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Abstract

In this thesis, experimental and numerical investigations of the damage evo-
lution in cyclic loaded specimens are performed. The fatigue crack growth is
observed on two different specimen forms. The fatigue loading is defined as a
cyclic loading either as Wohler or block program experiments. The cyclic load-
ing is applied in tension range, which leads to a high cyclic fatigue and brittle
damage. In order to investigate kinked cracks, an additional group of exper-
iments with a load applied in two different directions is performed on one of
two specimen geometries. The damage evolution is monitored on measuring the
specimen elongation and the applied force and by means of two nondestructive
methods — the detection of acoustic emission and the measurement of electrical
resistance. Acoustic emission is used for detecting sound waves as a result of the
dissipation of elastic strain energy during microcrack and macrocrack growth,
as well as for the detection of the origin of crack initiation and propagation.
The measurement of the electrical resistance is applied for monitoring the crack
length in fatigue research and is used for the quantitative investigation of the
crack growth. The measured data obtained during the service life is additionaly
used for the parameter identification of a brittle damage material model.

Zusammenfassung

In dieser Arbeit werden experimentelle und numerische Untersuchung der Schadi-
gungsentwicklung in Proben unter zyklischer Belastung durchgefiihrt. Das Riss-
wachstum wird fiir zwei verschiedene Probengeometrien beobachtet. Die Ermii-
dungsbeanspruchung wird als zyklische Belastung entweder als Wohlervesuche
oder Blockprogrammversuche definiert und in einem Zugbereich durchgefiihrt,
in dem die Langzeitfestigkeit hinsichtlich einer spréden Schadigung analysiert
werden kann. Um einen abgeknickten Riss zu untersuchen, wird eine zusétzliche
Reihe von Experimenten mit Belastungen, die in zwei verschiedene Richtun-
gen angewendet werden, durchgefiihrt. Die Schadigungsentwicklung wird durch
die Messung der Verlangerung der Probe und der angelegten Kraft sowie durch
zwei zerstorungsfreie Methoden — die Messung der akustischen Emissionen und
die Messung des elektrischen Widerstands — liberwacht. Akustische Emissionen
werden gemessen, um Schallwellen als das Ergebnis der Dissipation der elastis-
chen Verzerrungsenergie wahrend des Wachstums von Mikro- und Makrorissen
zu ermitteln, aber auch, um den Ursprung der Rissbildung und Rissausbre-
itung zu bestimmen. Die Messung des elektrischen Widerstands erfolgt zur
Uberwachung der Risslinge und zur quantitativen Ermittlung des Risswachs-
tums in den Ermiidungsuntersuchungen. Die wihrend der Versuche gemessenen
Daten werden abschlieBend zur Parameteridentifikation eines Materialmodells
zur Beschreibung sproder Schadigungen eingesetzt.
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1 Introduction

1.1 Motivation

Analysis of stress and displacement fields in conjunction with a postulate pre-
dicting the event of failure are usually involved in the mechanical design of en-
gineering structures. In order to obtain accurate knowledge of the stress state,
a detailed theoretical analyses based on the simplifying assumption regarding
material behaviour and structural geometry can be performed. However, exper-
imental and numerical methods are a preferred choice in the case of complicated
structures or loading situations. After the stress analysis is performed, a suit-
able failure criterion for an evaluation of the strength and integrity of structural
component can be applied. Conventional failure criteria are developed to explain
strength failures of loaded structures which can be roughly classified as ductile
or brittle. In the case of a ductile failure, breakage of a structure is preceded
by a large deformation that occurs over relatively long time period. A small
deformation and a sudden failure are usually characteristics of a brittle failure.
Some of the most popular failure criteria were proposed by Tresca (1872), Mohr
(1900), von Mises (1913) and Drucker & Prager (1952). These failure criteria
have been used in design of engineering structures, and they describe the onset
of yield in materials with ductile behaviour, or the fracture in materials with
brittle behaviour. The theoretical strength, as determined by the properties of
the internal structure of the material, is defined as the highest stress level that
the material can withstand. All these criteria are based on the assumption of
static single load. However, many structures in engineering practice are loaded
with the variable loading and some of them fail although the real stress state is
significantly below the highest stress level.

In order to overcome these difficulties, other failure criteria which describe the
material behaviour under cyclic loading were proposed. First systematic inves-
tigations of fatigue failure in railroad axles given by Waohler (1858) lead to a
conclusion that the strength of steel axles subjected to the cyclic loads is signif-
icantly lower than their static strength. Based on these investigations, the char-
acterisation of fatigue behaviour in terms of stress amplitude-life (S-N) curves
and the concept of fatigue endurance limit were defined. To determine an ap-
proximate shape of S-N curve, experiments with constant loading amplitude are
performed. These curves are given for constant mean stress or constant stress
ratio. However, engineering structures and components are subjected to differ-
ent cyclic stress amplitudes, mean stresses, stress ratios and loading frequencies.
Therefore, a criterion for the estimation of fatigue damage of structures known
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as linear cumulative damage rule was proposed by Palmgren (1924) and Miner
(1945). This criterion estimates the fatigue damage induced by a certain block
of constant amplitude cyclic stresses in a loading sequence consisting of various
blocks of different stress amplitudes. The damage state is introduced as a sum
of fractions of expended fatigue life which are represented as a ratio between the
number of stress cycles applied to a component and the total number of stress cy-
cles of same amplitude necessary for causing failure. The total number of stress
cycles is determined from S-N curve. Based on the linear damage accumulation
rule, many other rules are defined to take into account other characteristics of
applied loading.

All these damage accumulation rules for cyclic loading are defined to indicate
failure of structures or components in the moment of appearance of a macrocrack.
However, a structure can show considerable remaining service life during the
stable propagation of dominant macrocrack. The behaviour of structures during
the stable macrocrack propagation is described using fatigue fracture mechanics.
Different evolution laws for describing stable macrocrack growth were proposed
by Paris (1962), Forman et al. (1967) and Wheeler (1972). The main task of
fatigue crack propagation laws is to determine the number of loading cycles
required for a crack to grow from a certain initial crack size ag to the maximum
permissible crack size a., and to describe the form of this increase in function
of loading cycles. In this manner, the fatigue failure criterion can be defined as
a moment of complete structure failure, or as a moment when the macrocrack
length reaches a critical value and remaining load capacity drops below a certain
value.

All these approaches cannot give an answer about the material behaviour be-
fore the macrocrack initiation. In order to describe the mechanisms involved in
deterioration of materials under loading prior to the macrocrack initiation, con-
tinuum damage mechanics is implemented. Initiation of damage mechanics can
be attributed to Kachanov (1958) and his proposition to characterise a gradual
deterioration process of a microstructure by a scalar 1, which is called conti-
nuity. The concept of effective stress introduced by Rabotnov (1968) combined
with the work of Kachanov represents the basis of the continuum damage me-
chanics. After that, many different concepts of damage variables were proposed
to describe the existence of distributed microscopic voids, cavities or cracks of
the size of crystal grains in the material.

In the present work, the experiments with the cyclic fatigue loading are per-
formed in order to obtain a database of different measurements which can be
used for the identification of material parameters in brittle damage material
model. The experiments are conducted with the cyclic loading in the range that
leads to the high cycle fatigue and the brittle damage. The evolution of the
brittle damage is investigated on two types of specimens with different geome-
try. The experiments are performed as Wdhler experiments or block program
experiments.

Two nondestructive measurement methods, measurement of acoustic emission
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and measurement of electrical resistance, are used for the detection of damage
evolution during the fatigue loading. Additionally, the measurement of the force
and the elongation of the specimen is used for the calculation of global stiffness
of the specimen. The results derived from nondestructive methods are coupled
with the global evolution of the stiffness of damaged specimen.

1.2 Qutline

This thesis is structured in eight chapters. Subsequent to this introduction,
the basic principles concerning the continuum mechanics and thermodynamics
framework are presented. Different strain and stress measures are derived. The
concept of work conjugate pairs of stress and strain, as well as the notion of ob-
jectivity and some objective rates are introduced. Additionally, the fundamental
balance laws and conservation equations are presented.

Chapter 3 begins with the fundamentals of continuum damage mechanics. Basic
notions of different scale levels, the classification of fatigue damage, different
types of damage variables and damage equivalence principles are presented in
this chapter. This is followed by the introduction to fracture mechanics. In this
part, the physical mechanisms of fracture and three approaches to the definition
of the theory of crack growth in the case of linear elastic fracture mechanics are
subsequently presented. Approaches suitable for the fatigue crack growth are
briefly explained. The material law proposed by Schiitte (2001) used for the
parameter identification of the brittle fatigue damage, is also presented. The
last part of this chapter deals with the fundamentals of fatigue analysis. After
the basics of experimental fatigue analysis, the concept of cumulative damage, as
well as the concept of strain life approach in fatigue calculation are introduced.
The influence of mean stress and strain on fatigue life is elaborated at the end
of this section.

Two nondestructive testing methods are introduced in Chapter 4. The measure-
ment of acoustic emission is introduced in the first part of this chapter. After
the description of the acoustic emission phenomenon, the sources of acoustic
emission and the Kaiser effect are presented. This is followed by the theoretical
background for the localisation of acoustic emission sources in one and two di-
mensional problems. Furthermore, characteristic parameters and application of
acoustic emission are given. In the second part of this chapter, the measurement
of electrical resistance, as the second nondestructive testing method used in this
work, is introduced.

The experimental setup is presented in Chapter 5. A description of the specimen
material and geometry is given at the beginning of the chapter, followed by
a detailed description of the clamping procedures for two types of specimen
geometries. Special attention is then given to the design of different loading
programmes. The measurement of acoustic emission, electrical resistance and
temperature is described, together with a presentation of the methods for data
acquisition and documentation of macrocrack growth.
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Chapter 6 summarises the experimental results. The calibration of the exper-
imental equipment applied in this work is introduced in the first part of the
chapter. This is followed by the representation of procedures for the evaluation
of measured data. Thereafter, the evaluated experimental results of the measure-
ment of global specimen stiffness, different characteristics of acoustic emission
and measurement of electrical resistance are presented. All results are given for
the plain specimen with a hole, plain specimen with both side notches and for
the circular specimen. At the end of this chapter the thorough documentation
of the macroscopic crack growth is presented.

Numerical analysis of experimental data is the topic of Chapter 7. Connection
between the evolution of electrical resistance and the crack growth during service
life of the specimen is introduced. The material parameters are identified on the
basis of an appropriate material model. Consequently, for the identified mate-
rial parameters, the experiments are recalculated and results of the numerical
analysis and experiments are compared.

The thesis is concluded by a summary of the main results of this work. At the
end, a few remarks concerning possible further improvements of the experimental
database are given.



2 Continuum mechanics and thermodynamics

This chapter is a short overview of some basic principles of continuum mechanics
and thermodynamics, and is conceived to introduce a consistent nomenclature
and to give the basic assumptions and laws needed in the following parts of this
work.

A more detailed overview of these subjects can be found in the works of Ogden
(1997); Marsden & Hughes (1983); Truesdell & Noll (2003); Stein & Barthold
(1996); Malvern (1969); Xiao et al. (2007).

2.1 Continuum mechanics

2.1.1 Kinematics

Continuum kinematics describes the geometry of a body, its motion in space
and the deformation of this body during the motion. A basis for this description
is the consideration of a body B as an ensemble of material points or particles
which can be put into one-to-one correspondence with some region B of the
Euclidean point space £. The body is said to occupy region B and as the body
moves the region it occupies in £ changes continuously.

A generic particle of body B is labelled by X. In general, different configura-
tions of the body may exist. In a fixed referential configuration By, which could
coincide with the initial configuration of the body, each generic particle X of
the body B is defined by a position vector X in the Euclidean vector space E
relative to the fixed origin O in €. In this manner, a mapping of the particle
onto its position in the Euclidean (reference) point space is realized and the ma-
terial point can be identified by the local position in the reference configuration.
Similarly, the position of the generic particle X in the current configuration B
is defined by position vector x in E relative to the fixed origin o in £. Hence, it
is possible to choose different coordinate systems with different origins for refer-
ence and current configuration. The body B with the particle X is depicted in
its reference and current configuration in Figure 2.1 (see Ogden 1997).

The current place x of the particle X with position X in the reference configu-
ration is

x = x(X, ). (2.1)

By (2.1) the distinction between the particle X and the place X used to iden-
tify it for practical purpose is ignored. Definition of x, which is regarded as
a mapping from the reference configuration By to the current configuration B,
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o

Figure 2.1: A body and a particle in the reference and the current configuration

depends implicitly on the choice of the reference configuration. For any fixed
time ¢, x is called a deformation from the reference to the current configuration,
and for an arbitrary time ¢ (2.1) specifies a one-parameter family of such defor-
mation. It is clear, that a deformation can be defined only for a given reference
configuration. While different observers are at liberty to choose a different refer-
ence configuration, any choice of a reference configuration is independent of an
observer.

Consequently, physical phenomena associated with the deformation (2.1) of a
body B can be expressed using fields defined over By in the Lagrangian (or
material) description, or using fields defined over B in the Eulerian (or spatial)
description.

Because the comparison of reference and current configuration does not require
knowledge of the intermediate stages in the motion, the time dependence in
(2.1) is not needed. Therefore, an explicit dependence on ¢ is omitted and (2.1)
is replaced by

x = x(X). (2.2)
The deformation from By to B in component form may be written as
zi = Xi(Xa) (2.3)

with respect to origins O and o and an orthogonal Cartesian basis {E,} and {e;}
chosen by observer O in the reference and current configuration, respectively.
In order to analyse the deformation in a neighbourhood of a material particle
X, the derivatives 8z:/0X, are continuous and the differential of (2.3) is

_ Oz;
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or in tensorial notation
dx =FdX, (2.5)

where F is a second-order tensor which is called the deformation gradient. In
order to calculate F the following equation is used
0
F= i ad = —. .

Gradx with Gr 53X (2.6)
Since the deformation gradient is set partially in the reference configuration and
partially in the current configuration, it is often referred to as a mized Fulerian-
Lagrangian (or two-point) tensor, with one index in each configuration. The
deformation gradient is given with respect to the bases {E.} and {e;} as

6.’17,'
0Xa

According to (2.5), the deformation gradient maps a material line element dX at
the point X in the reference configuration onto the corresponding line element
dx at the point x in the current configuration. Additionally, F is required to be a
non-singular tensor, in order to rule out the physically unrealistic case where the
deformation reduces the length of line element of the material in the reference
configuration to zero. This is possible if its determinant satisfies the inequality

J=detF > 0. (2.8)

F=

e:QE,. (27)

Following (2.8) the inverse of the deformation gradient exist and may be used
to invert (2.5)

dX =F 'dx where F'=gradX with grad = :—x . (2.9)
J is called the Jacobian determinant and can be interpreted as the local ratio of
current to reference volume of a material volume element, or using conservation
of mass in Section 2.2.1 as the ratio of the mass densities in the reference and
current configuration

dv Po
— =2 2.10
I=v =7 (2.10)
If the current and reference configuration coincide or if the deformation is a

rigid rotation, J = 1. Also, if the volume does not change locally during the
deformation then

J=detF=1 (2.11)

at X, and the deformation is said to be isochoric or volume preserving at X.
The deformation gradient is not practical for describing the distortion of the
body, because it includes the total motion of the body between reference and
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current configuration, According to the polar decomposition theorem, for any
non-singular second order tensor M there exist unique positive definite symmet-
ric second-order tensors U and V, and an orthogonal second-order tensors R
such that (cf. Ogden 1997 and Malvern 1969)

M =RU = VR. (2.12)

Since the deformation gradient F' satisfies the prerequisite of the polar decom-
position theorem, F may be decomposed into its right and left multiplicative
decompositions

F=RU=VR, (2.13)
where the rotation tensor R is proper orthogonal
RTR=RRT" =1 with detR=1, (2.14)

and the positive definite symmetric second-order tensors U and V are called the
right and left stretch tensors, respectively. Here 1 is the second order unit (or
identity) tensor. From (2.14) it follows that

detF =detU =detV. (2.15)

It is possible to obtain the left stretch tensor V from the right stretch tensor U
by forward-rotating with R, and U from V by backward-rotating with R

V =RURT, U=RTVR. (2.16)

The deformation gradient F represents a pure strain if and only if R =1 and
F=U=V. For U=V =1 and R # 1, the deformation is said to be a rigid
rotation. In general, it is possible to decompose the deformation into a stretch
U followed by a rotation R (right polar decomposition), or using left polar
decomposition, into a rotation R succeeded by a stretch V.

The tensors FTF and FFT are called the right and left Cauchy-Green deforma-
tions tensors, respectively

C=U*=F"F, B=V?=FF". (2.17)

The tensors C and B are symmetric and positive definite. Similar as in (2.16)
the following rotated relation between the Lagrangian tensor C and the Eulerian
tensor C holds

B =RCRT, C=R"BR. (2.18)

In the solutions of special problems, it is usually better to use C and B rather
then U and V as measures of strain, since the components of U and V are
complicated irrational functions of the components of F. However, for general
considerations, U and V are often more suitable, see Truesdell & Noll (2003).
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The deformation of an arbitrary line element dX at the point X defines the
notion of strain. The difference between squared lengths of the line element in
the current and reference configuration can be calculated from (2.5)

|dx|? — |[dX|? = dX(FTF - 1)dX. (2.19)

The material is unstrained at X if the length of the line element is unchanged
after deformation and the right-hand side of (2.19) vanishes for arbitrary dX.
In this case, the tensorial restriction

FTF=1 (2.20)

must hold true.

The material is said to be strained at X if (2.20) is not satisfied at X, and the
tensor FTF —1 can be regarded as a strain tensor. The strain tensor is then a
measure of the change in length of an arbitrary line element of material. It is
possible to write (2.19) in terms of dx in the current configuration as

ldx[? — [dX|? = dx(1 - (FFT)"!)dx, (2.21)

and in this case the strain tensor has a form 1—(FFT)~!.

Set of general strain measures based on U or V can be established following the
fact that the strain vanishes if and only if U=V =1. The different second-order
tensors defined in (2.22) are suitable measures of strain.

Lagrange Euler
m#£0 | AU™-I) (V™ =) (2:22)
m=0 InU InV

In (2.22) m is an integer. In the cases m =2 and m = —2 the Green-Lagrange
strain tensor E defined over By and Almansi-Euler strain tensor e defined over
B (cf. Ogden 1997)

E= %(U2 —1) and e= %(1 -V™? (2.23)

are obtained. For m=0, Hencky’s logarithmic strain measures can be introduced

H= %m((:) and h= %m(B). (2.24)

The logarithmic strains H and h posses some intrinsic features in contrast to
other measures of strain, i.e. they can be additively decomposed in two parts
which are associated with the change of the shape and the change of the volume
of the body.
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The velocity gradient L represents an important kinematic tensor in analysing
strain velocities and can be obtained as
ox .1
L=—=FF"". 2.25
B (2.25)
L can be interpreted as spatial gradient of the velocity x and may be used to
relate an Eulerian line element dx to its material time derivative dx

dx = Ldx. (2.26)
As a second-order tensor the velocity gradient L can be presented in the form
L =symL+4+skwL =D+ W, (2.27)

i.e. as a sum of a symmetric tensor
_1 T\ _ T
D—2(L+L)—D (2.28)

called the stretching tensor or Eulerian deformation rate tensor and a skew-
symmetric tensor

W = % (L - L"‘) =-WT (2.29)

called spin or vorticity tensor. A measure of the rate at which line elements of
material are changing their length is described by stretching tensor D, and the
vorticity tensor W contributes a rigid-body spin to the motion.

2.1.2 Kinetics

The action of the outside world on a body in motion and the interaction between
the different parts of the body can be described using the concept of force.
According to the Cauchy’s fundamental postulate, it is assumed that the stress
vector t at a position x depends on the surface only through the unit outward
normal vector n to the considered surface at x. In this case t has the same
value for all surfaces through x which have a normal in the direction n at x.
As a result from Cauchy’s fundamental postulate, it is possible to say that the
stress vectors on two opposite cut surfaces of the body are equal but oppositely
oriented

t(x, —n) = —t(x, n). (2.30)

Additionally according to the Cauchy’s theorem, if the stress vector t is contin-
uous in X, then the dependence on n is linear, i.e. there exists a second-order
tensor o independent of n such that

t(x,n) = o(x)n. (2.31)
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The tensor o is called Cauchy or true stress tensor and it is a symmetric Eulerian
stress measure.

Taking into account remarks concerning strain measures, different Lagrangian,
two point and Eulerian stress measures may be established. Using Nanson’s
formula

da=JF TdA (2.32)

which relates current and reference elements of a surface area, it is possible to
calculate the resultant contact force on the boundary 8B of the current config-
uration B in terms of the force on the reference boundary 8By of By as follows

/ onda = / JoF~TNdA (2.33)
a8 By

where N and n are outward unit normals on the boundary 88y and 9B, respec-
tively, and dA and da are area elements of surface in By and B, respectively.
By use of (2.33) the first Piola Kirchhoff stress tensor T can be calculated as

T=JoF 7. (2.34)

The first Piola Kirchhoff stress tensor is a two-point tensor, which is in general

an unsymmetric tensor. The transpose of T is called the nominal stress tensor
P

P=TT =JF'o. (2.35)

Locally, the Eulerian load vector dl = tda on an element of surface da in the
current configuration B may be expressed as

dl = oda = TdA. (2.36)

A Lagrangian stress measure may be derived from (2.36) by multiplying with
F~!, which leads to a Lagrangian load vector dL

dL=F 'dl=F 'TdA =SdA. (2.37)

The second order Lagrangian tensor S is called the second Piola Kirchhoff stress
tensor. Tensor S is a symmetric tensor, which has no physical meaning and is
only used for calculation purposes

S=JFloF T=F!T=PF . (2.38)

An additional stress measure is frequently used in the description of different
problems in continuum mechanics. It is the Kirchhoff stress T, which is the
Cauchy stress scaled by the Jacobian determinant

T=Jo. (2.39)



12 Chapter 2. Continuum mechanics and thermodynamics

The Kirchhoff stress is also called weighted Cauchy stress, and for isochoric
motion it is identical to the Cauchy stress.

The so-called energy conjugate stress and strain variables play important role in
the formulation of the internal energy of deformable bodies. All stress measures
introduced above can be used to describe the internal energy of a body. However,
if a decision is made about the use of a certain strain measure, the stress variable
to be used in combination with this strain measure cannot be selected arbitrarily.
Strain and stress variables with the property that each stress tensor is related
through the rate of the stresses on the body (or stress power) to a well defined
strain tensor, are referred to as energy conjugate. The stress power ¥ is to
be calculated using following energy conjugate stress-strain rate pairs (cf. Hill
(1968))

w=Jo:D=7:D=T:F=S:E. (2.40)

2.1.3 Objectivity

Distances and time-intervals are fundamental measurable quantities of classical
kinematics. Only if a frame of reference, or observer, is given, the position of an
event can be specified. For example, different values to the speed of a moving
point will be measured from two observers in relative motion. However, physical
phenomena do not depend on the choice of observer in contrast to their kinematic
descriptions, and therefor the mathematical formulation of physical laws must
reflect this independence.

If an arbitrary origin in space is chosen, and the points with their position vectors
are identified, it is possible to express a change of observer by the formula

x"=c(t)+Q(t)x and t*" =t-—a, (2.41)

where ¢(t) and Q(t) are the relative translation and the rotation of two ob-
servers, and a is a time shift. The tensor Q(¢) introduced above is a time
dependent second-order proper orthogonal tensor which is uniquely determined
by the choice of observer, but the vector c(t) depends also on the choice of the
origin.

A choice of observer induces transformations, for each time ¢, on scalars, vectors
and tensors. The quantities, which are independent of the choice of observer,
are termed objective. Following Ogden (1997), it is to be distinguished between
the transformation rules for Lagrangian and Eulerian quantities and two-point
tensors. The transformation rules for Lagrangian and Eulerian quantities are
given in Table 2.1. The objectivity criterion for a second-order two-point tensor
is defined as follows

A'(X, ") = QA (X,1). (2.42)

According to these transformation rules, objectivity of introduced kinematic
quantities can be analysed. It is possible to see, that the tensors U, C, E and
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Lagrangian configuration Eulerian configuration
Scalar | &*(X,t*) = &*(X,t) a*(x*,t*) = a(X,1)
Vector | &*(X,t*) = &*(X,t) a’(x*,t*) = Q(t)a(X, t)
Tensor | A*(X,t*) = A*(X,t) A*(x*,t") = Q()A(X,1)Q(t)T

Table 2.1: Transformation rules for different objective quantities depending on
the configuration

S are objective Lagrangian tensors, the tensors V, B, D, o and T are objective
Eulerian tensors, and the tensors F, R and T are objective two-point tensor.
Investigation of objectivity of material time derivatives is a further important
question. In the case of a Lagrangian tensor, the material time derivative is an
objective measure. On the other hand, material time derivatives of Eulerian ten-
sors are not an objective measures. As an example, the material time derivative
of an objective Eulerian stress tensor A is given

.

A'=QAQT = QAQT + QAQT + QAQ". (2.43)

Although tensor A is an objective Eulerian second-order tensor, the material
time derivative of A is not objective. If the time-dependent skew-symmetric
Eulerian spin tensor 2°=QTQ=-QTQ is used, (2.43) becomes

A'=QAQT =QAQT, (2.44)
where
A*=A+AQ —Q'A (2.45)

is the corotational rate of the tensor A defined by spin 2*. It is evident that
there is an infinite number of different corotational rates, but not all of them
are objective. The commonly known examples of objective corotational rates
are Zaremba-Jaumann, Green-Naghdi and logarithmic rate with 7 =W for the
Zaremba-Jaumann rate, 2* =RRT for the Green-Naghdi rate and $2°% given
in (2.48) for the logarithmic rate. Well known non-corotational objective rates
are Oldroyd rate, Cotter-Rivlin rate and Truesdell rate (cf. Xiao et al. 2000a).
Besides represented corotational and non-corotational objective rates, one more
possibility is the concept of Lie derivatives which provides a mathematically
consistent method for defining objective time derivatives of tensors. The Lie
derivative is essentially the set of operations which transforms an Eulerian mea-
sure from the current to the reference configuration (pull-back transformation),
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produces a material time derivative of this measure in the reference configu-
ration and transforms the derived measure from the reference to the current
configuration (push-forward transformation).

As can be seen, many different objective material time derivatives are introduced,
but most of them cannot satisfy the requirement that the stretching tensor D can
be written as a direct flux of a strain measure. Up to now, only the logarithmic
rate of the Eulerian Hencky strain h and the Lie derivative of Almansi-Euler
strain tensor e with the deformation gradient F' in the transformation rule are
proven to satisfy this requirement

D = h'°% — h + hQL°¢ — Q8L and (2.46)
D= Lpe=F T (FTeF)F !, (2.47)

where Q5°¢ is the logarithmic spin tensor defined as

Log __ = 1+ (Xo/Xr) 2
=W ‘; (1 —(xe/xe) T ln(xa/xf)) B.DB., (2.48)

and y; and B; are eigenvalues and eigenprojections of the left Cauchy-Green
tensor B. The proper orthogonal tensor R“8 | called logarithmic rotation ten-
sor, defines a rotating frame whose spin is the logarithmic spin 2218, and is
derived from the tensor differential equation (see Bruhns et al.(1999, 2003) Xiao
et al.(1997a, 1997b, 20600b, 2006))

R'& = _RM8QM°8 and (RY“8)|;—0 =1. (2.49)

2.2 Balance laws

In this section the principle of conservation of mass, linear and angular momen-
tum, as well as the first and the second law of thermodynamics are presented.
Only basic concepts and results of those laws are showed in this section, based on
the works of Ogden (1997); Marsden & Hughes (1983); Truesdell & Noll (2003);
Belytschko et al. (2000).

2.2.1 Conservation of mass

Observing the body B in the current configuration B, the mass m(B) in the
considered current state is

m(B) = f p(x,t)dv, (2.50)
B

where p(x, t) is the mass density and dv is the volume element for B. The law of
conservation of mass requires that the mass of a body remains constant during
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deformation, which means that the mass cannot disappear or be created within
the body, and that a mass transfer throughout the surface of the body does not
exist. This leads to

fpdv =/podV. (2.51)
B Bo

Applying (2.51) to an arbitrary body, and using the continuity of p and (2.10)
it follows that densities pp and p are related by

p=J"po. (2.52)

Equation (2.52) represents the first local form of conservation of mass. Since p
is a smooth function, the material time derivative of (2.51) leads to

p+ pdivy =0, (2.53)

where x = v is the velocity field. Equation (2.53) is known as the continuity
condition or the second local form of conservation of mass.

2.2.2 Conservation of linear momentum

The linear momentum of the body B in B at a arbitrary time ¢ of the motion is
defined by

/pvdv . (2.54)

B

Further, it is supposed that the body B in B with boundary 9B is subjected to
body forces and the contact forces

fpbdv+/tda., (2.55)

B aB

where b is the body-force density acting over B and represents the force per unit
mass, and t is the contact-force density acting over boundary surface 8B and is
a force per unit area.

The law of conservation of linear momentum states that the rate of change of
the linear momentum given in (2.54) is equal to the resultant external forces
(2.55)

4 pvdv=/pbdv+/tda. (2.56)

dt
B B a8

Applying Cauchy’s theorem (2.31) and the divergence theorem to the surface
integral in (2.56) leads to the local form known as Cauchy’s first law of motion

pv =divo + pb. (2.57)
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2.2.3 Conservation of angular momentum

The angular momentum (or moment of momentum) of the body B in B with
respect to a point zo is defined as

/p(x —Xo) X vdv. (2.58)
B

The point xg is an arbitrary point in £ which needs not be a point of B, but
the value of the angular momentum depends on the choice of xg. The resultant
moment of the applied external forces about point xq is

/p(x—xo)xbdv+/(x—xo)xtda. (2.59)
B oB

The law of conservation of angular momentum states that the rate of the change
of angular momentum of the body is equal to the resultant moment of body-
and surface-forces acting on the deformed body

d

T p(x—xo)xvdv:/p(x—xo)xbd'v-!-/(x—xo)xtda. (2.60)
B B

oB

Substitution of (2.57) and applying divergence theorem to the surface integral
in (2.60) leads to Cauchy’s second law of motion

ol =0, (2.61)
which shows that the Cauchy stress tensor is a symmetric tensor if the angular

momentum balance exists.

2.2.4 Conservation of energy

The work of external forces P, done by body forces and surface tractions is
defined by

Pa=fpb-vdv+/t-vda. (2.62)
B oB

The heat input QQ due to the heat flur h and the internal heat source r is defined
by

Q=/prdv+/hda, (2.63)
B a8

where the heat flux is obtained by
h=-q-n. (2.64)
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Here, n is the unit outward vector normal to the boundary surface element da
and q is the heat flur vector. The negative sign of the first integral means that
q - n expresses the positive heat flux out of the body.

The total energy W of the system consists of two parts, the kinetic energy K
obtained by integration of the square of the body velocity over 8 and the internal
energy U corresponding to the integral of the specific internal energy u over the
mass of the body

W=K+U=%fpv-vdv+/pudv. (2.65)
B B

The first law of thermodynamics states that the rate of change of total energy
W is equal to the sum of the work of external forces P, and the heat input @
so that

W=PFP +Q. (2.66)

The weak form of the first law of thermodynamics is defined as

fpt'zdv = /(0‘ :D —divq+pr)dv. (2.67)
B B

Last equation holds for an arbitrary domain, and the partial differential equation
of energy conservation is given by

pu=0c:D-divgq+pr. (2.68)

The Lagrangian description of the weak form of the first law of thermodynamics
is defined as

/py&dV:/(S:E‘—Din+por)dV, (2.69)
Bo

B
and the Lagrangian counterpart to (2.68) is

pot=S:E—-DivQ+por, (2.70)
where

Q=JFq. (2.71)
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2.2.5 Conservation of entropy

If the specific entropy of the body is denoted by s, then the entropy S of the
body B is obtained by integration of s over B

S=/psdv. (2.72)

The second law of thermodynamics states that the total rate of increase of en-
tropy in the body is greater than or equal to the entropy input supplied to the
body from outside

;t/psd'v>fp dv - /gé—n-da, (2.73)
8B

where © is the absolute temperature, and r/© is the specific rate of entropy
production. Taking into account that the inequality is valid for arbitrary volumes
and applying the divergence theorem to the surface integral gives

pé— % + div% >0. (2.74)
Inequality (2.74) is known as Clausius-Duhem inequality. Let the rate of internal
entropy production per unit mass v be defined as

o= pé— %+div%. (2.75)
Hence, the Clausius-Duhem inequality is written as
¥20, (2.76)

which means that the internal entropy production is always nonnegative. The
specific Helmholtz free energy i is defined as

Yp=u—03s. (2.77)

Applying the first law of thermodynamics (2.68) in Clausius-Duhem inequality
(2.74) to eliminate the internal heat source r and using the time derivative of
the specific Helmholtz free energy leads to

9p"y=a:D—p(1[)+sé)——é-q-gradG)20. (2.78)

Inequality (2.78) is called reduced dissipation inequality. In the Lagrangian for-
mulation, inequalities (2.73), (2.74), (2.78) are given as

:t posdV > / BoT gy — f Q N4, (2.79)
Bo Bo aBp
pos— 2" 4 Dive >0, (2.80)

e 82
epo'?=S:E—po(1ﬁ+sé)—%Q-Grad920. (2.81)



3 Damage and fracture mechanics

First section of this chapter gives the basic notions in the damage mechanics.
After that, the introduction of the fracture mechanics with emphasis on linear
elastic fracture mechanics is presented. As one part of this work is concerned with
the identification of material parameters, a suitable material model is presented
in the third part of this chapter. The material model is developed by Schiitte
(2001) and it describes brittle damage behaviour. The last section introduces
fundamentals of experimental fatigue analysis and concepts for the determination
of the fatigue life. Since the purpose of this chapter is a brief introduction to
the field of damage and fracture mechanics, the reader is referred to the cited
literature for a more detailed investigation.

3.1 Damage mechanics

The damage in solid materials is an accumulation of many small defects inside
the material by which they weaken. The mechanics of damage is the study of the
mechanisms involved in this deterioration of materials when the materials are
subjected to loading. According to Chaboche (1988) and Skrzypek & Ganczarski
(1999), the material damage is the existence of distributed microscopic voids,
cavities, or cracks of the size of crystal grains, and damage evolution is the pro-
cess of void nucleation, growth and coalescence, which initiates the macrocracks
and causes progressive material degradation through the strength and stiffness
reduction.

3.1.1 Scale levels

It is possible to define different defects and damage models associate with them
by using different scale levels. With respect to their scale, damage models may be
referred to the macroscale (continuum mechanics), the mesoscale, the microscale
(micromechanics) and the atomic scale (molecular dynamics). The graphical
representation of these scale levels is given in Figure 3.1.

At the macroscale level, a defect is the growth of the crack. On this scale, the
discontinuous and heterogeneous solid which suffers damage evolution is approx-
imated by ideal pseudo undamaged continuum using the couples of effective state
variables in the state and dissipation potential instead of classical state variables
for the true (damaged) solid. The definition of the effective state variables can
be based on so-called damage equivalence principles introduced in (3.1.4), where

19



20 Chapter 3. Damage and fracture mechanics
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Figure 3.1: Representation of different scale levels

the effective state variables associated with the psendo undamaged state are de-
fined in such a way that the strains, the stresses, the elastic energy or the total
energy in the damaged (true) and undamaged states are the same.

At the mesoscale level, defects of the representative volume element are repre-
sented as the growth and coalescence of microcracks or microvoids which initiate
a single crack together.

The accumulation of microstresses in the neighbourhood of defects or interfaces
and the breaking of bonds, which both damage the material, are characteristic for
the microscale Jevel. Single grains are visible in this scale, and they are described
using continuum mechanic laws (Asaro & Rice 1977; Le et al. 1998). In general,
the microscale and mesoscale level may be studied by means of damage variables
of the mechanics of continuous medja defined at the mesoscale level (see Lemaitre
1998).

At the atomic scale, at which the material structure is represented by a configu-
ration of atoms in the order of crystal lattice or molecular chains bonded by inter-
atomic forces, the material damage is determined by the configuration of atomic
bonds, and the damage evolution is defined by breaking and re-establishing of
atomic bonds. Continuum mechanics is not valid anymore on this scale and the
connections between atoms and molecules must be determined.

In the continuum damage mechanics, it is assumed that the state of the damage
of a volume element in a material is determined by the amount, dimensions and
arrangement of the voids, cavities and cracks. It is possible to homogenise for
the macroscale the true distribution of the interatomic bonds, dislocations and
vacancies (atomic scale), or individual microvoids and microcracks (microscale)
through a selection of the properly defined internal variables that characterise
the damage state. These internal variables are called damage variables.
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Number of Stress Strain Energy
cycles to range ratio ratio
failure o AeP[Ae® | AWP/AWS
High cycle 5 o oy
fatigue HCF > 10 <y =0 =0
Low cycle 2 4
fatigue LCF 10° to 10 oy to oy 1to 10 1to10
Very low cycle |y 1,90 | closetoon | 10t0100 | 10 to 100
fatigue VLCF

Table 3.1: Classification of fatigue

3.1.2 Classification of fatigue damage

Fatigue damage is a damage of the material which appears under cyclic load and
can manifest itself in various ways depending upon the nature of the material,
the type of loading and the temperature. A useful classification according to
Dufailly & Lemaitre (1995) and depending on the stress range and the number-
of-cycles-to-failure range is given in Table (3.1). The following nomenclature is
used: oy is the yield stress, o, is the ultimate stress, Ae® and AeP are elastic
and plastic strain amplitudes, AW® and AW? are elastic and plastic energies
per cycles.

3.1.2.1 High cycle fatigue damage

When a material is loaded by the stress level & which is below the yield stress (o <
oy), the plastic strain is very small and occurs only around microscopic defects.
Consequently, the dissipative energy AW? can be disregarded when compared
to the reversible elastic energy AW®. The number of cycles to failure is assumed
to be larger than 10%, and this case of fatigue is called the high cycle fatigue
(HCF). Damage in HCF tests is a strongly localised phenomenon with high
stress and damage concentration and has all characteristics of brittle damage.
This strong localisation of the damage is not always compatible with continuum
mechanics for which the damage is “uniformly” distributed in a volume element
of a “finite” size. Even in the case of a uniform stress distribution, the HCF
microcracks always start from the surface boundary of the body along the length
of one or two crystals in a direction of about 7/4 with respect to the direction
of the maximum principle stress. Later, microcracks grow perpendicular to this
direction and the development of a single crack is represented by the coalescence
of several microcracks.

In Figure 3.2 stress-strain response for the strain loaded material under HCF is
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Figure 3.2: Cyclic tension-compression curves for high cycle fatigue of A 316
stainless steel (after J. Dufailly)

given. It is possible to see stress-strain loops corresponding to the stabilised cycle
and stress-strain loops corresponding to the cycle close to the rupture. In the
case of brittle damage and HCF damage, space localisation induces microplastic
and damage zones much smaller than those of the specimen. This is the reason
why a stress-strain curve obtained from a classical tension-compression test at
the mesoscale usually does not represent the “true” behaviour for strain and
damage.

3.1.2.2 Low cycle fatigue damage

In the case when the stress level o is larger than the yield stress (o > ay),
the continuum damage develops together with the cyclic plastic strain after the
incubation period and preceding the phases of nucleation and propagation of
microcracks. The mechanism of the ductile damage is manifested through the
transgranular slipbands fields of plasticity developed in the large size grains. Be-
cause of the high values of the stress, the number of cycles to failure is between
10? and 10* and it is the low cycle fatigue (LCF). In the case of LCF the dis-
sipative energy AW? is of the same order as the elastic energy AW?®. In other
words, a large volume of the specimen with weak localisation is concerned for
the plasticity damage field in LCF tests. The stress-strain response for the strain
loaded material under LCF is given in Figure 3.3. It is possible to see that the
drop of stress at the mesolevel for an experiment similar to that of Figure 3.2
occurs earlier.

In the case when the number of cycles is between 10* and 10°, the success of

both the high cycle fatigue model and low cycle fatigue model depends on the
matenial and the loading.
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Figure 3.3: Cyclic tension-compression curves for low cycle fatigue of A 316 L
stainless steel (after J. Dufailly)

3.1.2.3 Very low cycle fatigue damage

In the case when the stress level ¢ is close to the ultimate stress ., the plastic
strain Ae? or the dissipative energy AW? are much larger then the elastic strain
Ace® or the elastic energy AW€, and the number of cycles to failure is of the order
of 10. This state is called the very low cycle fatigue (VLCF). The main feature
of VLCF is its high dependence on plasticity. The cyclic damage mechanism is
governed by the slipbands of plasticity in the grains in the vicinity of the surface.
They are oriented roughly at 45° to the main stress. In the transgranular mode
a rapid crack growth in the slip planes is the reason why the influence of the
grain size on the fatigue strength is large. In VLCF the number of sites with
microcracks initiation is large enough to allow damage homogenisation. Since the
damage evolution starts during or just after the first cycle no damage threshold
is needed (cf. Dufailly & Lemaitre 1995).

3.1.3 Damage variables

The proper and accurate modelling of material damage represents the crucial
problem of continuum damage mechanics. It is possible to homogenise the true
distribution of damage in a quasicontinuum by using properly defined internal
variables that characterise damage. Damage variables can be scalars, vectors,
second-, fourth- or eight-order tensors. A scalar damage variable is sufficient to
model isotropic damage processes, but modelling of anisotropic damage processes
requires tensor valued damage variables. The review of damage variables used
to describe damage process is given in Skrzypek & Ganczarski (1999).
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Figure 3.4: Surface damage measure - continuity definition by Kachanov

3.1.3.1 Scalar damage variables

In a pioneering paper, Kachanov (1958) proposed to characterise a gradual de-
terioration process of a microstructure by a scalar 1, which is called continuity.
For a completely undamaged material =1 and for a completely damaged ma-
terial with no remaining load carrying capacity ¥ =0. According to Kachanov,
the rate of the change of continuity is given by

dy a\"

L _ Al Z , 3.1

dt (w} (3.1)
where A >0 and n>0 are some material constants, and o is the nominal stress.
The quantity o/ can be interpreted as a certain effective stress, and in this

case, for an intersection surface area with normal n of the representative volume
element (RVE) at the point P continuity ¢ can be defined as

p=14, Belo, (3.2)

where 64 is the eflective remaining area, which is deteriorated via microcrack
and microvoid nucleation and evolution, and A is the total undamaged area
(Figure 3.4).
Later damage models introduce a damage variable D, which in contrast to con-
tinuity ¢, represents the ratio between the area D of the intersection of all mi-
crocracks and microvoids with the plane § A and the total undamaged area § A.
Obviously, D depends on the position (x) and orientation (n) of the intersection
area in RVE. 1t is given as

D(P,n)zma.xD(P,n,a;):(séA%, De0,1), sA=84A+8Ap. (3.3)
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Figure 3.5: Representation of damage measure: a) damaged volume element (Ra-
batnov), b) void volume fraction in the RVE (Gurson)

Here D=1-% =0 corresponds to the undamaged state of the considered surface
element, and D =1 to the completely damaged element. In fact, the failure
occurs for D <1 through a process of instability.

Another scalar valued damage variable is introduced by Rabotnov (1968). He
considers a one-dimensional damaged volume element loaded by a tension force
t=nt. The uniaxial stress for the undamaged material is given as

-t
==

p (3.4)
For the case that all defects are open in a such way that no microforces are acting
on the surfaces of microcracks, it is possible to introduce the stress & related to
the surface that effectively resists the load

t _ a
SA—6A4Ap  1-=D'

= (3.5)
where the damage variable D is defined by (3.3), and & is the effective uniazial
stress in the material in tension (Figure 3.5a). The damage remains unchanged
in the case of compression, but some defects close and the surface that effectively
resists the load is larger than §A—4dAp. Therefore, the effective stress in com-
pression is between ¢ and & for tension. This problem with the calculation of the
effective damage area § Ap in compression can be overcome by the introduction
of a crack closure parameter which depends on the material and the loading (see
Lemaitre (1996) for more details).

Another possibility for the determination of a damage variable is given by Gurson
(1977). It takes into account the nucleation and the growth of voids in the case
of ductile fracture in metals (Figure 3.5b). The current void volume fraction f
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in a RVE is defined as a ratio between the void volume §V, and the volume of
the undamaged RVE 6V

f=57- (3.6)

Considering an idealised case when a single spherical cavity is nucleated within a
spherical RVE and assuming no density change of the solid constituent RVE, the
relation between the void volume fraction f and the surface damage parameter
D is given by

D= 23, (3.7)

3.1.3.2 Second-order damage tensors

It is possible to see from (3.3) that the damage variable D depends on the
position and orientation of the intersection area in the RVE. In the direction of
the normal n, the scalar equation is given as

6A = (1-D(n))sA. (3.8)

According to Murakami & Ohno (1981), (3.8) can be extended to a three dimen-
sional case using normals n;, n2 and n3 for three orthogonal directions

6A; = (1 —Di)éA;, i=1,2,3. (3.9)
In case of arbitrary coordinate system, (3.9) is given as

6A =ndA=(1-D)néA =(1-D)A, (3.10)
where D is a symmetric second-order damage tensor

3
D=) Dmi®n;, (3.11)

1=1

and D; and n; are the principal values and the unit vectors of principal directions
of the damage tensor D. Using Cauchy’s theorem (2.31), the stress vector t
for either an undamaged surface element or a damaged surface element can be
defined by

t=0dA = G0A. (3.12)
Applying (3.10) in (3.12) leads to the effective stress tensor
F=c(1-D)7 ', (3.13)

which is in general an unsymmetric tensor.
Using a symmetric second order damage tensor D gives the possibility to repre-
sent damage induced by anisotropy through the orthotropy with three orthogonal
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symmetry planes. In the case of isotropic damage, the mechanical behaviour of
microcracks or microvoids is independent of their orientation and depends only
on a scalar damage variable D. Accordingly, second-order damage tensor D is
given as volumetric tensor D = D1.

Various authors proposed stress concepts with a symmetric effective stress tensor
o (cf. Zheng & Betten 1996)

e 6=(1-D)2:0:(1-D) /2 (Cordebois & Sidoroff 1982),
e 5=01-D)':0:(1-D)"! (Betten 1986),
e 5=1(c(1-D)'+(1-D) o) (Murakami 1988).

3.1.3.3 Fourth-order damage tensors

In order to model arbitrary anisotropic damage processes Chaboche (1981), Simo
& Ju (1987), Chow & Wang (1987), Leckie & Onat (1981) and other authors
proposed to expand the second-order damage tensor D in (3.13) to the fourth-
order damage tensor D

g=10-D)':0=M:0o, (3.14)

where I is a fourth-order identity tensor, D is the fourth-order damage tensor,
and M is a linear symmetric operator represented as a fourth-order damage effect
tensor.

M characterises the state of the damage and transforms the Cauchy stress tensor
o in a damaged configuration into the effective stress tensor & in an equivalent
pseudo undamaged solid. In the case of isotropic damage fourth-order damage
effect tensor M will simply reduce to M= (1-D)I.

3.1.4 Damage equivalence principles

The mechanical state of a damaged solid in a current configuration is defined
through the external and internal variables (o, €, D), where ¢ is the Cauchy stress
tensor, € is the linear strain tensor and D is the damage tensor. In order to use
the simplicity of the undamaged solid, a fictive pseudo undamaged configuration
is introduced. In this configuration the mechanical state can be characterised by

(0,6,D) = (6,8,D =0) = (5,8), (3.15)

where & is the effective stress, and & is the effective strain. In the pseudo
undamaged configuration all material parameters and constitutive laws for the
undamaged state must hold. Then it is possible to calculate the damage effect
tensor by assuming that one variable stays unchanged under damage. This
assumption is incorporated in various damage equivalence principles.
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Figure 3.6: One-dimensional representation of strain equivalence concept

3.1.4.1 Principle of strain equivalence

The principle of strain equivalence is also known as the effective stress concept. It
states that the strain associated with a damaged state under the applied stress
o is equivalent to the strain associated with the undamaged state under the
effective stress & (Chaboche 1984, Lemaitre 1996) (see Figure 3.6):

£(5,0) =¢(o,D). (3.16)

In the general case, the stress-strain relation in the undamaged linear elastic
material is represented by Hooke's law

c=C:e, (3.17)

where C is the fourth-order elestic stiffness tensor. In the case of damaged
material Hooke’s law has a form

o=C:e, (3.18)

where C is the fourth-order damaged elastic stiffness tensor. Based on the prin-
ciple of strain equivalence (3.16), and on (3.18), the stress-strain relation in the
undamaged configuration with undamaged elastic stiffness tensor reads

6§=C:6=C:e=C:C':0. (3.19)

Applying the definition of damage effect tensor (3.14) the damage tensor I and
damaged elastic stiffness tensor C are given as

D=I1-C:C™' and C=({I-D):C. (3.20)

It should be pointed out, that the principle of strain equivalence leads to the
restrictive conclusion that the Poisson ratio is not affected by damage. It would
be mean that the material is damaged only in the direction of the tensile stresses
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Figure 3.7: One-dimensional representation of stress equivalence concept

in a uniaxial tension test. For most materials this assumption is questionable
since the nucleation and the growth of microcracks and microvoids results in a
stress redistribution due to the cross-sectional area reduction and the decrease
of stiffness in the material (cf. Chow & Lu 1992).

3.1.4.2 Principle of stress equivalence

The principle of stress equivalence is also known as the effective strain concept. It
states that the stress associated with a damaged state under the applied strain
€ is equivalent to the stress associated with the undamaged state under the
effective strain € (Cordebois & Sidoroff 1979, Simo & Ju 1987) (see Figure 3.7):

5(8,0) = o (e, D). (3.21)

If the analogy with the principle of strain equivalence is used, it is possible to
define damaged elastic stiffness tensor and damage tensor. Consideration of the
inverse stress-strain relation for damaged and fictive undamaged linear elastic
material

e=C"':0 and €=C""':¢, (3.22)
and the principle of stress equivalence (3.7) gives

E=Cl:o=C"1:C:e. (3.23)
Equivalent to the definition of damage effect tensor (3.14)

E=(-D):e¢. (3.24)
The damage tensor I and the damaged elastic stiffness tensor C are given as

D=1-C!:C and C=C:(I-D). (3.25)
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Figure 3.8: Three-dimensional representation of principle of complementary elas-
tic energy equivalence

3.1.4.3 Principle of complementary elastic energy equivalence

In the principles presented in 3.1.4.1 and 3.1.4.2, the effective stress or effective
strain distribution is affected by the stiffness reduction due to microcracks or mi-
crovoids growth, contrarily to the strain or stress tensor. According to Skrzypek
& Ganczarski 1999, real irreversible thermodynamic material degradation pro-
cesses are not properly described through these two principles. In order to define
the fictive pseudo undamaged equivalent configuration and corresponding effec-
tive variables & and &, Cordebois & Sidoroff (1979) introduce the principle of
complementary elastic energy equivalence. It states that the elastic energy asso-
ciated with a damaged state under the applied stress o and corresponding strain
e is equivalent to the elastic energy associated with the undamaged state, if the
effective stress & and the effective strain € are used in the elastic potential (see
Figure 3.8):

We(a,e,D) = W*(5,¢,0). (3.26)

where W€ is the elastic energy associated with a damaged state, and W€ is
elastic energy associated with the undamaged state:

TS S N e
We = 2(0'.6)— 2(0.([: o), (3.27)
W6=%(525)=%(5’:C_l:5’). (3.28)

If the principle of complementary elastic energy equivalence (3.26) is used in
(3.27) and (3.28), the effective stress and strain tensors are given as

g=(01-D)"':0, é=(1-D):e, (3.29)
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and the fourth-order damage tensor D is defined as
D=1I-CY%.:cY2, (3.30)

Opposite to the principles of strain and stress equivalence where the local stiff-
ness drop results exclusively in a local stress decrease or a local strain increase,
the microcrack or microvoid growth influences both the stress and the strain
distribution in the energy based damage equivalence model.

3.1.4.4 Principle of total energy equivalence

The principle of complementary elastic energy equivalence, which is limited to
the cases of damage coupled elasticity, is extended by Chow & Lu (1992) for the
description of inelastic material response affected by anisotropic damage. For a
material undergoing progressive deterioration and using conditions of infinitesi-
mal deformation, quasistatic damage growth and negligible thermal effects, the
first law of thermodynamics requires that

dW = dW*® +dW? + dW?, (3.31)

where dW = [ o :de is the work of the applied forces, W*=(1/2)o :£° represents
the elastic energy, W? is the plastic work, and W* is the work due to damage
nucleation and propagation.

dW = o : de, dW°=%(a:d€e+da:ec), dW? =¢o:de?. (3.32)

The principle of total energy equivalence states the existence of a pseudo un-
damaged solid made of virgin material, in the sense that the total work done
by external tractions during the same load history as that for the real, damaged
material, is not changed (cf. Chow & Lu 1992) (see Figure 3.9).

dW (o, e,D) = dW(5,¢,0), (3.33)
or

dWe +dW? =dW* and dW? =dW?, (3.34)
where

dW =6 :dé, dW°= -;-(&:dé" +dé:8°%), dWe=é4:dé". (3.35)
Using the equivalent form of (3.33)-(3.35) leads to

oc:de=0:dé,

%(a' . de® + do : €°) = %(o'-:dé°+d&:é°), (3.36)

o:de? =5 :dE?,
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Figure 3.9: Three-dimensional representation of principle of total energy equiv-
alence

where the state variables on the left-hand side of (3.36) refer to the physical
(damaged) configuration, and the effective state variables on the right-hand side
refer to the energy equivalent fictive (pseudo undamaged) configuration.

As proposed by Chow & Lu (1992), the effective state variables obtained from
the principle of total energy equivalence are given as

F§=M(D): o, ES=M"'(D):e°, dé?=M'(D):de”, (3.37)

where the elements of a fourth-order damage effect tensor M(D) are dependent
on the anisotropic damage representation by the second-order D or fourth-order
D damage tensor components.

3.2 Fracture mechanics

The behaviour of solids and structures with macroscopic discontinuities at the
structural scale is described by fracture mechanics. These discontinuities can
be line discontinuities in a two-dimensional media (e.g. in plates and shells)
and surface discontinuities in a three-dimensional media. In contrast to damage
mechanics, which is used to predict the initiation of a macroscopic crack, fracture
mechanics is used to predict the evolution of the crack until the final failure of
the structure. These discontinuities modify the stress, strain and displacement
fields on such a scale that the assumption of a homogeneous medium would no
longer be meaningful and they must be taken into account in structural analysis.
The failure of a brittle elastic medium could be characterised by a variable, whose
critical value is independent of the structure geometry and is characteristic of
material, as introduced by Griffith (1921). This variable is called the energy
release rate. This approach, called global approach, shows that the essential
phenomena occur in the vicinify of the crack front and that it is possible to
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Figure 3.10: Schematic illustration of a macroscopic crack initiation concept (af-
ter Chaboche)

study the macroscopically cracked medium with the help of intrinsic variables.
This behaviour is due to the high stress concentration present at the crack tip,
which, in the case of linear elasticity and the HRR-field of exponential hardening
plasticity (Hutchinson (1968), Rice & Rosengren (1968)), can be represented by
the singularity of the stress field.

Using the concept of the strength of stress singularities at crack tips, Irwin
(1957) has introduced stress intensity factors corresponding to the particular
kinematics of the crack propagation. Both Irwin (1957) and Williams (1957)
have obtained the form of the elastic stress distribution in the vicinity of a crack
tip in extensional problems using crack solutions given by Westergaard (1939).
This approach is known as the semilocal approach.

Between the global and semilocal approach there exist the contour integrals of
Rice (1968b) which characterise the singularity from an energy point of view.
He introduced the two-dimensional version of the conservation law as a path
independent line integral, known as J-integral.

3.2.1 Physical mechanisms of fracture

Elastic and plastic deformations, which take place at atomic and crystalline
levels respectively, maintain the cohesion of the matter. By definition, fracture is
degradation of this cohesion by creating surface or volume discontinuities within
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a)

Figure 3.11: a) cleavage fracture starting at crack tip, b) fatigue striations on
crack surface of aluminium alloy (after Broek)

the material. According to Lemaitre & Chaboche (1990), fracture happens at
a larger scale of crystals: microcracks and cavities have a size in microns or
hundredths of a millimetre, macrocracks have the order of a millimetre, and
cracks, which occur at the scale of a mechanical structure, can be measurable
in centimetres or decimetres. A schematic illustration of these measurements
and concepts of continuum damage mechanics and fracture mechanics is given
in Figure 3.10 (see Chaboche 1981).

A brittle fracture by cleavage and a ductile fracture by large localised plastic
deformations, are two of the main basic mechanisms of local fracture.

Brittle fracture is characterised by the fracture of interatomic bonds, without
noticeable overall plastic deformations. This fracture is a result of equalising
the local strain energy due to external loads and the energy necessary to pull
the atom layers apart. Accidental geometrical imperfections or lattice defects
lead to a stress concentration, and therefore they play on important role in
the initiation of the fracture process. Brittle fracture by cleavage represents a
direct separation of particular crystallographic planes. Several parallel surfaces
of cleavage can develop in a crystal, which join perpendicularly in the form of
steps. In order to follow the crystallographic cleavage planes of the next crystal,
the cleavage surfaces change direction at grain boundaries. A cleavage that
follows the grain boundaries is known as intergranular fracture. [t occurs in
form of brittle fracture itself at low temperature and due to creep, observed
mostly at average and high temperatures (see Figure 3.12).

The instability which is a result of a very large local deformation in the vicinity
of crystalline defects leads to ductile fracture. A material which shows signs
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Figure 3.12: Brittle fracture: a) transgranular, b) intergranular (after Blume-
nauver & Pusch)

of ductile fracture can have either a ductile or brittle global behaviour depend-
ing on the density of crystalline defects and the resulting overall macroscopic
deformation may or may not be significant. Particles of added elements in al-
loys, inclusions, piling up of dislocations, grain boundaries and triple points are
defects responsible for initiating ductile fracture.

The external loads which lead to large plastic deformations in the vicinity of the
defects create stress concentrations. A particle or a foreign defect can produce
an instability which results in the decohesion at the interface or in fracture due
to cleavage and thus initiating a microcrack or a cavity. The growth of cavities
takes place through plastic slips with local strains, and further coalescence of
the cavities leads to the final fracture (see Figure 3.13).

However, different interacting mechanisms are involved in the fracture of an
element under service conditions. Fatigue failure under cyclic loads clearly dis-
tinguishes different stages of such fracture. In the case of a polycrystal subjected
to a periodic load, the stages of fracture are nucleation and initiation of micro-
cracks, growth of microcracks, and growth of macrocracks.

3.2.1.1 Nucleation and initiation of microcracks

Even in the case when the maximum load is under the usual elastic limit, the
stress concentrations in the vicinity of the defects create locally cyclic plastic
microdeformations, which block further slip by virtue of multiplication of dislo-
cation nodes. Local rise in temperature produced by this dissipative mechanism
can induce the relaxation of microstresses. Depending on whether hardening
or relaxation is predominant in the material, a hardening or softening of the
material takes place. Slip bands formed during this phase result in steps form
on the surface of the sample. Depending on the material and the load level
the initiation of microcracks can be influenced by several mechanisms, such as
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Figure 3.13: Ductile fracture: a) intergranular - in a Nickel based Inconel 718
alloy, b) transgranular in a 0.30 C-1 Cr-0.25 Mo steel (after Pineau)

IFigure 3.14: Fatigue striation: a) stainless austenitic steel, b) Inconel 718 alloy
(after Pineau)

dislocation climbs in connection with the formation of voids, the formation of
permanent slip bands and decohesion, and intrusion-extrusion mechanisms. In
this initiation phase, the defects are in the planes which have inclination of £45°
to the direction of the largest principle stress. The microcracks usually have a
length in the range of the grains of the polycrystal.

3.2.1.2 Microcracks growth

Growth of microcracks represents important phase in the fatigue failure. The
beginning of this phase is the moment when a microcrack crosses the first grain.
Thereafter, microcracks move through the successive grains or along the grain
boundaries. In this moment the microcracks have tendency to orient themselves
perpendicular to the direction of the maximum principle stress. When one mi-
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Figure 3.15: The loading modes: Mode I - opening mode, Mode II - shear mode,
Mode III - tearing mode

crocrack becomes significant in size and obtains a well-defined direction, it grows
further in a preferential way. This leads to the partial unloading of other mi-
crocracks and a high stress concentration at the front of microcrack is generated
(see Figure 3.11a). A macroscopic initiation takes place and after that point the
material cannot be considered as a homogeneous macroscopic medium.

3.2.1.3 Macrocracks growth

The growth of macrocracks is based on the same principles as the growth of
microcracks. The stress concentration at the crack tip results in the local plastic
deformation which leads to the separation of the material at the crack tip. The
fractured surface reveals a succession of striations which often permits a mea-
surement of the crack tip progress in each cycle (see Figures 3.11b and 3.14).
After the crack reaches a critical size, the cracked part becomes unstable, and
the crack propagates rapidly, breaking the structural element into two or more
pieces.

3.2.2 Linear elastic fracture mechanics

Linear elastic fracture mechanics (LEFM) analyses materials with relatively low
fracture resistance which fail below their collapse strength, using an elastic analy-
sis of the stress field for small strains. Such materials are brittle-elastic materials
like high-strength steel, cold worked stainless steel, glass, concrete, etc. The ba-
sic problem in fracture mechanics is the analysis of the stress distribution in
plane, linear elastic, cracked media.

A plane crack extending through the thickness of a flat plate is considered. The
crack plane occupies the plane zz and the crack front is parallel to the z-axis.
The origin of the coordinate system Ozyz is situated at the midpoint of the
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Figure 3.16: A crack in an infinite plate subjected to a uniform stress at infinity

crack front. Depending on the direction of the load with respect to the direction
of the crack, three independent relative movements of the upper and lower crack
surfaces exist. Figure 3.15 illustrates these three basic modes. A superposition of
these basic modes can give any deformation of the crack surface. Three loading
modes are defined as follows:

e Opening mode or mode I: crack surfaces separate symmetrically with re-
spect to the planes zy and zz.

e Sliding mode or mode I1: crack surfaces slide relative to each other symmet-
rically with respect to the plane zy and skew-symmetrically with respect
to the plane zz.

e Tearing mode or mode I1I: crack surfaces slide relative to each other skew-
symmetrically with respect to both zy and zz planes.

Next, three different possibilities for the definition of the theory of crack growth
are presented. Those three approaches are the stress intensity factors approach,
the strain energy release rate approach and J-integral approach. Section 3.2.2.4
presents approaches suitable for the fatigue crack growth.

3.2.2.1 Stress intensity factors

The stress and the deformation fields associated with each of these three loading
modes will be determined for the cases of p