q1U1 = a⊗ N̂ , (2.36)

where Ri ∈ SO(3) and Fi = QiUi is the right polar decomposition of the transformation Fi.
This can be rewritten in the more compact form

QU2 −U1 = b⊗ N̂ , (2.37)
7Lagrange theorem asserts that the order (cardinality) of a finite group is an integral multiple of the order

of each of its subgroups.
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in whichQ = QT
1RQ2, R ∈ SO(3), and b = QT

1 a. The latter form of the coherence condition
is most widely used for its algebraic simplicity. One has to take great care when transforming
back and forth between alternative forms of (2.37), (2.36), and (2.16) as needed.

Remark 2. In the theory of self-accommodating microstructures, two assumptions are usu-
ally made which we leave out. One is that only isochoric martensitic transformations
are capable of forming self-accommodating microstructures. The second assumption is
that there is a particular set of average deformation gradients (mesoscopic) whom the mi-
crostructure is able to accommodate [25, pp. 155]. We pose none of these restrictions on
our kinematic ansatz and stipulate an alternative mechanism for accommodation.

2.5.1 Ericksen–Pitteri neighborhood

For the continuum theory of martensitic phase transformation to be non-degenerate, it is
postulated that the Bain matrices remain within the so called Ericksen–Pitteri neighborhood
(EPN), which is an open bounded neighborhood of the parent phase [47]. A direct conse-
quence of this notion is that the Ericksen–Pitteri neighborhood of the lattice L(aai ), denoted
by N (aai ), is invariant under the action of the lattice point group G+(aai ). More generally,
and trivially so, it is also invariant with respect to SO(3). Within an EPN, a martensitic
transformation is limited to those in which the symmetry group of the child lattice is the
subgroup of the symmetry group of the parent lattice. However, there exist martensitic
transformations for which this is not the case. These transformations are, nevertheless, ex-
cluded from the study of shape-memory phenomena because they bring about irreversible
changes in the lattice.

2.5.2 Mechanical twins vs growth twins

We mentioned that the coherence condition carries no information about the parent phase
orientation. Especially the form of twinning equation (2.37) accepts compatible variants
pertaining to energy wells up to a rotation. In certain situations this might become prob-
lematic, and here is why. Depending on their formation mechanism the martensitic twins
are classified as [129, pp. 259]

• mechanical twins, which are formed by transformation from austenite via mechanical
or thermal loading,

• and growth twins, which are formed via crystal growth.

The twinning equation implicitly assumes a reversible transition from a reference configu-
ration, i.e. the parent phase, which physically does not apply to growth twins. Further, for
mechanical twins the orientation of a parent phase has to be known in order for the coherence
condition to be meaningfully expressed.

The majority of the available models for martensitic microstructure do not address this
issue. Because they often involve a homogenization procedure based on a randomized RVE
orientation which makes a precise choice of the parent phase orientation superfluous. Here
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we do not have this luxury, because our model shall include precise representation of twin
interfaces and accommodation strains which can only be realized via twinning equation based
on a fixed orientation.

One might argue that because the transformations are within the EPN, the parent phase
can undergo an arbitrary rotation without violating the basic assumptions. However, accord-
ing to minimization theorems in elasticity the rotation must be homogeneous throughout the
entire domain [156, 82], which violates the mesoscopic boundary conditions. Therefore, we
have to make additional assumptions on the orientation of the parent phase explicitly, which
we do in the next chapter.



Chapter 3

Continuum micromechanical model

We intend to develop a thermomechanically consistent continuum model for the marten-
sitic laminate microstructure which almost strictly conforms to the coherence condition and
evolves quasi-statically. The laminate is assumed to be made of deformation twins and not
growth twins; which can either be

• a mixture of two martensitic variants8 sharing a common austenitic parent, or

• a mixture of martensitic phase with its parent austenitic phase,

as long as the coherence condition (2.16) between the two phases or variants is fulfilled.
The second case, i.e. mixing of austenite and martensite, is usually realized through the

mixing of austenite with a phase which itself is a mixture of two martensitic variants whose
average deformation gradient is twin-compatible with the austenite phase. Such a configura-
tion is usually termed a second-order laminate or a second-order mixing of phases, which we
exclude from this work. So, in short, a first-order laminate composed of deformation twins
is assumed. Notice that assuming a quasi-static evolution of the microstructure dismisses
any influence of dynamic constrains.

The external loading and constraints, originating from the mesoscopic state of the ma-
terial, can be collectively represented either as a homogeneous deformation or as a homoge-
neous loading imposed on (prescribed at) the boundary of the microstructure. We adopt the
first approach here, i.e. a displacement-controlled solution at the micro level, which we will
explain later. This homogeneous boundary deformation does not generally coincide with the
volume-averaged deformation of the phase mixtures, if the martensitic laminate remains in
its eigen configuration. Following the customary terminology of the homogenization meth-
ods (see [114]) we refer to the unstrained state of martensite as the eigen state or eigen
configuration, and to the respective deformation as eigen deformation. In Fig. 1.1 the eigen
strains mark the states at which the martensite attains its minimum Helmholtz energy.

The martensitic microstructure can conceivably accommodate this homogenous boundary
deformation through two mechanisms.

8Here we adopt the terminology popular among material scientists, in which variants are distinguished
by their difference in symmetries with respect to a common parent phase, whereas phases bear their usual
thermodynamical interpretation.

25
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1. The mesoscopic homogenous deformation at the boundary can be satisfied via a kine-
matic construct called interpolation layer. This approach is particularly of a rigorous
mathematical makeup and is widely used in continuum theory of martensitic transfor-
mation [25, pp 94–96].

2. An alternative approach, which we employ, allows the laminate to deviate from its
eigen state and to respond to the mesoscopically induced boundary condition via de-
formation. We believe that this method is more capable in reflecting the morphological
attributes of the laminate microstructure especially the actual accommodation patterns
which are empirically observed.

Having decided for the second approach, wherever the laminate meets its boundary in parallel
the boundary condition is automatically fulfilled. On the other hand, at the boundary points
where this may not be the case the accommodation takes place either by

• branching, which changes the lath width, or by

• needles, which alters the volume fraction of the constituent phases.

We will show, as is readily well established, that these variations make for a more energet-
ically favorable microstructure. At these parts of the boundary, nevertheless, there persists
a mismatch between the laminate and its mesoscopic surroundings which we account for by
employing the first approach, i.e. by constructing a boundary layer.

3.1 Kinematics of laminate microstructure

Let the material coordinates pertain exclusively to the parent (austenite) phase and be
denoted by X, and let the spatial coordinates describe the laminate microstructure in its
fully accommodated state and be denoted by x. The respective deformation gradient is then
F = ∂x/∂X. Also, let the eigen configuration be addressed by its coordinates x◦, and its
respective deformation gradient F◦ = ∂x◦/∂X.

The microscale domain; that is the domain in which the microstructure resides; which
encloses the mesoscopic material point X, is designated as ω(X). The prescribed homoge-
neous deformation on the microdomain requires that the average deformation gradient of
the microstructure, which is given by

〈F〉ω =
1

|ω(X)|

∫
ω(X)

F dV , (3.1)

be equal to the mesoscopic deformation gradient at the material point X. From a material
modeling viewpoint, 〈F〉ω connects the microscopic length scales and the mesoscopic length
scales. We might leave out the subscript ω in 〈•〉ω wherever the meaning is clear from the
context. We may also adopt a shorter notation F = 〈F〉ω. Accordingly, we introduce the
intermediate configurations x and x◦ which express the average laminate deformation in the
accommodated state and in the eigen state respectively.
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As mentioned before, the microstructure cannot fulfill all the conceivable mesoscopic
deformations merely by microscopic mixing of phases via lamination. This means that

∃F : 〈F◦〉ω 6= F , (3.2)

where F = ∂x/∂X, is the mesoscopic deformation gradient in which the mesoscopic material
coordinates are denoted by X and the mesoscopic spatial coordinates by x. This is why we
tell apart the eigen configuration x◦ and the accommodated configuration x. Nevertheless,
the average accommodated deformation gradient is supposed to match the mesoscopic de-
formation gradient, which is perceived as a homogeneous deformation at the microscale, in
order to guarantee scale separation.

Remark 3. the micro-boundary conditions. Equation (3.2) tells us that in most
actual situations the eigen configuration is hardly realized due to the constraints imposed
on the microstructure by its surroundings. In order to model these constrains, we have two
choices:

• Load driven approach in which the mesoscopic effects are imposed on the microstruc-
ture via traction boundary conditions.

• Deformation driven approach in which the influence of mesoscopic constrains on the
microstructure is simulated via a homogeneous deformation imposed on its boundary.

We opt for the second method. For the microstructural deformation map x(X), the average
micro boundary condition in the form of

x(X) = F ·X , X ∈ ∂ω

will be almost strictly enforced. What we mean by this is that we do our best to fulfill this
condition by choosing a suitable kinematic ansatz for the microstructure. There will be
parts of the boundary, however, where a mismatch between our ansatz and the homoge-
neous mesoscopic deformation is inevitable; no matter how well-formulated our ansatz is.
At these points the above condition will be replaced by a carefully formulated boundary
energy ansatz which penalizes this mismatch:

ψγ(x(X)− F ·X)→ min , X ∈ ∂ω . (3.3)

The minimization is usually carried out in a variational sense. The microscopic deformed
configuration x(X) is obtained by integrating the microscopic ansatz for deformation gra-
dient

x(X) =
∫ X

X0
F · dX , ∀X ∈ ω .

3.1.1 Twinning equation

In order for the laminate to fulfill the coherence condition, we naturally begin with the
twinning equation (2.16) which expresses this condition for two neighboring solid phases:

F2 − F1 = a⊗ N̂ , (2.16)
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where the orientation of the twin interface is customarily determined by a unit normal
vector N̂, expressed in material coordinates. The two phases are distinguished via their
transformations, F1 and F2, with respect to their parent phase. The vector a denotes the
jump in deformation gradient across the interface, viz

a = JFKN̂ = (F2 − F1) · N̂ . (2.17)

It is important to remember that F = I expresses the undeformed state corresponding to
the parent phase.

Since deformation gradient is related to displacement gradient by F = u∇X + I, the
twinning equation can be reformulated as

u2∇X − u1∇X = a⊗ N̂ . (3.4)

Notice that N̂ and a retain their meaning in (2.17), namely a = Ju∇XK · N̂ = JFK · N̂, and
that ∇X expresses the material (not the spatial) derivative.

3.1.2 Periodic structure of the laminate and its geometry

The laminate orientation is determined by its unit normal vector N̂ in the reference con-
figuration. Note that the actual normal to the twin interfaces may deviate from N̂ as the
microstructure accommodates external loads and constraints; however, these patterns occur
in such a way that the overall direction of the lamellae remains unaltered (Fig. 3.1). In this
sense, N̂ is perpendicular to the laminate in average. We will elaborate on plausibility of
this assumption later.

The main characteristic of such a microstructure is its periodic deformation gradient in
X3 as per

F(X) =

{
F1(X‖) , −ΛH ≤ X⊥ ≤ 0 ,

F2(X‖) , 0 ≤ X⊥ ≤ (1− Λ)H ,
(3.5)

The period H is the width of a single twin in the undeformed configuration, which we often
call lath width, and Λ ∈ [0, 1] denotes the fraction of phases9 along N̂. The coordinates are
naturally decomposed into parallel to the laminate X‖ = X− (X · N̂)N̂, and normal to the
laminate X⊥ = X · N̂, or equivalently X⊥ = (X · N̂)N̂. We shall keep in mind that our
kinematic ansatz allows H and Λ to vary along the laminate; that is

H = H(X‖) , Λ = Λ(X‖) . (3.6)

In equations (3.5) and (3.6), all the kinematic quantities are allowed to vary parallel
to the laminate, X‖, except the normal vector N̂. Variations of Λ and H clearly change
the pointwise orientation of twin interfaces. This obviously does not comply with a fixed

9In homogenization or energy relaxation methods Λ is usually identified as volume fraction; since there
they merely consider the average compatibility conditions (A.23) rather than a strict pointwise compatibil-
ity.



3.1. KINEMATICS OF LAMINATE MICROSTRUCTURE 29

Fig. 3.1: Periodicity of laminate in the needle microstructure [84, c© permission obtained].

N̂. On other hand, the geometry of the laminate allows for designation of an average
orientation. Let’s say N̂ represents this average orientation (Fig. 3.1). Now we introduce
the unit normal vector B̂ which deviates locally from N̂ ever so slightly, so it can stay normal
to the twin interface: B̂ = B̂(X‖). Then, the compatibility condition has to be rewritten as
F2 − F1 = a ⊗ B̂. However, the laminate is still periodic in N̂ direction. Eventually, this
will correct our formulation up to a scalar factor of a, which is mathematically superfluous.
Therefore, we let go of B̂ entirely.

Since the laminate is periodic along N̂, and since the changes in this direction are much
faster than the changes parallel to the laminate, we first deploy an averaging in the normal
direction in order to capture the relevant characteristics of the laminate while eliminating
any dependence on X⊥ in the energy formulation. Taking the average in N̂ direction, follows

〈F〉⊥ =
1

H

∫ (1−Λ)H

−ΛH
F dX⊥ . (3.7)

The ⊥ subscript can be dropped for brevity, but the meaning should be clear from the
context. Applying this to the configuration (3.5) gives

〈F〉⊥ = ΛF1 + (1− Λ)F2 . (3.8)

Now we substitute the twinning equation (2.16) into (3.8) to obtain

〈F〉⊥ = ΛF1 + (1− Λ)F2 = ΛF1 + (1− Λ)
(
F1 + a⊗ N̂

)
= F1 + (1− Λ) a⊗ N̂

= ΛF1 + (1− Λ)F2 = Λ
(
F2 − a⊗ N̂

)
+ (1− Λ)F2 = F2 − Λ a⊗ N̂ .

(3.9)

This indicates that F1, F2, and 〈F〉 are all rank-one-connected along the same direction N̂,
which is mathematically synonymous to

Cof〈F〉⊥ N̂ = Cof F2N̂ = Cof F1N̂ . (3.10)
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Next, let us find a more specific formula of the form (3.5) by substituting (3.9) back into
(3.5) to arrive at

F(X) = 〈F〉⊥ +

{
− (1− Λ) a⊗ N̂ , −ΛH ≤ X⊥ ≤ 0 ,

Λ a⊗ N̂ , 0 ≤ X⊥ ≤ (1− Λ)H .
(3.11)

Equation (3.11) will be the very basis of our upcoming laminate formulation. Before
moving forward, we need to illustrate some of its mathematical properties, most importantly
the relation between the orientation and the width of the laminate in material and spatial
coordinates. In other words: we need to know how the laminate forms with respect to its
parent phase.

The orientation of the laminate is determined by its normal vector N̂. One can apply
the Nanson’s formula to track the changes of laminate orientation and interfacial stretches.
In the average laminate coordinates x and in the spatial coordinates x, we have

da n̂ = dA Cof Fi N̂ , dα n̂ = dA Cof FN̂ , (3.12)

where dA, da, and dα are the area elements in the reference configuration (austenite),
current configuration (martensite), and average martensite coordinates respectively. The
unit normal vectors in average configuration and in final configuration are shown by n̂ and
n̂. This latter result together with equation (3.10) shows that da n̂ = dα n̂, therefore

dα = da , n̂ = n̂ . (3.13)

Explicit formulas for the orientation and the area elements are given based on (3.12) as

n̂ =
Cof Fi N̂∥∥Cof Fi N̂

∥∥ =
F−Ti N̂∥∥F−Ti N̂

∥∥ , n̂ =
Cof FN∥∥Cof FN

∥∥ =
F
−T

N̂∥∥F−T N̂∥∥ , (3.14)

da =
∥∥Cof Fi N̂

∥∥ dA , dα =
∥∥Cof FN̂

∥∥ dA . (3.15)

Here we have relied on the fact that Cof A = |A| A−T for any invertible matrix A.
Equation (3.13) indicates that the multiplicative decomposition of the deformation gradi-

ent into an average and a fluctuating part conceptually simplifies the formulation to a great
extent, because the fluctuating part neither rotates nor stretches the twin interface. Thus,
introducing the intermediate coordinates x pertaining to the average deformation marks an
explicit separation between two modes of deformation:

• one that stretches and rotates the austenite, and

• one that oscillates and forms martensitic variants and their interfaces without rotating
the body in average or stretching it along the twin interface.

Notice that this leaves open the possibility that the fluctuating part of the deformation might
stretch the laminate along the normal direction n̂. So let us see how the laminate stretches
in this direction. For this, starting from (3.13) we are able to track the changes in thickness
of the constituting layers.
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Suppose a cylindrical volume element whose axis is normal to the laminate with a height
equal to the lamainte thickness and with a base which is an area element that we just
investigated in (3.12). The volume of such a cylindrical element changes in proportion to
the Jacobian determinant of the deformation, that is, dv = detF dV . Constructing this
element across the two variants before and after deformation, we have

λh da︸ ︷︷ ︸
dv1

= detF1 ΛH dA︸ ︷︷ ︸
dV1

, (1− λ)h da︸ ︷︷ ︸
dv2

= detF2 (1− Λ)H dA︸ ︷︷ ︸
dV2

. (3.16)

Using equation (3.15) and knowing that Cof A = |A| A−T , we eliminate the area elements
from the two equalities to come up with a relation between the thicknesses as

λh =
detF1 ΛH

‖Cof F1N‖
=

ΛH∥∥F−T1 N̂
∥∥ , (1− λ)h =

detF2 (1− Λ)H

‖Cof F2N‖
=

(1− Λ)H∥∥F−T2 N̂
∥∥ . (3.17)

In the next step we utilize the following well-known lemma from linear algebra without giving
its proof.

Lemma 2. For any full-rank matrix A ∈ Rn×n and vectors a,b ∈ Rn,

det(A + a⊗ b) =
(
1 + b ·A−1 · a

)
detA .

A relation between the Jacobian determinants of the two variants will enable us to find
an explicit relation between the lath widths based on (3.17). So a slight rearrangement of
equation (3.9) to F1 = F− (1− Λ) a⊗ N̂ and F2 = F + Λ a⊗ N̂, applying lemma 2 twice,
we come upon

detF1 =
(

1− (1− Λ) N̂ · F−1 · a
)

detF , detF2 =
(

1 + Λ N̂ · F−1 · a
)

detF .

If the first equation is multiplied by Λ and the second by (1− Λ), and then the results are
added together, we obtain

detF = Λ detF1 + (1− Λ) detF2 . (3.18)

Now we add the two equations in (3.17), and then use (3.10) to find a common denominator,
and finally plug in (3.18) and simplify:

λh+ (1− λ)h =
detF1 ΛH

‖Cof F1N‖
+

detF2 (1− Λ)H

‖Cof F2N‖
=

(Λ detF1 + (1− Λ) detF2)H∥∥Cof FN
∥∥ =

detF∥∥Cof FN
∥∥H =

H∥∥F−T N̂∥∥ ,
which shortens to

h =
H∥∥F−T N̂∥∥ . (3.19)
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This tells us that the fluctuating part does not alter the lath width for arbitrary twin-
compatible deformations. Equation (3.17), on the other hand, shows that individual de-
formations F1 and F2 stretch the laminate along the normal direction N̂. This can only
be realized by a change in the volume fractions, as the overall lath width must remain un-
changed with respect to the average deformation. Substituting (3.19) into (3.17) will tell us
how the volume fraction changes, as

λ =

∥∥F−T N̂∥∥∥∥F−T1 N
∥∥Λ = 1−

∥∥F−T N̂∥∥∥∥F−T2 N
∥∥ (1− Λ) . (3.20)

Decomposition of deformation

Since the deformation gradient of the laminate microstructure is periodic, it makes sense
to decompose it into an average component and a fluctuating component in order to build
the connection between the microscale and the mesoscale more transparently. We do this
decomposition multiplicatively as

F = F̃ F , (3.21)

which implies a hypothetical two-step deformation scheme:

X
F−→ x

F̃−→ x . (3.22)

It is instructive to explicitly formulate the fluctuating part of the deformation gradient.
Following its definition in (3.21) we know F̃ = FF

−1. Therefore, multiplying F in equation
(3.11) with F

−1 from the right hand side gives

F̃(X) = I +

− (1− Λ) a⊗
(
F
−T

N̂
)
, −ΛH ≤ X⊥ ≤ 0 ,

Λ a⊗
(
F
−T

N̂
)
, 0 ≤ X⊥ ≤ (1− Λ)H .

(3.23)

However, F̃ = ∂x/∂x; so we rewrite F̃ as a function of x. In doing so, we make use of
equations (3.14) and (3.19) which give

F
−T

N̂ = H/h n̂ . (3.24)

Also the lath width and volume fraction in the average laminate configuration are

h = h , λ = Λ , (3.25)

which finally reformulate (3.23) into

F̃(x) = I +
H

h

{
− (1− Λ) a⊗ n̂ , −Λh ≤ x · n̂ ≤ 0 ,

Λ a⊗ n̂ , 0 ≤ x · n̂ ≤ (1− Λ)h .
(3.26)

We now move on to studying the kinematics of the eigen deformation and how it relates
to what we have developed so far.
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3.1.3 Laminate in eigen configuration

A first-order laminate in its eigen configuration is composed of two variants with deforma-
tion gradients F◦1 and F◦2 which characterize martensitic transformations from a common
austenitic parent. Such a laminate microstructure is expected to fulfill the coherence condi-
tion:

F◦2 − F◦1 = a◦ ⊗ N̂ , (3.27)

where, from the crystallographic theory according (2.35), we know that the eigen deformation
gradients are symmetry-connected through the point group of the parent austenitic phase
via

U◦2 = RTU◦1R , ∃R ∈ G+(aai ) , (3.28)

where U◦i are the Bain matrices of transformation. These are in turn connected to transfor-
mation deformation gradients through polar decomposition

F◦i = QiU
◦
i , Qi ∈ SO(3) . (3.29)

The periodic structure of the laminate in this state resembles that of equation (3.5), namely

F◦(X) =

{
F◦1 , −ΛH ≤ X⊥ ≤ 0 ,

F◦2 , 0 ≤ X⊥ ≤ (1− Λ)H .
(3.30)

Remember that the transformations F◦1 and F◦2 are physical properties of the martensite and
are therefore predeterminate with respect to a given austenite orientation.

It should be obvious that all the arguments and conclusions starting from equation (3.8)
all the way to (3.26) shall identically hold for the eigen configuration, since they solely
rely on the compatibility and the periodicity of the laminate. The eigen configuration,
however, bears an additional restriction—the symmetry connection (3.28). In this equation
since R belongs to the point group of the austenite, it is proper orthogonal and therefore
detR = detRT = 1; hence

detF◦2 = det
(
RTF◦1R

)
= detRT detF◦1 detR = detF◦1 . (3.31)

This together with (3.18) immediately gives

det 〈F◦〉 = detF◦1 = detF◦2 , (3.32)

which in turn can be combined with (3.10) and (3.20) to arrive at the conclusion that the
volume fraction cannot change via eigen deformation:

λ(x◦) = Λ . (3.33)

Comparing this with (3.20) we realize that the eigen configuration by itself does not allow
for the accommodation which we intend for our kinematic ansatz to be capable of. Further,
the following lemma shows that through the eigen deformation the the laminate interfaces
cannot deflect.
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Lemma 3. For every two rank one connected tensors A,B ∈ Rn×n, the rank one connection
of the form A−B = a⊗ n, such that a,n ∈ Rn and |n| = 1, is unique up to a factor ±1.

Proof. We can prove this assertion by contradiction. Assume that there exists two distinct
rank one connections, say

A−B = a1 ⊗ n1 , A−B = a2 ⊗ n2 .

We inner-multiply both identities from the right hand side by n1 and n2 to get

(A−B) · n1 = a1 = (n2 · n1) a2 , (A−B) · n2 = a2 = (n1 · n2) a1 .

Comparing these two relations results in n1 · n2 = ±1. Since |n1| = |n2| = 1, we then
conclude that n1 = ±n2, which consequently requires that a1 = ∓a2.

The deformation gradient F◦ in (3.30) is piecewise constant, therefore, the coherence
condition (3.27) requires that the twin interfaces remain flat following the recent lemma.
But if we let H and Λ vary along the laminate, as we did in (3.6), the laminate interfaces
deflect and bifurcate which contradicts the flatness of the interfaces. In hindsight, this
clarifies the motivation behind designing a more flexible ansatz as we did in formulating
(3.11) and (3.26). However, we did not formulate the un-accommodated laminate only to
motivate our approach after the fact. We did so because the eigen state represents the ground
energy level when the martensitic transformation has already taken place. We will see that
there is no apparent dynamic connection between the thermomechanical ground state, i.e.
the martensite in eigen state, and the fully accommodated laminate. How this ground state
relates to the stored energy of the accommodated laminate is what we will explain shortly.

3.1.4 Accommodation strains

Thermomechanical behavior of solids is formulated in terms of various state functions such
as thermodynamic potentials, and these functions depend on deformation gradient rather
than the deformation field itself. Consequently, the information that we have on the marten-
sitic phase transformation and its symmetry properties are directly expressed in terms of
deformation gradient. That is why we started our kinematic formulation by formulating the
corresponding deformation gradients and not the deformation field.

Now in order to account for accommodation strains that are caused by changes in volume
fraction and lath width we need to calculate the corresponding deformation gradients and
strains along the laminate. For this we first have to integrate F in (3.11) to obtain the
deformation, and then calculate the gradients that originate from the changes in Λ and H.

x =

∫ X

X0

F · dX =

∫ X

X0

〈F〉⊥ · dX +

∫ X⊥

0

{
− (1− Λ) a⊗ N̂

Λ a⊗ N̂

}
· N̂ dX⊥

=

∫ X

X0

〈F〉⊥ · dX +

{
−Λ (1− Λ)H − (1− Λ)X⊥

−Λ (1− Λ)H + ΛX⊥

}
a , (3.34)
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where a compact notation is adopted here, in which the variant thickness intervals are
implied in braces {•}, for the first argument as X⊥ ∈ [0, ΛH] and for the second argument
as X⊥ ∈ [ΛH,H]. In principle, the normal average deformation gradient 〈F〉⊥ can vary
along X‖. Nevertheless, one might assume 〈F〉⊥ = 〈F〉ω, since the laminate ansatz cannot
match the mesoscopic homogeneous deformation at the boundary anyway (see remark 3).
So letting 〈F〉⊥ vary parallel to the laminate would basically make the formulation more
complicated without producing any significant information. Therefore, equation (3.34) can
be written as

x = 〈F〉ω ·X +

{
−Λ (1− Λ)H − (1− Λ)X⊥

−Λ (1− Λ)H + ΛX⊥

}
a . (3.35)

We separate the variables as much as possible in order to simplify the consequent calculation
of derivatives:

x = 〈F〉ω ·X +

(
−Λ (1− Λ)H

{
1

1

}
+X⊥

{
− (1− Λ)

Λ

})
a . (3.36)

We can further compact the formulation by introducing

a = −Λ (1− Λ) a , (3.37)

which turns (3.36) into

x = 〈F〉ω ·X +

(
H

{
1

1

}
+X⊥

{
1/Λ

−1/ (1− Λ)

})
a . (3.38)

In calculating the deformation gradient, most of quantities are independent of the X⊥.
Therefore, their gradients reduce to components parallel to the laminate. It is, therefore,
helpful to introduce the reduced gradient as

�
≡
(
I− N̂⊗ N̂

)
· ∇X . (3.39)

Using this notation, the deformation gradient is

x⊗∇X = 〈F〉ω ·
∂X

∂X
+

(
H

{
1

1

}
+X⊥

{
1/Λ

−1/ (1− Λ)

})
a⊗

�
+

a⊗

(
(H

�
)

{
1

1

}
+ N̂

{
1/Λ

−1/ (1− Λ)

}
+X⊥ (Λ

�
)

{
−1/Λ2

−1/ (1− Λ)2

})
. (3.40)

The first term on the right hand side can be simplified using ∂X/∂X = I. Factoring and
gathering similar terms, the above equation becomes

x⊗∇X = 〈F〉ω +

{
H + 1

Λ
X⊥

H − 1
1−ΛX⊥

}
a⊗

�
+ a⊗

{
H

�
+ 1

Λ
N̂− 1

Λ2X⊥ (Λ
�

)

H
�
− 1

1−ΛN̂−
1

(1−Λ)2X⊥ (Λ
�

)

}
. (3.41)
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Remark 4. on morphology of accommodation. It can be shown, through purely
geometrical arguments, that both the accommodation by branching and the needles require
that

N̂−
(
N̂ · B̂

)
B̂ = [ΛH/2]

�
. (3.42)

But this is not an additional equation. Since it can re-parameterize two quantities at best;
namely, Λ and H, while at the same time it introduces two new unknowns corresponding
to the unit vector B̂. Nevertheless, the geometrical implications of this identity can be
the basis for a kinematic ansatz of the laminate in which a does not need to vary, while
retaining all the important characteristics, such as accommodation by both branches and
needles, of the seemingly less restrictive ansatz we just established (see Appendix D).

We are now ready to proceed to calculation of the average laminate energy.

3.2 Kinetics

A thermodynamic potential is a state function whose value is determined relative to a fixed
reference value corresponding to which exists a reference state. The choice of this reference
state is immaterial from a mathematical viewpoint, since its changes will shift the underlying
thermodynamic potential merely by a constant. However, from a practical perspective, the
reference state is often assigned to a state that is empirically easy to identify, reproduce,
and track. The state of minimum potential is often the most appropriate choice, since the
system reaches a stabile equilibrium at that state; meaning: the system has the tendency
to reach its minimum potential energy and tends to remain there as long as no significant
perturbation is present.

A laminate microstructure attains its state of minimum energy if its constituent phases
reach their respective energetic minima. Should this be the case, the laminate is in eigen
configuration or eigen state whose kinematics we already studied. In a deformation-controlled
framework the state of the material is determined by its deformation field F(X) and its
temperature field θ(X). The corresponding thermodynamic potential will, therefore, be
the Helmholtz free energy density ψ(F, θ). Since we excluded the thermal effects from our
model, at a fixed temperature the Helmholtz free energy will be a function of deformation
only: ψ = ψ(F). Having the eigen state fixed as the ground energy state, we then obtain

ψ(F) = ψ(F◦) +

∫ F

F◦
dψ = ψ(F◦) +

∫ F

F◦

∂ψ

∂F
: dF . (3.43)

The differential dF is meaningful only if there exists a continuous deformation that takes
the material from the eigen state F◦ to the accommodated state F; which is sometimes called
a dynamic connection between the two states. However, the accommodated state depends
pointwise on the volume fraction Λ(X‖) and the lath width H(X‖) along the laminate;
that is F = F(Λ(X‖) , H(X‖) ;X⊥). While, on the other hand, the eigen state can be fully
identified pointwise with a volume fraction and a lath width which turn out to be constant,
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i.e. F◦ = F◦(Λ,H,X⊥). Since the accommodated state has apparently more internal degrees
of freedom, there cannot exist a one-to-one correspondence between the accommodated state
and the eigen state—let alone a dynamic connection. Intuitively, the accommodated state
permits the laminate interfaces to bifurcate, whereas the eigen state requires flatness of the
interfaces; which are two entirely different topologies with no seeming morphism. As dire as
the situation may look, there is a way out.

We mentioned that a non degenerate continuum theory of martensitic phase transforma-
tion is based on the assumption that the transformation strains remain within the Ericksen–
Pitteri neighborhood to eliminiate the possibility of dislocation and slip. This readily limits
the possibility of large deformations to a great extent. Furthermore, in any variational for-
mulation of the martensitic microstructure, the strict existence of a minimizer is replaced
with a weaker condition, namely the existence of minimizing sequences. Hence, instead of
knowing exactly how the system arrived at a certain state, it is enough to be able to uniquely
determine the free energy as a function of the state. In these minimizing constructs, it is
well established that deviations from the energy well (eigen state) shall be small compared
with the eigen deformations [83]. That is to say

‖Ui − I‖ = O(δ) ⇒ dist(F, SO(3)Ui) = O
(
δ2
)
, (3.44)

and the eigen deformations themselves are limited to Ericksen–Pitteri neighborhoods, which
means ‖F◦ − I‖ � 1. So we can safely assume that the Helmholtz free energy of the laminate
can be asymptotically expanded around the eigen state:

ψ(F) = ψ(F◦)+
∂ψ

∂F

∣∣∣∣
F◦︸ ︷︷ ︸

=0

: (F− F◦)+
1

2
(F− F◦) :

∂2ψ

∂F⊗ ∂F

∣∣∣∣
F◦︸ ︷︷ ︸

=C

: (F− F◦)+O
(
‖F− F◦‖3

)
,

(3.45)

in which the second term vanishes, since F = F◦ marks the martensitic energy well. The
third term is nothing but the linearized elastic energy, which we designate as ψ`. So we
finally arrive at ψ(F) ≈ ψ(F◦) + ψ`(F− F◦), in which the term ψ(F◦) denotes the ground
energy level and is usually attributed to the material’s stored chemical energy, denoted as c,
which is assumed to be a known material parameter depending on the temperature, c = c(θ).
For practical purposes the approximation is precise enough to be exchanged for equality, so
we finally write

ψ(F) = ψ`(F− F◦) + c(θ) , (3.46)

where
ψ`(F− F◦) =

1

2
(F− F◦) : C : (F− F◦) , (3.47)

and

C =
∂2ψ

∂F⊗ ∂F

∣∣∣∣
F◦
. (3.48)

In the above equations, while subtracting F◦ from F, we need to clarify two issues:
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• Orientation of the accommodated state and the eigen state must be given with respect
to the parent phase.

• The two configurations, i.e. F and F◦, must be defined on a common support.

Regarding the relative orientation, as far as we know, all the minimizing sequences are con-
structed based on the assumption that the two configurations share the same orientation
N̂ in the reference configuration (parent austenite). These minimizing constructs also allow
the eigen configuration to vary the lath width and the volume fraction in the same manner
as the accommodated deformation gradient. It will be obvious, then, that the eigen de-
formation gradient in (3.30) will not fulfill the kinematic compatibility condition; meaning:
there is no admissible deformation field corresponding to the eigen configuration. Notice,
however, that the formation of a fully accommodated laminate takes place through phase
transformation, which is spontaneous and does not necessarily pass through any intermedi-
ate state—including the eigen configuration. There is extensive and rigorous mathematical
treatment of these minimizing sequences, using weak differentiability and compactness ar-
guments, which deem this approach favorable (see [97, 99, 98]). The bottom line is that
subtraction of deformation gradients in (3.46) can be carried out in material coordinates
without ambiguity.

Remark 5. Neglecting the thermal effects requires that the temperature θ is kept constant
throughout the body, which means that the body is in contact with a heat bath, and that
the temperature variations within the body take place at time scales much smaller than
those of mechanical loading.

3.2.1 Linear hyperelastic material—an interlude

According to (3.46), the kinetics of the martensitic laminate is restricted to small deforma-
tions at the microscale. A solid material whose Helmholtz free energy takes the form of (3.46)
is called a linear elastic material. The argument of the linearized term, ψ`(F− F◦), can be
expressed in terms of displacement field instead of deformation field, using F = I+u∇, and
F◦ = I+u◦∇, which yield F−F◦ = u∇−u◦∇. Then, the linearized energy ψ` is explicitly
written as

ψ`(u∇− u◦∇) =
1

2
(u∇− u◦∇) : C : (u∇− u◦∇) . (3.49)

The stiffness tensor, defined in (3.48), is a fourth-order tensor of third rank, i.e. C ∈ R3×3×3×3.
Since ∂F/∂u∇ = I, the stiffness tensor can also be written as

C =
∂2ψ

∂u∇⊗ ∂u∇

∣∣∣∣
u◦∇

, (3.50)

In addition to inheriting the crystal symmetries of its respective material, the stiffness tensor
possesses the so called major and minor symmetry.

The major symmetry expressed as

Cijkl = Cklij , (3.51)
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is an immediate consequence of the definition (3.50). Expressed in index notation, this
definition becomes:

CiJkL =
∂2ψ

∂ui,J∂uk,L

∣∣∣∣
u◦∇

=
∂2ψ

∂uk,L∂ui,J

∣∣∣∣
u◦∇

= CkLiJ .

Here, we have employed the property that the sequence of differentiation in interchangeable.
Also, notice that the distinction between the Eulerian indices i and k, and the Lagrangian
indices J and L can be neglected due to the small deformations; as in (3.51).

The minor symmetry, given by

Cijkl = Cjikl = Cijlk , (3.52)

comes from the principle of frame indifference, or objectivity, applied to ψ`. Writing (3.49)
in a more tractable form, namely ψ`(u∇) = 1

2
u∇ : C : u∇, and keeping in mind that the

deformations are small, we decompose the displacement gradient additively into symmetric
part and antisymmetric part

∇su =
1

2
(u∇+∇u) , ∇au =

1

2
(u∇−∇u) . (3.53)

Next, putting the decomposed form back into ψ`, using the major symmetry of C, we obtain

ψ`(u∇) = ψ`(∇su +∇au)

=
1

2
∇su : C : ∇su +

1

2
∇au : C : ∇au +∇au : C : ∇su

= ψ`(∇su) + ψ`(∇au) +∇au : C : ∇su . (3.54)

The second term vanishes due to objectivity of ψ`, because ∇au geometrically represents
a rotation. This term can be written in index notation as 1/2uai,jCijklu

a
k,l. Since ∇au is

antisymmetric, we have uai,j = −uaj,i; therefore

0 = 1/2uai,jCijklu
a
k,l = 1/2uaj,iCjiklu

a
k,l = −1/2uai,jCjiklu

a
k,l ,

which leads to

∀uai,j ; uai,j (Cijkl − Cjikl)uakl = 0 ⇒ Cijkl − Cjikl = 0 ,

since Cijkl −Cjikl is itself antisymmetric with respect to ij. This result together with major
symmetry finally yields the left and right minor symmetry :

Cijkl = Cjikl = Cijlk , (3.52)

As an immediate consequence of minor symmetries, the last term in (3.54) vanishes too,
because double-contraction of a symmetric tensor with an antisymmetric tensor equals zero.
Therefore, we finally obtain

ψ`(ε) =
1

2
ε : C : ε , (3.55)
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in which ε = ∇su and is called Cauchy strain, or sometimes small strain, or linear strain.
Accordingly, the stiffness tensor can be reformulated as

C =
∂2ψ

∂ε⊗ ∂ε

∣∣∣∣
ε=0

. (3.56)

This tensor has another obvious yet important property, being positive definite over the set
of small strains, which means

ε : C : ε ≥ 0 , (3.57)

for all symmetric second-order tensors ε that fulfill the kinematic compatibility condition as
∇×ε×∇ = 0. For future reference, let us also introduce the small rotation tensor ω = ∇au.
Remember that both strain ε and rotation ω must remain small for linear hyperelasticity to
hold.

Restated in terms of thermodynamic driving forces, the energetic formulation (3.55) is
equivalent to saying that the stress–strain response of the material is linear at the vicinity of
equilibrium. Then, the slope of this linear stress–strain response is nothing but the stiffness
tensor

σ = C : ε , (3.58)

where the Cauchy stress tensor, i.e. the thermodynamic driving force, is given by

σ =
∂ψ

∂ε

∣∣∣∣
ε=0

. (3.59)

Most of the foregoing arguments are basically a direct generalizations of the Hooke’s law.
That is why a linear hyperelastic material is often called a Hookean material.

Remark 6. Mathematically, since the stiffness tensor is left and right minor symmetric, we
have not gained anything in deriving (3.55) from (3.49), because inner multiplication of a
symmetric tensor with an arbitrary tensor is not influenced by the antisymmetric part of
the arbitrary tensor. From a computational standpoint, however, putting the symmetric
gradients directly into the formulation will help avoiding the computational round-off errors
that will eventually render the strains non-symmetric.

3.2.2 Average laminate energy

The following calculations have been partially carried out symbolically using MathematicaTM.
We start out by by substituting F from (3.41) into (3.47) and averaging the free energy across
a single martensite twin as

ψ =
1

2H

∫ (1−Λ)H

−ΛH
(F− F◦) : C : (F− F◦) dX⊥ . (3.60)

The free energy ψ is expressed in the reference configuration; that is, the free energy per
unit volume in material coordinates. The terms (F− F◦) will be symmetrized after the
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simplifications, to avoid unnecessary calculations. The above integral is split over the two
variants as

∫ (1−Λ)H
−ΛH • =

∫ 0

−ΛH •+
∫ (1−Λ)H
0

•. For the first variant we have

ψ1 =
1

2H

∫ 0

−ΛH
[F1 − F◦1] : C1 : [F1 − F◦1] dX⊥ =

1

2
[a⊗H

�
] : C1 :

[
ΛH(a⊗

�
) +H(a⊗ Λ

�
) + 2(a⊗ N̂) + 2Λ

(
F− F◦1

)]
+
H

6Λ
[a⊗ Λ

�
] : C1 :

[
ΛH(a⊗

�
) + 3(a⊗ N̂) + 3Λ

(
F− F◦1

)]
+

1

2Λ

[
a⊗ N̂

]
: C1

[
ΛH(a⊗

�
) + 2Λ

(
F− F◦1

)]
− ΛH

2
[a⊗

�
] : C1 :

[
F− F◦1

]
+
ΛH2

6
[a⊗

�
] : C1 : [a⊗

�
] +

Λ

2
[a⊗H

�
] : C1 : [a⊗H

�
] +

H2

6Λ
[a⊗ Λ

�
] : C1 : [a⊗ Λ

�
]

+
1

2Λ

[
a⊗ N̂

]
: C1 :

[
a⊗ N̂

]
+
Λ

2

[
F− F◦1

]
: C1 :

[
F− F◦1

]
, (3.61)

and for the second variant

ψ2 =
1

2H

∫ (1−Λ)H

0

[F2 − F◦2] : C2 : [F2 − F◦2] dX⊥ =

1

2
[a⊗H

�
] : C2 :

[
(1− Λ)H(a⊗

�
)−H(a⊗ Λ

�
)− 2(a⊗ N̂) + 2(1− Λ)

(
F− F◦2

)]
+

H

6(1− Λ)
[a⊗ Λ

�
] : C2 :

[
−(1− Λ)H(a⊗

�
) + 3(a⊗ N̂)− 3(1− Λ)

(
F− F◦2

)]
+

1

2(1− Λ)

[
a⊗ N̂

]
: C2 :

[
−(1− Λ)H(a⊗

�
)− 2(1− Λ)

(
F− F◦2

)]
+

(1− Λ)H

2
[a⊗

�
] : C2 :

[(
F− F◦2

)]
+

(1− Λ)H2

6
[a⊗

�
] : C2 : [a⊗

�
]

+
1− Λ

2
[a⊗H

�
] : C2 : [a⊗H

�
] +

H2

6(1− Λ)
[a⊗ Λ

�
] : C2 : [a⊗ Λ

�
]

+
1

2(1− Λ)

[
a⊗ N̂

]
: C2 :

[
a⊗ N̂

]
+

1− Λ
2

[
F− F◦2

]
: C2 :

[
F− F◦2

]
. (3.62)

Introducing the energy inner product and its corresponding norm

〈α, β〉Ci =

∫
Ωi

α : Ci : β dV , ‖•‖2Ci = 〈•, •〉Ci , (3.63)

we can summarize the above formulas for the two variants, i = 1, 2, in the form of

ψi =
1

2H

∫
Ωi

(Fi − F◦i ) : Ci : (Fi − F◦i ) dX⊥ = (3.64)

+
1

6Λi

∥∥ΛiH(a⊗
�

) +Ha⊗ (Λi
�

)
∥∥2
Ci
− 1

6Λi

〈
ΛiH(a⊗

�
), Ha⊗ (Λi

�
)
〉
Ci
,

+
1

2Λi

〈
(ΛiHa)⊗

�
± a⊗ N̂ + Λi

(
F− F◦i

)
, Λia⊗ (H

�
)± a⊗ N̂ + Λi

(
F− F◦i

) 〉
Ci
,

in which Λ1 = Λ, Λ2 = 1 − Λ, Ω1 = {x ∈ R : −ΛH < x < 0}, and Ω2 = {x ∈ R : 0 < x <

(1−Λ)H}. In terms with the ± sign, the plus sign corresponds to the variant from which N̂
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points outward, and the minus sign to the variant to which N̂ points inward. For instance
when F2 − F1 = a ⊗ N̂, the plus sign holds for variant 1 and the minus sign for variant 2.
Alternatively, instead of ± we could have put a factor (−1)i+1 in front of those terms. We
refrain from presenting the laborious derivations required to arrive at the compact form of
average laminate energy in equation (3.64). When in doubt, one can verify their identity by
reverse derivation, namely by expanding (3.64) for each variant and subtracting the result
from (3.61) and (3.62) respectively.

One thing to notice here is that we have not used the energy formulation in terms of ε, but
rather the original formulation in terms of F is directly employed which may be undesirable
in numerical implementation. We could, of course, have used displacement gradients or
even their symmetrized counterpart instead of deformation gradients which would have cost
additional calculation with no apparent gain at this point. Nevertheless, in the upcoming
numerical solutions we will symmetrize the strains behind the scene to avoid round-off errors,
as remarked 6. This comes down to symmetrizing the terms within 〈., .〉 and ‖.‖, in equation
(3.64).

3.2.3 Existence of solution to mesoscopic problem

According to an existence theorem by J.M. Ball in 1976, it is required that the energy density
be quasiconvex [5, 10, 13]. This makes it necessary that subtraction of average deformation
gradient (mesoscopic deformation) from its pointwise value (microscopic deformation) is
equal to a perturbation that fulfills homogeneous boundary conditions over the microscopic
domain. Stated mathematically, over a microscopic domain ω enclosing a material point it
should hold that

F = 〈F〉ω + ũ∇ : ũ|∂ω = 0 . (3.65)

The infimum of the microscopic energy over all acceptable perturbations is called the quasi-
convexified energy, give by

QΨ(F) = inf
ũ

{
1

|ω|

∫
ω

Ψ(F + ũ∇) dV
∣∣∣ ũ(∂ω) = 0

}
, (3.66)

which is realized through minimizing sequences. The quasiconvexified energy has a minimum
for certain. An obvious necessary condition for existence of the infimum in (3.66) is that the
perturbation part in (3.41) has to fulfill the the zero boundary condition. To see this, we
distinguish between those parts of ∂ω where the laminate is parallel to the boundary, and
the parts where this is not the case.

• Wherever the laminate is parallel to ∂ω, the deformation u = x−X, in (3.34) vanishes
at X⊥ = −ΛH and at X⊥ = (1− Λ)H.

• At those parts where the laminate is not parallel to ∂ω, any mismatch between the
laminate ansatz and the homogeneous mesoscopic deformation is penalized via bound-
ary energy, according to remark 3. In the theoretical limit when Λ→ 0, or Λ→ 1, or
alternatively H → 0, this boundary energy will make sure that ũ = 0.
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Still, this is merely a necessary condition. A mathematical investigation of the sufficient
conditions for existence of the quasiconvex energy is beyond the scope of this work.

3.3 Crystallography of NiTi martensite

To a complete crystallographic study of a solid-to-solid phase transformation, there are three
ingredients [122]:

1. Lattice parameters of the parent and child phases.

2. Lattice correspondence between the parent and child phases.

3. Lattice transformation map from the parent to the child phase.

Figure 3.2 shows the primitive unit cells of NiTi (49.75 at. % Ni) for B2 austenite and
B19’ martensite phases. The B2 austenite has a body-centered cubic structure in which the
Ni atoms are located at the center of the unit cell. The B19’ has an almost face-centered
monoclinic structure; that is, the Ni planes are slightly shifted from their supposed positions.
This unit cell is in lattice correspondence with a B2 face-centered orthorhombic non-primitive
unit cell which is twice the size of the cubic B2 primitive unit cell. The lattice parameters
B2 and B19’ phases of NiTi are summarized in Tab. 3.1.

`1

`3

`2

Fig. 3.2: Lattice structures of NiTi (49.75 at. % Ni) for: (left) B2 austenite with body-centered
cubic primitive unit cell and the face-centered orthorhombic non-primitive unit cell; (right) B19’
martensite with and almost face-centered monoclinic unit cell [78, c© permission obtained].

Remark 7. It has been hypothesized theoretically and investigated experimentally that the
B19’ martensite at its ground energy state is not entirely stable and has the tendency
towards a stable martensite phase called B33 [17, 149]. There is consensus, nevertheless,
that the ground energy of B19’ is stabilized at the presence of shear stresses not larger
than 1 GPa [158, 149]. Since we consider deformation twins only, the instability of B19’
should not be of concern, because the phase transformations in deformation twins take
place under stress anyway.

Fig. 3.3 indicates the corresponding unit cells of the parent B2 austenite phase (left) and
the B19’ martensite phase (right) before and after the transformation. The cubic unit cell
has and edge length `0. The Ti atoms are at the corners of the cubic B2 unit cell and the
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Phase Unit cell `1 [Å] `2 [Å] `3 [Å] θ [deg] VA [Å3]

Austenite B2 Cubic (BC) 3.015 3.015 3.015 90 27.41

Austenite B2 Tetragonal (FC) 4.264 4.264 3.015 90 54.82

Martensite B19’ monoclinic (almost FC) 4.120 4.622 2.889 96.8 54.63

Tab. 3.1: Lattice parameters of NiTi (49.75 at. % Ni) for B2 (austenite) and B19’ (martensite)
phases based on experimental results [122, 78, 149, 121]. The non-primitive tetragonal unit cell for
B2 (second row) is in correspondence with the monoclinic B19’ primitive unit cell.

Ni atoms at their centers. To describe the lattice correspondence between B2 and B19’,
we start out by choosing an orthorhombic B2 cell whose edges are along

[
1 1 0

]
, [1 1 0], and

[0 0 1] directions, in cubic austenite coordinates, and consequently have the lengths
√

2 `0,√
2 `0, and `0 respectively. This cell is shared among four adjacent cubic cells and has a

volume twice a cubic unit cell. The Ti atoms are at the corners of the orthorhombic unit
cell and also at the centers of upper and lower faces. The four Ni atoms at the center of each
cubic unit cell now lie at the centers of the four vertical faces of the orthorhombic unit cell,
VA = 2`30.

x̂m1
x̂m2

x̂a3 , x̂
m
3

x̂a1

x̂a2 x̂m1
x̂m2

x̂m3

Fig. 3.3: Lattice correspondence between B2 face-centered orthorhombic non-primitive cell (left)
and B19’ almost-face-centered monoclinic primitive unit cell (right) [122, c© permission obtained].

To carry out the geometric mapping from the parent B2 phase to the child B19’ phase,
we first elongate the orthorhombic cell along each edge to arrive at the lattice constants of
the martensite as

`1 = κ1
√

2 `0 , `2 = κ2
√

2 `0 , `3 = κ3`0 . (3.67)

Finally, we allow the lattice direction [1 1 0] to tilt towards [0 0 1] by an angle equal to 90◦−θ,
which concludes the formation of the monoclinic B19’ primitive unit cell10. Expressed in the
original cubic austenite lattice coordinates the B2 → B19’ transformation consists of the

10The complete name for this transformation is “cubic to monoclinic-I”. Alternatively, one could tilt [1 1 0]
lattice direction towards

[
1 1 0

]
, which is called “cubic to monoclinic-II transformation”. This type of trans-

formation does not occur in NiTi, so we exclude it from our discussion.
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following mappings

aa1 = `0


1

−1

0

→ `1√
2


1

−1

0

 = am1 , aa2 = `0


1

1

0

→ `2√
2


sin θ

sin θ
√

2 cos θ

 = am2 ,

aa3 = `0


0

0

1

→ `3


0

0

1

 = am3 .

(3.68)

The transformation should then take the following form

F = {am} {aa}−1 = am1 ⊗
aa1

‖aa1‖
2 + am2 ⊗

aa2

‖aa2‖
2 + am3 ⊗

aa3

‖aa3‖
2 , (3.69)

where {a} =
(
aT1 ,a

T
2 ,a

T
3

)
is the matrix whose columns are the lattice vectors. The above

formula gives

F =


1
2

(κ2 sin θ + κ1)
1
2

(κ2 sin θ − κ1) 0
1
2

(κ2 sin θ − κ1) 1
2

(κ2 sin θ + κ1) 0
1√
2
κ2 cos θ 1√

2
κ2 cos θ κ3

 . (3.70)

The right polar decomposition of the above deformation, i.e. F = QU, yields the so called
Bain matrix or the transformation matrix, and its corresponding rotation:

U =


α δ ε

δ α ε

ε ε γ

 , Q =


(γ/κ3 + 1)/2 (γ/κ3 − 1)/2 −ε/κ3
(γ/κ3 − 1)/2 (γ/κ3 + 1)/2 −ε/κ3

ε/κ3 ε/κ3 γ/κ3

 . (3.71)

where

γ =
κ3 (κ2 sin θ + κ3)√
κ22 + κ23 + 2κ3κ2 sin θ

, α =
1

2

(
κ2 (κ3 sin θ + κ2)√
κ22 + κ23 + 2κ3κ2 sin θ

+ κ1

)
,

ε =
κ2κ3 cos(θ)

√
2
√
κ22 + κ23 + 2κ3κ2 sin θ

, δ =
1

2

(
κ2 (κ3 sin θ + κ2)√
κ22 + κ23 + 2κ3κ2 sin θ

− κ1

)
,

(3.72)

We then substitute the lattice parameters from Tab. 3.1 into (3.67) and then (3.72) to obtain

κ1 = 0.9663 , κ2 = 1.084 , κ3 = 0.9582 ,

γ = 0.9563 , ε = −0.0427 , α = 1.0243 , δ = 0.058 .
(3.73)

Putting these values into (3.71) finally gives

U =


1.0243 0.058 −0.0427

0.058 1.0243 −0.0427

−0.0427 −0.0427 0.9563

 , Q =


0.999 −0.001 0.0445

−0.001 0.999 0.0445

−0.0445 −0.0445 0.998

 . (3.74)
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During the construction of the monoclinic martensite from the cubic austenite, we had the
choice to decide for alternative orthorhombic cells, due to cubic symmetry. Also, while tilting
the orthorhombic cell we could have chosen alternative edges and alternative inclinations.
All these choices, which are determined by the symmetries of the parent and the child phase,
add up to the existence of different variants of martensite.

We mentioned that since martensitic phase transformation is reversible, the point group of
martensite must be a subgroup of the point group of austenite. Otherwise, doing consecutive
forward and backward transformations, one could produce infinitely many variants for both.
So it was shown in (2.34) that Nm.v. = #G+(aai )/#G+(ami ). In the case of cubic to monoclinic
transformation, Nm.v. = 24/2 = 12.

Basically, all the distinct martensite variants are obtained through the same geometrical
procedure, except that the lattice directions along which the elongations and the inclination
occur are permuted. So in principle we should be able to express the transformation matrices
of all variants by applying suitable elementary row and column operations. Tab. 3.2 lists all
the possible variants with their Bain matrix and their respective elementary operators such
that

Ui = EiU1E
T
i , Qi = EiQ1E

T
i , (3.75)

where Ui is the Bain matrix of the ith variant, and Ei is the corresponding elementary
row operator. Hence, ET

i acts as an elementary column operator. Notice that (3.75)2 is an
immediate consequence of the fact that EiE

T
i = I, for every i.

The compatibility condition of the form

RQjUj −QiUi = a⊗ N̂ , (3.76)

in which R ∈ SO(3), and QiUi is the polar decomposition of the transformation Fi of the
variant i with respect to the parent phase. This determines whether any two variants i and
j are capable of forming a twin microstructure and is often rewritten as

QUj −Ui = b⊗ N̂ , (3.77)

in which b = QT
i a and Q = QT

i RQj. Notice that since Qi and Qj are in the point group of
austenite, they belong to SO(3), and therefore the tensor Q is also a rotation, i.e. QTQ = I.

The requirements for existence of the solution as well as the general solution itself are
stated in the following theorem by Ball and James 1987 (see [11, pp. 32] for the proof).

Theorem 2. The compatibility condition QUj−Ui = b⊗N̂, with Q ∈ SO(3), detUi > 0,
and detUj > 0, has a solution if and only if C := U−Ti UT

j UjU
−1
i 6= I, and the second

largest eigenvalue of C equals one, i.e. λ2 = 1, where 0 < λ1 ≤ λ2 ≤ λ3. Then, there exit
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i Ui Ei i Ui Ei

1


α δ ε

δ α ε

ε ε γ



1 0 0

0 1 0

0 0 1

 2


α δ −ε
δ α −ε
−ε −ε γ



1 0 0

0 1 0

0 0 −1



3


α −δ ε

−δ α −ε
ε −ε γ



1 0 0

0 −1 0

0 0 1

 4


α −δ −ε
−δ α ε

−ε ε γ



−1 0 0

0 1 0

0 0 1



5


α ε δ

ε γ ε

δ ε α



1 0 0

0 0 1

0 1 0

 6


α ε −δ
ε γ −ε
−δ −ε α



1 0 0

0 0 1

0 −1 0



7


α −ε δ

−ε γ −ε
δ −ε α



1 0 0

0 0 −1
0 1 0

 8


α −ε −δ
−ε γ ε

−δ ε α



−1 0 0

0 0 1

0 1 0



9


γ ε ε

ε α δ

ε δ α



0 0 1

0 1 0

1 0 0

 10


γ ε −ε
ε α −δ
−ε −δ α




0 0 1

0 1 0

−1 0 0



11


γ −ε ε

−ε α −δ
ε −δ α



0 0 1

0 −1 0

1 0 0

 12


γ −ε −ε
−ε α δ

−ε δ α



0 0 −1
0 1 0

1 0 0


Tab. 3.2: Cubic to monoclinic-I transformation matrices, in which Ui is the Bain matrix, Ei is
the elementary row operator such that Ui = EiU1E

T
i .

two solutions of the form

N̂ =

√
λ3 −

√
λ1

ν
√
λ3 − λ1

(
−
√

1− λ1UT
i e1 + κ̄

√
λ3 − 1UT

i e3

)
,

b = ν

√λ3(1− λ1)
λ3 − λ1

e1 + κ̄

√
λ1(λ3 − 1)

λ3 − λ1
e3

 ,

(3.78)

where κ̄ = ±1, ν 6= 0 is a suitable normalizing factor for N̂, and ei’s are the normalized
eigenvectors of C corresponding to eigenvalues λi’s.

Here, the tensor C expresses the relative deformation of variant j with respect to variant
i. Therefore, the condition λ2 = 1 guarantees that there is a flat plane shared by the two
variants that remains undistorted. This ensures compatibility of the two variants. If the exis-
tence conditions are fulfilled, there are two solutions of the twinning equation corresponding
to values κ̄ = ±1. Each of the two solutions has a particular geometrical interpretation,
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which calls for a precise geometrical interpretation of the twinning itself.

Remark 8. When two compatible solid phases form a twin, the lattice on each side can be
obtained by either

• a simple shear, or

• a rotation

of the lattice on the other side. For details and proofs see [127, pp. 676–679] and [25,
pp. 68]. The simple shear here can be represented as

s = ‖b‖
∥∥∥U−1i N̂

∥∥∥ , ŝ =
b

‖b‖
, n̂ =

U−1i N̂∥∥∥U−1i N̂
∥∥∥ , (3.79)

where s denotes shear, ŝ shows the shear direction, and n is the shear plane. These three
quantities are often collectively called twinning elements. The above mentioned rotation
originates from the symmetry connection between the two variants, as mentioned before:
Uj = RTUiR where R ∈ G+(a◦i ). The rotation that maps the lattice of variant i to the
lattice of its twin variant j is of the form Qji = RQjR

T . For every two compatible variants
i and j, the two solutions of the twinning equation (3.77) given by (3.78) fall under one of
the following classes:

• Type I twins. The twinning plane n is rational in the austenite lattice coordinates
and is therefore a symmetry plane of the parent phase.

• Type II twins. The shear direction ŝ is rational in the austenite lattice coordinates
and is therefore a symmetry direction of the parent phase.

• Compound twins. Both the shear direction ŝ and the twinning plane n are rational
in the austenite lattice coordinates, and both are symmetric in the parent phase.
This happens when the transformations are related to each other by a 180◦ rotation
R through FT

j Fj = RTFT
i FiR. This is known as Mallard’s law [129, pp. 285].

If n and a of two distinct twin systems are related through a symmetry of the parent phase,
e.g. cubic symmetry for NiTi, they belong to the same twinning mode. Each twinning mode
comprises either one type I twin together with one type II twin or two compound twins.

There are listed solutions of all twin-compatible martensitic variants of NiTi in various
references [129, 122, 25], which are given directly based on (3.77) instead of (3.76). This does
not influence N̂, as can be seen from (3.77), but we have to take into account that a = QT

i b

with respect to the lattice coordinates of the jth variant. We emphasize this because in
computing the interface energy (3.108) we need to follow the exact correspondence between
lattices in order to determine the lattice interplanar spacing and the shear direction. In
order to avoid the hassle of calculating planar atom density and interplanar spacing for non-
rational lattice planes, we calculate the interface energy for type I twins only, and assume
that the corresponding type II twin has roughly the same interface energy. Although this is
circumventing the problem rather than solving it, this assumption is not entirely unintuitive
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Mode Type b N̂ s Da
n [Å] %mn

[
Å−2

]
A

comp. (−0.1602,−0.1602, 0.01263) (0, 0,−1) 0.2385 3.015 0.1050

comp. (−0.01143,−0.01143, 0.2562) 1√
2
(1, 1, 0) 0.2385

B
I (0.2274, 0.01969,−0.1709) (0,−1, 0) 0.2804 3.015 0.1122

II (0.01637, 0.2890,−0.01204) (−0.8113, 0, 0.5846) 0.2804

C
I (0.2835, 0.1160, 0.08138) 1√

2
(0,−1, 1) 0.3096 2.132 0.1598

II (0.02148, 0.2276,−0.2131) (−0.9072,−0.2975,−0.2975) 0.3096

D
I (0.03755, 0.09447,−0.08812) 1√

2
(0,−1,−1) 0.1422 2.132 0.1477

II (0.001744, 0.1114, 0.1037) (−0.3306,−0.6674, 0.6674) 0.1422

Tab. 3.3: Solutions of twinning equation for all twinning modes of cubic to monoclinic-I transfor-
mation of NiTi. Austenite lattice coordinates are used.

Variant 1 2 3 4 5 6 7 8 9 10 11 12

1 – A B B C – – D C – D –
2 A – B B – C D – – C – D
3 B B – A – D C – D – C –
4 B B A – D – – C – D – C
5 C – – D – B A B C D – –
6 – C D – B – B A D C – –
7 – D C – A B – B – – C D
8 D – – C B A B – – – D C
9 C – D – C D – – – B B A
10 – C – D D C – – B – A B
11 D – C – – – C D B A – B
12 – D – C – – D C A B B –

Tab. 3.4: Twin compatibility of NiTi martensite variants identified by their twinning mode.

because type I and type II twins in each twinning mode have equal shears. This shall roughly
translate to equivalent change of interatomic distances across the interface. On the other
hand, this simplification is justified because the exact crystallography of type II twins is still
open [104, 105]. Therefore, a methodical calculation of their interface energy goes beyond
the scope of our work.

3.4 Interface energies

A solid interface is defined either as a sharp boundary or as a transition layer that joins
two bulks of solid which are distinguished by their different physical properties. The two
solids can be made of different materials, or different phases of the same material in which
case the interface is often called a phase boundary, or they can pertain to variants of the
same phase which again can be seen as a phase boundary of sorts. A closely related concept
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is that of a solid surface, which differs from a solid interface in that it separates a solid
bulk from its surroundings—be it vacuum or a fluid phase. In what follows, the two terms
might be used interchangeably since the discussion applies equivalently to both interfaces
and surfaces, unless stated otherwise.

The two neighboring solid phases, sharing an interface, may or may not be in equilib-
rium. Nonequilibrium interfaces might move, exchange energy or matter, or they may even
be chemically reactive. These may be accompanied by interface formation, interface defor-
mation, or a combination of both. Equilibrium interfaces, on the other hand, are static and
do not exchange energy or matter. This is the case when the two mediums that share the
interface are in thermodynamic equilibrium with each other and with the interface, which
in turn implies that all the pertinent thermodynamic potentials are equal among the two
enclosing mediums and the interface itself. Here in this work, since it is postulated that the
microstructure evolves quasi-statically, all martensite twin interfaces are assumed to be at
equilibrium.

We gave two distinct geometrical interpretations of an interface, namely a sharp interface
versus a transition layer. A sharp interface is a two dimensional entity and so has no volume.
Whereas a transition layer is extended in three dimensions but it has a thickness considerably
smaller than the overall characteristic span of the enclosing mediums along the normal to
the interface. Although equivalent in most circumstances, these two views have at least
one substantial difference when it comes to establishing the governing equations in terms of
intensive and extensive thermodynamic properties of the system.

If the interface is treated as a thin transition layer, the governing equations keep their
usual form, since every extensive property of the overall system equals the sum of that
property over the three mediums: the two adjacent bulks plus the transition layer joining
them. Most prominently, the volume and the free energy of the system are

V = V− + V0 + V+ , Ψ = Ψ− + Ψ0 + Ψ+ , (3.80)

where plus, minus, and zero subscripts designate the two mediums and the interface respec-
tively. Assuming a homogeneous distribution, it follows that the energy densities are related
to the total free energy by

Ψ = V−ψ− + V0ψ0 + V+ψ+ . (3.81)

But in reality the situation is not nearly as ideal. In general, the free energy density as well
as any other intensive quantity corresponding to an extensive quantity is a field function.
If the curvature of the interfacial transition layer is large compared to its thickness, it is
possible to approximate the interface by a tangent plane at its close vicinity (see [52, 111]).
Having done so, we can express the interfacial free energy as the excess free energy stored
at the interface:

γ =
1

A0

(∫ z+

z−

ψ dV − V−ψ− − V+ψ+

)
, (3.82)

which, most noticeably, is defined as free energy per unit area of the interface. This way of
defining the interfacial energy facilitates a seamless transition to thermomechanical formula-
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n̂
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0 z+z−
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Fig. 3.4: Schematic distribution of an extensive quantity Ψ with volume density ψ across a thin
interface layer. The light blue filling shows the excess.

tion of sharp interfaces; although, it conceals the variations in the thickness of the interface
layer, which is largely irrelevant to formulation of the interfaces anyway, as will be seen.

For a sharp interface, the equation (3.81) reduces to Ψ = V−ψ−+ V+ψ+, because V0 = 0.
By itself, this means the interface does not carry energy which cannot be true. Otherwise,
the bulk would form as many interfaces as possible, rather than maintaining continuity, in
an effort to maximize its entropy; which is contrary to what happens in reality where a
single phase free from external interactions tends to minimize its surface and interface area.
From a purely theoretical standpoint, an argument can be made based on the fact that
a thermodynamic system at equilibrium attains minimum energy while simultaneously its
entropy is maximized. Among the configurations of a system that have equal energy, the one
with more microscopic degrees of freedom possesses a higher entropy. To represent a solid
body that forms an interface, more degrees of freedom are needed at the microscale; namely,
at least the locations of the interfaces. Thus, a solid body in a continuous configuration has
lower entropy than the same body with the same energy, but with interfaces. It follows that
the formation of interfaces has to cost energy.

Remark 9. From a thermomechanical viewpoint, defining the interface energy as the excess
energy means that the interface energy alone is at a minimum because the overall potential
attains its minimum due to equilibrium condition: Ψ = Ψ− + Γ + Ψ+ → min, while
simultaneously each of the two solid phases, being at equilibrium, are also at their minimum
state of energy: Ψ− → min, and Ψ+ → min. It follows that the interface energy must attain
its minimum: Γ → min; which guarantees that the interface is thermodynamically stable,
and the interface deformation can be modeled as a hyperelastic medium the same way as
the bulk.

The disappearance of the interface term from (3.81) is an apparent case of singularity
of the formalism. However, we are readily prepared to resolve the situation. Based on the
above arguments and particularly the equation (3.82), the interface energy is identified as
the excess energy with respect to the sum of energies stored in the bulk. This immediately
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reformulates (3.81) to
Ψ = V−ψ− + A0γ + V+ψ+ . (3.83)

Analogous to ψ, the interfacial free energy density is a field function of temperature, defor-
mation gradient, and amount of substance:

γ = γ(θ0,F0, N0;X) . (3.84)

Its changes at a fixed position X are therefore obtained from the usual thermodynamic
derivatives, as

dγ =
∂γ

∂θ0
dθ0 +

∂γ

∂F0

: dF0 +
∂γ

∂N0

dN0 = −s0 dθ0 + P0 : dF0 + µ0 dN0 , (3.85)

where s0 is the interfacial entropy density, P0 is the first Piola–Kirchhoff surface stress (force
per unit length), and µ0 is the interfacial chemical potential density—all in the reference
configuration. Then, the question comes to mind on how to rewrite (3.85) in the current
configuration, viz in terms of γ = γ(θ0,F0, N0;x). The apparent connection between the
energy densities in the two configurations is γ(.;X) = Jγ(.;x), in which J = detF0. A term
by term reformulation of the differentials in (3.85) gives ∂γ(.;X)/∂θ0 = J∂γ(.;x)/∂θ0 and
∂γ(.;X)/∂N0 = J∂γ(.;x)/∂N0. In the case of deformation energy we obtain a somewhat
different result, namely

P0 = JτF−T0 = Jγ(.;x)F−T0 + J
∂γ(.;x)

∂F0

, (3.86)

where τ is the interfacial Cauchy stress (real stress) and has the dimensions of force per unit
length. Multiplying both sides of the above equation with J−1FT

0 from the right, simplifies
it further to

τ = γ(.;x) I +
∂γ(.;x)

∂F0

FT
0 . (3.87)

Considerable body of research has been dedicated to equation (3.87), often called the Shut-
tleworth equation. Most references interpret the first term on the right hand side as the
energy required to form an interface, and the second term as the energy required to de-
form the already created interface. This interpretation seems intuitively plausible from a
physical standpoint; however, it may violate the assumption that the free energy density
was initially calculated per unit reference volume. As simple as this equation might seem,
there is hardly any consensus on validity of the assumptions on which it is established (see
for instance [52]). We confine our formulation to the reference configuration based on (3.85)
which, in any case, shall remove any shortcomings that might arise. Further, regardless of
these issues, a fully extended formulation would have little relevance to the present work,
mostly because we neglect the thermal and deformation effects on all interfaces.

Remark 10. In continuum mechanical study of fluids, γ is often referred to as surface
tension; because fluids cannot statically undergo shear stress and also interface cohesion
in fluids is not strong enough to allow for any significant interface deformation without
interface formation, which means the first term in (3.87) vanishes and τ = γ(.;x) I. In
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solids, on the other hand, surface stress is distinguished from surface energy; because
neither of the two reasons apply to solid interfaces. Thus, γ is referred to as interface
energy and τ as interface stress, in order to emphasize that the interfacial energy in solids
comprises both formation and deformation energies.

A brief look at the literature

There is extensive body of research dedicated to the study of solid interfaces, in general, and
martensitic twin interfaces, in particular. We briefly mention those that we have encountered
and have also benefited from.

Fischer et al [52], and Muller et al [111] give a relatively comprehensive and recent review
of continuum thermomechanics of solid interfaces. Sonderegger an Kozeschnik [142] gives a
general algorithm for counting the effective number of broken bonds of nearest neighbors of
any order. For a common atomistic model based on two- and multi-body interatomic poten-
tials see [56]. Hackl et al [66] study the effect of interface energy in the energy of martensite
laminate based on a heuristic approach and homogenization. We also have benefited from
the works of Wen et al [154], Vitos et al [148], Wang et al [153], Zhang et al [157], and
Galanakis et al [55]. Last but not least, we also have extended and built upon our previous
works [61, 60, 62].

The various methods of estimating or computing solid interface energy roughly belong
to either of three categories, namely

• Method of “nearest neighbor broken bond”: is based on based on lattice structure and
bond energies.

• “Ab initio” (first principles) computations: relying on particular interatomic potentials,
these methods simulate the lattice kinetic from which one can obtain the thermody-
namic quantities of interest.

• Continuum models: which are loosely based on lattice structure and mostly based on
fundamental thermodynamic principles.

While all the above approaches somehow introduce material parameters that account for var-
ious aspects of the underlying physical system, it is generally preferred that these parameters
be simple and directly measurable, if possible. In other words, we prefer simple quantities
like lattice constats over complex phenomenological attributes like heuristically introduced
coefficients. Because simple quantities have dimensions that we can easily make sense of
and measure, whereas the phenomenological coefficients have to be estimated indirectly by
fitting the computational results to the experimental data.

3.4.1 Energy of coherent crystal interfaces

Crystallographically, solid interfaces can be classified as coherent, semi-coherent, and inco-
herent, depending on how closely they resemble a perfect crystal monolayer (Fig. 3.5). In
this classification, a coherent interface is the sharpest physically possible interface, because
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by its definition a coherent interface is a perfect crystal monolayer that is shared by two
adjacent monocrystalline solid phases. The sharpness of a coherent interface is only limited
by lattice vibrations which at high temperatures become so significant that the interface
leans toward a diffuse interface. This, however, is not pertinent to our model, because shape
memory materials manifest their interesting behaviors at around transformation temperature
and below, which is not high enough to make a coherent twin interface markedly diffuse. We
therefore assume that the martensitic twin interfaces are perfectly sharp.

Fig. 3.5: An illustration of a coherent (left), semicoherent (middle), and incoherent interface.

We mentioned before that the accommodation strains are small compared with the trans-
formation strains. Hence, the interface deformation energy is negligible in comparison to the
interface formation energy, and consequently the twin interface energy is independent of
interface strains. Also, the thermal effects are excluded from our model, so the changes in
γ caused by temperature variations are left out. Putting all these assumptions together,
we conclude that the twin interface energy is fully determined by crystallography of the
two adjacent martensite variants, which itself is fully expressed in terms of transformation
strains. So we will once again rely on the crystallographic theory of martensitic transforma-
tion, seeking to understand how it determines the twin interface energy as a thermodynamic
state function.

As usual, based on the Cauchy–Born hypothesis we make the connection between the
variations of interatomic distances and the corresponding thermodynamic state variable,
i.e. the transformation strains. For illustration purposes only, Fig. 3.6 shows a cubic to
tetragonal transformation that is capable of forming martensitic twins. However, the fol-
lowing arguments are general and remain equally valid for other types of twin-compatible
martensitic transformations with any possible twinning plane. We again postulate that all
martensitic transformations must remain within the Ericksen–Pitteri neighborhood to avoid
plastic deformation and slip, in order to eliminate any possible degeneracy of the outcoming
model.

Atomistic modeling of crystalline materials is based on a stored energy in the form of the
sum of interatomic potentials over contributions of all the atomic bonds in a representative
element under periodic boundary conditions. Depending on the type of chemical bonds
between the constituent atoms, the interatomic potentials take the form of two-, three-,
or four-body-potentials, or a combination of these. For instance in a crystal system with
ionic bonds the major contribution to the interatomic potential comes from electrostatic
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Fig. 3.6: The three distinct variants of the cubic to tetragonal martensitic transformation [161,
c© permission obtained].

interactions which are hence two-body potentials that decay as 1/r, where r is the interatomic
distance. This translates to interatomic forces proportional to 1/r2 which are therefore long-
range. Metallic crystalline, on the other hand, form metallic bonds which are much the same
as ionic bonds, but since the outermost (valence) electrons are shared among the neighboring
atoms, the interatomic forces act over much shorter distances than the ionic bonds. So, while
the interatomic potentials corresponding to metallic crystalline are often considered to be
two-body potentials, they decay much quicker than 1/r. A common example is the so called
Lennard–Jones potential, given by

ψ(r) = ε

((rm
r

)12
− 2

(rm
r

)6)
. (3.88)

Despite the fact that more precise representations of the metallic bond are available, the
Lennard-Jones potential is widely employd in lattice computations, mainly due to its sim-
plicity which lowers the computation cost while still yielding satisfactory results in most
circumstances.

Calculation of solid interface energy based on crystal structure and interatomic potentials
is certainly not a recent finding [20] and spans a variety of methods. The basic idea behind
many of these mehtods comes from the Gibbs interpretation of extensive surface quantities
as the excess. Namely, one usually starts from homogeneous solid phases and conceives a set
of geometric operations on their lattices which lead to formation of the intended interface.
In each of these operations, one keeps track of the variations of the interatomic energies.
Finally, subtracting the energy of the initial lattice from that of the final lattice yields the
excess energy, which by definition equals the interface energy.

Many of the above techniques follow the method of “nearest neighbor broken bond”,
NNBB. The idea is to calculate the energy required to break all the bonds along a given lattice
plane in two different solid phases to create two solid surfaces which will later join to create a
coherent interface. In joining the two solid surfaces, the released bonding energy is subtracted
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from the bond breaking energies to yield the interface energy: Γ = Ψb − (Ψs1 + Ψs2). For a
coherent interface between two solid phases, the interface energy density can be then written
as

γ = n0z0

(
E12 −

1

2
(E11 + E22)

)
, (3.89)

where n0 denotes the number of atoms per unit interface area, z0 is the number of broken
bonds per interface atom, and Eij is the bond energy between two atoms in phases i and j.
This can be generalized to account for neighboring atoms farther than the nearest neighbor,
in the case of a crystalline whose interatomic potentials act over larger distances, such as
ionic lattices [142].

Another broad family of methods is directly based on atomic interactions. Here, the over-
all morphology of the lattice as well as proper interatomic potentials are the key ingredients.
The sum of interatomic potentials is computationally minimized over a set of predesignated
atomic degrees of freedom within a representative volume element under periodic boundary
conditions. The lattice energy is usually decomposed into a sum of short-range and long-
range potentials [51, 147, 56, 29, 102]. Concerning the degrees of freedom, only the atoms
belonging to a few monolayers parallel to the interface are allowed to relax, i.e. deviate from
their original lattice position, and the monolayers farther from the interface are assumed to
be fixed, because they remain unaffected from the asymmetry caused by the interface. Thus,
the lattice energy of a solid with an interface is formulated as

E = min
r∈I

I∑
i

(
1

2

I∑
j 6=i

ψ
(
|rij|2

)
+

B∑
k

ψ
(
|rik|2

))
, (3.90)

where rij = ri − rj denotes the relative position of the ith atom with respect to the jth
atom; I denotes the set of atoms within a thin layer containing the interface, and B is
the set of atoms within the bulk comprising two layers which enclose the interface layer.
For solid interfaces (not surfaces) when the temperature is fixed the kinetic energy of the
lattice can be left out, since it does not yield any excess energy. Notice in (3.90) that the
potential accounts for the interface excess energy only, since the contribution of the bulk
EB = 1

2

∑B
i

∑B
j 6=i ψ

(
|ri − rj|2

)
, has been already subtracted from the overall potential.

Although most authors express the general pairwise interatomic potential as ψ(|ri − rj|),
we adopt the alternative form ψ

(
|ri − rj|2

)
, following Born and Huang (1967) [31, pp. 129–

133]. While the two forms are mathematically equivalent, we find the Born formalism to be
more convenient in reflecting the lattice symmetries (see Appendix A).

Twin interface energy: the atomistic–continuum link

In order to incorporate the twin interface energy into our continuum micromechanical model,
a link has to be found between the atomistic mechanisms of interface formation and the
thermomechanical variables that describe the microstructure, namely Λ, H, N̂, and a. To
this end, we first establish a hypothetical geometric transformation that leads to formation
of a coherent martensitic interface (Fig. 3.7). We do so by starting from a homogeneous
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solid phase of a single martensite variant with transformation F1, which occupies a domain
large enough to be initially free from boundary effects. For this variant, there exist possible
twinning planes whose orientation can be denoted by their respective unit normal vector
N̂. We partition the domain along one of the twinning planes into two subdomains, and
then deform one subdomain under the deformation gradient F2F

−1
1 ; given that F2 is twin-

compatible with F1 as in (2.16), viz F2−F1 = a⊗N̂. This sequence of geometric operations
forms the desired configuration with a coherent interface. We now look into the atomistic
potentials corresponding to this configuration.

Fig. 3.7: A hypothetical mapping from one tetragonal variant of martensite to another that leads
to formation of a compatible interface.

Remark 11. Contrary to the calculation of strain energy in the bulk where the transfor-
mation strains had to be expressed with respect to the lattice orientation of the parent
austenite, here only the orientation of the martensitic variants relative to each other is im-
portant because the overall orientation of twin interface does not alter its formation energy
due to objectivity. Instead, we may use the twinning equation in terms of transformation
stretches, which are symmetric and positive-definite and are obtained from polar decom-
position of the deformation gradients corresponding to the martensitic transformations
according (2.37), as QU2 −U1 = a⊗ N̂.

Following the aforementioned approach, we now confine our attention to the two lattice
monolayers adjacent to the interface because the atoms farther from the interface remain
almost uninfluenced by its presence. The reason for this is the following: we exclusively
deal with metallic substances for which the interatomic forces are typically short-range. For
instance based on the Lennard–Jones potential, here is how interatomic forces and potentials
compare between the immediate neighbors of an atom and its non-immediate neighbors:

ψ(2rm)

ψ(rm)
= 0.031 ,

∂ψ/∂r
∣∣
1.9rm

∂ψ/∂r
∣∣
0.9rm

= −0.006 . (3.91)

Now that we have limited the lattice potential to the interface monolayer and the two
monolayers adjacent to it, we could allow the adjacent monolayers to relax, i.e. deviate from
their original lattice positions. However, this would require additional thermomechanical
variables in the continuum formulation which would inevitably make for a more complex
mathematical formulation. We therefore neglect the relaxation effects, which means that
the lattice points are fixed at their respective lattice sites before and after transformation.
Let us designate the ith lattice site corresponding to variants F1 and F2 respectively by ri[1]
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and ri[2]. The lattice energy can be then expressed as

E0 =

NI∑
i

NII∑
j

ψ
(∣∣ri[1] − rj[2]

∣∣2)+
1

2

NI∑
i

NI∑
j 6=i

ψ
(∣∣ri[1] − rj[1]

∣∣2)+
1

2

NII∑
i

NII∑
j 6=i

ψ
(∣∣ri[2] − rj[2]

∣∣2)

−
NI∑
i

NII∑
j

ψ
(∣∣ri[1] − rj[1]

∣∣2)− 1

2

NI∑
i

NI∑
j 6=i

ψ
(∣∣ri[1] − rj[1]

∣∣2)− 1

2

NII∑
i

NII∑
j 6=i

ψ
(∣∣ri[1] − rj[1]

∣∣2)
(3.92)

where NI denotes the number of atoms in the subdomain I including those on the interface,
and NII is the number of atoms in subdomain II adjacent to the interface. Since the interface
monolayer is not subjected to deformation under F2F

−1
1 , there is no need to count its atoms

separately, which is why we may include the interface atoms in NI. The above equation is
directly simplified to

E0 =

NI∑
i

NII∑
j

{
ψ
(∣∣ri[1] − rj[2]

∣∣2)− ψ(∣∣ri[1] − rj[1]
∣∣2)}+

+
1

2

NII∑
i

NII∑
j

{
ψ
(∣∣ri[2] − rj[2]

∣∣2)− ψ(∣∣ri[1] − rj[1]
∣∣2)} . (3.93)

We can simplify this equation even further, knowing that the two martensite variants have
equal ground energies. This makes the second sum in (3.93) vanish. Thus, we obtain

E0 =

NI∑
i

NII∑
j

{
ψ
(∣∣ri[1] − rj[2]

∣∣2)− ψ(∣∣ri[1] − rj[1]
∣∣2)} . (3.94)

In this equation we distinguish two types of interactions, namely

1. between the atoms at the interface and the adjacent monolayer in II, and

2. between the atoms at the two monolayers adjacent to the interface in I and II.

This way, we can rewrite the summation in (3.94) as E0 =
∑N0

i

∑N+

j • +
∑N−

i

∑N+

j •. We
remember, however, that F1 and F2 are symmetry connected via F2 = RTF1R, where R

belongs to the point group of the parent austenite. Therefore, the interatomic distances
in the two variants are equal and their crystallographic difference comes down to a mere
rotation. It can be then concluded that the first sum must be identically zero. So in
evaluating the sum in (3.94), we only consider the interactions between the atoms residing
on the two monolayers adjacent to the interface:

E0 =

N−∑
i

N+∑
j

{
ψ
(∣∣ri[1] − rj[2]

∣∣2)− ψ(∣∣ri[1] − rj[1]
∣∣2)} . (3.95)

In order to carry out the summation in the above equation, we need to calculate

• the number of nearest neighbors of each atom,
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• the atom density of each monolayer, and

• the changes of the interatomic distances between the two monolayers adjacent to the
interface under the transformation F2F

−1
1 .

Depending on the number of nonzero Miller indices of the monolayers, each atom at the
interface may have 1, 2, or 3 immediate neighbors on each adjacent monolayer. This means
that each atom on the monolayer adjacent to the interface in subdomain I can have 1, 3,
or 6 second-nearest neighbors11 on the monolayer in subdomain II adjacent to the interface.
To explain this, we take on the most difficult case; namely, when the twinning plane has 3
nonzero Miller indices, say (l1 l2 l3), which is to say that each interface atom has 3 immediate
neighbors on each of its two adjacent monolayers. For the given lattice vectors {a1,a2,a3},
these atoms can be listed as

−a1/l1 , −a2/l2 , −a3/l3 , on monolayer F1 ,

a1/l1 , a2/l2 , a3/l3 , on monolayer F2 .
(3.96)

For each atom residing on the monolayer in I, we seek to list all its distinct second-nearest
neighbors located on the monolayer in II across the interface. These are:

a1/l1 + a1/l1 , a1/l1 + a2/l2 , a1/l1 + a3/l3

� a2/l2 + a2/l2 , a2/l2 + a3/l3 ,

� , � a3/l3 + a3/l3 .

(3.97)

The case of 2 and 1 nonzero Miller indices should be obvious by now.
As the coherence condition demands, the atom density on all crystal monolayers parallel

to the interface is the same and is equal to

%(l1l2l3) = n(l1l2l3)d(l1l2l3)/VA , (3.98)

where n(l1l2l3) is the number of coplanar atoms in the unit cell of the monolayer (l1l2l3), and

d(l1l2l3) = 1/
∣∣l1a1 + l2a

2 + l3a
3
∣∣ , (3.99)

is the distance between two adjacent parallel monolayers, in which {a1,a2,a3} are the re-
ciprocal lattice vectors. The volume of the unit cell

VA = a1 · (a2 × a3) , (3.100)

is the same for the two variants since detF1 = detF2. Along the same line of reasoning,
due to the lattice correspondence between each martensite variant and the common parent
austenite, based on the coherence condition we can conclude that the atomic densities of
the two monolayers parallel to the interface are equal, and so are the distances between the

11See [142] and [72] for a recent account of interface crystallography, particularly a general method for
calculating the number of interface atoms. Also, see the original work of [116] for a precise view of crystal-
lographic neighborhoods.
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interface monolayer and the adjacent monolayer in each martensite variant. It follows that
the interfacial lattice potential in (3.95) can be written as

E0 = %(l1l2l3)A0

3∑
i=1

3∑
j=i

{
ψ
(∣∣ai + Taj

∣∣2)− ψ(∣∣ai + aj
∣∣2)} , (3.101)

where A0 is the area of the interface monolayer; T = F2F
−1
1 is the deformation gradient that

we formerly introduced; and ai = ai/li, is a mere abbreviation of the vectors in equation
(3.97). Notice that the index j of the inner sum starts from i, to avoid duplicate counts of
the second neighbors, as also shown in (3.97).
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Fig. 3.8: An example of Lennard–Jones potential based on computed constants of a metal.

In a final step, since the martensitic transformations are assumed to remain within the
Ericksen–Pitteri neighborhood, a Taylor’s expansion of individual terms of the sum in equa-
tion (3.101) is in order. The only concern which might arise here is that the two variants
belong to two different energetic wells, which means that their transformation strains are
too far apart for a Taylor’s expansion to be meaningful. While this argument seems to be
genuine at first, it is not relevant since this we consider the interactions between second
neighbors only. At typical distances between second neighbors the interaction potential, e.g.
a Lennard–Jones type (see Fig. 3.8), behaves smooth enough in order to be estimated by a
Taylor expansion. This expansion can be given in powers of∣∣ai + Taj

∣∣2 − ∣∣ai + aj
∣∣2 = aj ·

(
TTT− I

)
· aj + 2ai (T− I) · aj

= aj · (u∇+∇u +∇u · u∇) · aj + 2ai · (u∇) · aj
= aj · (∇u · u∇) · aj + 2

(
ai + aj

)
· (u∇) · aj .

(3.102)

where u∇ = T− I = a⊗
(
F−T1 N̂

)
= a⊗ b, for which we showed that a · b = 0. Therefore,

∇u · u∇ = 0, and the above equation is simplified to∣∣ai + Taj
∣∣2 − ∣∣ai + aj

∣∣2 = 2
(
ai + aj

)
· (u∇) · aj . (3.103)

Expanding (3.101) around T = I up to O(|u∇|) yields

E0 ≈ %(l1l2l3)A0

3∑
i=1

3∑
j=i

{
ψ′
(∣∣ai + aj

∣∣2) [2 (ai + aj
)
· (u∇) · aj

]}
. (3.104)
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Due to the lattice correspondence, for every pair of vectors ai and aj it holds that
ai + Taj = aj + Tai, which shows Taj − aj = Tai − ai. But we know that T − I = u∇,
therefore

u∇ · a1 = u∇ · a2 = u∇ · a3 . (3.105)

These equalities have an interesting geometrical interpretation. We mentioned that u∇ =

a⊗
(
F−T1 N̂

)
, which can be reformulated, using equations (3.12) to (3.15), to

u∇ =
1

|F1|
a⊗

(
Cof F1 N̂

)
=

dV

dv

da

dA
a⊗ n̂ , (3.106)

where dV and dv are the volume elements in austenitic and martensitic phase, dA and da

are the area elements on the twin interface before and after martensitic transformation, and
n̂ is the unit vector perpendicular to twin interfaces in the current configuration, i.e. after
transformation. We know, however, that the ratios dV

dA
and dv

da
are the distances between

the two adjacent monolayers parallel to the twinning plane before and after transformation
respectively. Furthermore, multiplication of the unit normal with any of the lattice vectors
equals the distance between the two adjacent monolayers, n̂ · ai = d(l1l2l3), which leaves us
with

u∇ · aj =
D(l1l2l3)

d(l1l2l3)
d(l1l2l3)a = D(l1l2l3) a . (3.107)

Eventually the lattice interface energy per unit area from (3.104) equals

γ ≈

[
2 %(l1l2l3)D(l1l2l3)

3∑
i=1

3∑
j=i

ψ′
(∣∣ai + aj

∣∣2) [ai + aj

]]
· a . (3.108)

The vector within the large brackets can be thought as a material constant. Notice that
its variations due to accommodation of the microstructure are of higher-order and can be
therefore left out. We will show that this material constant has a direct connection with the
elastic constants of the martensite and to the martensitic transformation itself. But just by
looking at its terms and factors, calculation of (3.108) requires the following information

• %(l1l2l3), D(l1l2l3), and ai require crystallographic data and the lattice parameters.

• a is the jump across twin interface and so requires a study of all possible twinning
modes among distinct martensite variants.

• ψ′(•) involves explicit derivative of lattice potential, therefore requires the type and
the parameters of the potential, e.g. Lennard–Jones.

3.4.2 Martensite twin interface energy

Tab. 3.3 lists the solution (3.78) for various possible twinning modes for the cubic to
monoclinic-I transformation of NiTi variants. This table is complemented by Tab. 3.4 which
shows all the twin-compatible variants together with their twinning mode. This table will
be used in our general computation of the laminate microstructure. It is crucial to cal-
culate interplanar spacings D(l1l2l3) and the planar atomic densities %(l1l2l3) of the twinning
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plane based on the B2 orthorhombic unit cell and not the cubic unit cell to keep the lattice
correspondence fulfilled. These values are obtained from the following calculations

DA = `0 , DB = `0 , DC =
`0√

2
, DD =

`0√
2
, (3.109a)

%A =
4× 1

4
+ 1

‖am1 × am2 ‖
, %B =

4× 1
4

+ 2× 1
2

‖(am1 + am2 )× am3 ‖
, (3.109b)

%C =
3× 1

6
+ 3× 1

2

‖(am1 − am3 )× (am1 + am2 )‖
, %D =

3× 1
6

+ 3× 1
2

‖(am2 − am3 )× (am1 + am2 )‖
. (3.109c)

The above calculations also imply the lattice directions and planes in the martensite coor-
dinates that correspond to those given in Tab. 3.3 in austenite lattice coordinates.

Calculation of the first derivatives ψ′(•) in (3.107) involves explicit derivative of the
lattice potential. In the case of Lennard–Jones potential (3.88), for instance, we need to
determine two parameters ε and rm to be able to calculate the derivative. An apparent
method for determining these parameters would be to solve analytical expressions of macro-
scopic properties, such as elastic constants, that explicitly depend on the lattice potential
and/or its derivatives [159, 131]. This approach takes the following steps

1. Deriving an explicit formulation of nonzero elements of the elastic stiffness tensor in
terms of lattice parameters and an interatomic potential.

2. Assuming appropriate form(s) of interatomic potential(s) whose constants are un-
knowns which are to be determined.

3. Substituting the known crystallographic values together with interatomic potentials
into the formulation of elastic constants from step 1 and setting these constants to
their known experimental values.

4. Solving the system of equations, established in step 3, in terms of the unknown con-
stants of the interatomic potential(s). Obviously, we must setup the same number of
equations in step 3 as there are unknowns.

Before tending to the above procedure, let us visit some of the available results on NiTi
elastic constants. Ren et al (2001) present empirical data on elastic constants of B2 phase
in various NiTi alloys within a wide temperature range, prior to martensitic transformation
[134]. The B2 phase, having a cubic lattice, has 3 independent elastic constants. To date, We
have not been able find empirical data on the elastic constants of B19’, which are 13 due to
its monoclinic lattice structure. For B19’ phase, therefore, we consult the works of Wagner et
al (2008) and the more recent work of Šesták et al (2010) which report computational results
on the elastic constants of B2 and stress-stabilized B19’ based on first principles [149, 140].
Both assume thermodynamic ground states, i.e. temperatures at 0 K. Yet we know that
deformation-driven martensitic transformation takes place at temperatures higher than the
austenite finish temperature, θAf = 397.5 K up to almost θAf + 40 K [54, pp. 3450, 3454]
(see Fig. 3.9). Generally, elastic constants are not much influenced by temperature. In B2
phase, however, the elastic constants related to lattice directions that are involved in phase
transformation show strong temperature dependence [139].
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For B2 we take the empirical results in [134] as close as possible to 400 K and 49.75 at. % Ni.

Cijkl =


175 i = j = k = l ,

149 i = j ∧ k = l ,

40 (i = k ∧ j = l) ∨ (i = l ∧ j = k) .

(3.110)

All values are in GPa. For B19’ we find the results of [149] to be more reliable because
their prediction for B2 is closer to the empirical data, and also because of their more robust
approach towards stability and their stress-stabilized results for B19’:

C1111 = 223 , C2222 = 241 , C3333 = 200 ,

C1122 = 129 , C2233 = 125 , C3311 = 99 ,

C1113 = 27 , C2213 = −9 , C3313 = 4 ,

C1212 = 77 , C2323 = 76 , C3131 = 21 , C2312 = −4 .

(3.111)

Again, the values are in GPa. The major and the minor symmetries will produce the remain-
ing nonzero elements. The above stiffness tensor is expressed in the martensite rectangular
coordinates for the 1st variant (Fig. 3.3). For the nth martensite variant, the stiffness tensor
has to be transformed under the corresponding elementary operator listed in Tab. 3.2, as

Cn = En⊗En : C1 : ET
n ⊗ET

n or Cn
ijkl = En

iaE
n
jbE

n
kcE

n
ldC

1
abcd , (3.112)

where superscripts stand for variants in the index notation.
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Fig. 3.9: Martensitic transformation temperatures; martensite start θMs and finish θMf tempera-
tures, and austenite start θAs and finish θAf temperatures.

As compared to a simple monatomic monoclinic lattice, an atomistic energy formulation
of martensitic NiTi faces at least three difficulties. One is that the martensitic NiTi has a
face-centered monoclinic structure whose lattice energy formulation is more involved than a
simple monoclinic lattice. The second difficulty is that there are two constituent elements,
i.e. Nickel and Titanium, which would require at least three types of interatomic potentials
in the lattice energy formulation. These are Ni–Ni, Ti–Ti, and Ni–Ti interactions. This adds
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to the complexity of the problem. There is also a third twist, namely the stability of the
empirically established unit cell. It is well known that the B19’ unit cell given in Tab. 3.1
does not have a stable ground energy. Our formulation of the elastic constants confirms this
too. Due to the analytical nature of our method we have to face these three issues, but we
do so only by approximation.

As for the three distinct types of atomic interactions, it should be safe to assume an
average common potential because the two elements, Ni and Ti, are present in almost equal
proportions. Also because the atoms lying at face centers of the unit cell, although slightly
shifted due to dissimilarity of the face symmetries, are of both kinds which roughly shows
that the interactions between similar and dissimilar atoms should not differ substantially.
So we are going to adopt a single Lennard–Jones potential (3.88) for all three types of
interaction. Following this simplification we can treat the lattice as that of a monatomic
substance which will pave the way for resolving the other difficulty: the face-centeredness of
the NiTi martensite.

Following the technique in appendix A the energy density of a face-centered monoclinic
lattice is expressed by

e =
1

VA

∑
i

{
4× 1

4
ψ
(
|ai|2

)
+ 4× 1

2

∑
j>i

{
ψ
(
1/4 |ai + aj|2

)
+ ψ

(
1/4 |ai − aj|2

)}}
.

(3.113)
This is the energy stored in a unit cell, as the factor 1/VA suggests. The first term of the
outer sum relates to the interactions between corner atoms whose interatomic distances are
perceived as edges of the unit cell. There are 12 edges. Every 4 edges are parallel, which
makes for 3 different interatomic distances, and each edge belongs to 4 unit cells. This
explains the factor 4× 1/4. The inner sum represents the interaction between an atom at a
corner of a face and the one at its center, whose interatomic distance equals either (ai+aj)/2

or (ai − aj)/2. Each of these interactions is shared by two neighboring unit cells and each
has a multiplicity of 4 (2 for opposite faces and 2 for each diagonal on every face). This
will explain the factor 4 × 1/2. According to approximation (B.8) we can write the elastic
stiffness tensor as

C =
1

VA

∑
i

{
K
(
|ai|2

)
+ 2

∑
j>i

{
K
(
1/4 |ai + aj|2

)
+ K

(
1/4 |ai − aj|2

)}}
, (3.114)

in which K(•) is given by (B.13).
Since the Lennard–Jones potential is determined by two parameters, we need to derive

mathematical expressions for two non-zero elements of the elastic stiffness tensor whose
values are known from experiments or from ab initio computations. Expanding the above
equation for C1111 and C2222 gives:

C1111 =
1

VA

{
`41

[
4ψ′′

(
`21
)
+ ψ′′

(
`21 + `22

4

)
+ ψ′′

(
`21 + `23

4

)]
(3.115)

+ 2`21

[
ψ′
(
`21
)
+ ψ′

(
`21 + `22

4

)
+ ψ′

(
`21 + `23

4

)]
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+ 9`22

[
2ψ′
(
`22
)
+ 2ψ′

(
`21 + `22

4

)
+ ψ′

(
`22 + 2`2`3 cos θ + `23

4

)
+ ψ′

(
`22 − 2`2`3 cos θ + `23

4

)]
+ 18`2`3 cos θ

[
ψ′
(
`22 + 2`2`3 cos θ + `23

4

)
− ψ′

(
`22 − 2`2`3 cos θ + `23

4

)]
+ 9`23

[
2ψ′
(
`23
)
+ 2ψ′

(
`21 + `23

4

)
+ ψ′

(
`22 + 2`2`3 cos θ + `23

4

)
+ ψ′

(
`22 − 2`2`3 cos θ + `23

4

)]}

C2222 =
1

VA

{
18`21

[
ψ′
(
`21
)
+ ψ′

(
`21 + `22

4

)
+ ψ′

(
`21 + `23

4

)]
(3.116)

+
1

2
`42 sin

4(θ)

[
8ψ′′

(
`22
)
+ 2ψ′′

(
`21 + `22

4

)
+ ψ′′

(
`22 + `23 + 2`2`3 cos θ

4

)
+

ψ′′
(
`22 + `23 − 2`2`3 cos θ

4

)]
+ `22

(
4 cos(2θ) + 5

) [
2ψ′
(
`22
)
+ 2ψ′

(
`21 + `22

4

)
+

ψ′′
(
`22 + `23 + 2`2`3 cos θ

4

)
+ ψ′′

(
`22 + `23 − 2`2`3 cos θ

4

)]
+ 18`2`3 cos θ

[
ψ′
(
`22 + 2`2`3 cos θ + `23

4

)
− ψ′

(
`22 − 2`2`3 cos θ + `23

4

)]
+ 9`23

[
2ψ′
(
`23
)
+ 2ψ′

(
`21 + `23

4

)
+ ψ′

(
`22 + 2`2`3 cos θ + `23

4

)
+ ψ′

(
`22 − 2`2`3 cos θ + `23

4

)]}
.

Now we take the first two derivatives of the Lennard–Jones potential (3.88) with respect to
r2, which are

ψ′
(
r2
)

= 6ε

(
r6m
r8
− r12m
r14

)
, ψ′

(
r2
)

= 6ε

(
−4

r6m
r10

+ 7
r12m
r16

)
, (3.117)

and the lattice parameters given in Tab. 3.1, and the elastic constants in [149]:

`1 = 4.120 Å , `2 = 4.622 Å , `3 = 2.889 Å , θ = 96.8◦ ,

C1111 = 223 GPa , C2222 = 241 GPa ,
(3.118)

into the (3.115) and (3.116) to get to the following system of equations in terms of Lennard–
Jones parameters:

ε
(
0.0279663 r6m − 0.00003168 r12m

)
= 223 ,

ε
(
0.0338999 r6m − 0.00009489 r12m

)
= 241 ,

(3.119)

Solving this system under ε, rm ∈ R+, yields

rm = 1.982 Å , ε = 1.413× 10−19 J . (3.120)

Remark 12. The results we just presented are of estimative nature. First of all, a more
reliable calculation of elastic constants should have been based on the relaxed base-centered
orthorhombic unit cell since the empirical face-centered monoclinic cell is not energetically
stable [133]. We nevertheless opted for the empirical cell because inevitably we have calcu-
lated the martensitic transformations (Tab. 3.2) based on the experimental data. Hence,
one should not be tempted to produce all the other elastic constants based on the com-
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puted Lennard–Jones parameters (3.120) whatsoever. Yet, among the 13 ab initio elastic
constants (3.111) we took the two largest values, C1111 and C2222, which also happen to
correspond to lattice directions that are energetically most stable.

For computing the twin interface energy per unit area expressed by (3.108), we need one
more ingredient, namely the Miller indices of the twinning plane in each twinning mode,
which are

A: (0 0 1) , B: (1 1 0) , C: (1 1 1) , D: (1 1 1) . (3.121)

When equation (3.108) is expanded for twinning modes B, C, and D the face-centered
atoms contribute to the interface energy. This why we see lattice distances in the form of
1
2
ai + 2

3
aj in the following expressions. Introducing w(u) := ψ′

(
|u|2
)
u, the results are:

γA = 2%ADAw(−a3 − a3) · aA ,

γB = 2%BDB

[
w(a1 + a1) + w(a1 − a2) + w(−a2 − a2)

+ w

(
3

2
a1 −

1

2
a2

)
+ w

(
1

2
a1 −

3

2
a2

)]
· aB ,

γC = 2%CDC

[
w(a1 + a1) + w(a1 − a2) + w(a1 + a3)

+ w(−a2 − a2) + w(−a2 + a3) + w(a3 + a3)

+ w

(
3

2
a1 −

1

2
a2

)
+ w

(
1

2
a1 −

3

2
a2

)
+ w

(
−3

2
a2 +

1

2
a3

)
+ w

(
−1

2
a2 +

3

2
a3

)
+ w

(
3

2
a3 +

1

2
a1

)
+ w

(
1

2
a3 +

3

2
a1

)]
· aC ,

γD = 2%DDD

[
w(a1 + a1) + w(a1 − a2) + w(a1 − a3)

+ w(−a2 − a2) + w(−a2 − a3) + w(−a3 − a3)

+ w

(
3

2
a1 −

1

2
a2

)
+ w

(
1

2
a1 −

3

2
a2

)
+ w

(
−3

2
a2 −

1

2
a3

)
+ w

(
−1

2
a2 −

3

2
a3

)
+ w

(
−3

2
a3 +

1

2
a1

)
+ w

(
−1

2
a3 +

3

2
a1

)]
· aD , (3.122)

which after substitution of the numerical values of the physical quantities give

γA = −0.004059 J.m−2, γB = −0.002917 J.m−2, γC = 0.05531 J.m−2, γD = 0.02296 J.m−2 .

(3.123)
Data on coherent interface energies are scarce for obvious experimental limitations. We are
therefore content to check whether our numerical results have decent orders of magnitude
compared to the values in the literature. Waitz et al (2005) suggest values of the order
10−2 J.m−2 for a sharp twin interface between B19’ compatible variants [151]. Olmsted et al
(2009) compute ∼ 0.06 J.m−2 for coherent interfaces in FCC Ni [119]. Kaptay (2012) obtains
values between 10−1 and 10−2 J.m−2 for various alloys and at various temperatures [89]. Our
numerical results should hence be reasonable enough for use in the subsequent computations.
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Most conspicuously, for twinning modes A and B we have obtained negative interface
energies; or better to say, the twin formation reduces the overall stored energy of the lattice.
This can be intuitively explained as follows. Fig. 3.10 is an illustrative comparison of the
overall span of a single variant martensite (left) and a laminate composed of two compatible
variants (right). The two pieces have the same amount of material and since the two vari-
ants are compatible, their crystallographic difference comes down to a symmetry connection
within the point group of the parent phase. This means that the distances between the
immediate neighboring atoms do not change when transforming from the left configuration
to the right configuration. On the other hand, although the volume of the specimen does
not change, the overall span of the body reduces by forming the laminate microstructure.
This should mean that the interatomic distances between non-immediate neighbors decrease.
Therefore, the lattice energy of the laminated configuration (right) is inevitably lower than
the single-variant configuration (left). Of course, whether formation of laminate results in
such a phenomenon depends on the lattice structure, as well as the orientation of the twin-
ning plane and the direction of the transformation shear. So, in those cases where FiF

−1
j

results in the reduction of the overall span of the martensitic body Fj, the interface energy
can be negative, in the sense we explained.

Fig. 3.10: Comparison of overall lattice span of a single martensite variant (left) with a laminate
composed of two compatible variants (right).

However, the twinned structure having a lower energy than a single variant structure
inescapably presents the possibility that martensite should have the tendency to form lam-
inated microstructure as fine as possible, in an effort to lower its energy, which does not
seem plausible. The answer to this is multifaceted. First, between every two compatible
variants of martensite there is a dynamic energy barrier due the parent phase energy well.
This barrier prohibits the formation of overly fine twins at least in the case of deformation
twins. Second, in our calculation of the twin interface energy we neglected the interatomic
potentials between the atoms farther apart than second neighbors. If the laminated mi-
crostructure becomes extremely fine, say down to length scale of lattice constants of the
martensite, then the effect of non-immediate neighbors can become significant and our firs-
order crystallographic calculation shall fail. Last but not least, our energetic formulation of
the laminate microstructure has one more term which we have yet to investigate: the grain
boundary energy. Forming a finer and finer twin microstructure will form a more jagged
boundary which has to results in a higher energy stored in a boundary layer enclosing the
microstructure. However, we again will present a lowest-order model of the boundary energy
that does not counter-balance the laminate refinement. Therefore, for all twinning modes
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and types we use the largest estimated value

γ = 0.05531 J.m−2 , (3.124)

in order to avoid the just explained irregularity of the model, and to dilute the ill-conditioned-
ness of the tangent stiffness in the upcoming finite element computations.

Finally, to include the twin interface energies in the overall energy formulation of the
laminate microstructure, we calculate the pointwise interface energy per unit volume of the
current configuration which is given by

dE0

dv
= 2

γ dx1 dx2
h(x1, x2) dx1 dx2

= 2
γ

h
. (3.125)

The volume element whose size appears here in the denominator has its particular form
due to periodicity of the laminate along its normal direction x3. It is therefore sufficient to
consider the volumetric density of interface energy for a single twin. The factor 2 reflects
that each twin has one interface within and two interface at its sides which are shared by
two neighboring twins. This sums up to 1 + 2× 1

2
= 2. As a final comment, it can be easily

verified that the above formula remains valid in both material and spacial coordinates using
(3.15), (3.16), and (3.19).

Remark 13. In addition to remark 12, there can be other sources of inaccuracy in the
presented method of estimating the interface energy (3.124). The input arguments in
(3.122), namely % D ai, a, are expressed in terms of lattice parameters either directly or
indirectly. Lattice parameters are commonly measured via X-ray diffraction. The accuracy
of these measurements can be estimated using Bragg’s law augmented with probabilistic
analyses [71]. These suggest a relatively conservative estimate of the uncertainty of lattice
parameters as δ` ≈ 10−4`, which for B19’ phase of NiTi roughly gives δ` ∼ 10−4 [Å].
Now using elementary geometry and first-order approximations, the uncertainty of the
remaining input arguments can be estimated up to orders of magnitude as δ% ∼ 10−5

[
Å−2
]

and δD ∼ δ ‖ai‖ ∼ δ ‖a‖ ∼ 10−4 [Å]. Substituting these into, once again, a first-order
estimate of (3.122) will leave us with δγC ∼ 10−3γC , which does not seem significant.

It has been shown that the 12–6 version of the Lennard-Jones potential is not optimal for
solid metals. When used in computing bulk or shear modulus, it might lead to significant
discrepancies [53, pp. 49], which is why we carried out our computations based on Young’s
moduli only. Even so, our estimates might still require a correction up to 30% [53, pp. 52].
To improve, we could have used modified forms of the L-J potential, for instance those
worked out by Zhen and Davies 1983 [159]. Let us emphasize that we opted for the
standard Lennard-Jones potential to simplify the calculations, and there should basically
be no problem in using more sophisticated forms.

3.5 Grain boundary energy

The third and last part of our energy formulation of the martensitic laminate microstructure
comes from the energy stored at the boundaries. We term this the “grain boundary energy”,
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which turns out to be the most heuristic piece of our model due to its inherent complexity.
An actual grain in a martensitic material capable of manifesting shape memory effects, such
as NiTi, is a cluster of laminates with different orientations and a wide spectrum of length
scales [36, 113, 3, 99] (Fig. 3.11). Some patches of laminate might be composed of lamellae
that are made of twin microstructures at a smaller length scale, which is called a second
oder laminate. If the length scale allows, this could even proceed further to formation of
higher-order laminates; that is, laminate within laminate within laminate and so on. In
this picture, the size, shape, morphology, and composition of a grain is overwhelmingly
complex and its analysis will go far beyond the scope of this work. There is a vast body
of literature dedicated to modeling different aspects of grain formation and evolution, and
its influence on precipitation, transformation temperature, mobility, and so on. Each work,
however, focuses on very specific characteristics of a grain, as the entirety of the problem is
inhibitingly complicated.
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Fig. 3.11: Left: a cluster of laminates distributed across numerous grains in PtAl microstructure;
Right: PtAl laminate at various orders [27, CC© ].

Our ultimate objective is to formulate a microscopic energy formulation incorporating
interface effects to model the mesoscopic and eventually the macroscopic behavior of shape
memory materials. Therefore, at some point we have to settle for a tractable level of so-
phistication that will allow for a homogenization scheme to be numerically implemented.
That is why we chose not to consider laminates of orders higher than one. In the same way,
we pick up the simplest possible grain construct, namely a single patch of laminate. Then
again, choosing more complex constructs would contradict our initial premise of a first-order
laminate. Because two adjacent patches of laminate often fulfill compatibility condition at
their common interface in an average sense [11], which is mathematically equivalent to a
first-order coherence condition for which the compatibility of the laminate microstructure
would stand as a second-order coherence condition.

Our kinematic ansatz (3.11) of the laminate fulfills homogeneous boundary conditions, to
wit, external constrains are collectively simulated as Dirichlet boundary condition x(X) =

F ·X for all X ∈ ∂ω. This will be satisfied almost strictly at the boundary perpendicular
to the normal direction N̂. These are the points at which the boundary is parallel to the
lamellae or nearly so. However, there will always be discrepancies between the laminate and
its boundary where the oscillating displacement field of the laminate meets the homogeneous
displacement of the boundary head-on. In short, the grain boundary will store energy in two
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forms: formation energy which is the energy stored at the atomic scale, and deformation
energy due to microstrains propagated by the jaggedness of the laminate into a thin boundary
layer around it. Wherever the laminate is parallel to the boundary the microstrain energy
will be absent.

The boundary formation energy is conceptually similar to the twin interface energy, ex-
cept that there is no simple way of determining whether at each point the grain boundary
is coherent, semicoherent, or incoherent because of the randomness of relative lattice orien-
tations among neighboring grains. The degree of incoherence of an interface is determined
by the misorientation between lattices that form the interface. As the lattice misorienta-
tion increases the boundary energy grows as dislocations populate, although the energy per
dislocation decreases. We take the grain boundary formation energy as the ground thermo-
chemical energy of the boundary and assume it constant. Olmsted et al give grain boundary
formation energies from 0.06 up to 1 J.m−2 for FCC Ni, depending on lattice misorientation
[119, 74]. We use values whose orders range from 10−1 to 100 in various examples, especially

γaΓ = 0.41 J.m−2 . (3.126)

The elastic microstrain energy of the grain boundary, among other things, depends on
the precise morphology of the laminate tips. Stupkiewicz et al have investigated some of the
possible geometries that locally attain energetic minima and have formulated their results in
the form of particular characterizing shape parameters [144, 145]. Their boundary, however,
lies at the habit plane. Since we impose Dirichlet boundary conditions on the laminate, it is
reasonable to use their results. Nevertheless, since we do not intend to add to the number
of thermomechanical variables of our model, we employ some of their average values only as
a reference point to make a proper first guess at the factors that we will introduce in the
sequel.

n̂
m̂

ŷ3

ŷ2

ŷ1

Fig. 3.12: The laminate meets the grain boundary at an inclination angle. The relative orientation
of the unit vectors n̂ and m̂, normal to laminate and to boundary, is crucial to our formulation.

Fig. 3.12 illustrates a typical cross section of the laminated boundary. The unit vectors
n̂ and m̂ are normal to the laminate and the grain boundary in the current configuration.
The boundary coordinates are denoted by y and its orthonormal basis is defined locally as

ŷ1 =
n̂× m̂

|n̂× m̂|
, ŷ2 = m̂× ŷ1 , ŷ3 = m̂ . (3.127)
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Our basic assumption is that the micro displacement field caused by the laminated has a
self-similar structure of the form

u(y) = Φ

(
y

h

)
· v , (3.128)

where Φ : R3 → R3×3 is a self-similarity tensor which is a direct generalization of its scalar
counterpart, h is the projection of the lath with onto the boundary, and v is the maximum
laminate displacement at the boundary which are given by

h =
h

|n̂× m̂|
, v =

[
Λ (1− Λ)Ha

]
∂Ω
. (3.129)

Notice that we have left v in material coordinates. The reason for this will become clear
shortly.

Remark 14. The laminate elastic energy (3.64) was formulated based on the assumption
that the gradients along N̂ vanish. If the laminate and its boundary meet obliquely, a
case which we did not exclude, one might argue that this assumption is violated. It can
be counter-argued that our calculation of the laminate elastic energy was expressed in the
reference configuration where the parent phase resides; whereas the grain boundary energy
is formulated in the current configuration where the martensitic transformation might
have deformed the initial cuboid domain into a slanted parallelepiped, as in Fig. 3.12.
After completing the formulation, we will pull back all the quantities to the reference
configuration in which our fundamental premise is intact.

The micro displacement gradient is the directly obtained from (3.128):

∂u

∂y
=

1

h

∂Φij
∂ξk

vjŷi ⊗ ŷk =
v

h
·
(
Φ
T ⊗∇ξ

)
, (3.130)

in which ξ = y/h is the nondimensional coordinates.
We assume that the matrix surrounding the grain is homogeneous and isotropic at least

within the boundary layer in which the microstrain energy is calculated. As mentioned
before, this is a sound assumption since the relative orientation of the neighboring grains
and their distribution is random. The elastic microstrain energy density is then obtained as

ψΓ =
1

2

v

h
·
(
Φ
T ⊗∇ξ

)
: C :

(
∇ξ ⊗Φ

)
· v
h
. (3.131)

Since the boundary is a two dimensional entity, we need to calculate the microstrain energy
per uni area of the boundary. Since the laminate is periodic along n, the microstrain field
should be also periodic along ŷ2, with the same period h. We therefore integrate (3.131)
along a single period to obtain:

γeΓ =
1

h dy1
h2
∫ e/h

0

∫ 1

0

1

2

v

h
·
(
Φ
T ⊗∇ξ

)
: C :

(
∇ξ ⊗Φ

)
· v
h

dξ2 dξ3 dy1 . (3.132)
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where ξ = y/h is the non-dimensional coordinates, h dx1 is an infinitesimal area element
on the boundary, factor h2 comes from Nondimensionalization of dx1 and dx3. We also
assumed that the thickness of the boundary layer, e, is proportional to h, along the lines
of self-similarity postulate (3.128) [95, 34]. Notice that there is no integration along y1,
therefore the final result should depend on it. After some elementary derivations we arrive
at

γeΓ =
1

h
v ·Φ · v , (3.133)

in which

Φ =

∫ e/h

0

∫ 1

0

1

2

(
Φ
T ⊗∇ξ

)
: C :

(
∇ξ ⊗Φ

)
dξ2 dξ3 , (3.134)

is a 3× 3 tensor which generally depends on y1 only. If we substitute v and h from (3.129)
the final result will be

γeΓ =
(
1− (n̂ · m̂)2

)1/2 H2

h
Λ2 (1− Λ)2 a ·Φ · a . (3.135)

The term in the first parentheses comes from the trigonometric identity

|n̂× m̂| = |sin θ| =
√

1− cos2 θ =
(
1− (n̂ · m̂)2

)1/2
.

For every combination of martensite and surrounding matrix the tensor Φ can be deter-
mined at least numerically. With just one additional assumption, namely uniform micros-
train distribution along y2, one can even obtain explicit analytical solutions. This is because
the problem of an isotropic elastic half-space is among the most widely investigated classical
problems of elasticity, especially due its vast uses in the field of contact mechanics. Most
such solutions are based on classical works of Mindlin and Cerruti and using Green function
and Fourier analysis [108, 87, 152]. We, however, intend not to add to the complexity of
our upcoming numerical solution, because the homogenization of what we have formulated
so far will be computationally expensive as it is. So let us simplify the grain boundary en-
ergy by assuming that the tensor Φ is independent of y1 and is isotropic, none of which are
uncommon assumptions [113, 38, 98]. Thus, Φ in its principal coordinates takes the form
Φ = χI, and simplifies (3.135) to

γeΓ = χ
(
1− (n̂ · m̂)2

)1/2 H2

h
Λ2 (1− Λ)2 |a|2 , (3.136)

where χ is an additional material constant. Notice that the above formulation is expressed
partly in material coordinates and partly in spatial coordinates. We have to reformulate this
into material coordinates solely, so that we can directly implement it in the upcoming finite
element computation. Based on (3.14) and (3.19) we have

n̂ =
F
−T

N̂∥∥F−T N̂∥∥ , m̂ =
F
−T

M̂∥∥F−TM̂∥∥ , h =
H∥∥F−T N̂∥∥ , (3.137)

which after substitution in (3.136) give

γeΓ = χ sin(β)HΛ2 (1− Λ)2 |a|2 , (3.138)
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with

sin(β) =

[∥∥F−T N̂∥∥2 − ∥∥F−T N̂∥∥∥∥F−TM̂∥∥
(
F
−T

N̂ · F−TM̂
)2]1/2

. (3.139)

We estimate the newly introduced material parameter χ based on the results by Stup-
kiewicz et al [145]. For an interface along the habit plane of the laminate formed by type I
twinning between variants 9 and 5 in mode C, they compute the following values:

γeΓ = 0.22 J.m−2 , n̂ · m̂ = 0.604641 , h = 20 nm , Λ = 0.3101 , a = (0.0814, 0.1161, 0.2835) .

(3.140)
Pulling h back to H using (3.137)3, we obtain H = 20.511 nm which after substitution into
(3.136) leaves us with

χ = 2.928× 109 J.m−3 . (3.141)

We have chosen the values in (3.140) such that χ is overestimated, because in general there
is no guarantee that the laminate meets the boundary along the habit plan or even nearly so.
Therefore, in our model we need to overestimate χ so it may compensate for the possibility
of misorientation between the laminate and the boundary. A more precise model should
take the dislocation energy into account; something we avoid to stay away from an overly
sophisticated model. We also chose the boundary formation energy (3.126) to have the
highest suggested value for such unforeseen effects.

3.6 Chemical energies

The ground energy of individual phases, which marks the minimum of each energy well, is
often referred to as the chemical energy. As far as the material modeling is concerned, all
we will need is the relative value of chemical energy of the martensite phase with respect
to its parent austenite, because all the martensitic energy wells (designating variants) share
the same ground energy at any given temperature [65, 66, 80].

Since we will not carry out any mesoscopic and macroscopic computation, the chemical
energy is not of much use to the finite element implementation. Nevertheless, for the sake
of completeness we present the relative chemical energy of NiTi martensite with respect to
austenite as a function of temperature:

cma(θ) = cm(θ)− ca(θ) = 0.775501 (θ − 268.470)
[
MJ/m3

]
, (3.142)

where temperatures are in Kelvin. Clearly, for any given temperature this function de-
termines the threshold for both deformation- and temperature-induced martensitic phase
transformation. We will use the above formula in the next chapter to determine such a
threshold.

At this point our energy formulation of the microstructure has all its contributions ac-
counted for, and we can move to putting the model into test. Our example problems will
be of two types. First, we try to reproduce the general predictions of the mathematical the-
ory of martensitic phase transformation, which is computationally trivial but conceptually
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important. This part has to do with general characteristics of the laminate energetics and
morphology, such as scaling laws. Next, we implement a single microscopic grain which lies
at the heart of any homogenization that may be implemented in the future.

3.7 The minimization problem

Putting all the energy contributions together, our task amounts to the following minimization
problem. For given twin-compatible variants i and j and for prescribed average deformation
gradient F over the domain Ω, find Λ, H, and a such that∫

Ω

ψel
i + ψel

j + ψtw dV +

∫
Γ

γeΓ dA → min , (3.143)

where

ψel
i =

1

6Λi

∥∥ΛiH(a⊗
�

) +Ha⊗ (Λi
�

)
∥∥2
Ci
− 1

6Λi

〈
ΛiH(a⊗

�
), Ha⊗ (Λi

�
)
〉
Ci
, (3.64)

+
1

2Λi

〈
(ΛiHa)⊗

�
± a⊗ N̂ + Λi

(
F− F◦i

)
, Λia⊗ (H

�
)± a⊗ N̂ + Λi

(
F− F◦i

) 〉
Ci
,

and
ψtw =

2γ

H
, (3.125)

γeΓ = χ sin(β)HΛ2 (1− Λ)2 |a|2 , (3.138)

subject to central symmetry with respect to the grain’s midpoint. Notice that this symmetry
assumption might result in slightly overestimated energies but at the same time makes
for considerable computational performance gain due to its inherent numerical stability.
Regardless, there are compelling mathematical arguments that support this supposition [98,
pp. 700].

The grain boundary formation energy γaΓ , and the chemical energies of the martensite
variants have been left out because they are independent of the minimization variables Λ,
H and a, and can be added to the resultant energy afterwards, whenever needed.



Chapter 4

Finite element formulation

Mathematical models of physical phenomena are almost always expressed in either of the
following forms:

• a boundary value problem (BVP),

• a minimization problem (MP), or

• a variational problem (VP).

In almost all cases, especially as far as the mechanics of solids is concerned, one can show
that these formulations are equivalent under certain regularity requirements, not particularly
restrictive of the class of physical problems we are considering. In order to demonstrate
the equivalence of these formulations one usually goes by a cyclic scheme; namely, starting
from the initial-boundary value problem, conclude the minimization formulation. Next, from
the minimization formulation arrive at the variational formulation. And finally, from the
variational formulation conclude the differential formulation. The last step poses additional
regularity conditions on the solutions. It is in this vein that the variational formulation
is also called the weak formulation since the solution of the variational problem poses less
restrictive regularity conditions on the solution as compared to the initial-boundary value
problem which relies on the expression of the problem in terms of differential equations. For
an accessible exposition refer to Johnson’s textbook [86, pp. 15].

Formulation of a finite element scheme for any particular problem is constructed upon
variational (weak) formulation of the problem. As we just mentioned, whether or not the
problem is originally expressed as a variational problem, we can always establish one. As
it happens, our continuum model of the laminate microstructure appears in the form of
a minimization problem. Since its full representation would obscure the underlying ideas
in the forthcoming derivations, we opt for a compact general form for clarity’s sake. An
extensive derivation is committed to the sequel. This chapter borrows to various extents
from the books by Daya Reddy [132], Wriggers [155], Zienkiewicz [160], Dacorogna [40, 41],
and Johnson [86].
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4.1 The minimization problem

We seek the minimizer(s) of the free energy

Ψ [u] =

∫
Ω

ψ(u,u
�

;X) dV +

∫
∂Ω

γ(u;X) dA , (4.1)

in the vector field u =
[
a(X)T , H(X) , Λ(X)

]T
∈ V(Ω) over the elastic domain Ω ⊂ Rd,

where

V(Ω) =

{
u ∈ W 1,2(Ω)

∣∣∣∣∣ h ∈ (0, HΩ] , X
∣∣
∂Ω

= 〈F〉Ω ·X ,

λ ∈ [0, 1] , a = −Λ(1− Λ)a

}
, (4.2)

for which the average deformation gradient 〈F〉Ω is given and the coordinates X are chosen
such that X̂3 is normal to the twinning plane among all possible twin-compatible (coherent)
variants. W 1,2(Ω) is the Sobolev space augmented by a suitable energy norm ‖·‖C.

Notice that the problem at hand is a continuous minimization problem with respect to
u(X), and at the same time a discrete minimization problem with respect to the choice of
twin-compatible variants. We remember that in mechanical twinning the parent austenite
phase has a fixed (possibly random) orientation. We also recall that the orientation of
the possible twinning planes, designated as X̂3, is determined merely with respect to the
parent phase. Hence, in order to solve the above micro minimization problem, one has to
repeat solving a continuous minimization problem for each discrete choice of twin-compatible
variants, and then choose the minimal solution among the discrete outcomes. In summary
we intend to solve the following problem

u = arg min
u,F◦1,F

◦
2

Ψ(u) , u ∈ V(Ω) , F◦2 ||| F◦1 , (4.3)

where we have introduced the compatibility relation F◦2 ||| F◦1 with the usual meaning that
there exist a◦ and the unit vector N̂ such that F◦2 = F◦1 + a◦ ⊗ N̂. Reformulating the mini-
mization problem into a variational one involves functional differentiation which generalizes
the concept of derivative from functions to functionals.

4.2 Functional differentiation

The directional derivative of functions can be generalized to a real functional F [u] : V(Ω) 7→
R, by

δwF [u] := lim
ε→0

F [u + εw]− F [u]

ε
, w ∈ V(Ω) . (4.4)

In general, X(Ω) is a properly chosen function space and the above functional differentiation
goes by the name Gâteaux derivative. A formal definition of Gâteaux derivative is well
beyond the scope of this work due to the requirements of mathematical rigor. Nevertheless,
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our representation here shall be sufficient for most practical purposes. The above definition
can be restated as an ordinary derivative, viz

δwF [u] =
d

dε
F [u + εw]

∣∣∣∣
ε=0

. (4.5)

If this derivative exists for all directions w, then we can proceed further to generalize differ-
entials from functions to functionals. Let us define the so called variation of the functional
F [u] as

δF [u] = lim
ε→0

F [u + εw]− F [u] , w ∈ V . (4.6)

It then makes sense to identify δu = limε→0 εw, as the variation of u ∈ V , and write

δF [u] =
δF

δu
· δu . (4.7)

δF/δu is called the functional or variational derivative of F . It is important to bear in mind
that if the function space V(Ω) poses Dirichlet boundary conditions on its members, then
the variation δu must vanish at the Dirichlet boundary in order for u + δu to belong to
V(Ω). Hence, it must hold that δu ∈ VΓD(Ω), where the newly introduced space VΓD is the
subspace of V whose members vanish at the Dirichlet boundary ΓD ⊆ ∂Ω.

4.3 Variational formulation

A variational (weak) formulation of our minimization problem (4.3) is based on the idea that
if u is a solution, then any variation of the total energy around u must vanish, which is to
say

δΨ [u] = Ψ [u + δu]− Ψ [u] = 0 , ∀δu ∈ W 1,2
ΓD

(Ω) . (4.8)

Let us apply this condition to (4.1):

δΨ [u] =

∫
Ω

δψ(u,u
�

;X)

δu
· δu dV +

∫
∂Ω

δγ(u;X)

δu
· δu dA = 0 . (4.9)

We have taken the liberty to move the variational derivative δ • /δu into the integral, since
the integration domains Ω and ∂Ω are independent of the variation δu. Following through
with the derivation, we have

δΨ [u] =

∫
Ω

(
∂ψ

∂u
· δu
δu

+
∂ψ

∂(u
�

)
:
δ(u

�
)

δu

)
· δu dV +

∫
∂Ω

∂γ

∂u
· δu
δu
· δu dA (4.10a)

=

∫
Ω

∂ψ

∂u
· δu +

∂ψ

∂(u
�

)
: ([δu]

�
)︸ ︷︷ ︸

(δu· ∂ψ
∂(u

�
))·

�
−( ∂ψ

∂(u
�
)
·
�
)·δu

dV +

∫
∂Ω

∂γ

∂u
· δu dA (4.10b)

=

∫
Ω

(
∂ψ

∂u
− ∂ψ

∂ (u
�

)
·
�
)
· δu dV +

∫
Ω

(
δu · ∂ψ

∂(u
�

)

)
·
�

dV︸ ︷︷ ︸∫
∂Ω(δu· ∂ψ

∂(u
�
))·n dA

+

∫
∂Ω

∂γ

∂u
· δu dA

(4.10c)
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=

∫
Ω

(
∂ψ

∂u
− ∂ψ

∂ (u
�

)
·
�
)
· δu dV +

∫
∂Ω

(
∂ψ

∂(u
�

)
· n +

∂γ

∂u

)
· δu dA︸ ︷︷ ︸∫

ΓN
(•)·δu dA+

∫
ΓD

(•)·��*
0

δu dA

= 0 . (4.10d)

In the second step (4.10b) some vector calculus wizardry is performed. In the third step
(4.10c) the volume integral is transformed to surface integral using the Gauß theorem. In
the last step (4.10d) the surface integral is first split over Dirichlet and Neumann boundaries,
with the implicit necessary assumption that

ΓD ∪ ΓN = ∂Ω , ΓD ∩ ΓN = ∅ . (4.11)

Next, the surface integral over the Dirichlet boundary vanishes due to the basic requirement
of the variational formulation (4.8). Thus, the variational form of the problem can be
summarized as

δΨ [u] =

∫
Ω

δu ·
(
∂ψ

∂u
− ∂ψ

∂ (u
�

)
·
�
)

dV +

∫
ΓN

δu ·
(

∂ψ

∂(u
�

)
· n +

∂γ

∂u

)
dA = 0 . (4.12)

We have permuted the variation δu to the left, which is allowed inner product of vectors
is symmetric, although there is no a priori justification for doing so. This is really a mere
provision, for the subsequent formulation of finite element, that will simplify the matrix
operations down the road.

4.4 Boundary value problem: Euler–Lagrange equations

Let us digress and briefly address a notable implication of the variational formulation, namely
the Euler–Lagrange equations. In derivation of the variational formulation (4.12) we assumed
no a priori restriction on the nabla operator; and the fact that we have used

�
instead of ∇ is

solely because of particularities of the laminate microstructure. In fact the above equations
remain true for a large class of problems as long as a few fundamental thermodynamic
assumptions are not violated. So we may change the coordinates from laminate coordinates
to general coordinates, and the planar nabla operator

�
to its general counterpart ∇, and

the same formulation will then remain valid for such general problems:

δΨ [u] =

∫
Ω

δu ·
(
∂ψ

∂u
− ∂ψ

∂ (u∇)
· ∇
)

dV +

∫
ΓN

δu ·
(

∂ψ

∂(u∇)
· n +

∂γ

∂u

)
dA = 0 ,

u ∈
{
W 1,2(Ω)

∣∣ u(x) = u0 , x ∈ ΓD
}
, ∀δu ∈ L2

ΓD
(Ω) ,

(4.13)

wehre ψ = ψ(u,u∇;x) and γ = γ(u;x).
According to the fundamental lemma of variational calculus, this can be true only if the

co-operand of the variation is identically zero, which is to say

∂ψ

∂u
− ∂ψ

∂ (u∇)
· ∇ = 0 , ∀x ∈ Ω , (4.14a)
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∂ψ

∂(u∇)
· n +

∂γ

∂u
= 0 , ∀x ∈ ΓN . (4.14b)

From a thermomechanical viewpoint, the above equations express the balance of thermo-
dynamic forces over the body Ω and at the Neumann (natural) boundary ΓN respectively.
From a mathematical viewpoint, on the other hand, the above equations are the statement
of the underlying boundary value problem up to the Dirichlet (essential) boundary condi-
tion(s).

Remark 15. natural boundary conditions. The equation (4.14b) has the appar-
ent form of a boundary condition; one that is not imposed a priori, but rather deduced
directly from the variational formulation, which in turn is the direct consequence of the
minimization principle. Such boundary conditions are called natural boundary conditions.

One has to take great care when handling the natural boundary conditions in a finite
element scheme. Within the present context, boundary conditions can be classified as

• natural boundary conditions, and

• essential boundary conditions.

When finite element implementation is concerned, essential boundary conditions are im-
posed explicitly and are, therefore, strictly fulfilled. Natural boundary conditions are,
on the other hand, only approximately satisfied depending on the order of finite element
scheme and on the quadrature rule used in numerical integration.

Any part of the boundary on which no explicit condition is imposed becomes natural
boundary automatically. For a solid body this will be a traction-free boundary—also known
as the homogeneous Neumann boundary condition.

Deducing the Euler–Lagrange equations (4.14) from the variational formulation places
an additional mathematical restriction on the problem. Namely, in moving from (4.10b) to
(4.10c) the order of differentiation increases from one to two when the following identity is
applied

∂ψ

∂(u
�

)
: ([δu]

�
) =

(
δu · ∂ψ

∂(u
�

)

)
·
�
− ∂ψ

∂(u
�

)
·
�

Up to this additional differentiability requirement and the Dirichlet boundary conditions,
we have implicitly shown the equivalence of the variational formulation (4.9) with the sys-
tem of differential equations (4.14). Since we already have demonstrated the equivalence
of the minimization problem and the variational problem, one can summarize the results
schematically as

[Boundary Value Problem]  ⇒ [Variational Problem] ⇔ [Minimization Problem]

Remark 16. The fact that the BVP is more restrictive in terms of regularity of the solution
can be a severe setback for some mathematical problems. This is because the function
space in which the solution of (4.14) is sought, i.e., C2(Ω), is much smaller than that
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of (4.9), namely the Sobolev space. A Sobolev space is defined based on the Lebesgue
norms and weak derivatives, which extends the realm of regularity well beyond continuous
differentiability. This implies that the variational formulation can cover a substantially
larger class of problems than its corresponding boundary value problem. The solutions to
VP are often called weak solutions as opposed to strong solutions of PDE’s, because the
weak formulation (VP) poses less restrictive (weaker) regularity requirements on the set of
solutions.

4.5 The Ritz–Galerkin method

The function spaces in which the solutions to either the minimization problem, the boundary
value problem, or the variational problem are sought are infinite dimensional. For some
problems we might be able to find analytical solutions which are often expressed in terms of
infinite series over a particular orthonormal basis of the underlying function space, such as
Fourier, Legendre, or Bessel functions. However, these situations are rare and amount to a
very limited subset of the problems we face in any branch of physical sciences. For practical
purposes in the end, what we look for is numerical solution to a given problem that can be
tuned to yield results with required precisions.

The basic idea behind most numerical schemes is the same; namely, we substitute the
function space of solutions V(Ω) with a suitably chosen finite dimensional subspace Ṽ(Ω),
with dimension N and basis functions B = {φ1, φ2, . . . , φN}. This reduces the original prob-
lem to an algebraic one of finding the finite decomposition of a possible solution

ũ =

#B∑
i=1

uiφi , (4.15)

in terms of ui’s. For instance, difference schemes and collocation methods encompass two
broad family of methods based on application of this approach directly to boundary value
problems, or minimization problems.

If we intend to employ the same technique to numerically solve the variational problem
(4.13), we notice that in addition to the solutions’ function space there is the variations’ func-
tion space which also has to be substituted by one of its suitably chosen finite dimensional
subspaces. In general, there are problems in which the variation space has to be chosen dif-
ferently than the solution space. This is called the Galerkin method. In most circumstances,
however, the two spaces coincide except that the variation space has to vanish at Dirichlet
boundary. This will be then called the Ritz method. Obviously, the Ritz method is a subset
of the Galerkin’s. Nevertheless, since the underlying ideas are only subtly different, they are
unified under the common class of “Ritz–Galerkin methods”.

The discrete Galerkin formulation of the variational problem (4.13) takes on the form

arg
ũ

{
ũ ∈ Ṽ(Ω)

∣∣∣ δΨ [ũ] = 0 , ∀δũ ∈ ṼΓD(Ω)
}
. (4.16)
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The functional variation δΨ [ũ] vanishes along every function variation δũ ∈ ṼΓD , if and only
if it vanishes along all basis functions of ṼΓD , denoted by

{
φ1, . . . , φN

}
. So we can rewrite

the above problem in a more accessible form, namely

arg
uj

{
δ

φi
Ψ
[
ujφj

]
= 0 , ∀φi

}
, (4.17)

which is a system of N algebraic equations, each corresponding to one of φi’s, to be solved
for the vector of unknowns U = (u1, u2, . . . , uN)T .

In deriving the Euler–Lagrange equations from the variational problem (4.10) we passed
through two intermediate steps. Due to algebraic considerations, which will become clear
later, the Galerkin method is best formulated in terms of (4.10b), that is,

δΨ [u] =

∫
Ω

δu · ∂ψ
∂u

+ (δu)∇ :
∂ψ

∂(u∇)
dV +

∫
ΓN

δu · ∂γ
∂u

dA . (4.18)

4.5.1 Galerkin method for elliptic problems

If the underlying PDE is elliptic, as is the case with linear elasticity, it appears as

− (A : u∇) · ∇+ f · u = 0 , x ∈ Ω ,

u∇ · n = g , x ∈ ΓN ,
u = u0 , x ∈ ΓD ,

(4.19)

where A is a symmetric positive definite fourth-order tensor.

Remark 17. Elliptic operators are linear. Hence, if an elliptic differential equation must sat-
isfy non-homogeneous Dirichlet boundary conditions, u

∣∣
ΓD

= u0, one can re-parameterize
u as u∗ = u− u0, and reformulate the problem into a homogenous one; in which case the
variation space VΓD(Ω) and the solution space V(Ω) coincide. This is why most references
do not distinguish between the two spaces and call them under a common name, as either
test functions or shape functions. So in writing the Galerkin formulation (4.17) we assume
that φi = φi for all i, granted the above re-parameterization.

Based on (4.18) the system of equations (4.17) assumes the following form:∫
Ω

−φi · f +
(
φi∇ : A : φj∇

)
uj dV +

∫
ΓN

φi · g dA = 0 , (4.20)

which is a linear system of equations of the form

KU = R , (4.21)

in which K is historically called the stiffness matrix and is given by

Kij =

∫
Ω

φi∇ : A : φj∇ dV , (4.22)
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and U, the vector of unknowns, has been already introduced. The so called load vector is
given by

Ri =

∫
Ω

φi · f dV −
∫
ΓN

φi · g dA . (4.23)

Solving (4.21) for large systems, with many degrees of freedom, is usually carried out via
numerically efficient algorithms called linear solvers, or more precisely sparse linear solvers
in the case of finite elements, which we will present shortly.

Comparing (4.19) with the individual terms of the Euler–Lagrange equations (4.14), we
find the following physical interpretations

− ∂ψ

∂u
= f : body force ,

∂ψ

∂(u∇)
= σ : Cauchy stress , − ∂γ

∂u
= t : boundary traction .

(4.24)
Note that within the framework of linear elasticity, since the deformations are infinitesimal,
the domain Ω itself does not evolve in time.

4.5.2 Galerkin method for nonlinear problems

In problems where δΨ is a nonlinear functional, the system of equations (4.17) becomes
nonlinear. Numerical solution of general nonlinear algebraic equations is most often realized
through Newton–Raphson method or one of its customized variants. Focusing on the vector
of unknowns U, we have to solve a system of equations of the form F(U) = 0, which is
handled recursively as follows.

1. Start with a suitably chosen initial guess U0.

2. Having the solution Un for the nth step, we have Un+1 = Un + ∆Un, where the
increment ∆Un is obtained by solving the linear system of equations

∂F

∂U

∣∣∣∣
Un

·∆Un = −F(Un) . (4.25)

3. If ‖∆Un‖ < ε, then stop, otherwise repeat the step 2. Here, ε is a properly chosen
tolerance.

Apparently, the most important piece in the above algorithm is ∂F/∂U, the so called
tangent stiffness. The convergence of the method and its rate depends very much on condi-
tion number of the tangent stiffness. A neatly modified version of the N–R algorithm (see
Goldstein 1962 [39]) tries to damp or accelerate the step size in order to ensure convergence
with near-optimal rate. So in step 2, the increment assumes the following form

Un+1 = Un + %n∆Un . (4.26)

There are various approaches to calculating %n. We do not give further details but the
numerical library we use to implement finite element has built-in procedures for this.
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The tangent stiffness based on (4.18) is calculated via

Kn
ij =

∫
Ω

{
φi ·
[

∂2ψ

∂u⊗ ∂u

]
Un

· φj + φi∇ :

[
∂2ψ

∂(u∇)⊗ ∂(u∇)

]
Un

: φj∇

+ φi ·
[

∂2ψ

∂u⊗ ∂(u∇)

]
Un

: φj∇+ φi∇ :

[
∂2ψ

∂(u∇)⊗ ∂u

]
Un

· φj
}

dV

+

∫
ΓN

φi ·
[

∂2γ

∂u⊗ ∂u

]
Un

· φj dA ,

(4.27)

and the right hand side based on

Rn
i = −

∫
Ω

{
φi ·
[
∂ψ

∂u

]
Un

+ φi∇ :

[
∂ψ

∂(u∇)

]
Un

}
dV −

∫
ΓN

φi ·
[
∂γ

∂u

]
Un

dA . (4.28)

Most notably, the tangent stiffness is symmetric for the particular form of energy (4.9) we are
dealing with. It is important to know, however, that this may not be the case in general. For
the problem at hand, the symmetry of the tangent stiffness will enable us to use particular
linear solvers which would not be possible otherwise.

Once again we have allowed VΓD(Ω) to be the same as V(Ω), which might seem implau-
sible for problems with non-homogeneous Dirichlet boundary conditions as the variational
form is not linear anymore. However, since the nonlinear problem is solved by stepwise
linearization of the residual (4.25) via N–R algorithm, we can homogenize the Dirichlet
boundary conditions, if any, as we did for the elliptic boundary value problem.

4.6 The finite element method

The computation cost of solving a linear system of equations, like (4.21) or (4.25), is deter-
mined by the size of U which equals the number of unknowns, also referred to as the number
of degrees of freedom (DOFs), which also equals the dimension of Ṽ(Ω). Assuming that the
solution to the weak formulation exists and is unique, we can expect that

lim
n→∞

#B∑
i=1

uiφi ⇀ u . (4.29)

Then we can roughly say that increasing the number of DOFs will yield a more precise
estimate to the actual solution. Clearly when the underlying phenomenon that is being
modeled becomes more complex, we have to increase the number of DOFs in order to find
a reasonable estimate to the supposed solution. In real-world applications the required
number of DOFs can grow as high as millions, and handling linear systems of that size can
be extremely demanding if not impossible. This is where a clever choice of test functions
can change the game entirely, and that is what finite element method (FEM) is all about.

The finite element method chooses the test functions φi’s in a way that the stiffness matrix
becomes sparse, i.e., to have many zero elements. In linear algebra we often represent the
solution to a linear system like (4.21) symbolically as U = K−1R. In reality, however,
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we do not invert the stiffness matrix K and then multiply it by R to obtain the solution,
except for illustrative purposes in small-sized system of equations. There are highly efficient
linear solvers which take advantage of particular structures of the stiffness matrix. The most
efficient of these algorithms are the sparse linear solvers for obvious reasons. Now let us see
how FEM manages to make K sparse.

4.6.1 Finite elements

Let Th(Ω) be a partitioning of the domain the domain Ω into M subdomains as

Th(Ω) =

{
τi ⊂ Ω

∣∣∣∣ #Th⋃
i=1

τi ≈ Ω ; dim(τi ∩ τj) < dim(Ω) , i 6= j

}
, (4.30)

such that every τi is often a simplex, that is, a line segment if Ω ⊆ R, a triangle if Ω ⊆ R2,
or a tetrahedron if Ω ⊆ R3. Th(Ω) is often called a triangulation or a mesh. Each τi is called
an element and its corners are called nodes. Although, additional nodes can be added to
elements without changing their shape in order to assign more test functions or to increase
their order. The nodes that appear on the edges or faces of an element, due to refinement
of the neighboring elements via an adaptive scheme, and the element has not assigned test
functions to them are called hanging nodes.

∂Ω

Ω

τi

∂τi

Fig. 4.1: A finite element mesh of linear polygonal elements.

In general, the union of all τi’s covers Ω only approximately. This is because the boundary
∂Ω is neither necessarily polygonal nor a parameterized curve (Fig. 4.1). Surely, if that were
the case, then the mesh would cover the domain completely. Nevertheless, this approximative
coverage of Ω should not be a concern, because in principle for a well-defined and regular
domain Ω one should be able to improve the approximation by choosing a finer mesh, that
is,

lim
Ne→∞

#Th⋃
i=1

τi → Ω . (4.31)

The choice of a simplex as the building block of Th is not mandatory. Another common
option is quadrilateral element in 2D and its 3D counterpart the hexahedral element. Simplex
elements, however, are commonly preferred in mathematical theory of finite elements because
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they are inherently convex. They are, however, harder to implement in adaptive finite
element schemes, where the mesh has to be refined at places of high gradient, which is why
quadrilateral elements are sometimes preferred for adaptivity. One can use interpolants of
orders greater than one to generate elements with curved boundaries, which is rarely done
because the computation cost of having a finer mesh of standard polygonal or polyhedral
elements is almost equal, while being easier to implement.

The core assumption of the finite element method is that the ith test function φi is
defined corresponding to the ith node such that it is nonzero within the elements that share
the node and zero otherwise. As the result of this particular choice, many of the elements
of the stiffness matrix K will become zero. This can be understood by revisiting either
(4.22) or (4.27). In both cases each Kij is a bilinear form of φi and φj. If the supports of
φi and φj have no intersection, then the integrals evaluate to zero. Thus, for every two test
functions φi and φj whose respective nodes i and j do not belong to a common element the
corresponding Kij vanishes. This makes for a sparse stiffness matrix which radically reduces
the computation cost, especially for problems with a large number of DOFs. Despite the
substantial simplification of the discrete problem, one can show that under certain conditions,
not particularly restrictive, the finite element method is indeed convergent, viz, (4.29) holds
(see Lax–Milgram theorem [32]).

4.6.2 Piecewise polynomial test functions and quadrature rule

The test functions in FEM are almost exclusively chosen as polynomials, and since their sup-
port is confined to elements neighboring to a node, they are defined as piecewise polynomials.
The form and degree of these polynomials are dictated by the regularity requirements, such
as belonging to H1 or L2, which is easy to accomplish since polynomials are the simplest
class of functions. They also have to be tuned to be capable of simulating the physical con-
straints of the underlying phenomenon, such as incompressibility of a continuum. Of course,
one should always seek a proper compromise between precision and computation cost.

Other than solving large linear systems, computing the individual elements of the stiffness
matrix and then storing and assembling them into K is among the most expensive tasks
in any serious finite element computation. Computing Kij’s involves integration which is
usually carried out using quadrature rules. A quadrature rule is a weighted sum of discrete
values of the integrand at optimally chosen points within the integration domain, that is,
for a function f : Ω → R∫

Ω

f(x) dx ≈
Q∑
i=1

ωif(xi) , xi ∈ Ω , ωi ∈ R , (4.32)

in which P is called the order of the quadrature.
The so called Gauss–Legendre quadrature is the standard choice in FEM, because for a

polynomial of given degree we can choose Q to achieve exact results. The idea is that a
polynomial of degree n is determined by n + 1 coefficients and since its integral is explicit,
a quadrature rule of order Q such that 2Q ≥ n + 1 shall be able to evaluate its integral
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exactly, if the weights and the quadrature points (often called Gauss points in FEM) are
chosen properly. Calculating the weights and the quadrature points using orthogonality of
Legendre polynomials is relatively straightforward [143, see pp. 177]. We give a rough sketch
of the underlying ideas in the following.

Remark 18. Let us denote the Legendre polynomial of degree m by `m(x). It can be shown
that every polynomial p(x) ∈ P2n+1 can be written as p(x) = q(x) `n+1(x) + r(x), where
q(x) , r(x) ∈ Pn and r(x) =

∑n
i=0 r(xi) `i(x) such that `n+1(xi) = 0 for all xi. Then, for

every xi we have f(xi) = r(xi). Consequently, r(x) =
∑n

i=0 f(xi) `i(x), and therefore∫ b

a

p(x) dx =

∫ b

a

q(x) `n+1(x) dx︸ ︷︷ ︸
=0

+

∫ b

a

r(x) dx =
n∑
i=0

f(xi)

∫ b

a

`i(x) dx .

which expresses the Gauss–Legendre quadrature (4.32), with the weight factors given by
ωi =

∫ b
a
`i(x) dx, and shows that of G–L quadrature of order n is exact for polynomials up

to degree 2n+ 1.

The same ideas can be generalized to domains of higher dimensions Ω ⊆ Rd. We do not
give further details except for one remark. The Gaussian quadrature is based on the field
values at the Gauss points whereas the finite element solution computes the nodal values of
the field variables. Therefore, interpolation procedures have to be put in place in order to
convert the nodal values to Gauss point values.

Physical versus natural coordinates

Reusability of formulation and implementation of the finite element method is crucial, be-
cause it is generally a time consuming procedure. In this regard, one tries to make the
formulation coordinate-independent wherever possible. The first step taken in this direction
is to use fixed dimensions and elements within the so called natural coordinates. In natural
coordinates the elements are defined such that their primary nodes, i.e. their corners, are
positioned at coordinate values −1, 0, or +1. Then of course, we have to apply mappings
from natural coordinates to the physical coordinates and vice versa. This mapping is done
via interpolation, which can be given by the general form:

x(ξ) =

#Nτ∑
i=1

Ni(ξ)xi , (4.33)

where x denotes the physical coordinates, ξ the natural coordinates, Ni(ξ) the interpolant
corresponding to the ith node, and xi the position of the ith node in physical coordinates.
Nτ is the set of nodes belonging to the element τ . If the shape functions corresponding to
each node are also used as interpolant, then the finite elements are called isoparametric.

Fig. 4.2 shows a quadratic triangular element, which is also an example of an element
with curved boundaries. The edge nodes are used to increase the order of the shape func-
tions, since a parabola is uniquely determined by three points. Having formulated the FEM
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for the element in natural coordinates, the dame formulation is applied to any triangular
element which is an economic approach. The mapping of line, area, and volume elements

ξ1

ξ2

163
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2

4

x1

x2

1

63

5

2

4

Fig. 4.2: A quadratic triangular element in physical (left) and natural (right) coordinates.

between natural and physical coordinates is performed using Jacobian J = ∂x/∂ξ. When
the interpolants are linear, or multilinear, the Jacobian is homogeneous across the element.
But in the case of curved elements, such as quadratic elements, the Jacobian varies and
therefore in order to map the element size (area for instance) one has to integrate the Ja-
cobian determinant over the element, that is, Ae =

∫ 1

0

∫ 1−ξ2
0
|J(ξ)| dξ1dξ2. Also, integrating

any field function over the element using a quadrature formula must take the value of the
Jacobian determinant at the quadrature points into account:∫

Ωe

f dV ≈
#Q∑
i

ωi |J(ξi)| f(ξi) . (4.34)



Chapter 5

Numerical and analytical results at
microscale

This chapter presents some numerical and analystical results at the microscale. We first put
together a general computation of the laminate microstructure for NiTi (49.75 at. % Ni). A
comparison between the predictions of our model and the available experimental data would
require us to bridge the length scales to the macro level, using multiscale finite element
methods. This would require parallelization of computations due to the inherent complexity
of our micromechanical model. We leave this task to the future.

We present a simplified one-dimensional problem that reflects some of the major math-
ematical characteristics of the model. These will be compared with well-known theoretical
and empirical results mostly concerning the scaling laws that the martensitic microstructure
manifests.

5.1 The basics

Before we proceed to the actual computations, let us lay down the basic assumptions on
which we establish the subsequent implementation.

Choice of reference

The deformation ansatz (3.35) expresses a finite deformation. We have therefore formulated
all the energy terms consistently in material coordinates so far. Since we are dealing with a
geometrically nonlinear formulation, the average (mesoscopic) deformation gradient F will
be prescribed stepwise and the field variables Λ, H, and a will computationally evolve as
F changes. Despite this geometrical nonlinearity, the material will be linearly elastic, since
the deviation of the finite strains (3.41) from the transformation strains are assumed to be
infinitesimal, as given by (3.49).

88
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Grain geometry and local martensite coordinates

We confined the laminate ansatz to first-order twins only, which lead to assuming that each
grain includes one single patch of the laminate microstructure. It is therefore reasonable
to assume that each grain is a cuboid—a rectangular parallelogram in the reference con-
figuration. Choosing a parallelogram as the laminate domain is not uncommon, due to
both empirical and theoretical evidence. But assuming a rectangular parallelogram has a
particular reason, which is as follows. We divided the grain boundary energy to formation
(atomistic) energy (3.126) and microstrain energy (3.138): γΓ = γaΓ + γeΓ . For the sake of
simplicity, we also took γaΓ to be independent of the relative orientation of the boundary and
the lattice. This relative orientation is thermomechanically determined by minimizing γΓ
(see for instance [144]). When γaΓ is independent of orientation, this minimization becomes
superfluous, and m̂ · n̂ is solely determined by laminate deformation. So, we assume that in
the reference configuration the grain has the simplest possible geometry, which translates to
M̂ · N̂ = 0, and a cuboid domain.

However, this cuboid is still indeterminate up to a rotation about N̂. To fix this, we
heuristically make an additional assumption; namely, the edges of the cuboid coincide with
the following unit vectors:

ê1 = F̂−1I a , ê2 = N̂× F̂−1I a , ê3 = N̂ , (5.1)

where FJ = FI + a⊗ N̂. Notice that ê1 denotes the shear direction introduced in remark 8,
when we take into account the orientation of martensitic variants relative to the parent phase
according (3.71) and (3.76). This choice will simplify the implementation of the laminate
deformation ansatz. Using (ê1, ê2, ê3) coordinates to express the reference configuration also
makes sure that the zero gradients along N̂ keep their simple expressions, since ê3 coincides
with N̂.

Since all the kinematic variables as well as stiffness tensors are originally expressed with
respect to the parent (austenite) phase coordinates and with respect to martensite coor-
dinates, for the sake of consistency we transform all of them first to austenite coordinates
and then to grain coordinates (5.1), before substituting them into the minimization problem
(3.143).

• The austenite lattice coordinates are taken as the material coordinates. If the austenite
is rotated by a rotation R◦, all vector and tensor quantities shall be transformed under
RT
◦ . At the microscale we assume the austenite to be fixed. That is to say R◦ = I.

• The martensite stiffness tensor is originally given with respect to the martensite lattice
coordinates. These coordinates have a relative orientation to the austenite give by
the rotation tensor Qi obtained from polar decomposition of the transformation tensor
Fi as expressed in equation (3.71). Furthermore, for every twin-compatible pair of
martensite variants i and j, there is a small rotation R originating from the twining
equation (3.76). Therefore, the stiffness tensors of variants i and j must be transformed
by QT

i and RTQT
j , respectively.
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• A nonlinear finite element scheme is often based on Newton method which requires
suitable initial guess values for the field variables. Among the field variables of our
problem, Λ and H are scalars and are not influenced by the choice of coordinates. The
vector a, on the other hand, shall be transformed before being set. A suitable guess
value for a is its original value obtained from the solution of twinning equation, given
in Table 3.3. However, these values have to be transformed by QT

i , because they are
based on (3.77), as we explained before.

• All the vector- and tensor-valued quantities must also be transformed by
(
êT1 , ê

T
2 , ê

T
3

)T
to the grain coordinates.

A two dimensional finite element setting

Expressed in local grain coordinates (ê1, ê2, ê3), the field variables are independent of X3.
We therefore need a two dimensional finite element implementation. We take the domain to
be a square whose edge length will be referred to as grain length or grain size. This square
domain is partitioned using quadrilateral elements that become finer towards the boundary
(Fig. 5.1). On each element, a bilinear Lagrange polynomial is used and integration is carried

X1

X2

Fig. 5.1: The 2D mesh composed of quadrilateral elements refined towards boundaries.

out using two Gauss quadrature point in each coordinate direction, i.e. four Gauss points
for each element.

The particular choice of element is dictated by the finite element library deal.ii on which
we have based our implementation [14]. This leads to the appearance of the so called hanging
nodes which is handled by enforcing the continuity condition explicitly across the neighboring
elements at these nodes.
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Finding energy-minimizing variants: a two-step algorithm

As soon as the austenite lattice is fixed and the average deformation gradient F is pre-
scribed, we need to determine which pair(s) of compatible variants make for the lowest
energy. Although indispensable, solving the problem for each possible pair is computation-
ally expensive. To reduce the computation time, we first run solve the problem for all the
possible variants on a coarser mesh, with a larger tolerance for convergence criterion, and
using fewer load steps. The computed energy densities for all the compatible pairs of marten-
site variants are stored and compared with each other to find the least value(s). Then, for
the low-energy pairs of variants we repeat the computation on a finer mesh, with a stricter
convergence criterion, and using more load steps. This two-step scheme save considerable
computation time and has proved to yield reproducible results in out computations.

The physical constrains on Λ and H

The volume fraction Λ and the lath width H must fulfill

0 ≤ Λ ≤ 1 , 0 < H , (5.2)

due to obvious physical requirements. Solving the energy minimization problem (3.143)
subject to these constrains can be accomplished via the so called Karush–Kuhn–Tucker
conditions (KKT). However, since the above constraints are in the form of simple upper and
lower bounds on the nodal values of field variables, we can use a simplified version of the
KKT as follows [117, pp. 358–360].

In each Newton update we check whether the updated value violates the respective con-
straint. If so, we rescale the increment such that the constraint becomes at most active.
That is, for instance if at the nth Newton update at the ith node, we have Λni +∆nΛi < 0,
then we rescale ∆nΛi by a factor

αni = %

∣∣∣∣ Λni∆nΛi

∣∣∣∣ , (5.3)

in which % is a constant which either equals one or is slightly smaller than one. If a lower
bound (upper bound) constraint becomes active, the corresponding element of the right-
hand-side vector of the Newton scheme will be excluded from the convergence check and
instead will be checked for negativity (positivity). For H the constraint is a strict inequality.
In such cases it is common to replace the strict inequality by an inequality, adding a small
residual e.g.

10−10 ≤ H .

The grain size and orientation

A thorough study of grain size effects is not a part of this work. Nevertheless, we carried out
a series of tests to calculate the energy density of the laminate, under displacement-controlled
simple tension ε = 0.0167 in austenite lattice coordinates, over grain sizes of various orders
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Fig. 5.2: Energy density [J.m−3] versus grain size in [m].

of magnitude. This particular value is obtained by solving
1

2
(ε êa1 ⊗ êa1) : Ca : (ε êa1 ⊗ êa1) = cma(300) = 2.44513× 107

[
J.m−3

]
, (5.4)

in which cma(300) is the relative ground energy of martensite with respect to austenite
at 300 K, according (3.142). In theory, this should be the strain at which the overall en-
ergy (chemical plus elastic plus interface energies) of the NiTi austenite is equal to the
ground (chemical) energy of the NiTi martensite, and therefore the threshold for deformation-
induced martensitic transformation. Fig. 5.2 shows energy density versus grain size. Our
criterion is to choose the grain size for which the energy density is minimum, which suggests
an approximate value of

L ≈ 3.0× 10−6 m , (5.5)

which we will be using throughout the upcoming computations.
A proper investigation of the grain size effect would at least require us to include grain

orientation. There are two approaches to include the orientation. One is to take orientation
as a continuous field variable within the energy minimization, which is extremely costly
except in very simple cases. Another method, which is very common, is to repeat the
microscale (grain level) computation over a predesignated discrete set of grain orientations
and compute a weighted average of their outcomes.

Since our microscale computations are very time-consuming, including the grain orienta-
tion would require parallelization, which is beyond the time limitations of the present work.
Therefore, we skip the grain orientation entirely, and confine our numerical examples to a
single grain under simple loading conditions.

Grain boundary formation (atomistic) energy

In the above calculations of the grain energy density, the atomistic share of the boundary
energy was left out and here is why. For a cubic grain of side length l, the boundary formation
energy equals 6× l2γaΓ , which after division by grain volume gives the energy density as

ψaΓ =
6γaΓ
l
. (5.6)
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Using (3.126), for a grain size of l = 3.0 × 10−6 m we have ψaΓ = 8.2 × 105 J.m−3, which is
insignificant compared to the overall value of the energy density ψ = 2.1 × 108 J.m−3; and
for larger grain sizes even less significant. On the other hand, the smaller grains have higher
energy and adding ψaΓ does not influence our choice of the optimal grain size. Hence, in all
the following computations, the boundary formation energy γaΓ will be ignored.

5.2 Single grain under simple tension

Suppose that the laminate microstructure is formed under a displacement-controlled loading
along the X1 axis with respect to the austenite lattice coordinates:

Ffin = I + ε êa1 ⊗ êa1 . (5.7)

As explained before, we compute the overall energy for all pairs of twin-compatible variants
according Tab. 3.3 in order to find those pairs with lowest energy. Then, we repeat a more
precise computation for these least energy twins. The initial state of twins is taken to be a
mixture of the two martensite variants with equal volume fraction Λ = 0.5, that is,

Finit = 0.5F◦i + 0.5F◦j . (5.8)

Then the loading proceeds stepwise towards the final state using a simple linear interpolation
between the initial and final deformation states, such that the mth deformation step is
obtained from

Fm =
(

1− m

M

)
Finit +

m

M
Ffin , (5.9)

where m = 0, 1, . . . ,M . The initial computation yields four possibilities as the least en-
ergy twins, listed below, for the final tensile strain ε = 0.0334, which is twice the nominal
transformation strain calculated in (5.4).

Type Variant i Variant j

I 1 3

I 2 4

I 5 6

II 7 8

ψ = 2.1948075× 108 J.m−3

Fig. 5.3 displays H and Λ across the laminate parallel to the grain. Variations of H clearly
show accommodation by branching towards the boundary. On the other hand, accommoda-
tion by needles at the vicinity of the boundary takes place only slightly. The dominance of
one type of accommodation over the other is determined by material constants and loading
conditions. In general, however, needles often form at those boundaries where an average
compatibility condition has to be fulfilled, e.g. habit planes [83]. Using a larger boundary
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Fig. 5.3: Distribution of lath width H (top row) and volume fraction Λ (bottom row) across the
grain parallel to the laminate, under prescribed deformation (5.8), for type I twins between variants
1 and 3. Both accommodation mechanisms, i.e. branches and needles, can be seen. Although, nee-
dles are inconspicuous and branching is dominant due to the particular choice of material properties.

energy coefficient χ in (3.138) would result in more noticeable needles, but at the same
time causes the condition number of the tangent stiffness (4.27) to become larger, which
makes the computation more expensive at best and less stable at worst. In summary, if
one is particularly interested in investigating accommodation by needles, it is best to endow
the minimization problem (3.143) with average compatibility boundary conditions at the
corresponding boundary.

A sudden increase in the lath width H can be seen at the vicinity of the boundary,
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which is interpreted a reverse branching of the laminate. A somewhat similar effect is
visible in Λ right before the boundary, where it slightly increases before decreasing at the
vicinity of the boundary. This can be intuitively explained by considering the orders of
individual field variables in the boundary energy (3.138). The volume fraction Λ and the
deformation jump a appear as fourth- and second-order, whereas the lath width H is of
the first order. In an attempt to minimize the boundary energy, the field variables decrease
towards the boundary, but the terms of higher order drop faster, which at the same time
causes a fast increase of the accommodation strains 2 (Λ2

i − Λi) a ⊗ H
�

+ H (3Λi − 2) a ⊗
Λi

�
+ H (Λ2

i − Λi) a ⊗
�
, and their corresponding energy according (3.64). However, this

can be partially compensated by reversing the direction of H
�
, which results in the reverse

branching at the close neighborhood of the grain boundary. Of course, this is an artifact of
mesh size which shall be alleviated as a finer mesh next to the grain boundary is used.

The distribution of elastic and twin interface energy densities are illustrated in Fig. 5.4.
Elastic energy density is orders of magnitude larger than the twin interface energy density.
This is because in the elastic energy ansatz (3.64) the terms involving F±(Λi − 1) a⊗N−F◦i
are independent of H, and depending on loading conditions may grow very quickly. These
terms reflect the part of elastic energy that is independent of accommodation and solely
comes from the mismatch between the prescribed deformation and the average transforma-
tion strains. To see the effect of loading on distribution of energy, let us show the same

Fig. 5.4: Distribution of elastic energy density (left) and twin interface energy density (right)
across the grain parallel to the laminate, under prescribed deformation (5.8), for type I twins
between variants 1 and 3.

laminate under a different loading condition; namely, that of

F =
1

20
(0.5F◦1 + 0.5F◦2) +

19

20
(I + 0.0167êa1 ⊗ êa1) , (5.10)

in Fig. 5.5. Here, the difference between interface and elastic energy densities is small and
the overall energy is partitioned almost equally between the twin interface energy and the
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Fig. 5.5: Same as Fig. 5.4, except that the prescribed deformation is at its first step from its initial
state, i.e. (5.10).
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Fig. 5.6: Energy densities [ J.m−3] of austenite, ψa, and martensite laminate, ψm, of type I twins
between variants 1 and 3, plotted against deformation step starting from the initial state (5.8) and
terminating in the final state in equation (5.7) with ε = 0.0167 after 20 steps according (5.9).

elastic energy, because the discrepancy between the prescribed average deformation (5.10)
and the average eigen deformation, caused by transformation strains, is not large.

The evolution of the energy density for the austenite phase and for the martensite lam-
inate microstructure, under the above mentioned conditions, is illustrated in Fig. 5.6. The
energy of the austenite phase does not change considerably, due to the particular defor-
mation path that has been chosen. The specific step at which the two curves intersect in
coincidental. Now, if we unload the martensite laminate towards zero average strain, that
is, if we go through the following deformation route in reverse direction:

Fm =
m

20
(I + ε êa1 ⊗ êa1) , (5.11)

it produces the energy densities in Fig. 5.7. At first, it seems that the energy density of
the laminate has been severely overestimated. However, we have to remember that the
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Fig. 5.7: Energy densities [ J.m−3] of austenite, ψa, and martensite laminate, ψm, of type I twins
between variants 1 and 3, plotted against deformation path given by (5.11).

grain orientation with respect to the prescribed deformation is by no means optimal. To see
how significant the loading conditions can be, we can take a look back on Fig. 5.6, where
despite the the sophisticated deformation path, it sufficiently clarifies the importance of grain
orientation with respect to loading.

Under the same conditions as above, Fig. 5.8 illustrates the vector a distributed parallel
to the laminate. The normal component a · ê3 has been shown separately as a color map. As
the laminate accommodates towards the grain boundaries, the discontinuity of deformation
gradient in normal direction across the twin interface, expressed by a · ê3, grows slightly.
However, the components of a parallel to the laminate become smaller. This is because the
grain boundary energy favors a flat laminate microstructure over a gagged one, as understood
from (3.138).

5.2.1 Convergence rate

The convergence rate of the finite element computation can be seen in Fig. 5.9, which is a
semi-log plot of `2-norm of the Newton iteration’s residual versus accumulative step length,
and shows a linear convergence. We can also see the log-log plot of the computed overall
stored energy of the grain versus accumulative step length of the Newton scheme in Fig. 5.10.
Notice that the the precision of the computed energy does not improve any further already
when the residual has droped by two orders of magnitude. This translates to almost 50% of
the computation time, and can be especially valuable in computing macroscopic problems
to save unnecessary computation time.

5.2.2 Mesh independence

In a stable finite element scheme the results shall be ideally mesh independent. To show that
our computations are mesh independent, we redo the above example on a coarser grid and
with a less restrictive convergence criterion, which stops the computation if the `2-norm of
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Fig. 5.8: Distribution of vector a over the grain parallel to the laminate of type I twins between
variants 1 and 3, under loading (5.7) with ε = 0.0167. The normal component a · ê3 has been shown
as a color map, and the components parallel to the laminate as a vector field.
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Fig. 5.9: Semi-log plot of `2-norm of Newton iterations’ residual versus update’s increment. Linear
convergence is seen.

the residual becomes smaller than 10−2 times the `2-norm of the initial residual. The results
are shown in Fig. 5.11. The only apparent mesh dependency occurs within the single layer of
cells next to the boundary, where the presence of the boundary is propagated deeper into the
grain due to a coarser mesh. To some extent, this is an expected artifact of our particular
energy formulation which does not include any explicit boundary conditions, and instead
involves grain boundary energy. The slight difference between the computed minimum and
maximum in Λ and H are mostly due to a less strict convergence. We showed, however,
that this does not significantly influence the computed energy density, which is the main
purpose of microscale finite element computations of this kind (Fig. 5.12). Nevertheless, we
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Energy vs. Increment
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Fig. 5.10: Log-log plot of the laminate stored energy versus Newton update’s increment.

will illustrate, for a different example problem, that the apparent boundary layer will become
mesh independent if the mesh had been refined rather than coarsened, while the convergence
criterion remained unaltered.

5.3 The influence of loading conditions

We replace the specific form of prescribed deformation (5.7) by each of the following defor-
mation gradients:

F(ε) = I + ε (êa1 ⊗ êa1) , (5.12a)

F(ε) = I + ε (êa1 ⊗ êa1 + êa2 ⊗ êa2) , (5.12b)

F(ε) = I + ε (êa1 ⊗ êa1 + êa2 ⊗ êa2 + êa3 ⊗ êa3) , (5.12c)

F(ε) = I + ε (êa1 ⊗ êa2) , (5.12d)

F(ε) = I + ε (êa1 ⊗ êa2 + êa1 ⊗ êa3) , (5.12e)

F(ε) = I + ε (êa1 ⊗ êa2 + êa2 ⊗ êa3) , (5.12f)

F(ε) = I + ε (êa1 ⊗ êa2 + êa1 ⊗ êa3 + êa2 ⊗ êa3) , (5.12g)

and then, similar to (5.4), we solve

1

2

(
F(ε)− I

)
: Ca :

(
F(ε)− I

)
= cma(θ) , (5.13)

for ε, which designates the nominal transformation strain along the respective directions at
the given temperature θ = 300 K. Next, deform the laminates twice the nominal transforma-
tion strain following the deformation route (5.9) starting from (5.8) and then back to zero
average deformation gradient as we did for (5.7). Note that the first of equations (5.12a) is
a mere repetition of (5.7), for completeness.

Tab. 5.1 lists the least energy twinning modes and variants for each of the above pre-
scribed deformations, and Fig. 5.13 displays the evolution of energy densities with respect to
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Fig. 5.11: Lath width H (top row) and volume fraction Λ (bottom row), under the same conditions
as Fig. 5.3, with coarser mesh and less strict convergence criterion, to indicate mesh independence.

time step according (5.11). The simple uniaxial tension along êa1 has the overall lowest en-
ergy, followed by triaxial shear simultaneously along êa1, êa2, and êa3. This means that, among
all seven tested forms of deformation, the uniaxial loading is closest to the least energy
conditions. As mentioned, we do not intend to find the globally optimal loading conditions
for the NiTi austenite, and these computations are only meant to put our micromechanical
model to the test.

Let us also look at the twinning and accommodation patterns for each of the above
prescribed deformations. Fig. 5.14 and 5.15 illustrate the distributions of lath width H and
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Fig. 5.12: Comparison of computed stored energy for fine and coarse grids to show mesh indepen-
dence. At the same time on the coarse mesh, a less strict convergence criterion has been used to
save computation time. The two curves are almost an exact match, and we had to manually shift
a single data point at the 10th deformation step to show the curve hidden beneath.

F(ε) Twin type and variants ε ψ [J.m−3]

(5.12a) I, 1, 3/I, 2, 4/I, 5, 6/II, 7, 8 0.0167165 2.19439× 108

(5.12b) I, 2, 10/I, 4, 12/II, 1, 9/II, 3, 11 0.0118205 9.87066× 108

(5.12c) I, 2, 10/I, 4, 12/II, 1, 9/II, 3, 11 0.0096515 1.00338× 109

(5.12d) I, 7, 11/I, 8, 12 0.0349652 8.35494× 108

(5.12e) I, 2, 10 0.0247241 1.08495× 109

(5.12f) I, 8, 12 0.0247241 6.95376× 108

(5.12g) I, 4, 12 0.0201872 6.14481× 108

Tab. 5.1: Least energy twining modes and variants for various loading conditions according (5.12).

volume fraction Λ across the grain parallel to laminates of least energy (Tab. 5.1) under
prescribed deformations (5.12b–5.12g). The very small values of Λ and very large values
(larger than the grain size itslef) of H essentially suggest that no laminate microstructure
forms under these loading conditions, and a monophase grain of a single variant of martensite
is energetically favorable over a laminate microstructure.

5.3.1 Deformation along twinning’s shear direction

If the prescribed deformation on the laminate varies along the twinning shear direction,
according (3.11) the changes in deformation gradient will be a factor of a ⊗N. Then, the
prescribed average deformation gradient takes the following incremental path:

Fm =
(

1− m

M

)
F◦i +

m

M
F◦j . (5.14)
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Fig. 5.13: Energy density versus deformation step for various prescribed deformations according
equations (5.12) and Tab. 5.1.

Fig. 5.16 illustrates the laminate energy and its constituents, i.e. boundary, twin interface,
and elastic energies, for varying mixture percentage of type I twin between variants 1 and 3
of NiTi martensite. Expectedly, the share of the elastic energy pertaining to the mismatch
between F and the transformations F◦i , F◦j vanishes, and the remaining elastic energy is con-
fined to that of accommodation only which should not be significant due to near-ideal match
between the prescribed and the laminate average deformation gradients. The twin interface
energy (almost) vanishes for m = 0 and m = M , because only a single variant is present.
The same is true for boundary energy. As the percentage of the phase mixture changes,
the relative boundary–laminate orientation changes in deformed configuration, which is also
reflected in the boundary energy.

5.4 A one-dimensional problem, analytical treatment

If the general minimization problem (3.143) is simplified under the following assumptions:

• the gradients are nonzero only along one dimension along x ∈ Ω = [0, L] ⊂ R,

• H and a are constant,

• boundary energy is replaced by boundary conditions Λ(0) = Λ(L) = 0,

• the two martensitic variants have equal stiffness,

then we end up with

min
Λ

{
E =

∫ L

0

k1(a, Λ)HΛ′ + k2(a, Λ)H2Λ′2 +
2γ

H
dx

∣∣∣∣ a, H = const., Λ(0) = Λ(L) = 0

}
,

(5.15)
in which Λ(x) and consequently k1 and k2 are even functions around x = L/2, because of
the inherent symmetry of the problem. It is clear then that the integral of the first term
vanishes, because Λ′ will be an odd function around x = L/2. Therefore, the above problem
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Fig. 5.14: Distribution of lath widthH (left) and volume fraction Λ (right) across the grain parallel
to laminates of least energy under prescribed deformations (top) 5.12b, (middle) 5.12c, (bottom)
5.12d.
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Fig. 5.15: Distribution of lath widthH (left) and volume fraction Λ (right) across the grain parallel
to laminates of least energy under prescribed deformations (top) 5.12e, (middle) 5.12f, (bottom)
5.12g.
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Fig. 5.16: Laminate energy [J] versus percentage of volume fraction Λ%, and its contributions
from (1) boundary energy, (2) twin interface energy, (3) elastic energy. The laminate is composed
of type I twins between variants 1 and 3 of NiTi martensite.

simplifies further to

min
Λ

{
E = 2γ

L

H
+H2

∫ L

0

k2(a, Λ)Λ′2 dx

∣∣∣∣ a, H = const., Λ(0) = Λ(L) = 0

}
. (5.16)

Next, we nondimensionalize the spatial coordinate as ξ = x/L, which gives dx = Ldξ, and
Λ′(x) = Λ̄′(ξ) /L. Substitution of these into (5.16) yields

min
Λ

{
E = 2γ

L

H
+
H2

L

∫ 1

0

k2
(
a, Λ̄

)
Λ̄′2 dξ

∣∣∣∣ a, H = const., Λ(0) = Λ(L) = 0

}
. (5.17)

Now, if Λ̄m is a minimizer of this problem, then the energy takes the form of

E = 2γ
L

H
+ κ

H2

L
, (5.18)

in which κ =
∫ 1

0
k2
(
a, Λ̄m

)
Λ̄′2m dξ, is independent of H and L. The optimality of E , requires

that
∂E
∂H

= 0 ⇒ H3 =
γ

κ
L2 ,

which gives

H =
(γ
κ

)1/3
L2/3 . (5.19)

This scaling relation is a confirmation of the experimental result by Chu and James 1993
[36]. Their experiment showed the distribution of laminate patch span versus average lath
width follows a scaling law of the form H ∝ L2/3, which we just derived as a special case of
our micromechanical model.

Let us now put the above value of H back into (5.18) to obtain

E = 3
(
γ2κ
)1/3

L1/3 . (5.20)
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This is another important result which has been derived by Kohn, Otto, Müller [99, 98, 113,
97], both as a scaling law and as an upper and lower bound for the laminate energy in certain
regimes (see the neat review by Conti [38]).

In its own right, it is very interesting that how two seemingly independent results, i.e. a
theoretical result on energy bounds and an empirical observation on length scale distribution,
are connected through a single minimization problem like (5.15), which is simple enough to
be treated analytically using elementary derivations.

5.5 Homogenization: cuboid RVE with cylindrical
inclusion

The microstructural features and, as a result, the structural and functional properties of
alloys can be modified via thermomechanical treatment and by adjusting the constituent
elements and their proportions. The NiTi is no exception. The nickel content in the so
called nickel-rich NiTi has a significant influence on transformation properties and on in-
termediate metastable phases that emerge as precipitates [123, pp. 50–53]. A particularly
interesting example is Ni4Ti3 because it supports the R-phase and therefore encourages the
shape memory and pseudoelasticity [94, 85]. Ni4Ti3 commonly appears in the form of lentic-
ular precipitates and its presence propagates into its surrounding matrix through strain and
concentration gradients [138]. These effects as well as some aspects of anisotropy of Ni4Ti3
have been modeled via phase field and ab initio methods to some extent [150, 91, 90].

In order to simulate the strain field surrounding such a precipitate, in this section we
assume a simplified model of an inclusion. Namely, we replace the formerly presented ide-
alized geometry of the cuboid grain with a cuboid representative volume element (RVE) of
side length LRVE = 3.0× 10−6 m that has a cylindrical inclusion of diameter Dincl = LRVE/2

across its center and normal to its faces. Given that the gradients normal to the twin in-
terfaces are neglected in our model, we again substitute the three-dimensional domain with
its two-dimensional counterpart, namely a quadratic RVE with a circular inclusion, where
apparently the cylindrical inclusion is assumed perpendicular to twin interfaces (Fig. 5.17).
This geometry mimics the situation where an island of austenite is trapped within the trans-
formed martensite.

The minimization problem (3.143) is slightly modified such that the RVE’s outer bound-
ary possesses no energy and fulfills periodic boundary conditions, and its inner boundary,
i.e. that of the circular inclusion, is endowed with boundary energy (3.138). This setting
corresponds to a completely standard homogenization problem. Since our method is energy
based, there is no need for verifying the Hill–Mandel condition [115, 114]. This condition
ensures that homogenization procedures do not violate the conservation of energy.

The loading condition follows (5.9) with a prescribed deformation in the form

Ffin = I + ε (êa1 ⊗ êa1 + êa1 ⊗ êa3) , (5.21)

with ε = 0.01508158 which equals the nominal transformation strain calculated analogous
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Fig. 5.17: The 2D mesh of the quadratic RVE of side length LRVE = 3.0 × 10−6 m with circular
inclusion of diameter Dincl = LRVE/2.

to (5.4) by
ε2

2
‖êa1 ⊗ êa1 + êa1 ⊗ êa3‖Ca = cma(300) = 2.44513× 107 . (5.22)

The deformation is applied in five steps, M = 5. The rest of the implementation, especially
the choice of martensite coordinates (5.1), remains the same. Fig. 5.18 illustrates the dis-
tribution of twin width and volume fraction throughout the RVE for a type I twin between
variants 1 and 3 of the NiTi martensite. Both accommodation mechanisms, i.e. branches and
needles, can be seen and once again needles are inconspicuous and branching is dominant
due to the particular choice of material properties.

The distribution of the vector a and the various energy densities are shown in Fig. 5.19.
The vector a is again decomposed into normal and tangential components, which have been
overlaid as a scalar color map, a⊥, and a vector field, a‖, respectively. Since the elastic
energy density is almost uniform across the domain, a magnified figure around the inclusion
has been illustrated. The same is true for the boundary energy trivially, because it is absent
throughout the domain except for the cells adjacent to the boundary. Similar to the case of
quadratic grain, the boundary energy density has almost the same order of magnitude as the
elastic energy density. The twin interface energy density, on the other hand, is considerably
smaller. Further down, the overall energy contributions will be compared as a function of
inclusion size and for varying surface energies.

5.5.1 Mesh independence

Let us once again evaluate the reliability of the finite element implementation in terms of
mesh independence, this time for the RVE problem. We refine the mesh once at the layer
next to the inclusion and then repeat the computations to compare the results with the
previous ones. To obtain a more convincing visual confirmation, we zoom into an arbitrarily
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Fig. 5.18: Lath width H (top row) and volume fraction Λ (bottom row) across the RVE parallel
to the laminate, under deformation (5.21), in type I twins of variants 1 and 3.

chosen subdomain adjacent to the inclusion. Fig. 5.20 compares the resulting color maps for
H, Λ, and a⊥ for the initial and the refined meshes. The mesh independence is almost self
evident here both in terms of visual similarity as well as the range of values. One has to be
aware that some degree of mesh dependence is inherent in any convergent numerical scheme
and is therefore expected. This is hypothesized in equation (4.31) for the finite element
method. The slight apparent mesh dependence here can also be seen as an artifact of the
hanging nodes. The presence of the hanging nodes poses additional equality constraints on
the numerical scheme which ensure continuity of the fields across those cell boundaries where
the hanging nodes reside.
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Fig. 5.19: Distribution of deformation gradient jump a (top left), twin interface energy density
(top right), elastic interface energy density (bottom left), and boundary energy density (bottom
right) across the RVE for the same example as Fig. 5.18.

5.6 Energy versus inclusion size

The characteristic geometrical parameter for the chosen RVE is the ratio of the inclu-
sion diameter to the RVE’s side length, Dincl/LRVE. Alternatively, one might obtain a
similar non-dimensional parameter from the ratio of cross-section areas,

√
Aincl/ARVE =√

π/2 (Dincl/LRVE), which differs by a constant factor only.
We vary this ratio in the range 0.10 ≤ Dincl/LRVE ≤ 0.85 over evenly spaced discrete

values and compute the stored energy density of the grain corresponding to elastic defor-
mation, twin interface, and the inclusion boundary. The laminate is again composed of
type I twins of variants 1 and 3. The prescribed deformation has the form of (5.12a), i.e.
Ffin = I + 2ε êa1 ⊗ êa1, in which ε is the nominal transformation strain at θ = 300 K, which
according to Tab. 5.1 is ε = 0.0167165. The mesh is generated exactly as in Fig. 5.17, and
the loading is carried out following (5.9) with M = 5. Convergence was assumed when the
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Fig. 5.20: Magnified distribution of H (top), Λ (middle), and a⊥ (bottom) at the vicinity of the
inclusion for the results in Fig. 5.18 (left) compared with the refined mesh (right).

Frobenius norm of the residual reached 10−2 times its initial value.
Fig. 5.21 shows the outcome. Since the interface and boundary energies are much smaller

than the elastic energy, they have been re-illustrated separately for clarity. Notice that more
sampling points were added for values Dincl/LRVE > 0.8, where sudden changes and jumps
appear. Despite the higher number of sampling points, however, the computed energies
show apparent instability which signals a failure of the model. This can be understood since
the neighboring inclusions become too close to each other and their interactions become too
significant to be ignored. The presented model has obviously no provision of such interac-



5.6. ENERGY VERSUS INCLUSION SIZE 111

0.0 0.2 0.4 0.6 0.8
0.

1.×108

2.×108

3.×108

4.×108

5.×108

Dincl. /LRVE

ψ
[J
.m

-
3
]

ψel

ψtw

ψΓ

ψΣ

0.0 0.2 0.4 0.6 0.8
0.

1.×105

2.×105

3.×105

4.×105

5.×105

6.×105

7.×105

8.×105

Dincl. /LRVE

ψ
[J
.m

-
3
]

ψtw

ψΓ

Fig. 5.21: Stored energy densities, ψ, versus inclusion ratio, Dincl/LRVE, for the cubic RVE with
cylindrical inclusion.

tions. It is noticeable that the twin interface and boundary energies stay close to each other
and grow with the inclusion size, which makes sense. On the other hand, the elastic energy
decreases with inclusion size, which again is no surprise. A rather conspicuous observation
is that the elastic energy is orders of magnitude larger than the other two contributions,
which seemingly does not speak to some well-known mathematical results [99, pp. 277]. We
can give two speculative reasons for this. First, our definition of elastic energy includes two
contributions, namely that of the accommodation strains and the pointwise deviation of the
strain with respect transformation strains. On the contrary, the aforementioned mathemat-
ical derivations identify the second contribution, i.e. deviation of the pointwise strain from
transformation strains, as the “surface energy due to twinning”. Second, their results are
based on certain simplifying assumptions on material parameters and boundary conditions
which barely have any analogy to their counterparts in the present model.

To see the effect of twin interface energy, γ, and boundary energy coefficient, χ, we redo
the above computations for three variations of these constants, where either one of them or
both of them are 10 times their original values. The results are summarized in Fig. 5.22.

It can be seen that higher values of γ have a stabilizing effect at larger inclusion size,
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Fig. 5.22: Stored energy densities versus inclusion ratio corresponding to boundary (top left), twin
interfaces (top right), elastic strains (bottom left), and total stored energy (bottom right) for RVE.

whereas a larger boundary energy is destabilizing. This is physically plausible because larger
boundary energy coefficients amplify the interaction between neighboring inclusions. On the
other hand, larger twin interface energy hinders the propagation of the boundary effects into
the medium, hence the interaction between neighboring inclusions is weakened. The general
trend of increasing twin interface and boundary energies and decreasing elastic energy with
inclusion size is maintained in all cases.



Chapter 6

Conclusion and outlook

6.1 Summary

A continuum micromechanical model for a first-order laminate microstructure of martensite
based on energy minimization has been presented with three contributions as follows.

• Elastic energy has been calculated based on a strictly coherent ansatz of the laminate
with martensitic variants whose fully anisotropic stiffness tensors are oriented in ac-
cordance with their exact lattice orientation. Having different stiffnesses for the two
variants in their exact orientation turns out to be challenging.

• Twin interface energies were analytically estimated based on crystallographic and atom-
istic arguments. The assumption is that the interfaces are sharp and correspond to
crystal monolayers.

• An ansatz of the grain boundary energy was derived based on a self-similar construct.

The energy minimization has been implemented as a nonlinear finite element scheme.
The model has been applied to predict geometrical characteristics of refinement and accom-
modation of microstructure, as well as its mesoscopic mechanical response. The numerical
results are mesh independent and stable, with an almost linear convergence rate which is
acceptable due to the highly nonlinear nature of the problem. A basic one-dimensional
analytical treatment of the model confirmed some of the well-established theoretical and
experimental observations on the scaling features of the laminate.

We would like to emphasize that some parts of this work are particularly new, to the best
of our knowledge. These are the following. First of all, we enforce compatibility condition
(twinning equation) strictly in the sense of mechanical twins and not growth twins. Second,
we extended the usual energy minimization framework to include martensite variants having
different elastic stiffness tensors with exact orientations compliant to the twinning equation,
which is novel (see [63, pp. 444]). Lastly, all material constants came from experiments
directly or indirectly. When not available, they were calculated based on crystallographic
and atomistic values. Therefore, none of the material parameters have regularizing purposes
or were obtained by data fitting.
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6.2 Possible extensions

Since a precise representation of interfaces has been developed, the dissipation can be mod-
eled as a function of interface formation and annihilation. The computations turned out to
be quite expensive for single-threaded algorithms. Therefore, we confined our numerics to
the mesoscale and to a few discrete grain orientations. A parallelized finite element imple-
mentation would make it possible to bridge the scale up to macroscopic length scales, and
also to include continuous optimization of grain orientation. We excluded anisotropy from
the grain boundary energy ansatz, which resulted in a fixed relative orientation of the lam-
inate with respect to its boundary. An anisotropic ansatz would correct this shortcoming.
However, this would not be significant from a material modeling perspective, and would only
help to better understand the boundary effects at the microscale. The presented numerical
framework can be extended to investigate optimal grain size with regard to minimum energy
density and for arbitrary grain orientations, and also the effect of grain size on transformation
temperature and dissipation.



Appendix A

Miscellaneous mathematical notes and
formulas

In this appendix, we briefly mention some mathematical formulas and notations that are
used throughout the text.

A.1 Some tensor algebra and calculus

A.1.1 Rotation matrix

There are various forms of rotation matrix. We use the one which is determined based on a
rotation axis identified by unit vector ê, and a rotation angle denoted by θ, in the following
form

R(ê, θ) = cos θ I− sin θ ε · ê + (1− cos θ) ê⊗ ê , (A.1)

where ε, called permutation tensor, or the third-order Levi-Civita tensor, or sometimes the
totally antisymmetric tensor, is defined as

εijk =


+1 (i, j, k) be an even permutation of (1, 2, 3) ,

−1 (i, j, k) be an odd permutation of (1, 2, 3) ,

0 i = j, or j = k, or k = i .

(A.2)

It is worth noting that the term −ε · ê has an interesting interpretation, namely for every
vector v

[v]× := −ε · v = −v · ε = εikjvkêiêj , (A.3)

is a tensor such that the cross product of v with any vector can be calculated by

v × u = [v]× · u , u× v = u · [v]× . (A.4)
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A.1.2 Dyadic products

Dyadic product of two tensors gives a tensor whose order is the sum of orders of its operands.
When two first-order tensors (vectors) are multiplied we have

u⊗ v = uivj êi ⊗ êj . (A.5)

For higher-order tensors the indices can contract in various ways. Most interesting to us are
the three following cases where A = Aijei ⊗ ej and B = Bklek ⊗ el,

A⊗B = AijBkl ei ⊗ ej ⊗ ek ⊗ el , (A.6)

A⊗B = AikBjl ei ⊗ ej ⊗ ek ⊗ el , (A.7)

A⊗B = AilBjk ei ⊗ ej ⊗ ek ⊗ el . (A.8)

(A.9)

A.1.3 Fourth-order identity (unit) tensors

A common definition of the fourth-order identity tensor is based on differential calculus;
namely, for a differentiable second-order tensor field A we introduce

I =
∂A

∂A
=
∂Aij
∂Akl

ei ⊗ ej ⊗ ek ⊗ el = δikδjlei ⊗ ej ⊗ ek ⊗ el = I⊗ I , (A.10)

I =
∂A

∂AT
=
∂Aij
∂Alk

ei ⊗ ej ⊗ ek ⊗ el = δilδjkei ⊗ ej ⊗ ek ⊗ el = I⊗ I . (A.11)

Based on the above definition, we have

I : A = A : I = A , I : A = A : I = AT , (A.12)

where A is any second-order tensor. Also, it can be shown that for any two vectors a and b

a · I · b =
(
I · a

)
· b = a ·

(
b · I

)
= b⊗ a , (A.13)

a · I · b = (a · b) I , a · (b · I) = (I · a) · b = a⊗ b . (A.14)

and
I · a = a · I = I⊗ a = I⊗ a , I · a = a⊗ I , a · I = I⊗ a . (A.15)

The symmetric and skew-symmetric fourth-order identity tensors are defined as

Isym =
1

2

(
I + I

)
, Iskw =

1

2

(
I− I

)
. (A.16)

These two tensors can act as operators that symmetrize and skew-symmetrize second-order
tensors, for instance

Isym : u∇ =
1

2
(u∇+∇u) = ε , Iskw : u∇ =

1

2
(u∇−∇u) = ω . (A.17)



A.2. AVERAGE COMPATIBILITY CONDITION 117

where ε and ω denote the linearized strain tensor and the rotation tensor respectively. For
particular purposes we go on to define the following fourth-order operators

Ivol =
1

3
(I⊗ I) , Idev = Isym − Ivol , (A.18)

which, as the notation suggests, extract volumetric and deviatoric parts of strain as

Ivol : u∇ =
1

3
tr(ε) I = ε

vol , Idev : u∇ = ε− 1

3
tr(ε) I = ε

dev . (A.19)

Some formulas useful for elasticity theory

∂ATA

∂A
= I⊗AT + AT ⊗ I ,

∂AAT

∂A
= I⊗A + A⊗ I . (A.20)

∂A

∂Asym = 2 I + 2 I− 3 I⊗ I =
∂AT

∂Asym , (A.21a)

∂AAT

∂Asym = 2 (I⊗A + A⊗ I + I⊗A + A⊗ I)− 3
(
AT ⊗ I−A⊗ I

)
, (A.21b)

∂ATA

∂Asym = 2
(
I⊗AT + AT ⊗ I + I⊗AT + AT ⊗ I

)
− 3

(
A⊗ I−AT ⊗ I

)
. (A.21c)

∂ detF

∂F
= detFF−T = Cof F . (A.22)

A.2 Average compatibility condition

For a solid microstructure composed of N phases with order parameters (deformation gra-
dients) F1,F2, . . . ,FN and volume fractions λ1, λ2, . . . , λN , the average compatibility condi-
tions are given by (see [25, 109, pp. 132])

〈F〉 =
N∑
i=1

λiFi

Cof〈F〉 =
N∑
i=1

λi Cof Fi

det〈F〉 =
N∑
i=1

λi detFi .

(A.23)

A.3 An interpretation of Lagrange multipliers

A constrained optimization problem is typically formulated as

f(xi)→ min , under gj(xi) = uj , (A.24)
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where i ∈ {1, . . . N} and j ∈ {1, . . .M}. Lagrange formulation of the problem reads

min
x,λ

φ(x, λ) , where φ(x, λ) := f(x)− λ · [g(x)− u] . (A.25)

Now suppose that

arg min
x,λ

φ(x, λ) = (x∗, λ∗) , and φ(x∗, λ∗) = φ∗ . (A.26)

It should be clear that φ∗ is a function of u, since φ(x∗, λ∗) = f(x∗) − λ
∗ · [g(x∗)− u],

therefore

∂φ∗

∂u
= λ

∗ . (A.27)

In most situations u and φ, and therefore also φ∗, have specific and clear physical meanings,
and so does the Lagrange multiplier, λ, based in the above identity.



Appendix B

Elastic Constants of Monocrystalline

Suppose a homogeneous solid body of monocrystalline with lattice vectors {a1,a2,a3} is at
equilibrium and is large enough so that the thermomechanical effects of its boundary are
negligible. Such a solid body represents an ideal case of anisotropy. If the crystal is composed
of metallic substances, be it monatomic or an alloy12, the corresponding lattice energy can
be expressed as the sum of pairwise interaction potentials of all atoms [31, 79]:

E =
1

2

∑
i 6=j

ψ
(
|rij|2

)
, (B.1)

where rij = ri − rj is the relative position of any two atoms within the lattice.

Remark 19. Many authors base their lattice energy formulations upon a pairwise potential
in the form ψ(|rij|), which may seem a more appropriate choice, since it can represent
arbitrary potentials more directly. For instance, the Coulomb–Buckingham potential

ψ(r) = β

(
er/r0 −

(r0
r

)6)
+
q1q2
4πε0

1

r
,

would require additional square-root operations when expressed in the form ψ
(
|rij|2

)
, which

we prefer to use. While both formulations must eventually produce mathematically equiva-
lent results, our particular form of potential in (B.1) has the advantage that the asymptotic
expansion of the lattice energy will explicitly depend on the Green–Lagrange strain which
in turn guarantees the frame-indifference. If we were to go with the widely employed form
ψ(|rij|), we would need to enforce the symmetry requirements a posteriori. Hence, we
prefer the original formulation proposed by Born and Huang 1967 [31] and by Huntington
1958 [79].

Let the entire lattice deform homogeneously under the deformation gradient F so slightly
so that no plastic deformation or slip may take place. The energy of the lattice, in the absence

12We previously mentioned that in the case of alloys, the lattice shift can be eliminated through energy
minimization. Therefore, only the simple case of a monatomic lattice needs to be considered.
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of thermal effects, can be then written as

E(F) =
1

2

∑
i 6=j

ψ
(
|Frij|2

)
, (B.2)

Since the deformation is supposed to remain within the elastic limit, it shall be small enough
so that the energy can be approximated asymptotically around the equilibrium configuration,
F = I. The argument of the potential in (B.1) varies according

|Frij|2 − |rij|2 = rij ·
(
FTF− I

)
· rij = rij · (∇u + u∇+∇u · u∇) · rij . (B.3)

The Taylor’s expansion of (B.2) around F = I, keeping up the terms up to O
(
|u∇|2

)
, is

given by

E ≈ 1

2

∑
i 6=j

{
ψ
(
r2ij
)

+ ψ′
(
r2ij
) [

rij · (∇u + u∇+∇u · u∇) · rij
]

+
1

2!
ψ′′
(
r2ij
) [

rij · (∇u + u∇) · rij
]2}

. (B.4)

The first-order term in the expansion must vanish due to equilibrium, therefore ∂E/∂ε|0 = 0;
that is ∑

i 6=j

ψ′
(
r2ij
) [

rij ⊗ rij
]

= 0 , (B.5)

which subsequently turns (B.4) into

E ≈ 1

2

∑
i 6=j

{
ψ
(
r2ij
)

+ ψ′
(
r2ij
) [

rij · ∇u · u∇ · rij
]

+
1

2
ψ′′
(
r2ij
) [

rij · (∇u + u∇) · rij
]2}

.

(B.6)
The forth order tensor of the elastic constants is defined as C = ∂2e/∂ε⊗ ∂ε, with ε =

1/2 (u∇+∇u), being the linearized strain and e the energy density. In the following deriva-
tions we use the tensor identities given in equation (A.21).

The first derivative of the energy density with respect to the linearized strain equals the
Cauchy stress tensor:

σ =
1

2V

∑
i 6=j

{
ψ′
(
r2ij
) [

2
(
rij⊗ (u∇· rij) + (u∇· rij)⊗ rij + (rij ·∇u)⊗ rij + rij⊗ (rij ·∇u)

)
− 3rij ·

(
u∇+∇u

)
· rij ⊗ I

]
+ 2ψ′′

(
r2ij
) [(

rij · (∇u + u∇) · rij
)
rij ⊗ rij

]}
. (B.7)

The second derivative, we mentioned, equals the elastic stiffness tensor and is given by

C =
1

2V

∑
i 6=j

{
ψ′
(
r2ij
) [

8
(
I⊗ (rij ⊗ rij) + I⊗ (rij ⊗ rij) + (rij ⊗ rij)⊗ I + (rij ⊗ rij)⊗ I

)
− 24

(
I⊗ (rij ⊗ rij) + (rij ⊗ rij)⊗ I

)
+ 18(rij · rij)I⊗ I

]
+ 4ψ′′

(
r2ij
) [

rij ⊗ rij ⊗ rij ⊗ rij

]}
. (B.8)
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For metallic crystals the atomic interactions are relatively short-range. So the summation
over all pairwise atomic interactions within the lattice can be confined to interactions between
the nearest neighbors plus the interactions between the second-nearest neighbors. For each
atom in the lattice {a1,a2,a3}, there are 6 nearest neighbors located at

± a1 , ±a2 , ±a3 , (B.9)

and there are 12 second-nearest neighbors at

± a1 ± a2 , ±a2 ± a3 , ±a3 ± a1 . (B.10)

But we do not actually need 6 + 12 terms in the energy sum for each atom, because the
pairwise potential depends on the distance between atoms only and not on their actual
relative positions. Hence, the lattice energy (B.1) can be reduced to

E = %V

3∑
i=1

{
ψ
(
|ai|2

)
+

3∑
j>i

{
ψ
(
|ai + aj|2

)
+ ψ

(
|ai − aj|2

)}}
. (B.11)

Notice the factor 1/2 has been cancelled out with the factor 2 in front each pairwise potential
term due to energetically equivalent lattice directions. Putting this back to (B.6) will result
in

C = %
3∑
i=1

{
K(ai) +

3∑
j>i

{
K(ai + aj) + K(ai − aj)

}}
, (B.12)

where

K(a) = ψ′
(
a2
) [

18(a · a)I⊗ I + 8
(
I⊗ (a⊗ a) + I⊗ (a⊗ a) + (a⊗ a)⊗ I + (a⊗ a)⊗ I

)
− 24

(
I⊗ (a⊗ a) + (a⊗ a)⊗ I

)]
+ 4ψ′′

(
a2
) [

a⊗ a⊗ a⊗ a
]

(B.13)

Example: cubic lattice

As a test case, we calculate the stiffness tensor for the simplest lattice structure, namely
a monatomic cubic crystal. The primitive cell of a simple cubic crystal is written as
{ae1, ae2, ae3}, in which a is the lattice parameter. Based on (B.12), the elastic constants
of this lattice will be obtained as

Cijkl =


38c1 + c2 + 2c3 i = j = k = l

6c1 + c3 i = j , k = l

16c1 + c3 i = k , j = l or i = l , j = k

0 otherwise .

(B.14)

where

c1 = %a2ψ′
(
a2
)

+ 4%a2ψ′
(
2a2
)
, c2 = 4%a4ψ′′

(
a2
)
, c3 = 8%a4ψ′′

(
2a2
)
. (B.15)

Most noticeably, there are only three independent elastic constants which is a well known
property of simple cubic crystals. Further, as we mentioned, there is no need for enforcing
the lattice symmetries explicitly, since the formulation reflects those symmetries inherently.



Appendix C

Scaling and asymptotic self-similarity

In the eyes of workers in applied branches of sciences, seeking scaling equations and self-
similarities in a physical problem might merely look like an effort to find a rough first
estimate between the physical quantities involved. From a mathematical viewpoint, how-
ever, asymptotically self-similar solutions indicate stability of the actual solution which is
an invaluable piece if information especially in a computational treatment of the problem
[15, 58]. They also enable us to obtain estimates (upper and lower bounds) to solution or
to certain aspects of them which in turn serve as a powerful tool in studying existence and
uniqueness.

Scaling

In simplest terms, scaling means that the dependence between two quantities is in the form
of a power-law, such as E ∝ L1/3. In the study of macroscopic or mesoscopic physical
phenomena, the scaling regime usually represents a state in which the overall behavior of
the system is independent of the details of initial and boundary conditions, while the system
has not yet reached its final state [59, 16, 58].

Self-similarity

According Π-theorem, if a relation

a = f(a1, a2, . . . , b1, b2) ,

between k + 3 physical quantities a, a1, a2, . . . , ak, b1, b2 is sought, such that only k of them,
namely a1, a2, . . . , ak, have independent dimensions, then the function f(•) can be rewritten
as

Π = Φ(Π1, Π2) , (C.1)

where

Π =
a

aα1
1 a

α2
2 · · · a

αk
k

, Π1 =
b1

aβ11 a
β2
2 · · · a

βk
k

, Π2 =
b2

aγ11 a
γ2
2 · · · a

γk
k

. (C.2)
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The exponents αi and βi can be determined by mere dimensional analysis. Assume a limiting
case where one of the independent variables, say Π2, tends towards zero or infinity. This
typically corresponds to an idealized situation in which a characteristic length or a char-
acteristic time or any other characteristic quantity with the same dimension as b2 becomes
very small or grows very large. Due to this idealization, as Π2 → 0 or Π2 → ∞ one of the
following three outcomes will arise.

1. non-singular self-similarity: The function tends to a well-defined nonzero limit,
say Φ → Φ̌1(Π1). This limit can be obtained by direct substitution of Φ̌1(Π1) = Φ|Π2=0, or
Φ̌1(Π1) = Φ|1/Π2=0, and the functionality Π = Φ(Π1) can apparently be written in dimen-
sional form

a = aα1
1 a

α2
2 · · · a

αk
k f1

(
b1

aβ11 a
β2
2 · · · a

βk
k

)
, (C.3)

which has the property of generalized homogeneity. This does not immediately exhibit an
obvious case of self-similar behavior with respect to different values of b1; nevertheless, one
can see the similarity structure with respect to any transformation ai 7→ ci ai which in turn
transforms a 7→ c

−αi/βi
i a, which ultimately implies a self-similar behavior.

2. asymptotic self-similarity: The function does not have a well-defined nonzero
limit, instead it tends toward a power-law asymptotic function with respect to Π2, which
again possesses generalized homogeneity:

Φ→ Πp1
2 Φ̌1

(
Π1

Πp2
2

)
. (C.4)

This is where we say that the solution is asymptotically self-similar, since substituting Π2 =

0 into Φ, i.e. Φ|Π2=0, does not give a finite nonzero function. Here, Φ might be weakly
convergent. Hypothetically, we should be able to determine the exponents p1 and p2 from
the governing equations, often PDEs.

3. otherwise: The function has neither a well-defined limit, nor does it have an asymptotic
power-law limit. This goes well beyond the scope of our work. Suffice it to mention that
more sophisticated formulations are to be conceived than what Π-theorem provides.

Example: asymptotically self-similar branching of the laminate

There are branching constructs of continuous deformation fields composed of eigen deforma-
tions, in which the volume fraction does not necessarily change along the laminate [38]. The
minimizing sequence, built upon these constructs, is asymptotically self-similar in the sense
that the sequence

uj(x, y) = ε−2j/3 u
(
εjx, ε2j/3y

)
, 0 < ε < 1 , (C.5)

has a strongly convergent subsequence in W 1,2.



Appendix D

Nonlinear laminate kinematics, a pos-
sible extension

Without loss of generality we define a deformation map from the eigen configuration x̊ to
the accommodated configuration x:

X
F◦−−→ x◦

Φ−→ x . (D.1)

Since F = ∂x/∂X, we have F = ΦF◦, and therefore

Φ = FF◦−1 =

{
Φ1(x

◦
1, x
◦
2) , −λ◦h◦ ≤ x◦3 ≤ 0 ,

Φ2(x
◦
1, x
◦
2) , 0 ≤ x◦3 ≤ (1− λ◦)h◦ ,

(D.2)

where Φi = Fi · (F◦i )
−1, and

h◦ = h◦(x◦1, x
◦
2) , λ◦ = λ◦(x◦1, x

◦
2) . (D.3)

In the deformation route (D.1) the austenitic parent X is first deformed via marten-
sitic transformation F◦i to form martensitic laminate in its eigen configuration x◦. It is
then deformed by Φ into its accommodated state x. It therefore matches the homogeneous
mesoscopic deformation according (3.22).

At this point there are various questions to be answered. The most conspicuous one is
whether the overall (average) orientation of the laminate remains unchanged throughout the
deformation steps in (D.1); and if not, how it changes in each step. We will pose and answer
these important questions in the next section.

In the symmetry relation (3.28), since Q belongs to the point group of the austenite,
detQ = detQT = 1; therefore

detF◦2 = det
(
QTF◦1Q

)
= detQT detF◦1 detQ = detF◦1 . (3.31)

Let us now take the determinant of both sides of (3.9) and apply the above lemma:

det 〈F◦〉 = det
(
F◦1 + (1− Λ) a◦ ⊗ X̂3

)
=
(

1 + (1− Λ) X̂3 · (F◦1)
−1 · a◦

)
detF◦1 . (D.4)
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In order to evaluate the rightmost term, we take the determinant of a slightly altered version
of (3.27), using the above lemma to arrive at

F◦2 = F◦1 + a◦ ⊗ X̂3 ⇒ detF◦2 = det
(
F◦1 + a◦ ⊗ X̂3

)
=
(

1 + X̂3 · (F◦1)
−1 · a◦

)
detF◦1 .

However, we just showed in (3.31) that detF◦1 = detF◦2, which results in(
1 + X̂3 · (F◦1)

−1 · a◦
)

= 1 ⇒ X̂3 · (F◦1)
−1 · a◦ = 0 . (D.5)

Applying this to (D.4) combined with (3.31) will prove that

det 〈F◦〉 = detF◦1 = detF◦2 . (D.6)

Having this identity, one can repeat the same procedure that proved (D.5) to show

X̂3 · (F◦1)
−1 · a◦ = X̂3 · (F◦2)

−1 · a◦ = X̂3 · 〈F◦〉−1 · a◦ = 0 . (D.7)

Recall that the cofactor of a matrix Cof A can be written as detAA−T ; hence, equations
(3.10) and (D.6) put together, keeping in mind that detFi > 0, yield

〈F◦〉−T X̂3 = (F◦1)
−T X̂3 = (F◦2)

−T X̂3 . (D.8)

dα = da , ξ̂
◦
3 = x̂◦3 . (D.9)

Let us step back for a moment and study these two equations. Basically what they say
is that the multiplicative decomposition of the eigen deformation gradient into an average
and a fluctuating part simplifies the formulation to a great extent; because the fluctuation
part F̃◦ neither moves nor stretches the twin interface. Thus, introducing the intermediate
coordinates ξ

◦ pertaining to the average deformation properly marks the separation between
two modes of deformation: one that stretches and rotates the austenite, and one that oscil-
lates and forms martensitic variants and their interfaces without stretching or rotating the
body in average.

Equation (D.8), however, simplifies these two equations further into two very interesting
results, which are

λ◦ = Λ , h◦ =
H∥∥∥〈F◦〉−T X̂3

∥∥∥ . (D.10)

Remark 20. Based on equations (D.2) and (3.31), the determinants of accommodated
deformation gradients depend on Φi’s:

detF1 = det(Φ1F
◦
1) = det Φ1 detF◦1

detF2 = det(Φ2F
◦
2) = det Φ2 detF◦2

}
⇒ detF2 =

det Φ2

det Φ1

detF1 . (D.11)

Since there is no a priori assumption on det Φi, we cannot assume that detF1 = detF2,
as we did for eigen deformations. This causes the equations (D.6), (D.7), and (D.8) to fail
for the accommodated configuration. Notice that the results (3.8), (3.9), and (3.10) are
mere consequences of the coherence condition, and therefore hold for Fi’s. In general for
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the twin-compatible phases F1 and F2, not necessarily symmetry-connected as in (3.28),
the following identities hold:

Next, let us find a more specific formula of the form (3.5) by substituting (3.9), for the
accommodated configuration, back in (3.5) to arrive at

F◦(X) = 〈F◦〉+

{
− (1− Λ) a◦ ⊗ X̂3 , −ΛH ≤ X3 ≤ 0 ,

Λ a◦ ⊗ X̂3 , 0 ≤ X3 ≤ (1− Λ)H .
(D.12)

Note that the remark 20 tells us that equation (3.9) also holds for the accommodated con-
figuration.

Using an adaptation of (3.21) in the form F̃◦ = F◦ 〈F◦〉−1, we can rewrite the above
formula in terms of the fluctuating part of deformation as

F̃◦(ξ
◦) = I +

− (1− Λ) a◦ ⊗
(
〈F◦〉−T X̂3

)
, −λ◦h◦ ≤ ξ◦3 ≤ 0 ,

Λ a◦ ⊗
(
〈F◦〉−T X̂3

)
, 0 ≤ ξ◦3 ≤ (1− λ◦)h◦ .

(D.13)

The term in parentheses
(
〈F◦〉−T X̂3

)
can be slightly modified using (D.9) and (D.10) to

get

〈F◦〉−T X̂3 =
H

h◦
ξ̂
◦
3 . (D.14)

By substituting this and (D.10) into (D.13) we have

F̃◦(ξ
◦) = I +

H

h◦

{
− (1− λ◦) a◦ ⊗ ξ̂

◦
3 , −λ◦h◦ ≤ ξ◦3 ≤ 0 ,

λ◦ a◦ ⊗ ξ̂
◦
3 , 0 ≤ ξ◦3 ≤ (1− λ◦)h◦ .

(D.15)

There is one finishing touch to this formulation which has to do with a◦, the jump across
the twin interface. Looking back on (D.1) we have

a = Φa◦ = F (F◦)−1 a◦ . (D.16)

The grain average deformation gradient 〈F〉 is predetermined by mesoscopic deformation
and is therefore constant. The average eigen deformation gradient 〈F◦〉, however, depends
on the volume fraction according (3.9) and (3.27) as

〈F◦〉 = F◦1 + (1− Λ) a◦ ⊗ X̂3 = F◦2 − Λ a◦ ⊗ X̂3 . (D.17)

In order to find the inverse, we factor the F◦i ’s out, and then inverse to obtain

〈F◦〉−1 =
(
I + (1− Λ) (F◦1)

−1 a◦ ⊗ X̂3

)−1
(F◦1)

−1 =
(
I− Λ (F◦2)

−1 a◦ ⊗ X̂3

)−1
(F◦2)

−1 .

(D.18)
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Lemma 4. For any two vectors a,b ∈ Rn, such that a · b = 0, we have

(I + a⊗ b)−1 = I− a⊗ b .

The proof is straightforward. Multiply (I− a⊗ b) by (I + a⊗ b) from left and right to
obtain the identity matrix.

In order to apply this lemma to (D.18) the orthogonality of the two vectors X̂3 and
(F◦i )

−1 a◦ is required. The result in (D.7) holds for the eigen state a fortiori, viz

X̂3 · (F◦1)
−1 · a◦ = X̂3 · (F◦2)

−1 · a◦ = 0 .

Therefore, the equation (D.18) becomes

〈F◦〉−1 =
(
I + (1− Λ) (F◦1)

−1 a◦ ⊗ X̂3

)−1
(F◦1)

−1

= (F◦1)
−1 − (1− Λ)

(
(F◦1)

−1 a◦
)
⊗
(

(F◦1)
−T X̂3

)
= (F◦1)

−1
(
I− (1− Λ) a◦ ⊗

(
(F◦1)

−T X̂3

))
(D.19)

= (F◦1)
−1
(
I− (1− Λ)

H

h
a◦ ⊗ ξ̂3

)
, (D.20)

and

〈F◦〉−1 =
(
I− Λ (F◦2)

−1 a◦ ⊗ X̂3

)−1
(F◦2)

−1

= (F◦2)
−1 + Λ

(
(F◦2)

−1 a◦
)
⊗
(

(F◦2)
−T X̂3

)
= (F◦2)

−1
(
I + Λ a◦ ⊗

(
(F◦2)

−T X̂3

))
(D.21)

= (F◦2)
−1
(
I + Λ

H

h
a◦ ⊗ ξ̂3

)
. (D.22)

If we substitute (D.19) and (D.21) back into (D.16) and put the result in (3.11), then it will
take on the form

F(X) = 〈F〉+ 〈F〉

{
− (1− Λ) (F◦1)

−1 a◦ ⊗ X̂3 , −ΛH ≤ X3 ≤ 0 ,

Λ (F◦2)
−1 a◦ ⊗ X̂3 , 0 ≤ X3 ≤ (1− Λ)H .

(D.23)

In deriving this equation we have made use of the fact that X̂3 (F◦i )
−1 a◦ = 0, based on the

trivial assertion that the result (D.7) is also true in eigen configuration.
Once again, give that F̃ = F 〈F〉−1, we can reformulate this in terms of the fluctuating

part of deformation gradient, in line with (D.15), to obtain

F̃(ξ) = I +
H

h
〈F〉

{
− (1− λ) (F◦1)

−1 a◦ ⊗ ξ̂3 , −λh ≤ ξ3 ≤ 0 ,

λ (F◦2)
−1 a◦ ⊗ ξ̂3 , 0 ≤ ξ3 ≤ (1− λ)h .

(D.24)

Before concluding this section we would like to emphasize that all the results obtained
here are the consequences of three assumptions only, which are
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1. the coherence condition between the eigen deformations given by (3.27),

2. the symmetry connection between the variants given by (3.28),

3. and finally our fundamental kinematic assumption formulated in (D.1).

We shall also mention that all the assertions proven for the accommodated configuration,
F, hold for the eigen configuration, F◦, even by a stronger argument since the third of the
above three assumptions will be extraneous.
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