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1 Introduction

One of the basic phenomena an engineer of any discipline encounters is fatigue of design
material, or, in more words, the increasing degradation of material properties in structural
members under service conditions, no matter whether service loads are constant or time
dependent (dynamic). Many different aspects are touched by this very general specification,
like crack initiation, crack propagation, chemical reaction and others. Over the course of the
twentieth century a vast body of theories and experimental investigation has taken place, and
research is still going on in all of the related areas. Probably the two most mathematically
grounded theories are fracture mechanics and damage mechanics, both developed within the
framework of continuum mechanics [7, 89]. In fracture mechanics researchers investigate
the stress fields in the vicinity of discretely modeled cracks in a continuum, as well as their
impact on macroscopic, phenomenological properties, and it is tried to calculate the forces
driving crack propagation. The approach in damage mechanics is a different one: damage is
interpreted as a thermodynamic state of a solid, affecting its properties like elastic stiffness,
yield limit, creep rate etc. It is treated as a continuous field variable (usually labeled d)
with spatial dependence. This implies that material flaws like cavities or cracks are very
small compared to specimen dimensions, and are distributed statistically homogeneous, at
least when observation is restricted to finite regions of the solid. Both approaches have their
justification, of course. The appeal of damage mechanics is that it is applicable to simulation
of macroscopic bodies more easily, and theoretically it gives more directly insight into those
aspects of fatigue that are important to engineers.

A publication by Kachanov from 1958 [76] is accepted by many authors as the birth of
damage mechanics. There a scalar field variable dwas introduced to help investigate tertiary
creep and creep rupture. The main idea was that micropores reduce the cross section area
of a specimen in a tensile test, and the ratio between pore cross sectional area and specimen
cross section is labeled d

d =
Apores

Aspecimen

.

If the area in a plane perpendicular to an external load is reduced, the stresses acting on
that plane increase, and this leads to increasing deformation when the elastic stiffness of
the material remains the same. Macroscopically this is observed as a loss in stiffness of
the specimen. An analogous interpretation of damage is therefore a reduction of apparent
material stiffness. Later authors (e.g. in [25]) interpreted d as a thermodynamic state vari-
able, making techniques from classical thermodynamics applicable to the concept. In the
following decades additional variables have been introduced to account for different damage
mechanisms, and tensorial quantities have been used to model anisotropic damage [89].

Although sixty years have passed since the publication by Kachanov, a lot of active research
is still done on the field. In a survey paper from 2000 Krajcinovic [79] pointed out that the
main task of damage mechanics, i.e. prediction of remaining structural reliablility, had not
been achieved to a satisfactory degree, and he claimed that this hampered wide acceptance of
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the methods in industry. The literature of the last decade indeed shows an increased number
of papers with focus on engineering challenges, and Lemaitre claims already in 2005 that
damage mechanics has found its way into industry [89]. Nonetheless theoretical papers on
the topic continue to be published, for example Alves [6] on exact evaluation of stiffness
degradation, Turcotte [145] on scaling laws in damage mechanics, Dattoma et. al. [31] on
non-linear damage models, Wahab [3] on interaction between damage and adhesive friction
and Menzel [101] on anisotropic damage at large strains. Examples of applied damage
mechanics can be found in Lee [85] and Sadd [128], who model deterioration of asphalt
concrete, Main [95], Weiya [151] or Najo [109] with geophysical applications, and Li [90]
with a publication on fiber reinforced concrete or Nguyen [112] on concrete. An example
from mechanical engineering is found in [120] by Perrin who modeled creep rupture of
ferritic steel and finally an example from electrical engineering: Gomez and Basaran who
investigated damage of microelectronics solder joints [56]. All these papers date from 2000
or later, and the list presented here is far from complete. The intention is to show the
relevance the topic still has in the scientific community.

The concept of damage mechanics is based on a two-scale ansatz. On a microscale, with typ-
ical dimension of several times the length of microdefects, a discrete distribution of pores,
cracks and cavities is assumed, and stress and strain fields have a highly heterogeneous
character. The details of these are not accounted for, since the defects are abstracted as the
damage parameter that models their overall effect on the stress and strain fields at a macro-
scopic scale. The perturbations are not considered. The abstract procedure of simplification
of microscopic patterns into average quantities is usually called homogenization [108]. In
many cases of practical importance a further distinction of length scales is needed. This can
be the case in mechanical engineering, where defect length scales are small compared to
grain size, and typical grain size itself is small compared to dimensions of a machine part.
The three cases are often labeled micro-, meso- and macroscale, respectively. An example
from civil engineering can be found in steel reinforced concrete, where the steel fibers are
large compared to microcracks in the concrete matrix, and the structural dimensions are
large compared to fiber size. Even more than three different length scales can be important
in geological investigations.

In these cases it can be prohibitively expensive in the sense of computational costs to directly
simulate the mesostructure, thus an additional scale separation in modeling is applied. This
could be done by postulation of additional assumptions that treat the effects of both micro-
and mesoscale patterns on the macroscale. In many cases, however, a more straight for-
ward approach is used. The model for the macroscopic structure assumes homogeneous
distribution of material properties, and is analyzed by use of the finite element method. The
stress strain relationship at the integration points, that is needed to calculate the element
stiffness matrices, is obtained by use of an additional boundary value problem. A model of
a small volume of the structure is proposed that incorporates details about the microstruc-
ture, e.g. grain size or fiber geometry in the previously mentioned examples. The local
stress and strain fields are calculated, and a local damage model as described above is used.
Once these results are obtained the material tangent is calculated and stored for subsequent
use in a macroscopic load step. This approach is called Multiscale Finite Element Method
(MsFEM).

This approach is relatively new, which is understandable since its practicability depends on
the availability of large computational power. From the mathematical point of view this
is a topic from numerical analysis of elliptic partial differential equations with oscillating
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coefficients, and questions arise about convergence, error estimates and the like. Efendiev
analyzed convergence issues [39], nonlinear problems [37], as does Allaire [4], or the case of
highly oscillating coefficients [40]. Ohlberger provides error estimates [114] and Arbogast
and Kouznetsova discuss several solution strategies [9, 77]. A comprehensive overview
about this theory is found in [38]. The MsFEM is not restricted to damage models of course,
but to any physical problem that allows scale separation, like fluid mechanics [1, 2, 37, 98]
or the simulation of earthquakes [70]. However, there are many examples for the use of
MsFEM in damage mechanics, for example in aluminium matrix composites [134] or mason
brick works [146], other examples can be found in [5, 48, 138, 150]. As was the case for
damage mechanics, it is not intended to give a complete list of scientific articles but rather a
selection of important articles to emphasize the interest in the topic.

This method has proven to be utile in many cases although it has one major disadvantage: it
comes along with very high computational costs. At the macroscopic scale the stiffness ma-
trix has to be assembled and an iterative procedure has to be employed to find the solution to
the non-linear problem. The same has to be repeated for the submodels on all the integration
points where detailed analysis is necessary. Multi core systems with large memory capaci-
ties as well as much CPU power have to be used. In order to increase to practicability of the
MsFEM it is desirable to improve the efficiency of the involved numerical procedures.

The aim of this thesis is to provide steps in this direction. A damage mechanics model is
proposed and an efficient numerical algorithm is presented to find solutions to the boundary
value problem. The algorithm is based on the fast Fourier transform and can be executed
efficiently on multi core computers. Periodic boundary conditions are automatically applied
and thus the results are suitable for further use in MsFEM analyses. The results are mesh
objective and the relationship between averaged stresses and strains reproduces the load
curve typical to quasibrittle damage processes.

The structure of this thesis resembles the working plan on this project. In chapter 2 the the-
oretical background of continuum mechanics, fracture and damage mechanics is revisited,
in order to give an orientation for further chapters. In sec. 3.1 a numerical algorithm is dis-
cussed that was published by Moulinec and Suquet in the late nineties [105–107]. It is based
on fast Fourier transform and designed to calculate the overall elastic properties of compos-
ites with complex, periodic microstructure. In sec. 3.2 a damage model is formulated on
thermodynamic grounds. It is given in form of the Gibbs free energy and a dissipation po-
tential. The principle of the minimum of the dissipation potential [63] is applied to derive
the equations governing the process. A Helmholtz like partial differential equation and a
scalar algebraic equation are obtained this way. The Helmholtz equation is transformed
into discrete Fourier space and the system of equations is solved with fixed point iteration
method. Solution of the linear elastic part of the algorithm resembles the older algorithm
by Suquet, but additional steps are inserted to include the nonlinear part. A discussion of
the numerical uncertainty follows and it is shown that the accumulation of round-off errors
remains small after a large number of iterations.

In chapters 4 and 5 the general model behavior is investigated. A convergence analysis
is carried out, mesh objectivity of the results is ensured, a parameter study is presented
and results for different examples are shown and discussed. In section 5.3 an example for
combination of the presented algorithm with the finite element method, in the context of
MsFEM, is given and its results are discussed. Such a method could be used on multi core
systems to analyze complex problems involving damage at the microscale.
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2 Theoretical Background

This chapter’s purpose is to clarify the theoretical basis upon which the current work was
carried out. The basic theory in computational analysis of material behavior is the math-
ematical theory of linear elasticity. Many more advanced theories are based on its results.
The first section of this chapter recalls the central assumptions, theorems and solutions of
this theory, to facilitate the reader’s orientation and understanding. Other fields of classical
mechanics important here are the Linear Elastic Fracture Mechanics and Damage Mechan-
ics. At the end the basic properties of the Discrete Fourier Transform are listed because of
the important role this method plays in the algorithms used within this work.

The following conventions about notation will be used throughout this text:

• Indexed quantities like vectors, tensors, matrices etc. are presented as bold greek or
latin, lower or upper case letters (e.g. α,u,v, σ,C).

• The Einstein summation convention is used, if not explicitly stated otherwise:

viwi =
3∑

ν=1

vνwν

• The inner product (summation over one index) is denoted with the operator (·):

v ·w = viwi.

• A linear mapping between two vector spaces is called a tensor. The mapping between
two vectors v = viei and w = wiei is called second order tensor, e.g.

v = T ·w = Tijwlδjlei = Tijwjei,

where δij is the Kronecker Delta defined as

δij = ei · ej.

The transpose TT of a T is the unique tensor with the property

(T · v) ·w =
(
v ·TT

)
·w.

The mapping from one second order tensor into another is called fourth order tensor
and the corresponding operator symbol is the colon:

α = C : β,

αij = Cijklδkmδlnβmn = Cijklβkl.
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• It is common practice to denote the partial derivative of a function ui with respect to
the variable xj as:

∂ui
∂xj

= ui,j.

For a scalar field u(x) and a vector v = viei the Gradient, Curl and Divergence are
understood as:

grad u(x) = ∇u(x) =
∂u

∂xi
ei

grad v = ∇v = vi,jeiej

curl v = ∇× v = εijkvk,jei

∆v = ∇∇v(Laplacian operator)

with the three dimensional alternator:

εijk =


+ 1 if (i, j, k) is an even permutation of (1, 2, 3)
− 1 if (i, j, k) is an odd permutation of (1, 2, 3)

0 if (i, j, k) is not a permutation of (1, 2, 3).

2.1 Theory of Linear Elasticity

The mathematical theory of elasticity aims at describing the displacements and deforma-
tions of parts of a body as a response to a system of external forces acting on the body. It
is formulated in the context of classical Newtonian Mechanics, as to say it embraces the
classical concepts of space, time and force, [93].

The mathematical system of reference is a coordinate basis in R3 with designated basis
vectors e1, e2 and e3. Throughout this text a Cartesian basis is used always although any
other coordinate system could be used in principle. A point is either referenced to by his
Cartesian coordinates xi or by the corresponding position vector x = xiei. A physical
body D is then described by the subset D ⊆ R3 that contains all the points occupied by
the body. A first basic assumption is that the mass of a body is distributed continuously in
space. Formally this can be expressed by the condition that the mass of a body is always the
volume integral of a density field over the region D, [61]:

m =

∫
D

ρ dV. (2.1)

During a deformation process the shape of the body changes, and the material point formerly
lying at x now occupies the point x′, for example. The regionD′ occupied after deformation
may or may not be the same as D. The displacement is a function of the original position of
each material point:

u(x) = x− x′. (2.2)

In situations where u and∇u are small, the linear theory can be applied. When this assump-
tion is no longer valid a theory of elasticity with non-linear kinematics is more appropriate.
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A more in-depth explanation on what small does mean and how big the error will be is given
in [61]. The infinitesimal strain tensor used in the linear theory is defined as

ε(x) =
1

2

(
∇u +∇Tu

)
. (2.3)

The strain ε is symmetric:

εij = εji. (2.4)

The compatibility theorem states that any strain field connected to a smooth and differen-
tiable displacement field by (2.3) satisfies the compatibility equation:

∇× ε(x)×∇ = 0. (2.5)

This condition is also valid vice versa: For any strain field that satisfies (2.5) the theorem as-
sures its integrability, and a uniquely determined displacement field exists that is connected
to the strain field via (2.3). The line integral

u(x) =

x∫
x0

[ε(y) + grad ε · (x− y) + (x− y) · grad ε] dy (2.6)

is path-independent and u(x) is the displacement field with the desired property. Eq. (2.6)
is called Michel-Cesaro formula. Alternative formulations of the compatibility theorem are
available, see [61].

A further important theorem is called Cauchy-Poisson theorem. It states that from assump-
tion of balance of linear and angular momentum follows the existence of a symmetric second
order tensor σ belonging to the linear mapping between the vector n(x) normal to a surface
onto the force or traction vector t(x) acting on that surface:

t(x) = σ · n(x). (2.7)

The surface can be a real one (surface of body D) or an imaginative one cutting through the
body. A second consequence from the theorem is that σ satisfies the equation of motion

divσ+ f = ρü (2.8)

where f are external volumetric forces acting on the body and ü is the second time derivative
of the displacement field. It has to be mentioned that (2.8) is not restricted to the linear theory
but is rather generally valid in continuum mechanics.

The infinitesimal strain tensor ε and stress tensor σ are connected via a constitutive law,
namely Hooke’s law in linear elasticity:

σ = C : ε. (2.9)

The fourth order tensor C is the elasticity tensor or stiffness tensor. For isotropic materials
its components are:

Cijkl = λδijδkl + µ (δikδjl + δilδjk) . (2.10)
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The coefficients λ and µ are the Lamé-parameters and may or may not depend on the posi-
tion x. In engineering applications Young’s modulus E and Poisson ratio ν are customarily
used. They are related to λ and µ:

E =
µ(3λ+ 2µ)

λ+ µ
and ν =

λ

2(λ+ µ)
. (2.11)

Equations (2.9) and (2.3) can be substituted into (2.8) to obtain Navier’s equation, a partial
differential equation for displacement:

1

2
divC :

(
∇u +∇uT

)
+

1

2
C : div

(
∇u +∇uT

)
+ f = 0. (2.12)

For constant coefficients the classical form is obtained:

µ∆u + (λ+ µ)∇divu + f = 0. (2.13)

In addition to volumetric forces f the body can be subjected to areal forces tS acting either
on the whole surface or on parts of it. If the displacement is prescribed on parts of the
surface, the formulation of the boundary value problem of linear elasticity is complete. On
each point x ∈ S belonging to the surface either traction or displacement can be prescribed,
but not both at a time. Parts of S where neither of the two is prescribed are called free
surface. If traction and displacement are prescribed on different parts of the surface, the
problem is called mixed boundary value problem. If only displacements are prescribed it
is called displacement boundary value problem and consequently a problem where only
tractions are prescribed is called a traction boundary value problem. If the acoustic tensor
T, defined as

T = Cijklnjnleiek, (2.14)

with a normal vector n = niei, is positive definite irrespective of the choice of n, then the
existence of a solution for the boundary value problems is assured. Positive definiteness of
T poses restrictions on the values of λ and µ:

µ > 0 and λ+ 2µ > 0. (2.15)

In addition it has been shown that any two solutions for the mixed problem are equal ex-
cept for a rigid displacement part. For the other two types of boundary value problems the
conditions for existence and uniqueness are slightly different.

A solution to the displacement, traction or mixed boundary value problem minimizes the
elastic energy. This theorem is known as principle of minimum potential energy. If the
potential energy is written defined as Π(ε),

Π(ε) =
1

2

∫
D

ε : C : ε dV −
∫
D

f · u dV −
∫
∂Γ

t · u dA, (2.16)

then the principle is written formally as

Π(ε̃) ≤ Π(ε) (2.17)

if ε̃ is a solution of the problem and ε any other field that corresponds to a kinematically
admissible state. An analogous theorem has been formulated for the elastic complementary
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energy. These principles are the basis for several solution techniques either analytical or
numerical.

Different mathematical representations of a solution to a given boundary value problem are
possible, some of them are now represented:

Boussinesq-Papkovich-Neuber solution [61]: Let µ 6= 0, ν 6= 1
2

and ν 6= 1. If ϕ and ψ are
fields whose restriction to D is at least three times differentiable, and that satisfy

∆ψ = − 1

µ
f and ∆ϕ =

1

µ
p · f , (2.18)

then u with

u = ψ− 1

4(1− ν)
∇(p · ψ+ ϕ) (2.19)

is a solution to the partial differential equations (2.13). The representation (2.19) is com-
plete, i.e. any elastic displacement field corresponding to external forces f can be repre-
sented this way.

Boussinesq-Somigliana-Galerkin solution [61]: Let g be a vector field that is at least four
times differentiable at D and that satisfies

∆∆g = − 1

µ
f . (2.20)

Then u with

u = ∆g − 1

2(1− ν)
∇divg (2.21)

is a solution to the boundary value problem (2.13). Representation (2.20) is complete.

Kelvin’s solution \ Green’s function [61]: A solution can also be given for the case that a
singular load F = Fiei acts at position y:

f = Fδ(x− y), (2.22)

where

δ(z) =

{
1 if z = 0
0 if z 6= 0

. (2.23)

The displacement field corresponding to F is given as:

ui(x) =
1

16πµ(1− ν)

[
(xi − yi)(xj − yj)Fj

‖x− y‖2 + (3− 4ν)Fi

]
. (2.24)

If F is chosen as singular force of absolute value ‖F‖ = 1, one arrives at the Green’s
Function for an infinite, homogeneous and isotropic body:

Gij(x) =
1

16πµ(1− ν)

[
(xi − yi)(xj − yj)
‖x− y‖2 + (3− 4ν)δij

]
. (2.25)
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For any arbitrary body force field f(x) in an infinite, homogeneous isotropic body the dis-
placement field can be formulated in an integral representation form by virtue of (2.25):

u(x) = −
∞∫

−∞

G(x− y) · f(y) dy. (2.26)

If the body under consideration is a bounded region, additional correction terms have to
be added to (2.25). Naturally this is only possible for very simple shapes. Pan and Chou
[116] give the Green’s Function in explicit form for an infinite transversely isotropic Solid,
but they have to pose certain restrictions on the components of the stiffness tensor. Via
application of the Stroh-formalism [143] Ting obtained an explicit representation of the
Green’s function for linear elastic materials of general anisotropy, see [142]. Solutions for
special cases are given by Luco [94], Yuan et. al. [156] and Pan [115]. Some aspects of the
numerical evaluation can be found in Barnett [12], for example. Among other applications
the Green’s function plays an important role in homogenization methods for materials with
heterogeneous microstructure, see for example in Willis [154].

Instead of formulating the problem of elasticity in terms of displacements, as in (2.13), it
can be formulated in terms of stresses. Combination of eqs. (2.5), (2.8) and (2.9) leads to
the Beltrami-Michel compatibility equation of stresses, [62]:

∆σ+
1

1 + ν
∇∇ (trσ) +

(
∇σ +∇σT

)
+

ν

1− ν
(divf) I = 0. (2.27)

Any stress field σ satisfying (2.27) is an elastic stress field. Beltrami found that in the
absence of body forces any stress that can be expressed as

σ = ∇×A×∇, (2.28)

where A = AT is a symmtetric tensor function (stress function), satisfies (2.27). A special
choice of A is

A =

 0 0 0
0 0 0
0 0 Φ

 (2.29)

the Airy stress function Φ, satisfying the biharmonic equation

∆∆Φ = 0. (2.30)

The stresses in cartesian coordinates are related to Φ as:

σ11 = Φ,22, σ22 = Φ,11, σ12 = −Φ,12, σ13 = σ23 = σ33 = 0. (2.31)

The above presented list of fundamental representations of elastic stress and displacement
fields is by no means complete. Additional representations have been given by Love or
Boussinesq, for example. Classical texts on the mathematical theory of linear elasticity are
Love [93], Gurtin [61] and [62], Lekhnitski [87] or Timoshenko [141]. Monographs with
special emphasis on anisotropic media have been written by Hearmon [66] and Ting [143].
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2.2 Hooke’s Law

The generalized Hooke’s Law (2.9) reads in index notation:

σij = Cijklεkl. (2.32)

The 81 components Cijkl are not independent to each other. The fact that C is a linear
mapping from one vector space of symmetric second order tensors into another vector space
of symmetric second order tensors requires minor symmetry of C [62]:

Cijkl = Cjikl = Cjilk = Cijlk. (2.33)

Major symmetry, i.e.:

Cijkl = Cklij, (2.34)

ensures the existence of the elastic potential ψ0. The relationships (2.33) and (2.34) reduce
the number of independent constants to 21 [143]. It is common practice in computational
analysis to take advantage of that fact and to write down (2.32) in matrix form:

σ11

σ22

σ33

σ12

σ23

σ13

 =


C1111 C1122 C1133 C1112 C1123 C1113

C1122 C2222 C2233 C2212 C2223 C1223

C1133 C2233 C3333 C3312 C3323 C3313

C1112 C2212 C3312 C1212 C1223 C1213

C1123 C2223 C3323 C1223 C2323 C2313

C1113 C2213 C3313 C1213 C2313 C1313

 ·


ε11

ε22

ε33

2ε12

2ε23

2ε13

 . (2.35)

By changing the indexes in (2.35) following the rule

11→ 1, 22→ 2, 33→ 3, 12→ 4, 23→ 5, 13→ 6, (2.36)

the Voigt notation is obtained that is frequently used in anisotropic elasticity [66, 143, 149].
The matrix in (2.35) does not have the properties of a tensor any more. A formulation of C
as a six-dimensional second rank tensor can be found in [100] and reads:

C6×6 =



C1111 C1122 C1133

√
2C1112

√
2C1123

√
2C1113

C1122 C2222 C2233

√
2C2212

√
2C2223

√
2C1223

C1133 C2233 C3333

√
2C3312

√
2C3323

√
2C3313√

2C1112

√
2C2212

√
2C3312 2C1212 2C1223 2C1213√

2C1123

√
2C2223

√
2C3323 2C1223 2C2323 2C2313√

2C1113

√
2C2213

√
2C3313 2C1213 2C2313 2C1313


. (2.37)

This operator is a linear mapping from the six-dimensional vector space into another, and
stress and strains are represented as six-dimensional first order tensors:

σ6 =



σ11

σ22

σ33√
2σ12√
2σ23√
2σ13

 and ε6 =



ε11

ε22

ε33√
2ε12√
2ε23√
2ε13

 . (2.38)
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Hooke’s Law reads, consequently:

σ6 = C6×6 · ε6. (2.39)

This notation is convenient if complex symbolic formula has to be transferred to computa-
tional analysis, as is the case in micromechanics, for example. For isotropic materials the
Cijkl are defined as in (2.40), and in six-dimensional tensor notation this reads:

C6×6
iso =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ

 . (2.40)

2.3 Special Solutions

2.3.1 Eshelby’s Solution

We consider the problem of an infinite, homogeneous body not subjected to any external
loading. The region is denoted with D. A given subregion Ω of D undergoes a stress-
free transformation in shape that is homogeneous throughout D, described by the constant
transformation strain εT. εT is the strain in D an observer would measure if the surrounding
material was absent. D is called an inclusion and the region D − Ω is called matrix. Since
the transformation of Ω is constrained by the matrix, internal stresses and strains are induced
in the matrix as well as in the inclusion. The elastic strains (i.e. strains that are not stress
free) can be expressed in terms of the fundamental solution (2.26), see [108]:

εij(x) =

∫
Ω

[Gik,jl(x− y)−Gij,kl(x− y)]Cklmnε
T
mn dy. (2.41)

One has to remember that one of the opening assumptions was the homogeneity of the
body. In case of inhomogeneous bodies (C = C(x)) the expression gets more involved. A
tensorial quantity S is defined,

Sijmn =

∫
Ω

[Gik,jl(x− y)−Gij,kl(x− y)]Cklmn dy, (2.42)

called Eshelbytensor in honor to J.D. Eshelby, who developed a solution strategy and derived
formulas for the problems of spherical and inhomogeneous solutions [44]. Thus (2.41)
reads:

εij = Sijklε
T
kl. (2.43)

S and accordingly ε is constant throughout the inclusion if its shape matches an ellipsoid, a
basic result obtained in [44]. This conclusion also holds for a spherical inclusion as special
case of ellipsoidal inclusions and this phenomenon is sometimes called Eshelby property,
e.g. in [96] and [97]. The actual strain within the inclusion is only partly stress free, and
Hooke’s law reads for points within Ω:

σij = Cijkl
(
εkl − εTkl

)
. (2.44)
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The solution for points outside of Ω is not uniform, although the relation between trans-
formation strain and actual strain can still be expressed as in (2.43), only that S = S(x)
is dependant on space coordinates. To avoid any confusion: S always refers to the interior
point solution throughout this section. For the exterior point Eshelby tensor refer to [74]
or [108]. In [44] Eshelby gave the components of S for spherical inclusions as:

S1111 = S2222 = S3333 =
7− 5ν

15(1− ν)
,

S1122 = S2233 = S1133 = S3311 = S2211 = S3322 =
5ν − 1

15(1− ν)
, (2.45)

S1212 = S2323 = S3131 =
4− 5ν

15(1− ν)
.

The parameter ν refers to the Poisson ratio of the elastic material. All components of S
linking shear strains to normal strains in (2.43) are zero, as well as components linking εij
to εkl with i 6= k and j 6= l. For ellipsoidal inclusions the solution can be expressed in terms
of elliptic integrals, see [44] or [108]:

S1111 =
3

8π(1− ν)
a2

1I11 +
1− 2ν

8π(1− ν)
I1,

S1122 =
1

8π(1− ν)
a2

2I12 −
1− 2ν

8π(1− ν)
I1, (2.46)

S1133 =
1

8π(1− ν)
a2

3I13 −
1− 2ν

8π(1− ν)
I1,

S1212 =
a2

1 + a2
2

16π(1− ν)
I12 +

1− 2ν

16π(1− ν)
(I1 + I2),

with

I1 =
4πa1a2a3

(a2
1 − a2

2)(a2
1 − a2

3)
{F (θ, k)− E(θ, k)} , (2.47)

I3 =
4πa1a2a3

(a2
2 − a2

3)(a2
1 − a2

3)

{
a2

√
a2

1 − a2
3

a1a3

− E(θ, k)

}
,

where

F (θ, k) =

∫ ∞
0

1√
1− k2 sin2w

dw, E(θ, k) =

∫ ∞
0

√
1− k2 sin2w dw,

(2.48)

θ = sin−1

√
1− a2

3

a2
1

, k =

√
a2

1 − a2
2

a2
1 − a2

3

.

Relationships between the Ii and tne Iij are the following:

I1 + I2 + I3 = 4π,

3I11 + I12 + I13 =
4π

a2
1

, (2.49)

3a2
1I11 + a2

2I12 + a2
3I13 = 3I1,

I12 =
I2 − I1

a2
1 − a2

2

.

The elliptic integrals F and E in (2.48) have to be computed numerically, but implemen-
tations with sufficient accuracy are available in many computer algebra systems and for
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programming languages. Cyclic permutation of the indices in equations (2.47) to (2.50)
gives the other components of S, and the components that are zero for spherical inclusions
are zero for ellipsoidal inclusions, too. Mura [108] gives explicit expressions for the cases of
penny-shape, oblates, flat ellipsoid and cylindrical inclusions, which alltogether are limiting
cases of (2.47) when one or more of the ai approaches towards 0 or∞.

The Eshelby tensor has been calculated for different problems, e.g. for inclusions of cuboidal
shape by Faivre [47], Sankaran and Laird [129] and Lee, Barnett and Aaronson [86]. Rodin
[126] gave the Eshelby tensor in closed form for polyhedral inclusions and proofed that
the Eshelby property does not hold for any polyhedron. Further analysis was taken out
by Markenscoff [96] and Markenscoff and Lubanda [97] who showed that any inclusion
bounded by planes or more generally bounded by non-convex surfaces does not have the
Eshelby property.

What makes this solution important is the fact that another problem can be reduced to the
already solved inclusion problem: consider an infinite, homogeneous elastic, body D with
stiffness CDsubjected to a constant stress σ0. A subdomain of D, again called Ω is occupied
by a different material with stiffness CI. The presence of this inhomogeneity causes a local
disturbance of internal stresses, such that the actual stress σ = σ(x) is not constant anymore.
For x→∞ the stress will approach σ→ σ0.

Starting point is again the inclusion problem from the beginning of this section, only that the
stiffness of the infinite, homogeneous body is CD. The strain within the inclusion is given
by (2.43) . Adding a constant stress field

σ0
ij = CD

ijklε
0
kl (2.50)

means that the total stress field is now σ0
ij + σij and the total strain is ε0ij + εij . But within

the inclusion Ω they do not comply with Hooke’s law, since with (2.44)

σ0
ij + σij = CD

ijkl

(
ε0kl + εkl − εTkl

)
. (2.51)

Now imagine the inclusion to be replaced with another material,that has a stiffness CI such
that stresses and strains are connected by Hooke’s law again:

σ0
ij + σij = CI

ijkl

(
ε0kl + εkl

)
. (2.52)

Then it follows from (2.51) and (2.52) that

CD
ijkl

(
ε0kl + εkl − εTkl

)
= CI

ijkl

(
ε0kl + εkl

)
. (2.53)

Of course, the inhomogeneity problem assumes the stiffness CI to be known, but (2.53)
allows the inhomogeneity problem to be reduced to the inclusion problem with unknown
transformation strain εTij . (2.53) carries two unknowns, namely εij and εTij , and together with
(2.43) one has two equations to determine them. The strains and stresses can be given, here
in symbolic form:

ε0 + ε =
[
S : MD :

(
CT −C0

)
+ I
]−1

: ε0, (2.54)

σ0 + σ = CI :
[
S : MD :

(
CI −C0

)
+ I
]−1

: ε0 within Ω, (2.55)

σ0 + σ = CD :
[
S : MD :

(
CI −C0

)
+ I
]−1

: ε0 outside Ω. (2.56)

S dependes on the shape of the inhomogeneity. One has to remember that it always belongs
to the inclusion problem of the matrix material. For example, in case of spherical inclusions
the Poisson’s ratio of the matrix material has to be chosen when calculating the constants of
S with (2.45).
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2.3.2 William’s Solution for cracked half-space

The next section is devoted to a brief review of the important field of fracture mechanics.
Although most of this research area goes well beyond the limits of linear elasticity theory,
it is grounded on stress analysis within the frame of the latter one. Textbooks on fracture
mechanics usually start from linear elasticity, thereby following the historical line of devel-
opment [7]. The basic assumption in fracture mechanics is the existence of pores or sharp
cracks in all natural materials. Therefore stress and strain distribution as well as displace-
ment fields in the vicinity of those is of interest to researchers. Inglis [71] probably was
the first who investigated such situations rigorously with the methods of linear elasticity.
He investigated elliptic holes in plane stress where one half axis is very large compared to
the other. In 1956 Williams [153] investigated a sharp crack in an infinite half space under
plane stress conditions. Figure 2.1 illustrates the configuration. Polar coordinates are used,
the origin lies on the crack tip. This time a formulation in terms of the Beltrami solution is
chosen. Williams postulates the following stress function for the problem:

Φ = rη+1 [c1 sin 2π(η + 1) + c2 cos 2π(η + 1) + c3 sin 2π(η − 1) (2.57)
+c4 cos 2π(η − 1)] . (2.58)

The quantities η, c1, c2, c3 and c4 are constants yet to be determined. The crack faces must
be traction free, thus the boundary conditions for stress fields are:

σθθ(0) = σθθ(2π) = σrθ(0) = σrθ(2π) = 0. (2.59)

From (2.58) the stress fields have to be computed:

σrr =
1

r2

∂2Φ

∂θ2
+

1

r

∂Φ

∂r
(2.60)

σθθ =
∂2Φ

∂r2
(2.61)

σrθ = −1

r

∂2Φ

∂r∂θ
+

1

r2

∂Φ

∂θ
. (2.62)

Inspection of (2.58) and (2.59) reveal that η must be an integer to satisfy the boundary
conditions (2.59). There are infinitely many possibilities for η, thus the solution can be
represented as a series expansion:

σij =
Γij
(
−1

2

)
√
r

+
∞∑
m=0

(
rm/2Γij (m)

)
, (2.63)

where Γij is a function that depends on Φ and its derivatives. Detailed calculation of the
higher order terms is usually omitted in literature, because the important property of rep-
resentation (2.63) is the fact that the leading term depends on 1/

√
r and thus diverges to

infinity for r → 0, while the others have finite limiting values at the crack tip. There can
always be found a zone close enough around the crack tip where the stress field is dominated
by the leading term, and stresses are higher within that zone than anywhere else in the body.
The stress fields near the crack tip are given explicitly as:

σrr =
KI√
2πr

[
5

4
cos

(
θ

2

)
− 1

4
cos

(
3θ

2

)]
σθθ =

KI√
2πr

[
3

4
cos

(
θ

2

)
+

1

4
cos

(
3θ

2

)]
(2.64)

σrθ =
KI√
2πr

[
1

4
cos

(
θ

2

)
+

1

4
cos

(
3θ

2

)]
.
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θ

θ*

Fig. 2.1: Edge-crack configuration analyzed by Williams

The quantity KI is the well known stress intensity factor, which is

KI = σ
√
πa (2.65)

for the present configuration.

2.4 Non-Local Continuum Theories

The classical theory of linear elasticity presented above rests on two intuitive assumptions,
apart from Newtons Fundamental Laws: the idea of continuous mass density and the idea
that all forces appearing are contact forces with zero range effect. Both assumptions are
independent of each other [81]. There are situations where zero-range forces are not a good
approximation of nature, e.g. on small scale elasticity where atomic lattice effects play a
role in deformation processes, or in big stellar bodies where gravitational force is not only
visible as external on the body but also acting between inner mass points of the body itself.
Hooke’s law (2.9) is local in the sense that local stresses in an infinitely small region are
only dependent on strains within the same region. Constitutive laws in non-local continuum
theories also depend on deformations in neighboring points.

The physical foundations for non-local theories have been laid out by Toupin in 1962 [144],
who based his discussion on atomistic arguments. Early work on that topic has also been
done by Mindlin [102, 103] and Green and Rivlin [58]. In 1968 Kröner [81] presented an
integral theory for non-local elasticity. The three-dimensional, non-local elastic energy is
reformulated as

E =
1

2

∑
x,x′

Φik (r− r′) (u′i − ui) (u′k − uk) . (2.66)

The quantity Φik (r− r′), with Φik = Φki induces finite range effects and has to be derived
from physical arguments (van-der-Waals forces, etc.). The stress tensor σij as variational
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derivative δE/δεij of E reads

σij(r) = Cijklεkl +

∫
D

cijkl (r− r′) dV. (2.67)

The two-point tensor cijkl (r− r′) has to be calculated as the solution of a system of inho-
mogeneous, linear partial differential equations where the inhomogeneous parts depend on
the Φik.

Dillon [33] presented in 1970 a theory of plasticity that incorporates first order and second
order strain gradients. His model accounts for inhomogeneous deformations at small scale.
The small scale behavior influences the macroscopic behavior, thus thermodynamic con-
siderations and concepts of linear elastic fracture mechanics can be included. It simulates
dislocation interactions with non-nearest neighbors, thus coming to a non-local model at
a macroscopic scale. Another, thermodynamically motivated constitutive theory for non-
linear elasticity has been presented by Eringer in 1972 [43] in a widely respected article.
The non-local elasticity models are of little relevance to the work presented here and thus
are not discussed in more detail. Non-local approaches have later been applied to damage
mechanics models for several reasons, and that is why this very brief overview is given.

2.5 Micromechanics and Homogenization

The theory presented in sec. 2.1 so far is based on the assumption of continuous and ho-
mogeneous distribution of matter, i.e. the properties relevant to the formulation, elastic
parameters and mass density do not depend on the position within the body. These assump-
tions fail to hold in any realistic material on a small (atomistic) scale, but may approximate
the situation at scales large compared to distances between atoms and molecules, as dis-
cussed previously. For the sake of clarity it is pointed out that the theory itself does not
impede inhomogeneous material parameters, one simply may substitute the coordinate de-
pendent expressions λ(x) and µ(x) to (2.13), but the results presented from (2.18) to (2.28)
are no longer valid in that case. One special case is encountered, when the mechanical
properties are distributed heterogeneously on a length scale where the assumption of con-
tinuous mass distribution holds, and are observed as homogeneous at a scale still larger than
the intermediate one. The general concept is illustrated in fig. 2.2. The whole theory col-
lapses at atomistic level, but at the intermediate level it applies everywhere. It is further
assumed that on a macroscopic level a formulation of a boundary value problem with ho-
mogeneous constants may be applied, and the solutions in stresses and strains represent the
local fields at the microscale in an averaged manner. The constant parameters are called
effective or apparent parameters, because they are observed and measured in experiments
with macroscopic specimens. An obvious, necessary condition for such an approach is that
the characteristic dimension of heterogeneities be much smaller than the dimensions of the
body. This is called the concept of separable scales [78]. In addition it is assumed that
the heterogeneous structure repeats periodically with period-length much smaller than the
global scale. In [78] it is mentioned that in computational analysis the weaker assumption
that the heterogeneities are periodic in the vicinity of the analyzed material point, and glob-
ally non-periodical behavior may be allowed. The scientific field concerned with the overall,
homogenized representation of materials with actually non-homogeneous microstructure is
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Fig. 2.2: Schematic visualization of the multiple scale concept

called Micromechanics [108]. The substitution of the non-homogeneous mechanical pa-
rameters with constant, averaged parameters is called Homogenization. Mathematically,
this problem can be termed as finding a solution to partial differential equations with fast
varying parameters and subjected to boundary conditions. Fortunately, in the case of lin-
ear elastic solids, estimates of the homogenized parameters can be found based on physical
arguments rather than the exact solution of the underlying mathematical problem. In cases
where non-linear behavior is assumed, numerical techniques usually have to be applied.

In linear elasticity the effective parameters are defined via the averaged Hooke’s law [108].
When all the constituents behave linearly elastic, stresses and strain fields are averaged over
the whole body:

〈ε〉 =
1

VD

∫
D

ε(x) dx (2.68)

and

〈σ〉 =
1

VD

∫
D

σ(x) dx. (2.69)

The effective stiffness tensor Ceff is a linear mapping of the volume averaged strain onto the
volume averaged stress:

〈σ〉 = Ceff : 〈σ〉 . (2.70)

The components of Ceff are denoted with Cijkl,eff . The task of finding effective elastic
parameters is reduced to calculating the averaged stress and strain fields. In most cases
it is not possible to obtain exact results for them. Several attempts have been made to
estimate them. Two simple estimates, the Voigt- and the Reuss-limit, have been identified
as upper and lower bounds to the exact effective stiffness, respectively. This was done by
Hill in 1963 [67]. The Voigt estimate is based on the assumption that the strain ε is constant
throughout the different phases, which means 〈ε〉 = ε. The stress average can be computed
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straight ahead:

〈σ〉 =
n∑
r=1

crCr : ε (2.71)

where the index r labels different phases, cr are the volume fractions corresponding to dif-
ferent phases and Cr are the elastic stiffness tensors related to phases r, when there are n
different phases present in the material. The Voigt estimate for effective elastic constants
is [148]

CV =
n∑
r=1

crCr. (2.72)

The Reuss estimate approximates the stresses throughout the material as constant, and anal-
ogous analysis yields for the effective stiffness [124]:

CR =

(
n∑
r=1

crMr

)−1

(2.73)

where Mr = C−1
r is the inverse of the elastic stiffness tensor, called compliance tensor.

When the material under investigation has a matrix-particulate microstructure, and the par-
ticulates have spherical or ellipsoidal shape, more precise estimates have been obtained by
the use of Eshelby’s solution, presented in sec. 2.3.1. In (2.54) the strains within a spherical
or ellipsoidal inclusion is given in dependence on a far field strain ε0. A new symbol A is
introduced,

A = [S : M0 : (C1 −C0) + I]−1 , (2.74)

where C0 represents the elastic stiffness of the matrix, M0 = C−1
0 and C1 is the stiffness of

the material in the inhomogeneity. The Eshelby estimate reads [108]:

Ceff,E = C0 + c1 (C1 −C0) : A1. (2.75)

The volume average of stress and strain is obtained by the use of the Eshelby property, the
assumption that inclusions do not interact with each other (dilute dispersion assumption)
and the Mori-Tanaka theorem, [139]. For details on the calculation see [108]. Exact re-
sults can be obtained for isotropic phases and spherical, ellipsoidal and polygonal inclusion
shapes. Sevostianov et al. [130] found a closed form formulation for spherical inclusions
and transversely-isotropic phases. If the volume fraction of the particles is too high to main-
tain the non-interaction assumption, a better estimate is obtained with the self-consistent or
effective field method, proposed by Kröner [80] and by Budiansky [24]. A representative
inhomogeneity is placed within a matrix that consists of the effective material. The underly-
ing idea is that the inhomogeneity ’sees’ the effective fields due to the presence of the other
inhomogeneities. Analysis is carried out as in sec. 2.3.1 and analogously to (2.74) a result
for the strain concentration tensor is found:

ASC = [Seff : Meff : (C1 −Ceff) + I]−1 . (2.76)

This has to be substituted into (2.75). An implicit formula for Ceff is encountered, and
a solution has to be found via fixed point iteration. Since the Eshelby tensor Seff has to be
calculated for the effective material, closed form solutions are available only for cases where
the effective stiffness is isotropic or transversely-isotropic, e.g. not for inhomogeneities of
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general ellipsoidal shape. The self consistent approach is therefore less flexible compared
to the Eshelby method. In general cases the Eshelby tensor has to be calculated numerically,
but it is rather difficult to achieve numerical convergence (for details see for example [53]).
The Mori-Tanaka estimate is the third approach [104]:

Ceff,MT = C0 + c1 (C1 −C0) [(1− c1)I + c1A.]
−1 (2.77)

A in (2.77) is the same as in (2.74). The Mori-Tanaka Method usually gives better results
than (2.75) but does not pose the limitations of (2.76). Therefore, the Mori-Tanaka approach
was chosen in this project when effective elastic constants obtained from numerical proce-
dures needed to be checked. The two limits (2.72) and (2.73) are also used as a first control
of the numerical results. For comprehensive discussion of these three theories see [108]
or [110].

A generalization of the equivalent inclusion method used by Eshelby (see sec. 2.3.1 again)
is the introduction of the polarization stress proposed by Hashin and Shtrikman [64]. This
approach is applicable to composites with elastic heterogeneities of arbitrary shape and also
to completely irregular microstructures. The numerical algorithm presented in [106] that
was the basis for the algorithm developed for this work is based on this concept, which is
the reason why it is discussed at this point. The problem is a body D with a heterogeneous
elastic stiffness tensor C(x) subjected to a constant prescribed strain E. A solution for the
elastic fields σ(x) and ε(x) = E + ε′(x) is looked for. For these two fields the equation of
motion and Hooke’s law must hold in every point x:

divσ(x) = 0
σ(x) = C(x) : ε(x).

}
(2.78)

But instead of analyzing the original problem, a problem with equivalent elastic fields is
formulated: a homogeneous body D̄, called reference body, with elastic stiffness C0 with
the same boundary conditions asD but in addition subjected to a body force field f(x). f(x)
shall be chosen in such a way that the resulting stress field σ0(x) in D̄ is identical to the
stress field in D:

σ0(x) = σ(x) ∀x ∈ D. (2.79)

The same is required to be true for the strain fields ε and ε0. The body D̄ may be isotropic
with Lamé parameters λ0 and µ0, but the idea is not restricted to that choice. The stress
polarization tensor τ is introduced:

τ(x) = (C(x)−C0) : ε(x). (2.80)

The stresses can be decomposed into two parts accordingly:

σ(x) = C0 : ε(x) + τ(x). (2.81)

Substitution into (2.78) yields:

div (C0 : ε(x)) + divτ(x) = 0. (2.82)

A body force is defined as

f(x) = divτ(x) (2.83)
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and (2.82) is rewritten as

divσ0(x) = −f
σ0(x) = C0 : ε(x).

}
(2.84)

These are the governing equations of the homogeneous body with stiffness C0 subjected to
the body force field divτ(x). According to (2.26) the solution in terms of displacement field
can be written as

u(x) = E−
∫
D

G0(x− y)divτ(y) dy (2.85)

where G0(x) is the Greens function of the homogeneous reference material (corresponding
to λ0 and µ0 in the case of isotropic C0). Following the notation of Willis [154] (2.85) is
rewritten in symbolic form:

ε(x) = E− Γ0(x) ∗ τ(x) = E− Γ0(x) ∗ (C(x)−C0) : ε. (2.86)

The integral operator Γ0 has the dimension of a fourth order tensor. (2.86) represents an in-
tegral equation with ε(x) as variable. The advantage about this approach is that the Green’s
function for a homogeneous isotropic material may be used rather than the Green’s func-
tion of the heterogeneous material, which is not available in closed form for most micro-
geometries. Nonetheless numerical techniques have to be employed to find a solution of
(2.86). Kröner [82] suggest to expand (2.86) into a series, and calculate the truncated result.
He gives a proof that the series expansion converges. Kröner also reports that (2.86) is an
equation of the Lippmann-Schwinger kind which is well known from statistical quantum
mechanics. This means all results and properties obtained for this equation can be adopted
for (2.86). An expression for Γ0 that is used within this work is given in a later section.

Practically all cases of heterogeneous media involving non-linear behavior need to be in-
vestigated with numerical techniques [78]. The most prominent method used in continuum
theories (continuum mechanics, heat conduction, electrical current) is the finite element
method. The macroscopic body is idealized as homogeneous, and discretized with a finite
element mesh. The solution of this global problem gives the macroscopic strains εM on the
integration points, and they are imposed as boundary conditions to a representative volume
element (RVE) that is a detailed model of the microstructure. A choice has to be made about
the size of the representative volume element. It has to be large enough to include all the
statistical features of the heterogeneities, to avoid for example anisotropic behavior because
the RVE contains too few inhomogeneities of a certain shape. On the other hand the RVE
must not be to big with respect to the macroscopic dimension of the body under consider-
ation. These two limitations reflect the scale separating property mentioned above. When
the boundary condition following from the global displacment field is applied an additional
boundary value problem is obtained. This has to be solved, also with numerical techniques
in most cases, and from the solution the average stress response 〈σ(x)〉 to εM and the mate-
rial tangent are calculated. The analyst is free in the choice of the method applied, but most
common practice is the use of the Finite Element Method for the submodel as well. The
terms Multiscale Finite Element Method or FE2 have been coined for this procedure [78].
The macroscopic volume average of the variation of the internal work has to be equal to the
variation of the local work at macroscale [68]:

1

V0

∫
V0

σ(x) : δε(x) dV0 = 〈σ(x)〉 : δ 〈ε〉 ∀x ∈ V0. (2.87)
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(2.87) is known as Hill-Mandel theorem [78]. This theorem is satisfied when the boundary
conditions meet certain requirements. The applied strains have to be periodic and the applied
traction has to be anti-periodic:

ε(x+) = ε(x+) and n(x+) · σ(x+) = −n(x−) · σ(x−). (2.88)

The labeling of position vectors x+ and x− indicates that they belong to opposite surfaces
of the RVE. Apart from satisfying (2.87) these boundary conditions preserve the periodicity
of the elastic fields as well as the geometry after deformation. To make sense of the multiple
scale approach it is of course required that the boundary conditions are such that the macro-
scopic stresses and strains have to be incorporated, and the volume average of the strains
has to be equal to εM.

During this work the boundary value problem corresponding to the submodel at the inte-
gration points is not solved with the Finite Element Method but with an algorithm based on
discrete Fourier transform.

2.6 Fracture and Damage Mechanics

In many engineering applications the dimensioning of members, either belonging to struc-
tures or machines, is carried out by stress analysis withing the framework of linear elastic-
ity. Three dimensional stress states are converted into scalar equivalent stresses, which are
compared to the maximum load capacity of the construction material. Exceeding the max-
imum load capacity would lead to immediate failure. In the beginning of the 20th century
experience showed that in a huge number of failure incidents, many of them catastrophic
events causing casualties and high costs, parts of a structure failed although the maximum
loads in service had still been far below the maximum load capacity of the material. This
issue appears especially in cases where service loads were time-dependent and repetitive.
The explanation of these failures can be found by results as the one presented in section
2.3.2. In classical stress analysis a structure is considered to be a perfect continuum. This
is an incorrect assumption, of course, since any real material shows heterogeneities at least
when inspected on a microscopic level, showing pores, sharp crack and other discontinuities.
Analyses as the one by Williams [153] revealed that (theoretically infinite) stresses exceed
the stress levels observed macroscopically and thus have to be included in safety analysis.
Of course it is undesirable and in most cases impossible to model the part with the entire
microstructure. Rules have to be found to estimate the effects of flaws on the macroscopic
behavior. That is essentially the motivation behind the theory of fracture mechanics.

Natural as well as artificially designed materials can be categorized according to their frac-
ture behavior. Many materials, e.g. Glass, hardly can sustain even small deformation with-
out fracturing immediately. Cracks appear without visible advanced notice and propagate
at very high velocities. Such materials are called brittle. Contrary to that most metals show
a different behavior at room temperature, called ductile behavior: High plastic deforma-
tion accompanies crack propagation. Ductile metals show higher resistance against crack
growth than brittle materials since a big part of the energy is dissipated into plastic deforma-
tion. Both classes of material reveal their difference in classical tension tests. In figure 2.3
representative stress-displacement curves are shown to illustrate the difference. Whereas the
curve of brittle materials is dominated by the linear branch that ends abruptly when failure
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Fig. 2.3: Schematically drawn stress-displacement curves to illustrate different fracture behavior

occurs, the curve of ductile materials has a big non-linear branch that shows a peak stress
after which the slope of the curve gets negative. This part is called strain-softening behavior
in literature. For real materials no sharp border between brittle and ductile behavior can be
drawn. Additionally, the behavior is often temperature dependent. Many metals that behave
in a ductile manner at room temperature become brittle at a temperature far below zero. An-
other class of materials are called quasi-brittle: Little or no visible plastic deformation can
be sustained, nevertheless a strong non-linear part of the stress-displacement curves is ob-
served in tension test under appropriate conditions. A prominent example for such behavior
is concrete. The algorithm formulated within this work is aimed at modeling this particular
class of materials, thus a detailed review on experimental data and simulation techniques is
given later in this section. To start with, the basic aspects of fracture mechanics are discussed
here.

Stress analyses as the one presented in 2.3.2 can be performed for a variety of crack con-
figurations. The stress singularity near the crack tip is considered to be the decisive phe-
nomenon. This is called stress concentration effect of sharp cracks. Infinite stresses, as
suggested by (2.63) cannot be sustained by any real material. However, in many cases it is
assumed that the results obtained with the linear elastic theory are valid except for a small,
finite zone around the crack tip. Within this zone the material behavior cannot be considered
to be purely elastic. For metals, for example, the maximum stress in the material is bounded
by the yield limit, and plastic deformation occurs in a zone near the crack tip. Crack prop-
agation is governed by elastic stresses if this zone of plastic deformation is smaller than the
zone where the stress field is dominated by the singular term in (2.63). Within this zone
where the singular stress term is dominant, the stresses are proportional to KI , the so-called
stress intensity factor. In the literature on fracture mechanics three different modes of stress
concentration at crack tips are distinguished, according to three linearly independent load-
ing conditions for the cracked, infinite half plane in fig. 2.1: mode I refers to the loading
situation discussed in sec. 2.3.2, mode II refers to in-plane shear and mode III to outer plane
shear of the crack faces [7]. All three loading conditions lead to singular stress concentra-
tion at the crack tip, and all are proportional to stress intensity factors KI , KII or KIII ,
respectively, where the subscript denotes the fracture mode to which the factor belongs.
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When a crack as the one depicted in fig. 2.1 propagates into the material, new surfaces are
formed, or in different words, the existing surfaces are extended. From a thermodynamical
point of view this is a change of state, and energy is consumed within the process. On
the other hand, the elastic stress and strain fields within the material are changed as the
zone dominated by the stress singularity moves with the propagating crack tip. This means
that the amount of elastic energy stored in the deformed material and the potential energy
supplied by the external forces alters. The first law of thermodynamics now states that there
is always a net decrease in energy when a body changes from a non-equilibrium state to an
equilibrium state. Thus new crack surfaces can only be formed when the net surface energy
consumed in the process is less than the elastic energy that is released. If Π denotes the
elastic potential and A the total amount of crack surfaces, than the energy release rate G is
defined as (see Irwin, [72]):

G = −d Π

dA
. (2.89)

Another term sometimes used for G is crack driving force, since it is expressed as derivative
of a potential. The net change in total energy E during a crack propagation process is:

d E
dA

=
dWs

dA
− G, (2.90)

whereWs is the work needed to create new surfaces. Crack propagation can only take place
when d E

dA
is negative (net decrease in energy), or in other words, when G exceeds a certain

critical value, e.g. denoted with Gcr. It is not necessary to give absolute values forWs, the
important consequence of these considerations is the existence of a critical elastic energy
release rate. This makes this concept accessible to experimental verification, since G can be
determined exactly for simple configurations as in fig. 2.1. It was already mentioned that the
stress fields, and consequently also the elastic energy, are proportional to the stress intensity
factor, which means that G is uniquely related to the stress intensity factor KI , KII or KIII ,
or a combination of them.

Griffith [59] had developed a similar yet less general approach earlier than Irwin. He related
the energetic argument to the applied stress, and gave a stress level critical for the onset of
crack propagation in the example presented in sec. 2.3.2:

σf =

(
2Eγs
πa

)
, (2.91)

whereE denotes the Young’s modulus of elasticity, a is the crack length and γs is the specific
surface energy of the material. The unique relation of the critical state to the applied stress σ
is completely analogues to the unique relation between G andK. In the literature the critical
energy release rate is sometimes replaced by the material resistance to crack propagation,
R:

G = R, (2.92)

G = G(α). (2.93)

For simple configurations as the one presented in fig. 2.4 an explicit formula can be given
for G(α). Stress analysis for 2D-problems shows that G(α) has a unique maximum for
a given α′ (which depends on the configuration, obviously), [7]. It is assumed that the
crack extends into direction α′ since the decrease in total energy becomes maximal in that
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Fig. 2.4: Mixed-mode crack problem

case [42]. In homogeneous materials cracks tend to propagate into the direction normal to
the first principal axis of stress [7].

The concepts and analysis presented are entirely based on the theory of linear elasticity.
Hence, their applicability is restricted to brittle materials, since these show little or next to
no plastic deformation before material failure occurs. Critical stresses for glass specimens
can be approximated very good by the KI-criterion, but in the case of fracture of metals
they cannot. In order to explain these differences care has to be taken when the stress field
(2.63) is interpreted. Infinite stresses cannot be sustained by any material. The singularity
is the result of the sharp crack tip assumed in the initial configuration. This can only be an
approximation of real world problems: at atomistic length scales no sharp edge would be
observed. For a better approximation of the real world problem the sharp line crack may be
replaced by an elliptical hole with one axis much bigger than the other one, see fig. 2.5a.
A closed form solution is also available for this case, e.g. given in [141], and the resulting
stress and strain fields do not show singular behavior in this case. In ductile materials the
stress is limited by the yield stress σy. Plastic flow will occur around the crack tip instead of
infinite stresses. A first approximation of the region where plastic deformation takes place
is simply obtained by calculating the von-Mises equivalent stresses from (2.64) and setting
it equal to the yield stress:

σeq(r, θ) = σY. (2.94)

Through (2.94) an approximation of the boundary of the plastic zone is given in implicit
form. Within the plastic zone the stress is assumed to be everywhere equal to the yield
stress σY. This can only be an approximation because the obtained stress field is not in
equilibrium. But nonetheless this approach is widely used in the literature to estimate the
extension of the plastic zone around the crack tip. Although this problem is obviously not
a purely linear elastic, analyses like the one in sec. 2.3.2 can still be applied under certain
conditions. This comes from the fact that the single parameterKI (orKII,KIII, respectively)
is sufficient to characterize the situation around the crack tip. It was mentioned in sec. 2.3.2
that a (circular) zone can be determined where the singular term in (2.64) dominates the
whole stress field. As long as the plastic zone is considerably smaller than the singular-
dominated zone, the situation within the latter one will be determined by the stress intensity
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Fig. 2.5: Visualization of curved surfaces at the end of a crack (left side) and of plastic zone inside
singularity dominated zone (right side)

factor, even if plastic deformation occurs locally. The stress near the crack tip will not be as
in (2.64), but that is not of primary importance. This is the reason why the estimate in (2.94)
is widely used. The designer usually is not interested in the local fields around the cracks
but rather in properties that can be observed macroscopically. When a crack propagates into
a ductile material, it is not only the formation of new surfaces that consumes energy, but also
the additional plastic yield the happens around the relocated crack tip. Therefore material
resistance to crack propagation is higher at temperatures where ductile behavior prevails
than at lower temperatures, when the material behavior becomes brittle. Fracture resistance
may increase with growing cracks.

In case of initiated crack propagation, an important question is whether the crack length will
only increase a little bit, or will increase ever more once it was set in motion, and eventually
lead to failure of the part. The latter situation is referred to as instable crack growth while
the first one is labeled stable crack growth. Whether or not crack growth is stable depends
on the evolution of fracture resistance and energy release rate. Their dependence on crack
length can expressed via the derivatives

dG
dA

and
dR

dA
, (2.95)

where A is the crack surface. In the case that crack propagation just onsets because G = R
and

dG
dA
≤ dR

dA
, (2.96)

crack growth is stable because after A increased the energy release rate will be smaller than
R. Contrary, if

dG
dA

>
dR

dA
, (2.97)

energy release rate will ever be higher than the fracture resistance of the material causing
the crack to further grow until the specimen or machine part fails completely. The evolution
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of the relationship between G and R depends on the geometrical configuration, material
properties and loading conditions. In rupture tests with the same material, it is easier to
produce stable crack growth in displacement controlled tests than in load controlled tests.

In some materials, e.g. in many structural steels [7], the plastic zone around the crack tip
is to big to adequately characterize the behavior by the stress intensity factors. The theory
of elastic-plastic fracture mechanics has been developed to understand even such materials.
Two additional parameters were introduced to characterize the situation around the crack
tip: the crack-opening displacement (CTOD) and the J-integral. The crack-opening dis-
placement δ was suggested by Wells in 1961 [152] as parameter, after he had observed that
many steels were to tough to be investigated with LEFM. He observed that the crack sur-
faces had moved apart before the crack started propagating. Due to high plastic deformation
in the vicinity of the crack tip, the former sharp crack gets blunted during the process, see
fig. 2.6 for reference. For small scale yielding of an edge cracked plate, the CTOD can be
related to the stress intensity factor,

δ =
4

π

K2
I

σYE
, (2.98)

and (consequently) to the energy release rate,

δ =
4

π

G
σY
, (2.99)

see [7]. Another parameter frequently used in elastic-plastic fracture mechanics is the J-
integral. It was introduced by Rice in 1966 [125]. He idealized elasto-plastic materials as
non-linear elastic materials. This makes sense because the general loading curve of both
materials look the same if the load is increased monotonically (no unloading). The integral

J =

∫
Γ

(
w dy − ti

∂ui
∂x

ds

)
(2.100)

along a counterclockwise path Γ around the crack tip, form one crack face to the other, is
path-independent. In (2.100) ti is a component of the traction vector and w is the strain
energy density:

w =

εij∫
0

σij dεij. (2.101)

J is related to the energy release rate:

J = −d Π

dA
. (2.102)

But care has to be taken with this interpretation, since it is not entirely the same as in
(2.89), because in non-linear materials part of the energy is not released from the body but
consumed in inelastic deformations. The J-integral was successfully applied to characterize
fracture in metals. Explicit relations between J , geometry and loading configuration are
usually not even available for simple cases, due to the non-linear nature of the concept. It
was to be either calculated numerically or measured in experiment. Both, J and CTOD can
be used as nearly size-independent parameters in situations involving cracks. It has been
shown that a relationship exists between both [7].
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Fig. 2.6: Crack tip gets blunted during deformation

Until now a clear distinction between materials that behave in a brittle manner and mate-
rials referred to as ductile. Different concepts have been presented for both cases, though
it has already been mentioned that the boundary between both classes cannot be drawn ex-
actly. There is one prominent example where this distinction proofs very difficult, and that
is concrete. At first glance concrete is observed as brittle material that shows no plastic
deformation of any significant order before rupture. But already in 1968 it was shown by
Evans that this was not the whole truth [45]. He performed unidirectional tension tests on
concrete and showed that under certain circumstances elasto-plastic stress-strain curves are
possible for concrete. However, it is not easy to obtain these in experiment. Evans reports
that it is important that the main crack initiates within the area covered by the strain gauge.
Furthermore, care has to be taken to avoid unstable crack growth at peak load. In a 1970
field study Popovics [122] gave a review over the available data about behavior of concrete
in tension tests. He concluded that a typical stress-strain relationship starts with a linear
section up to around 30% of the maximum load. He related the curved nature before the
stress-peak to progressive microcrack propagation within the specimen. After that, a grad-
ual deviation from linear behavior is observed, leading to a stress peak or critical load. This
differs clearly from the standard model of brittle materials established previously (see fig.
2.3, and working satisfactorily for many of them, e.g. glass. Following peak stress the curve
enters the descending part. A dependence of the curvature on aggregate size was identified
in [122]. The author provides examples for empirical formulas to approximate the σ-δ-curve
(δ being the CTDO) through curve fitting, and claimed that CTOD is a better parameter than
KI to characterize fracture of concrete. Remember that the CTOD had been introduced to
analyse elasto-plastic materials. In order to describe this kind of fracture behavior the term
quasi-brittle material has been coined. Popovics gave several examples for the standard
tension test behavior, but also formulas adapted to special situations like flexural bending,
concentric compression, etc.. The natural behavior of concrete under tension remained a
topic for discussion for a long time. In 1985 Gopalaratnam [57] still reports on contra-
dictory results obtained from tension tests found in the literature on the subject. He again
points out that concrete shows post-crack resistance (contrary to ideal brittle materials) in
tension tests, but this is often hidden by sudden failure due to inappropriate experimental
setup. He performed tensile tests on his own and ascribed post-peak behavior of concrete
to discontinuities on sub-microscopic level, e.g. bridging of cracked surfaces by aggre-
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gates. In 1986 van Mier [147] examined the behavior of concrete subjected to multiaxial
loading. He used hydraulic actors in a self-designed testing maching for that purpose. His
main objective was to answer the question whether the strain-softening branch is a material
property or rather a structure dependent characteristic. Although he could not find a clear
answer, he stated that his results indicated the latter one. This is an important question to
be answered before formulating numerical models. The same question was addressed by
Ansari in 1987 [8], who observed crack propagation and crack opening displacements in
tension tests by laser speckle interferometry. He detected an average crack opening width
of 24± 2 microns as critical crack width (i.e., the crack width related to peak stress). Al-
though he himself mentioned objections about the absolute number he emphasizes the fact
that there is a determined crack width. An important observation by Ansari was the fact
that strain localizes within a small band with an average width of 6 mm. Following Ansaris
argument this width should be regarded as a material property. The observed strains were
about two orders of magnitude higher within this band than outside. Foote [50] supported
Popovics claim in 1986 that the relationship between load stress and crack opening displace-
ment δ (the σ-δ curve) is the decisive property. He further posed the assumption that the σ-δ
curve of a single crack analysed by means of linear elastic fracture mechanics is the most
appropriate in case of concrete. Based on these arguments he derives a formula to calculate
the crack resistance curve within linear elastic fracture mechanics theory. He applied his
formula to the simple example of a double cantilever beam with good results. This idea
was developed further by Li in 1987 [91] who used the J-integral to investigate stress-strain
relationships analytically. Therefore he gave a formulation of the J-integral in terms of the
crack opening displacement:

J(δ) =

S∫
0

σ(δ) dδ. (2.103)

According to Li, standard KI tests are inadequate for quasi-brittle materials due to the pro-
cess zone being large in comparison with specimen size.

Parallel to experimental investigation of quasi-brittle materials in the 70ies and 80ies effort
was spent to develop appropriate theoretical methods since classical models for brittle mate-
rials had proven to be inexact. When brittle materials like glass fail, a crack originates from
a small zone where a network of microcracks appeared and propagates through the speci-
men. In contrast, quasi-brittle materials show an evolving network of microcracks usually
confined to a small region or band, see [8] again. Macroscopically, a small region, usually a
band, is observed where the elastic constants of the material are degraded. This follows e.g.
from high strains in a small band observed by Ansari. Only during final rupture of a spec-
imen a macrocrack occurs, possibly due to microscopical flaws forming together a bigger
crack that propagates through the material, usually along the zones of prior degradation. It
is not possible to model all microcracks individually when simulation of structural parts is
needed. Instead, a continuum damage model may be used that simulates the local softening
of the elastic behavior. Damage is treated as a smeared quantity similar to mass density.
The field treating such theories is called damage mechanics in order to distinguish it from
fracture mechanics, where single cracks are considered.

An early damage theory formulated especially for concrete but also for other quasi-brittle
materials is the crack band model by Bazant [16,19]. This model was developed analysis by
the finite element method in mind. Fracture is modeled as a smeared, band like region across
which microcracking occurs that affects material properties. This is modeled with a factor
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that lowers elastic parameters element wise, thereby simulating strain-softening behavior.
Each component from the stiffness tensor may be assigned an individual factor to model
damage induced anisotropy. The crack band is the region of damage elements aligned in
succession to each other. If propagation of the crack band is related to a strength criterion,
the results are not objective. This is because any load can be made critical by choosing
an element size small enough that the stress at the crack tip exceeds the limit [16]. Bazant
proposed two different concepts to circumvent this problem. The first idea is to calculate the
energy release rate for crack band extension calculated from strain-energy change and use
this as a criterion. Second, the stress intensity factor can be determined from the stress in the
element just ahead of the crack band front, and via relation to the element size determine an
equivalent strength. In later publications on the topic Bazant preferred the energy criterion
[17, 19].

In 1985 Rots presented a similar approach that he labeled smeared crack model [127]. His
starting point is the decomposition of the strain field increments during increasing load into
concrete strain increments and crack strain increments (resulting from displacement of the
crack faces):

∆ε = ∆εconc + ∆εcrack. (2.104)

This allows for a more detailed treatment of the constitutive behavior, and the model can be
enhanced with more complicated non-linear theories. Different crack modes may be com-
bined in the crack strain to incorporate more detailed knowledge from fracture mechanics
that is taken account for in the crack band model by Bazant [127]. In contrast to the crack
band model no network of microcracks is considered but a single crack, however its soft-
ening influence is assumed to reach a small, finite zone around the crack, thus making the
crack appear as ’smeared’.

Another possibility to model fracture of quasi-brittle materials is the crack layer theory
proposed by Chudnovsky in [27], developed roughly at the same time as the crack band
theory. The crack layer model also assumes a finite region around a single crack where
microcracks originate. A further assumption is that the width of the crack layer depends on
the J-integral as well as two other, path-independent integrals sometimes used in fracture
mechanics [14]. The theory has been further elaborated by its originator, with results e.g.
published in [28, 29].

These models are rather adapted to special situations and need to be configured for each
discretization individually, e.g. via the element size. The most general and probably the
most widely used approach is the introduction of a simple damage parameter as additional
field variable. This is discussed by Chaboche, [26], and the idea was first introduced in 1968
by Rabotnov to model creep softening of metals at high temperatures [123].

Simo (see [132] and [131]) wrote two review articles about standard damage parameter
models. Generally two approaches are possible: the effective stress concept or the effective
strain concept. The basic idea in continuum damage models is to account for the progressive
degradation experienced by mechanical properties of materials prior to initiation of macro-
cracks. For example, the local stress could be considered to be altered compared to stress in
an undamaged solid by local flaws (e.g. cavities), because they cause the material to show a
different elastic response to deformation. An effective stress is defined:

σeff = D−1 : σ. (2.105)
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In this equation σ is the stress in the undamaged material and σeff is the effective stress. D
is a tensorial damage quantity. In the special case of isotropic damage the operator reads

D = (1− d)I, (2.106)

where d is a scalar valued damage variable describing the actual state of damage. Substitut-
ing (2.106) into (2.105) yields for the effective stress:

σeff =
1

1− d
σ. (2.107)

Thus for isotropic damage the tensorial description in (2.105) can be neglected, but if
anisotropic effects of damage are important, the more general, tensor-based approach has
to be used. The expression in (2.107) allows for a physical interpretation of d as the ratio
of damage surface area over total surface area in an arbitrary cut through the body. This is
made clear for a cylindrical body subjected to axial load, as illustrated in fig. 2.7. Normal
traction on a cutting plane far from the ends of the cylinder can be assumed to be constant
over the cross-section. The cross-section area of the undamaged cylinder is A, and thus

σ =
F

A
. (2.108)

If flaws, e.g. pores or cracks, are present within the cylinder, they reduce the cross-sectional
area if the plane of observation cuts through one or more of them. The reduced area is
denoted with Ad, and Ad < A, of course. If stresses are still approximated as constant:

σd =
F

Ad
(2.109)

and it follows that σd > σ. The same external load F may cause the damaged cylinder
to fail while the undamaged is still able to sustain the induced stresses. This is a very
simple analogue to the stress concentration effect discussed on page 23 for sharp cracks.
Alternatively to the effective stress concept an effective strain could be defined also:

εeff = D : ε, (2.110)

and for isotropic damage:

εeff = (1− d)ε. (2.111)

The physical interpretation is analogue to the previous one: When subjected to a constant
stress field, the damaged material locally deforms more than the undamaged solid would
do, because local stresses are higher and induce higher deformation. Thus the choice is
whether to consider locally reduced load bearing capacity or to study locally reduced stiff-
ness. Hooke’s law for the effective stress concept reads

ε = S : σeff =
(
S : D−1

)
: σ (2.112)

and for the effective strain concept:

σ = C : εeff = (C : D) : ε. (2.113)

Both concepts can be seen as equivalent, since the effect of both are altered elastic constants.
However, if a model should be formulated based on physical assumption one or another
approach may prove more convenient than its counterpart.
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Fig. 2.7: illustration of effective stress concept

Since an isotropic (scalar valued) damage model has been formulated for this project the
notion of a tensorial quantity D is omitted from now on. The only parameter related to
damage is d. From (2.107) or (2.111) it is clear that an undamaged state of an elastic
material C is associated with d = 0. When a body is loaded, damage initiates when the
stresses locally exceed a critical value. This process comes along with the creation of pores,
cracks or generally with a change of configuration that affects the effective elastic behavior.
Energy is dissipated during this process, very much as in the case of a propagating crack. In
damage mechanics the dissipative energy can be seen as more general and not restricted to
the creation of new surfaces or plastic flow [88].

As in the case of a propagating sharp crack, stresses and strain fields vary when damage
evolves in a loaded structure. So does the specific elastic deformation energy, called ψ0:

ψ0 =
1

2
ε : C : ε. (2.114)

If ψ0 is referred to as a function dependent on d, the change in elastic energy may formally
be written:

Y = −dψ0(d)

dd
. (2.115)

The analogy to G from fracture mechanics is obvious, and Y accordingly is named damage
energy release rate [99]. The negative sign is a matter of definition and owed to the fact
that the change in elastic energy has to be negative (and thus Y > 0) when damage evolves.
If temperature effects and other irreversible processes are omitted from analysis the free
energy potential is

ψ = ψ0 + r
∣∣∣ḋ∣∣∣ , (2.116)
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see [99] or [88]. The quantity ḋ is the damage evolution rate, but the dot-symbol must not
be confused with a time derivative. The global thermodynamic potential [55] is written

Π(u, d) =

∫
D

ψ0 + r
∣∣∣ḋ∣∣∣ dV +

∫
D

u · (ρf) dV −
∫
∂D

u · t dA. (2.117)

This is the same as 2.16 only that the term
∫
D r
∣∣∣ḋ∣∣∣ dV has been added to account for

dissipative effects. The solution d̃ and ũ for a given boundary value problem minimize (3.1)
with respect to all admissible fields d with ∀ x ∈ D : d ≥ 0 and u, [55, 155].

The approach in (2.116) appears to be very natural. However, it has a serious drawback
in numerical applications. The results obtained show a strong dependency on the analysts
choice of discretization. The simulated damaged zone will always be as wide as the distance
between two sampling points, e.g. nodes in Finite Element Analyses or others. Apart from
the implications this has when the results should be interpreted at a microscale-level, this
also affects macroscopic behavior of a model. Peak stress, pre- and post-peak slope of the
stress strain relationship vary with changing mesh resolution. Bazant pointed out in [14]
that homogeneous continuum models with strain-softening behavior in a single location
show an instability at the peak of the σ − ε-curve, thus such a material cannot be realized
in simulation. The existence of strain softening in a negligible portion of a body is an
incorrect assumption. In Finite Element Analysis this instability will be disguised by the
chosen discretization, since single elements with a finite length will decrease their stiffness
and results can be obtained. But there are multiple solutions possible and apart from the
difficulty of deciding which solution is the appropriate one, the whole instability may remain
undetected by the analyst [14]. Localized strain softening behavior in general implies a loss
a ellipticity of the governing equations, thus causing the instability at the peak [117]. Thus
evolution equations should be non-local to avoid these problems. In [119] different concept
of non-local models are compared to each other.

Some of the damage models described on page 30 can be adapted to avoid mesh dependency,
but this increases computational complexity considerably. This was criticized by Pijaudier-
Cabot [121], and he suggested a model where the damage evolution does not depend on the
local elastic energy ψ0 but on the average of ψ0 over a representative volume element Vr
centered around the point subject to inspection:

〈ψ〉 =
1

Vr

∫
Vr

ψ dV. (2.118)

This is a combination of damage mechanics with nonlocal continuum models, that had been
developed earlier and are briefly presented in sec. 2.4. Pijaudier-Cabot mentioned the pos-
sibility to introduce a weight-function but does not yet apply this idea. This was done by
later authors, for example Jirasek in [73], who compared different approaches of non-local
continuum models. They all are based on the definition of a weight function α(x − y) that
determines the range of nonlocal effects. Different choices are possible, however Jirasek
advocated use of the expression

α(x− y) = exp

(
−||x− y||2

2l2

)
, (2.119)

where l is a parameter that has to be identified from experiments. In constitutive equations
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a weighted volume average of the elastic energy is used :

〈ψ0〉 =

∫
Vr

α(x− y)ψ0(y) dy. (2.120)

Other quantities, e.g. averaged strain gradients, might be used as well.

As a last example for non-local damage models a formulation proposed by Peerlings [117,
118] is given here. The weighted volume average of the von-Mises equivalent strain

〈εeq〉 (x) =

∫
Vr

α(x− y)εeq(y) dV (2.121)

is approximated by a differential equation:

〈εeq〉 − c∆ 〈εeq〉 = εeq. (2.122)

The so called natural boundary condition is applied:

∇〈εeq〉 · n = 0. (2.123)

The effective stress concept (2.105) is used and a rather complex evolution equation is given
for d:

d(κ) = 1− κ0

κ
((1− α) + α exp [−β(κ− κ0]) . (2.124)

The parameters α and β have to be determined to fit experiments and κ is called historical
variable in the publication, and defined by the Kuhn-Tucker relations:

κ̇ ≥ 0, 〈εeq〉 − κ ≤ 0, κ̇ (〈εeq〉 − κ) = 0. (2.125)

A mesh study is provided in [117] to demonstrate mesh objectivity, and a four point bending
test is modeled as an example of application.

The theory of fracture mechanics is well suited for the analysis of propagation of existing
cracks, but cannot predict the origination of initial defects in an otherwise homogeneous
continuum. Damage mechanics in turn model the initial degradation of material points, as
well as further propagation of the damaged zone. Mazars [99] reported in 1996 on theoret-
ical considerations about the transition from fracture mechanics to damage mechanics and
vice versa. This may be useful in cases where data from fracture tests, e.g. three-point bend-
ing tests, shall be used for large scale simulation, where it is desirable to employ a damage
mechanics model. The connection between both formulations is possible via the conditions
for propagation. As discussed above, in both theories propagation is related to an energetic
quantity: the energy release rate G in fracture mechanics, see (2.89), and the damage en-
ergy release rate Y , (2.115). If both theories are needed to produce equivalent results for a
certain configuration, the total energy release per time unit associated with crack or damage
propagation should be equal. It follows that∫

D

−Y ḋ = −GȦ. (2.126)

Mazars [99] gives further details on the efficient estimation of the corresponding properties.
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One characteristic phenomenon in tests where material resistance against fracture (or dam-
age) is investigated is the dependence of the results on the specimen size, called size effect.
Size effects are known from many physical disciplines, e.g. turbulent flow in [60, 133]. In
tests it is generally observed that bigger specimens show less resistance against fracture,
and this is especially true for quasi-brittle materials like concrete [15, 20]. There two main
origins of this effect. One is caused by the increased probability of bigger specimens to con-
tain cracks of critical length that start early to propagate and reach a state of instable growth.
This is called statistical size effect [18]. The other origin lies in the ratio of characteristic
dimensions. The rupture strength of brittle materials, where LEFM applies, depends on the
ratio of a crack to specimen size. Scaling laws that translate critical quantities belonging
to one specimen size into others are needed. In some cases, where a theory includes size
effects, formulas can be derived in closed form. This is true for example for LEFM, and the
corresponding scaling law is [7, 15]:

σ̄f =
σf√
size

. (2.127)

Generally, scaling laws are of empirical nature. For quasi-brittle materials an asymptotic
expansion is usually used as ansatz,

σf = C0

(
λ+ 1 + b1λ

−1 + b2λ
−2 + b3λ

−3 + ...
)−1/2

, (2.128)

where the bi are constants to be determined from experimental data. In practice the ansatz
is usually truncated after the second term when the description of the size effect of concrete
is envisaged.

2.7 Discrete Fourier Transform and Fast Fourier Transform

Fourier Analysis is a tool commonly used in the context of partial differential equations. The
numerical algorithm developed during this project is based on discrete Fourier transforms,
thus the principles that are fundamental to this branch of analysis are outlined here. A
Fourier series Sf (t, n) is a trigonometric polynomial:

Sf (t, n) =
∞∑

j=−∞

cje
jωit (2.129)

=
a0

2
+

∞∑
j=−1

(aj cos(jωt) + bj sin(jωt)) , (2.130)

where i =
√
−1 is the imaginary unit. For a piecewise smooth and continuous function f(t)

the Fourier series with the coefficients

cj =
1

T

T∫
0

f(t)e−jωit dt, j = −n, · · · , n (2.131)

aj =
2

T

T∫
0

f(t) cos(jωit) dt, j = 0, · · · , n (2.132)

bJ =
2

T

T∫
0

f(t) sin(jωit) dt, j = 1, · · · , n (2.133)
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Fig. 2.8: Example for trigonometric interpolation of the Heaviside Stepfuntion Distribution. Top:
Original function with sample points. Bottom: Trigonometric interpolation polynomial p(x). p(x)
is exact in the sample points and oscillates in between them.

converges uniformly towards the function f(t):

f(t) = lim
n→∞

n∑
j=−n

cje
jωit. (2.134)

This means that any function that satisfies the above mentioned requirements can be repre-
sented as a superposition of harmonic oscillations.

A finite sequence of data points x(k) with 0 ≤ k ≤ N − 1 is considered now. In one
dimension this could be Young’s modulus Y of a bar of length L that is dependent on the
position of the cross section, for example. Instead of a continuous function Y is given for N
equally spaced positions k along the axis of the bar. The discrete Fourier transform (DFT)
generates a new data sequence X(l), according to the transformation rule [111]:

X(l) =
N−1∑
k=0

x(k) exp

(
−i2πkl

N

)
. (2.135)
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Fig. 2.9: Trigonometric interpolation of a periodic step signal and its first and second derivative.
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Generally theX(l) are complex even if the original sequence is real valued. The frequencies
l have to be understood with respect to the sample length, with periodic length:

Λl =
l

L
. (2.136)

Symbolically, the transformation is written:

X(l) = DFT (x(k)) (2.137)

A unique inverse transform also exists [111]:

x(k) =
1

N

N−1∑
l=0

X(l) exp

(
i2π

kl

N

)
. (2.138)

Both the DFT and the inverse DFT are periodic:

X(l +N) = X(l) (2.139)
x(k +N) = x(k). (2.140)

An interpretation of the DFT is possible as coefficients for a trigonometric interpolation
polynomial that approximates the original function. If a trigonometric interpolation is a
polynomial of the kind

p(ξ) =

N/2∑
m=−N/2

cm exp

(
i2πm

ξ

N

)
(2.141)

is taken as ansatz, and there are N equally spaced sampling points of the original, there
exists a unique solution for the coefficients cm, which are the X(l) of the DFT. In fig. 2.8 an
example is given for interpolation of a polynomial.
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The interpolation is also used to obtain formulas to calculate derivatives with respect to ξ of
the original function. From 2.141 the first and second derivative for p(x) read:

p′(x) =

N/2∑
m=−N/2

i2π
m

N
cm exp

(
i2πm

ξ

N

)
(2.142)

p′′(x) =

N/2∑
m=−N/2

4π2m

N

2

cm exp

(
i2πm

ξ

N

)
. (2.143)

Since p′(x) and p′′(x) are trigonometric interpolations of the derivatives, it is clear that the
DFT of the derivatives are:

DFT (x′(k)) =
2πl

N
iX(l) (2.144)

DFT (x′′(k)) = −4π2l2

N2
X(l). (2.145)

The Nyquist frequency is defined as half of the highest sampling frequency [23]:

fNy
N

2
. (2.146)

It is known from signal processing that the Nyquist frequency should be equal or higher
than the highest frequency present in the original signal or data set, in order to guarantee a
complete reconstruction of the original data from the frequency spectrum (via inverse DFT).
This poses a problem when the DFT of step functions is needed. Infinite frequencies are con-
tained in the step function, and the trigonometric interpolation, as well as any other, over-
and undershoots the original function at the points of discontinuity [23]. This behavior can-
not be controlled by choice of larger samples with high frequencies. A consequence from
this is that if the derivatives are calculated using (2.145) the results get rougher with increas-
ing number of differentiations, and again this behavior cannot be controlled with higher
sampling rates. The Derivative should be zero everywhere except for the discontinuities
where it is not defined. Fig. 2.9 illustrates this problem. The step function is important for
this work, since heterogeneous microstructures usually consist of different phases separated
by surfaces across which a jump in elastic parameters occurs. In those cases jumps always
occur in some stress and strain components.

Direct computation of the DFT is computationally expensive: For a sequence of N sample
points there are

N2 −N complex additions, and (2.147)
N2 complex multiplications (2.148)

to be performed. Thus the amount of resources consumed in the transformation grows
quadratically with increasingN [111]. But with the Fast Fourier transform (FFT) algorithms
developed in the middle of the last century, the time consumed can be reduced considerably.
If the original sequence x(k) is decomposed into a sequence containing all evenly indexed
and one containing all oddly indexed entries,

x′(k) = x(2k) (2.149)
x′′(k) = x(2k + 1), (2.150)
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then the DFT can be rewritten as

X(l) =

N/2−1∑
k=0

x(2k)w2kl
N +

N/2−1∑
k=0

x(2k + 1)w
(2k+1)l
N (2.151)

=

N/2−1∑
k=0

x′(k)w2kl
N + wlN

N/2−1∑
k=0

x′′(k)w2kl
N . (2.152)

In (2.152) the DFT of a sequence of N sample points has been reduced to two DFT’s of
N/2-point sequences either. The cost has been reduced to

N2 −N
2

complex additions, and (2.153)

N2

2
complex multiplications, (2.154)

thus by a factor of 2. The two DFT’s in (2.152) can each be further reduced and a nested
scheme is achieved that is considerably more economic than the original DFT. Generally, the
computational cost grows withN log2N for increasingN when FFT algorithms are applied.
Examples for different algorithms have been proposed in [30, 54, 140], for example.
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When a multiscale ansatz for non-linear material models (e.g. quasi-brittle damage mechan-
ics) is to be treated numerically, a multiscale finite element method is usually applied. This
means that in addition to the global boundary value problem, secondary boundary value
problems have to be solved for each integration point (Gauss point). Although the FE2

method (see sec. 2.5) is probably the one preferred by most authors of scientific publica-
tions, there is no restriction in general on the choice of the numerical method used for the
sub-models, as long as it is appropriate to approximate the solution of the problem at hand.
In this work a nonlocal quasi-brittle damage model based on the effective stress concept
(see p. 31) is applied on the microstructure. Only two-phase composites are considered,
although the quantity of different phases is not limited by the methods employed. A very
prominent example for two-phase composites where at least one phase exhibits quasi-brittle
behavior are steel-reinforced concrete parts, and results for some corresponding examples
will be shown later on. A linear elastic model (small deformations, generalized Hooke’s
law, see sec. 2.1) is chosen as basis. The basic mathematical problem is formulated on p.
33 and repeated here (for a comfortable reading experience):

Π(u, d) =

∫
D

ψ0 + r
∣∣∣ḋ∣∣∣ dV +

∫
D

u · (ρb) dV −
∫
∂D

u · t dA. (3.1)

A further field variable ϕ will be introduced, and additional terms including the gradient
(with respect to space coordinates x) of ϕ and the difference between f(d) and ϕ are added
to the free energy formulation, which gives the model a non-local character. Details on
that are given in sec. 3.2. Instead of the Finite Element Method an FFT-based iterative
procedure is employed. The formulation of this algorithm is based on a method developed
in the nineties by Moulinec and Suquet [105, 106]. Some notes on their proposal are given
in sec. 3.1. In sec. 3.2 the model developed for this work is presented, and in sec. 3.3.2 and
3.3.1 the sources of numerical uncertainties and the overall accuracy are discussed.

3.1 FFT based algorithm by Moulinec and Suquet

Instead of starting from (2.16) Moulinec and Suquet considered the Lippmann-Schwinger
type integral equation (2.86) for boundary value problems with non-homogeneous distribu-
tion of elastic properties. When (2.86) is transformed into Fourier space, the convolution
integral is transformed into an inner product, which is much easier to evaluate:

ˆε(l) = −Γ̂0 : τ(l) ∀l 6= 0, ε̂(0) = E. (3.2)

The hat in this equation refers to the Fourier transform of a given quantity:

v̂ = F(v). (3.3)
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Since the boundary conditions imply periodic stress and strain fields, and the periodicity of
the microstructure is given by definition of the representative volume element (RVE), the
discrete Fourier transform is applicable. When a cubic RVE of sidelength L is discretized
by an array of N × N × N sample points xr (with r = 1, ..., N3), the integral equation
becomes:

ε(xr) = −Γ0(xr) ∗ τ(xr) + E, (3.4)

then the discrete Fourier transform reads:

ε̂(ld) = −Γ̂0(ld) : τ̂(ld) ∀ld 6= 0, ε̂(0) = E. (3.5)

The Greens operator in discrete Fourier space reads:

Γ0
ijkh(ξ) =

1

4µ0|ξ|2
(δkiξhξj + δhiξkξj + δkjξhξi + δhkξjξi)

− λ0 + µ0

µ0(λ0 + 2µ0)

ξiξjξkξh
|ξ|4

. (3.6)

Moulinec and Suquet suggested to use the fixpoint iteration method with the starting point
ε0 = E to find solution ε(x) and σ(x). By exploiting the relationship

Γ0 ∗ (C0 : ε) = ε (3.7)

the scheme for the algorithm is:

Initialization: ε0(xd) = E, ∀xd ∈ V,

σ0(xd) = C(xd) : ε0(xd),∀xd ∈ V,

Iterate i+ 1 : εi and σi known at every xd

(a) σ̂i = FFT (σi)

(b) convergence test

(c) ε̂i+1 (ξd) = ε̂i (ξd)− Γ̂0 (ξd) : σ̂i (ξd) ∀ξd 6= 0, ε̂(0) = E,

(d) εi+1 = FFT −1 (̂εi+1) ,

(e) σi+1 (xd) = C (xd) : εi+1 (xd) , ∀xd ∈ V.



(3.8)

Convergence is reached when σi+1 is in equilibrium [106], thus the convergence is checked
with the error:

ei =
(‖divσi‖)1/2

‖〈σi〉‖
(3.9)

which in discrete Fourier space reads:

êi =
1

||σ̂i(0)||

√√√√ 1

N3

N3∑
j=1

(
2π

L
||lj · σ̂i(lj)||

)2

. (3.10)

The original motivation for the development of this method came from the idea to calcu-
late the efficient non-linear properties from data obtained from digital images of the mi-
crostructure that can be read in pixel-wise easily. In case of complex microstructures, like
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matrix-precipitation type alloys, the difficulties due to the meshing of the geometry for Fi-
nite Element Analysis is avoided. In addition, no assembly of a global stiffness matrix is
necessary and thus the problem is partly reduced. FFT algorithms can be used and the
computation time varies with N · log2N . On SMP computer systems there is a high poten-
tial for parallelization, which lies in the FFT itself and in the fact that the operations in
steps c and d in (3.8) can be done in parallel for each component. The algorithm conver-
gence is fast (usually below ten iterations), but it has to be said that the convergence rate
depends on the ratio between the elastic properties of different phases. A high contrast in
the properties decreases the convergence rate.

Moulinec and Suquet also gave an algorithm for strain-hardening plasticity and thereby
demonstrated the suitability of their method for non-linear materials. They further devel-
oped their ideas and published results in [107] for example. Eyre and Milton discuss the
adaption of discretization in [46] and Lebensohn gave examples for application of the de-
scribed concept in [83] and [84].
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3.2 Nonlocal Damage Model

In order to formulate a damage model, a thermodynamic potential similar to the one in
(2.116) has to be proposed. To avoid the pathological mesh dependency discussed on page
33 additional gradient terms are added. Contrary to the idea of Peerlings and others [117–
119], the gradient of the strain field ε(x) or of the elastic energy ψ0 are not used, because
calculation of these quantities is computationally expensive and is a source of numerical
errors. Instead, an additional scalar field variable ϕ is introduced and linked to the damage
variable field.

We use a scalar damage model similar to that proposed in [34–36], with small adaption to
our purpose. The basic idea is that local damage, like spontaneous crack initiation, lowers
the macroscopic properties of the material, i.e. the elastic stiffness. Thus a scalar factor
f(d) is addmultiplied by the elastic energy,

ψ̃ = f(d)ψ0 =
1

2
f(d) ε : C : ε (3.11)

that simulates the drop in elastic properties. Here the parameter d refers to the scalar damage
of the material, and f determines the effect of d on the physical property C. Different
choices are possible for f , but all of them have to maintain the following properties:

f(0) = 1 and lim
d→∞

f(d) = 0 . (3.12)

From that pure elastic behavior for d = 0 is inferred, since a factor f(0) = 1 will not
influence the elastic energy. The classical ansatz for f(d) is given in (2.107), but this choice
poses numerical problems, since big round off errors have to be expected for d → 1, and
there is a risk of numerical instabilities when the nominator 1 − d assumes values near the
machine precision of 10−16. From the several alternative possibilities for f(d) presented
in [35], the function

f(d) = e−d (3.13)

was chosen for the present implementation. Compliance with conditions (3.12) is easily
verified, and because of

f ′(d) = −e−d = −f(d) (3.14)

there is no need to operate directly on the scalar field d, as will be seen, thus it is sufficient
to consider the data of f(d) when implementing the model. Additionally, this formulation
avoids the numerical difficulties mentioned for the classical ansatz.

The enhanced free energy is then given as:

ψ = f(d)ψ0 +
α

2
(f(d)− ϕ(x))2 +

β

2
|∇ϕ(x)|2 , (3.15)

and the dissipation potential is

∆D = r
∣∣∣ḋ+

∣∣∣ , (3.16)

where the index d is used to distinguish the symbol for the dissipation potential from the
symbol of the Laplacian operator. The variable d of course also depends on x but for the
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sake of clarity the argument is omitted in (3.15). The parameter r can be interpreted as an
energy rate dissipated in damage evolution. Damage evolution starts when the reduction
of elastic energy in the first term in (3.15) is at least equal to the energy dissipated in the
process. The second and third terms put an additional restriction on damage evolution,
since they increase the dissipative energy needed when the stiffness deteriorates only in a
locally confined area. Parameter α determines the difference that is allowed between f(d)
and ϕ(x). Both fields tend to be the same for α → ∞ in order to minimize (3.15). In the
same way parameter β influences the gradient of ϕ(x), or better, the absolute value of the
gradient, because a high β suppresses high gradients of ϕ(x). This means that β controls the
effective range that a locally existing damage has, and α determines how strong these effects
are. Both quantities are material parameters and have to be determined from experiments.
The quantity ϕ describes the non-local area of influence of existing damage.

The principle of the minimum of the dissipation potential is applied [63], which reads in
symbolic notation:

ψ̇ + ∆d ← min
d,ḋ+

. (3.17)

and the potential 3.15 has to be minimized with respect to the arguments u(x) and ϕ(x). A
standard variational argument yields the conditions:∫

D

∂ψ

∂ε
: δε dV −

∫
D

δu · (ρb) dV −
∫
∂D

δu · t dA = 0, ∀δε (3.18)∫
D

{
f ′ψ0 + α(f − ϕ)f ′ + r sign(ḋ+)

}
δd dV = 0, ∀δd, ḋ+ 6= 0 (3.19)∫

D

−α(f − φ)δφ+ β∇φ∇δφ dV = 0, ∀δϕ (3.20)

see for example in [137]. The symbol ’sign’ stands for the signum function:

sign(x) =

 −1 forx < 0

1 forx > 0
. (3.21)

The solution of the integral equation (3.19) is the elastic state of the material body under
the given boundary conditions. A solution algorithm for the elastic part is already available
with the one discussed in sec. 3.1, and further discussion focuses on evaluation of (3.19)
and (3.20). The factor ∇δϕ in (3.20) can be eliminated. The integral is reformulated by the
use of Gauss’s theorem:∫

D

{−α(f − ϕ)} δϕ+ β∇ϕ∇δϕ dV

=

∫
D

−α(f − ϕ)δϕdV −
∫
D

β∇2ϕδϕ dV +

∫
∂D

β∇ϕ · nδϕ dA. (3.22)

Vanishing flux across boundaries for the non-local variable has been called a natural bound-
ary condition, e.g. discussed in [32, 92, 117–119]:

∇ϕ · n = 0 ∀x ∈ ∂D. (3.23)
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Thus, the last term in (3.22) vanishes and (3.20) can finally be written as:∫
D

{−α(f − ϕ)} δϕ+ β∇ϕ∇δϕ dV

=

∫
D

{−α(f − ϕ)− β∆ϕ} δϕ dV = 0 ∀δϕ. (3.24)

The integral in (3.24) can only vanish if the integrand is identical to zero for every x in D.
Thus a scalar partial differential equation of the Helmholtz kind with an inhomogeneous
term is encountered:

ϕ− β

α
∆ϕ = f. (3.25)

This equation relates ϕ to f , and it is obvious that the ratio β
α

determines the form of the
solution ϕ.

(3.19) yields, following the same argument as above, that the integrand is identical to zero:

∂ψ

∂d
= f ′ψ0 + α(f − ϕ)f ′ + r sign(ḋ+) for ḋ+ 6= 0. (3.26)

The energy has a discontinuity at ḋ+ = 0 because of the function
∣∣∣ḋ+

∣∣∣, thus the derivative

in its classical sense does not exist. However, since
∣∣∣ḋ+

∣∣∣ is a convex function a subdiffer-
ential exists at this point, which is the set of slopes of possible tangents on the graph of the
function. The tangent with zero slope is also included:

0 ∈ f ′ψ0 + α(f − ϕ)f ′ + r sign(ḋ+), ḋ+ = 0. (3.27)

The case ḋ+ = 0 naturally is of particular interest for the proposed model, since it indicates
the onset of damage evolution. With (3.27) it can be included into further analysis. This is
a standard argument in thermodynamically motivated nonlinear material modeling, see for
example [75] for another example. From the mathematical perspective the concept of the
subdifferential or subderivative is a generalization of the classical derivative. Details can be
found in textbooks on convex analysis, e.g. [69]. (3.26) is rewritten as

r sign(ḋ+) = −f ′ψ0 − α(f − ϕ)f ′, (3.28)

and because of the property

r ≥ r sign(ḋ+) (3.29)

and using the property (3.14):

r ≥ αf 2 + (ψ0 − ϕα)f. (3.30)

(3.30) can be interpreted as equivalent to the yield function in classical plasticity. It is
a scalar function that is valid for every x in D. For a given damage distribution d and
elastic strain energy ψ0 (3.30) must always hold. If ψ0 increases (because of increasing
macroscopic strain) such that (3.30) is no longer satisfied, then the damage parameter d has
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to increase such that f(d) = e−d decreases, and (3.30) is satisfied again. The equation to
determine a new value fn+1 in the case that fn no longer satisfies (3.30) is

r = αf 2 + (ψ0 − ϕα) f, (3.31)

which is a quadratic function that reads in normalized form:

f 2 +
1

α
(ψ0 − ϕα) f − r

α
= 0. (3.32)

Two solutions are available:

f1/2 =
1

2α
(ϕα− ψ0)± 1

2α

√
(ϕα− ψ0)2 + 4r2. (3.33)

The function f cannot be smaller than zero, and because of√
(ϕα− ψ0)2 + 4r2 > (ϕα− ψ0) (3.34)

only one solution is admissible:

fn+1 =
1

2α
(ϕα− ψ0) +

1

2α

√
(ϕα− ψ0)2 + 4r2. (3.35)

With (3.25) and (3.35) two equations are available to determine ϕ and f . What makes this
approach suitable to be formulated as an algorithm similar to the one presented in [106] is
the fact that the differential operator in (3.25) becomes a local operator in Fourier space,

ϕ̂(ξ) =
1

1 + β
α
|ξ|2

f̂(ξ), (3.36)

or, applying discrete fourier transform,

ϕ̂(ξi) =
1

1 + β
α

4π2

L2 |ξi|2
f̂(ξi), (3.37)

where L is the phase-length of the periodic microstructure, and ξi is the coordinate vector
in discrete frequency space. Hooke’s law is obtained from (3.15) via differentiation with
respect to ε:

∂ψ

∂ε
= f(d) C : ε. (3.38)

Given equations (3.37), (3.35) and (3.38), the necessary modifications of the original algo-
rithm presented in sec. 3.1 are now clear. Hooke’s law has to be rewritten according to
(3.38) and equations (3.37) and (3.35) have to be inserted in the correct positions. Equation
(3.39) gives the modified algorithm. Each step that comes from the original algorithm is
marked with a single letter, whereas the steps that have been added are marked with indexed
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letters (e.g. (a1)):

Initialization : ε0(xd) = En, ∀xd ∈ V, loadstepn

σ0(xd) = fn,0 (xd)C(xd) : ε0(xd), ∀xd ∈ V,

Iterate i+ 1 : εi and σi known at every xd

(a) σ̂i = FFT (σi)

(a1) f̂ (ξd) = FFT (f i)

(b) convergence test

(c) ε̂i+1 (ξd) = ε̂i (ξd)− Γ̂0 (ξd) : σ̂i (ξd) ∀ξd 6= 0, ε̂(0) = E,

(c1) ϕ̂i+1 (ξd) = 1

1+ β
α

4π2

L2 |ξ|
2
d

f̂ (ξd)

(d) εi+1 = FFT −1 (̂εi+1) ,

(d1) ϕi+1 (xd) = FFT −1 (ϕ̂i+1)

f i+1 (xd) = FFT −1
(
f̂ i+1

)
(d2) f i+1 = min

{
fn,

1
2α

(
αϕi+1 − ψi+1

0

)
+ 1

2α

√(
αϕi+1 − ψi+1

0

)2
+ 4r2

}
(e) σi+1 (xd) = f i+1 (xd) C (xd) : εi+1 (xd) , ∀xd ∈ V



(3.39)

To check convergence in step (b) the same criterion that was used in the original publication
is applied, see (3.10). Since damage mechanics models are nonlinear by nature, it is usually
not possible to apply the overall load at once and expect good results. The loadpath has
to be discretized into N steps, and the index to label a certain loadstep is n throughout
this work. Thus the index i in (3.39) refers to the iterative procedure to find the fix-point
of (3.5) under the constraints imposed by (3.37) and (3.30). The structure of the nested
iterative procedure for an RVE is presented in fig. 3.1. A remark has to be made about
step (d2). Instead of checking compliance with (3.30) for every point in every loadstep,
the value for f is calculated each time, and if the new one f i+1 is smaller than the result
fn from the previous loadstep it is used for the next iteration. It is important to compare
f i+1 to fn from the previous loadstep in each iteration, since this way it is assured that the
old value for f can be restored by the algorithm in case that it was underestimated in the
first iteration. A consequence of (3.14) is that only f appears in (3.39) and no mentioning
of the damage parameter d is needed. Thus from the computational point of view it is
economically favorable to only store values of the field variable f rather than storing d and
calculating f(d) = e−d every time it is needed.
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Start

ε=0
E=0
f=1
φ=1

n<1000

yes

n=n+1
nE = n-1E +ΔE

FFT-Algorithm
(counting variable i)

n iε =ε
n If =f 
n iφ =φ

1000 1000ε  , σ
1000 1000f ,φ   

End

Fig. 3.1: Structure of the nested iterative procedure
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3.3 Numerical Uncertainties

For the computational algorithm presented in (3.39) the question of numerical accuracy
naturally arises. For the Finite Element Method, especially in the linear case, there is much
literature available that discusses reliability, convergence and error estimates. For a broad
discussion see for example [11]. The algorithm (3.39) is based, as outlined in the previous
section, on the idea of Suquet and Moulinec, reviewed in (3.8), which they published in
1998 [106]. Since this idea is relatively new compared to other numerical methods, and
also because it is a rather specialized method restricted to problems with periodic boundary
conditions, there is not much information available studying the accuracy of the method.
The confidence in the reliability of the algorithm (3.8) has been established by experience,
as the high number of publications based on it testify. Despite this fact a study about the
numerical errors that might occur has been conducted to get a feeling for possible sources
of uncertainties. Three main sources can be identified. The first are round off errors that are
inherent to any calculation on a machine because of finite processor word length and thus
a finite number of digits available to represent each number. The second error is typical to
numerical approximations of physical problems and is often called discretization error. In
the case studied here discretization means the representation of continuous real world fields
like stress, strain and also elastic properties and the damage state of the material by a finite
number of equidistant points distributed over space. A choice is made about the resolution
of the sampling mesh, and the real world phenomenon can only be approximated to a certain
degree with the given choice. A third source of error is the convergence criterion (3.9). For
the exact solution the criterion has to be ei = 0, but in any simulation non-zero albeit small
limit has to be taken as indicator to stop the iteration. The quality of the numerical solution
depends on how small the criterion is chosen and on how good the numerical calculation
of ei is. In the next three sections some arguments about these three sources are given and
it will be tried to give a rough estimate about the uncertainty. It is pointed out here that
the uncertainty has not been studied in a mathematically rigorous manner except for some
simple parts, but in a rather more pragmatic way by analyzing the results of computations.

3.3.1 Round-Off Errors

Round off errors are inherent to any machine-based arithmetic. This is due to the fact that
in every machine only a limited number of digits is available to represent a floating point
number. The machine representation is flawed with a round off error compared to the exact
number, and the error is at least equal to the number represented by the digits that are left
out. The last digit in a machine number may also be erroneous because of the rounding up
in the process. The algorithm (3.39) is implemented in FORTRAN code, and 8 byte floating
point numbers are always used. 8 byte means 15 digits are available, and the relative error
of a single number compared to the exact one is the machine precision:

eps = 5 · 10−16. (3.40)

It is important to realize that the machine precision is not the actual error of any number, but
the uncertainty, which means that the actual error that is made is somewhere between zero
and eps. It is well known that the uncertainty increases in arithmetic calculation because the
relative errors may add or multiply each other while propagating through the process. The
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uncertainty in addition of two machine numbers x∗ and y∗ is:

x∗ + y∗ = (x+ y)(1 + 2eps), (3.41)

and for multiplication the situation gets even worse:

x∗y∗ = (xy)(1 + 3eps), (3.42)

see [135]. The relative uncertainty of the result, which again is a machine number, is higher
than the uncertainty of each of the original numbers, and the error may be higher multi-
plication than after adding. It is immediately understandable that the uncertainty is further
increased in consecutive operations on the numbers, and may eventually spoil the results to
the point where they are useless. A prominent example for this situation is the Gauss algo-
rithm for linear systems of equations, that may lead to results totally off the exact solution
when the matrix of coefficients is not well conditioned [10].

In case of division of machine numbers the relative uncertainty is not that clear in advance,
because division is not a direct operation at the binary level, as addition and multiplication
are. Several algorithms are available, e.g. Newton-Raphson or Goldschmitd method [113].
It depends on the chosen compiler software which one is applied.

By inspection of (3.8) the relevant sources of round off errors in the purely elastic algorithm
can be identified:

• A fast Fourier transform of the stress components is performed in each iteration (step
(a)),

• an inverse Fourier transform of the strain components is performed in each iteration
(step (d)),

• Hooke’s law and the convolution with the Gamma operator are performed (step (e)
and (c), respectively) in each iteration. These represent relatively simple addition and
multiplication cases, and

• the operator Γ(ξi) has to be calculated once before the iteration starts

The relative error of Γ0 is denoted by ∆Γ:

Γ0∗ = Γ0(1 + ∆Γ), (3.43)

and the relative error after consecutive fast Fourier transform and inverse fast Fourier trans-
form with ∆FFT:

FFT −1 (FFT (σ)) = σ(1 + ∆FFT). (3.44)

It is assumed that the relative error after one transform (without inverse transform thereafter)
is roughly half of the error after both operations:

FFT (σ) = σ̂

(
1 +

∆FFT

2

)
. (3.45)

This assumption is certainly a simplification but the deviation from the truth should not be
too big. In order to analyze the propagation of round off errors through the course of one
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iteration it is assumed that σi and εi are given and not flawed with errors. The first step in
(3.8) consist of a fast Fourier transform, thus:

FFT
(
σi
)

= σ̂i
(

1 +
∆FFT

2

)
. (3.46)

The interpretation of (3.46) is that the result of the machine computation is off by a factor
of
(
1 + ∆FFT

2

)
. Next comes the operation:

ε̂i+1 = ε̂i − Γ0(ξi) : σ̂i(ξi), (3.47)

consisting of six multiplications and six additions for each component:

ε̂i+1
ij = ε̂iij − Γ0

ij11σ̂11 − Γ0
ij22σ̂22 − Γ0

ij33σ̂33 − Γ0
ij12σ̂12 − Γ0

ij23σ̂23 − Γ0
ij13σ̂13. (3.48)

The uncertainty after one multiplication of this type is then with (3.45) and (3.43):[
Γ0
ij11 (1 + ∆Γ) · σ̂11

(
1 +

∆FFT

2

)]
(1 + eps)

= Γ0
ij11 · σ̂11

(
1 +

∆FFT

2

)
(1 + ∆Γ) (1 + eps)

= Γ0
ij11 · σ̂11

(
1 + ∆Γ +

∆FFT

2
+ eps

)
. (3.49)

The term (1 + eps) after the brackets in the left hand side of (3.49) comes from the fact
that not the exact result of the product of two non exact numbers is stored but a round off
representation [10, 135]. Square terms of the kind ∆2 or ∆ · eps are negligible and dropped
in the last step. For the sake of clarity the symbol

∆1 =

(
1 + ∆Γ +

∆FFT

2
+ eps

)
(3.50)

is introduced. (3.49) is rewritten as

ε̂i+1
ij = ε̂iij + T11∆1 + T22∆1 + T33∆1 + T12∆1 + T23∆1 + T13∆1, (3.51)

where the Tkl stands for the respective summand Γ0
ijklσ̂kl in (3.49). The first two Tij−terms

are added and rounded:

[T11∆1 + T22∆1] (1 + eps) = T11∆1(1 + eps) + T22∆1(1 + eps). (3.52)

When the third term is added, the overall result is flawed again:

[T11∆1(1 + eps) + T22∆1(1 + eps) + T33∆1] (1 + eps)

= (T11 + T22)∆1(1 + eps)2 + T33∆1(1 + eps), (3.53)

and finally the result

ε̂iij(1 + eps) + (T11 + T22)∆1(1 + eps)6 + T33∆1(1 + eps)5

+T12∆1(1 + eps)4 + T23∆1(1 + eps)3 + T13∆1(1 + eps)2

< (T11 + T22 + T33 + T12 + T23 + T13)∆1(1 + eps)6 (3.54)

is obtained. Thus the relative uncertainty at this point is (square terms dropped out again):

∆2 < ∆1(1 + eps)6 = (1 + ∆Γ +
∆FFT

2
+ 7 eps). (3.55)
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The inverse Fourier transform yields:

FFT −1
(

̂εij(1 + ∆2)
)

= εij(1 + ∆2)(1 +
∆FFT

2
)

= εij(1 + ∆Γ + ∆FFT + 7 eps). (3.56)

The last step in (3.8) is the evaluation of Hooke’s law, again a double inner product. The
argument goes along the same line as in (3.48) to (3.54), thus:

C : εi+1(1 + ∆Γ + ∆FFT + 7 eps)(1 + eps)5

= C : εi+1(1 + ∆Γ + ∆FFT + 12 eps), (3.57)

and the overall relative uncertainty in the stress field after one iteration in (3.8) is:

∆iter = ∆Γ + ∆FFT + 12 eps. (3.58)

After a second iteration the uncertainty factor is

(1 + ∆iter)
2 = (1 + 2∆iter) (3.59)

and the calculation of the error after n iterations is straight forward:

(1 + ∆iter)
n = (1 + n∆iter),

n∆iter = n∆Γ + n∆FFT + 12n eps. (3.60)

The value of eps is given in (3.40), and the values of ∆Γ and ∆FFT are yet to be determined.

The formula for the discrete Fourier transform has been given in (2.135) for a data set of
N3 sample points. For each sample x̂(ξi) in the Fourier space N3 multiplications and N3

additions have to be carried out, and having (3.41) and (3.42) in mind it is clear that it is
very likely to produce high relative errors for increasing N . In the case of the Fast Fourier
transform the number of operations to calculate x̂(ξi) is reduced considerably. It depends on
N and on the applied algorithm how many operations are necessary for each sample point.
For the current project a library subroutine published by the Numerical Algorithms Group
(NAG) has been used to carry out the FFT . Although information is given about the
underlying algorithm, it is very sparse and without any details. Therefore it is not achievable
to directly calculate the relative uncertainty of the results. A more pragmatic approach has
been used here: a data set ζ(xi) is produced, transformed into Fourier space and then back
into physical space. An exact arithmetic should return the original data. The digital machine
returns erroneous data, and the error can be calculated:

FFT −1 (FFT (ζ)) = ζ∗, (3.61)

∆FFT =
|ζ∗ − ζ|

ζ
. (3.62)

Since a closed form analysis of the expected uncertainty is not at hand, a simulation based
estimate was chosen. Three different kinds of data sets are produced: All in a cubic volume
of edge length one with a cartesian coordinate system located at the center of the cube. xi
and yi denote position vectors within the reference system. The first one with a constant
distribution ζi = 1.0 · 100, the second one with a spherical inhomogeneity centered at the
reference system’s origin whose distribution function reads:

ζi(xi) =

 107051.0 for
{

xi ∈ V |
√
y2
i1 + y2

i2 + y2
i3 ≤ 0.2

}
9722.0 for

{
xi ∈ V |

√
y2
i1 + y2

i2 + y2
i3 > 0.2

}
.

(3.63)
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30 60 120

sph. 82 · 10−15 122 · 10−15 95 · 10−15

cyl. 122 · 10−15 136 · 10−15 81 · 10−15

Tab. 3.1: ∆FFT for spherical and cylindrical inhomogeneity and different number af sample points
in one direction.

The third one with a cylindrical inhomogeneity aligned along the x3-direction and a distri-
bution function:

ζi(xi) =

 107051.0 for
{

xi ∈ V |
√
y2
i1 + y2

i2 ≤ 0.2
}

9722.0 for
{

xi ∈ V |
√
y2
i1 + y2

i2 > 0.2
}
.

(3.64)

The values 107051.0 and 9722.0 are typical values for the Lamé coefficient λ for steel and
for concrete, respectively, and later on are used in simulations. The spherical and cylindrical
inhomogeneity are also typical examples used in later simulations, and therefore have been
chosen here. Each of the three distribution functions is evaluated at N3 sample points, and
sets are produced for N = ρ · 10 with ρ ∈ [1, 25]. The operation (3.61) is called trans-
formation cycle from now on. Each of the produced data sets is subjected to n subsequent
transformation cycles, and the error is checked after n = 1, n = 2, n = 5 and n = 10
cycles. The diagrams in figs. 3.2 to 3.4 show the average relative error

eav =
1

N

N3∑
i=1

|ζ∗i − ζi|
ζi

(3.65)

and the maximum relative error in each data set

emax = max
{
|ζ∗i − ζi|/ζi | i ∈

[
1, N3

]}
. (3.66)

Comparing fig. 3.2 with fig. 3.3 and fig. 3.4 it is seen that the relative error for the constant
function is approximately lower by a factor of 100, which is not surprising because of the
simplicity of the problem. The constant function has been evaluated in order to serve as a
first reference. The relative errors for the cylindrical inhomogeneity (fig. 3.4) are slightly
lower than for the spherical one (fig. 3.3), but both are of the same order of magnitude.
Although the relative error oscillates with increasing N , the overall trend from all three
cases is clearly an increasing error for increasing N . The irregularities in the global trend
may be due to rearrangement of the algorithm for certainN , but more probably this is simply
the natural oscillation in error propagation. It has to be remembered that in (3.41), (3.42) and
(3.60) the uncertainty is estimated, and not the actual error which may be considerably lower.
The general pattern of data distribution is similar irrespective of the number of subsequent
transformations, only the scale on the abscissa changes. In fig. 3.5 the relative error is
plotted against the number of transformations for two given N . Linear regression shows a
correlation of more than 99% in both cases, and this behaviour is observed for all choices
of N . This shows that the error propagation is almost linear, and the assumption in (3.62) is
justified. In tab. 3.1 some exemplary values for the error after on transformation cycle are
given in numeric form. They serve as basis to calculate the error that occurs after more than
one iteration.
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Fig. 3.2: Relative error |ζ∗ − ζ|/ζ versus number of sample points for a constant function ζ =
1.0 · 100. One transformation cycle corresponds to one FFT and one FFT −1 transform. a)
1 transformation cycle b) 2 transformation cycles c) 5 transformation cycles d) 10 transformation
cycles. The diamond points correspond to the average relative error and the points to the maximum
relative error in the data set.
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Fig. 3.3: Relative error |ζ∗−ζ|/ζ versus number of sample points for a spherical inhomogeneity. One
transformation cycle corresponds to one FFT and one FFT −1 transform. a) 1 transformation
cycle b) 2 transformation cycles c) 5 transformation cycles d) 10 transformation cycles. The diamond
points correspond to the average relative error and the points to the maximum relative error in the
data set.
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Fig. 3.4: Relative error |ζ∗ − ζ|/ζ versus number of sample points for a cyclindrical inhomogeneity.
One transformation cycle corresponds to one FFT and one FFT −1 transform. a) 1 transfor-
mation cycle b) 2 transformation cycles c) 5 transformation cycles d) 10 transformation cycles. The
diamond points correspond to the average relative error and the points to the maximum relative error
in the data set.



58 3 Physical Model and Numerical Algorithm

R² = 0.9984

0

200

400

600

800

1,000

1,200

0 2 4 6 8 10

re
l.

er
ro

r[
10
−

1
5
]

a) transformation cycles

R² = 0.9997

0

200

400

600

800

1,000

1,200

0 2 4 6 8 10

re
l.

er
ro

r[
10
−

1
5
]

b) transformation cycles

Fig. 3.5: Maximum relative error versus number of transformation cycles, for a cylindrical inclusion
(see fig. 3.4, also). Solid line represents linear regression curve, R2 is the correlation factor. a)N =
60, b)N = 150
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The operator Γ0(ξ) has to be calculated according to formula (3.6). The terms of the kind
δijξkξh in the brackets are not problematic, because they are products of integer numbers and
the results should be exact. But the terms 1

4µ0|ξ|2 and λ0+µ0

µ0(2µ0+λ0)

ξiξjξkξl
|ξ|4 are prone to yield con-

siderable errors because they consist of complex operations on real numbers. As mentioned
earlier, no information is available about the applied internal algorithm for the division of
real numbers, thus again a numerical simulation is chosen to determine the uncertainty. For
this purpose Γ0 is once calculated with 8 byte accuracy (the result labeled with Γ8) and once
with 16 byte accuracy (Γ16), which means 32 digits available. Both results are compared
and the relative difference between both is calculated:

emax =
Γ8 − Γ16

Γ16

. (3.67)

The results may depend on the number of sample points in one direction N , because more
terms to calculate give higher chance of errors, but the error may as well be lower for all
high frequency terms.

Several simulations have been executed with different settings for λ0 and µ0. The results are
plotted in figs. 3.6 and 3.7. It becomes clear immediately that below N = 200 the relative
error remains nearly constant. It stays in the same order of magnitude (10−16) which is
very close to 8 byte accuracy. But for a resolution higher than N = 200 the error increases
rapidly, for as much as four orders of magnitude in one case. This means that the high
frequency terms in Γ0 are considerably flawed. In trial runs of algorithm (3.8) it is observed
that the iteration becomes instable for a resolution close to N = 200, expressing itself
through the fact that convergence is lost and the fixed point starts to act repulsive. It is very
likely that the origin for this instability lies in the inaccurate calculation of Γ0. High values
for µ0 are beneficial, as can be seen from figs. 3.7c) and 3.7d), which have been given as
linear rather than logarithmic plots. The error for high N is considerably smaller than in
the other cases, yet still the sudden increase at N = 200 is observed. The uncertainty for
λ0 = 100000 and µ0 = 75000 at different sample rates is given in tab. 3.2. Comparison of
table 3.2 with table 3.1 reveals that the uncertainty in Γ0 is far smaller than the uncertainty
of the fast Fourier transform in the range of sample numbers N < 128 that is relevant to our
simulations.

30 60 120

∆Γ 0.11 · 10−15 0.11 · 10−15 0.11 · 10−15

Tab. 3.2: ∆Γ for different number of sample points in one direction.

With the results from table 3.1, table 3.2, (3.58) and (3.40) the uncertainty for one iteration
of an example with spherical inclusion, and a sample rate N = 60 can be estimated as

∆60 = 1.23 · 10−13. (3.68)

After ten and hundred iterations, respectively:

10 ·∆60 = 1.23 · 10−12, (3.69)
100 ·∆60 = 1.23 · 10−11. (3.70)

Even after 100 iterations the relative error should be below 10−10. In almost all cases of
purely elastic behavior it was observed that less than ten iterations are necessary. However,
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this depends on the choice of the convergence criterion (3.10). Typical choices for this pa-
rameter are 10−4 or 10−3, thus far away still from the precision that is allowed by numerical
uncertainty. It has to be pointed out that in the above analysis actual errors for certain ex-
amples have been calculated, and the uncertainty has simply been chosen to be the same.
This is not true in an exact sense, since the actual error may well underestimate the overall
uncertainty, and usually this is the case. Additionally, only a limited number of examples
could be analyzed. However, the uncertainty usually should be of the same order of magni-
tude as the actual errors that occur, especially when several tests are considered. The data
available so far suggests that the discrete Fourier transform is the dominant source of round
off errors (order of magnitude is 10−13 compared to 10−15 for the other sources), and that
a high sample point frequency N leads to numerical instabilities. These conclusions match
well with the observation made with numerous examples where the proposed algorithm was
used. For applications where a high number of sample points is used, e.g. when data from
micrography is obtained, tabulated values for Γ0 might be used to increase the stability of
the algorithm.
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Fig. 3.6: Relative difference between results for Γ0 calculated with 8 byte and with 16 byte arithmetic,
respectively. Settings for reference parameters: a)λ0 = 100000, µ0 = 75000, b)λ0 = 64000, µ0 =
48000, c)λ0 = 51200, µ0 = 38400, d)λ0 = 40960, µ0 = 30720
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Fig. 3.7: Relative difference between results for Γ0 calculated with 8 byte and with 16 byte arithmetic,
respectively. Settings for reference parameters: a)λ0 = 100000, µ0 = 25000, b)λ0 = 100000, µ0 =
50000, c)λ0 = 100000, µ0 = 100000, d)λ0 = 100000, µ0 = 125000
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3.3.2 Error Resulting From Discretisation and Truncation

a) b)

Fig. 3.8: Results for shear stress σ12 for inhomogeneities with different radii. The normal vector to
view plane is (0, 0,−1)T

A general issue in numerical treatment of partial differential equations is the error that orig-
inates in the discretization of the problem: the geometry, and in time-dependent problems
also the time, are represented by a system of discrete objects, either the elements in Finite
Element of Boundary Element Methods, or sample points in Finite Difference of FFT based
methods. The discrete system can only be an approximation of the problem at hand, and the
solution of the numerical problem at best approximates the original solution. The problem
is two-fold: first, an error may come from the non-exact representation of the geometry,
second, the discrete system may not be able to adequately interpolate the solution. In fig.
3.8 two examples with similar geometry are shown. A sphere is embedded in a matrix with
softer material. The representative volume element is subjected to periodic strain boundary
conditions with an average strain of:

〈ε〉 = 1ei ⊗ ej. (3.71)

The microstructure is sampled with N = 128 points in each direction, and the elastic re-
sponse is calculated with the original Suquet algorithm (3.8). This is an approximation of
the Eshelby problem discussed in sec. 2.3.1. More details on these simulations follow in sec.
4.1. In fig. 3.8 the shear stress σ12 is shown for two examples with different sphere radii.
The view-plane is perpendicular to the normal vector n = (0, 0, 1)T , i.e. perpendicular to
the x3-axis. The equidistant sample points are not able to completely incorporate the curved
geometry of the sphere, and the numerical algorithm cannot distinguish the curved geometry
from a polygon geometry. In the exact solution stress singularities may occur at these edges,
which cannot be interpolated by the numerical solution either. Nevertheless stress peaks oc-
cur at the edges. These can be observed in fig. 3.8 as the red zone close to the border
between sphere and matrix. The smaller the radius of the sphere, the higher the influence of
this error on the overall solution. The error can be mitigated with an increased sampling rate
compared to the sphere radius, which is what happens also if the sphere radius is increased.
A higher sample rate can better approximate the solution, but comes along with an increased
number of edges in the geometric representation. A break-even may occur where the error
resulting from the increased number of edges outweighs the accuracy gained with a better
approximation of the geometry. For regular geometries with curved phase boundaries more
degrees of freedom are necessary in the FFT based method than in Finite Element Methods.
This was also reported by Moulinec and Suquet [106]. The strength of this algorithm lies
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in the ability to model complex, irregular microstructures with less degrees of freedom than
the FEM.

The second problem, i.e. the insufficiency of the discrete system to interpolate the solution,
is especially inherent to the use of FFT based algorithms to simulate micro structural behav-
ior. As pointed out in sec. 2.7, the frequency of the sample rate has to be twice as high as the
highest frequency present in the original data, but discontinuous jumps do not have such a
cut off frequency. Jumps in the spatial distribution of material constants are a natural feature
of two or multiple phase composites. Thus this kind of error is not avoidable, in contrast
to other methods, e.g. the FEM. In fig. 3.9 the problem is visualized again for the sphere
in matrix geometry, for different sample rates. The original sampled data is displayed next
to the two dimensional graph of the trigonometric interpolation polynomial, with the DFT
used to calculate the coefficients of the polynomial. It is observed that the interpolation os-
cillates around the constant function that should describe the parameters. This comes from
the fact that the interpolation lacks frequencies high enough to reconstruct the exact original
data. This effect is well known also from other fields where the DFT is applied [111]. In the
algorithm (3.8) this effect matters when the derivatives of the stress field are calculated:

divσ = div (C(x) : ε(x)) . (3.72)

Since there is no cut off frequency, this error can only be mitigated but not be avoided. In
fig. 3.9 the results for different resolutions are shown to demonstrate that the oscillations
become ever smaller the higher the sample rate is, and forN = 18 a satisfying accuracy was
observed in numerous simulations.

Another source of uncertainty is the truncation error, which is related to the last described
problem. In the original problem the iteration is stopped when the quantity (3.9) is smaller
than a prescribed value. The limit has to be chosen according to the required accuracy. Of
course, the calculation of e is subject to round off errors as well as all other quantities, and in
addition may be flawed by the lack of sample frequencies, since it is based on the derivatives
of σ(x). The consequence is that the fixed point may belong to a non zero stress divergence
in the discretized problem, and if the limit e is chosen too small the iteration may never stop
at all. A work around can be that not the balance of linear momentum itself is checked but
the difference between ei and ei+1 belonging to two subsequent iterations:

ecrit = |ei+1 − ei|. (3.73)

Care has to be taken also with this choice, since a small ecrit may indicate proximity to the
fixed point or simply slow convergence of the algorithm. The last phenomenon occurs in the
enhanced damage model in cases when the damaged zone has propagated to a certain size.
The sole use of ecrit may lead the algorithm to stop although the iteration is still far away
from a good approximation of the solution. The decision therefore was to use a combination
of both criteria, the one suggested by Suquet (3.9) and (3.73).
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a)

b)

c)

Fig. 3.9: Examples on trigonometric interpolation of a 2D circle using different sample point rate.
On the right side the original data is shown, and on the left side the interpolation polynomial is
visualized.
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3.4 Advantages of the Algorithm

In the previous two sections possible flaws connected to the FFT based algorithm were
analyzed. This is important to get a good idea about the reliability of results obtained with
it, and to be able to adjust the limits of the numerical method. The uncertainty due to
machine number arithmetic have been estimated and demonstrated to be within limits that
do not interfere with the desired accuracy. The cut off criterion has been advanced in order
to optimize the method. The problem of increased number of degrees of freedom compared
to FEM for regular microstructures is qualified less important in damage simulation, since
the propagation damage in fact produces an irregular microstructure, and one would need to
adjust the number of elements in FEM in order to meet the requirements.
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Y [MPa]ν λ[MPa] µ[MPa]

steel 200000 0.29 107051 77519

concrete 35000 0.20 9722 14583

Tab. 4.1: Mechanical properties of steel and concrete: Young’s Modulus Y , Poisson Ratio ν, Lamé-
parameters λ and µ

4.1 Comparison of Results to Eshelby Solution

The results obtained with the numerical algorithm are compared to the closed form solution
by Eshelby, see sec. 2.3.1. This has to be done in order to prove the correctness of the
implementation on a computer. In addition, information can be gained about the general
quality of the results, and its dependence on resolution and other parameters. The Eshelby
problem is very adept for this purpose because of the simplicity of the results, at least of
parts of it. It has been said in sec. 2.3.1 that the stresses inside a spherical inhomogeneity of
stiffness CI embedded in an infinite medium of stiffness C0 subjected to a far field strain ε0

are constant, and can be calculated according to (2.56), which is repeated here:

σ0 + σ = CD :
[
S : MD :

(
CI −C0

)
+ I
]−1

: ε0.

The FFT-based algorithm is only applicable in cases where a periodic structure of a two
phase composite is assumed, which means an infinite number of equidistantly spaced spher-
ical inhomogeneities instead of one inhomogeneity embedded in an infinite solid. Results
should differ in general because the inhomogeneities interact with stress disturbances of
neighboring particles. However, it is fair to assume that interaction is low for a low vol-
ume fraction of the embedded phase, and thus the numerical results obtained for small
sphere radii can be expected to be close to the Eshelby solution (2.56). The statement of
the classical problem starts with the assumption of a constant far field stress, contrary to
the situation when the numerical algorithm is executed, where an average strain is prede-
fined, but this does not make a difference in fact, since far field strain and far field stress
are linked uniquely via Hooke’s law (2.9) to each other. Calculations have been carried out
with a spherical inhomogeneity positioned at the center of the RVE, as shown in fig. 4.1.
The stiffness parameters λ and µ have been chosen according to the data in tab. 4.1, with
steel being assigned to the spherical region and concrete assigned to the rest. If the origin of
the coordinate system is located at the center of the RVE, and the edge length of the RVE is
chosen to be 1, than a sphere with radius r centered in the RVE is mathematically described
by the set:

ΩSphere =
{
x ∈ V |x2

1 + x2
2 ≤ r2

}
. (4.1)
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Fig. 4.1: A sphere located at the center of the RVE

For the tests a set of similar geometries was used that differed only in the radius of the
sphere. Nine different volume concentrations from c = 0.002 to c = 0.15 have been chosen,
as indicated in the first column of tab. 4.2. The radius of the sphere is linked to the volume
fraction by

r =
3

√
3

4

c

π
. (4.2)

The corresponding radii are listed in the second column of tab. 4.2. For each radius a sam-
pled, three dimensional RVE has been generated, with a sample point rate in one direction
of N = 128. The data is generated by scanning the N3 = 2097152 points xν and assigning
each a value by evaluating the functions

λ(xν) =

 107051 if xν ∈ ΩSphere

9722 if xν /∈ ΩSphere

(4.3)

and

λ(xν) =

 77519 if xν ∈ ΩSphere

14583 if xν /∈ ΩSphere

. (4.4)

The first of two test series is run with pure shear deformation:

〈ε〉0S =

(
0, 0, 0,

1

2
, 0, 0

)T
. (4.5)

If 〈ε〉0S is taken as ε0 in (2.56), then the stresswithin the inhomogeneity reads (predicted by
Eshelby)

σ0 + σ = (0, 0, 0, 49.1 MPa, 0, 0)T (4.6)

in Voigt notation. The second series is subjected to a tensile load

〈ε〉0T = (1, 0, 0, 0, 0, 0) (4.7)
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ε0S [−] ε0T [−]

c [−] r [−] 〈σ12〉Ω [MPa] σ12V [MPa] 〈σ11〉Ω [MPa] σ11V [MPa]

0.15 0.329 51.2 7.3 96.0 18.1

0.10 0.288 49.8 5.4 91.6 12.8

0.05 0.229 49.0 4.0 87.9 11.1

0.01 0.134 49.6 2.8 85.4 9.7

0.008 0.124 49.8 2.6 85.3 9.6

0.006 0.113 50.0 2.7 85.3 9.5

0.004 0.098 50.4 2.7 85.2 9.4

0.002 0.078 50.9 2.8 85.2 9.1

cl. f. 49.1 67.4

Tab. 4.2: Volume average of stress in spherical inhomogeneity for different geometries: results from
numerics and closed form solution [44]

yielding by substitution into (2.56)

σ0 + σ = (67.4 MPa, 18.3 MPa, 18.3 MPa, 0, 0, 0)T . (4.8)

For each geometry the numerical solution is carried out for 〈ε〉0S and for 〈ε〉0T respectively.
Because of the periodic nature of the DFT and the equations upon which the algorithm is
based the stresses and strains will not be constant within the inhomogeneity. Second, the
discretization error already described in sec. 3.3.2 leads to stress peaks at the boundary
between inhomogeneity and surrounding material. This can be seen in the figures 4.2 and
4.3, where the red color at the boundary indicates high stresses, because the sample point
grid cannot capture the smooth surface of the sphere. Fig. 4.2a) to f) show the shear stress
distribution σ12 for six out of nine different geometries subjected to 〈ε〉0S , and fig. 4.3a) to
f) shows the distribution of σ11 for six tests where 〈ε〉0T was applied. In order to compare
the numerical results to (4.6) and to (4.8), the stresses are averaged over the volume of the
sphere ΩSphere. The integrals are averaged as

〈σ12〉ΩSphere
=

∫
ΩSphere

σij dx ≈ 1/NS

NS∑
ν=1

σij(xν), (4.9)

with xν ∈ ΩSphere and NS being the number of sample points within the sphere. In tab. 4.2
the results for all eighteen tests are given, together with the corresponding volume concen-
tration, radius and the closed form results for comparison. In addition, the statistical variance
is given to get a feeling about the oscillation around the average within the inhomogeneity.
The variance is calculated as:

σijV =
1

NS

NS∑
ν=1

(
〈σ12〉ΩSphere

− σ12(xν)
)2

. (4.10)

When 〈ε〉0S is applied, the results converge towards the exact solution if the radius becomes
smaller. In fig. 4.2 it can be observed that the region where the stress field is disturbed by
the presence of the inhomogeneity is considerably smaller than the RVE. This means that
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the solution in one RVE is not influenced significantly by its neighboring RVE since only a
nearly constant field reaches the boundary between both. Inspection of the three examples
with the smallest radii (r = 0.078, 0.098, 0.113) suggests that the numerical results turns
away from the exact solution, and the variance also starts to increase again. But this effect
is very likely to originate in the discretization error that increases with decreasing radius as
discussed in sec. 3.3.2. In fig. 4.2e) and f) it can be seen that the stress field within is of a
more disturbed nature than for bigger examples.

The data for 〈ε〉0T converges, too, but unfortunately towards a wrong value, something
around 〈σ11〉 = 85 MPa. In fig. 4.3 it is observed that the stress field within ΩSphere is
nearly constant, but not at the same level as Eshelby suggests. This is no reason to reject the
results provided by the numerical algorithm presented here. It is rather more probable that
the model does not approximate accurately the classical Eshelby problem. From fig. 4.3 it
can be deduced that the stress disturbances reach well beyond the borders of the RVE, even
for small radii, and the assumption of non-interaction has to be rated invalid in this context.

The reproduction of the Eshelby solution in case of applied shear deformation suggests that
the algorithm works correctly in this case. The unsatisfying result that is obtained for tensile
load is no reason to mistrust the algorithm, following the arguments just provided. In order
to further check the validity, results have been compared to other closed form solutions,
explained detailedly in the next section.
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Fig. 4.2: Distribution of σ12 shear stresses in a plane perpendicular to the x3 axis.
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Fig. 4.3: Distribution of σ11 tensile stresses in a plane perpendicular to the x3 axis.
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Fig. 4.4: Comparison of Suquet algorithm with Mori-Tanaka Method (dashed) and Reuss- and Voigt-
bounds (solid) for an ellipsoidal inclusion (left: C11, right: C13)

4.2 Comparison of Results to Mori-Tanaka Theory

In the previous section it was demonstrated that the algorithm, under certain circumstances,
can reconstruct numerically the closed form interior solution (that means: the elastic field
within the inhomogeneity) of the Eshelby problem. Since this is no rigorous proof of the
correctness of the algorithm, more data supporting its validity is welcome. As mentioned
in the introduction to this chapter, extensive testing is necessary to be sure about the correct
implementation. The method described in sec. 4.2 compares the stresses within an inho-
mogeneity to the closed form solution. No information about the exterior fields is obtained.
Various semi-closed-form solutions are available in the literature [74, 108], but they usually
involve integral representations that have to be calculated numerically. Numerical uncer-
tainty is high for them and thus it is difficult to verify the data obtained with the FFT-based
algorithm with the solution obtained this way. Therefore a different approach has been
chosen. For two sets of geometries the volume average of the stresses and strain fields are
calculated. Since the data is given in sampled form, withN sample points in each coordinate
direction, this is done the following way:

〈σij〉 =

∫
V

σij dV ≈ 1

N

ν=N3∑
ν=1

σij(xν), and (4.11)

〈σij〉 =

∫
V

σij dV ≈ 1

N

ν=N3∑
ν=1

σij(xν). (4.12)

If all the components 〈σij〉 and 〈εij〉 are calculated, the averaged tensorial expressions 〈σ〉
and 〈ε〉 are constructed, and according to the definition (2.70) of the averaged Hooke’s Law,

〈σ〉 = Ceff : 〈ε〉 ,

some components of C can be determined. In general there are 21 independent components
of C, and thus 21 equations are needed. It is clear that results for several loading conditions
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Fig. 4.5: Results for different components of the effective stiffness matrix obtained with Suquet (dot
markers) compared to Voigt- and Reuss bounds, and to results obtained with Mori-Tanaka Method
(dashed line). For the Mori-Tanaka Method two ellipsoids with ratios 1000:1:1 and 1:1:1000 for the
half axes were assumed.

are needed to provide them. The question arises, whether or not the choice of loading con-
ditions has an effect on the resulting effective stiffness. Hayes investigated in 1969 a statical
method to uniquely determine the Cij from statical experiment setups [65]. 21 experiments
are necessary following his approach, and the components of Ceff are determined one by
one. With respect to the situation in this project this means, that the elastic algorithm has to
be executed 21 times and the results have to be evaluated each time. This method has been
tested for several examples.

A rather more simple approach is the application of the six linearly independent strain states,
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a) b)

Fig. 4.6: Representative volume element with a) embedded ellipsoidal inhomogeneity and b) lattice
structure

given here in Voigt notation:

〈ε〉1 = (1, 0, 0, 0, 0, 0)T (4.13)
〈ε〉2 = (0, 1, 0, 0, 0, 0)T (4.14)
〈ε〉3 = (0, 0, 1, 0, 0, 0)T (4.15)

〈ε〉4 = (0, 0, 0,
1

2
, 0, 0)T (4.16)

〈ε〉5 = (0, 0, 0, 0,
1

2
, 0)T (4.17)

〈ε〉6 = (0, 0, 0, 0, 0,
1

2
)T. (4.18)

For each strain state the resulting stress fields are calculated with the numerical algorithm,
and is volume averaged with formula (4.12). By interpretation of Hooke’s law (2.70) the
components of Ceff are read out as the averaged stress components:

〈σ〉1 = C · 〈ε〉1 = (C11, C12, C13, C14, C15, C16)T (4.19)
〈σ〉2 = C · 〈ε〉2 = (C11, C12, C13, C14, C15, C16)T (4.20)
〈σ〉3 = C · 〈ε〉3 = (C11, C12, C13, C14, C15, C16)T (4.21)
〈σ〉4 = C · 〈ε〉4 = (C11, C12, C13, C14, C15, C16)T (4.22)
〈σ〉5 = C · 〈ε〉5 = (C11, C12, C13, C14, C15, C16)T (4.23)
〈σ〉6 = C · 〈ε〉6 = (C11, C12, C13, C14, C15, C16)T . (4.24)

Both methods, the one just described and the one given by Hayes, have been run on several
examples, and it was found out that both deliver results that are identical within the range of
numerical uncertainty. Thus the simple method is advocated by the author due to its consid-
erably reduced computation time. Two different sets of material data have been generated.
One was an RVE with an embedded ellipsoidal inhomogeneity, as depicted in fig. 4.6a),
and a ratio of half-axes of 1:1:3. Mathematically an ellipsoid of half axes a, a and 3a is
described by the set:

ΩEll =

{
x ∈ V|

(x1

a

)2

+
(x2

a

)2

+
(x3

3a

)2
}

(4.25)
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The corresponding data was generated by evaluating sample point wise the functions

λ(xν) =

{
107051MPa if xν ∈ ΩEll

9722MPa if xν /∈ ΩEll

(4.26)

and

λ(xν) =

{
77519MPa if xν ∈ ΩEll

14583MPa if xν /∈ ΩEll

. (4.27)

The volume fraction c is chosen as an independent experiment parameter, and the parameter
a is determined via the relationship

a = 3

√
c

4π
. (4.28)

Data was generated for different volume concentrations, and for each volume concentrations
the procedure described above to determine the effective properties is executed.

A second set of data has been produced with a more complex, lattice-like structure. An
example is given in fig. 4.6. The mathematical description reads:

ΩLatt =
{
x ∈ R3 |x2 + y2 ≤ r ∨ y2 + z2 ≤ r

}
(4.29)

and the point wise evaluated function is

λ(xν) =

{
107051 if xν ∈ ΩLatt

9722 if xν /∈ ΩLatt

(4.30)

and

λ(xν) =

{
77519 if xν ∈ ΩLatt

14583 if xν /∈ ΩLatt

. (4.31)

The relationship between the radius of the fibers and the volume fraction is not available
in closed form because the intersection makes its calculation complex. As a work around
a sequence of radii has been chosen, the geometry has been built up according to (4.29)
(4.30) and (4.31) and the volume fraction has been calculated afterwards by counting the M
sample points with assigned value λ = 107051 and calculating c by

c =
1

N3

M∑
ν=1

1. (4.32)

The same procedure as for the ellipsoid examples is employed on the lattice RVE’s.

In fig. 4.4 results are plotted for the exemplary components C11 and C33. To estimate the
validity of the results, the Voigt upper bound (2.72) and the Reuss lower bound (2.73) are
also plotted, and the effective stiffness calculated with formula (2.77) from the Mori-Tanaka
theory. It is observed that the Mori-Tanaka theory and results of the numerical algorithm
are in very good agreement for low volume concentrations. With increasing concentration
the difference between both approaches grows. This is probably due to the approximative
character of the closed-form solution, which is based on the assumption, among others, that
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different inhomogeneities do not interact. This assumption does only hold for low volume
concentrations. For concentrations higher than 5% a comparison is no longer useful, since
the main rotating axis of the ellipsoid grows too large to be in included in the volume ele-
ment, and the numerical algorithm does no longer calculate results for ellipsoid particulates.
For all concentrations the results are lying between Voigt and Reuss limit.

The results obtained with the lattice geometry are plotted in fig. 4.5a) to d). The Mori-
Tanaka theory was not formulated for this case. However, if a sequence of ellipsoidal in-
homogeneities, with the rotating axis converging to infinity, is considered, and the effective
stiffness tensor is estimated according to Mori-Tanaka, it is fair to expect that the situation
of a cylindrical inhomogeneity of infinite length is approximated. The Mori-Tanaka theory
allows estimates for multi-phase composites, see [22], and if two ellipsoids with their main
axes showing in directions perpendicular to each other are considered, with the length of
their main axis converging to infinity, than the situation described with (4.29) may be ap-
proximated. This was done to generate the plots in fig. 4.5a) to d). The observations made
here are basically the same as for the examples with the ellipsoidal inhomogeneities. The
estimated stiffness properties all satisfy the Voigt and Reuss bounds, and lie fairly close to
the Mori-Tanaka estimate.

These observations further indicate that the numerical algorithm works correctly, at least for
the elastic part. Two main sources of uncertainty remain, however. Results for the stress
fields that are locally wrong may still lead to the correct average value, if errors at different
points even each other out. But, admittedly, the probability for that is very low. A second
source of uncertainty is that it is not obvious that the shown results for the effective stiffness
are correct: they just lie very close to another approximative estimate. But the Mori-Tanaka
Method has been widely accepted as a good estimate, and thus the results obtained in this
study can be classified as reliable.
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4.3 Mesh Independence and Size-Effect

It has been mentioned already that mesh independence or mesh objectivity are important
aspects in the application of numerical algorithms to any system of partial differential equa-
tions. It is obvious that the results of an algorithm should generally not depend on the
analysts choice of discretization. However, the term mesh dependence must not be confused
with the term discretization error. In any numerical solution a trade off has to be made be-
tween the size of the problem, usually determined by the number of sample points or finite
elements used to represent the geometrical structure of a model, and the expected error in
the solution obtained compared to the exact solution. In many cases where the governing
equations are linear, estimates for the error are available in form of upper bounds. A suitable
numerical algorithm has the property that the results theoretically converge and the limit is
the exact solution when the number of discrete elements increases. Practically the achiev-
able error is usually bounded from below because the propagation of round off errors also
increases with the number of discrete elements. These phenomena are not considered when
the term "‘mesh independence"’ is used within this work.

A widely known problem in numerical analysis of materials with local strain softening be-
havior is the fact that the width of damaged zones is usually confined to the spacing between
two sample points or the dimension of a finite element. When damage initiates in a certain
location, the stiffness at the corresponding point or finite element drops until it is (almost)
zero, and only then surrounding elements start to show softening behavior. No limiting
case for the dimension of the damaged zone can be reached. See fig. 4.9 this behavior is
demonstrated for different examples. Apart from the fact that this behavior seems to be
unnatural, it poses several problems. If bands of locally deteriorated material already have
evolved in a model, the further propagation often depends on the stress distribution around
them. In section 2.6 where the topic of fracture mechanics has been reviewed briefly it was
demonstrated that infinite stresses appear at a perfect sharp crack. Around a damage-band
in a numerical problem the results for stresses are not infinite, but a stress intensification
close to its ends has to be expected. The damage propagates when the elastic energy be-
longing to these stresses exceeds the critical limit. By choosing an ever finer discretization,
the width of the damaged zone becomes ever smaller and thus higher stresses will appear
in the numerical solution. This means that, in this given situation, any exterior load can be
made critical with respect to damage propagation by choosing a discretization that is fine
enough. In addition, the averaged stress-strain relationship can not be determined since the
peak stress will decrease with the width of the discrete mesh, see fig. 4.9 again. This renders
any interpretation of the results meaningless.

Surprisingly, the lack of convergence does not indicate the inadequacy of the numerical
algorithm. The results of Bazant [16, 19, 21] show that a continuum with damage localized
in an infinitely small volume shows an instability at the verge of damage evolution. No
solution exists in a mathematical sense, and this fact is only hidden by the inability of any
discrete mesh to model infinitely small volumes. The finite dimensions stabilize the problem
and results may be obtained, however these are not a solution to the given problem.

Experimental observation in tension tests on concrete has given additional hints that the
assumption of localized damage is incorrect. Although concrete is usually thought of as
brittle, it is quasibrittle in fact. The difference between both terms has been reviewed in
sec. 2.6. In appropriate experimental setups the stress strain curve has a large descending
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Fig. 4.7: Results with regularization practically turned off (β = 0.0). Damage results for a) N = 20,
b) N = 60, c) N = 100. d) shows curves for three different cases: N = 20 (long-dashed), N = 60
(dashed) and N = 100 (dotted). Viewdirection is v = (0, 0, 1)T .

part [45, 57, 122]. It was observed, e.g. by Ansari [8], that strain localizes in narrow bands
where the macroscopic stiffness is reduced, due to a network of microcracks that evolves
during loading. The width of these narrow bands is characteristic for a specific material and
connected to a microscopic length, typically to the grain size [19].

Following these theoretical and experimental observations several non-local damage mod-
els have been developed since the end of the seventies of the twentieth century. A brief
overview about the history and the physical arguments for such models is given in sec. 2.4.
In sec. 3.2 it was discussed how the inclusion of the gradient term of ϕ and the difference
term (f(d)− ϕ)2 yields a non-local evolution of the damage parameter d. One of the two
equations governing the nonlinear part of the model is the equation of the Helmholtz kind
(3.25):

ϕ− β

α
∆ϕ = f(d).
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If a function f(d) is given that is constant everywhere except one small region where the gra-
dient and curvature are high, the solution ϕ to (3.25) will be a function with lower gradients
and curvature everywhere. Its similarity with f(d) is dependent on the parameter

k =
α

β
.

Assume that k is high and the solution is approximately the same as the inhomogeneous
part:

ϕ ≈ f(d).

Then ∆ϕ has high values in regions where f(d) has high curvature, and (3.25) cannot be
satisfied at these points. This thought experiment shows that high values for k cause ϕ and
f(d) to be far off each other. A more detailed study on the values of k follows in the next
section. If k assumes values approximately zero, even high Laplacians in ϕ are allowed and
ϕ and f(d) are still close to each other.

It was mentioned in sec. 3.2 that the dimensions of α and β are

[α] =
Energy

Volume
(4.33)

and

[β] =
Energy

Volume
Length2 (4.34)

respectively. The dimension of k = β
α

accordingly is:

[k] = Length2. (4.35)

The quantity
√
k with dimension Lenght is the internal length of the material. If microstruc-

tural patterns occur, especially damage bands, their minimum width is
√
k. All patterns with

smaller dimensions are smoothed out to match this length.

In fig. 4.8 the behavior of ϕ is demonstrated for the one dimensional case. The following
inhomogeneous linear differential equation is assumed:

y(x)− ky′′(x) = θ(x− a); x ∈ [0, 1], (4.36)

where θ(x) is the Heaviside function with the properties:

θ(x) =

{
0 for x < 0

1 for x > 0
. (4.37)

The boundary conditions are

y(0) = 0 (4.38)
y(1) = 1. (4.39)

The particular solution to this problem can be obtained by use of a computer algebra system:

y(x) =
1

4

(
coth

(
1√
k

)
− 1

)
e
−a+x√

k

(
θ(1− a)

(
e

1√
k − e

a√
k

)2 (
e

2x√
k − 1

)
+

4

(
sinh

(
a+ x+ 1√

k

)
+ cosh

(
a+ x+ 1√

k

))
×(

−2 sinh

(
1√
k

)
θ(x− a) sinh2

(
a− x
2
√
k

)
+θ(−a)

(
cosh

(
a√
k

)
− 1

)
sinh

(
1− x√

k

)
+ sinh

(
x√
k

)))
. (4.40)
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In fig. 4.8 the solution is plotted for a = 1
2

and k = 0.1 and k = 0.0004. The higher
choice for k causes the solution to be far off the Heaviside step function (except at the
boundaries where it is forced into the same values), and the curvature is low, while the
small value takes y(x) closer to the step function and allows high curvature in its graph.
The general observations made here are the same in the three dimensional case. Since the
second term in the free energy formulation (3.16) adds the square of the absolute difference
between damage function f(d) and ϕ, and a minimization with respect to d will favor an
f(d) that is close to ϕ. Thinking in one dimension this means that the optimization will vary
the inhomogeneous part (the function θ(x) in the one dimensional example and f(d) in the
material model formulation) towards the ϕ in order to lower the absolute difference between
both.

In fig. 4.9 results are shown where the regularization takes effect. In contrast to the results in
fig. 4.7 the damaged zone extends over a width of more than one sample point, and once the
discretization is fine enough to capture the damage bands, their dimension does not depend
on it any more. The stress strain curves shown in fig. 4.9f) converge to a common limit for
an increasing number of sample points.
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Fig. 4.8: Comparison of Heaviside function with results for (4.36). Results given for k = 0.1 (dotted)
and k = 0.004 (dashed).
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Fig. 4.9: Results with regularization (β = 0.0001, α = 0.1). Damage results for a) N = 20, b)
N = 40, c) N = 60, d) N = 80, e) N = 100. f) shows curves for three different cases: N = 20
(long-dashed), N = 60 (dashed) and N = 100 (dotted). View direction is v = (0, 0, 1)T .
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A phenomenon connected to the issue of mesh independence is the size effect, i.e. the de-
pendence of critical loads on specimen size. Size effects occur in tension tests of many
materials and are related to the relative size of the damaged zone (be it the plastic zone in
metal fracture or the damage bands in concrete tests, for example) to the specimen dimen-
sions. Since the parameter

√
k is a lower bound to the minimum width of damaged zones, it

must be expected that the formulation presented here is able to model a size effect as well.
Inspection of the Helmholtz equation in discrete Fourier space reveals that an exterior length
parameter is included in the model:

ϕ̂(ξi) =
1

1 + β
α

4π2

L2 |ξi|2
f̂(ξi).

L is the length of the edges of the representative volume element. The ratio
√
k
L

determines
the relative dimension of the internal length to the exterior dimensions of the RVE and, since
the choice for the RVE is not arbitrary, also relative to macroscopic dimensions.
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Fig. 4.10: Results to demonstrate the size effect. Damage results for a) L = 0.1, b) L = 0.5, c)
L = 1.0, d) L = 2.0, e) L = 5.0 (dimensionless L relative to edge-length of RVE) . f) shows curves
for three different cases: L = 0.1 (long-dashed), L = 0.5 (dashed) and L = 2.0 (dotted). View
direction is v = (0, 0, 1)T .
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4.4 Periodicity of the Solution
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Fig. 4.11: Three examples to demonstrate the periodicity of the numerical results. The position of the
RVE with respect to the cylindrical inhomogeneity. Configuration of material parameters and load is
the same in all three cases. View direction is v = (0, 0, 1)T .

An important question in multiscale problems is the size of the RVE. The criteria for its
choice have been reviewed in sec. 2.5. Periodic boundary conditions are natural in these
problems. The solution in terms of stresses and strains is periodic, too, and should not
depend on the position of the RVE relative to the microstructure. Also, the stress-strain
response (〈σ〉 − 〈ε〉-curve) should not be dependent on it. This has been checked for the
current algorithm by variation of the RVE in a way, that it represents a unit cell of the
same microstructure each time, and the same configuration of model parameters and load
conditions is applied. Some results are presented in fig. 4.11. The same microstructure
as in the previous examples has been used, but the cylinder has been shifted to different
positions each time. As can be seen, the solution for the damage variable is the same in
each example, only that the whole field f(d), dependent on x, is shifted by the same amount
of the cylinder. Periodicity at the boundaries is preserved and tessellation of the three-
dimensional space yields the same damaged structure in all cases. In fig. 4.11d) the averaged
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stress-strain curves are displayed for the three examples, and they are observed as absolutely
congruent. The conclusion is that the numerical algorithm really produces an approximation
of the periodic stress- and strain fields, and especially numerical artifacts originating at the
boundary can be excluded.
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5 Results for Chosen Examples

5.1 Study of Model Parameters

The formulation of the free energy in (3.15) and (3.11), which is the basis of the material
model presented and studied in this work, contains five model parameters: λ, µ, α, β and r.
The symbols λ and µ denote the Lamé-parameters from classical elasticity and need not be
further investigated here. The three parameters α, β and r belong to the non-local damage
model. They are material specific, and the only way to determine them for a certain case
is via physical experiments. The best way to achieve this is by producing data form exper-
iment about the stress-strain relationship and determine the best fit solution with classical
optimization methods, such as the least-squares method. In many cases the purpose of simu-
lation of RVE boundary value problems is to determine the average stress-strain relationship
of a composite. Thus experiments would not be carried out on the composite material, but
rather on single phase materials that are present in the composite microstructure. Since the
damage model is isotropic as well as the linear elastic model, only a reduced number of tests
is necessary compared to anisotropic models. In this section the influence of the parameters
is studied by numerous examples of simulations with different settings. It is not the aim to
provide values for them adjusted to a certain real material, thus no real experimental data is
used. The study is conceptual and aims at revealing the behavior of the model under certain
circumstances.

5.1.1 Dissipation Parameter r

The first step to study the influence of the dissipation parameter r on the results is the
examination of the equations governing material behavior, which are given in (3.25) and
(3.30):

ϕ− α

β
∆ϕ = f

αf 2 + (ψ0 − ϕα)f ≤ r.

As long as the material stays within the elastic domain, i.e. no damage has occurred so far,
the values for ϕ and f are

ϕ = f = 1 (5.1)

everywhere in the RVE. The second equation then turns into:

αf 2 + (ψ0 − ϕα)f = 1− 1 + ψ0 = ψ0 ≤ r. (5.2)

Thus a simple flow-rule like condition for the onset of damage is obtained, and r plays
the role of an energy threshold. No matter what the choices for α and β are, damage will
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always occur at the same energy level as long as r remains the same. After initiation of
damage the quotient β/α determines the shape of ϕ and ϕ, α and r together determine the
further evaluation of f . Thus a change in r may not only change the point at the stress-strain
curve, where the first damage occurs, but also the shape of the curve, e.g. when the peak
is reached and the slope becomes negative. Also the damage pattern may change even if r
is the only parameter that is altered. Figs. 5.2 and 5.1 demonstrate the impact of r. Fig.
5.1a) show the load curve for different examples, all with the same configuration except that
r takes values from r = 0.04 to r = 0.095. First, it is obvious that higher values for r
mean that the curves starts later to deviate form the linear form, second, the peak stress gets
higher if r assumes high values. All curves look very similar up to the peak stress, although
not exactly similar. It might be expected that the peak stress is linearly dependent on r but
this is not the case, as can be seen in fig. 5.1b), where the peak stress is plotted against the
corresponding value for r. The relationship is clearly not linear, and this fact originates in
the interplay between α, β and r. A sole change of r changes the ratio of r/α and therefore
the propagation of damage differs after its onset.
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Fig. 5.1: a) Stress-strain curves for varying dissipation parameters: r =
0.045, 0.055, 0.07, 0.085, 0.095. Curves with higher peak belong b) Peak of stress strain re-
lationship vs. dissipation parameter, with least-squares line and correlation coefficient R2.
Configuration: α = 0.2, β = 0.0001, ε = (0.0016, 0, 0, 0, 0, 0)T .

In fig. 5.2 three examples for the damage pattern that evolved after an average strain of

〈ε〉 = (0.0016, 0, 0, 0, 0, 0)T (5.3)

was reached are given. On the right side the damage distribution over the x − y-plane
(perspective view: (0, 0, 1)T ) in the middle of the RVE is illustrated, and on the right side the
corresponding averaged stress-strain curve is highlighted. For r = 0.04 the material stiffness
has been largely degraded at the given state, and in addition to two very sharp, crack-like
zones where the stiffness is practically zero the matrix material is globally damaged by
roughly a factor of one half. The corresponding curve passes a ductile zone around the peak
until a sudden drop in stiffness takes place (which belongs to the sudden origination and
propagation of the two crack-like zones).
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Fig. 5.2: Results for varying dissipation parameter. Configuration for all examples: α = 0.2, β =

10−4, N = 64, 〈ε〉 =
(
1.6 · 10−3, 0, 0, 0, 0, 0

)T
,∆ε = 1.6 · 10−6.

Dissipation parameter: a) r = 0.04, b) r = 0.05, c) r = 0.95
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For r = 0.05 the same two crack patterns appear and there exist zones of areal degradation
outside them, but parts of the matrix are still undamaged. The curve approaches a higher
peak and also sees a sudden stiffness drop, but not as severe as in the first example. The last
example shows damage only in two very narrow zones, and outside these zones the material
is practically unchanged. The peak of the stress strain curve is the highest among the shown
examples, and the stiffness drop takes place almost the moment the peak is reached. This
resembles more brittle behavior than the other examples, and the observation is in line with
the evolving crack pattern: sharp cracks propagating through the material cause sudden ma-
terial failure contrary to materials where the damage is distributed over larger zones. It is
an interesting result that only by change of the factor r the material behavior can be con-
trolled over such a variety of phenomena, although the ductile behavior has been added to
the model with the penalty terms that include α and β. In the test series presented here the
most brittle behavior is accompanied by the highest resistance to crack- or damage propa-
gation, which does not coincide with general observation made on real materials, which has
been discussed in sec. 2.6. This is no problem since no simulation of different real materials
is done here but a study on the behavior of the mathematical model. It is usually not possible
in reality to control only one material parameter isolated without affecting the others.

5.1.2 Regularization Parameters α and β

It is convenient to introduce the parameter k = β
α

and rewrite (3.25) and (3.30):

ϕ− k∆ϕ = f

αf 2 + (ψ0 − ϕα)f ≤ r.

It is assumed throughout this section that a given choice for r is made, and the impact of
variations in α and β is investigated.

If β becomes very small, it follows from the Helmholtz like equation that ϕ becomes equal
to f :

β → 0⇒ ϕ→ f (5.4)
⇒ αf 2 − αϕf + ψ0f → α(f 2 − f 2) + ψ0f = ψ0f (5.5)
⇒ ψ0f ≤ r. (5.6)

The last line shows that setting β = 0 or at least very small reduces the model to the classical
local damage model (3.1), where α and β have no influence any more and the model is non-
regularized and local again. Therefore it must be expected that the damage occurs locally
for small β and the averaged stress strain curve is of the brittle kind. An example for the
damage pattern that evolves and the resulting stress strain curve is shown in fig. 5.3a) and
b). The damage is localized in small, narrow bands that resemble crack like structures,
and the stress strain curve sees a sudden drop in stiffness once it passes the point of peak
stress. Little deviation from the linear part is observed prior to the peak. In fig. 5.4a) a
map is shown to illustrate the influence of α and k = α

β
. Blue boxes indicate that for the

given combination of α and k the resulting damage field and the internal variable ϕ remain
approximately the same. Green boxes indicate big differences between both fields. A ×-
symbol indicates brittle, local damage behavior and a ◦ stands for ductile behavior with
non-local damage evolution.
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Fig. 5.3: Results for different configurations of α and β. N = 128, r = 0.07 and 〈ε〉 =
(0.0016, 0, 0, 0, 0, 0)T . Regularization parameters: a) α = 0.2, β = 0.0002, b) α = 0.4, β =
0, 0004, c) α = 1.0, β = 1.0. View vector is v = (0, 0, 1)T
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Fig. 5.4: Results of parameter study on α and k. ×-symbol: localized damage, o-symbol: nonlocal
damage, blue fill: f ≈ ϕ, green fill: f 6= ϕ. Results for a) tension and b) shear deformation.
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Fig. 5.5: Results for different configurations of α and β. N = 128, r = 0.07 and 〈ε〉 =
(0.0016, 0, 0, 0, 0, 0)T . Regularization parameters: a) α = 0.2, β = 2.0 · 10−8, b) α = 0.6, β =
6.0 · 10−6, c) α = 0.6, β = 6.0 · 10−5, d) α = 0.6, β = 0.006. View vector is v = (0, 0, 1)T
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In fig. 5.5 examples are given to provide a feeling on what "‘local"’ and "‘non-local"’ means
in this context. Fig. 5.5a) clearly shows local behavior, with almost no damage occurring
outside the crack like zones. Fig. 5.5b) shows a more non-local pattern, since the material
stiffness has degraded in a wide horizontal band before additional damage localizes in zones
similar to those in fig. a). This pattern is still classified as local, although, depending on the
level of material degradation outside the crack zones, it may be classified as a mixture of
both. These cases have been indicated with the symbol ⊗. In fig. 5.5c) and 5.5d) are
examples for nonlocal behavior. Fig. c) still shows some dependence on location, whereas
in fig. d) the material degrades constantly over the whole matrix volume. Low β means
low k (with the actual value of k also depending on α, of course), and the upper left corner
of the diagram in fig. 5.4a) shows the corresponding behavior. As expected, the material
behaves brittle (×-symbol) and no or very little difference is observed between ϕ and f
(blue boxes). If β and α is chosen in a way that k remains smaller than 10−5 the material
behavior is always brittle, and the actual choices of α and β do not make any difference.

The factor k also gets small, when α tends towards infinity. Therefore:

α→∞⇒ ϕ→ f (5.7)
⇒ αf 2 − αϕf + ψ0f → ψ0f (5.8)
⇒ ψ0f ≤ r. (5.9)

The same conclusions as for β → 0 can be drawn from (5.9): the material will act brittle, and
damage will localize. In fig. 5.6a) and 5.6b) two examples are shown with configurations
that both set k = 10−8. The observations coincide with the results expected from analysis.
The reader may be irritated by the values of α, since the analysis started with the assumption
α → ∞. This formulation was simply chosen for convenience and in accordance to math
standards. What practically counts is that k becomes very small, and this may be achieved
with the given values.
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Fig. 5.6: Two results for different configurations, but with same k = 10−8. N = 128, r = 0.07
and 〈ε〉 = (0.0016, 0, 0, 0, 0, 0)T . Regularization parameters: a) α = 0.1, β = 1.0 · 10−9, b)
α = 1.0, β = 1.0 · 10−8. View vector is v = (0, 0, 1)T

It may be deduced that k might be the determining parameter for the material behavior, and
two simulations with k set to the same value would yield the same results. This would rank
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one of the two regularization parameters obsolete, since only the ratio between both would
make a difference. However, this is generally not the case. As can be seen in fig. 5.4a), if
k = 10−4 is set, the observed results range from brittle to very ductile behavior. The reason
for that is that α appears alone in (3.30), and the ratio of r

α
also influences the solution.

α and β cannot be treated isolated from each other, nor can one parameter be set constant
when the whole range of possible model responses should be investigated.

When α and β both assume finite values such that k lies somewhere above 10−5, the
Helmholtz like equation will yield a field ϕ different from f . This is obvious since, when
the energy threshold for damage initiation is exceeded in some points, f decreases locally
in the first iteration. The gradient and the Laplacian of f are high near these points. The
assumption ϕ ≈ f determines a high value also for ∆ϕ, and the equation

ϕ+ k ·∆ϕ = f

cannot be satisfied if k is not very small. From this follows that even at points where ψ0f
does not exceed the limit r, the equation

αf(f − ϕ) + ψ0f ≤ r

may not be satisfied. Since (f − ϕ) cannot be zero for non-constant f , f itself must be
reduced to lower the value of the quantity αf(f − ϕ). This way α determines the evolution
of f in points off the points of damage origination. The higher α gets, the more damage
occurs on these points, thus simulating a more non-local, ductile behavior. β penalizes the
gradient of ϕ, therefore determining whether or not ϕ may see sharp slopes. Very high
values for β cause ϕ to be approximately constant. A high ratio k = β

α
determines the level

of proximity to f . If ϕ and f are different, it is the value of α that increases damage in finite
distances from the point of first occurrence, since it penalizes a high difference f − ϕ. The
lower right corner of the map in fig. 5.4a) is where the results of such configurations may
be found.

In the map in fig. 5.4a) it is observed that for α ∈ [10−1, 2 · 10−1] the difference between
ϕ and β becomes very high (transition from blue boxes to green boxes). For higher α
both fields develop closer to each other again if k exceeds a certain limit, for example for
k = 10−1 and α = 4 · 10−1. For α > 8 · 10−1 both fields are almost equal regardless of the
choice for β respective k. The reason is, that for high α the difference f − ϕ must become
small in order to satisfy the yield function (3.30). High k penalizes big gradients, and an
approximately constant ϕ yields an approximately constant f because the difference must
remain small. It becomes clear that ductile model behavior may come along with different
fields ϕ and f or with no differences at all. The configurations with high k and very high
α lead to results with the highest resistance to damage propagation, and a late sharp drop in
elastic stiffness.

The map in fig. 5.4b) shows the results obtained for an applied average shear strain,

〈ε〉 = (0, 0, 0, 0.0014, 0, 0)T , (5.10)

i.e. a shear deformation in the plain perpendicular to the cylinder. The conclusions that can
be drawn from the map are very similar to those drawn for tensile deformation. However,
the variety of damage patterns is higher for shear deformation, as is demonstrated with the
plots in fig. 5.7. Fig. 5.7a) displays the result for a brittle configuration , where damage



5.1 Study of Model Parameters 95

is located around the embedded stiff cylinder. Fig. b) shows a very ductile configuration,
where localized damage occurs only after some global degradation has taken place. Serious
damage localizes in zones aligned fourty five degrees to the horizontal axis, in line with the
cylinders. The third example presented in fig. 5.7c) shows very ductile behavior with no
appearance of localized damage so far. The corresponding curves have the familiar shapes
associated with the different damage patterns respectively.
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Fig. 5.7: Results for different configurations of α and β. N = 128, r = 0.07 and 〈ε〉 =
(0.0016, 0, 0, 0, 0, 0)T . Regularization parameters: a) α = 0.2, β = 2.0 · 10−8, b) α = 0.2, β =
0.02, c) α = 0.4, β = 0.4. View vector is v = (0, 0, 1)T
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5.2 Analysis of a Three Dimensional Example

After studying the influence of the model parameters α, β and r it is now possible to sys-
tematically choose them in order to approximate a desired material behavior. To show the
capability of the developed algorithm two really three dimensional examples are analyzed
in this and the next section. The examples analyzed until now were of a simple nature and
could have been treated as two dimensional cases. That was necessary to keep the solution
as simple as possible yet not to simple, such that it can serve to illustrate the behavior of the
material model in certain situations. But the true capability of the algorithm presented here
lies in the fact that it can handle three dimensional problems with complex microstructures,
and the aim of the last part of this thesis is to demonstrate that.

The representative volume element constructed for this purpose consists of two stiff cylin-
ders with radius r = 0.1 embedded in a softer matrix, while the two cylinders are positioned
vertically to each other but not overlapping. Mathematically the set of spatial points filled
by the stiffer material can be described by

Ω =
{
x ∈ V|(x2 − 0.5)2 + (x3 − 0.3)2 ≤ r ∨ (x1 − 0.5)2 + (x3 − 0.7)2 ≤ r

}
. (5.11)

In fig. 5.8b) a visualization of the RVE can be found. The complete parameter configuration
can be found in table 5.1. From λ and µ the corresponding engineering constants Young’s

rV\Ω[J · s] 0.07

αV\Ω[J] 10−1

βV\Ω[J ·m2] 10−6

λV\Ω[MPa] 9722

µV\Ω[MPa] 14583

λΩ[MPa] 107051

µΩ[MPa] 77519

L[m] 0.1

Tab. 5.1: Parameter configuration

modulus Y and Possoin ratio ν can be calculated, and from them the Reuss average νR of
the composite can be obtained by applying the following formula:

νR =
c(YV\ΩνΩ − YΩνV\Ω) + YΩνV\Ω

YΩ(1− c) + cYV\Ω
≈ 0.201, (5.12)

where c is the volume concentration of the stiffer material. The average strain that is applied
to the RVE is

〈ε〉 = (νΩ, νΩ, , 0, 0, 0)T . (5.13)

The idea is to reproduce a situation similar to one dimensional stress on the macroscopic
level. The strain (5.12) will produce almost zero average stress in x1− and x2−direction. It
will not be perfectly zero since the Reuss average is not the exact effective parameter. The
tension in x3 direction is applied perpendicular to both stiff fibers, and it may be expected
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that stresses are high in the region middle to the RVE, where both fibers are closest to each
other.

The first step is to analyze stress distribution prior to damage initiation within the RVE. For
this purpose, the damage part of the model is deactivated when applying the strain (5.13).
The corresponding results are displayed in fig. 5.8 and 5.9. The left side of fig. 5.8 shows
distribution of stresses σ33 in three planes perpendicular to each other. On the right side the
corresponding plane is visualized in the RVE to facilitate orientation. It has to pointed out
that these plane do not represent cutting planes in the sense of classical elasticity, since the
first and second cut would not make σ33 visible, respectively. Illustrated is the value that σ33

approaches in points belonging to the plane at choice. As has to expected from the symmetry
of the problem, the distribution of σ33 is the same for the planes perpendicular to e1 and e2.
The highest stress levels appear in the strong fibers which also has to be expected. On the
third plane, which is perpendicular to e3, all points belong to the soft matrix. It can be seen
that stresses are in the expected place. In order to better predict the appearance of damage
it makes sense to analyze the elastic energy ψ0, which is displayed in fig. 5.10. The afore
mentioned symmetry is again resembled by the distribution of ψ0, and in the third figure it
can be seen that the most energy in the matrix is stored in the place between both fibers.
The first two figures indicate an almost cylindrical region perpendicular to both fibers where
high amounts of elastic energy are stored. This part of the RVE is stiffened considerably in
x3−direction whereas the energy level in matrix regions off the fibers is only about twenty
percent of its highest value (of course, its highest value in the matrix, and not the fibers
where stresses are naturally much higher). The peaks of the energy in the matrix appear
at the boundaries between fibers and surrounding material, which can be deduced from fig.
5.9a) and 5.9c). It can be expected from this that damage originates somewhere in the
cylindrical region perpendicular to both fibers.

The next step is to activate the damage model, with the parameters given in tab. 5.1, and
analyze the evolution and distribution of damage. The applied average strain is now:

〈ε〉 = (−0.0016νR,−0.0016νR, 0.0016, 0, 0, 0)T . (5.14)

The final load is approached with the subsequent application of load steps that are one
thousandth part of the final value:

∆ 〈ε〉 = 10−3 〈ε〉 . (5.15)

In fig. 5.10 a three dimensional representation of the results for damage function f(d) is
given for three different stages of the process. The right side displays the stress-strain curve
and serves as orientation. The scale goes from invisible over gray (f(d) ≈ 0.8) to black
(f(d) ≈ 0). It can be seen that damage develops first in the region where it has also been
expected from stress analysis. Damage is smeared over a considerable part of the region with
no localized patterns visible yet. The stress strain curve deviates only slowly from the linear
curve and resembles high resistance against damage propagation. In fig. 5.10b) the damage
is distributed over a bigger portion of the matrix even, and additionally local concentrations
of damage appear, starting from the boundaries of the fibers. The starting points are the
points of peaks in the elastic energy already identified in the previous investigation. The
patterns propagate into the not so much loaded region of the matrix. The stress-strain curve
shows a kink and has negative slope. Finally, after damage bands have propagated into
much of the matrix material across the RVE, the damage process halts and the curve flattens
again, approaching small positive slope in the end. The RVE has lost approximately 80% of
its stiffness.
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Fig. 5.8: Distribution of stress σ33 in planes in the middle of the RVE. Right side indicates the
position of the plane that is displayed on the left side, respectively. View vectors: a) v = (1, 0, 0)T ,
b) v = (0, 1, 0)T , c) v = (0, 0, 1)T .
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Fig. 5.9: Distribution of elastic energy ψ0 in planes in the middle of the RVE. Right side indicates the
position of the plane that is displayed on the left side, respectively. View vectors: a) v = (1, 0, 0)T ,
b) v = (0, 1, 0)T , c) v = (0, 0, 1)T .
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Fig. 5.10: Different states of damage evolution and corresponding stress-strain curve
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A second example, with the same microstructure as the first one, has been analyzed. This
time the load was changed in a way that the representative volume element is strained in
direction of the fibers. This resembles the typical situation in shell concrete structures,
where the steel reinforcements are located in a way that they can bear the bulk of the tensile
load, to reduce tensile stresses in the concrete matrix. The applied strain is

〈ε〉 = (0.0012, 0.0012,−0.00072, 0, 0, 0)T . (5.16)

A pre analysis is again carried out by straining the RVE in purely elastic step with

〈ε〉 = (1, 1,−0.6, 0, 0, 0)T , (5.17)

and inspecting stresses and elastic energy. The results are depicted in fig. 5.11 and 5.12. The
stresses σ11 are symmetric with respect to the rotation implied from fig. 5.12b) to 5.12d),
thereby respecting the geometrical and physical symmetry of the problem. The distribution
of the tensile stresses as well as the elastic energy shows little variation with respect to the
maximum values that appear in the stiff fibers. It is necessary to reduce the step size in the
numerical evaluation of the load path in order to catch the local influence of small peaks in
the energy level. Step size was

∆ 〈ε〉 = 10−5 〈ε〉 , (5.18)

thus slowing down calculations considerably compared to the previous example. It also
becomes clear in advance that damage will originate close the fibers again, with stress peaks
being good candidates for origination of crack like zones.

In fig. 5.13 the evolution of the three dimensional distribution of damage is demonstrated
the same way as in fig. 5.10. The matrix material stiffness deteriorates in two plane layers
that each includes one of the cylindrical inhomogeneities, respectively. Damage evolution
is clearly non-local. The load curve in fig. 5.12d) shows a prepeak region where it deviates
from the linear curve, showing an overall strong resistance to damage propagation. Finally
the now well known, crack like patterns appear, starting at the boundaries of the cylinders
and propagating into the yet undamaged regions of the matrix. A sudden drop in overall
stiffness is recorded in the load curve (fig. 5.13f) ). The representative volume element in
this example acts stiffer than in the previous one, reaches almost the same peak in average
tensile stresses, and drops in stiffness by approximately eighty percent.
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Fig. 5.11: Distribution of stress σ11 in planes in the middle of the RVE. Right side indicates the
position of the plane that is displayed on the left side, respectively. View vectors: a) v = (1, 0, 0)T ,
b) v = (0, 1, 0)T , c) v = (0, 0, 1)T .
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Fig. 5.12: Distribution of elastic energyψ0 in planes in the middle of the RVE. Right side indicates the
position of the plane that is displayed on the left side, respectively. View vectors: a) v = (1, 0, 0)T ,
b) v = (0, 1, 0)T , c) v = (0, 0, 1)T .
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Fig. 5.13: Different states of damage evolution and corresponding stress-strain curve
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5.3 Combination with Finite Element Analysis

The algorithm developed here has been formulated in discrete Fourier space because peri-
odic microstructure was assumed at the starting point. This is a characteristic for problems
involving multiple scales of different size. One example are structures made of reinforced
steel, where the diameter of the reinforcing fibers is very small compared to the structure’s
overall dimensions. It is usually not affordable to directly simulate the structure with a
resolution high enough to capture the effects on the length scale of these fibers. Nonethe-
less the behavior on the microscale often plays a role important enough to be incorporated
in the analysis one way or the other. In the introduction to this thesis and in section 2.5
it was already mentioned that there are different methods to account for those effects. A
straight forward approach to this problem is the use of the FE2-Method or Multiscale Fi-
nite Element Method. The global structure is discretized with a coarse mesh, where coarse
means not fine enough to capture the microscale geometry, and the stress-strain relationship
at the integration points is calculated by another boundary value problem, namely an RVE
subjected to periodic boundary conditions. Usually this second boundary value problem is
analyzed with the Finite Element Method again, hence the name FE2-Method, but any other
numerical scheme may be employed. Since the algorithm that is the topic of this thesis
automatically satisfies periodic boundary conditions, it may be directly implemented on the
integration point level of a finite element analysis. Because of the advantages considering
computational cost point out in the previous chapters it may be possible to save costs com-
pared to the two fold Finite Element Method. In order to demonstrate this capability, an
exemplary, rather simple problem has been solved this way, and its results are presented in
this section.

The Finite Element Method is widely known as a tool to obtain approximate solutions to
boundary value problems governed by elliptic partial differential equations. The weak for-
mulation of the system of partial differential equations (2.13) reads:

∫
Ω

σ : ∇δu dV =

∫
Ω

f · δu dV +

∫
∂Ω

t · δu dA ∀δu, (5.19)

where δu is the variation (test function) of the displacement field. The domain to which the
differential equations are restricted is divide into a finite number of z elements, connected
to each other via nodes at the edges and bordering each other at their edge lines. The
volume integral over the whole domain is split into z integrals over the subset occupied
by the elements, respectively. The displacement field within each element is approximated
by linear functions with unknown values at the nodes. The formulation of the transformed
problem reads [13]:

z∑
m=1

∫
Ωm

BT ·C ·B dV =
z∑

m=1

∫
Ωm

Nu · f dV +
z∑

m=1

∫
Ωm

Nu · t dA, (5.20)
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(5.21)

is a differential operator matrix, C is the stiffness tensor in Voigt notation (see sec. 2.2) and
Nu is the matrix containing nodal values and information about the interpolated displace-
ments. Eq . (5.20) may be rewritten in matrix notaion:

K · û = ff + ft. (5.22)

K is called stiffness matrix, ff and ft are the volumetric and superficial nodal forces and
the vector û contains the unknown nodal values of the approximative displacement field
to be solved for. A linear system of n equations has to be solved to obtain û, where n is
the number of nodes that depends on the number and definition of the finite elements. The
elements of K are the results of the integrals in (5.20) which are calculated numerically
by means of the Gauss integration procedure. For a detailed treatment of Finite Element
Analysis in linear elasticity see [13], for example. A mathematically rigorous survey of the
method, not restricted to the special case of continuum mechanics, can be found in [136].

The central idea of the FE2-method is to solve an additional boundary value problem, con-
sisting of a representative volume element, and use the volume average of the resulting
stress and strain fields to compute the stress-strain response at Gauss point level, and use
this results to calculate the entries of the stiffness matrix K [41, 49, 51, 52]. In general
the mathematical problem becomes non-linear, and this is the case for damage mechanics
treated in this work. The consequence is that the finite element scheme cannot be interpreted
as system of linear equations, as in (5.22), because the element stiffness (and thus the global
stiffness) depends on the solution u:

K = K(u). (5.23)

The weak form of the problem is rewritten as

Ru =

∫
Ω

Bt · σ dV −
∫
Ω

Nu · f dV −
∫
∂Ω

Nu · t dA (5.24)

and Ru is called residual. For the solution of the problem it has to vanish:

Ru = 0. (5.25)

The Newton iterative scheme can be applied to find the solution u:

∆ui+1 = −
(
∂Ri

u

∂u

)−1

·Ri
u. (5.26)

As explained in section 2.5, a condition for the applicability of this method is that boundary
conditions in stress and strains are periodic at the boundaries of the representative volume
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element. The numerical algorithm studied here is formulated in discrete Fourier space, thus
periodicity of all field variables is automatically implied. The results obtained with the al-
gorithm are ready to use in a finite element analysis. In each iteration in (5.26) one loading
step has to be calculated with the FFT algorithm, and the procedure has to be carried out
at each Gauss point. It is typical for the Multiscale Finite Element Method that computa-
tional cost becomes large in terms of CPU time as well as memory requirements, and this
case is no exception from the rule. However, the FFT-based algorithm still may save a lot
of time, since no meshing of the microgeometry and no assembly of a stiffness matrix is
necessary. Additionally, the large potential for parallelization of the algorithm will make
results available in reasonable time at least on vector computer systems.

This section is concerned with a simple example that is chosen to demonstrate the general
possibility of the combination of the two methods. A simple strip geometry is assumed with
the axis of largest extension aligned with the x3-axis of the reference coordinate system,
which means that stress σ33 and ε33 act normal on a plane perpendicular to its longest exten-
sion. Tension in direction along the main strip axis is applied. On node of the outer plane
is placed slightly off the plane in which the other nodes lie, to produce a disturbance in the
otherwise homogeneous stress and strain fields in the strip. This triggers damage evolution
in a location close to this point.

The stress-strain response on the macroscopic scale is calculated by comparison of the av-
erage stresses and strains that result from the submodel simulation. Although no damage
variable is defined at a macroscopic level, a strain softening behavior is thus induced and
mesh dependent results have to be expected. Results for strain ε33 for sample calculations
that were run with different meshes are shown in figure 5.14. Two stages of the simulation
are compared to each other, respectively. It is observed, that strain localizes around the
displaced node, as expected. The geometrical extension of the localization is confined to
the element size of the mesh, thus producing smaller localized zones with higher resolution.
This fact reflects the expected mesh dependency. In figure 5.15 the force-displacement rela-
tionship, that can be extracted from the data obtained at the end of the strip that is subjected
to displacement, is plotted. Although the results for the strain fields show mesh-dependent
behavior, the curve for all three mesh arrangements have the same peak, and except some
mesh dependent oscillations show the same mean behavior after the peak. After a drop of
the curve it stabilizes and continues with a modest positive slope.
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Fig. 5.14: Strain calculated with the Finite Element Method meshed with different resolution. a)
strain εzz after one third of loadpath, b) strain εzz after two thirds of loadpath.
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Fig. 5.15: Comparison of force-displacement curve for finite element calculations with varying reso-
lution: 10 Elements (dash-dot line), 20 Elements (dashed line) and 30 Elements (dotted line).
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6 Summary and Outlook

Throughout this work the implementation of a scalar valued damage model into FFT-based
analyzing techniques has been studied. The development started with a review of the al-
gorithm published by Moulinec and Suquet that had been designed to calculate the elastic
response of composites with periodic microstructure. This algorithm is based on the fast
Fourier transform of the corresponding (periodic) fields like stresses and strains, and takes
advantage of the fact that the non-local integral representation of the linear elastic boundary
value problem becomes local in Fourier space.

An expression for the Helmholtz free energy has been postulated. It consists of the elastic
energy term, which includes the effective stress concept typical for damage models, and two
additional terms that give the model a non-local character. An additional field variable ϕ is
formulated, and the damage variable is linked to ϕ via a difference term, and a parameter that
"‘penalizes"’ large differences between them. The second parameter penalizes the gradient
of ϕ. These are measures to introduce an internal length to the model and make the results
mesh independent. A dissipation potential in terms of ḋ+ is also assumed. The principle of
the minimum of the dissipation potential is applied and the equations that govern the process
of damage evolution are found this way. The formulation yields a scalar valued equation and
a partial differential equation of the Helmholtz kind for f(d) = e−d and ϕ. Application of
the discrete Fourier transform changes the Helmholtz equation into a local, multiplicative
operator, and this is what makes the formulation especially suitable for implementation
into a numerical scheme that is based on the fast Fourier transform, as is the algorithm by
Suquet. A numerical scheme is developed to provide results for composites with a periodic
microstructure.

Following the assessment of the governing equations and of the numerical algorithm, the
propagation of numerical uncertainty throughout the procedure was investigated. Direct ex-
pressions for the uncertainty were used where they were available, i.e. for steps that only in-
volve simple addition or multiplication. To get an idea about the uncertainty of the involved
fast Fourier transform, it has been applied to several trial fields, and the inverse transform
has been applied thereafter. The original data could be compared to the manipulated data,
and hence the error between both could be established. An estimate for the uncertainty of
one iteration step has been given, and it has been shown that the error remains small for
reasonable numbers of iterations. This contributes to the stability of the algorithm.

To demonstrate the power of the algorithm, some examples with simple geometry were an-
alyzed and the results presented. A high number of degrees of freedom (above two million)
were given in the three dimensional examples and still the algorithm was capable of simu-
lating a complete load path within a couple of hours on a single core machine. It has been
demonstrated that the load curve converges for increasingly detailed discretization, showing
no sign of mesh dependent behavior. The microstructural damage patterns that involve dur-
ing the load path assume finite dimensions, covering more than one sample point in width
when the discretization is fine enough to reproduce it. Furthermore it has been shown that



112 6 Summary and Outlook

the resulting stress and strain field as well as the damage pattern are truly periodic, and the
solution does not depend on the position the representative volume element assumes rela-
tive to the microstructure of the material. This is an important property when the use within
a multiscale finite element approach is envisioned. The relationship between the averaged
stresses and strains resembles typical load curves of materials that tend to quasi brittle fail-
ure. By adjustment of three independent model parameters it is possible to calibrate the
model behavior between a very brittle behavior towards a more restrained one that shows
high resistance to material deterioration . Two of these parameters (labeled α and β through-
out this work) are connected to the regularizing terms in the free energy, and the third one
is the dissipation rate r. Finally a simple example was given where a three dimensional
structure was analyzed with a MsFEM ansatz, to prove the general possibility of this ap-
proach. Although mesh dependence occurs in the macroscopic strain fields, because of the
strain softening material character at the integration points, the overall force-displacement
relationship does not show this behavior.

It can be said that the goal that was carved out in the introduction of this thesis has been
accomplished so far. The suitability of FFT based numerical analysis for damage models
has been demonstrated, and a model and a numerical algorithm are available now that are
capable to reproduce the basic phenomena of isotropic damage. It is now time to briefly
outline possible directions for future progress.

Only composites whose constituents all behave elastically isotropic can be analyzed with
the current implementation. However, there are no theoretical constraints against including
anisotropic phases in the formulation. The reference material, and hence the Greens opera-
tor can still be isotropic, although use of an anisotropic reference medium might accelerate
convergence for complex problems. The complexity of the numerical problem increases
linearly with the increase of elastic parameters, as does the size of the input data and the
memory requirements of the procedure. Usually memory is no limiting property on modern
64 bit multi core computers. It has to be mentioned that for anisotropic materials the ori-
entation of symmetry axes relative to the reference coordinate system has to be accounted
for, which means that additionally to the elastic parameters it might be necessary to save
information about the corresponding directions of material principal axes.

Another enhancement of the formulation presented here could be the introduction of a more
sophisticated damage model. Several damage variables can be included, each to model dif-
ferent aspects of damage like fiber-breakage, tensile or shear mode fracture or crack closure
effects under pressure conditions. Instead of a scalar damage variable a tensorial one may
be considered to model anisotropic damage evolution. In this case the strength of the in-
troduction of an additional field variable comes really into play, because all components of
the damage tensor can be linked to it, and thus it is not necessary to calculate the gradient
of a tensorial quantity throughout the numerical procedure. The same holds true in case of
non-local plasticity models, that are usually based on the gradient of the plastic strain in the
literature. ´
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Nr. 160

ISBN 978-3-935892-38-4


	Introduction
	Theoretical Background
	Theory of Linear Elasticity
	Hooke's Law
	Special Solutions
	Eshelby's Solution
	William's Solution for cracked half-space

	Non-Local Continuum Theories
	Micromechanics and Homogenization
	Fracture and Damage Mechanics
	Discrete Fourier Transform and Fast Fourier Transform

	Physical Model and Numerical Algorithm
	FFT based algorithm by Moulinec and Suquet
	Nonlocal Damage Model
	Numerical Uncertainties
	Round-Off Errors
	Error Resulting From Discretisation and Truncation

	Advantages of the Algorithm

	Validation of Model Behavior
	Comparison of Results to Eshelby Solution
	Comparison of Results to Mori-Tanaka Theory
	Mesh Independence and Size-Effect
	Periodicity of the Solution

	Results for Chosen Examples
	Study of Model Parameters
	Dissipation Parameter r
	Regularization Parameters  and 

	Analysis of a Three Dimensional Example
	Combination with Finite Element Analysis

	Summary and Outlook
	buchdeckel-A4

