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Summary

Strain localization is observed in various materials as narrow zones of intense shearing,
known as shear bands. The formation of shear bands is accompanied by a softening re-
sponse, characterized by a decrease in stress or strength of the material with accumulated
inelastic strain, usually leading to complete collapse of the structure. This thesis is devoted
to the treatment of localization phenomena in solids and is composed of three parts.

Firstly, displacement and mixed finite element formulations of shear localization in mate-
rials are introduced to decrease mesh dependence for shear bands’s simulation. The formula-
tions are based on hypoplastic constitutive laws for soils and the mixed-enhanced treatment
involving displacement, strain and stress rates as independently varied fields. The numeri-
cal results are compared with available experimental data of Hostun RF sand and numerical
results of Karlsruhe sand on biaxial tests.

Secondly, a strong discontinuity analysis for hypoplastic models, known as an alterna-
tive way to simulate strain localization without the introduction of characteristic lengths, is
presented in order to eliminate mesh dependence. It examines the hypoplastic models com-
patible with unbounded strains under certain conditions in order that the displacement jump,
the stress field at the discontinuity path and the normal vector can be determined.

Finally, a theoretical framework for the treatment of shear localizations in inelastic mate-
rials and porous media is developed. The theory is based on energy minimization principles
associated with micro-structure developments under the assumption of a zero thickness shear
band. Shear bands are treated as laminates of first order. The problem of the non-convex en-
ergy arising due to the formation of shear bands is solved by energy relaxation in order to
ensure that the corresponding problem is well-posed. Numerical results are shown in order
to evaluate the performance of the proposed concept.



Kurzfassung

Lokalisierungsphänomene können bei unterschiedlichen Materialien beobachtet werden. Sie
entstehen meist durch einen Entfestigungsprozess, bei dem sich die Dehnungen in schma-
lbandigen Bereichen hoher Scherung konzentrieren. Solche Bereiche bezeichnet man als
Scherbänder. Das Entstehen von Scherbändern ist oft durch einen Abfall der im Mate-
rial wirkenden Spannung sowie einer Akkumulation von plastischer Dehnung begleitet und
führt letztendlich zum Materialversagen. Die vorliegende Dissertation befasst sich mit der
Beschreibung und Berechnung von Lokalisierungsphänomenen und gliedert sich in drei
Teile:

Der erste Teil ist der Beschreibung von Scherbändern auf der Basis eines hypoplastischen
Gesetzes für Materialien gewidmet. Die problematische Netzabhängigkeit der Lösungen
wird durch Verwendung von gemischten Finite-Elemente-Ansätzen verringert. Die gemis-
chten Ansätze verwenden neben dem Verschiebungsfeld auch das Spannungs- und Dehnungs-
feld als unabhängige Variablen. Die erzielten Ergebnisse werden anhand von experimentellen
Daten für Hostun RF und numerischen Ergebnissen für Karlsruher Sand an Biaxialtests va-
lidiert.

Der zweite Teil befasst sich mit der Beschreibung von Scherbändern durch starke Diskon-
tinuitäten. Dieser Ansatz vermag die Netzabhängigkeit der hypoplastischen Modelle zu ver-
meiden, ohne dass eine charakteristische Länge in die konstitutive Beschreibung eingeführt
werden muss. Es wird untersucht, wie die Verschiebungs- und Spannungssprünge sowie
deren Orientierung eindeutig bestimmt werden kann.

Im dritten Teil wird schließlich ein theoretisches Gerüst für die Behandlung von Scher-
lokalisierungen bei unelastischen und porösen Materialien aufgestellt. Das Gerüst basiert
auf dem Prinzip der Energieminimierung und behandelt Scherbänder als Laminate erster
Ordnung mit verschwindender Dicke. Das Auftreten von Scherbändern führt hierbei auf ein
schlecht gestelltes Problem, das keine regulären Lösungen besitzt. Mithilfe der sogenannte
Relaxierungsmethoden der Variationsrechnung lassen sich jedoch verallgemeinerte Lösun-
gen angeben, die darüber hinaus auch die Orientierung der Scherbänder adäquat beschreiben.
Anhand numerischer Beispiele wird die Brauchbarkeit des hier gezeigten Ansatzes demon-
striert.
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1. Introduction

Regions of high strain localization by intense shearing are referred to as shear bands. The
emergence of shear bands in a deforming body is accompanied by a softening response,
characterized by a decrease in stress or strength of the material with accumulated plastic
strain. Although the formation of shear bands is one of many possible deformation modes,
it is usually a precursor to failure. Predictions of the onset and evolution of shear bands play
an important role in determining the safety of structures, improving mechanical properties
of material and designing material microstructure. This is due to the fact that shear banding
provides failure mechanisms and thereby determines the pattern of failure.

Attempts in classical continuum theory to capture shear bands fail, in the sense that the
solution yelled by the continuum theory appeared to be determined fully by the fineness of
the discretization. At the onset of localization, the boundary value problem ceases to be well
posed because the elliptic character of the governing equations is lost. Consequently, it gives
rise to non-unique solutions. After discretization, numerical solutions depend strongly on
the mesh size, which explains the observed mesh sensitivity [21].

There exists three enhanced continuum approaches

• Cosserat theory [24, 49, 79, 108]

• Non-local theory [4, 110, 101, 106]

• Gradient-enhanced theory [22, 92, 93, 107]

The above approaches are known as generalized continuum theories and have successfully
demonstrated mesh independence. In the corresponding numerical models, however, the
element size needed to accurately resolve the failure process must be at least an order of
magnitude smaller than the width of shear bands, which is normally a very small relative to
the dimension of the structure [64]. A detailed summary of previous work is presented in
Section 2.3.

Therefore, the development and computational evaluation of suitable mathematical de-
scriptions of strain localization in solids is a challenging endeavor. Consequently, it is nec-
essary to develop renewal constitutive models and computational methods to simulate strain
localization.



2 1. Introduction

1.1. Scopes and Objectives

The objectives of this work are

1. Variational formulation of hypoplastic models including the standard displacement
formulation as well as the multi-field formulations in which displacement, strain and
stress rates are regarded as independent variables;

2. An analysis of strong discontinuities in hypoplasticity;

3. Development of a theoretical framework for the analysis of localized failure in inelastic
materials as well as porous media. The theory is based on the energy minimization
principles associated with micro-structure developments.

The presented numerical simulation of strain localization in this thesis is restricted in two
dimensions and rate-independent solids.

1.2. Outline

The outline of the thesis is as follows:

• Chapter 2 begins with the presenting strain localization phenomena. Then, some basic
concepts related to material instability are briefly summarized. The different numerical
approaches to simulation of shear localization in literature are then introduced.

The remainder of this thesis is divided into two parts. The first part, called “Simulation of
strain localization in hypoplasticity”, is composed of four chapters:

• Chapter 3 Mathematical struture of hypoplastic constitutive models and Wolffersdorff
hypoplastic model are reviewed.

• Chapter 4 The mixed-enhanced finite element simulation of strain localization is in-
troduced. First, the variational formulation is established. Then, its applications in
the standard displacement method, the three-field mixed formulation, the enhanced
assumed strain method and the mixed enhanced strain method are presented. Finally,
time integration scheme and flowchart for the enhanced assumed strain method are
introduced.

• Chapter 5 Numerical examples demonstrating the performance of different finite el-
ement formulations in Chapter 4 are discussed in details and compared with available
experimental data for Hostun RF sand and numerical results for Karlsruhe sand on
biaxial tests.

• Chapter 6 Strong discontinuity analysis incorporating hypoplastic models is extended.



1.2. Outline 3

The second part of the thesis is dedicated to strain localization analysis with the relaxation
theory, and is presented in the three following chapters:

• Chapter 7 A new approach to the problem of shear localization is proposed at small
deformations. It is based on energy minimization principles associated with micro-
structure developments and the micro-shearing of a rank-one laminate which is aligned
to a shear band. This approach is first explained in detail in a one-dimensional problem,
then extended to two-dimensional problems. Next, an application of the proposed
formulation to isotropic materials is presented. The capability of the proposed concept
is demonstrated through numerical simulations of a shear test and a tension test under
plane strain condition.

• Chapter 8 This chapter is concerned with the extension of geometric and material non-
linearities. The theory is predicated upon Chapter 7. An application of the proposed
formulation to Neo-Hookean materials and numerical simulation are shown.

• Chapter 9 The relaxed energy for the problem of shear localization in fluid-saturated
inelastic porous media is proposed at small deformations. Herein not only the strain
field but also a variation in water content inside the shear band are assumed to tend to
infinity.

Finally, Chapter 10 applies conclusions and outlook.
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2. Softening and strain localization

2.1. Strain localization phenomena

Strain localization phenomena are observed at the macro-level in various materials, when
intense shearing in narrow zones occurs. The narrow zones within the materials, where in-
tensive inhomogeneous deformation occurs due to shearing, are called shear bands. The
formation of shear bands as depicted in Fig. 2.1 is accompanied by a softening response
usually leading to complete collapse of the structure.
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Figure 2.1.: Formation of shear bands in various materials.

Inhomogeneous deformations in general may be caused by either geometrical or materi-
als effects. To understand the inhomogeneous deformation of materials and behaviour of
shear bands, we investigate, for example, a biaxial test of loose, fined-grained sand under
undrained conditions (see Finno et al., 1996[35]). The difference |Wu −Wl| between upper
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and lower widths of a specimen (Fig. 2.2) represents the inhomogeneous deformation.
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Figure 2.2.: Lateral deformation response during undrained shear [35]

The global measured response in Fig. 2.2 is not representative of the local behaviour
inside the shear band. Fig. 2.3 shows that the shear strains in the bands reach levels as high
as 50-60%; outside the shear band shear strains reach no higher than 3% and the volume
change outside the band is close to zero [35].

Figure 2.3.: Stereophotogrammetry-based volumetric verus shear strains [35].

The following observations of the shear band formation are reported on biaxial tests

• Most of the deformation is concentrated parallel to the band (Fig. 2.4, [35]).

• The normal movements are much smaller than those in the tangent direction and vary
erratically (Fig. 2.4, [35]).
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• The thickness and orientation of shear bands depend on a number of factors including
(Desrues et al., 2004[27]):

– the initial state of the material (mean effective stress and void ratio)

– its grading (grain size, uniformity, etc.)

– the size and slenderness of the specimen.
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Figure 2.4.: Components of displacement inside the shear band [35].

From microscopic observations, the origin of strain localization phenomena lies generally
in the material microstructure. Since most of materials are observered as inhomogeneous
and discontinous ones at meso-level, the microstructures evolve in the materials during an
increasing deformation [92]. Grains rotate and slide, microvoids nucleate and grow, micro-
cracks propagate and get arrested by encountered aggregate, new microcracks initiate from
existing weak spots.

The evolution and structure of shear bands in solids depends on various microstructural
processes and factors including, for example, misorientation between shear band planes and
slip planes, grain size, tangled and cell structures of dislocations [29, 30]. Such microstruc-
tural inhomogeneities result in the development of strain heterogeneities which, in turn, lead
to the initiation of localized deformation bands. The local interaction between the various
microprocesses determines the structure (width and spacing) of these shear bands [123].

It should be noted that in higher dimensions strain localization is not always due to inho-
mogeneities [92]. For example, in a homogeneous material, strain localization may occur
because of high gradient deformation when a ductile metal is deformed sufficiently far into
the plastic range (Lemonds et al., 1985[66]). Moreover, Lisiecki et al., 1982 [69] demon-
strated that shear bands showed no evidence for void or microcrack initiation, instead, the
nonuniform crystal lattice rotations occuring during necking cause a geometrical softening
which promotes localized shearing as depicted in Fig. 2.5 [3].
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Figure 2.5.: Localized shearing and the inception of shear failure during uniaxial tension of
a single crystal of pure copper (Lisiecki et al., 1982[3, 69]).

2.2. Some basic concepts related to material instability

The governing equations include the equilibrium equations, kinematics equations and consti-
tutive equations. As a shear band occurs, the governing equations of the classical continuum
theory result in an infinite number of possible solutions due to the ill-posed boundary value
problem. As a result of this, numerical solutions suffer from a discretization sensitivity [21].
By discretization with coarse or fine mesh the phenomena of mesh sensitivity or mesh de-
pendence are recognized and start to appear if loss of ellipticity, which is accompanied with
loss of material stability, is met or if the potential energy is nonquasiconvex.

Because the mesh dependence is caused by a fundamental problem from a mechanical and
mathematical nature, in the following sections we will first glance through kinematic de-
scription and then discuss some basic concepts regarding loss of material stability, loss of
ellipticity and nonquasiconvexity.

2.2.1. Kinematic description

Let us consider the solution of the displacement boundary value problem. Four types of
kinematic descriptions are distinguished based upon the regularity of the displacement field

• No discontinuity (Fig. 2.6a): The displacement field is once continuously differen-
tiable and the strain field remains continuous. There exists no concentration of high
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strains in a narrow band. Thus, the well-posed boundary value problem is assured
and interpreted as a unique solution with continuous dependence on the given data as
depicted in Fig. 2.7a: one force F corresponds to one displacement.
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a. b. c. d.

Figure 2.6.: Kinematics description with (a) and (b) no discontinuity, (c) two weak disconti-
nuities, (d) one strong discontinuity in one-dimensional problem.

F

u

F

u

F

u 1

F

u 1 u 2

softening

a. Unique solution:
one-pair solution (F, u1).

b. Nonunique solution:
two-pair solutions (F, u1) and (F, u2).

Figure 2.7.: Uniqueness and nonuniqueness.

• No discontinuity-high strains in a narrow band (Fig. 2.6b): The displacement field
is once continuously differentiable and the strain field remains continuous. However,
strain localization is manifested by high strains in a narrow band, with a continuous
transition to much lower strains in the surrounding parts of the body. In physical terms,
this corresponds to a damage process zone with a continuously varying concentration
of defects [52].

• Weak discontinuity (Fig. 2.6c): Displacement field remains continuous, but deforma-
tion gradient is discontinuous, i.e., strain components have a jump. The region of
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localized deformation is characterized by a band of a small but finite thickness, sepa-
rated from the remaining part of the body by weak discontinuities. In physical terms,
the band between the weak discontinuities corresponds to a damage process zone with
an almost constant density of microdefects [52].

• Strong discontinuity (Fig. 2.6d): The displacement field is discontinuous. That is the
displacement jump across a discontinuity curve (in two dimensions) or discontinuity
surface (in three dimensions). The corresponding strain field consists of a regular part
and a singular one. In physical terms, the strong discontinuity corresponds to a crack
[52]. The idea of strong discontinuity is equivalent to the assumption of a zero band
thickness so that the constitutive model is no longer required to provide a characteristic
length scale [14].

In the three latter types, the boundary value problem becomes ill-posed, that is, it does not
have a unique solution with continuous dependence on the given data: one force F corre-
sponds to two or multiple displacements as shown in Fig. 2.7b. The nonuniqueness is the
source of instability of a solution.

2.2.2. Material stability and loss of material stability

2.2.2.1. Material stability in small

Stable material is usually defined by the following condition (Hill, 1958[47], Maier et al.,
1979[70]):

σ̇ : ε̇ > 0. (2.1)

This condition means that the inner product of the stress rate σ̇ and the strain rate ε̇ is posi-
tive.

In an uniaxial tension or compression test, this inner product becomes obviously negative
when the slope of the homogenized axial stress-axial strain curve is negative. This phe-
nomenon is called strain softening (Borst [21, 23]). The term “homogenized” is referred to
the fact that the initial flaws and boundary conditions necessarily induce a inhomogeneous
stress state in a specimen [23].

In this section, we limit our discussion to incrementally linear constitutive equations:

σ̇ = D̄ : ε̇, (2.2)

where D̄ is the material tangent stiffness tensor.
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Substituting eq. (2.2) into eq. (2.1) we obtain

ε̇ : D̄ : ε̇ > 0. (2.3)

Stability of a body that occupies a volume V is guaranteed if

∫

Ω

σ̇ : ε̇ dΩ > 0 (2.4)

for all kinematically admissible ε̇.

2.2.2.2. Loss of material stability

A necessary condition for loss of material stability is the violation of the inequality (2.1)
(Neilsen, 1993[81]). The limitting case which the inequality of (2.1) is replaced by an equal-
ity

σ̇ : ε̇ = 0 (2.5)

indicates the onset of unstable material behaviour. Here σ̇ and ε̇ are the stress and strain
rates at some points or region in the body.

Loss of material stability may lead to material instability, which implies the violation of the
inequality (2.4).

Substituting eq. (2.2) into eq. (2.5) we obtain loss of positive definiteness of the material
tangent stiffness tensor D̄ [21, 23]

ε̇ : D̄ : ε̇ = 0 (2.6)

which implies the singularity of the symmetric part of D̄

det(D̄s
) = 0. (2.7)

2.2.3. Ellipticity and loss of ellipticity

2.2.3.1. Ellipticity

The rate boundary value problem is well-posed if the following conditions are satisfied [21,
23]:
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• the boundary complementing condition, which excludes the emergence of stationary
surface waves (Rayleigh waves),

• the interfacial complementing condition, which excludes the emergence of stationary
interfacial waves (Stonely waves),

• ellipticity, which is a local condition and implies that a finite number of linearly inde-
pendent solutions are admitted, continuously depending on the data and not involving
discontinuties (Benallal et al., 1991[11], see also [21, 23]).

2.2.3.2. Loss of ellipticity

Loss of ellipticity allows an infinite number of solutions to occur, including those which
involve discontinuities [21].

Let us consider a homogeneous solid subjected to monotonic, proportional loading. We
suppose that within the process of deformation, a plane S emerges and seperates a zone
of localized deformation from the rest of the body. The discontinuous solution can occur
such that subsequent strain rates become discontinuous across parallel plane. Maxwell’s
compatibility conditions require that [21, 23]

[[ε̇]] = ε̇S − ε̇Ω\S = ζ̄(m⊗ n)s, (2.8)

where [[ε̇]] is the jump of strain rate in the localized zone; ζ̄ is the magnitude of the jump of
strain rate; ε̇S and ε̇Ω\S are strain rates inside and outside the localized zone, respectively; n
is a unit normal vector to the discontinuous plane S (Fig. 2.8);m is a unit vector describing
the orientation of relative velocity of regions on opposite sides of the localized deformation
zone (Fig. 2.8).

m

n

S

Figure 2.8.: Definition of unit vectors n andm at the surface S.
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From eq. (2.2), the stress rates inside and outside the localized zone are given by

σ̇S = D̄ : εS, (2.9)

σ̇Ω\S = D̄ : εΩ\S. (2.10)

Thus, the jump of stress rates [[σ̇]] in the localized zone reads

[[σ̇]] = σ̇S − σ̇Ω\S = D̄ : [[ε̇]] , (2.11)

where [[ε̇]] is defined by eq. (2.8).

For continuing equilibrium, the jump of traction rate
[[
ṫ
]]

across the boundaries of the lo-
calized zone must be zero [81]

[[
ṫ
]]

= nσ̇S − nσ̇Ω\S = n [[σ̇]] = 0. (2.12)

Subsituting eqs. (2.11) and (2.8) into eq.(2.12) leads to

[[
ṫ
]]

= ζ̄(n.D̄.n)m = ζ̄Q̄m = 0, (2.13)

where Q̄ is denoted as the acoustic tensor:

Q̄ = n.D̄.n. (2.14)

A non-trivial solution
(
ζ̄ 6= 0

)
exists if only if the acoustic tensor Q̄ is singular, i.e.

det
(
Q̄
)

= det
(
n.D̄.n

)
= 0. (2.15)

If the condition of the discontinuous bifurcation (2.15) in a material point is met, the loss
of ellipticity of the governing equations for static problems or the loss of hyperbolicity for
dynamic problems occurs. Thereafter, the strain field at this material point can change sud-
denly from a homogeneous state to a localized state, consequently, discontinuous solutions
characterized by a strain discontinuity can emerge.

It should be noted that the loss of material stability (2.7) is a necessary condition for the loss
of ellipticity. To prove it, let us first express the material stability (2.3) in term of kinemati-
cally compatible mode [[ε̇]] by inserting eq. (2.8) into eq. (2.3) [21, 23]:

(m⊗ n)s : D̄ : (m⊗ n)s > 0. (2.16)
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The limiting case that the inequality (2.16) is replaced by an equality reads

m(n.D̄s
.n)m = 0. (2.17)

This condition refers to as the loss of strong ellipticity in Neilsen and Schreyer, 1993[81] and
will first occur when

det(n.D̄s
.n) = 0, (2.18)

where Ds
ijkl = 1

2
(Dijkl +Dklij).

The loss of material stabilty and the loss of ellipticity identify the same first bifurcation
point as shown in eqs. (2.18) and (2.15) for materials with associated flow rules due to
the symmetry property of the material tangent stiffness tensor D̄. For materials with non-
associated flow rules, eq. (2.18) is always met prior to satisfaction of eq. (2.15). More
discussion can be found in Borst [21, 23], Neilsen and Schreyer, 1993[81].

2.2.4. Quasiconvexity, rank-one convexity and nonquasiconvexity

The existence of equilibrium solutions of the non-linear boundary value problems can be
proved based on the direct methods of calculus of variations. The basic idea of this method
is the minimization of a energy functional.

For simplicity, we limit our discussion to non-linear elastic material. The total potential
energy may be expressed in the following form

Π(u) =

∫

Ω

W (∇su) dΩ−
∫

Ω

uTf dΩ−
∫

∂Ωσ

uTt̄ dA , (2.19)

where u is the displacement, f is the body force per unit volume, t̄ is the distributed load
acting on the part ∂Ωσ of the surface and W is the elastic strain energy.

Now we interest in minimization problems of functionals

(P) inf
u
{Π(u)|u = ū on ∂Ωu} . (2.20)

2.2.4.1. Quasiconvexity

It is observed that the first derivative of the displacement appears in the first term of (7.1)
while the second and third terms of (7.1) are linear functionals of u. Thus, the existence
of minimizers for (P) (7.3) depends on the property of W . It is well known that the math-
ematically simple hypothesis that W be convex with respect to ∇su ensures the existence



2.2. Some basic concepts related to material instability 15

of minimizers for (P) (7.3). Unfortunately, as pointed out by Ball, 1977[5], this fact is
only of mathematical interest because convexity of W with respect to ∇su is unacceptable
physically. Firstly, such convexity conflicts with the requirement that W is objective [5].
Secondly, strict convexity with respect to ∇su implies uniqueness (Hill, 1958[47]). How-
ever, the minimizers for (P) (7.3) can still exist if some less restriction condition on W is
introduced.

Morrey, 1952[77] proposed a suitable condition regarded as a constitutive restriction on W
[5], termed quasiconvexity. W is said to be quasiconvex if (Ball, 1977[5])

W (ε) ≤ 1

ω

∫

ω

W (ε+∇sϕ) dΩ (2.21)

holds for every bounded domain ω and every vector-field ϕ with ϕ = 0 on ∂ω. Herein ϕ is
denoted as the fluctuation field.

Let us consider the existence of minimizers for (P) in (7.3). It may be proved that if the
following conditions are satisfied

• W is bounded,

• W is coercive,

• W is quasi-convex,

there exists at least one solution for (P) (Dacorogna, 1989[20] p.180).

For specific functions it is very difficult to verify the quasiconvexity condition (2.21) since
we have to check a nonlocal integral condition. Therefore, the modern mathematical theory
of elasticity deals with various concepts of convexity which are related as follows:

W convex ⇒ W polyconvex ⇒ W quasiconvex ⇒ W rank-one convex. (2.22)

However it must be kept in mind that the converse theorem does not hold in general.

The condition (2.22) implies that polyconvexity and rank-one convexity is a sufficient con-
dition and a necessary condition for quaxiconvexity, respectively.

2.2.4.2. Rank-one convexity

In practice we use a simple consequence of quasiconvexity: rank-one convexity [20], which
is a local condition.

W is said to be rank-one convex at ε if

ξW (ε2) + (1− ξ)W (ε1) ≥ W (ε) (2.23)
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holds for every 0 ≤ ξ ≤ 1, for all the laminate strains ε1 and ε2 which satisfy the conditions

ε = ξε2 + (1− ξ)ε1 (2.24)

and

rank(ε2 − ε1) ≤ 1. (2.25)

For unit vectorsm, n and scalar ζ̄ , the condition (2.25) means

ε2 − ε1 = ζ̄ (m⊗ n)s . (2.26)

ε1 and ε2 which satisfy (2.26) are said to be rank-one-connected [6, 39].

Legrendre-Hadamard condition

Based on the definition of the rank-one convexity, the ellipticity or Legrendre-Hadamard
condition (2.27) [5] can be obtained by differentiating (2.23) twice if W is quasiconvex and
twice continuously differentiable

(m⊗ n)s :
∂W 2(ε)

∂ε2
: (m⊗ n)s ≥ 0. (2.27)

Let us denote by D̄ the material tangent stiffness tensor

D̄ =
∂W 2(ε)

∂ε2
· (2.28)

As can be easily seen in (2.28), the four-order tensor D̄ satisfies the following symmetry
conditions (ε is symmetric) such as Dijkl = Djikl = Dijlk = Dklij . Thus, the inequality
(2.27) can be expressed as

m.Q̄.m ≥ 0 (2.29)

where Q̄ is the acoustic tensor defined by eq. (2.14).

Because D̄ is symmetric, the loss of material stability (2.18) or the violation condition (2.29)
and the loss of ellipticity (2.15) result in the same bifurcation point. If the condition (2.29)
does not hold, it indicates a loss of smoothness and induces the development of a strain
discontinuity across the discontinuous surface S.
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2.2.4.3. Non-rank-one convexity and nonquasiconvexity

W is said to be non-rank-one convex at ε if the inequality (2.23) is violated (Bartel et al.,
2004[6]):

ξW (ε2) + (1− ξ)W (ε1) < W (ε) (2.30)

holds for every 0 ≤ ξ ≤ 1, for all rank-one connected ε1 and ε2.

The present condition is sufficient for nonquasiconvexity according to (2.22). Thus, the min-
imum of (P) (7.3) may be unattained. In this case, the ellipticity of the governing equations
is lost due to the violation of the Legrendre-Hadamard condition (2.27).

The problems of optimal design, composites, natural polymorphic materials (martensites),
polycrystals, smart materials, biomaterials, etc. yield to variational problems with locally un-
stable solutions (or oscillatory solutions) [19] due to internal buckling, development of local
fine-scale micro-structures or phase decomposition. These problems are called nonquasicon-
vex. The problems of nonlinear elasticity are also generally nonquasiconvex [19, 25]. Such
nonquasiconvex problems give rise to the micro-structures.

By means of the relaxation theory (Hackl and Hoppe, 2001[42], Carstensen et al., 2002[15]),
W is replaced by quasiconvex envelop of W (see Section 7.1), in order that the minimum of
(P) may be attained a solution. Futhermore, if the quasiconvex envelop of W (7.6) in some
region of the solid is smaller than the value of function W , the solution is unstable. This os-
cillatory solution indicates that composite is optimal, while the smooth solution means that
pure phase is optimal [19].

2.3. Related work

In simulation of strain localization, to avoid mathematical ill-posedness of the boundary
value problem, consequently mesh-dependence, some enhanced continuum approaches can
be found in literatures such as the Cosserat theory, the nonlocal approach, and the gradient-
enhanced approach.

In the Cosserat theory (or so-called micropolar theory) [33], stresses and strains are com-
puted in the micropolar continuum: the couple stresses and curvatures supplemeting with
stress and strain of a standard continuum. Additional rotation degrees of freedom related to
curvatures and couple stresses are introduced and lead to non-symmetry of the stress ten-
sors. Via micropolar quantities (the couple stresses and curvatures) an internal length scale
is treated as an additional material parameter, thus, the width of a shear band can be properly
determined (Mühlhaus and Vardoulakis, 1987[79], de Borst and Sluys, 1991[24], Huang and
Bauer, 2003[49]).
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The nonlocal approach (Strömberg and Ristinmaa, 1996[101], Baz̆ant et al.,1984[4]) incor-
porates a nonlocal quantity replacing a certain variable, such as strain. This nonlocal quantity
computed with an integral format is defined as weighted averaging over a spatial neighbor-
hood of each point under consideration [52]. The associated internal length scale influences
the weight amplitude in the vicinity of a material point in the integral format (Engelen et al.,
2003[32]).

The gradient-enhanced approach (Borst and Mühlhaus, 1992[22], Pamin, 1994[92]) avoids
the integral format by approximating the nonlocal kernel with a Taylor series expansion,
which yields a differential format (Engelen et al., 2003[32], Jirásek, 2002[52]). This ap-
proach can be classified into two categories: explicit and implicit gradient types. The explicit
gradient formulations involve the higher-order gradient terms of a local quantity in the con-
stitutive relations (Mühlhaus and Aifantis, 1991[78], Borst and Mühlhaus, 1992[22]). The
implicit gradient methods (Peerlings et al., 1996[93], Pamin, 1994[92]) take into account the
higher-order derivatives of a nonlocal variable. Both of them can be considered as higher-
order extensions of the local plasticity theory and result in a finite band width.

In the above approaches an internal length scale, which is known to reflect certain changes
in the microstructures in a shear bands, is needed. The models corresponding to these ap-
proaches suffer from the drawback that the element size needed to accurately resolve the fail-
ure process must be at least an order of magnitude smaller than the width of shear zones to
obtain results independent of the mesh size [64]. The strong discontinuity approach, known
as an alternative way to simulate strain localization without the introduction of characteris-
tic lengths, is predicated upon the assumption that the displacement field is discontinuous
(Simo et al., 1993[98], Oliver, 1995[88], Armero and Garikipati, 1996[2]). This approach
can be categorized into unregularized and regularized strong discontinuities. For unregular-
ized strong discontinuities the discontinuous displacement field induces an unbounded strain
field having the character of a Dirac-delta distribution [2]. For regularized strong disconti-
nuity [100] one considers a transition from continuous to discontinuous response by using
an approximation of the Dirac-delta distribution. The term “strong discontinuity” refers to
a particular procedure in which the shear band thickness is assumed to be zero, thus cir-
cumventing the issue of length scale in finite element analysis (Lai et al., 2003 [62]). In
this approach, however, it is necessary to determine the position of a shear band by tracking
strong discontinuities.

In recent years a new methodology problem based on energy relaxation has been developed
to simulate strain localization (Hackl, 2005[39], Hackl and Hoppe, 2001[42], Miehe and
Lambrecht,2003[74, 73], Lambrecht et al., 2003[63]. The advantage of this theory is the nat-
ural formation of shear bands based on the energy minimization principles associated with
micro-structure developments. The theory has been applied also to phase transformation
(Müller, 1999[80], Hackl and Heinen, 2008[41]; Bartel and Hackl, 2008[7]) and inelastic
materials by constructing an incremental variational formulation of inelasticity (Hackl and
Fischer, 2008[40], Carstensen, Hackl, and Mielke, 2002[15], Miehe, 2002[72]). The general
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internal variable formulation of inelasticity is governed by the stored energy function and the
dissipation function and can be applied to viscoelasticity, plasticity and damage mechanics.

In this thesis, the two latter approaches are considered. First, the strong discontinuity ap-
proach incorporating hypoplastic models is developed in Chapter 6. Second, based on gen-
eral concepts of relaxation, a new approach is established to the treatment of localization
problems in inelastic materials and porous media in Chapter 7-9.
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Part I.

Simulation of strain localization in hypoplasticity
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3. Hypoplastic constitutive equations

Many materials such as soils, metals, polymers behave in an inelastic e.g. plastic way. The
elasto-plastic constitutive equations of these materials may be expressed by assumming that
the total deformation may be decomposed into elastic and plastic components [88]. In con-
trast to elasto-plastic models, hypolasticity is a class of incrementally nonlinear, rate type
models, developed without the decomposition of deformation into elastic and plastic parts.
These models can be classified into two categories: the CLoe models proposed first by Cham-
bon and Desrues, 1994 [18] and the K-hypoplastic models pioneered by Kolymbas et al.
(1991, 1994, 1997)[58, 59, 60]. The K-hypoplastic models are expressed as a single consti-
tutive equation of the rate type which can model the behaviour of non-linear material from
initial state to failure state (Bauer, 2000[10]). In the following considerations, mathematical
basis of K-hypoplastic constitutive equations is briefly summarized. Then the special case of
K-hypoplastic model which is Wolffersdorff hypoplastic model proposed by Wolffersdorff
[113] is shortly introduced.

3.1. Hypoplastic constitutive equations: Mathematical structure

3.1.1. Kinematics of deforming bodies

Let y = y(x, t) denote the motion of a body from its reference configuration Ω to the current
configuration Ω(t) at time t , F (x, t) = ∇y(x, t) the corresponding deformation gradient,
and v(x, t) = ẏ(x, t) the velocity vector. The spatial velocity gradient l(y, t) is given by
[48]

l = Dv = Ḟ F−1. (3.1)

The multiplicative decomposition of the deformation gradient F can be expressed as

F = R U = V R, (3.2)

where R, U and V are the rotation tensor, the material stretch tensor and the spatial stretch
tensor, respectively.

The additive decomposition of the spatial velocity gradient l is

l = D +W (3.3)
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where the stretching tensor D and the spin tensor W are the symmetric and antisymmetric
parts of l, respectively, i.e.

D =
1

2

(
l + lT

)
; W =

1

2

(
l− lT

)
. (3.4)

3.1.2. Functional constitutive equations

According to the general theory of constitutive equations, the Cauchy stress tensor σ(y, t) is
a functional of the deformation history (Kolymbas, 2000[56], Tamagnini et al., 2000[102])

σ (y (x, t)) =
∞
G
s=0

(
F (t) (x) , s

)
, (3.5)

where the history of the deformation gradient up to time t at material point x is defined by

F (t) (x, s) ≡ F (x, t− s) , s ∈ [t,+∞). (3.6)

3.1.3. Rate type constitutive equations

In general, the constitutive equation (3.5) is very complex. There are many simplified forms
of this constitutive law in literature. One of the special forms of (3.5) is a so-called rate type
constitutive equation.

Let us assume that for every process compatible with the constitutive equation (3.5) the
functions σ = σ(t) and F = F (t) satisfy a differential equation

σ̇ = G
(
σ,F , Ḟ

)
. (3.7)

The differential equation (3.7) is called the rate type constitutive equation and is used fre-
quently in soil mechanics. Materials whose constitutive equations have this form are called
materials of the rate type.

The general constitutive equation (3.5) or the special form (3.7) must be satisfied certain
general conditions such as e.g. objectivity. That is, material properties must be invariant
under changes of observers. In order to fulfill this objective requirement we must introduce
the objective stress rates and the objectivity of constitutive equations.

3.1.4. Objective stress rates

It is important to introduce the objective stress rate in order to formulate the constitutive
equation of rate type. There are infinitively many possible objective stress rates. Some of
them are meationed here (Kolymbas, 2000[56], Kolymbas and Herle, 2003[61]):
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• Zaremba or Jaumann stress rate

◦
σ = σ̇ + σW −Wσ, (3.8)

• Lie or Oldroyd stress rate

Lσ = σ̇ −
(
σlT + lσ

)
=

◦
σ − (σD +Dσ) , (3.9)

• Convected stress rate

∆

σ = σ̇ −
(
σl + lTσ

)
=

◦
σ + (σD +Dσ) , (3.10)

• Green-Mclnnis-Naghdi stress rate

Ξ

σ = σ̇ + σΩ−Ωσ, (3.11)

• Truesdell stress rate

⊗
σ = Lσ + (trD)σ, (3.12)

where Ω = ṘRT.

3.1.5. Hypoplasticity constitutive equations

Hypoplastic constitutive equations belong to a sub-class of (3.7) and represent the objective
stress rate as an explicit function of stress, stretching (and other internal variables). There are
two special cases distinguished here: amorphous and endomorphous (Kolymbas, 1991[58],
Tamagnini et al., 2000[102]).

In the amorphous hypoplastic material, there exists only stress as state variable

⊕
σ = H (σ,D) , (3.13)

where
⊕
σ denotes any objective stress rate defined in Section 3.1.4. Because the Zaremba

or Jaumann stress rate
◦
σ defined by eq. (3.8) is used frequently in hypoplastic constitutive

equations, in the following, we will consider this stress rate in the framework of hypoplas-
ticity.

In real materials the mechanical properties at any material point depend not only on stress
and strain but also on some additional state variables. The endomorphous hypoplastic mate-
rial which depends on σ and the so-called internal variable ᾱ has the following form

◦
σ = H (σ,D, ᾱ) . (3.14)
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The change of ᾱ is specified by an evolution equation.

3.1.6. Objectivity of constitutive equations

The constitutive equation (3.13) has to satisfy the following principle of material objectivity
(Wu and Kolymbas, 1990[119],Tamagnini et al., 2000[102])

H
(
QσQT ,QDQT

)
= QH (σ,D)QT , (3.15)

for any arbitrary orthogonal tensorQ . This implies thatH(σ,D) is an isotropic function of
both σ and D. In the most general case, the representation theorem for an isotropic tensor-
valued function of two symmetric tensors can be written as (Wu and Kolymbas, 1990[119],
Kolymbas and Herle, 2005[57])

H (σ,D) = ϕ01 + ϕ1σ + ϕ2D + ϕ3σ
2 + ϕ4D

2 + ϕ5 (σD +Dσ)

+ ϕ6

(
σ2D +Dσ2

)
+ ϕ7

(
σD2

+ D2σ
)

+ ϕ8

(
σ2D2 +D2σ2

)
, (3.16)

where the coefficients ϕα are functions of the invariants and joint invariants of σ andD (Wu,
1998[116]).

3.1.7. Rate independent materials

We may consider the formulation of constitutive equations for rate independent materials,
which is a specific case of eq. (3.13). According to Wu and Kolymbas, 1990[119], this
restriction implies that the functionH(σ,D) is positively homogeneous of degree one inD

H(σ, λ̄D) = λ̄H(σ,D) for λ̄ > 0. (3.17)

Let us define the direction D̄ of the tensorD as

D̄ =
D

‖D‖ , D 6= 0, (3.18)

where the Euclidean norm ofD is given by

‖D‖ =
√
D : D =

√
tr
(
D2
)
. (3.19)

Note that D̄ has a unit Euclidean norm, that is

∥∥D̄
∥∥ =

√
D̄ • D̄ = 1. (3.20)
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With the restriction (3.17) eq. (3.13) implies (Kolymbas, 2000[56])

◦
σ = H(σ,D) = H

(
σ, ‖D‖ D̄

)
= H(σ, D̄) ‖D‖ = H (

σ, D̄
)

: D. (3.21)

Clearly the functionH(σ, D̄) is an isotropic function of its arguments.

3.1.8. Incrementally linear and non-linear constitutive models

If the function H(σ,D) in the constitutive equation (3.21) is linear with respect to D, then
there exists a fourth-order tensor Ē depending upon only stress state σ and such that

◦
σ = H (σ,D) = Ē (σ) : D. (3.22)

The particular form of the constitutive equation (3.22) was developed by Drăguşin, 1981[31]
for soils and is a sub-class of hypoelastic constitutive equations. It must be stressed that in-
cremental linearity does not imply linearity of the stress-strain response over a finite stress
increment.

For an incrementally non-linear material H (σ,D) is non-linear in D (Wu, 1992[115],
Gudehus, 1996[38]), thus, in particular

H (σ,D) 6= −H (σ,−D) , (3.23)

which, in turn, implies that

H (
σ, D̄

)
6= −H (

σ,−D̄
)
, (3.24)

where H is the constitutive tensor of fourth order defined by eq. (3.21). An particular incre-
mentally non-linear constitutive equation is proposed by Wu, 1992[115]. He assumed that
the constitutive equation (3.21) can be decomposed into two parts representing the reversible
and irreversible behaviour of the material. The equation (3.21) may be taken one of the
following forms

◦
σ = L (σ,D) +N (σ) ‖D‖ , (3.25)
◦
σ = L (σ,D) +N (σ)

D2

‖D‖ , (3.26)

◦
σ = L (σ,D) +N (σ) ‖D∗‖ , (3.27)

where D∗ is the deviatoric stretching tensor, L (σ,D) and N (σ) are the second-order ten-
sors.
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In order to investigate properties of constitutive equations, Gudehus, 1979[37] introduced
the concept of response envelope. Using the response envelope, Wu proved that the consti-
tutive equations (3.26-3.27) are ruled out because they may lead to the unacceptable form of
the ‘heart’-shaped or ‘8’-shaped contours (Wu, 2000[120], Niemusnis, 2003 p.25[82]). Thus,
the constitutive equation (3.25) incorporating eq. (3.21) reads

◦
σ =

(L (σ) : D̄ +N (σ)
)
‖D‖ = L (σ) : D +N (σ) ‖D‖ , (3.28)

where the fourth-order tensor L (σ) and the second-order tensor N (σ) depend only on the
stress tensor σ.

The constitutive equation (3.25) can be recast in a more convenient form (Wu and Bauer,
1996[118])

◦
σ =

(L (σ) +N (σ)⊗ D̄
)

: D, (3.29)

where D̄ stands for the direction of stretching defined by (3.18), and the symbol⊗ is denoted
as an outer product between two tensors.

According to Wu and Bauer, 1994[117] (see also Tamagnini et al., 2000[102]), the function
H (σ,D) should be positively homogeneous with respect to σ

H(λ̄σ,D) = λ̄m̄H(σ,D), ∀λ̄ > 0, (3.30)

where m̄ is the degree of homogeneity. This property, defined barotropy, implies that the
behavior of the material can be normalized with respect to (trσ)m̄. Tamagnini et al., 2000
(p.111 [102]) remarked that :
“The experimental observation that a proportional strain path starting from a nearly stress-
free and undistorted state yields a proportional stress path poses some additional restrictions
on the function H (σ,D). In the particular case of amorphous hypoplastic materials, it can
be shown that a sufficient condition to satisfy this requirement is thatH (σ,D) be positively
homogeneous with respect to σ.”

3.2. Reference hypoplastic constitutive model

The Wolffersdorff hypoplastic model [113], a particular case of the K-hypoplastic model, is
an incrementally non-linear constitutive equation which has the form (3.28):

◦
σ = L : D +N ‖D‖ , (3.31)
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where the objective co-rotational (Jaumann) stress rate
◦
σ of the Cauchy stress tensor σ is

defined by (3.8)

◦
σ = σ̇ −Wσ + σW . (3.32)

Herein L is the constitutive tensor of fourth order and N is the one of second order. It
is noted that the tensorial functions L : D and N ‖D‖ are linear and non-linear in D,
respectively. The specific form of the constitutive tensors L andN determines the particular
model of the hypoplastic law.

In the theory proposed by von Wolffersdorff [113] two tensors are given by

L = fbfe
1

tr
(
σ̂2
) (F 2I + a2σ̂ ⊗ σ̂

)
, (3.33)

N = fdfbfe
aF

tr
(
σ̂2
) (σ̂ + σ̂∗) , (3.34)

where I is the fourth-order unit tensor given by

Iijkl =
1

2
(δikδjl + δilδjk) . (3.35)

The normalized stress tensor σ̂ and its deviatoric part σ̂∗ are defined by

σ̂ =
σ

tr (σ)
, (3.36)

σ̂∗ = σ̂ − 1

3
I. (3.37)

The factor a in eqs. (3.33) and (3.34) depends on the critical friction angle ϕc through the
relation

a =

√
3 (3− sinϕc)

2
√

2 sinϕc
· (3.38)

The effect of the mean pressure −trσ
3

and the current void ratio e taken into account in the
constitutive law (3.31) are specified by the density fd and the stiffness factor fs

fd =

(
e− ed
ec − ed

)α0

, (3.39)

fs = fbfe, (3.40)

with the density factor fe and the barotropy function fb being given by

fe =
(ec
e

)β0

, (3.41)
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fb =
hs
n̄

(
ei0
ec0

)β0 1 + ei
ei

(
−trσ
hs

)1−n̄ [
1 + a2 − a

√
3

(
ei0 − ed0

ec0 − ed0

)α0
]−1

, (3.42)

where 0.1 < α0 < 0.3 and 0 ≤ β0 ≤ 2.5 [8, 46] are constitutive constants.

It should be noted that a wide range of densities, pressures and deformations is included in
the material parameters by considering the barotropy and pyknotropy effects in this model.
These effects take into account pressure and density dependence, respectively (Tamagnini et
al., 2000[102]).

The dependence of void ratio on pressure in eqs. (3.39), (3.41) and (3.42) is taken into
account by the following relation

ei
ei0

=
ed
ed0

=
ec
ec0

= exp

[
−
(
−trσ

hs

)n̄]
, (3.43)

where ei, ed and ec are the maximum, minimum and critical void ratios, respectively; ei0, ed0

and ec0 are the corresponding values for trσ ≈ 0 ; hs having the dimension of stress is the
granulate hardness representing a reference pressure; the exponent n reflects the pressure-
sensitivity of a grain skeleton.

Figure 3.1.: Decrease of the maximum void ratio ei, the critical void ratio ec and the mini-
mum void ratio ed with increasing mean pressure p (3p = −trσ)[10].

The function F (σ̂) determined by fitting the yield condition by Matsuoka-Nakai has the
form

F =

√
1

8
tan2 ψ +

2− tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ, (3.44)

where the Lode-angle θ is expressed as

cos 3θ = −
√

6
trσ̂∗3

(
trσ̂∗2

)3/2
, (3.45)
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and

tan ψ =
√

3 ‖σ̂∗‖ . (3.46)

It is generally assumed that the volume of grains remains constant. Therefore the rate of the
void ratio can be expressed by the following evolution equation

ė = (1 + e)trD. (3.47)

It is seen that there are eight constants in Wolffersdorff hypoplastic model: the critical fric-
tion angle ϕc; the granular hardness hs; the void ratios ei0, ec0 and ed0; and the exponents
n̄, α0 and β0. The material parameters may be determined in simple index and element tests
(Bauer, 1996[8], Herle, 1999[46]).

The Wolffersdorff hypoplastic model [113] will be used in the rest of the first part of this
thesis.
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4. Finite element simulation of strain localization in

hypoplasticity

Finite element simulation of strain localization in non-polar hypoplastic models developed
by Hügel, 1995[51], Tejchman,1996[109] and Fellin et al., 2002[34] exhibits mesh depen-
dence. Enrichment of these models via e.g. polar hypoplasticity [107, 71, 49, 84] and non-
local hypoplasticity [110, 71, 106] has been considered as some of techniques in order to
remove mesh sensitivity. Although many numerical investigations using the above enhanced
continuum models have been published, none of the publications deals with mixed-enhanced
treatment involving displacement, strain and stress rates as independently varied fields in hy-
poplasticity.

In this chapter the multi-field finite element formulations of shear localization in granular
materials are presented. The formulations are based on hypoplastic models and the vari-
ational formulation in terms of displacement, strain and stress rates as primary variables.
Applications of the variational formulation in the standard displacement method, the three-
field mixed formulation, the enhanced assumed strain method and the mixed enhanced strain
method are introduced. Time integration schemes for updating stress, void ratio and tangent
operator proposed by Nübel et al., 1998[83] and a flowchart for the enhanced assumed strain
method are also presented.

4.1. Variational formulation

The finite element solutions of problems in mechanics require the variational formulation of
the respective boundary value problems. Accordingly, in this section the variational formula-
tion of the hypoplastic problems is first introduced. The presented formulation includes the
standard displacement formulation as well as the multi-field formulations involving strain
and stress rates as independent variables besides displacement rate. For simplicity, this for-
mulation will be based on the amorphous hypoplastic constitutive law in which Cauchy stress
is the only state variable. The formulation based on pyknotropic hypoplasticity regarding the
void ratio as the additional state variable is similar and will not be presented in details.

In typical problems of soil mechanics it may be assumed that strains are infinitesimal. Un-
der this assumption, no distinction between the stress and strain tensors defined with respect
to the reference and deformed configuration of the body needs to be made. Consequently,
the stretching tensor D is equal to the strain rate tensor ε̇ being the time derivative of the
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infinitesimal strain tensor ε. As a result, the governing equations consist of:

1. The equilibrium equation which may be written in the rate form

divσ̇ + ḟ = 0, (4.1)

where f is the body force (per unit volume) and σ̇ is the time derivative of σ,

2. The constitutive equation of hypoplasticity in the form of the objective stress rate

◦
σ = H(σ, ε̇) = L(σ) : ε̇+N (σ) ‖ε̇‖ , (4.2)

or in the form [102, 16]

σ̇ = G(σ, ε̇) = Q(σ) : ε̇+N (σ) ‖ε̇‖ , (4.3)

where

Qijkl = Lijkl +
1

2
(σilδjk − σikδjl + σjlδik − σjkδil) , (4.4)

L andN are defined by (3.33) and (3.34), respectively,

3. The kinematic relation written in the rate form

ε̇ = ∇su̇, (4.5)

where u is the displacement.

The above field equations are supplemented by the boundary conditions having the form

u̇ = ˙̄u on ∂Ωu, (4.6)
˙̄t = σ̇ν on ∂Ωσ, (4.7)

where ū and t̄ are the imposed displacement and traction force on boundaries ∂Ωu and ∂Ωσ,
respectively; ν is the outward normal unit vector on the boundary ∂Ωσ; (̇) is the time deriva-
tive.

The equations (4.1), (4.2) and (4.5) are defined locally at every point in the reference config-
uration of the body under consideration. Based upon these equations the respective global
relations which are valid for the whole body may be derived in the standard manner. Conse-
quently, three integral identities as variational formulation are derived as the following.

First, taking the inner product of the local equilibrium equation (4.1) with the virtual velocity
(rate of displacement) δu̇, integrating over the domain occupied by the body and applying
the standard divergence theorem one gets

∫

Ω

δ (∇su̇)T σ̇ dΩ =

∫

Ω

δu̇TḟdΩ +

∫

∂Ωσ

δu̇T ˙̄t dA. (4.8)
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This variational equation expressing the principle of virtual velocities (principle of virtual
displacements in the rate form) provides the theoretical basis for the displacement-based
finite element formulations of the problem.

The second variational equation is obtained by taking the inner product of the constitutive
law of hypoplasticity (4.3) with the virtual strain rate δε̇ and integrating over the domain,
thus one has

∫

Ω

δε̇T [G (σ, ε̇)− σ̇] dΩ = 0. (4.9)

Finally, the third variational equation which follows from the kinematical relation (4.5) yields

∫

Ω

δσ̇T [∇su̇− ε̇] dΩ = 0, (4.10)

where δσ̇ denotes the virtual stress rate.

The integral identities (4.9) and (4.10) express the respective field equations in the global
(integral) form and they provide, together with the equation (4.8), the variational basis for
the multi-field finite element formulations of the problem.

4.2. Displacement-based finite element formulation

The classical single-field finite element formulations are based on the assumption according
to which the kinematic relation (4.5) is satisfied at every point in the body and the stress rate
is determined by the constitutive law (4.2), or equivalently (4.3). As a result, the variational
equations (4.9) and (4.10) are satisfied identically, and the principle of virtual velocities
(4.8) provides the complete formulation of the problem with the displacement rate as the
only independent variable.

In this paper we restrict our attention to plane strain problems, thus, the kinematic relations
(4.5) reduce to

εu = ∇su =





∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x





=




∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x



{
ũ

ṽ

}
, (4.11)

where ũ and ṽ are the two components of nodal displacement. Moreover, the stress tensor σ
has only three non-zero components and it may be written in the vector form

σ = [σx, σy, σxy]. (4.12)
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In finite element analysis the displacements are assumed to be a function of the displacements
at the nodes:

u ≈Nu(ξ)ũ(t), (4.13)

where Nu is the standard displacement interpolation matrix containing the Lagrange shape
functions [126], ũ represents a listing of nodal displacements, (̇) is time derivative.

Taking the time derivative of the approximation (4.13) we have

u̇ ≈Nu(ξ) ˙̃u(t). (4.14)

Substituting the approximations (4.13) and (4.14) into eq. (4.8) yields the discrete equation
system

∫

Ω

BT
u σ̇ dΩ = ḟ ext, (4.15)

whereBu is the standard strain-displacement interpolation and ḟ ext is the rate of the external
load

ḟ ext =

∫

Ω

NT
u ḟ dΩ +

∫

∂Ωσ

NT
u

˙̄t dA. (4.16)

Based on this formulation the eight-node (Q8) and four-node (Q4) quadrilateral elements as
well as the three-node triangular element (CST) will be considered in Chapter 5.

In practice, the displacement-based finite element formulation is often used. In certain prob-
lems when constraints such as incompressibility arise, it is necessary to employ some other
techniques. Some of the techniques introduced here are the three-field mixed formulation,
the enhanced assumed strain method, and the mixed enhanced strain method.

4.3. Three-field mixed formulation

The three-field mixed formulation proposed by Zienkiewicz and Taylor [104, 127] is used
within hypoplastic model in this section. This formulation is based on three primary vari-
ables: the displacement field u, the pressure p and the volume change εv.
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Let use denote the mean and deviatoric matrix operators in two-dimensional problem as

m̄ = [1 1 1 0]T , (4.17)

Id = I − 1

3
m̄m̄T =




2
3
−1

3
−1

3
0

−1
3

2
3
−1

3
0

−1
3
−1

3
2
3

0

0 0 0 1


 (4.18)

where I is the second-order unit tensor.

The strain rate and stress rate can be written in a mixed form as

ε̇ = Id∇su̇+
1

3
m̄ε̇v, (4.19)

σ̇ = Id ˙̆σ + m̄ṗ, (4.20)

where u̇, ṗ and ε̇v are displacement, pressure and volume change rates, respectively; ˙̆σ is the
stress rate obtained from the hypoplastic constitutive equation (4.3)

˙̆σ = G(σ,D). (4.21)

By using eqs. (4.8)-(4.10) the weak equations with three fields (u̇, ṗ, ε̇v) may be expressed
as

∫

Ω

δ (∇su̇)T σdΩ =

∫

Ω

δu̇TfdΩ +

∫

∂Ωσ

δu̇T t̄ dA, (4.22)
∫

Ω

δε̇v

[
1

3
m̄T ˙̆σ − ṗ

]
dΩ = 0, (4.23)

∫

Ω

δṗ
[
m̄T∇su̇− ε̇v

]
dΩ = 0. (4.24)

Introducing finite element approximations to the variable as

u ≈N (ξ)ũ(t); p ≈ Φp(ξ)p̃; εv ≈ Φv(ξ)ε̃v, (4.25)

u̇ ≈N (ξ) ˙̃u(t); ṗ ≈ Φp(ξ) ˙̃p(t); ε̇v ≈ Φv(ξ)˙̃εv(t), (4.26)

and inserting into eqs. (4.22), (4.23) and (4.24) we have

Q(σ̇) = ḟ ext, (4.27)

Qp −C ˙̃p = 0, (4.28)

g ˙̃u−CT ˙̃εv = 0, (4.29)



38 4. Finite element simulation of strain localization in hypoplasticity

where

Q =

∫

Ω

BT
u σ̇dΩ, (4.30)

ḟ ext =

∫

Ω

NT ḟdΩ +

∫

∂Ωσ

NT ˙̄t dA, (4.31)

Qp =

∫

Ω

ΦT
v

1

3
m̄T ˙̆σdΩ, (4.32)

C =

∫

Ω

ΦT
v ΦpdΩ, (4.33)

g =

∫

Ω

ΦT
p m̄

TBdΩ. (4.34)

Following Zienkiewicz and Taylor, 2000[127] we choose Φv = Φp as well as assume that
the pressure vector p̃ and volume change vector ε̃v are taken locally in each element. Then,
we have

˙̃p = C−1Qp, (4.35)

˙̃εv = W ˙̃u, (4.36)

where

W = C−1g ˙̃u. (4.37)

Substituting (4.36) and (4.26) into (4.19) we have the rate of the mixed strain in each element

ε̇ = IdBu
˙̃u+

1

3
m̄ΦvW ˙̃u =

[
Id

1
3
m̄
] [ Bu

Bv

]
˙̃u, (4.38)

where

Bv = ΦvW . (4.39)

Let us recall eqs. (4.20) and (4.30)

σ̇ = Id ˙̆σ + m̄ṗ, (4.40)

Q =

∫

Ω

BT
u σ̇dΩ. (4.41)
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By use of equs. (4.40) and (4.41), in addition to eqs. (4.32), (4.34), (4.35), (4.37) and (4.39),
we can rewriteQ in the alternative form

Q =

∫

Ω

BT
u σ̇dΩ =

∫

Ω

[
BT
u BT

v

] [ Id
1
3
m̄T

]
˙̆σdΩ. (4.42)

It is observed that it is not necessary to compute the true mixed stress σ except when report-
ing final results [127].

Let us denote D̆T as the tangent operator of constitutive law. By considering eq. (4.38) the
tangent stiffness matrix can be written as

KT =

∫

Ω

[
BT
u BT

v

] [ Id
1
3
m̄T

]
D̆T

[
Id

1
3
m̄
] [ Bu

Bv

]
dΩ

=

∫

Ω

[
BT
u BT

v

]
D̄T

[
Bu

Bv

]
dΩ, (4.43)

where

D̄T =

[
Id

1
3
m̄T

]
D̆T

[
Id

1
3
m̄
]

=

[
IdD̆TId

1
3
IdD̆Tm̄

1
3
m̄TD̆TId

1
9
m̄TD̆Tm̄

]
. (4.44)

Based on the three-field mixed formulation the eight-node (Q8) and four-node (Q4) quadri-
lateral elements and the three-node triangular element (CST) will be considered in Chapter
5.

4.4. Enhanced assumed strain method

Low-order quadrilaterals employing the enhanced assumed strain method (EAS) were devel-
oped by Simo and Rifai [99]. In their approach the strain field ε is assumed in the form

ε(u, εen) = ∇su+ εen, (4.45)

where εen is the enhanced mode defined below.

By considering eqs. (4.8)-(4.10) the following equations

∫

Ω

δ (∇su̇)T σ̇ dΩ =

∫

Ω

δu̇Tḟ dΩ +

∫

∂Ωσ

δu̇T ˙̄t dA, (4.46)
∫

Ω

δε̇T
en [G (σ, ε̇)− σ̇] dΩ = 0, (4.47)
∫

Ω

δσ̇T [∇su̇− ε̇] dΩ = 0, (4.48)
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provide the variational formulation of the EAS method in the framework of hypoplastic
models with the displacement rate u̇, the stress rate σ̇ and the strain rate ε̇en referred to as
independent variables.

Let us consider the following approximations

u ≈Nu(ξ) ũ(t) ; σ ≈ Bσ(ξ)β(t) ; εen ≈ Bα(ξ)α(t), (4.49)

u̇ ≈Nu(ξ) ˙̃u(t) ; σ̇ ≈ Bσ(ξ) β̇(t) ; ε̇en ≈ Bα(ξ) α̇(t), (4.50)

where Nu, Bε, Bσ are the shape function of the displacement, the enhanced strain and the
stress, respectively.

Substituting the approximations (4.50) into eqs. (4.46)-(4.48) leads to the discrete system of
equations





∫
Ω
BT
u σ̇ dΩ = ḟ ext.

∫
Ω
BT
σBα dΩ α̇ = 0.

∫
Ω
BT
αG (σ, ε̇) dΩ−

∫
Ω
BT
αBσ dΩ β̇ = 0.

(4.51)

The enhanced strain and stress are computed in tensor notation as follows [126]

εen =
j0

j(ξ, η)
ATE(ξ,α)A, (4.52)

σ = A−1Σ(ξ,β)A−T, (4.53)

where E and Σ are the strain and stress in the isoparametric space, respectively; j is the
determinant of the jacobian matrix, A and j0 are the jacobian matrix and its determinant,
respectively, at the center of element corresponding to ξ = 0 and η = 0.

These transformations (4.52) and (4.53) have the property that [104]

tr(σεen) =
j0

j(ξ)
tr (ΣE) . (4.54)

Eqs. (4.52) and (4.53) may be written in matrix form as follows

εen =
j0

j(ξ)
F T

0E(ξ,α), (4.55)

σ = F−1
0 Σ(ξ,β), (4.56)
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where

F T
0 =




A2
11 A2

21 0 A11A21

A2
12 A2

22 0 A12A22

0 0 1 0

2A11A12 2A21A22 0 A11A22 + A12A21


 , (4.57)

and Aij are the components of the tensorA.

The interpolation formulas of the enhanced strain and stress fields, respectively, are assumed
in the following form

E(ξ,α) =




Eξξ
Eηη
0

2Eξη


 =




ξ 0 0 0

0 η 0 0

0 0 0 0

0 0 ξ η







α1

α2

α3

α4


 , (4.58)

Σ(ξ,β) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







β1

β2

β3

β4


 . (4.59)

The interpolation of the enhanced strain (4.58) results in the equivalence between the EAS
element and the incompatible mode element [111].

By use of the interpolations (4.58) and (4.59), the integral over element of eq. (4.54) written
in matrix form yields

∫

Ωe

σTεen dΩ = j0

∫

Ωe

ΣTE dΩ = 0. (4.60)

Consequently, we obtain the orthogonality condition between the enhanced strain shape
function and the stress shape function over element

∫

Ωe

BT
σBα dΩ =

∫

Ωe

BT
αBσ dΩ = 0, (4.61)

as well as in the whole domain as a sum of integration over the volume of all finite elements

∫

Ω

BT
σBα dΩ =

∫

Ω

BT
αBσ dΩ = 0. (4.62)
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On inserting (4.62) into (4.51) we obtain





∫
Ω
BT
u σ̇ dΩ = ḟ ext.

∫
Ω
BT
αG (σ, ε̇) dΩ = 0.

(4.63)

It should be noted that the discrete stress field is undetermined due to the orthogonality con-
dition (4.60). Therefore, Simo and Rifai [99] suggested a procedure for stress recovery based
on a least-square optimization. The evaluation of the discrete stress field can be referred to
[94, 97, 122] and has been debated. Bischoff et al., 1999 [13] showed that the stress field
calculated from an elastic constitutive law converges to the correct solution which satisfies
the orthogonality assumption (4.60). Herein we consider the stress field derived from the
material law

σ̇ = G (σ, ε̇) . (4.64)

Consequently, the unknown variables are now displacement and strain rates. The set of
equations (4.63) to be solved becomes





∫
Ω
BT
u σ̇ dΩ = ḟ ext.

∫
Ω
BT
ασ̇ dΩ = 0.

or





∫
Ω
BT
uσ dΩ = f ext.

∫
Ω
BT
ασ dΩ = 0.

(4.65)

This method is studied through the use of the four-node quadrilateral element in Chapter 5.

4.5. Mixed enhanced strain method

In the EAS method, imposing the orthogonality assumption (4.60) between stress and strain
leads to elimination of the discretized stress field. Kasper and Taylor [54] suggested the
mixed interpolation of the stress as an unknown variable, together with the displacement and
the enhanced strain. More details of this method can be found in [54].

Based on eqs. (4.8)-(4.10) the variational formulation of rate type for hypoplastic models
takes the following form

∫

Ω

δ (∇su̇)T σ̇ dΩ =

∫

Ω

δu̇Tḟ dΩ +

∫

∂Ωσ

δu̇T ˙̄t dA, (4.66)
∫

Ω

δε̇T [G (σ, ε̇)− σ̇] dΩ = 0, (4.67)
∫

Ω

δσ̇T [∇su̇− ε̇] dΩ = 0, (4.68)
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where the displacement rate u̇, the stress rate σ̇ and the strain rate ε̇ as independent variables.

The interpolation formulas of stress and strain in the isoparametric space read [54]

σ = β0 +Aε1(ξ,β)AT, (4.69)

ε = γ0 +
1

j
A−T [ε1(ξ,γ) +ε2(ξ,α)]A−1, (4.70)

where

β0 = Aβ̂0A
T , γ0 = A−Tγ̂0A

−1 ; (4.71)

β̂0, β, γ̂0, γ0 and α are parameters; ε1(ξ, .) and ε2(ξ, .) are chosen as the following,
respectively

ε1(ξ,γ) =

[
ηγ1 0

0 ξγ2

]
=

[
η 0

0 ξ

](
γ1

γ2

)
, (4.72)

ε2(ξ,α) =

[
ηα1 0

0 ξα2

]
=

[
η 0

0 ξ

](
α1

α2

)
, (4.73)

and satisfy the orthogonality conditions

∫ 1

−1

∫ 1

−1

ε1(.) dξdη = 0 ;

∫ 1

−1

∫ 1

−1

ε2(.) dξdη = 0 ;

∫ 1

−1

∫ 1

−1

ε1(.)ε2(.) dξdη = 0. (4.74)

The jacobianA is averaged over the element Ωe

A =
1

Ωe

∫

Ωe

J(ξ) dΩ. (4.75)

On inserting eqs. (4.69) and (4.70) into eq. (4.68) and using the orthogonality conditions
(4.74), in addition to integrating with time we have

γ0 =
1

Ωe

∫

Ωe

∇su dΩ =
1

4j0

∫

Ωe

∇su dΩ, (4.76)

as well as the mixed enhanced strain ε in terms of the nodal displacement parameters ũ and
the enhanced modes α

ε = γ0 +
1

j
A−Tε1(ξ)G

−1
gũA−1 +

1

j
A−Tε2(ξ)αA−1, (4.77)
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or in matrix notation

ε = B (ξ) ũ+Bα (ξ)α, (4.78)

where B is the strain-displacement matrix, Bα is the stress interpolation matrix, j is the
determinant of the jacobian matrix A, and j0 is the value of j at the center of element
corresponding to ξ = 0 and η = 0.

Herein, the mapping between tensors and matrices are expressed as

ε1 (ξ)β → Ē1β, (4.79)

AT(∇su− γ0)A → E3ũ, (4.80)

γ0 +
1

j
A−Tε1(ξ)G

−1
gũA−1 → B (ξ) ũ, (4.81)

1

j
A−Tε2(ξ)αA−1 → Bα (ξ)α, (4.82)

where

Ē1 =



η 0

0 ξ

0 0


 , (4.83)

g =

∫

Ω

Ē
T
1E3 dΩ, (4.84)

G =

∫

Ω

1

j
Ē

T
1E3 dΩ =

∫ 1

−1

∫ 1

−1

Ē
T
1E3 dξdη. (4.85)

Finite element approximations for displacements give

u ≈Nuũ ∇su ≈ Buũ, (4.86)

where Nu is the standard shape function of displacement and Bu is the standard strain-
displacement matrix. It should be noted that B in eq. (4.78) and Bu in eq. (4.86) are
different, however, they satisfy the following relation

∫

Ωe

BTσdΩ =

∫

Ωe

BT
uσdΩ. (4.87)

The discrete system of equations for the three fields (u̇, ε̇, σ̇) can be obtained by substituting
(4.86) and (4.78) into the remaining equations (4.66) and (4.67)
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



∫
Ω
BT
u σ̇ dΩ = ḟ ext.

∫
Ω
BT [G (σ, ε̇)− σ̇] dΩ = 0.

∫
Ω
BT
αG (σ, ε̇) dΩ. = 0.

(4.88)

If σ̇ = G (σ, ε̇) is satisfied, by use of the relation (4.87) the above equation system reduces
to





∫
Ω
BTσ̇ dΩ = ḟ ext

∫
Ω
BT
ασ̇ dΩ = 0

or





∫
Ω
BTσ dΩ = f ext

∫
Ω
BT
ασ dΩ = 0

(4.89)

which would also result from the following modified variational formulation for two inde-
pendent fields (u̇, ε̇)

∫

Ω

δε̇Tσ̇dΩ =

∫

Ω

δu̇TḟdΩ +

∫

∂Ωσ

δu̇T ˙̄tdA. (4.90)

Based on the mixed enhanced strain method the four-node quadrilateral element will be
considered in Chapter 5.

4.6. Finite element equations

Linearization of the equation systems (4.65) and (4.89) for the EAS and MES methods yields

[
Kuu Kuα

Kαu Kαα

]{
dũ

dα

}
=

{
−f 1

−f 2

}
, (4.91)

where

Kuu =

∫

Ω

BT
u

∂σ

∂ε
BudΩ ; Kuα =

∫

Ω

BT
u

∂σ

∂ε
BαdΩ ; (4.92)

Kαu =

∫

Ω

BT
α

∂σ

∂ε
BudΩ ; Kαα =

∫

Ω

BT
α

∂σ

∂ε
BαdΩ ; (4.93)

f 2 =

∫

Ω

BT
ασdΩ ; f 1 =

∫

Ω

BT
uσdΩ− f ext. (4.94)
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Invoking the second equation of (4.91) one gets

dα = −K−1
αα (f 2 +Kαudũ) , (4.95)

which can be solved at the element level. Thus, the global unknown variables are only the
displacements. Substituting (4.95) into the first equation of (4.91) we obtain

Kdũ = R, (4.96)

where

K =
(
Kuu −KuαK

−1
ααKαu

)
, (4.97)

R = −f 1 +KuαK
−1
ααf 2. (4.98)

A solution strategy for eq. (4.95) can be found in Simo and Rifai, 1990[99], Kasper and
Taylor, 1997[54]. The nonlinear system of equations (4.96) is solved by the BFGS algorithm
[127].

The tangent operator
∂σ

∂ε
in eqs. (4.92) and (4.93) can be expressed as

∂σ

∂ε
= L +N ⊗ D

‖D‖· (4.99)

It is observed that the tangent operator (4.99) is non-symmetric.

There are various ways to calculate the tangent operator due to the complicated constitutive
law (4.2). It may be directly computed by eq. (4.99) [71] or approximated by numerical
differentiation [34, 96, 44]. Alternatively, one may use the linear term as an approximation
of the tangent operator [107, 49, 83]. In this thesis, the tangent operator is approximated by
2L as proposed in [83].

Since the material behaviour is assumed to be rate-independent, the introduction of a fic-
titious time scale is necessary for a quasi-static loading process. During integration, the
numerical errors are not controlled if the stress, void ratio and tangent operator are updated
once in the time increment [49]. Thus, the various sub-time stepping algorithms are pro-
posed to overcome this drawback in literature [96, 83, 34, 44, 49]. The sub-time stepping
algorithm suggested by Nübel et al.[83] shown in Fig. 4.1 is used in the next chapter.

The flowchart for the EAS method is depicted in Fig. 4.2.
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Figure 4.1.: Flow chart of the time integration scheme with the sub-time stepping algorithm
proposed by Nübel et al., 1998[83].
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1.6 Finite element discretisation 16

�
��

�
��un, ∆un

?

1. Restore:

. αn−1, (f2)n−1, K−1
αα, Kαu

2. Compute:

. αn, J0, A = J−T
0 , F T

0

?�
�

�
�i = 1, nGauss

?

1. Restore:

. σn−1, εn−1, W n−1, en−1, E

2. Compute:

. ∆εn = (∆εu)n + (∆εen)n

. Dn, W n

3. Time integration

. σn, en, An, E

?
Compute:

Kuu, Kαu, Kuα, Kαα, f1, f2

�

6

-

?
K = Kuu −KuαK

−1
ααKαu

R = −f1 +KuαK
−1
ααf2

?

Figure 4.2.: Flow chart of the enhanced assumed strain method written in element level.
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5. Numerical examples

In this chapter the different sub-time stepping algorithms are investigated firstly. Then sev-
eral numerical examples demonstrating the capability and performance of the different finite
element formulations mentioned in Chapter 4 are presented under plane strain condition.
The numerical results are compared with the available experimental data for Hostun RF sand
and the numerical results for Karlsruhe sand on biaxial tests. Finally, the tolerance value
used for controlling the solution in biaxial test is examined. All simulations presented are
implemented with the help of the non-linear finite element code FEAP[104, 105, 103].

5.1. The sub-time stepping

We investigate the sub-time stepping algorithms proposed by Roddeman, 1997[96], Nübel et
al., 1998[83] and Fellin and Ostermann, 2002[34] in the examples of odeometer, biaxial and
simple shearing tests of the soil specimen of 1m width and 1m height [34]. One four-node
quadrilateral element based on the displacement method (Q4) is employed. The material
parameters for Karlsruhe sand is given in Table 5.3.

ϕc(
o) hs(MPa) n̄ ed0 ec0 ei0 α0 β0

30 190 0.45 0.40 0.80 1.189 0.15 1.00

Table 5.1.: Hypoplastic material parameters for Karlsruhe sand [8, 34, 51].

5.1.1. Example 1: One-dimensional compression test

In this test, a specimen has the initial conditions σy = -py = -100N/m2, σx =−50N/m2 and
the void ratio e = 0.735 at t = 0. It is compressed vertically by increasing the top pressure py
to 1000 N/m2 at t = 1.0 s and then decreasing to 600N/m2 at t = 2 s. The time increment
is 0.2 s. The geometry, boundary conditions, and numerical results are shown in Fig. 5.1.

5.1.2. Example 2: Biaxial test

A soil specimen is laterally compressed by a constant confined pressure px = 100N/m2

with the initial conditions σx = σy = -px = -100N/m2 and the void ratio e = 0.735 at t = 0.
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Figure 5.1.: Example 1: One-dimensional compression test.

The vertical prescribed displacement v of the top nodes is applied to 0.003m at t = 1.0 s

after homogeneous consolidation. The starting and maximum time increments are 0.05 s and
0.2 s, respectively. The geometry, boundary conditions, and numerical results are depicted
in Fig. 5.2.
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Figure 5.2.: Example 2: Biaxial test.

5.1.3. Example 3: Simple shearing

A soil specimen is vertically compressed by a constant confined pressure py = 100N/m2

with the initial conditions σx = σy = -100N/m2 and the void ratio e = 0.735 at t = 0.
The horizontal prescribed displacement u of the top nodes is applied to 0.01m at t = 1.0 s



5.1. The sub-time stepping 51

after homogeneous consolidation. The starting and maximum time increments are 0.01 s and
0.1 s, respectively. The geometry, boundary conditions, and numerical results are illustrated
in Fig. 5.3.
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Figure 5.3.: Example 3: Simple shear test.

5.1.4. Remarks

Let (1), (2) and (3) denote the time integration schemes proposed by Roddeman, 1997[96],
Nübel et al., 1998[83] and Fellin and Ostermann, 2002[34], respectively. As can be seen
in Figs. 5.2 and 5.3, (2) and (3) give better results than (1). Some other examples such as
biaxial tests presented in Section 5.2 confirm that (2) works well whereas the others interrupt
as the limit-load-state reaches. Thus, (2) is used in this thesis.

For the time integration (2), Nübel et al., 1998 used the forward Euler method. They further
introduced an appropriate algorithm to handle the admissible states. If the void ratio e is
larger than the maximum void ratio ei or smaller than the minimum void ratio ed, it is as-
signed ei or ed, respectively. In addition, if an inadmissible state such as trσ > 0 is reached,
the stress, the tangent operator and the void ratio are updated by tension cut. Herein the lin-
ear term 2L, which is symmetric, is considered as an approximation of the tangent operator
(4.99).

The time integration (1) is based upon the forward Euler method while the second-order ex-
trapolated Euler method is employed in (3). The admissible stress state is handled in both
time integration schemes. If an inadmissible state such as trσ > 0 or e > ed is reached at
the end of the time step, the step is rejected and done again with half of the step size. While
the unsymmetric tangent operator (4.99) is approximated by numerical differential at the end
of time increment in (1), a super vector including the stress, the void ratio and the tangent
operator is solved numerically in (2).
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5.2. Types of elements

Different kinds of elements are used in the next examples. They are summarized in Fig. 5.4.
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Table 1 Notation of element type

Element type Method Number of Gauss points Notation
MES1 2x2 MES
EAS2 2x2 EAS
Mix3 2x2 Mixed-Q4
Disp4 2x2 Q4
Mix 3x3 Mixed-Q8
Disp 3x3 Q8
Mix 1 Mixed-CST
Disp 1 CST

MES1: Mixed enhanced strain
EAS2: Enhanced assumed strain
Mix3: Three-field mixed formulation
Disp4: Standard displacement

Copyright line will be provided by the publisher

Figure 5.4.: Notation of element type.

5.2.1. Example 4

A specimen of 0.1025m width and 0.3395m height is laterally compressed by a constant
confined pressure of 100 kPa. A prescribed vertical displacement v of the top nodes varies
from 0 to 0.02m at t = 2 s after isotropical consolidation. The material in the indicated
middle left part of the sample (size 0.0566m×0.0513m) is equipped with an initially higher
void ratio of 0.6424×1.1, whereas the void ratio is 0.6424 elsewhere as depicted in Fig. 5.5.
The calculations were performed under gravity. The material parameters are given in Table
9.1 for Hostun RF sand. It should be noted that the material parameters presented here differs
slightly from the material paramters originally calibrated by Herle [45, 46] in order to fit the
experimentalal data in this example.

ϕc(
o) hs(MPa) n̄ ed0 ec0 ei0 α0 β0

34 1000 0.29 0.63 1.00 1.15 0.134 1.35

Table 5.2.: Hypoplastic material parameters for Hostund RF sand [45, 46, 110].
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The initial conditions are summarized as follows

σy = σc + γd y, (5.1)

σx = σc +K0σy, (5.2)

σxy = σyx = 0, (5.3)

where the confined pressure σc = −100 kPa; the pressure coefficient at rest K0 = 0.4408;
the vertical coordinate y is measured from the top of the specimen; the initial density γd =

16.135KN/m3; σx and σy are the horizontal and vertical normal stresses, respectively; σxy
is the horizontal shear stress.

s : confined pressurec

v

Displacement control

Figure 5.5.: Example 4: Biaxial test. Geometry and boundary conditions.

The test is performed with two different discretizations of the sample: 12 and 192 ele-
ments. As can be seen in Figs. 5.6a and 5.7a, the stress-strain curves behave identically
for v < 0.0097m (εy < 2.8645 %). The localization is delayed until v ≈ 0.0097mm

(εy ≈ 2.8645 %), then the performance of the diverse finite element methods starts to dif-
fer because the softening zone is now prone to element type. The smaller the number in
the legends of Figs. 5.6a and 5.7a is, the closer to the experiment data of the shf40 sample
(Hammad, 1991[43], Desrues et al, 2000[28]) the numerical solution is.

Q4, Mixed-Q4 and Mixed-Q8 elements face inherent limitations in the presence of localized
deformations. Mesh-dependenced response for Q4 and Mixed-Q4 elements becomes evi-
dent. By considering post-peak behaviour the Q8 element behaves better than the Mixed-Q8
element.

The solutions by using MES, EAS, CST and Mixed-CST elements are in rather good agree-
ment with the experiment [28, 43], thus showing the potential of the enhanced finite element
methods and the quadrilateral finite elements composed of four diagonally crossed triangles
in capturing localization. It is also observed that the numerical results obtained from CST
and Mixed-CST elements are identical. Hence, CST element may be employed instead of
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Mixed-CST element whose finite element formulation is more complicated than the CST
element’s finite element formulation.
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Figure 5.6.: Example 4: Biaxial test (12 elements).
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Figure 5.7.: Example 4: Biaxial test (192 elements).

The volumetric strain vs. axial strain curves are depicted in Figs. 5.6b and 5.7b. It is shown
that the obtained numerical results do not match experimental results.
It is very interesting to see the performance of the different finite element formulations by
considering the deformation shape of the sample (Figs. 5.8 and 5.9) in comparison with the
experiment [43]. The deformation shapes prior to the bifurcation point are similar. After this
point, the behaviour of every element type begins to differ. As can be seen, MES, EAS and
QM6 elements are able to model shear bands whereas the Q4 element is not a good choice
to capture effects of strain localization.



5.2. Types of elements 55

Time = 1.83E+00Time = 1.83E+00

-8.89E-03

-7.84E-03

-6.79E-03

-5.73E-03

-4.68E-03

-3.63E-03

-2.58E-03

-1.52E-03

-4.73E-04

 5.79E-04

 1.63E-03

 2.68E-03

-9.94E-03

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00 Time = 1.83E+00Time = 1.83E+00

-9.06E-03

-7.99E-03

-6.91E-03

-5.84E-03

-4.76E-03

-3.68E-03

-2.61E-03

-1.53E-03

-4.58E-04

 6.18E-04

 1.69E-03

 2.77E-03

-1.01E-02

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00

a. shf40 sample [43]. b. MES element. c. EAS element.

Time = 1.83E+00Time = 1.83E+00

-7.68E-03

-6.67E-03

-5.67E-03

-4.66E-03

-3.66E-03

-2.65E-03

-1.65E-03

-6.42E-04

 3.63E-04

 1.37E-03

 2.37E-03

 3.38E-03

-8.68E-03

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00Time = 1.83E+00Time = 1.83E+00

-7.68E-03

-6.67E-03

-5.67E-03

-4.66E-03

-3.66E-03

-2.65E-03

-1.65E-03

-6.42E-04

 3.63E-04

 1.37E-03

 2.37E-03

 3.38E-03

-8.68E-03

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00 Time = 1.83E+00Time = 1.83E+00

-3.61E-03

-2.80E-03

-1.98E-03

-1.16E-03

-3.48E-04

 4.67E-04

 1.28E-03

 2.10E-03

 2.91E-03

 3.73E-03

 4.55E-03

 5.36E-03

-4.43E-03

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00 Time = 1.83E+00Time = 1.83E+00

-8.97E-03

-7.92E-03

-6.86E-03

-5.80E-03

-4.74E-03

-3.68E-03

-2.62E-03

-1.57E-03

-5.08E-04

 5.50E-04

 1.61E-03

 2.67E-03

-1.00E-02

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00

d. Mixed-Q8 element. e. Mixed-Q4 element. f. Mixed-CST element.

Time = 1.83E+00Time = 1.83E+00

-2.27E-04

 8.21E-04

 1.87E-03

 2.92E-03

 3.96E-03

 5.01E-03

 6.06E-03

 7.11E-03

 8.16E-03

 9.20E-03

 1.03E-02

 1.13E-02

-1.28E-03

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00 Time = 1.83E+00Time = 1.83E+00

-3.16E-03

-2.50E-03

-1.84E-03

-1.17E-03

-5.11E-04

 1.51E-04

 8.13E-04

 1.48E-03

 2.14E-03

 2.80E-03

 3.46E-03

 4.13E-03

-3.82E-03

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00 Time = 1.83E+00Time = 1.83E+00

-8.97E-03

-7.92E-03

-6.86E-03

-5.80E-03

-4.74E-03

-3.68E-03

-2.62E-03

-1.57E-03

-5.08E-04

 5.50E-04

 1.61E-03

 2.67E-03

-1.00E-02

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00

g. Q8 element. h. Q4 element. i. CST element.

Figure 5.8.: Example 4: Comparison of the different finite element methods: Distribution of
the horizontal displacement at v = 1.8337cm (12 elements-tol=1.E-18).



56 5. Numerical examples

Time = 1.83E+00Time = 1.83E+00

 2.29E-04

 1.31E-03

 2.39E-03

 3.47E-03

 4.55E-03

 5.63E-03

 6.71E-03

 7.79E-03

 8.87E-03

 9.95E-03

 1.10E-02

 1.21E-02

-8.51E-04

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00 Time = 1.83E+00Time = 1.83E+00

 2.54E-04

 1.35E-03

 2.45E-03

 3.54E-03

 4.64E-03

 5.74E-03

 6.83E-03

 7.93E-03

 9.02E-03

 1.01E-02

 1.12E-02

 1.23E-02

-8.42E-04

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00

a. shf40 sample [43]. b. MES element. c. EAS element.

Time = 1.83E+00Time = 1.83E+00

-9.07E-03

-8.02E-03

-6.97E-03

-5.91E-03

-4.86E-03

-3.81E-03

-2.75E-03

-1.70E-03

-6.45E-04

 4.08E-04

 1.46E-03

 2.51E-03

-1.01E-02

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00 Time = 1.83E+00Time = 1.83E+00

-8.55E-03

-7.53E-03

-6.51E-03

-5.49E-03

-4.47E-03

-3.45E-03

-2.43E-03

-1.41E-03

-3.93E-04

 6.27E-04

 1.65E-03

 2.67E-03

-9.57E-03

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00 Time = 1.83E+00Time = 1.83E+00

 2.01E-04

 1.27E-03

 2.34E-03

 3.41E-03

 4.48E-03

 5.55E-03

 6.62E-03

 7.69E-03

 8.76E-03

 9.83E-03

 1.09E-02

 1.20E-02

-8.68E-04

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00

d. Mixed-Q8 element. e. Mixed-Q4 element. f. Mixed-CST element.

Time = 1.83E+00Time = 1.83E+00

-9.39E-03

-8.30E-03

-7.20E-03

-6.10E-03

-5.00E-03

-3.91E-03

-2.81E-03

-1.71E-03

-6.13E-04

 4.84E-04

 1.58E-03

 2.68E-03

-1.05E-02

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00 Time = 1.83E+00Time = 1.83E+00

-7.57E-03

-6.46E-03

-5.36E-03

-4.26E-03

-3.16E-03

-2.05E-03

-9.51E-04

 1.51E-04

 1.25E-03

 2.36E-03

 3.46E-03

 4.56E-03

-8.67E-03

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00 Time = 1.83E+00Time = 1.83E+00

 2.01E-04

 1.27E-03

 2.34E-03

 3.41E-03

 4.48E-03

 5.55E-03

 6.62E-03

 7.69E-03

 8.76E-03

 9.83E-03

 1.09E-02

 1.20E-02

-8.68E-04

_________________ DISPLACEMENT  1 

Time = 1.83E+00Time = 1.83E+00

g. Q8 element. h. Q4 element. i. CST element.

Figure 5.9.: Example 4: Comparison of the different finite element methods: Distribution of
the horizontal displacement at v = 1.8337cm (192 elements-tol=1.E-18).
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5.2.2. Example 5

A specimen of 0.04mwidth and 0.14m height is laterally compressed by a constant confined
pressure of 400 kPa. A prescribed vertical displacement v of the top nodes varies from 0

to 0.01m at t = 1 s after isotropical consolidation. The material in the indicated middle
left part of the sample (size 0.02m× 0.02m) is equipped with an initially higher void ratio
of 0.45, whereas the void ratio is 0.40 elsewhere as depicted in Fig. 5.10. The calculations
were performed without gravity. The material parameters given in Table 5.3 for Karsruhe
sand is valid for higher pressures and proposed by Bauer, 1996[8]. The other set of material
parameters suggested by Herle, 1997[45, 46] is valid for smaller pressures.

s : confined pressurec

v

Displacement control

Figure 5.10.: Example 5: Biaxial test. Geometry and boundary conditions.

ϕc(
o) hs(MPa) n̄ ed0 ec0 ei0 α0 β0

30 190 0.45 0.40 0.80 1.189 0.15 1.00

Table 5.3.: Hypoplastic material parameters for Karsruhe sand [8, 34, 51].

We consider first the discretization of the domain in 8 × 28 elements. As shown in Fig.
5.11, the responses are rather different to one another when considering the post-critical
equilibrium branches. The softening region is prone to element type. It should be noted that
the present results employing the time integration scheme suggested by Nübel et al,1998[83]
are compared with the numerical results using the time integration schemes proposed by
Fellin and Ostermann, 2002[34], Roddeman, 1997[96]. As expected, the enhanced finite
element methods and the quadrilateral finite elements composed of four diagonally crossed
triangles make the post-peak behaviour softer than the others.

The numerical results shown in Fig. 5.12 are obtained with four different discretizations of
the sample: 2 × 7, 4 × 14, 8 × 21 Q8 and Mixed-Q8 elements, 8 × 28 Q4 and Mixed-Q4
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Figure 5.11.: Example 5: Biaxial test (8x28 elements).

elements, 8× 28× 4 CST and Mixed-CST elements. The present results illustrate the mesh-
dependent response due to the lack of an intrinsic characteristic length scale not allowing
continuation of the analysis in post-localized behaviour.
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Figure 5.12.: Example 5: Biaxial test.

The distribution of the void ratio and the deformation shape are depicted in Figs. 5.13 and
5.14. As observed, a large void ratio is produced inside the shear band. Moreover there
exist two shear bands simultaneously when using Fellin and Ostermann’s time integration
scheme (Figs. 5.13a and 5.14a). The present results show that two shear bands appeare
simultaneously only when the tolerance value is chosen as 1.E−6 (see Section 5.3 and Fig.
5.16). If the tolerance value is smaller than 1.E−6, either only one shear band occurs or
one is more dominant than the other. The emergence of the shear bands in the latter case is
similar to Roddeman’s result (Figs. 5.13b and 5.14b).
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exact solution (200 load increments) and the solution with automatic load incrementation are
plotted. Each circle denotes a load increment.

One can see that in the loading branch, the maximum allowed load increment was used, see
Figure 12. Near the peak, the load increment was decreased by the UMAT, then increased again
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(Fellin and Ostermann, 2002[34]).

b. 8× 28 Q4 elem

(Roddeman, 1997[34]).
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Figure 5.13.: Example 5: Comparison of the different finite element methods: Distribution
of the the void ratio at v = 1.0 cm (tol=1.E-18).
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exact solution (200 load increments) and the solution with automatic load incrementation are
plotted. Each circle denotes a load increment.

One can see that in the loading branch, the maximum allowed load increment was used, see
Figure 12. Near the peak, the load increment was decreased by the UMAT, then increased again
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a. Q4 elem (Fellin and

Ostermann, 2002[34]).

b. Q4 elem

(Roddeman, 1997[34]).
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Figure 5.14.: Example 5: Comparison of the different finite element methods: Distribution
of the void ratio at v = 1.0 cm (8× 28 elements-tol=1.E-18).
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5.3. Tolerance

The non-linear system of equations (4.15), (4.65), and (4.89) is typically solved by Newton’s
method. Iterations are required and repeated until a norm of the solution is less than some
tolerance. The tolerance used for controlling the solution in FEAP [105] is

Ei = dũi.Ri, (5.4)

with convergence assumed when

Ei < tol.E0, (5.5)

where tol is the input tolerance value, Ri is the residual force and dũi is the increment
solution defined in eq. (4.91).

Now we investigate the tolerance value in the example 5 (see Section 5.2.2). As can be
seen in Fig. 5.15, the tolerance has a minor effect not only in the post-peak behaviour
of the global load-displacement curve but also in the volumetric strain-axial strain curve.
However the distribution of the horizontal displacement as depicted in Fig. 5.16 depends on
the tolerance value. When the tolerance value is smaller than 1.E-18, the distribution of the
vertical displacement is exactly identical.
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Figure 5.15.: Example 5: Biaxial test: Comparison of the different tolerance values of tol.
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Table 5.4 depicts the change of the direction of shear bands with respect to the tolerance
value.

Number of elements Type of element Tolerance Shear band direction
8× 28 Q4 1.E-8 Type 2
8× 28 Q4 1.E-18 Type 1 + 2
8× 28 Mixed-Q4 1.E-8 Type 1
8× 28 Mixed-Q4 1.E-18 Type 1

2× 7 Q8 1.E-8 Type 1
2× 7 Q8 1.E-18 Type 1 + 2
4× 14 Q8 1.E-20 Type 1 + 2
8× 21 Q8 1.E-8 Type 1
8× 21 Q8 1.E-18 Type 2
2× 7 Mixed-Q8 1.E-18 -
4× 14 Mixed-Q8 1.E-20 Type 1 + 2
8× 21 Mixed-Q8 1.E-18 Type 1 + 2

896 CST 1.E-6 Type 1+2
896 CST 1.E-8 Type 1
896 CST 1.E-10 Type 1
896 CST 1.E-12 Type 2
896 CST 1.E-14 Type 1
896 CST 1.E-16 Type 1
896 CST 1.E-18 Type 1
896 CST 1.E-20 Type 1
896 Mixed-Q8 1.E-12 Type 2
896 Mixed-Q8 1.E-18 Type 1

Type 1: The left middle to the right down direction.
Type 2: The left middle to the right up direction.
The bold symbol means that the mentioned direction dominates.

Table 5.4.: Example 5: Orientation of shear bands.



5.3. Tolerance 63

-2.62E-03

-1.99E-03

-1.36E-03

-7.34E-04

-1.06E-04

 5.23E-04

 1.15E-03

 1.78E-03

 2.41E-03

 3.04E-03

 3.66E-03

 4.29E-03

-3.25E-03

_________________ DISPLACEMENT  1 

Time = 1.00E+00Time = 1.00E+00Time = 1.00E+00Time = 1.00E+00

-2.62E-03

-1.99E-03

-1.36E-03

-7.34E-04

-1.06E-04

 5.23E-04

 1.15E-03

 1.78E-03

 2.41E-03

 3.04E-03

 3.66E-03

 4.29E-03

-3.25E-03

_________________ DISPLACEMENT  1 

Time = 1.00E+00Time = 1.00E+00

-4.12E-03

-2.30E-03

-4.74E-04

 1.35E-03

 3.17E-03

 4.99E-03

 6.81E-03

 8.63E-03

 1.05E-02

 1.23E-02

 1.41E-02

 1.59E-02

-5.94E-03

_________________ S T R E S S   1 

Time = 1.00E+00Time = 1.00E+00

-5.54E-03

-4.91E-03

-4.28E-03

-3.64E-03

-3.01E-03

-2.38E-03

-1.74E-03

-1.11E-03

-4.80E-04

 1.53E-04

 7.86E-04

 1.42E-03

-6.17E-03

_________________ DISPLACEMENT  1 

Time = 1.00E+00Time = 1.00E+00

-5.70E-03

-5.06E-03

-4.43E-03

-3.79E-03

-3.16E-03

-2.52E-03

-1.89E-03

-1.25E-03

-6.15E-04

 2.06E-05

 6.56E-04

 1.29E-03

-6.33E-03

_________________ DISPLACEMENT  1 

Time = 1.00E+00Time = 1.00E+00

a. Tolerance = 1.E-6, 1.E-8 and 1.E-10, respectively.

 1.31E-04

 7.71E-04

 1.41E-03

 2.05E-03

 2.69E-03

 3.33E-03

 3.97E-03

 4.61E-03

 5.25E-03

 5.89E-03

 6.53E-03

 7.17E-03

-5.10E-04

_________________ DISPLACEMENT  1 

Time = 1.00E+00Time = 1.00E+00 Time = 1.00E+00Time = 1.00E+00

-5.83E-03

-5.19E-03

-4.55E-03

-3.91E-03

-3.27E-03

-2.63E-03

-1.99E-03

-1.35E-03

-7.15E-04

-7.59E-05

 5.64E-04

 1.20E-03

-6.47E-03

_________________ DISPLACEMENT  1 

Time = 1.00E+00Time = 1.00E+00 Time = 1.00E+00Time = 1.00E+00

-5.86E-03

-5.22E-03

-4.58E-03

-3.94E-03

-3.30E-03

-2.66E-03

-2.02E-03

-1.38E-03

-7.39E-04

-9.86E-05

 5.42E-04

 1.18E-03

-6.50E-03

_________________ DISPLACEMENT  1 

Time = 1.00E+00Time = 1.00E+00

b. Tolerance = 1.E-12, 1.E-14 and 1.E-16, respectively.

Time = 1.00E+00Time = 1.00E+00

-5.88E-03

-5.24E-03

-4.60E-03

-3.96E-03

-3.32E-03

-2.68E-03

-2.04E-03

-1.40E-03

-7.55E-04

-1.14E-04

 5.27E-04

 1.17E-03

-6.52E-03

_________________ DISPLACEMENT  1 

Time = 1.00E+00Time = 1.00E+00

-5.88E-03

-5.24E-03

-4.60E-03

-3.96E-03

-3.32E-03

-2.68E-03

-2.04E-03

-1.40E-03

-7.55E-04

-1.14E-04

 5.27E-04

 1.17E-03

-6.52E-03

_________________ DISPLACEMENT  1 

Time = 1.00E+00Time = 1.00E+00

c. Tolerance = 1.E-18 and 1.E-20, respectively.

Figure 5.16.: Example 5: Biaxial test: Comparison of the different tolerance value tol: Dis-
tribution of the vertical displacement at v = 1.0 cm (8×28×4 CST elements).
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6. Strong discontinuity analysis for hypoplastic models

Hypoplastic models (Bauer, 1996[8], Gudehus,1996[38], Wolffersdorff, 1996[113]) have
been developed to describe the mechanical behaviour of granular materials and they are ex-
pressed as a single constitutive equation of the rate type. In contrast to elasto-plastic models,
a decomposition of deformation into elastic and plastic parts is not required. Consequently,
an explicit definition of yield surface, plastic potential, flow rule and consistency condition
is not introduced. However, the displacement and mixed finite element formulations of shear
localization based on these models presented in Chapter 4 exhibit mesh dependence through
the numerical results as shown in Chapter 5. To remove mesh dependence, the non-local
[106, 110, 71] and polar hypoplastic models [107, 71, 49, 84] as extensions of the classical
models were suggested.

In recent years, a new methodological problem based on the concept of strong discontinuity
has been developed (Simo et al., 1993[98], Garikipati, 1996[36], Oliver, 2002[87]). In this
context, the displacements are jumps across discontinuity surface. The strain field, therefore,
consists of a regular part which is continuous and a singular part which is unbounded due
to the appearance of the Dirac delta distribution. The so-called strong discontinuity analysis
examines the continuum constitutive models compatible with unbounded strains under cer-
tain conditions [88, 86].

In this part of this thesis, strong discontinuity analysis for hypoplastic models at small de-
formation is proposed. The theory is predicated upon the assumption that the normal move-
ments are much smaller than those in the tangent direction within a shear band (see Section
2.1), thus, they can be neglected.

6.1. Kinematics

Let S be a discontinuity surface in a body Ω across which the displacement field u is dis-
continuous. The orientation of the discontinuity surface, or band, is defined by a unit normal
vector n which could vary from point to point on S.

The displacement u is assumed in the following form [89]

u = ¯̄u(x, t) +HS(x) [[u]] (x, t), (6.1)
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where ¯̄u is the continuous part of u and [[u]] is the jump discontinuity on the surface S
separating the subdomains Ω− and Ω+ of Ω as shown in Fig. 6.1, HS is the unit ramp
function defined by

HS =





0 x ∈ Ω−,

1 x ∈ Ω+,
ξ−ξ−
ξ+−ξ− x ∈ Ωh → S.

(6.2)

n

t
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h
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e

h
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1
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Figure 6.1.: Regularized strong discontinuity [87]

The displacement rate u̇ reads

u̇ = ˙̄̄u(x, t) +HS(x) [[u̇]] (x, t). (6.3)

The associated total strain rate tensor resulting from (6.3) consists of a regular part being
continuous and a singular part being unbounded [89]:

ε̇ = ∇s ˙̄̄u+HS∇s ˙[[u]] + µS
1

h

(
˙[[u]]⊗ n

)s
,

= ˙̄̄ε︸︷︷︸
bounded

+µS
1

h

(
˙[[u]]⊗ n

)s

︸ ︷︷ ︸
unbounded when h→0

, (6.4)
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where µS is a collocation function on Ωh

µS(x) =

{
1 ∀x ∈ Ωh,

0 ∀x /∈ Ωh.
(6.5)

In infinitesimal strain theory, no distinction between the stress and strain tensors defined with
respect to the reference and deformed configuration of the body needs to be made. Conse-
quently, the stretching tensor D being the symmetric part of the spatial velocity gradient is
equal to the strain rate tensor ε̇:

D = ε̇ = ∇s ˙̄̄u+HS∇s ˙[[u]] + µS
1

h

(
˙[[u]]⊗ n

)s
,

= ˙̄̄ε︸︷︷︸
bounded

+µS
1

h

(
˙[[u]]⊗ n

)s

︸ ︷︷ ︸
unbounded when h→0

. (6.6)

The spin tensorW , the skew-symmetric part of the spatial velocity gradient defined by (3.4),
is given by

W =
(
∇ ˙̄̄u
)skew

+HS

(
∇ ˙[[u]]

)skew

︸ ︷︷ ︸
bounded

+µS
1

h

(
˙[[u]]⊗ n

)skew

︸ ︷︷ ︸
unbounded when h→0

, (6.7)

where (•)skew is the skew-symmetric part of (•).

Let DΩ\S and W Ω\S denote the stretching tensor and the spin tensor, respectively, at the
neighbouring point on the continuum part of the body Ω\S corresponding to µS(x) = 0.
From (6.6) and (6.7) we have

DΩ\S = ˙̄̄ε = ∇s ˙̄̄u+HS∇s ˙[[u]], (6.8)

W Ω\S =
(
∇ ˙̄̄u
)skew

+HS

(
∇ ˙[[u]]

)skew

. (6.9)

Similarly, the stretching tensorDS and the spin tensor W S at the given point of the discon-
tinuity surface S corresponding to µS(x) = 1 are given by, respectively,

DS = ˙̄̄ε+
1

h

(
˙[[u]]⊗ n

)s
, (6.10)

W S =
(
∇ ˙̄̄u
)skew

+HS

(
∇ ˙[[u]]

)skew

+
1

h

(
˙[[u]]⊗ n

)skew

. (6.11)

Thus, the jump of the stretching tensor D and the spin tensor W in the localized zone are
presented as follows, respectively

[[D]] = DS −DΩ\S =
1

h
([[u̇]]⊗ n)s , (6.12)

[[W ]] = W S −W Ω\S =
1

h
([[u̇]]⊗ n)skew . (6.13)
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Based on eq. (6.6) the norm of the strain rate has the following form

‖D‖ = ˙‖ε‖ = (ε̇ : ε̇)1/2 ,

=

(
˙̄̄ε : ˙̄̄ε+ 2˙̄̄ε : µS

1

h

(
˙[[u]]⊗ n

)s

+ µS
1

h2

(
˙[[u]]⊗ n

)s
:
(

˙[[u]]⊗ n
)s)1/2

. (6.14)

By substituting µS = 0 into eq. (6.14) we obtain the norm of the strain rate
∥∥DΩ\S

∥∥ in Ω\S

∥∥DΩ\S
∥∥ =

(
˙̄̄ε : ˙̄̄ε

)1/2

. (6.15)

When the bandwidth h tends to 0, the concept of strong discontinuity is recovered [90]

lim
h→0

1

h
= δhS , (6.16)

and the first and second terms in eq. (6.14) are rather small in comparison with the third one,
hence, they can be neglected. On inserting µS = 1 into eq. (6.14) we get the norm of the
strain rate ‖DS‖ in S:

‖DS‖ ≈
1

h

∥∥∥
(

˙[[u]]⊗ n
)s∥∥∥ . (6.17)

Let us define λ0 by

λ0 = ‖DS‖ −
∥∥DΩ\S

∥∥ . (6.18)

Because
∥∥DΩ\S

∥∥ (6.15) is much smaller than ‖DS‖ (6.17) as h tends to zero, we can obmit∥∥DΩ\S
∥∥. Eq. (6.18) becomes

λ0 =
∥∥DΩ\S

∥∥− ‖DS‖ ≈ ‖DS‖ ≈
1

h

∥∥∥
(

˙[[u]]⊗ n
)s∥∥∥ . (6.19)

6.2. Governing equations

Let ∂Ωu ⊂ ∂Ω and ∂Ωσ ⊂ ∂Ω be the boundaries subjected to the usual essential and natural
boundary conditions, respectively. The governing equations can be written as

divσ + f = 0 in Ω\S, (6.20)

u = ū in Ωu, (6.21)

t̄ = σν in Ωσ, (6.22)

σS n = σΩ\S n in S, (6.23)
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where f is the body force (per unit volume); σ is the Cauchy stress; σS is the Cauchy stress at
a given material point of the discontinuity surface S and σΩ\S is the stress at a neighbouring
point on the continuum part of the body Ω\S; ū and t̄ are the prescribed displacement and
traction vectors, respectively; ν is the outward normal unit vector to the boundary ∂Ω; n is
the unit normal to S pointing to Ω+.

If the emergence of shear bands does not occur, that is, the displacement is continuous, then
eq. (6.23) is satisfied identically, and the governing equations of the problems involving
strong discontinuities reduce to the form in classical problems.

6.3. Strong discontinuity analysis

6.3.1. Traction continuity - Stress boundedness

Let τ S and τΩ\S be the traction vectors in S and Ω\S, respectively. The traction continuity
conditions across S read by recalling eq. (6.23)

τ S = σS n, (6.24)

τΩ\S = σΩ\S n, (6.25)

τ S = τΩ\S. (6.26)

From eqs. (6.24-6.26) we obtain

[[τ ]] = σS n− σΩ\S n = [[σ]] n = 0, (6.27)

where

[[σ]] = σS − σΩ\S. (6.28)

At a neighbouring point on the continuum part of the body Ω\S, the strain, the strain rate
and the void ratio are bounded. Thus, the stress σΩ\S and the stress rate σ̇Ω\S are bounded.
The unit normal vector n is bounded. Following eqs. (6.24)-(6.26) the tractions τΩ\S in
Ω\S and τ S in S are bounded. Consequently, the stress σS , the stress rate σ̇S in S and the
stress jump [[σ]] are bounded (see also in Oliver, 2002[87]).

n → bounded, (6.29)

σΩ\S , σ̇Ω\S → bounded, (6.30)

σS , σ̇S → bounded, (6.31)

[[σ]] = σS − σΩ\S → bounded, (6.32)

τΩ\S = σΩ\S n → bounded, (6.33)

τ S = σS n → bounded. (6.34)
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6.3.2. Strong discontinuity equation

6.3.2.1. Displacement jump

Let us recall the following general form for the K-hypoplastic constitutive equations (see eq.
(3.31)):

◦
σ = H(σ, ε̇, e) = H(σ,D, e) = L(σ, e) : D +N (σ, e) ‖D‖ , (6.35)

where the objective co-rotational (Jaumann) stress rate
◦
σ defined by (3.32)

◦
σ = σ̇ + σW −Wσ. (6.36)

By using eqs. (6.35), (6.12) and (6.18) the jump of
◦
σ may be taken in the following form

[[
◦
σ
]]

=
◦
σS −

◦
σΩ\S = L : [[D]] +Nλ0. (6.37)

From eq. (6.27) the rate of the traction vector reads

[[τ̇ ]] = [[σ̇]]n = 0, (6.38)

where

[[σ̇]] = σ̇S − σ̇Ω\S. (6.39)

Substituting (6.36) and (6.39) into (6.38) we have

[[
◦
σ
]]
n+

{
−σSW S + σΩ\SW Ω\S

)
n+

(
W SσS −W Ω\SσΩ\S

}
n = 0. (6.40)

Introducing the following relations

σSW S − σΩ\SW Ω\S = σS [[W ]] + [[σ]]W Ω\S, (6.41)

W SσS −W Ω\SσΩ\S = [[W ]]σS +W Ω\S [[σ]] , (6.42)

we can rewrite eq. (6.40) as

[[
◦
σ
]]
n− σS [[W ]]n+ [[W ]]σSn+ [[σ]]W Ω\Sn+W Ω\S [[σ]]n = 0, (6.43)
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where [[σ]] and [[W ]] are defined by (6.28) and (6.13), respectively.

The last term in eq. (6.43) is vanished due to the traction continuity condition (6.27), thus,
eq. (6.43) becomes

[[
◦
σ
]]
n− σS [[W ]]n+ [[W ]]σSn+ [[σ]]W Ω\Sn = 0. (6.44)

It is observed that the last term in eq. (6.44) is bounded because of eq. (6.9) as well as the
conditions (6.29) and (6.32)

[[σ]]W Ω\Sn → bounded, (6.45)

and rather small as the bandwidth h tends to zero. Therefore, for strong discontinuity analysis
eq. (6.44), in addition to eq. (6.37), can be rewritten as

(L : [[D]])n+ λ0Nn− σS [[W ]]n+ [[W ]]σSn = 0, (6.46)

which is as identical as the equation for weak discontinuity analysis [9, 121].

Substituting (6.12) and (6.13) into (6.46) leads to

1

h

{
1

2
[L : ([[u̇]]⊗ n+ n⊗ [[u̇]])]n − 1

2
[σS ([[u̇]]⊗ n− n⊗ [[u̇]])]n

+
1

2
[([[u̇]]⊗ n− n⊗ [[u̇]])σS]n

}

+ λ0Nn = 0. (6.47)

After rearrangment the terms we get the following system of equations

1

h
Ā [[u̇]] = −λ0Nn, (6.48)

where

Ā [[u̇]] =
1

2
[L : ([[u̇]]⊗ n+ n⊗ [[u̇]])]n− 1

2
[σS ([[u̇]]⊗ n− n⊗ [[u̇]])]n

+
1

2
[([[u̇]]⊗ n− n⊗ [[u̇]])σS]n, (6.49)

or under index

Ājk [[u̇]]k =

{
niLijklnl −

1

2
[σjk + niσijnk] +

1

2
[nrσrmnmδjk + niσiknj]

}
[[u̇]]k .

(6.50)
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Let us suppose that Ā is nonsingular. The solution of the system of equations (6.48) gives

1

h
[[u̇]] = −λ0Ā

−1
Nn. (6.51)

Let us define c by

c(n,σ, e) = −Ā−1
(n,σ, e)N (σ, e)n, (6.52)

which leads to the alternative form of eq. (6.51)

1

h
[[u̇]] = λ0c. (6.53)

On inserting (6.19) into (6.53) we have

1

h
[[u̇]] =

1

h

∥∥∥
(

˙[[u]]⊗ n
)s∥∥∥ c. (6.54)

Let us consider the term ‖([[u̇]]⊗ n)s‖

‖([[u̇]]⊗ n)s‖ =
1

2
‖[[u̇]]⊗ n+ n⊗ [[u̇]]‖

=
1

2

√
2 ‖[[u̇]]‖2 + 2 ([[u̇]] .n)2. (6.55)

According to the assumption that the normal movements are much smaller than those in the
tangent direction within a shear band, we obtain

[[u̇]] .n = 0. (6.56)

On inserting (6.56) into (6.55) we have

‖([[u̇]]⊗ n)s‖ =
1√
2
‖[[u̇]]‖ . (6.57)

Thus, eq. (6.54) can be rewritten as

[[u̇]] = − 1√
2
c ‖[[u̇]]‖. (6.58)

Besides, we can obtain the following result from eq. (6.58)

‖c‖ =
√

2. (6.59)
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Substituting (6.58) into (6.56) yields

c.n = 0. (6.60)

Equations (6.58) and (6.60), in view of (6.52), provides the jump of [[u̇]] in terms of the
stress σS , the void ratio eS (see section 6.3.2.3) and the normal n.

6.3.2.2. Void ratio

Let us recall the rate of the void ratio defined by (3.47)

ė = (1 + e)trD. (6.61)

The rate of the void ratio in the discontinuity surface S, in addition to eq. (6.10), can be
expressed as

ė = (1 + e) trDS = (1 + e) tr

(
˙̄̄ε+

1

h
([[u̇]]⊗ n)s

)
. (6.62)

As h tends to zero, we have

lim
h→0

hė = lim
h→0

(1 + e)
[
trh ˙̄̄ε+ tr ([[u̇]]⊗ n)s

]
. (6.63)

If the void ratio in S is bounded, eq. (6.63) becomes

lim
h→0

hė
︸ ︷︷ ︸

0

= lim
h→0

(1 + e)trh ˙̄̄ε
︸ ︷︷ ︸

0

+ lim
h→0

(1 + e)tr ([[u̇]]⊗ n)s , (6.64)

which leads to

tr ([[u̇]]⊗ n)s = [[u̇]] .n = 0. (6.65)

The condition (6.65) is actually the assumption (6.56). It means that the void ratio is bounded
if only if eq. (6.65) is satisfied.

Substituting (6.65) into (6.62) we obtain

ė = (1 + e) tr˙̄̄ε. (6.66)

From eq. (6.66) it is observed that the void ratios within a shear band and at a neighbouring
shear band are identical. Unfortunately, experimental observations show that the local void
ratio within a shear band is larger than the void ratios on the left and right sides of a shear
band. In addtion, it can be larger than the maximum void ratio determined by standard
methods (Fig. 6 in Oda and Kazama, 1998[85] p.470). Thus, the open quesion is how to
formulate the evolution equation to update the void ratio in the discontinuity surface.
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6.3.2.3. Stress field

The objective stress rate
◦
σ in S can be obtained from eq. (6.35)

◦
σS = L : DS +N ‖DS‖ . (6.67)

Substituting eqs. (6.10) and (6.17) into (6.67) leads to

◦
σS = L : ˙̄̄ε+

1

h
L : ([[u̇]]⊗ n)s +

1

h
N
∥∥∥( ˙[[u]]⊗ n)s

∥∥∥ . (6.68)

Multiplying both sides of eq. (6.68) by h and taking the limit as h tends to zero we have

lim
h→0

h
◦
σS = lim

h→0
h(L : ˙̄̄ε)

︸ ︷︷ ︸
0

+ lim
h→0

[L : ([[u̇]]⊗ n)s] + lim
h→0

[
N
∥∥∥( ˙[[u]]⊗ n)s

∥∥∥
]
, (6.69)

where
◦
σS defined by eq. (6.36)

◦
σS = σ̇S + σSW S −W SσS. (6.70)

Based on eqs. (6.11) and (6.70) as well as the condition (6.31), the left hand side of eq.
(6.69) yields

lim
h→0

h
◦
σS = σS

(
˙[[u]]⊗ n

)skew

−
(

˙[[u]]⊗ n
)skew

σS. (6.71)

Combining eq. (6.71) and eq. (6.69) together, we have

σS

(
˙[[u]]⊗ n

)skew

−
(

˙[[u]]⊗ n
)skew

σS

= L : ([[u̇]]⊗ n)s +N ‖([[u̇]]⊗ n)s‖ , (6.72)

which provides a discrete non-linear stress-jump constitutive equation at the interface S.
This equation allows the determination of the complete stress tensor σS on S in terms of the
jump of ˙[[u]] and the unit normal n.

6.4. Bifurcation analysis

In order to find the unit normal vector n to the discontinuity surface S as the discontinuity
initiates, let us first find the condition whether localization occurs based on bifurcation con-
dition. For weak discontinuities Chambon, 2000[17] and Huang et al., 2005[50] suggested
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the inequality to check bifurcation condition in the CLOE models and the K-hypoplastic
models, repectively. Here we can adopt their works to establish this condition for strong
discontinuities.

Let us recall eq. (6.12)

DS = DΩ\S +
1

h
([[u̇]]⊗ n)s . (6.73)

Substituting eq. (6.53) into eq. (6.73) yields

DS = DΩ\S + λ0 (c⊗ n)s . (6.74)

Let us define ∆D by

(c⊗ n)s = ∆D. (6.75)

On inserting eq. (6.75) into eq. (6.74) we have

DS = DΩ\S + λ0∆D. (6.76)

Let us recall eq. (6.18)

λ0 = ‖DS‖ −
∥∥DΩ\S

∥∥ . (6.77)

By using the relation (6.76) eq. (6.77) becomes

λ0 +
∥∥DΩ\S

∥∥ =
∥∥DΩ\S + λ0∆D

∥∥ . (6.78)

Square of both side in eq. (6.78) yields

λ2
0 + 2λ0

∥∥DΩ\S
∥∥+

∥∥DΩ\S
∥∥2

=
∥∥DΩ\S

∥∥2
+ 2λ0DΩ\S : ∆D + λ2

0 ‖∆D‖2 . (6.79)

After rearrangement the terms we have

λ2
0(‖∆D‖2 − 1) + 2λ0(DΩ\S : ∆D − 2λ0

∥∥DΩ\S
∥∥). (6.80)

The non-trivial solution (λ0 6= 0) gives

λ0 = 2

∥∥DΩ\S
∥∥−DΩ\S : ∆D

‖∆D‖2 − 1
· (6.81)
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Let us define α by

cosα =
DΩ\S : ∆D∥∥DΩ\S

∥∥ ‖∆D‖· (6.82)

On inserting (6.82) into eq. (6.81) we have

λ0 = 2
∥∥DΩ\S

∥∥ 1− ‖∆D‖ cosα

‖∆D‖2 − 1
· (6.83)

Based on the inequality λ0 = ‖DS‖ −
∥∥DΩ\S

∥∥ ≥ −
∥∥DΩ\S

∥∥ we get

λ0 = 2
∥∥DΩ\S

∥∥ 1− ‖∆D‖ cosα

‖∆D‖2 − 1
≥ −

∥∥DΩ\S
∥∥ . (6.84)

Two possible cases are:

• ‖∆D‖2 − 1 > 0:

The minimum value of λ0 corresponding to cosα = 1 is

(λ0)min = 2
∥∥DΩ\S

∥∥ 1− ‖∆D‖
‖∆D‖2 − 1

≥ −
∥∥DΩ\S

∥∥ , (6.85)

or

2(1− ‖∆D‖) + ‖∆D‖2 − 1 ≥ 0, (6.86)

which can be written as

(‖∆D‖ − 1)2 ≥ 0. (6.87)

This inequality is always met.

• ‖∆D‖2 − 1 = 0: λ0 →∞. This condition is met at the onset of localization.

To prove it, let us consider the square norm of ∆D from eq. (6.75)

‖∆D‖2 =
1

4
(2 ‖c‖+ 2c.n) . (6.88)

On inserting eqs. (6.59) and (6.60) into eq. (6.88) we have

‖∆D‖2 =
1

2
‖c‖ = 1. (6.89)

Therefore the bifurcation condition is then

‖∆D‖2 − 1 ≥ 0, (6.90)
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which is in agreement with the inequality proposed by Chambon, 2000[17] and Huang et al.,
2005[50] for weak discontinuities.

Now the unit normal vector n can be identified based on (6.90). In general, the criterion
(6.90) can be written in the form of a polynomial expression of degree 4 in term of tan2 θ

(Desrues and Chambon, 2002[26], Bauer, 1999[9], see also Ortiz et al., 1987[91]).

a0 + a1 tan2 θ + a2 tan4 θ + a3 tan6 θ + a4 tan8 θ ≥ 0. (6.91)

This criterion as a function of tan2 θ, for example, for an elementary volume along a triaxial
stress path can be depicted in Fig. 6.2 (Desrues and Chambon, 2002[26]).

3.2. Bifurcation criterion

The bifurcation criterion for CLoE results from a shear band analysis along the lines of Rudnicki and
Rice (Rice, 1976; Rudnicki and Rice, 1975), except that the constitutive law is thoroughly non-linear, and
this need some development to arrive at the explicit analytical criterion. Only the result is given here, details
can be found in Chambon et al. (2000). Another useful reference is Tamagnini et al. (2000b) in which a
comparison is given between the different hypoplastic laws with respect to shear band analysis, showing
that the same general approach can be used for all of them. As for CLoE, the general criterion reads:

kCk ¼ k1
2
ðP�1

il blknknj þ P�1
jl blknkniÞkP 1 ð14Þ

with

Pik ¼ Mijklnlnj

and

Mijkl ¼ Aijkl þ 1=2ðrildjk � rikdjl þ rjldik � rjkdilÞ

Once expressed for a given set of parameters and for a given stress state, the criterion (14) becomes a
polynomial expression of degree 4 in tan2ðhÞ:

kCk � 1 ¼ K0 þ K1 tan
2ðhÞ þ K2 tan

4ðhÞ þ K3 tan
6ðhÞ þ K4 tan

8ðhÞP 0 ð15Þ

where Ki are functions of the components of the constitutive tensors A and b0. Among those components, j
is the only one which has not been already calibrated using the experimental data from triaxial axisym-
metric tests. More precisely, the free parameter is x defined in Eq. (13).
Fig. 8 presents a plot of the criterion as a function of tan2ðhÞ for increasing values of the loading pa-

rameter during the integration of the constitutive law for an elementary volume along a triaxial stress path.

Fig. 8. The bifurcation criterion for CLoE model is a complete fourth degree polynomial function in tan2ðhÞ. It may have one or two
maximum, depending on its coefficients. During an integration of the model along a given path, the shape of the criterion changes. The

bifurcation condition is met as soon as one root exists for which the criterion is null.

3768 J. Desrues, R. Chambon / International Journal of Solids and Structures 39 (2002) 3757–3776

Figure 6.2.: The bifurcation condition is met as soon as one root exists for which the criterion
is null [26].

6.5. Summary

Throughout the previous sections, the strong discontinuity analysis for hypoplastic models
has been explored by neglecting the normal movements in the discontinuity surface S. Some
of main ingredients of this analysis are summarized as follows:

• From the traction continuity (eqs. (6.24-6.26)), both the stress and the stress rate (not
the objective stress rate) have to remain bounded at the discontinuity surface whereas
the strain, the strain rate and the norm of the strain rate are unbounded. Then, the
displacement jump is determined according to eqs. (6.58) and (6.60).



78 6. Strong discontinuity analysis for hypoplastic models

• Under the condition of the bounded stress field, a consistent discrete constitutive equa-
tion (6.72) emerges which relates the stress field at the discontinuity path to both the
displacement jump and the normal.

• According to the assumption (6.56), the void ratios within a shear band and at a neigh-
bouring shear band are bounded and identical based on eq. (6.66). However, the later
result is not consistent with experimental observations. Consequently, it is necessary
to propose the evolution equation to update the void ratio in the discontinuity surface.
It should be noted that if the void ratio in S is unbounded, the density factor fe (3.41)
tends to zero and the density fd (3.39) is unbounded. As a result, the constitutive ten-
sor L (3.33) tends to zero. In this case, the general form for the K-hypoplastic models
(6.35) cannot be employed to described the mechanical behaviour at a material point
in the interface S.

• The bifurcation condition (6.90) is in agreement with the one proposed by Chambon,
2000[17] and Huang et al., 2005[50]. The normal to the discontinuity path can be
determined by this condition.

Here the strong discontinuity approach is based on the discontinuous displacement field
which induces the macroscopically unbounded strain. This approach is predicated upon
the assumption of a zero thickness shear band. In the new theory developed in the next
part of the thesis this assumption leads to the unbounded micro-strain of the inelastic phase
inside the discontinuity. Moreover the shear band is formed naturally based on the energy
minimization principles associated with micro-structure developments while it is necessary
to determine the position of a shear band by tracking strong discontinuities in the strong
discontinuity approach.
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Part II.

Simulation of strain localization by means of

energy relaxation
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7. Relaxed energy analysis of shear bands for inelastic

materials at small deformation

In this chapter a new approach to the problem of shear localization is proposed. It is based
on energy minimization principles associated with micro-structure developments and the
micro-shearing of a rank-one laminate which is aligned to a shear band. The thickness of
the shear band represented by its volume fraction is assumed to tend to zero. The problem
of the non-convex energy arising due to the formation of shear bands is solved by energy
relaxation in order to ensure that the corresponding problem is well-posed. An application
of the proposed formulation to isotropic material is presented. The capability of the proposed
concept is demonstrated through numerical simulation of a shear test and a tension test.

7.1. Existence of solutions of non-linear boundary value problems

The existence of equilibrium solutions of non-linear boundary value problems can be proved
based on the direct methods of calculus of variations. The basic idea of this method is the
minimization of a energy functional.

Let us consider the following total potential energy

Π(u) =

∫

Ω

W (ε) dΩ−
∫

Ω

uTf dΩ−
∫

∂Ωσ

uTt̄ dA (7.1)

where u is the displacement, f is the body force per unit volume, t̄ is the distributed load
acting on the part ∂Ωσ of the surface, and W is the non-linear elastic strain energy.

The strain field ε is given as

ε = ∇su, (7.2)

where ()s is the symmetric part of ().

Now we look at solutions of minimization problems of the form

(P) inf
u
{Π(u)|u = ū on ∂Ωu} . (7.3)
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For elastic materials this corresponds to the well-known principle of minimum of the po-
tential energy. But inelastic materials can be incorporated as well via a time-incremental
formulation. In this case W denotes the so-called condensed energy [15, 41, 75].

For softening materials there exists an infinite number of possible solutions for (P) due to
the ill-posed boundary value problem. As a result of this, numerical solutions suffer from
discretization sensitivity [21].

If the potential energy W is not quasiconvex in some region of the material body Ω, the
functional I

I(u) =

∫

Ω

W (ε) dΩ (7.4)

is not sequentially weakly lower semicontinuous [20], thus the minimizer in problem (P)

may be unattained [20]. Following [20], the functional I(u) is replaced by a relaxed func-
tional IQ(u)

IQ(u) =

∫

Ω

QW (ε) dΩ , (7.5)

where the quasiconvexified functional QW (ε), also called quasiconvex envelope of W or
quasiconvex hull of W , is defined by the minimization problem

QW (ε) = inf
ϕ

1

ω

∫

ω

W (ε+∇ϕ) dΩ (7.6)

for a fixed but arbitrary bounded domain ω and every ϕ with ϕ = 0 on ∂ω, herein ϕ is
denoted as fluctuation field.

Let us introduce a scalar function [39] by

ψ(x) =





x

ξ
, 0 ≤ x ≤ ξ,

1− x
1− ξ ξ ≤ x ≤ 1, periodically repeated,

(7.7)

as can be seen in Fig. 7.1a.

The fluctuation field is defined by

ϕ(x) = aψ (n · x) , ‖n‖ = 1 (7.8)

correponding to the laminate depicted in Fig. 7.1b, where n is the unit normal vector to
laminates and a is a arbitrary vector. Then the gradient of the fluctuation field ϕ has the
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y
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RVE

1 2 1 2 1 2 1

1

1

n

x

a. Scalar function Ψ(x) b. Laminates of first order and representative
volume element (RVE)

Figure 7.1.: Laminates as special fluctuation fields ϕ [39].

following values

∇ϕ(x) =





1

ξ
a⊗ n, if x belongs to laminate 1,

− 1

1− ξa⊗ n if x belongs to laminate 2.
(7.9)

Without restriction we consider the representative volume element as shown in Fig. 7.1b.
Then the definition of quasiconvexified functional (7.6) reduces to

WR(ε) = inf { ξW (ε+
1

ξ
a⊗ n) + (1− ξ)W (ε− 1

1− ξa⊗ n) | ξ , a , n ;

0 ≤ ξ ≤ 1 , ‖n‖ = 1} , (7.10)

which can be written in the alternative form

WR(ε) = inf {ξ1W (ε1) + ξ2W (ε2) | ξ1 , ξ2, ε1 , ε2 ; 0 ≤ ξi ≤ 1 ,

ξ1 + ξ2 = 1 , ε = ξ1ε1 + ξ2ε2 , rank (ε1 − ε2) ≤ 1} , (7.11)

where ξ1 and ξ2, respectively, are two volume fractions of the laminates 1 and 2; ε1 and ε2 ,
respectively, are strain fields of the laminates 1 and 2.

Eq. (7.10), or equivalently (7.11) is exactly the definition of the first order rank-one convexi-
fication [20, 55]. Therefore rank-one convexification is nothing more than quasiconvexifica-
tion restricted to laminates as possible fluctuation fields. In the following considerations the
proposed formulation in this thesis is developed based on a first-order rank-one convexifica-
tion.
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7.2. General assumptions

In this theory localization phenomena are regarded as micro-structure developments asso-
ciated with nonconvex energy functions. The micro-structures consist of two domains: a
low-strain domain and a high-strain one. Let us consider a so-called RVE (representative
volume element) obtained by zooming on the region around the point A as shown in Fig.
7.2. The RVE is split into two volume fractions: the volume fraction ξ of a low-strain do-
main and the volume fraction (1− ξ) of a high-strain domain.

x® 0
 1-x

x
x 
®

 

0

n

m

(1-x)®1

A

Figure 7.2.: Shear band is treated as the micro-shearing of a rank-one laminate.

When strain localization occurs, the following assumptions related to the volume fraction ξ
are made

(1) After the onset of localization, the width of the shear band represented by the volume
fraction ξ tends to zero

ξ → 0. (7.12)

(2) The energy inside the shear band W2 is assumed to obey

W2(ξε) = |ξ|W2(ε). (7.13)

where W2(ε) may be taken in the following form

W2(ε) = (ε : D : ε)
α
2 . (7.14)

where D is symmetric fourth-order, positive definite tensor. For the special case D =

A2I , where I is the fourth-order unit tensor (7.59), the general form (7.14) reduces to

W2(ε) = Aα (ε : ε)
α
2 = Aα ‖ε‖α . (7.15)
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The first assumption is based on the observations that the width of shear bands is normally
very small relative to the dimension of structure [[85, 67]. This assumption is corresponds
to the concept of the strong discontinuity proposed by Simo et al., 1993[98] and Oliver,
1995[88] among others.

According to the second assumption, the energy inside a shear band is positive homogeneous
of first degree in the strain field (7.13). Only for the form of this energy as given in eqs. (7.14)
and (7.15) corresponding to α = 1, the energy has the desired property leading to strong
discontinuities. If α is larger than 1, the material will exhibit only weak discontinuities. If α
is smaller than 1, the relaxed energy does not exist because of lacking coercivity.

Based upon these assumptions, let us start with the consideration of a very simple one-
dimensional model to discuss the physical implications of the proposed approach. Then it
will be generalized to two-dimensional problem.

7.3. One-dimensional problem

7.3.1. Micro-strain

Let us denote by ε1 and ε2 two micro-strains present at initiation of a shear band (see Fig.
7.3a). A visualization given in Fig. 7.3a depicts the shape of a non-convex potential energy
W and its convexification. Due to the finite volume fraction ξ (ξ 6= 0) the shear band is
treated as weak discontinuity. The volume fraction ξ (Fig. 7.2) is frozen and assumed to be
a priori determined by a given length scale parameter. This length scale parameter can be
interpreted as the width of the micro-shear band on the micro-scale [74].

The potential energy W exhibiting strong discontinuity based on the assumption (7.12)
shows in Fig. 7.3b. The width of the shear band now tends to zero (ξ → 0) and the currently
macroscopic strain decomposes into two micro-strains. The micro-strain ε1 of the low-strain
domain is bounded and the micro-strain ε2 of the high-strain domain is unbounded.

To clarify why ε2 is unbounded, let us start with the relation between the macro-strain ε and
the two micro-strains ε1, ε2

ε = (1− ξ)ε1 + ξ ε2. (7.16)

We assume that [63]:

ε1 = ε− ξ d, (7.17)

ε2 = ε+ (1− ξ) d = ε− ξ d+ d, (7.18)
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Figure 7.3.: Two micro-strains ε1, ε2 and relaxed energy WR.

where 0 ≤ ξ ≤ 1. Let us consider here the case d ≥ 0 and ε ≥ 0. In the case d ≤ 0 and
ε ≤ 0, the procedure is completely similar. The case ε d < 0 leading to |ε2| < |ε| does not
exist.

Let us define s by

s = ξd. (7.19)

Substituting (7.19) into eqs. (7.17) and (7.18) yields

ε1 = ε− s, (7.20)

ε2 = ε− s+
s

ξ
· (7.21)

Let ξ tend to zero,
s

ξ
will grow without bound and of course be extremely large in comparison

with (ε− s). Thus, eq. (7.21) can be simplified as

ε2 ≈
s

ξ
→∞ as ξ → 0 . (7.22)

The assumption of a zero width shear band immediately leads to an unbounded strain (7.22)
of the high-strain domain at the discontinuity.

7.3.2. Relaxed energy

Based on the values of the two micro-strains ε1 and ε2 the potential energy W can be divided
into three parts (see Fig. 7.3b). The quadratic part denoted as W1 is the potential energy
representing the behaviour at very small strains. The linear part W2 is the potential energy
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representing the behaviour at very large strains. The domain in strain space where W (ε) 6=
W1(ε) and W (ε) 6= W2(ε) is of no importance since it does not influence the relaxed energy.
Hence, the mixed energy of the two domains is defined by

Wmix(ε) = (1− ξ)W1(ε− s) + ξW2(
s

ξ
). (7.23)

This mixed energy can be considered as an approximation of the potential energy W , which
omits the energy between W1 and W2. Based on the assumptions (7.13) and (7.15) , the
mixed energy can be simplified as

Wmix(ε) = W1(ε− s) + A |s| . (7.24)

The problem of the non-convex mixed energy arises due to the occurrence of shear bands. By
introducing the concept of relaxation the problem can be resolved and becomes well-posed.
The relaxed energy is obtained by the minimization procedure

WR(ε) = inf
{
Wmix(ε) | s

}
. (7.25)

As mentioning in Section 7.3.1 we consider here the case d ≥ 0 and ε ≤ 0. Then the relaxed
energy (7.25) can be rewritten as follows

WR(ε) = inf
{
Wmix(ε) | s , s ≥ 0

}
. (7.26)

The mixed stress is obtained by taking the derivative of the mixed energy (7.23) with respect
to ε

σ(ε) = (1− ξ)σ(ε1) + ξσ(ε2). (7.27)

The stationary point of eq. (7.26) reads

σ(ε) = σ(ε1) = σ(ε2) = A. (7.28)

The slope of the relaxed energy represented by (7.28) is constant, consequently, the relaxed
tangent modulus is equal to zero. Here the material parameter A can be interpreted as stress
level inside the shear band. The relaxed energy WR is depicted in Fig. 7.3b.

7.3.3. Example

The proposed formulation in the previous section is applied to an isotropic linear material.
The mixed energy of the low-strain and high-strain domains obtained eq. (7.23) is given by

Wmix(ε) =
1

2
E (ε− s)2 + A |s| . (7.29)
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where E is Young’s modulus and A is a material parameter.

The relaxed energy is defined by

WR(ε) = inf
{
Wmix(ε) | s , s ≥ 0

}
. (7.30)

The local minimizer of the function (7.30) is

s =





0 for ε <
A

E
.

ε− A

E
for ε ≥ A

E
.

(7.31)

Strain and stress can be calculated as below

• If ε <
A

E
, we have s = 0. The relaxed energy is equal to the elastic strain energy

WR(ε) = Wmix(ε) =
1

2
Eε2. (7.32)

The macroscopic strain ε is equal to ε1 and ε2 due to ξ = 0

ε = ε1 = ε2. (7.33)

The material obeys Hooke’s law

σ =
∂Wmix

∂ε
= Eε. (7.34)

• If ε ≥ A

E
, we obtain the micro-strains

ε1 = ε− s =
A

E
; ε2 →∞, (7.35)

The relaxed energy is the sum of the relaxed energy of the low-strain domain denoted
by [(1− ξ)W1]R and the relaxed energy of the high-strain domain denoted by [ξW2]R

WR(ε) =
A2

2E︸︷︷︸
[(1−ξ)W1]R

+ A |s|︸︷︷︸
[ξW2]R

, (7.36)

The relaxed stress is given by

σ = σ1 = σ2 =
∂WR

∂ε
= A. (7.37)

The relaxed energy as well as the relaxed stress are depicted in Fig. 7.4.
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7.4. Two-dimensional problem

7.4.1. Micro-strain

In the two-dimensional problem the micro-strains ε1 and ε2 can be written as

ε1 = ε− ξ(a⊗ n)s (7.38)

ε2 = ε+ (1− ξ)(a⊗ n)s = ε− ξ(a⊗ n)s + (a⊗ n)s (7.39)

where (a⊗ n)s = 1
2
(a⊗ n+ n⊗ a).

Let us define s by

ξa = sm, (7.40)

where ‖m‖ = 1. Herein m and n are two unit vectors giving the direction of shear band
evolution; s is a scaling parameter.

On inserting eq. (7.40) into eqs. (7.38) and (7.39), we have

ε1 = ε− s(m⊗ n)s, (7.41)

ε2 = ε− s(m⊗ n)s +
s

ξ
(m⊗ n)s. (7.42)

As ξ tends to zero,
s

ξ
will grow without bound. Thus, eq. (7.42) can be simplified as

ε2 ≈
s

ξ
(m⊗ n)s. (7.43)

7.4.2. Relaxed energy

The mixed energy of the two domains can be written in the following form

Wmix(ε) = W1(ε− s(m⊗ n)s) + |s|W2((m⊗ n)s). (7.44)

As explained in section 7.3.2, the relaxed energy is computed in order to ensure the well-
posed problem due to the emergence of a shear band. The relaxed energy is obtained by the
minimization procedure

WR(ε) = inf
{
Wmix(ε) | s , m ,n ; ‖m‖ = ‖n‖ = 1

}
. (7.45)
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Let us consider the two potential energies representing the behaviour at very small and large
strains, respectively

W1(ε) =
1

2
ε : C : ε (7.46)

W2(γ) = (γ : D : γ)
1
2 (7.47)

where C and D are symmetric fourth-order, positive definite tensors; ε and γ are strain
tensors. Substituting (7.46) and (7.47) into (7.44), one gets

Wmix(ε) =
1

2
(ε− sγ) : C : (ε− sγ) + |s| (γ : D : γ)

1
2

=
1

2
ε : C : ε+

1

2
s2γ : C : γ − s ε : C : γ + |s| (γ : D : γ)

1
2 (7.48)

where γ = (m⊗ n)s.

By use of the results in Box 7.1, minimization of (7.48) with respect to s yields

s =
sign(ε : C : γ)

(γ : C : γ)
1
2

[
|ε : C : γ|

(γ : C : γ)
1
2

−
(
γ : D : γ

γ : C : γ

) 1
2

]

+

, (7.49)

and the corresponding energy with solution s (7.49)

inf
s
Wmix(ε) =

1

2
ε : C : ε− 1

2

[
|ε : C : γ|

(γ : C : γ)
1
2

−
(
γ : D : γ

γ : C : γ

) 1
2

]2

+

· (7.50)

Herein a = 1
2
γ : C : γ , b = − ε : C : γ, c = (γ : D : γ)

1
2 . Easily one can recognise that a

is positive due to the positive definiteness of the fourth-order tensor C.

7.4.3. Computation of the relaxed stress and the tangent operator

The relaxed stress and the tangent operator are derived from the direct derivative of the
relaxed energy (7.45). The first derivative of (7.45) reads

∂WR

∂ε
=
∂Wmix

∂ε
+
∂Wmix

∂s

∂s

∂ε
+
∂Wmix

∂m

∂m

∂ε
+
∂Wmix

∂n

∂n

∂ε
· (7.51)

It is observed that the three last terms in eq. (7.51) vanish due to the necessary condition of
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the minimization problem (7.45). Thus, the relaxed stress which is the average of the two
micro-stresses has the form

σ =
∂Wmix

∂ε
· (7.52)

The relaxed stress by considering the form of the potential energy (7.50) yields

σ = C : ε− sC : γ. (7.53)

The tangent operator is given by

A =
∂2WR

∂ε2
=
∂σ

∂ε
= C − (C : γ)⊗ ∂s

∂ε
− s∂ (C : γ)

∂ε
· (7.54)

The theoretical developments are summarized in Box 7.2.

Box 7.1: Minimization problem: inf
s
W (s)

inf
s
W (s).

W (s) = as2 + bs+ c |s| with c > 0, a > 0.

Solution s

s = − 1

2a
(|b| − c)+ sign(b)

where

(|b| − c)+ =

{
0 for |b| ≤ c.

|b| − c for |b| > c.

sign(b) =
|b|
b

for b 6= 0.

Substituting (7.55) into (7.55) leads to

inf
s
W (s) = − 1

4a
(|b| − c)2

+.
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Box 7.2: Summary of some main formulations of the relaxed energy

Micro-strains

ε1 = ε− sγ.
ε2 ≈

s

ξ
γ.

where γ = (m⊗ n)s

Mixed energy

Wmix(ε) =
1

2
(ε− sγ) : C : (ε− sγ) + |s| (γ : D : γ)

1
2

Relaxed energy

WR = inf
s,m,n

Wmix(ε)

where

inf
s
Wmix(ε) =

1

2
ε : C : ε− 1

2

[
|ε : C : γ|

(γ : C : γ)
1
2

−
(
γ : D : γ

γ : C : γ

) 1
2

]2

+

·

Solution s

s =
sign(ε : C : γ)

(γ : C : γ)
1
2

[
|ε : C : γ|

(γ : C : γ)
1
2

−
(
γ : D : γ

γ : C : γ

) 1
2

]

+

·

Relaxed stress

σ = C : ε− sC : γ.

Tangent operator

A =
∂2WR

∂ε2
=
∂σ

∂ε
= C − (C : γ)⊗ ∂s

∂ε
− s∂ (C : γ)

∂ε
·

7.4.4. Variational formulation

The general total potential energy of an inelastic body can be written as

Π(u) =

∫

Ω

WR(ε) dV −
∫

Ω

uTf dV −
∫

∂Ωσ

uTt̄ dA. (7.55)

Let us denote

check =

[
|ε : C : γ|

(γ : C : γ)
1
2

−
(
γ : D : γ

γ : C : γ

) 1
2

]
. (7.56)
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As the process of deformation progresses, check may be negative, zero or positive. The
positive value in turn signals the onset of localization.

i. check ≤ 0: s = 0 The relaxed energy WR(ε) reduces to the elastic strain energy
W1(ε).

ii. check > 0: s 6= 0 The shear band starts to develop. The homogeneous deformation
ε decomposes into the two micro-strains ε1 and ε2. The nonconvex potential energy
Wmix is replaced with the approximated rank-one convexificationWR(ε) to ensure the
well-posedness of the problem.

7.5. Application of relaxation theory to isotropic materials

Let us recall the potential energy W2 of high-strain domain

W2(γ) = (γ : D : γ)
1
2 . (7.57)

Softening behaviour is implicitly included in this linear function.

In what follows, we consider two possible cases. In the first case, D is equal to C, where C is
the fourth-order isotropic elastic tensor. In the second case, D is equal to AI as the special
case defined by eq. (7.15).

7.5.1. Case 1: D = C

On inserting D = C into (7.57) and (7.48) we obtain the mixed energy of two domains

Wmix(ε) =
1

2
ε : C : ε+

1

2
s2γ : C : γ − s ε : C : γ + |s| (γ : C : γ)

1
2 , (7.58)

where γ = (m⊗ ns); C is the fourth-order isotropic elastic tensor

Cijkl = λδijδkl + µ (δikδjl + δilδjk) , (7.59)

or in the tensor notation

C = λ I ⊗ I + µ
(I + Ī) , (7.60)

where λ and µ are Lamé constants.
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We consider the following relaxed energy

WR(ε) = inf
{
Wmix(ε) | s , m ,n ; ‖m‖ = ‖n‖ = 1

}
. (7.61)

Let ϕ be the angle between two vectors m and n as depicted in Fig. 7.5, where the unit
vector t is perpendicular to the vectorm. Then we write

n = m cosϕ+ t sinϕ, (7.62)

m.εn = (m.εm) cosϕ+ (m.ε t) sinϕ. (7.63)

t

m

n

j

Figure 7.5.: Orientation of the shear band.
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Now we consider a plane which has (m, t) as the unit tangent and normal vectors. It is
recognized that (m.εm) is the normal strain whose direction is perpendicular to the plane
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and (m.ε t) is the shear strain in this plane. Using Mohr’s circle we can transform (7.63)
into principal strains

m.εn = (εm +R cos 2ψ) cosϕ+R sin 2ψ sinϕ

= εm cosϕ+R cos(ϕ− 2ψ) (7.64)

where R and εm are the maximum shear strain and the average strain; ψ is an angle between
the vectorm and the eigenvector e1 corresponding to the major principal strain E1 as denoted
in Fig. 7.6.

Instead of minimizing (7.61) with respect to s, m and n, now we minimize (7.65) with
respect to s, ψ and ϕ based on eqs. (7.62-7.64)

WR(ε) = inf
{
Wmix(ε) | s , ψ , ϕ ; 0 ≤ ψ , ϕ ≤ π

}
. (7.65)

The results of the minimization problem (7.65) is given in Box 7.3. The algorithm is sum-
marized in Box 7.4, 7.5 and 7.6.

7.5.2. Case 2: D = A2I (A > 0)

On inserting D = A2I into (7.57) and (7.48) we obtain the mixed energy of the low-strain
and high-strain domains

Wmix(ε) =
1

2
ε : C : ε+

1

2
s2γ : C : γ − s ε : C : γ + A |s| ‖γ‖ , (7.66)

where γ = (m⊗ ns).

Let us consider the following relaxed energy

WR(ε) = inf
{
Wmix(ε) | s , m ,n ; ‖m‖ = ‖n‖ = 1

}
. (7.67)

By substituting D = A2I into (7.49) and (7.50) the minimization problem (7.67) with
respect to s gives

s =
sign(ε : C : γ)

(γ : C : γ)
1
2

[
|ε : C : γ| − A ‖γ‖

(γ : C : γ)
1
2

]

+

, (7.68)

where

ε : C : γ = λ(trε)(m.n) + 2µm.εn, (7.69)

γ : C : γ = µ+ (m.n)2(λ+ µ). (7.70)
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The energy (7.66) with s given by (7.68) takes the form

inf
s
Wmix(ε) =

1

2
ε : C : ε− 1

2

[
|ε : C : γ| − A ‖γ‖

(γ : C : γ)
1
2

]2

+

=
1

2
λ(trε)2 + µ ‖ε‖2 − 1

2
[M(m,n)]2+ , (7.71)

where

M(m,n) =
|λ(trε)(m.n) + 2µm.εn| − A√

2
[1 + (m.n)2]

1
2

[µ+ (m.n)2(λ+ µ)]
1
2

· (7.72)

Box 7.3: Summary of some main formulations of the relaxed energy (D = C)

Consider

D = C = λ I ⊗ I + µ
(I + Ī) .

Mixed energy

Wmix(ε) =
1

2
(ε− sγ) : C : (ε− sγ) + |s| (γ : C : γ)

1
2 .

Relaxed energy

inf
s,m,n

Wmix(ε) = inf
s,ϕ,ψ

Wmix(ε) =
1

2
λ(trε)2 + µ ‖ε‖2 − 1

2
[M(ϕ)− 1]2+ .

Solutions ψ, ϕ and s

ψ =
ϕ

2
·

sinϕ = 0 or cosϕ =
2εmµ+ λtrε

2R (λ+ µ)
·

s =
sign [(λtrε+ 2µεm) cosϕ+ 2µR]

[µ+ (λ+ µ) cos2 ϕ]
1
2

[M(ϕ)− 1]+ .

Relaxed stress

σ = C : ε− s C : γ

= λtrε I + 2µε− s [λ (m.n) I + 2µ (m⊗ n)s] .

Tangent operator

A =
∂2WR

∂ε2
=
∂σ

∂ε
= C − (C : γ)⊗ ∂s

∂ε
− s∂ (C : γ)

∂ε
·
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Box 7.4: Two-dimensional relaxed energy algorithm

1. Compute two major and minor principle strains E1 and E2 as well as their eigen-
vectors e1 and e2.
2. Find R and εm.
3. Check whether localization condition is met or not based on check.

• If check ≤ 0, s = 0 (see Box 7.6).

• If check > 0, compute ϕ, s,m and n (see Box 7.5 and 7.6).

4. Compute relaxed energy WR(ε).
5. Compute relaxed stress σ.
6. Compute tangent operator A.

Box 7.5: Computing the orientation of the shear band evolutionm and n

1. Compute rotation matrix

R =

(
cosψ sinψ

− sinψ cosψ

)
.

2. Findm = Re1, n = Re2, where e1 and e2 are two eigenvectors of the major
and minor principal strains

ε = E1e1 ⊗ e1 + E2e2 ⊗ e2 (ε1 ≥ ε2).

3. Find n.

n = m cosϕ+ t sinϕ.
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Box 7.6: Checking localization condition

a. R = 0: implies sinϕ = 0→ cosϕ = 1

M(ϕ) =
|λtrε+ 2µεm|√

2µ+ λ
·

Localization condition is checked based on check

check = M(ϕ)− 1 =
|λtrε+ 2µεm|√

2µ+ λ
− 1.

• check ≤ 0 : s = 0 .

• check > 0 : s =
sign (λtrε+ 2µεm)√

2µ+ λ
check.

b. R 6= 0: implies sinϕ 6= 0, then we have

cosϕ =
2εmµ+ λtrε

2R (λ+ µ)
, M =

√
4µR2 (λ+ µ) + (2µεm + λtrε)2

λ+ µ
·

Localization condition is checked based on check and cosϕ

check = M − 1.

• check < 0 or cosϕ /∈ [−1, 1] : s = 0.

• check > 0 and cosϕ ∈ [−1, 1] :

sign [(λtrε+ 2µεm) cosϕ+ 2µR] = 1.

s =
check

[µ+ (λ+ µ) cos2 ϕ]
1
2

·

Now two following cases are investigated. In the first case,m is assumed to be perpendicular
to n. In second one,m and n are arbitrary.

a. m.n = cosϕ = 0

m.n = 0 implies that the normal displacements are much smaller than those in the tangent
direction inside the shear band. This result had been observed in the experiment by Finno et
al, 1996 [35]. In the following considerations we develop a simple approach to the treatment
of shear localization based on this assumption.

Substitutingm.n = 0 into eq. (7.66) leads to the simplified form of the mixed energy

Wmix(ε) =
λ

2
(trε)2 + µ

(
‖ε‖2 − 2 sm · εn+

s2

2

)
+

A√
2
|s| (7.73)
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By use of (7.68) and (7.71) as well as (7.62) and (7.63) we can get the relaxed energy

WR = inf
s,m,n

Wmix =
λ

2
tr (ε)2 + µ ‖ε‖2 − 2µ

[
|εmn| −

α

2

]2

+
, (7.74)

where α =
A√
2µ

, |εmn| = R is the maximum shear strain.

The minimization problem (7.74) with respect to s gives

s = (2 |εmn| − α)+sign(εmn) =

{
0 if |εmn| < α/2

(2 |εmn| − α) sign(εmn) if |εmn| ≥ α/2
(7.75)

The relaxed stress is obtained from eqs. (7.53) and (7.74)

σ = λtrε I + 2µε− 2µs (m⊗ n)s . (7.76)

On inserting (7.74) into (7.54) we get the tangent operator

A = λI ⊗ I + µ(I + Ī)− 2µ

[
(m⊗ n)s ⊗ ∂s

∂ε
+ s

∂ (m⊗ n)s

∂ε

]
· (7.77)

Summary of some main formulations of this model is given in Box 7.7. The algorithm is
similar to the algorithm in the case D = C summarized in Box. 7.4, 7.5 and 7.6.

b. m and n are arbitrary

Based on Mohr strain circle as depicted in Fig. 7.6, eq. (7.72) can be rewritten as

M(ϕ, ψ) =
|(λtrε+ 2µεm) cosϕ+ 2µR cos(ϕ− 2ψ)| − A√

2
(1 + cos2 ϕ)

1
2

[µ+ (λ+ µ) cos2 ϕ]
1
2

· (7.78)

Summary of some main formulations of this model is given in Box 7.8. The algorithm is
similar to the algorithm in case D = C summarized in Box. 7.4, 7.5 and 7.6.
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Box 7.7: Summary of some main formulations of the relaxed energy
D = A2I ,m.n = 0 .

Consider

D = A2I.
C = λ I ⊗ I + µ

(I + Ī) .
m.n = 0 → ‖γ‖ =

1√
2
·

Mixed energy

Wmix(ε) =
λ

2
(trε)2 + µ

(
‖ε‖2 − 2 sm · εn+

s2

2

)
+

A√
2
|s| .

Relaxed energy

WR = inf
s,m,n

Wmix =
λ

2
tr (ε)2 + µ ‖ε‖2 − 2µ

[
|εmn| −

α

2

]2

+
.

Solutions ϕ, ψ, s

ψ =
ϕ

2
=
π

4
s = (2 |εmn| − α)+sign(εmn)

where |εmn| = R.

The relaxed stress

σ = λtrε I + 2µε− 2µs (m⊗ n)s .

Tangent operator

A = λI ⊗ I + µ(I + Ī)− 2µ

[
(m⊗ n)s ⊗ ∂s

∂ε
+ s

∂ (m⊗ n)s

∂ε

]
·



102 7. Relaxed energy analysis for inelastic materials at small deformation

Box 7.8: Summary of some main formulations of the relaxed energy
D = A2I , −1 ≤m.n ≤ 1 .

Consider

D = A2I.
C = λ I ⊗ I + µ

(I + Ī) .

Mixed energy

Wmix(ε) =
1

2
ε : C : ε+

1

2
s2γ : C : γ − s ε : C : γ + A |s| ‖γ‖ .

Relaxed energy

inf
s,m,n

Wmix(ε) = inf
s,ϕ,ψ

Wmix(ε),

where

inf
s
Wmix(ε) =

1

2
λ(trε)2 + µ ‖ε‖2 − 1

2
[M(m,n)]2+ ,

sup
ψ,ϕ

M(ψ, ϕ)
ψ=ϕ

2→ sup
ϕ
M(ϕ),

M(ϕ) =
|(λtrε+ 2µεm) cosϕ+ 2µR| − A√

2
(1 + cos2 ϕ)

1
2

[µ+ (λ+ µ) cos2 ϕ]
1
2

.

Solution s

s =
sign(ε : C : γ)

(γ : C : γ)
1
2

[M(ϕ)]+ .

Relaxed stress

σ = C : ε− s C : γ

= λtrε I + 2µε− s [λ (m.n) I + 2µ (m⊗ n)s] .

Tangent operator

A =
∂2WR

∂ε2
=
∂σ

∂ε
= C − (C : γ)⊗ ∂s

∂ε
− s∂ (C : γ)

∂ε
·
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7.6. Numerical examples

In this section the proposed models presented in Section 7.5 are implemented in the non-
linear finite element code FEAP [105]. In what follows we investigate two numerical ex-
amples: a shear test and a tension test under plane strain conditions. The main goal of the
numerical investigations is the analysis of the developing shear bands and the demonstration
of the mesh independence of the proposed relaxation technique. Different kinds of elements
are used in this section. More details of these elements can be found in Chapter 4.

7.6.1. Shear test

The performance of the proposed model based on the assumption of D = A2I andm.n = 0

introduced in Section 7.5.2 and Box 7.7 is illustrated through numerical simulation of the fol-
lowing shear test.

A block, rectangular in profile, is subjected to simple shear under plane strain conditions as
depicted in the Fig. 7.7. In order to trigger localization the material in the indicated middle
left and right parts of the specimen is equipped with an initially lower value ofA = 27Nmm.

n = 2/7
A

= 0u

0.1E = 1440000/7 N/mm

= 500

= 450A

v = 0

= 0v
u

v = 0

v = 0

mm8

3

u  x

2

m
m

N/mm
2

N/mm
2

Figure 7.7.: Localization within shear test. Geometry and boundary conditions.

The test is performed with four different discretizations of the sample: 8x3, 18x7, 36x14,
54x21 elements. Relaxed analysis of this problem indicates that localization occurs simulta-
neously with the loss of convexity signaled by the shear strain γ12 = 2εmn = α correspond-
ing to the shear stress σxy = A√

2
· Hence, this critical point marks the limit of convex analysis.

The post-peak behaviour is now investigated.

The solution obtained by use of MES and Q4 elements with full quadrature is not coin-
cident with mesh refinement. The MES method and the displacement method result in
load-displacement curves widely different (Figs. 7.8a, 7.9a). Distribution of shear strains
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at u = 0.8mm (Figs. 7.8b, 7.9b) is only concentrated in the middle and in the boundary,
and the shear strains of the two connected regions are small. Thus, the shear band does not
completely form in the whole structure even though the prescribed displacement u is contin-
uously increased.
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Figure 7.8.: Model based on the assumption ofD = A2I andm.n = 0: Localization within
shear test by use of MES element (the mixed enhanced strain method).
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Figure 7.9.: Model based on the assumption ofD = A2I andm.n = 0: Localization within
shear test by use of Q4 element (the displacement method with full quadrature).

Contrary to MES and Q4 elements, mesh-independent response is evident in the Q4-1Gauss
element (the displacement method with one-point quadrature) in Fig. 7.10a. Once the shear
band forms, the softening behaviour occurs along it (Fig. 7.10a, b). Material inside the
shear band then decomposes into two domains: low-strain and high-strain domains whose
relaxed energies are [(1 − ξ)W1]R and [ξW2]R, respectively (Fig. 7.10c). As can be seen,
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the firstly relaxed energy is asymptotic to a constant whereas the latterly relaxed energy is
concentrated inside the shear band and continuously increases significantly as the increase
of the prescribed displacement u. The relaxed stress also approaches a constant.
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c. Relaxed energy and relaxed shear stress at the weak elements

Figure 7.10.: Model based on the assumption of D = A2I and m.n = 0: Localization
within shear test by use of Q4-1Gauss element (the displacement method with
one-point quadrature).

The reduced integration such as Q4-1Gauss element has the property that a hourglass mode
appears due to instabilities in the displacement field. Herein it is interesting that this element
behaves better than MES, EAS and QM6 elements in this example. As observed in this ex-
ample, no stress oscillation occurs. The band takes on the correct shape as a straight line in
this case for all mesh densities. All of the deformation is eventually concentrated inside the
shear band.
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7.6.2. Tension test

A cubical sample is subjected to a prescribed vertical displacement under plane strain condi-
tions. The geometry of the specimen and the boundary conditions imposed on displacements
as well as material parameters are given in Fig. 7.11. In order to trigger the shear band
formation the imperfection in geometry along the height of specimen is introduced.

control

x

y
8

Displacement

v

n = 0.25

A

E = 1000 N/mm

= 30

2

3mm

m
m

N/mm
2

Figure 7.11.: Localization in tension. Geometry and boundary conditions.

We demonstrate the performance of the three different proposed models presented in Section
7.5 through this example.

7.6.2.1. Model based on the assumption of D = A2I , m.n = 0 (Section 7.5.2 and

Box 7.7)

The sample is discretized with four different meshes: 3x8, 7x18, 14x36, 21x54 elements.
The load-displacement curves behave identically for v < 0.3126mm in Figs. 7.14a and
7.15a. The localization is delayed until the maximum shear strain is equal to

α

2
correspond-

ing to v ≈ 0.3126mm, then the performance of diverse finite element methods starts to
differ. The localization band is straight, at 45◦ with the direction of principal strain.

Mesh-dependence response obtained by use of the Q4 element in Fig. 7.14 becomes evident
in considering post-peak behaviour. Although the relaxed energy is concentrated inside the
shear band, the deformation shape of the Q4 element is not reasonable.

As we expected in Fig. 7.15a, the solutions obtained by using MES, EAS, and QM6 elements
are practically coincident in term of vertical reactions, thus showing the objective of the pro-
posed relaxed theory. The distribution of the relaxed energy shown in Fig. 7.15b points out
the localized elements and demonstrates the potential of the enhanced finite element method
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in capturing localization.
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Figure 7.12.: Model based on the assumption of D = A2I and m.n = 0: Localization in
tension by use of Q4 element (the displacement method).

The relaxed energy and normal stress σy presented in Fig. 7.16 are calculated in the element
356 at the first Gauss point. As observed, the relaxed stress softens on the discontinuity due
to geometrical behaviour.

It is very interesting to see the performance of the different finite element formulations by
considering the deformation shape of sample. As we observe in Fig. 7.17, the solution ob-
tained by use of the Q4 element fails to capture effects of strain localization.
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Figure 7.13.: Model based on the assumption of D = A2I and m.n = 0: Localization
in tension by use of MES element (the mixed enhanced strain method), EAS
element (the enhanced assumed strain method) and QM6 element (the incom-
patible mode method).
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Figure 7.14.: Model based on the assumption of D = A2I and m.n = 0: Localization in
tension by use of Q4 element (the displacement method).
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Figure 7.15.: Model based on the assumption of D = A2I and m.n = 0: Localization
in tension by use of MES element (the mixed enhanced strain method), EAS
element (the enhanced assumed strain method) and QM6 element (the incom-
patible mode method).
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Figure 7.16.: Model based on the assumption of D = A2I and m.n = 0: Relaxed energy
and relaxed normal stress σy by use of MES element (the mixed enhanced strain
method) at the first Gauss point of the element 356.
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Figure 7.17.: Model based on the assumption of D = A2I and m.n = 0: Localization in
tension. Comparison of the different finite element methods: Distribution of
shear strain at v = 1.0mm.



7.6. Numerical examples 111

7.6.2.2. Model based on the assumption of D = A2I and −1 ≤m.n ≤ 1 (Section

7.5.2 and Box 7.8)

The model used in previous section is predicated upon the assumption that m is perpendic-
ular to n. In general, this assumption does not hold. Hence, the numerical results obtained
from the model based on the assumption of D = A2I withm.n ∈ [−1, 1], which ism and
n being arbitrary, are discussed in this section.
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Figure 7.18.: Model based on the assumption of D = A2I and −1 ≤ m.n ≤ 1: Localiza-
tion in tension by use of MES element (the mixed enhanced strain method) and
Q4 element (the displacement method): Load-displacement response.

The problem is analyzed by means of four discretizations of the domain, consisting of 3x8,
7x18, 14x36, 21x54 elements. The numerical results show that the solutions attained by use
of Q4 and MES elements are identical as depicted in Fig. 7.18, thus confirming the objective
of the proposed relaxed formulation. Relaxed analysis indicates that localization early occurs
at v ≈ 0.2269mm by comparison with the one in the previous section (v ≈ 0.3126mm).
The distribution of the relaxed energy depicted in Fig. 7.19 illustrates that the localization
band is straight, parallel to the horizontal axis, and the relaxed energy is concentrated inside
this band.
The behaviour of the relaxed energy and the vertical stress σy of the element 547 (Fig. 7.19)
at the first Gauss point is shown in Fig. 7.20. As can be seen, the material within the
shear band decomposes into low-strain and high-strain domains whose relaxed energies are
[(1− ξ)W1]R and [ξW2]R, respectively (Fig. 7.20b); outside the shear band the behaviour of
material is elastic. The relaxed energy of the low-strain domain is asymptotic to a constant
whereas the relaxed energy of the high-strain domain starts to increase linearly. As a result,
the relaxed shear stress also approaches the material parameter A.
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Figure 7.19.: Model based on the assumption of D = A2I and −1 ≤ m.n ≤ 1: Local-
ization within tension test by use of MES element(the mixed enhanced strain
method). Comparision of the different finite element meshes: Distribution of
relaxed energy at v = 1.0mm.
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Figure 7.20.: Model based on the assumption of D = A2I and −1 ≤ m.n ≤ 1: Re-
laxed energy and relaxed normal stress σy by use of MES element (the mixed
enhanced strain method) at the first Gauss point of the element 547.
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7.6.2.3. Model based on the assumption of D = C (Section 7.5.1 and Box 7.3-6)

We consider four discretizations of the domain: 3x8, 7x18, 14x36, 21x54 elements. The
response obtained with four meshes is the same in load-displacement curves as shown in
Fig. 7.21a, thus verifying again the lack of pathological mesh-dependence of the proposed
formulation. As soon as the onset of localization is met at v ≈ 0.2427mm which signals the
loss of convexity, the performance of the diverse finite element methods starts to differ.
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Figure 7.21.: Model based on the assumption of D = C: Localization in tension by use of
MES element (the mixed enhanced strain method) and Q4 element (the dis-
placement method).

The displacement method is unable to capture the localization and shows hardening be-
haviour as depicted in Fig. 7.21a and b.

Fig. 7.22 demonstrates that the enhanced formulation can resolve effect of strain localiza-
tions. In Fig. 7.22a and b, the mesh is too coarse to have the shear band. It is noted that the
position of the discontinuity is coincident in the finer mesh of Fig. 7.22c and d., with element
size being small enough for the geometry of the discontinuity to resolve into the expected
shape. In comparison with the example of the tension test in Sections 7.6.2.2a and 7.6.2.2b,
which have the formation of one shear band, there exists two symmetric shear bands in this
example and their orientations are about 60◦ and 120◦ with the horizontal axis.

Fig. 7.23 shows the behaviour of the relaxed energy as well as the relaxed vertical stress
σy of the element 465 (Fig. 7.22e) at the first gauss point inside the shear band. As can be
seen, after the bifurcation point, the relaxed energy of the small-strain domain is asymptotic
to a constant whereas the relaxed energy of the large-strain domain is concentrated inside
the shear band and continuously increases significantly as the increase of the prescribed dis-
placement v. As a result, the relaxed stress approaches a constant.
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Relaxed energy (Nmm/mm3)
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7.4 Numerical examples

Fig. ?? demonstrates that the enhanced formulation can resolve effect of strain

localizations. In Fig. ??a and b, the mesh is too coarse to have the shear band.

It is noted that the position of the discontinuity is coincident in the finer mesh

of Fig. ??c and d., with element size being small enough for the geometry of

the discontinuity to resolve into the expected shape. In comparison with the

example of the tension test in sections ?? and ??, which have the formation of

one shear band, there exists two symmetric shear bands in this example and their

orientations are about 60◦ and 120◦ with the horizontal axis.

 1.37E+00

 2.28E+00

 3.20E+00

 4.12E+00

 5.04E+00

 5.96E+00

 6.88E+00

 7.80E+00

 8.72E+00

 9.63E+00

 1.06E+01

 1.15E+01

 4.47E-01

_________________ S T R E S S   7 

Time = 2.00E+00Time = 2.00E+00

 1.37E+00

 2.28E+00

 3.20E+00

 4.12E+00

 5.04E+00

 5.96E+00

 6.88E+00

 7.80E+00

 8.72E+00

 9.63E+00

 1.06E+01

 1.15E+01

 4.47E-01

_________________ S T R E S S   7 

Time = 2.00E+00Time = 2.00E+00a. 24 MES elements

 2.08E+00

 3.73E+00

 5.39E+00

 7.05E+00

 8.71E+00

 1.04E+01

 1.20E+01

 1.37E+01

 1.53E+01

 1.70E+01

 1.87E+01

 2.03E+01

 4.18E-01

_________________ S T R E S S   7 

Time = 2.00E+00Time = 2.00E+00

 2.08E+00

 3.73E+00

 5.39E+00

 7.05E+00

 8.71E+00

 1.04E+01

 1.20E+01

 1.37E+01

 1.53E+01

 1.70E+01

 1.87E+01

 2.03E+01

 4.18E-01

_________________ S T R E S S   7 

Time = 2.00E+00Time = 2.00E+00b. 126 MES elements

 3.32E+00

 6.24E+00

 9.16E+00

 1.21E+01

 1.50E+01

 1.79E+01

 2.08E+01

 2.38E+01

 2.67E+01

 2.96E+01

 3.25E+01

 3.55E+01

 3.93E-01

_________________ S T R E S S   7 

Time = 2.00E+00Time = 2.00E+00

 3.32E+00

 6.24E+00

 9.16E+00

 1.21E+01

 1.50E+01

 1.79E+01

 2.08E+01

 2.38E+01

 2.67E+01

 2.96E+01

 3.25E+01

 3.55E+01

 3.93E-01

_________________ S T R E S S   7 

Time = 2.00E+00Time = 2.00E+00c. 504 MES elements

 4.27E+00

 8.16E+00

 1.21E+01

 1.59E+01

 1.98E+01

 2.37E+01

 2.76E+01

 3.15E+01

 3.54E+01

 3.93E+01

 4.32E+01

 4.71E+01

 3.77E-01

_________________ S T R E S S   7 

Time = 2.00E+00Time = 2.00E+00

 4.27E+00

 8.16E+00

 1.21E+01

 1.59E+01

 1.98E+01

 2.37E+01

 2.76E+01

 3.15E+01

 3.54E+01

 3.93E+01

 4.32E+01

 4.71E+01

 3.77E-01

_________________ S T R E S S   7 

Time = 2.00E+00Time = 2.00E+00d. 1134 MES elements

 4.27E+00

 8.16E+00

 1.21E+01

 1.59E+01

 1.98E+01

 2.37E+01

 2.76E+01

 3.15E+01

 3.54E+01

 3.93E+01

 4.32E+01

 4.71E+01

 3.77E-01

_________________ S T R E S S   7 

Time = 2.00E+00Time = 2.00E+00

60°

n

60°

n

60°

n

60°

n

-Zoom

e. Orientation of shear bands at element 465 and element 481

Element 465 Element 481

Figure 7.20: Model based on the assumption of D = C: Localization within

tension test by use of MES element (the mixed enhanced strain method). Com-

parison of the different finite element meshes: Distribution of relaxed energy at

v = 1.0mm.
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Figure 7.22.: Model based on the assumption ofD = C: Localization within tension test by
use of MES element (the mixed enhanced strain method). Comparison of the
different finite element meshes: Distribution of relaxed energy at v = 1.0mm.
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stress σy by use of MES element (the mixed enhanced strain method) at the first
Gauss point of the element 465.
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8. Relaxed energy analysis of shear bands for hyperelastic

materials at large deformation

In this chapter the theory developed in the previous chapter for inelastic materials at small
strains is extended to geometric and material non-linearities for hyperelastic material. The
proposed theory is applied to both incompressible and compressible Neo-Hookean material
models. The performance of the proposed energy relaxation is demonstrated through the
numerical simulation of a simple shear test under plane strain condition. The presented
numerical simulation shows that there is no mesh sensitivity.

8.1. General assumptions

Similar to Section 7.2 the theory developed below is based on the following assumptions

(1) After the onset of localization, the width of the shear band represented by the volume
fraction ξ tends to zero (see Section 7.2 for explanation)

ξ → 0. (8.1)

(2) Most of the deformation is concentrated parallel to the band

Fm.n = 0. (8.2)

where F is the deformation gradient, Fm and n are the oriented vectors of the shear
band evolution.

(3) The energy inside a shear band is assumed in the form

W2(ξF ) = |ξ|W2(F ), (8.3)

W2(F ) = A ‖F ‖α , A > 0 . (8.4)

The second assumption based on the results of the experiment by Finno et al, 1996[35] for
soil. In their experiment, they showed that the normal movements are much smaller than
those in the tangent direction inside the shear band. This assumption implies the two vectors
Fm and n being orthogonal.

According to the third assumption, the energy inside a shear band is positive homogeneous
of first degree in the strain field (8.3). Only for the form of this energy as given in eq. (8.4)
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corresponding to α = 1, the energy has the desired property leading to strong discontinuities.
If α is larger than 1, the material will exhibit only weak discontinuities. If α is smaller than
1, the relaxed energy does not exist because of lacking coercivity.

8.2. Approximated rank-one convexification of potential energy

8.2.1. Micro-deformation gradient

F
1

F
2

x1 x2

F1 F

F12

F11

F22

F21

F2

x1 x2

x11

x12

x21

x22

W
R1

a. Micro-Level 1 b. Micro-Level 2

W
R2

F

Figure 8.1.: Tree-diagram (Hackl, 2005[39])

As mentioned in Section 7.1, the exact rank-one convexification is approximated by taken
into account the first micro-level (Fig. 8.1a). As a result, shear bands are treated as laminates
of first order. Thus, deformation gradients F 1 and F 2 of low-strain and high-strain domains
must satisfy the following conditions from eqs. (2.24) and (2.25)

F = ξF 1 + (1− ξ)F 2, (8.5)

rank(F 1 − F 2) ≤ 1. (8.6)

We introduce an appropriate ansazt for two domains as follows (see also eq. (2.26))

F 1 = F − dξ(Fa⊗ n), (8.7)

F 2 = F + d(1− ξ)(Fa⊗ n) = F − dξ(Fa⊗ n) + d(Fa⊗ n). (8.8)

Let us define s by

ξFa = sFm, (8.9)
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where ‖Fm‖ = 1. Herein Fm and n are the unit tangent and normal vectors of the shear
band; s is a scaling parameter.

Substituting eq. (8.9) into eqs. (8.7) and (8.8) yields

F 1 = F − s(Fm⊗ n), (8.10)

F 2 = F − s(Fm⊗ n) +
s

ξ
(Fm⊗ n). (8.11)

As ξ tends to zero,
s

ξ
will grow without bound. Thus, F 2 can be simplified as

F 2 ≈
s

ξ
(Fm⊗ n). (8.12)

8.2.2. Relaxed energy

Similar to Section 7.3.2 the mixed energy of the two domains can be defined by

Wmix(F ) = (1− ξ)W1(F − s(Fm⊗ n)) + ξW2(
s

ξ
(Fm⊗ n)),

= W1(F − s(Fm⊗ n)) + |s|W2(Fm⊗ n),

= W1(F − s(Fm⊗ n)) + A |s| ‖Fm⊗ n‖ . (8.13)

According to the second assumption, Fm and n are orthogonal. The general formulation
resulting from (8.13) may be taken in the following form

Wmix(F ) = W1(F − s(Fm⊗ n)) + A |s| . (8.14)

The problem of the non-convex mixed energy arises due to the occurrence of shear bands.
By introducing the concept of relaxation the problem can be resolved and becomes well-
posed. In general, if Fm is not perpendicular to n, the relaxed energy is obtained by the
minimization procedure

WR(F ) = inf {Wmix(F ) | s , m ,n ; ‖Fm‖ = ‖n‖ = 1 } . (8.15)

By inserting eq. (8.13) into eq. (8.15) we obtain the relaxed energy as the sum of the relaxed
energy of the low-strain domain denoted by [(1 − ξ)W1]R and the relaxed energy of the
high-strain domain denoted by [ξW2]R

WR(F ) = [(1− ξ)W1]R + [ξW2]R. (8.16)
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8.2.3. Computation of the relaxed stress and the tangent operator

The relaxed stress and the tangent operator are derived from the direct derivative of (8.15).
The first derivative of (8.15) reads

∂WR

∂F
=
∂Wmix

∂F
+
∂Wmix

∂s

∂s

∂F
+
∂Wmix

∂m

∂m

∂F
+
∂Wmix

∂n

∂n

∂F
· (8.17)

It is observed that the three last terms in eq. (8.17) vanish due to the necessary condition of
the minimization problem (8.15). Thus, the relaxed first Piola Kirchhoff stress which is the
average of the two micro-stresses has the form

P =
∂Wmix

∂F
· (8.18)

Taking the derivative of (8.18) we obtain the tangent operator with respect to the reference
configuration

A =
∂2WR

∂F 2 =
∂P

∂F
· (8.19)

8.3. Variational formulation

The general total potential energy functional in finite elasticity may be written in the refer-
ence configuration as

Π(u) =

∫

Ω

WR(F (u)) dΩ−
∫

Ω

uTf dΩ−
∫

∂Ωσ

uTT̄ dA , (8.20)

where f and T̄ denote respectively the body force and the specified traction in the reference
configuration, and ∂Ωσ is the traction boundary for the reference configuration.

As the process of deformation progresses, s may be negative, zero or positive. The non-zero
value in turn signals the onset of localization.

i. s = 0: The relaxed energyWR(F ) is equal to the elastic strain energy density function
W1(F ).

ii. s 6= 0: The shear band starts to develop. The homogeneous deformation decom-
poses into the two micro-deformation gradients and the non-convex potential energy
Wmix(F ) is replaced with the approximated rank-one convexification WR(F ) defined
by (8.15) to ensure the well-posedness of the problem.
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8.4. Application of relaxation theory to Neo-Hookean material

8.4.1. Incompressible Neo-Hookean model

Using the incompressible Neo-Hookean model, the potential energy of the low-strain domain
has the form

W1(F ) =
µ

2

[
tr(FF T)− 3

]
. (8.21)

Substituting eq. (8.21) into eq. (8.14) leads to

Wmix(F ) =
µ

2

[
tr(FF T)− 3

]
+
µs2

2
− µs tr

{
F (Fm⊗ n)T

}
+ A |s| . (8.22)

Let us consider the following relaxed energy

WR(F ) = inf
{
Wmix(F ) | s , m ,n ; ‖Fm‖ = ‖n‖ = 1

}
. (8.23)

By use of the results in Box 7.1 (see Section 7.4.2), the minimization problem (8.23) with
respect to s yields

s =
1

µ

[
µ
∣∣tr
{
F (Fm⊗ n)T

}∣∣− A
]

+
sign

(
tr
[
F (Fm⊗ n)T

])
, (8.24)

and the corresponding energy with solution s (8.24)

inf
s
Wmix(F ) =

µ

2

[
tr(FF T)− 3

]

− 1

2µ

[
µ
∣∣tr
{
F (Fm⊗ n)T

}∣∣− A
]2

+
. (8.25)

Let us define M by

M(m,n) =
∣∣tr
{
F (Fm⊗ n)T

}∣∣ . (8.26)

In order to find the relaxed energy (8.23), we must minimize (8.25) with respect to the rest
of the variablesm and n. It is observed that the first term of (8.25) is indenpedent ofm and
n. Hence, instead of minimizing (8.25), now we maximize M(m,n) with respect tom and
n

sup
m,n

M(m,n). (8.27)
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In plane strain problem, the deformation gradient has the form

F =



F11 F12 0

F21 F22 0

0 0 1


 . (8.28)

Let m1 and m2 the components of the vector m, n1 and n2 the components of the vector n.
Due to the orthogonality of the two unit vectors Fm and n, we have

m1 =
F12n1 + F22n2

J
, (8.29)

m2 = −F11n1 + F21n2

J
, (8.30)

where J = detF = 1 is the determinant of the deformation gradient F corresponding to the
incompressible state.

On inserting (8.29) and (8.30) into (8.26) we have

M(n) =
∣∣n1n2(F11 − F22) + F12n

2
2 − F21n

2
1

∣∣ . (8.31)

Thus, the maximization of (8.27) with respect tom and n may be reduced as

sup
m,n

M(m,n)
Fm.n=0→ sup

n
M(n). (8.32)

The necessary condition of the maximization problem (8.32) with respect to the unit vector
n leads to the solution n

2n1F21 = n2(F11 − F22), (8.33)

n1(F11 − F22) = −2n2F12. (8.34)

Eqs. (8.33) and (8.34) give the following constraint condition for the deformation gradient
F as a shear band occurs

(F11 − F22)2 + 4F12F21 = 0. (8.35)

The relaxed first Piola Kirchhoff stress tensor by use of eq. (8.22) may be taken in the
following form

P =
∂Wmix(F )

F
= µF − µs [Fm⊗ n+ Fn⊗m] . (8.36)
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The relaxed Cauchy stress tensor can be written as

σ = J−1µFF T − µsJ−1F
[
Fm⊗ nF T + Fn⊗mF T

]
F T, (8.37)

where J = 1.

The theoretical developments are summarized in Box 8.1.

Box 8.1: Summary of some main formulations of the relaxed energy for the incompressible
Neo-Hookean model

Micro-deformation gradient

F 1 = F − s(Fm⊗ n), (8.38)

F 2 ≈
s

ξ
(Fm⊗ n). (8.39)

Mixed energy

Wmix(F ) =
µ

2

[
tr(FF T)− 3

]
+
µs2

2
− µs tr

{
F (Fm⊗ n)T

}

+ A |s| . (8.40)

Relaxed energy

WR = inf
s,m,n

Wmix(ε) =
µ

2

[
tr(FF T)− 3

]
− 1

2µ
[µM(n)− A]2+ , (8.41)

where

M(n) =
∣∣n1n2(F11 − F22) + F12n

2
2 − F21n

2
1

∣∣ . (8.42)

Solutions n = (n1, n2),m = (m1,m2) and s

• Solution n = (n1, n2)

{
2n1F21 = n2(F11 − F22)

n2
1 + n2

2 = 1
⇒ n1 , n2 (8.43)

where F must be satisfied the following condition if check is positive

(F11 − F22)2 + 4F12F21 = 0. (8.44)
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Box 8.1: (continue)

• Solutionm = (m1,m2)

m1 =
F12n1 + F22n2

J
, (8.45)

m2 = −F11n1 + F21n2

J
· (8.46)

• Solution s

s =
1

µ
[µM(n)− A]+ sign

(
tr
[
F (Fm⊗ n)T

])
, (8.47)

where J = detF = 1.

First Piola Kichhoff stress tensor

P = µF − µs [Fm⊗ n+ Fn⊗m] . (8.48)

Cauchy stress tensor

σ = J−1µFF T − µsJ−1F
[
Fm⊗ nF T + Fn⊗mF T

]
F T . (8.49)

Tangent operator

A =
∂P

∂F
· (8.50)

The onset of bifurcation is detected based on check

check = µM(n)− A. (8.51)

• If check ≤ 0, s = 0.

• If check > 0,

s =
1

µ
check sign

(
tr
[
F (Fm⊗ n)T

])
. (8.52)

8.4.2. Compressible Neo-Hookean model

Using the compressible Neo-Hookean model, the potential energy of the low-strain domain
has the form [104]

W1(F ) =
µ

2

[
tr(FF T)− 3− 2 ln(detF )

]
+
λ

2
(detF − 1)2. (8.53)
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By substituting eq. (8.53) into eq. (8.14) the mixed energy has the following form

Wmix(F ) =
µ

2

[
tr(FF T)− 3

]
− µs tr

[
F (Fm⊗ n)T

]

+
µs2

2
+ A |s|+ λU(J)− µ ln J , (8.54)

where

U(J) =
1

2
(J − 1)2 , (8.55)

and

J = detF 1 = det [F − s(Fm⊗ n)] = detF det [I − s(m⊗ n)] . (8.56)

In two-dimensional problem, by use of eq. (8.28), eq. (8.56) can be taken in the following
form

J = detF + as, (8.57)

where

a = −F12n
2
1 + F21n

2
2 + n1n2(F11 − F22). (8.58)

For convenience to find the derivative of Wmix with respect to s and n, the mixed energy
(8.54) may be rewritten as

Wmix(F ) =
µ

2

[
tr(FF T )− 3

]
+
λ

2
(detF − 1)2

+
1

2
(µ+ λ a2)s2 + bs+ A |s| − µ ln(detF + as), (8.59)

where

b = λ a(detF − 1)− µ tr
[
F (Fm⊗ n)T

]
,

= c n2
1 + d n2

2 + e n1n2, (8.60)

c = −λF12 (detF − 1) + µF21, (8.61)

d = λF21 (detF − 1)− µF12, (8.62)

e = [λ(detF − 1)− µ] (F11 − F22). (8.63)

As explained in Section 7.3.2, the relaxed energy is computed in order to ensure the well-
posed problem due to the emergence of a shear band. It is obtained by the minimization
procedure

WR(F ) = inf
{
Wmix(F ) | s , n ; ‖n‖ = 1

}
. (8.64)
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The relaxed first Piola Kirchhoff stress tensor resulting from (8.54) gives

P =
∂Wmix(F )

F
,

= µ(F − F−T )− 2µsF (m⊗ n)s + λ(J − 1)JF−T. (8.65)

The relaxed second Piola Kirchhoff stress tensor reads

S = µ(I −C−1) + λ(J − 1)JC−1 − 2µs(m⊗ n)s, (8.66)

where the right Cauchy-Green deformation tensor C = F TF .

The relaxed Cauchy stress tensor yields

σ =
µ

detF

[
FF T − I

]
− 2µ s

detF
F (m⊗ n)sF T + λ(J − 1)I. (8.67)

The tangent operator with respect to the reference configuration are deduced from

AIJKL = λJ(2J − 1)C−1
IJ C

−1
KL + [−λJ(J − 1) + µ] (C−1

IKC
−1
JL + C−1

ILC
−1
JK)

− 2µ

[
(m⊗ n)s ⊗ ∂s

∂C
+ s

∂(m⊗ n)s

∂C

]
. (8.68)

The spatial tangent operator related to the Cauchy stress σ is obtained by the push forward

aijkl =
1

detF
FiIFjJFkKFlLAIJKL ,

=
1

detF
{λJ(2J − 1)δijδkl + [µ− λJ(J − 1)] (δikδjl + δilδjk)}

− µFiIFjJFkKFlL
detF

[
(mInJ +mJnI)

∂s

∂CKL
+ s

∂(mInJ +mJnI)

∂CKL

]
. (8.69)

The theoretical developments are summarized in Box 8.2.
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Box 8.2: Summary of some main formulations of the relaxed energy for the compressible
Neo-Hookean model

Micro-deformation gradient

F 1 = F − s(Fm⊗ n), (8.70)

F 2 ≈
s

ξ
(Fm⊗ n). (8.71)

Mixed energy

Wmix(F ) =
µ

2

[
tr(FF T )− 3

]
+
λ

2
(detF − 1)2

+
1

2
(µ+ λ a2)s2 + bs+ A |s| − µ ln(detF + as). (8.72)

Relaxed energy

WR(F ) = inf
{
Wmix(F ) | s , n ; ‖n‖ = 1

}
. (8.73)

Cauchy stress tensor

σ =
µ

detF

[
FF T − I

]
− 2µ s

detF
F (m⊗ n)sF T + λ(J − 1)I. (8.74)

The spatial tangent operator

aijkl =
1

detF
{λJ(2J − 1)δijδkl + [µ− λJ(J − 1)] (δikδjl + δilδjk)}

− µFiIFjJFkKFlL
detF

[
(mInJ +mJnI)

∂s

∂CKL
+ s

∂(mInJ +mJnI)

∂CKL

]
.

where J = detF 1 .

8.5. Numerical examples

8.5.1. Example 1: Incompressible Neo-Hookean model

To study some numerical aspects of the proposed formulation an example of a simple shear
test is considered. The deformation gradient in the simple shear test defined by

F =

[
1 F12

0 1

]
. (8.75)

Material parameters are the elastic modulusE = 1000N/mm2, the Poisson’s ratio ν = 0.25

and A = 30 N/mm2.
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8.5.1.1. Analytical solution

On inserting (8.75) into (8.31) we have

M(n) =
∣∣F12n

2
2

∣∣ . (8.76)

We consider the maximization problem

sup
n
M(n) = sup

n

∣∣F12n
2
2

∣∣ . (8.77)

The minimization problem (8.77) with respect to n gives

n = (0,±1). (8.78)

Thus,

sup
n
M(n) = |F12| . (8.79)

Substituting (8.78) into (8.29), (8.30) and (8.24) leads to

s =

[
|F12| −

A

µ

]

+

sign(F12). (8.80)

It is recognized that localization occurs if |F12| >
A

µ
= 0.075.

The Cauchy shear stress σ12 from eq. (8.37) reads

σ12 = µ(F12 − s). (8.81)

Two possible cases are:

• |F12| ≤
A

µ
= 0.075 → s = 0 : σ12 = µF12.

• |F12| >
A

µ
= 0.075 → s = F12 −

A

µ
sign(F12) : σ12 = A sign(F12).

8.5.1.2. Numerical solution by use of Mathematica [114]

Let us select 0 ≤ F12 ≤ 0.3. The minimization of (8.22) with two variables s and n can
be obtained by using the command “NMinimize” in Mathematica [114]. The numerical
results of the energy relaxation and the relaxed shear stress σ12 are shown in Fig. 8.2. At
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F12 = 0.075 a shear band has begun to form and the corresponding normal vector is n =

(0, 1). Material inside the shear band then decomposes into two domains: low-strain and
high-strain domains whose relaxed energies are [(1− ξ)W1]R and [ξW2]R, respectively (Fig.
8.2). As can be seen, the relaxed energy of the low-strain domain is asymptotic to a constant
whereas the relaxed energy of the high-strain domain starts to increase linearly. As a result,
the relaxed shear stress also approaches the material parameter A. Thus A can be interpreted
as the stress level in the shear band.
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Figure 8.2.: Incompressible Neo-Hookean model: Relaxed energy and relaxed shear stress
σxy.

8.5.2. Example 2: Compressible Neo-Hookean model
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Figure 8.3.: Localization within shear test. Geometry and boundary conditions.

The geometry, the loading and boundary conditions of a specimen under plane strain con-
dition as well as material parameters are shown in Fig. 8.3. The material in the indicated
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middle left and right parts of the specimen is given an initially lower value of A = 450 Nmm
in order to trigger the shear band formation. Four-node quadrilateral elements based on the
displacement method (Q4-element) and three-field-mixed formulation (Mixed-Q4 element)
are employed. The minimization problem (8.64) is carried out in NAG [95]. The model is
implemented in the general code FEAP [103].

The sample is discretized with four different meshes: 8x3, 18x7, 36x14, 54x21 elements.
The solutions are practically coincident in terms of vertical reactions in Fig. 8.4a, thus con-
firming again the lack of mesh sensitivity of the proposed formulation. Relaxed analysis of
this problem shows that localization occurs at u = 0.01734mm simultaneously with the loss
of convexity. The fact that the Cauchy shear stress σxy approaches the material parameter
A (Fig. 8.5b) is in good agreement with the analytical result in the incompressible Neo-
Hookean model presented in the first example because the deformation gradient at Gauss
point has the form (8.75). The distribution of the relaxed energy of high-strain domain
depicted in Fig. 8.4b demonstrates that the energy is concentrated inside the shear band.
Relaxation indicates that the material decomposes into low-strain and high-strain domains
inside the shear band; outside the shear band the behaviour of material is elastic. More de-
tails can be seen in Fig. 8.5 for the behaviour of the relaxed energy as well as the relaxed
shear stress at the first Gauss point of the weak elements.
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Figure 8.4.: Compressible Neo-Hookean model: Localization within shear test by use of
Q4 element (the displacement method) and Mixed-Q4 element (the three-field
mixed formulation).

Fig. 8.6 illustrates the distribution of the Almansi shear strain at u = 0.1mm. As can be
seen, most of deformation is concentrated in the band. It is very interesting that the relaxed
analysis by using Q4 and Mixed-Q4 elements yields the identical post-critical branches for
all mesh densities.
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9. Relaxed energy analysis of shear bands for

fluid-saturated inelastic porous media at small

deformation

In this chapter the proposed energy relaxation for shear localization in fluid-saturated in-
elastic porous media is presented. The theory is predicated upon the assumption that strain
field and variation in water content inside the shear band are assumed to tend to infinity.
Throughout this chapter compressive stress and strain are negative as in the sign convention
of continuum mechanics, the compressible fluid is positive.

9.1. Saturated one-phase flow in porous medium

9.1.1. Governing equations

Soils composed of solids, liquids and gases are multiphase materials. If all the voids are
filled by liquids, for example water, the soil is saturated. For fully saturated conditions, the
governing equations based upon Biot theory are derived from the following equations under
the assumptions of small-strain theory, isothermal equilibrium (Lewis and Schrefler, 1993
[68], Zienkiewicz, 1982[124], Zienkiewicz et al, 1999[125]):

1. The linear momentum balance equation of the solid-fluid mixture

divσ + ρ b− ρü = 0. (9.1)

Herein σ is the total Cauchy stress in the combined solid and fluid mix, b is the body force
per unit mass, ü is the acceleration of the solid skeleton and ρ is the total density of the
mixture, i.e.

ρ = nρw + (1− n)ρs (9.2)

where ρs and ρw are the intrinsic densities of the solid and water phases, repectively and n is
the porosity, i.e.

n =
dvw

dv
, (9.3)
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where dv and dvw are the volume elements of the mixture and the water phase, respectively.

The relation between the total stress σ and the effective stress σ′′ with the hydrostatic stress
due to the pore pressure p reads [68, 125]

σ
′′

= σ + α Ip, (9.4)

where α is Biot’s constant defined by (9.11), I is the second order unit tensor.

2. The momentum balance of the fluid

−∇p− FR − ρwü+ ρwb = 0, (9.5)

where FR represents the viscous drag forces which, assuming the Darcy seepage law, can
be written as

kFR = ẇ. (9.6)

Here ẇ denotes the velocity of the fluid flow. The displacement w of the pore fluid relative
to the solid skeleton is defined by

w = n (U − u) , (9.7)

where U is the total displacement of the fluid measured from the same datum as u, the
division by the porosity n is introduced to convert the average fluid displacement to the true
ones in the pores.

The permeability matrix k has the dimension of [length]3[time]/[mass]. The link between
each value of k and the soil mechanics convention k′, which is used with the dimension of
[length]/[time], is defined by

k =
k′

ρwg
, (9.8)

where g is the graviational acceleration at which the permeability is measured.

3. The mass balance of the flow

∇T ẇ + ζ̇ = 0, (9.9)

where ζ is the variation in water content; ζ̇ is the rate at which the volume of water changes
per unit total volume of mixture. The change of the water volume is due to
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• (a) the increased volume due to a change in strain i.e.: dεii;

• (b) the additional volume stored by compression of void fluid caused by the fluid pres-

sure increase:
ndp

Kw

;

• (c) the additional volume stored by compression of grains by the fluid pressure in-

crease:
(1− n)dp

Ks

;

• (d) the change in volume of the solid phase caused by a change in the intergranular

effective contact stress: −KT

Ks

(
dεii +

dp

Ks

)
,

where KT , Ks and Kw are the bulk modulus of the solid skeleton, the grain material and the
water, respectively; εii is the total volumetric strain.

The rate of the variation in water content is obtained by adding all the above contributions
together (a)-(d)

ζ̇ = αε̇ii +
ṗ

Q
, (9.10)

where α and Q are the Biot’s constant defined by

1 − α =
KT

Ks

, (9.11)

1

Q
=

n

Kw

+
α− n
Ks

· (9.12)

Equations (9.1), (9.5) and (9.9) are suplemented by the following boundary conditions:

• Boundary conditions on the parts ∂Ωu and ∂Ωσ:

u = ū on ∂Ωu , (9.13)

t̄ = σν on ∂Ωσ , (9.14)

where ν is the outward normal unit vector on the boundary ∂Ωσ, ū and t̄ are the
imposed displacement and the traction force on the boundaries ∂Ωu and ∂Ωσ, respec-
tively;

• Boundary conditions on the parts ∂Ωp and ∂Ωu for the fluid phase :

p = p̄ on ∂Ωp , (9.15)

(ν ′)Tw = wn on ∂Ωw , (9.16)

where ν ′ is the outward normal unit vector on the boundary ∂Ωw, p̄ and wn are the
imposed pore pressure and the normal outflow on the boundaries ∂Ωp and ∂Ωw, re-
spectively.
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Equations (9.1), (9.5) and (9.9) together with the boundary contions (9.13-9.16) and the
constitutive equation provide the system of equations in three unknown variables (u, p, w).

In quasi-static, the motion is so slow that all dynamic force terms can be neglected. Now the
displacement of the fluid flow w can be determined in terms of u and p. Consequently, the
system of equations (9.1), (9.5) and (9.9) is reduced to

divσ + ρ b = 0. (9.17)

∇T [k (−∇p− ρwb)] + αε̇ii +
ṗ

Q
= 0. (9.18)

Disretization of the governing equations (9.17) and (9.18) based on the displacement-based
finite element formulation and the enhanced assumed strain method can be found in Section
4.2, 4.4 as well as Lewis and Schrefler, 1993 [68], Zienkiewicz et al, 1999[125] and Mira et
al., 2003[76].

9.1.2. Numerical example

A strip foundation on a saturated soil is subjected to a prescribed vertical displacement. The
geometry of the considered domain and the imposed boundary conditions on displacements
and pore pressure are given in Fig. 9.1. The material parameters are given in Table 9.1.

E ν n ρs ρw Ks Kw k′x = k′y
KN/m2 - - kg/m3 kg/m3 KN/m2 KN/m2 m/s

2x104 0.2 0.3 2x103 1x103 1x1010 1x1010 1x10−8

Table 9.1.: Material parameters.

The displacement-based finite element formulation with eight-node displacement and four-
node pressure interpolations (Q8P4) and the enhanced assumed strain method with four-
node displacement and seven enhanced modes for pressure interpolations (EAS) are used in
this example. The constitutive equation for solid skeleton is based on the model with the
assumption of D = A2D andm.n = 0 introduced in Section 7.5.2 and Box 7.7.

We consider two different discretizations of the domain in this numerical example: 10x10
and 40x40 elements. The relaxed energy at the element under the corner of foundation as
well as the distribution of the relaxed energy of the high-strain domain [ξW2]R are depicted
in Figs. 9.3, 9.4 by use of 1600 Q8P4 and EAS elements, respectively, corresponding to the
first case a = 10B (Fig. 9.1). Figs. 9.5 and 9.6 report the results of 1600 EAS elements
for the second case a = 5B (Fig. 9.1). It can be seen in Figs. 9.3c, 9.4c and 9.5c that there
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Figure 9.1.: Saturated soil foundation problem: Geometry and boundary conditions.

exists an inelastic region indicating the formation of shear bands under the foundation.

However, the results in terms of load and displacement (Fig. 9.2) show mesh-dependence
response caused by the lack of the relaxed pore pressure in the relaxed energy presented in
Section 7.5.2. To assure mesh independent results, the relaxed stress as well as the relaxed
pore pressure is introduced through the proposed energy relaxation in the next parts of this
chapter.
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Figure 9.3.: Case 1 (a = 10B): Soil foundation problem by use of 1600 Q8P4 elements
(The displacement-based finite element formulation with eight-node displace-
ment and four-node pressure interpolations).
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Figure 9.4.: Case 1 (a = 10B): Soil foundation problem by use of 1600 EAS elements
(The enhanced assumed strain method with four-node displacement and seven
enhanced modes for pressure interpolations).
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Figure 9.5.: Case 2 (a = 5B): Soil foundation problem by use of 1600 EAS elements (The
enhanced assumed strain method with four-node displacement and seven en-
hanced modes for pressure interpolations).
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9.2. Micro-strain and micro-variation in water content

In this part, the micro-strain and the micro-variation in water content can be determined
based on the following assumption:

First assumption: The width of a shear band tends to zero, ξ → 0.

According to this assumption,

• the micro-strains of the low-strain and high-strain domains in solid derived from eqs.
(7.41) and (7.43) in Section 7.4.1 can be expressed as

ε1 = ε− s(m⊗ n)s, (9.19)

ε2 ≈
s

ξ
(m⊗ n)s →∞ as ξ → 0 , (9.20)

where the unit vectorsm and n are the oriented vectors of the shear band evolution.

• the micro-variations in water content have the following forms based on eqs. (7.20)
and (7.22) in Section 7.3.1

ζ1 = ζ − r, (9.21)

ζ2 ≈
r

ξ
→∞ as ξ → 0 . (9.22)

Herein r and s defined by eqs.(7.19) and (7.40), repectively, are the scaling parameters.

9.3. Relaxed energy of porous inelastic medium

According to Biot, 1962[12], the strain energy of a porous elastic medium has the following
form

W1(ε, ζ) =
1

2
λc(trε)

2 + µ ‖ε‖2 − αQ(trε)ζ +
1

2
Qζ2, (9.23)

where ε is the strain field for the solid; µ is the shear modulus; α and Q are the Biot’s
constants defined by (9.11) and (9.12), respectively; ζ is the variation in water content deter-
mined by eq. (9.10).

The coefficient λc links the Biot’s constants α and Q with the Lamé constant λ:

λc = λ+ α2Q. (9.24)
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By use of eq. (9.23) the total stress and pore pressure are given by

σ =
∂W1

∂ε
= λc(trε)I + 2µε− αQζI. (9.25)

p =
∂W1

∂ζ
= −αQtrε+Qζ. (9.26)

It should be noticed that if the fluid (water in this case) is compressible, that is, whenQ 6=∞,
we also obtain eq. (9.26) by taking the integration with respect to time of eq. (9.10).

Let us consider the second assumption

Second assumption: The energy of the high-strain domain inside a shear band has
the following form

W2(ε, ζ) =

[
1

2
λ̄c(trε)

2 + µ̄ ‖ε‖2 − ᾱ Q̄(trε)ζ +
1

2
Q̄ζ2

] 1
2

(9.27)

which satisfies the positive homogeneity of the first degree in ε and ζ

W2(aε, aζ) = |a|W2(ε, ζ) (9.28)

where λ̄c, µ̄, ᾱ and Q̄ are material paramters whose values determine the stress level
in the shear band.

Similar to Chapters 7 and 8 the mixed energy of the porous inelastic medium can be taken in
the following form

Wmix(ε, ζ) = (1− ξ)W1(ε− s(m⊗ n)s, ζ − r) + ξW2(
s

ξ
(m⊗ n)s,

r

ξ
). (9.29)

Let ξ tend to zero and substituting (9.23) into the first term of eq.(9.29) we obtain

W1(ε− s(m⊗ n)s, ζ − r) =
1

2
λc(trε)

2 + µ ‖ε‖2 +
s2

2

[
µ+ (λc + µ)(m.n)2

]

− s [λc(m.n)trε+ 2µm.εn]

− αQ [trε− s(m.n)] (ζ − r)
+

1

2
Q(ζ − r)2. (9.30)

According to the second assumption, the second term of eq.(9.29) can be written as

ξW2(
s

ξ
(m⊗ n)s,

r

ξ
) = W2(s(m⊗ n)s, r). (9.31)

On inserting (9.27) into eq.(9.31) we get

W2(s(m⊗ n)s, r) =

[
s2

2

(
µ̄+ (λ̄c + µ̄)(m.n)2

)
− ᾱ Q̄(m.n)sr +

1

2
Q̄r2

] 1
2

. (9.32)
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Addition of all components (9.30) and (9.32), the mixed energy (9.29) yields

Wmix(ε, ζ) = W1(ε− s(m⊗ n)s, ζ − r) +W2(s(m⊗ n)s, r),

=
1

2
λc(trε)

2 + µ ‖ε‖2 +
s2

2

[
µ+ (λc + µ)(m.n)2

]

− s [λc(m.n)trε+ 2µm.εn]

− αQ [trε− s(m.n)] (ζ − r) +
1

2
Q(ζ − r)2

+

[
s2

2

(
µ̄+ (λ̄c + µ̄)(m.n)2

)
− ᾱ Q̄(m.n)sr +

1

2
Q̄r2

] 1
2

. (9.33)

The problem of the non-convex energy (9.33) arizing due to the formation of shear bands is
solved by energy relaxation in order to ensure that the corresponding problem is well-posed.
The relaxed energy is obtained by the minimization procedure

WR(ε) = inf
{
Wmix(ε) | s , r , m ,n ; ‖m‖ = ‖n‖ = 1

}
. (9.34)

Let us recall eq. (7.64)

m.εn = (εm +R cos 2ψ) cosϕ+R sin 2ψ sinϕ ,

= εm cosϕ+R cos(ϕ− 2ψ), (9.35)

where R and εm are the maximum shear strain and the average strain; ψ is an angle between
the vectorm and the eigenvector e1 corresponding to the major principal strain E1 as denoted
in Fig. 7.6; ϕ is the angle between two unit vectorsm and n:

m.n = cosϕ. (9.36)

The mixed energy (9.33) can be rewritten as an alternative form by inserting eqs. (9.35) and
(9.36)

Wmix =
1

2
λc(trε)

2 + µ ‖ε‖2 +
s2

2

[
µ+ (λc + µ)(cosϕ)2

]

− s [λcε cosϕ+ 2µ (εm cosϕ+R cos(ϕ− 2ψ))]

− αQ [trε− s cosϕ] (ζ − r) +
1

2
Q(ζ − r)2

+

[
s2

2

[
µ̄+ (λ̄c + µ̄)(cosϕ)2

]
− ᾱ Q̄(cosϕ)sr +

1

2
Q̄r2

] 1
2

. (9.37)

Therefore, the relaxed energy (9.34) can be expressed as the following minimization problem
by considering the mixed energy (9.37)

WR(ε) = inf
{
Wmix(ε) | s , r , ϕ , ψ ; 0 ≤ ϕ , ψ ≤ π

}
. (9.38)
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The necessary condition of the maximization problem (9.34) with respect to ψ leads to two
possible solutions

ψ =
ϕ

2
, (9.39)

or ψ =
ϕ

2
+
π

2
, (9.40)

where 0 ≤ ϕ ≤ π. Herein we consider first case ψ =
ϕ

2
. The procedure for second case is

similar and is not considered here.

In order to find the relaxed energy (9.38) we can use the following mixed energy by substi-
tuting (9.39) into (9.37)

Wmix =
1

2
λc(trε)

2 +
1

2
Qζ2 − αQζtrε

+ s2(a+ bx2) + csx+ ds+ er + fsxr + gr2

+
√
s2(a+ bx2) + fsxr + gr2. (9.41)

Here

a =
µ

2
, (9.42)

b =
λc + µ

2
, (9.43)

c = − (λctrε+ 2µ εm) + αQζ, (9.44)

d = −2µR, (9.45)

e = αQ trε−Qζ, (9.46)

f = −αQ, (9.47)

g =
1

2
Q, (9.48)

x = cosϕ. (9.49)

It should be noticed that the solutions s, r and ϕ of the minimization problem (9.34) can be
found directly by Mathematica [114].

The relaxed stress and the relaxed pore pressure by using eq. (9.37) are given by

σ =
∂Wmix

∂ε
,

= λc(trε)I + 2µε− s [λc(m.n)trε+ 2µ (m⊗ n)s]− αQ(ζ − r)I. (9.50)

p =
∂Wmix

∂ζ
= −αQ (trε− sm.n) +Q(ζ − r). (9.51)



9.4. Summary 145

The relaxed effective stress links the relaxed stress and relaxed pore pressure based on eq.
(9.4)

σ
′′

= σ + α Ip ,

= λ(trε)I + 2µε− s [λ(m.n)I + 2µ (m⊗ n)s] . (9.52)

It is very interesting that the relaxed effective stress (9.52) has the identical form of eq.(7.73).

9.4. Summary

Throughout this chapter, the relaxed energy analysis of shear bands for fluid-saturated inelas-
tic porous media at small deformation is presented. The peformance of the energy relaxation
presented in Section 7.5.2 incorporating the Biot theory is demonstrated through the numeri-
cal simulation of a soil foundation problem. The numerical results show that mesh sensitivity
cannot be removed. Hence, the relaxed energy of porous inelastic media is suggested. The
main features of the proposed formulation may be summarized as follows:

• The assumption of a zero thickness shear band induces the unbounded micro-strain and
the unbounded micro-variation in water content of the high-strain domain according
to eqs. (9.20) and (9.22).

• The assumption of the positive homegeneity of the first degree in strain and variation
in water content leads to the bounded mixed energy of the high-strain domain. This
potential energy can be identified from one of the equations (9.33), (9.37) and (9.41).

• By use of Mohr strain circle the relaxed energy determined by the minimization prob-
lem for the mixed energy with three variables instead of four variables.

• The relaxed effective stress (9.52) obtained from the relaxed total stress and the relaxed
pore pressure is as identical as the one presented in Section 7.5.1.
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10. Conclusions and outlook

The simulation of localization phenomena has become of considerable interest due to its im-
portance in predicting material failure. The presented thesis deals with three issues:

(1) Simulation of shear band formation in hypoplastic models by the multi-field finite ele-
ment method.

(2) Analysis of strong discontinuities in hypoplastic models.

(3) Simulation of shear localization by energy relaxation.

In the first issue, the multi-field finite element formulations of shear localization in materials
are presented to decrease the mesh dependence for shear bands’s simulation. The formula-
tions are based upon hypoplastic constitutive laws for soils and the variational formulation
involving three independent variables: displacement, stress and strain rates. Included in these
formulations are the standard displacement method, the three-field mixed formulation, the
enhanced assumed strain method and the mixed enhanced strain method. Several numerical
examples, which demonstrate the capability and performance of the different finite element
formulations, are compared with available experimental data for Hostun RF sand and nu-
merical results for Karlsruhe sand on biaxial tests. The numerical results obtained from the
multi-field finite element formulations based on the Wolffersdorff hypoplastic model reveal
a pathological dependence on the discretization. The resulting problem is not purely nu-
merical, because the mesh dependence is the direct consequence of the ill-posedness of the
boundary value problem, which indicates an underlying mathematical problem.

An analysis for strong discontinuity in hypoplasticity is presented in the second issue of the
thesis as an alternative approach to eliminate the mesh dependence. In order to make the
constitutive equation compatible with the appearence of strong discontinuities, several re-
quirements on the stress field are imposed. Then this results in a set of equations which may
be solved for the additional unknowns appearing in the problem: the displacement jump, the
stress field at the discontinuity path and the normal vector. It is found that by void ratios of
areas inside a shear band and at a neighbouring shear band are identical when one neglects
the normal movements in the discontinuity surface. However, this result is in conflict with
the experimental observations by Oda and Kamaza, 1998[85]. This gives rise to a need to
derive the new evolution equation to update the void ratio in the discontinuity surface. The
form of this evolution equation is still an open question.
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The last issue focuses on a theorical framework for the treatment of shear localizations in
solid materials. The theory is based on energy minimization principles associated with
micro-structure developments under the assumptions of a shear band of a zero thickness
and of the mixed energy inside a shear band. The first assumption immediately leads to
unbounded strain of the high-strain domain at the discontinuity. According to the second
assumption the proposed mixed energy in inelastic materials consists of the energy involving
the behaviour at very small strain and the energy representing the behaviour at very large
strain, which is a linear function and implicitly takes into account softening behaviour. The
fact that the energy representing the behaviour in very large strain is a function of the inelastic
strain is in close agreement with the experiment by Wei et al., 2002[112].

Localization phenomena are interpreted as micro-structure developments associated
with the nonconvex mixed energy. The problem of the non-convex energy arizing due to
the formation of shear bands is solved by energy relaxation in order to ensure that the cor-
responding problem is well-posed. The relaxed energy, which is approximated by a first
order rank-one convexification, is defined by a local minimization problem for the mixed
potential energy with three variables. The onset of localization is detected through the pro-
posed optimization process. The relaxed results link locally averaged stresses with strains
in a heterogeneous material. The mesh dependence can be handled by convexification of
the potential energy, while the emergence of shear bands can continuously evolve in a well
defined and physically meaningful manner.

The theory is also extended to geometric and material non-linear theory for hyper-
elastic materials. The numerical results closely match the analytical result, verifying again
the lack of pathological mesh dependence of the proposed relaxed energy.

Finally, the above energy relaxation is applied to porous inelastic media based on
Biot theory. The presented numerical results manifest mesh sensitivity in case of a soil foun-
dation problem. Thus, the energy relaxation taking into account the relaxed pore pressure
is introduced. To determine the relaxed fields of stress and pore pressure, the minization
problem for the mixed energy, which is a function of strain and variation in water content,
is settled. In high-strain domain the strain and the variation in water content become un-
bounded.

It should be noted that the theory developed in the last issue indeed belongs to a sub-
class of the approach suggested by Carstensen, Hackl and Mielke, 2002. In their approach
the general formulation of inelasticity is governed by the stored energy function and the
dissipation function. However, the dissipation function in the proposed theory here cannot
be derived explicitly.

On the basis of the results obtained in this thesis, several directions for future work are
suggested

• Evolution equation to update the void ratio in the discontinuity surface for strong dis-
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coninuity approach incorporating hypoplasticity.

• Numerical simulation of shear localization in inelastic porous media based on the pro-
posed theory in Chapter 9.

• An exact treatment of a rank-one convexification analysis of shear bands.

• Comparison between numerical results obtained from the proposed energy relaxation
and experiment.
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