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Summary

In this treatise, a constitutive theory for pseudoelastic shape memory alloys
is proposed. The model is derived within a Eulerian framework of finite de-
formations. Specifically, a hypoelastic formulation is adopted on the basis of
the Kirchhoff stress (weighted Cauchy stress), the stretching tensor, and the
logarithmic rate. The material model is consistently formulated within a ther-
modynamic framework of solid state phase transformations. In this context, a
non-convex Helmholtz free energy function is introduced, which includes phase
specific energies as well as an energy for phase interactions. Internal variables
reflect, in average, the microstructure of the material. They particularly com-
prise the scalar-valued overall martensitic mass fraction and the tensorial aver-
age orientation of the martensite variants. Evolution equations are proposed
for both variables accounting for a proportional and for a non-proportional
loading path. In addition, in order to describe the thermomechanically coupled
material behavior, a rate equation for the temperature is derived from the first
law of thermodynamics. The constitutive model is successfully implemented
into the finite element method. A calibration to experimental measurements
and a subsequent validation show the appropriateness of the constitutive as-
sumptions. The treatise closes with a fully thermomechanically coupled sim-
ulation of a shape memory structure at finite deformations.

Zusammenfassung

In dieser Arbeit wird ein konstitutives Modell zur Beschreibung pseudoelastis-
cher Formgedéachtnislegierungen vorgestellt. Das Modell wird in einem Euler-
schen Rahmen finiter Forméanderungen formuliert. Insbesondere wird ein hy-
poelastischer Ansatz verwendet, der auf der Kirchhoff Spannung (gewichtete
Cauchy Spannung), dem Streckgeschwindigkeitstensor und der logarithmis-
chen Rate basiert. Das Materialmodell ist in einem thermodynamisch kon-
sistenten Rahmen zur Beschreibung von Festkorper-Phasentransformationen
eingebettet. In diesem Zuge wird eine nicht-konvexe Helmholtz Energie einge-
fiihrt, die neben den phasenspezifischen Energien einen Anteil zur Erfassung
von Phaseninteraktionen enthilt. Die Mikrostruktur wird durch interne Vari-
ablen beschrieben, die den mittleren Massenanteil des Martensit sowie die
mittlere Orientierung der Martensitvarianten umfassen. Fiir beide Grofien
werden Evolutionsgleichungen fiir proportionale und nicht-proportionale Last-
pfade vorgestellt. Aulerdem wird zur Erfassung des thermomechanisch gekop-
pelten Materialverhaltens aus dem ersten Hauptsatz der Thermodynamik eine
Ratengleichung fiir die Temperatur hergeleitet. Das Materialmodell ist in die
Finite-Elemente-Methode implementiert. Die Eignung der konstitutiven An-
nahmen wird durch eine Kalibrierung an experimentelle Ergebnisse und eine
Validierung gezeigt. Die Arbeit schlieft mit einer thermomechanisch gekoppel-
ten Simulation einer Formgedéchtnisstruktur unter finiten Forméanderungen.
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1 Introduction

In the past decades, the development of multifunctional materials consider-
ably enhanced the efficiency of engineering applications and promoted many
innovative solutions for technical problems. Among these materials, shape
memory alloys are in the focus of this treatise. They show remarkable thermo-
mechanical properties which result in three effects referred to as pseudoelastic
effect, one-way shape memory effect, and two-way shape memory effect. The
pseudoelastic effect is characterized by large apparently elastic deformations
during mechanical loadings, which are, in fact, inelastic as they lead to a hys-
teretic material behavior and, thus, to an energy dissipation. Large apparently
plastic deformations at the end of a deformation process are addressed by the
one-way shape memory effect. These deformations can, however, be fully re-
versed upon heating. The two-way shape memory effect refers to switching
deformation states of the material upon heating and cooling. This means that
a predefined deformation behavior can be regulated by controlling the tem-
perature.

The unique feature of shape memory alloys may be ascribed to a material mem-
ory with regard to an initial deformation state which originates in the crys-
tallographic material structure. This memory is principally governed by two
factors, i.e., a phase transformation between two solid phases termed marten-
site and austenite, which is related to thermoelastic martensitic transforma-
tions, and a low crystallographic symmetry of the martensite compared to the
austenite. Due to the latter, different martensite variants can be constructed
from one austenite variant. In this context, an application of an external ther-
momechanical load leads to a selection of preferred martensite variants and,
in consequence, to an observable pseudoelastic or pseudoplastic deformation.
As the original crystallographic structure can be reconstructed from a reverse
transformation into the austenite, this deformation can be fully reversed.
Shape memory alloys are employed by various engineering structures. The
pseudoelastic effect is, for instance, used by flexible guide wires for minimally
invasive surgeries, flexible antennas for cellular phones, or flexible eyeglass
frames. The efficiency of dental therapies can be increased by pseudoelastic
orthodontic arch wires. They adjust the teeth by a constant force which is
realized during the pseudoelastic effect. Pseudoelastic endovascular stents are
used to expand the cross section areas of constricted blood vessels to ensure
a sufficient blood flow. The volumetric, fine wired structures are restrained
on catheters by compression and are guided to the stenosis, at which they are
expanded. An endovascular NiTi stent system during the expansion process
is depicted in Figure 1.1 (a). A similar procedure is employed for endovas-
cular instruments during minimally invasive surgeries. They access regions
within the body through the major blood vessels, such that the size of the
surgeries can locally be restricted. This results in a reduced trauma and a
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(a) Self-expandable NiTi stent system (b) NiTi tube coupling (courtesy of

(courtesy of ev3 Inc., USA) Memory-Metalle GmbH, Germany)

Figure 1.1: NiTi applications

shorter recovery time. Examples for these instruments are pseudoelastic re-
trievers which are used to remove intravascular clots. The retriever system
consists of a microcatheter, through which a tapered NiTi wire is advanced.
After passing through the clot, the wire is expanded, such that the clot can
be drawn into the catheter. Lightweight couplings for hydraulic tubes shown
in Figure 1.1 (b) or foot staples for foot surgeries are two typical applications
for the one-way shape memory effect. Foot staples connect the fracture zones
of toes by a well-defined clamping force. The two-way shape memory effect is
commonly used for actuators, as distinct deformations states can externally be
controlled by a given temperature. In this vein, the actuators may additionally
operate as sensors in order to reduce the complexity of an actor-sensor system.
Nowadays, numerical simulations are well-established in the product develop-
ment to predict the functionality and reliability of the new products in an early
development stage. In this context, a constitutive theory for shape memory
alloys is derived in this treatise. The model is embedded within a Eulerian
framework to account for the large deformations exhibited by shape memory
structures. Specifically, a hypoelastic formulation is adopted on the basis of
the Kirchhoff stress (weighted Cauchy stress), the stretching tensor, and the
logarithmic rate. Certainly, the local strains arising from the observed shape
memory effects may be regarded as moderate, such that a geometrically linear
kinematical framework may be employed. This pragmatical approach proves
to be reasonable if the investigation of fundamental effects of the material is
preferably in the focus of the material modeling. Nevertheless, as it can be ob-
served during the expansion process of the endovascular NiTi stent considered
above, these strains may lead to severe structural deformations, such that a
finite deformation framework is mandatory for realistic simulations.
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The material model is consistently formulated within a thermodynamic frame-
work of solid state transformations between the two phases austenite and
martensite. Of fundamental importance in this context is the introduction
of a non-convex Helmholtz free energy function, which comprises the phase
specific energies of the two phases as well as an energy for phase interactions.
The Helmholtz free energy is written in terms of stress, temperature, and
internal variables. The dependence on the stress should not be regarded as
contradiction to the classical formulation, as the purely elastic component of
the total strain, which is commonly taken as an independent variable, can be
considered as redundant to the total stress. The determination of the elas-
tic strain, however, is cumbersome within a framework of finite deformations.
The internal variables reflect, in average, the microstructure of the material.
They particularly comprise the scalar-valued overall martensitic mass fraction
and the tensorial average orientation of the martensite variants. Special at-
tention of this treatise lays on the pseudoelastic effect. On the grounds of
the introduced general internal variables, however, the model can be extended
to the additionally observed one-way and two-way shape memory effects. An
evolution equation for the mass fraction of martensite is derived from the
Clausius-Duhem inequality, whereas the proposed evolution equation for the
average orientation of the martensite variants is based on a thorough analysis
of the material response determined during biaxial experimental tests. In this
context, focus is on reorienting martensite variants during non-proportional
loadings. Finally, on exploiting the first law of thermodynamics, a rate equa-
tion for the temperature is derived to account for the thermomechanically
coupled material behavior.

In regard of the significance of numerical simulations, the material model is
implemented into the finite element method. A calibration and a validation
with experimental measurements show the appropriateness of the constitutive
assumptions. The applicability of the material model is then demonstrated on
the basis of a fully thermomechanically coupled simulation of a shape memory
structure at finite deformations.

Throughout this treatise, the considerations are restricted to NiTi alloys due
to their elevated technical relevance. Indeed, among different shape mem-
ory alloys such as Cu-based or Fe-based alloys, NiTi is the most attractive.
The reason for this stems from the superior properties of NiTi with regard to
recoverable strains, transformation stresses, fatigue, and biocompatibility.

1.1 State of the art review

Numerous modeling approaches for shape memory alloys have been estab-
lished in the past decades which may principally be classified into three groups,
i.e., micromechanical models, models based on statistical mechanics, and phe-
nomenological models. Some of these are briefly reviewed in the following.
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1.1.1 Micromechanical models

Micromechanical models for shape memory alloys conceptually predict the
material response on the basis of a microstructure approximation. For this
purpose, a wide class of approaches employ the concept of a representative
volume element in defining macroscopic quantities as volumetric averages of
corresponding microscopic quantities (see Patoor et al. (2006)). Within the
scope of this concept, microscopic internal variables are introduced accounting
for the volume fractions of distinct martensite variants. They are linked to cor-
responding microscopic phase transformation strains. The thermomechanical
state of the material is characterized by a microscopic Helmholtz free energy
in terms of microscopic stresses and strains. On the basis of its volumetric
average, evolution equations for the internal variables are then formulated.
Averaging this energy over the representative volume element exhibits, how-
ever, an interaction term which particularly arises from a local stress field.
In regard of an approximation of this interaction energy, various concepts
have been proposed which may be ascribed to single-variant and multi-variant
concepts. Within the single-variant concepts, only a single active martensite
variant is taken into account, as it may be observed during simple tension tests
of single crystals (e.g., see Lu & Weng (1997) and Vivet & Lexcellent (1998)).
Contrarily, multi-variant concepts consider the interaction of simultaneously
activated variants (e.g., see Patoor et al. (1996), Huang & Brinson (1998),
Siredey et al. (1999), Gall & Sehitoglu (1999), Gao et al. (2000), Huang et al.
(2000), Niclaeys et al. (2002), Jung et al. (2004), and Wang et al. (2008)).

Alternatively to the preceding approaches, Govindjee et al. (2003) propose a
multi-well approach in which the martensite and austenite variants are charac-
terized by distinct Helmholtz free energy functions (see Ball & James (1987)).
The energy of the phase mixture, thus, represents a highly non-convex energy
functional. Hall & Govindjee (2002) and Hackl & Heinen (2008), for instance,
compute the volume fractions of the martensite variants by minimizing the
relaxed energy functional. Contrarily, Govindjee & Miehe (2001) and Stein &
Sager (2008) quantify the martensitic volume fractions from the postulate of
the maximum dissipation. In both approaches, the highly non-convex energy
functional is subjected to a convexification to ensure uniqueness of the solution.

1.1.2 Models based on statistical mechanics

Models for shape memory alloys based on statistical mechanics adopt principles
of statistical physics to describe the transformation between different austenite
and martensite variants. The underlying approach may be attributed to the
works of Achenbach & Miiller (1985), Miiller (1985a), and Achenbach (1989)
(see also Miiller (2001)). A key issue therein is the decomposition of the body
of interest into mesoscopic lattice particles which describe the structural be-
havior in a statistical mean. On restricting to a one-dimensional description,
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it is assumed that the particles can obtain three different configurations, i.e.,
two for martensite (e.g., one for tension and one for compression) and one for
austenite. These configurations are characterized by distinct potential energy
minima, i.e., by distinct potential wells, which are separated by potential barri-
ers. On the grounds of thermal activation processes, it is further supposed that
the particles fluctuate about their equilibrium states. In this regard, depend-
ing on the thermomechanical load, the particles can overcome the potential
barriers and can, thus, change their configurations. This furnishes processes of
phase transformation and reorientation of the austenite and martensite vari-
ants. The transformation ability of the particles depends, however, on certain
transformation probabilities, which are determined from principles of statisti-
cal physics. They are employed to derive rate equations for the average phase
fractions of the austenite and martensite variants.

Seelecke (1997, 2002) and Seelecke & Miiller (2004) successfully apply the
foregoing concept to simulations of shape memory structures. Seelecke (1997,
2002) analyzes torsional vibrations of a shape memory wire and of a thin-walled
shape memory tube. The behavior of shape memory actuators is simulated in
Seelecke & Miiller (2004). The computations in these works are carried out
thermomechanically coupled in order to account for the generated heat of the
transformation processes. An extension of the model from a single crystalline
description to polycrystals is discussed by Heintze & Seelecke (2008). Govin-
djee & Hall (2000) study the numerical implementation of a model based on
statistical mechanics in conjunction with a mixture theory.

The concept of statistical mechanics for shape memory alloys is in its current
formulation restricted to one-dimensional models. As it is shown by Seelecke
et al. (2005) and Kim & Seelecke (2007) for ferroelectric single crystals, an
extension to higher dimensions seems, however, to be possible.

1.1.3 Phenomenological models

Phenomenological models for shape memory alloys concentrate on the pre-
diction of the macroscopic material behavior. Several modeling approaches
have been established, ranging from purely descriptive models which adopt
the theory of plasticity as basic framework to multiphase models addressing
the mechanism of solid state transformations.

Plasticity based concepts can be found in Bertram (1982), Graesser & Coz-
zarelli (1994), Delobelle & Lexcellent (1996), and Trochu & Qian (1997). For
instance, Bertram (1982) defines two temperature-dependent yield functions to
model the phase transformation strain during forward and reverse transforma-
tions, whereas a viscoplastic framework is adopted by Delobelle & Lexcellent
(1996) for the description of the pseudoelastic effect. The latter work is based
on a shift of the viscoplastic hysteresis to form a pseudoelastic hysteresis, which
is realized by a set of internal variables furnishing a back stress tensor.
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Multiphase models formulated on the grounds of solid state transformations
commonly define the overall martensitic phase fraction as primitive quantity,
which basically represents the material microstructure during phase transfor-
mation processes. An early three-dimensional constitutive model for pseudoe-
lasticity based on this concept is proposed by Raniecki et al. (1992). The model
extends the one-dimensional thermodynamically founded theory of Miiller
(1989) and Miiller & Xu (1991) for stress-induced phase transitions. It is
formulated within a geometrically linear framework on the basis of a non-
convex Helmholtz free energy comprising phase specific energies as well as
an energy for phase interactions (see Miiller (1989)). In this context, solely
the scalar-valued martensitic phase fraction is defined as internal variable.
The inelastic strain arising from phase transformations is then uniquely deter-
mined by the current stress direction and the martensitic phase fraction, i.e.,
it is postulated that the stress direction and the martensite orientation are
parallel throughout the deformation process. A constitutive equation for the
martensitic phase fraction is obtained by ensuring thermodynamic consistency
in terms of the Clausius-Duhem inequality. In regard of its thermodynamical
foundation, the model accounts for the thermomechanically coupled material
behavior observed during phase transformations. The approach of Raniecki
et al. (1992) promoted many research publications as, e.g., Raniecki & Lex-
cellent (1994, 1998), Lexcellent et al. (1994a,b, 2000, 2002, 2006), Leclercq
& Lexcellent (1996), Miiller (2003), Bouvet et al. (2004a), and ZiSlkowski
(2007). An approach for the description of the asymmetric transformation
behavior of shape memory alloys well-known as tension/compression asymme-
try can be found in Raniecki & Lexcellent (1998) and Lexcellent et al. (2002,
2006). The derivations are, however, restricted to proportional loadings with
constant stress directions. An attempt to cover non-proportional loadings is
given in Bouvet et al. (2004a). Approaches to model R-phase activities and
the two-way shape memory effect are considered by Lexcellent et al. (1994b,
2000). Miiller (2003) and Zidlkowski (2007) reformulate the geometrically
linear model within a framework of finite deformations. Both works adopt
the Eulerian configuration in terms of the Kirchhoff stress and the Hencky
strain. Miiller (2003) additionally implements the model into the finite ele-
ment method and conducts simulations of shape memory structures.

Boyd & Lagoudas (1996a,b) propose an enhancement of the work of Raniecki
et al. (1992) by accounting for reorientations of the martensite variants during
non-proportional loadings. Their approach is based on a non-convex Gibbs
free energy, which is comparable to the Helmholtz free energy considered by
Raniecki et al. (1992). The description of martensite reorientations is realized
by a split of the inelastic strain rate into transformational and reorientational
parts. Two general potentials are then introduced to define rate equations
for the martensitic phase fraction and for the reorientational transformation
strain. These rate equations, however, depend on Lagrange multipliers, which
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have to be determined from a coupled system of equations. In its original for-
mulation, the model is restricted to pseudoelasticity within a geometrically lin-
ear framework. An extension to cover the one-way shape memory effect seems
possible. In a series of publications, Bo & Lagoudas (1999a,b,c) and Lagoudas
& Bo (1999) revise the approach of Boyd & Lagoudas (1996a,b). The modified
model conceptually relies on a set of five internal variables in terms of the phase
fraction of martensite, a macroscopic transformation strain, a plastic strain, a
back stress, and a drag stress. Back stress and drag stress account for internal
stress fields arising from microstructural changes during phase transforma-
tions, whereas the plastic strain expresses transformation-induced permanent
deformations. In contrast to the approach of Boyd & Lagoudas (1996a,b),
reorientations of the martensite variants are not accounted for in the revised
model. Three-dimensional numerical implementations can be found in Qidwai
& Lagoudas (2000a,b), Lagoudas & Entchev (2004), and Entchev & Lagoudas
(2004). Among these works, only the implementation of Qidwai & Lagoudas
(2000b) considers finite deformations. It is particularly based on an additive
decomposition of the Green-Lagrangian strain tensor. The main issue of the
authors is to cover the asymmetric transformation behavior of the material.
In contrast to Lagoudas & Entchev (2004) and Entchev & Lagoudas (2004),
Qidwai & Lagoudas (2000a,b) do not implement plasticity-like effects consid-
ered in the original model.

A variety of models employs phase diagrams to obtain relations for the trans-
formation kinetics (e.g., see Brinson (1993), Auricchio (1995), Leclercq & Lex-
cellent (1996), Lagoudas & Shu (1999), Juhasz et al. (2002), Helm (2003), Peul-
tier et al. (2006), Panico & Brinson (2007), and Popov & Lagoudas (2007)).
These diagrams distinguish different phase domains in terms of uniaxial critical
transformation stresses for forward and reverse transformations plotted against
the temperature. Of fundamental importance in this regard is the concept of
the additive decomposition of the martensitic phase fraction into oriented and
self-accommodated parts. That is, both parts are regarded as distinct phases,
such that detwinning of the martensite variants can conceptually be treated
as phase transformation process. For instance, Auricchio (1995) adopts this
concept for the description of, both, the pseudoelastic effect and the one-way
shape memory effect (see also Lubliner & Auricchio (1996), Auricchio & Taylor
(1997), and Auricchio et al. (1997)). The authors particularly model the crit-
ical transformation stresses by phenomenological functions of Drucker-Prager
type. These functions govern, on the one hand, the transformation kinet-
ics of the scalar-valued internal variables for oriented and self-accommodated
martensite and, on the other hand, an additionally introduced tensorial inter-
nal variable for the direction of the phase transformation strain. The model is
implemented into a framework of finite deformations employing a multiplica-
tive decomposition of the deformation gradient. Thermomechanical effects,
such as the heat generation arising from phase transitions, are not accounted
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for. A significant enhancement of this approach from a thermodynamic point
of view is proposed by Juhdsz et al. (2002). Therein, in contrast to Auric-
chio (1995), the whole phase transformation strain is introduced as tensorial
internal variable. The uniaxial critical phase transformation stresses are repre-
sented by linear functions in the temperature. They are formulated in terms of
an equivalent stress measure, which accounts for the asymmetric transforma-
tion behavior of the material. In line with Raniecki et al. (1992), a Helmholtz
free energy function comprising the phase specific thermoelastic energies and
an energy for phase interactions characterizes the thermodynamic state of the
material. This energy is used to derive a rate equation for the temperature
from the first law of thermodynamics. The model of Juhdsz et al. (2002) is
restricted in its current formulation to a geometrically linear framework.

A well-developed constitutive model on the basis of a phase diagram approach,
covering the pseudoelastic and the one-way shape memory effect, is proposed
by Helm (2001, 2003). In addition to the scalar-valued internal variables ex-
pressing the martensitic phase fractions of oriented and self-accommodated
variants, tensorial internal variables accounting for the total transformation
strain and for the internal stress field are introduced. The phase fraction
of oriented martensite variants is particularly set proportional to the trans-
formation strain. A Helmholtz free energy function comparable to the one
used by Raniecki et al. (1992) is employed in this model. Therewith, and
on ensuring thermodynamic consistency in terms of the Clausius-Duhem in-
equality, the principle structure of the evolution equations for the internal
variables is obtained. Specifically, in deriving an evolution equation for the
phase transformation strain, a yield function known from the theory of plas-
ticity is introduced. The evolution equation is then formulated on the basis
of a Lagrange multiplier of Perzyna-type (cf. Perzyna (1963)) to describe a
possibly viscous material behavior. On exploiting the first law of thermo-
dynamics, the generated heat arising from phase transformation processes is
quantified. Numerical implementations of the model and thermomechanically
coupled simulations, both restricted to a geometrically linear framework, are
addressed in Helm (2007a) and Christ et al. (2004). A rigorous identification
of the material parameters with the focus on pseudoelasticity is regarded by
Helm (2005). The calibration is carried out on the basis of neural networks.
Finite deformations are considered in Helm (2001, 2007b) and Reese & Christ
(2008) on employing the concept of the multiplicative decomposition of the de-
formation gradient. Reese & Christ (2008) additionally present a calibration
to biaxial experimental data obtained by Helm (2001), and a thermomechan-
ically coupled simulation of a stent structure.

It should be noted that only a few constitutive models are currently avail-
able at a geometrically non-linear framework (see Auricchio (1995), Qidwai
& Lagoudas (2000b), Helm (2001), and Miiller (2003)), in spite of the strong
demand for reliable simulations of shape memory structures.
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1.2 Outline

This treatise is structured into seven chapters. The present introductory chap-
ter is followed by a brief survey on some basic properties of NiTi shape memory
alloys. Therein, the mechanisms within the crystallographic structure leading
to the different shape memory effects as well as the observable macroscopic
material response are revisited in detail.

The mechanical foundations of the proposed constitutive model at finite de-
formations are presented in Chapter 3. The kinematics of a deforming body
are thoroughly analyzed with the focus on the notion of local deformations
and velocities. On this basis, measures of strain and stress are introduced.
An essential property of physical quantities in terms of their transformation
behavior during rigid body motions is addressed by the notion of objectivity.
A physical quantity is specifically said to be objective if it is invariant under
a change of frame of the observer. Rigid body motions may strongly affect
the time derivatives of physical quantities. To account for this effect, objective
time derivatives are introduced.

The kinematic and static relations are complemented by thermodynamics in
order to ensure a physically consistent framework for the development of gen-
eral material laws. This is considered in Chapter 4. General balance relations
of thermodynamics are derived, and the strain and stress measures introduced
in Chapter 3 are related to each other on employing a conjugated work analy-
sis. A key issue of this chapter is the presentation of a general formalism which
ensures the development of a thermodynamically consistent material law. In
this regard, a general structure of the Helmholtz free energy function is intro-
duced which is written, in contrast to the classical formulation, in terms of the
total stress instead of the elastic strain. Even though both quantities may be
regarded as redundant to some extent, the determination of the elastic strain
during elastic-inelastic finite deformation processes is considered as cumber-
some. The chapter is concluded with an analysis of the heat generation during
general deformation processes.

The constitutive equations of the proposed material model are considered in
Chapter 5. They are consistently formulated within a Eulerian framework on
the basis of the Kirchhoff stress tensor, the stretching tensor, and the log-
arithmic rate. A Helmholtz free energy function is defined to characterize
the energetic state of the material. It embodies the phase specific energies
of austenite and martensite as well as an energy for the interaction of the
single phases. In reflecting the essential structure of solid state phase trans-
formations, a set of internal variables is specified in terms of a scalar-valued
variable for the mass fraction of martensite and a tensorial variable related to
the average orientation of the martensite variants. These quantities describe,
in average, the microstructure of the material. On reviewing the interactions
of the single phases, a relation for the phase specific stresses is proposed. The
total stretching tensor and the total stress tensor are then specified on the ba-
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sis of the principle of local equilibrium. The thermodynamic consistency of the
constitutive assumptions is ensured on satisfying the Clausius-Duhem inequal-
ity. In this regard, an evolution equation for the mass fraction of martensite is
obtained. The derivation of a constitutive equation for the average orientation
of the martensite variants relies on a thorough study of experimental biaxial
measurements. Finally, the heat generated during processes of deformation is
quantified.

Chapter 6 addresses the implementation and validation of the proposed consti-
tutive model. The main objective is to asses its reliability for complex loadings
and its applicability for structural simulations. The calibration is carried out
within a geometrically linear framework as experimental data are generally
given in terms of nominal quantities. In this context, comparisons between
numerical and experimental results for biaxial loadings are presented. The
material model is then implemented into a framework of finite deformations.
A key issue therein is to ensure objectivity of the integration procedure. On
this basis, a fully thermomechanically coupled simulation of a shape memory
structure is conducted.

This treatise closes in Chapter 7 with a summary of the results and an outlook
on future work. The latter particularly comprises a possible extension to cover
the one-way shape memory effect.

1.3 Mathematical notations

Throughout this treatise, a Cartesian coordinate system is used. Its mutually
orthogonal base vectors e; possess the property

e -e; = 6,-j ’ (1.1)
with 4;; denoting the Kronecker-delta

(1 ifi=j
8is _{ 0 otherwise . (1.2)

Here and henceforth, the indices such as i and j represent (1, 2, 3) if not
otherwise stated. Therewith, the second-order and the fourth-order identity
tensors read

I=¢ijei®e; and I=0dimdjnei®e;j@enden . (1.3)

For the two vectors a and b and the two second-order tensors A and B,
contraction operators are defined as:

a®b = a;bj e;de;
a-b = a;b;

(1.4)
A.-B = A,'ijk e; Qe

A:B = A,‘jBij
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In regard of the second-order tensor A, the quantities AT, A~!, tr(A), and
A’ denote its transpose, inverse, trace, and deviator, with the properties:

AT = A.‘j e; ®e;

A Al = 6,-je.-®ej

tr(A) = Ay (1.5)
A’ - A- %tr(A)I

The Fuclidean norm of the vector a and the Frobenius norm of the second-oder
tensor A read

laj=+va-a and |A|=VA:A . (1.6)

Let Q denote a second-order tensor belonging to the special orthogonal group.
It then exhibits the following properties

Q-QT=I and tr(Q)=1 . (1.7)
Therewith, the Rayleigh products of a vector and a second-oder tensor read:
*a = -a
Q Q (1.8)

Q*A = Q-A-QT






2 Physical phenomena of NiTi shape memory alloys

The unique properties of shape memory alloys can be ascribed to solid state
phase transformations, in particular to thermoelastic martensitic transforma-
tions within the crystallographic structure of the material. They are addressed
in the first part of this chapter. The second part is devoted to related ther-
momechanical characteristics. This chapter is intended as brief introduction
to fundamental properties of NiTi shape memory alloys which are essential
for the understanding of the constitutive relations proposed in Chapter 5. An
elaborated review on this matter can be found in Funakubo (1987), Duerig
et al. (1990), Miyazaki (1996), and Otsuka & Wayman (1998c).

2.1 Crystallographic perspective

Martensitic transformations denote particular solid state transformations oc-
curring in a variety of metals and alloys (see Wayman & Duerig (1990)). They
are characterized by a diffusionless, cooperative movement of the atoms within
the crystal lattice of the material and are, thus, referred to as displacive.
The domains subjected to martensitic transformations are traditionally termed
austenite and martensite in honor of the metallurgists Sir William Chandler
Roberts-Austen (1843-1902) and Adolf Martens (1850-1914).! These terms
identify distinct phases within the material with homogeneous physical and
chemical properties.? A key issue of shape memory alloys is that austenite
usually inherits a highly symmetric crystal lattice in contrast to martensite.
On this account, a variety of martensite crystals with distinct orientations may
be constructed from one austenite crystal. For instance, the austenitic phase
of NiTi shape memory alloys shows a body-centered-cubic crystal structure
of B2-type and its martensitic counterpart exhibits a monoclinic structure of
B19’-type. Both arrangements are schematically depicted in Figure 2.1, ac-
cording to Otsuka & Ren (1999). In this case, 24 variants are conceivable for
martensite, whereas the austenite possesses only one variant.

Martensitic transformations are generally athermal (see Wayman & Duerig
(1990)), i.e., they only initiate if the current thermal or mechanical load
reaches a critical value. As no diffusion of the atoms occurs, the transfor-
mation progress is specifically time-independent. Martensitic transformations
of shape memory alloys are additionally thermoelastic. This essential property
expresses an equilibrium between thermal and elastic effects, so that the size
of the nucleated martensite crystals depends solely on the current thermal or
mechanical load. The interfacial energy as well as the energy due to plastic
deformations can particularly be considered as small. In this vein, the original

! An overview on atomic arrangements undergoing martensitic transformations can be
found in Wayman & Duerig (1990).

2Note that the crystal structures related to the terms austenite and martensite are gener-
ally not unique for different alloys.
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Figure 2.1: Crystal structures of B2 austenite and B19’ martensite

austenitic structure before the initiation of the transformation into martensite
can be fully recovered. Thermoelastic martensitic transformations are there-
fore referred to as crystallographically reversible.

The deformations arising from martensitic transformations may be subdivided
into two components, i.e., Bain strain and lattice invariant shear (see Otsuka &
Ren (1999)). The Bain strain is related to the deformations of the originally
austenitic crystal lattice during martensitic transformations on disregarding
the surrounding crystal lattice. These deformations generally involve severe
volumetric and shear components, so that a reduction of the total deforma-
tion is eminent for the martensite in order to accommodate its environment.
This reduction is expressed by the lattice invariant shear. In this context,
two accommodation modes principally exist, i.e., slip and twinning, which
are schematically depicted in Figure 2.2. During slip, the accommodation of
the martensite is realized by plastic deformations of the martensite variants,

Figure 2.2: Lattice invariant shear: accommodation of a martensitic domain
within an austenitic matrix due to (a) slip and (b) twinning (Au-
ricchio (1995))
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which induce irreversible damages into the crystal lattice. This, however, is not
observable for shape memory alloys, as these alloys are ideally free of perma-
nent deformations during phase transformations. The accommodation mode of
shape memory alloys is merely driven by twinning of the martensite variants,
i.e., the accommodation proceeds by the formation of twin crystals. The lat-
ter particularly possess mobile twin boundaries, which is why they can easily
move under an applied stress. In this context, the term detwinning expresses
the growth of certain martensite variants with favorable orientations to the
applied stress direction. This growth proceeds on the expense of unfavorably
oriented variants and leads to an observable shear deformation of the crystal
lattice. Volume changes during twinning and detwinning processes are specif-
ically negligible. In fact, NiTi shape memory alloys undergoing martensitic
transformations exhibit volume changes in the range of 0.34 % (cf. Shimizu &
Tadaki (1987)).

As the influences of thermal and mechanical loads on thermoelastic marten-
sitic transformations are comparable, different shape memory effects can be
observed. They are schematically summarized in Figure 2.3. The first sketch il-
lustrates the pseudoplastic effect in combination with the one-way shape mem-
ory effect. The initial martensitic structure being in a stress-free state may
be obtained from an unstressed austenitic structure by a temperature-induced
martensitic transformation. In this case, martensite twins form in this way,
that the external shape of the structure remains unaffected by the phase trans-
formation. This effect is referred to as self-accommodation of the martensite
variants. Then, under an applied stress, detwinning of the martensite variants
initiates, which ideally leads to the formation of one favored variant at the
conclusion of the detwinning process. The detwinned martensite variants are
specifically stable in the unstressed state for the considered low temperature
regime, so that an apparently plastic deformation is perceivable on unloading.
This property characterizes the memory of shape memory alloys. In particular,
due to the crystallographic reversibility of the material structure, the original
austenitic structure can be fully restored through a temperature-induced phase
transformation upon heating. In this case, the apparently plastic deformation
of the martensitic phase vanishes and is therefore referred to as pseudoplastic.
Then, along with an additional temperature-induced transformation into the
self-accommodated martensite, the martensitic structure before the loading-
unloading cycle can be recovered. This final step concludes the one-way shape
memory effect.

The second sketch in Figure 2.3 depicts the pseudoplastic effect in combination
with the two-way shape memory effect. In contrast to the preceding one-way
shape memory effect, the self-accommodation of the martensite variants upon
cooling is inhibited by external or internal stresses, so that oriented martensite
variants form upon cooling. On this account, the pseudoplastic deformation
being existent prior the phase transformation into the austenite is regained
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Figure 2.3: Structural changes of shape memory alloys (Helm (2001))

after the phase transformation into the martensite. This leads to well-defined
shape changes of the material structure by temperature variations. In regard
of the separation between external and internal stresses necessary to induce
the two-way shape memory effect, the two categories of the eztrinsic and the
intrinsic effects may be distinguished. Both effects, however, provide similar
material responses. It also bears emphasis that the internal stresses may be
generated by dislocations or precipitates on employing an appropriate thermo-
mechanical treatment of the material referred to as training process, whereas
external stresses may result from external loads.
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Apart from a stabilization of the martensite by temperature, martensite can
also be stabilized by stress. This is observable for the pseudoelastic effect,
which is visualized in the third sketch of Figure 2.3.% For instance, subjecting
an initially austenitic structure to an external stress may trigger a stress-
induced martensitic transformation. In this case, oriented martensite variants
into the current stress direction are preferably activated, furnishing an observ-
able inelastic deformation of the entire structure. However, as the martensite
becomes unstable in the unstressed state for the considered high tempera-
ture regime, a reverse phase transformation into the austenite initiates upon
unloading, so that the initial crystal lattice of the material reappears. Con-
sequently, the inelastic deformation vanishes in the stress-free state. In this
regard, the observable inelastic deformation is referred to as pseudoelastic.
Up to this point, the considerations are restricted to a direct transforma-
tion from austenite into martensite. Frequently, however, NiTi alloys show
an additional premartensitic phase with a trigonal crystal structure which is
identified by the rhombohedral R-phase.? Like the transformation into the
B19’ martensite, the transformation into the R-phase belongs to thermoelas-
tic martensitic transformation. It usually initiates prior the transformation
into the B19’ martensite and it, thus, leads to a two-step phase transforma-
tion. The lattice distortions arising from B2 to R-phase transformations may,
however, be regarded as small compared to the distortions resulting from B2
to B19’ transformations. A comprehensive introduction to R-phase activities
can be found in Miyazaki & Otsuka (1986) and Otsuka (1990).

2.2 Thermomechanical characteristics

The macroscopic material responses in terms of strain, temperature, and stress
resulting from the crystallographic phenomena above are schematically visual-
ized in Figures 2.4 and 2.5. The martensitic start and finish temperatures Mg
and M} express the initiation and conclusion of temperature-induced marten-
sitic transformations from B2 austenite to B19’ martensite upon cooling. The
subscript 0 indicates the absence of stress. Accordingly, Aj and A are the
corresponding austenitic start and finish temperatures upon heating. At tem-
peratures above Mg, NiTi shape memory alloys do not exhibit any shape
memory effect. In this case, the material behavior is elastoplastic as depicted

3The term pseudoelasticity as adopted here addresses the strain recovery upon unloading
at constant temperature. Note, however, that pseudoelasticity is not uniquely restricted
to phase transformations as a pseudoelastic material response can also be observed in the
martensitic state during detwinning of the martensite variants (cf. Otsuka & Wayman
(1998b) and Hornbogen (1995)). In this regard, the terms superelasticity and rubber-like
behavior are often introduced to distinguish between the transformation pseudoelasticity
and the twinning pseudoelasticity, respectively. Throughout this treatise, the rubber-like
behavior is not considered.

4The R-phase may occur for near-equiatomic NiTi alloys after a suitable thermomechanical
treatment, for ternary NiTiFe and NiTiAl alloys, and for Ni-rich NiTi alloys (cf. Saburi
(1998)).
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Figure 2.4: Front to rear: elastoplasticity, pseudoelasticity, pseudoplasticity,
and one-way shape memory effect (Wayman & Duerig (1990))

in Figure 2.4. The pseudoelastic effect occurs within the temperature range
between A5 and M§. Therein, stress-induced phase transformations initiate
on exceeding a critical stress after a linear elastic loading of the austenite.
These transformations result in the formation of oriented martensite variants
and, thus, in pseudoelastic deformations. At the end of the phase transfor-
mation process, the martensitic material is ideally loaded elastically.® Then,
after an elastic unloading, phase transformations into austenite initiate, pro-
viding an observable hysteretic material behavior and, in addition, disappear-
ing pseudoelastic deformations at zero stress. The pseudoplastic effect can be
observed on lowering the temperature below M{ in the absence of stress, so
that temperature-induced martensitic transformations take place which con-
vert the material from an initially austenitic structure to an initially self-
accommodated martensitic structure. Hence, no macroscopic deformations
can ideally be observed during this transformation process. Subjecting the
material to mechanical loadings then leads at first to elastic deformations of
the martensite followed by the formation of oriented martensite variants and,
thus, by inelastic deformations. In contrast to the foregoing pseudoelastic ef-
fect, however, the martensitic phase is stable in the absence of stress, so that
the inelastic deformations persist after an elastic unloading into an unstressed
state. In regard of their pseudoplastic property, however, these deformation

5Note that a complete stress-induced phase transformation into martensite is experimen-
tally not observed for polycrystals (see Miyazaki et al. (1981), Brinson et al. (2004),
Schmabhl et al. (2004)). Thus, the deformation at the end of the observable plateau of the
hysteresis is still affected by phase transformations. The remaining amount of austenite
may, however, be regarded as subordinate.
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can be fully reversed upon heating the material above the temperature A,
for which the martensitic phase is unstable. Cooling below M{ finally con-
cludes the one-way shape memory effect by recovering the self-accommodated
martensitic structure before the deformation process. Maximum recoverable
strains of NiTi alloys for pseudoelasticity and pseudoplasticity are in the range
of 8% (cf. Miyazaki (1996)).

The temperature-strain response during the intrinsic two-way shape memory
effect can be reviewed in Figure 2.5. Temperature variations from M§ to Af
and vice versa induce phase transformations between austenite and martensite.
In contrast to the one-way shape memory effect, however, the formation of self-
accommodated martensite variants is prevented by internal stresses. The latter
enforce the formation of oriented martensite variants, leading to macroscopic
deformations. This effect can alternatively be realized by external stresses in
the course of the extrinsic two-way shape memory effect. Depending on the
specific chemical composition of the NiTi alloy, maximum strains of the two-
way shape memory effect are in the range of 4% (cf. Miyazaki (1996)).

Stress

» Strain

Temperature

Figure 2.5: Two-way shape memory effect (Hornbogen (1987))

The temperature dependences of the one-way shape memory effect as well as of
the pseudoelastic effect are summarized in Figure 2.6 in terms of a phase dia-
gram. A fully developed one-way shape memory effect may be observed for an
initially martensitic structure below the temperature Aj in conjunction with
heating above Af and subsequent cooling below M§, whereas a complete pseu-
doelastic effect may be realized for an initially austenitic structure above A§.
For a thermomechanical loading within the temperature range between Ag
and A}, both effects overlap, i.e., this range is dominated by partial pseu-
doelastic and pseudoplastic effects. The straight line starting in M{ indicates
the critical stresses for the initiation of stress-induced martensitic transforma-
tions in accordance to the Clausius-Clapeyron-like relation (see Ortin & Planes
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Figure 2.6: Principle structure of a phase diagram for shape memory alloys
(Otsuka & Wayman (1998b))

(1989)). In order to avoid plastic deformation and to ensure the complete re-
covery of the inelastic deformations, the critical stress for slip has to exceed
the critical stress for phase transformations throughout the process of defor-
mation. This is indicated by the two lines (A) and (B), i.e., only for line (A)
slip occurs after phase transformations on mechanically loading the material
above A%,

Processes of phase transformations are thermomechanically involved, i.e., heat
is released during the exzothermic austenite to martensite transformation, while
heat is absorbed during the endothermic martensite to austenite transforma-
tion (cf. Shaw & Kyriakides (1995) and Tobushi et al. (1998)). For an un-
stressed thermal loading cycle, this effect is usually monitored during a DSC®
analysis. Due to the severe temperature dependence of the critical trans-
formation stresses, the generation of heat exhibits a strong influence on the
mechanical material response.

Sometimes, shape memory alloys show an asymmetric deformation behavior
well-known as tension-compression asymmetry (e.g., see Jacobus et al. (1996)
and Bouvet et al. (2004b)). This effect may be attributed to an asymmetric
transformation behavior of the single grains within the material microstructure
(cf. Saburi (1998) and Gall & Sehitoglu (1999)). More precisely, as different
martensite variants are activated for different loading directions and as each
variant exhibits a characteristic deformation behavior, the deformations of the

S Differential scanning calorimetry, e.g., see Pope & Judd (1977)
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single crystals show a strong orientation dependence on the mechanical load.
Thus, depending on the degree of texture of the polycrystals, this may result
in an inherent asymmetric transformation behavior. In particular, for untex-
tured polycrystals in which the grains are randomly oriented, the asymmetric
transformation behavior may be neglected.

As mentioned in the preceding section, the deformations resulting from R-
phase activities are small compared to the deformations arising from transfor-
mations into B19’ martensite. In fact, maximum strains from R-phase trans-
formations are in the range of 1% (cf. Otsuka & Ren (1999)). Due to this, they
may often not be perceived within the strain-stress diagram. However, the heat
generated during transformations into the R-phase and into B19’ martensite is
comparable. In this regard, as the critical transformation stresses are strongly
temperature-sensitive, R-phase activities may exhibit significant influences on
the observable material response. A thorough analysis on this matter can be
found in the works of Sittner et al. (2006a,c).






3 Kinematics and statics of a deforming body

This chapter is devoted to fundamental kinematic and static relations of non-
linear continuum mechanics which are essential for the constitutive theory
derived in Chapter 5. The kinematics of a deforming body are presented in
Section 3.1. They particularly address the deformation gradient and the ve-
locity gradient as basic kinematical quantities. On the basis of these variables,
the concept of strain as measure for local shape changes is introduced in Sec-
tion 3.2. Static relations of the deforming body are regarded in Section 3.3 in
terms of the stress as measure for the local load. Section 3.4 deals with the
notion of objectivity. This essential property conceptually expresses the trans-
formation behavior of physical quantities such as strain or stress under rigid
body motions. As these motions may affect the monitoring of the change rate
of physical quantities, objective time derivatives are mandatory. They are ad-
dressed in Section 3.5. The intention of this chapter is to provide a brief review
on some basic principles of continuum mechanics. An elaborated overview can
be found in Malvern (1969), Chadwick (1976), Marsden & Hughes (1983), Og-
den (1984), Haupt (2000), Belytschko et al. (2000), and Xiao et al. (2006a).

3.1 Deformations of continuous bodies

Continuum mechanics focuses on deformable bodies which obey the continuum
hypothesis, i.e., a particular body of interest is assumed to consist of an open
set B of continuously distributed material points or particles P € B. The cur-
rent geometric representation B; of B within the three-dimensional Euclidean
space £ of physical observation is termed current or Fulerian configuration.
As depicted in Figure 3.1, B; identifies the region that is occupied by B in £
at time ¢. Since the current configuration of the body changes throughout the
ongoing deformation process, the current position x of each particle P may be
expressed by the time-dependent one-to-one mapping

x=x(Pt) , (3.1)

which is supposed to be continuously differentiable.” A physical observer O
who perceives the deformation process can only quantify x and ¢ if a frame
of reference is given. In this regard, O monitors space and time relative to
an observer-related basis e; with origin o and relative to a referential time ¢,,
such that the quantities x and ¢ represent a position vector and a time interval.
Specifically, the pair (x,t) recorded by O is termed event. It may be inferred
that the definition of a frame of reference underlies a certain arbitrariness,
i.e., different observers may choose different frames of reference. This issue is
addressed in Section 3.4.

"Note that this classical description does not reflect any orientational information of dis-
tinct material particles.
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Figure 3.1: Current and reference configurations

In order to allow the observer to identify each particle of the body, it may
be helpful to introduce the time-independent referential geometric represen-
tation By of B called reference or Lagrangian configuration. Therein, the
reference position X in £ of each particle P of B is expressed by the bijective
continuously differentiable mapping

X =x(P) . (3.2)

The reference configuration does not need to be a region that was actually
occupied by B during its deformation history. However, it is often convenient
to define By as the initial configuration, i.e., as the current configuration of B
at initial time t = 0, to monitor the relative motion of all particles during
a process of deformation starting in ¢ = 0. Basis and origin in the reference
configuration are denoted by E; and O, respectively.

Replacing P in (3.1) by the inverse relation of (3.2) yields the time-dependent
one-to-one mapping ¢

x=x (k1(X),t) = p(X,t) . (3.3)

It describes the relative deformation from By to 3;. The term deformation is
used here in line with Truesdell & Noll (2004) in a general sense. It includes
changes in shape and in position in space of the body. While the former leads
to a varying distance of at least a particle subgroup of the body, the latter
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reflects a rigid body motion. Particularly, in disregarding shape changes, a
pure rigid body motion can be expressed by

P(X,t) = Q(t) - X +c(t) . (3.4)

The first term on the right-hand side, the product Q- X, describes a rigid body
rotation, with Q(¢) denoting a time-dependent proper orthogonal second-order
tensor of the special orthogonal group. The second term on the right-hand side,
the time-dependent vector c(t), accounts for a rigid body translation.

The two configurations By and B, provide separate frameworks in which phys-
ical phenomena associated with the deformation of a body may be expressed.
The description in the reference configuration By is termed Lagrangien or
material description. Here, the material coordinates X are employed as prim-
itive geometric quantities. The Eulerian or spatial description is based on the
current configuration B, i.e., on the spatial coordinates x. Thus, depending
on the underlying framework, all scalar, vector, or tensor fields ascribed to
physical phenomena of the body are functions in X or x. A tensor is partic-
ularly labeled Lagrangian tensor if it is completely defined in the referential
Lagrangian configuration, while a Fulerian tensor is related to the current
Eulerian configuration. A two-point second-order tensor defined in, both, the
reference as well as the current configuration is named Lagrangien-FEulerian or
Eulerian-Lagrangian tensor.

3.1.1 Deformation gradient

Within the context of the continuum hypothesis, ¢ is assumed to be contin-
uously differentiable with respect to X. This implies that the local deforma-
tions in the vicinity of each particle P of B are sufficiently smooth, so that the
neighborhood of all particles is retained. In this regard, the spatial derivative
of (3.3)

_ 9p(X,t)
F=—"o : (3.5)

termed deformation gradient, is well-defined. Since ¢ is a one-to-one mapping
between X and x, the quantity F is always invertible and, thus, its Jacobian J
is non-zero

J=det(F) £0 . (3.6)

On stipulating that the frame of reference of the observer is a Cartesian coor-
dinate system, such that

x=zx;e; and X =X;E; y (3.7)
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with e; and E; being mutually orthogonal unit vectors, the tensor F takes the
form

6.’13,'
F -_ a_XJ eg ® EJ . (3.8)

It may be inferred that the deformation gradient is a two-point tensor defined
in the Eulerian as well as in the Lagrangian configuration. Consequently, it
requires the existence of a reference configuration.

Deformation of line, surface, and volume elements

By virtue of the second-order tensor F', geometrical quantities such as line, sur-
face, and volume elements defined in the current configuration can be trans-
ferred into the reference configuration and vice versa. For an infinitesimal
line element dX at position X in the reference configuration, connecting two
generic particles in the neighborhood of X, the corresponding line element dx
in the current configuration can be obtained by the linear mapping

dx=F-dX . (3.9)

The deformation gradient may, thus, be interpreted as natural measure for
the local deformation state of a generic line element. On the basis of this
relation, a referential surface element dA can be transformed to its current
representation da by Nanson’s formula

da=JF~T.dA . (3.10)
The quantities dA and da are defined as

dA=NdA and da=nda , (3.11)

with the unit vectors N and n being normal to the respective surfaces with
infinitesimal areas dA and da. The volume elements dV and dv in the reference
and current configuration are related to each other by the Jacobian as

dv=JdV . (3.12)
Evidently, the requirement
J>0 (3.13)

must hold true in addition to (3.6) in order to ensure physically reasonable
deformation states.
Polar decomposition

The deformation gradient embodies two essential kinematical information for
general deformations, i.e., the rigid rotation as well as the stretch of a generic
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line element dX. Rigid translations are not account for by F as it may be
deduced from relations (3.4) and (3.5). The two kinematical information can
uniquely be determined from a right and a left polar decomposition® of F

F=R-U=V.R , (3.14)

which is schematically depicted in Figure 3.2 for a line element dX. The
Lagrangian tensor U and the Eulerian tensor V are positive definite symmetric
second-order tensors named right and left stretch tensors. Both describe the
stretch of dX in the respective configurations (cf. Malvern (1969)). The proper
orthogonal rotation tensor R expresses the rigid rotation of dX.? Accordingly,
F may be regarded as composition of a rigid rotation and a stretch of dX. It
should be noted that F equals R for a process of pure rigid rotation, so that
U=V=L

Figure 3.2: Polar decomposition of F' and its impact on the deformation of
line element dX

Since R-RT = RT. R = I, the quantities U and V may be determined by
virtue of (3.14) from

U=,/FT.F and V=,/F-FT . (3.15)

8The polar decomposition can always be applied to arbitrary second-order tensors T with
det(T) > 0 (cf. Gurtin (1981)), which is fulfilled here for F (see equation (3.13)).

9In general, the rotation tensors for the left and the right polar decomposition differ, since
they are defined in different configurations. According to Ogden (1984), however, they
can be regarded as identical.
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It may also be deduced from (3.14) that the left stretch tensor V can be
transformed into U and vice versa by the rotated correspondences

U=RT*V and V=RxU . (3.16)

As the computation of U and V from F requires the evaluation of a square root,
it may be convenient to introduce the right and left Cauchy-Green tensors C
and B as

C=U?=F".F and B=V?=F.FT . (3.17)

Similar to the stretch tensors, the following rotated correspondences hold for
these quantities

C=RT*B and B=Rx*C . (3.18)

3.1.2 Velocity gradient

The change rate of the current position vector of a generic material particle P
during a deformation process is expressed by the velocity v. It is defined as

v—)'c—d—x
T de

(3.19)
with the total time derivative d(-)/dt termed Lagrangian or material time
derivative. This time derivative is evaluated for a constant particle P or,
alternatively with (3.2), at constant position vector X. The Eulerian second-
order tensor L defined as
ov(x,t)
L= ’ 2

B (3.20)
is labeled wvelocity gradient. It maps a line element dx in the current configu-
ration onto its rate dx as

dx =L-dx . (3.21)

In this regard, the velocity gradient may be interpreted as natural measure for
the local deformation change rate of a generic line element. It bears emphasis
that, in contrast to the deformation gradient, the definition of the velocity
gradient does not rely on any reference configuration.

L provides two essential kinematical information, i.e., the stretch rate as well
as the rigid rotation rate of a line element dx defined in the current configu-
ration. The former is represented by the siretching tensor D and the latter
is expressed by the vorticity tensor W (cf. Malvern (1969)). Both quantities
are Eulerian second-order tensors. They can be determined on employing an
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additive decomposition of L into a symmetric part D and skew-symmetric
part W according to

L=D+W , (3.22)
which are defined as
_1 T _ Ll g
D_Q(L+L) and W_2(L L) . (3.23)

Note that by virtue of D, a volume element dv in the current configuration
can be mapped onto its rate (dv) as

(dv)’ = dvtr (D) . (3.24)

3.2 Strain measures

A body B is said to be strained in X if the length of a generic line element dX
based on X has changed after a deformation process of B. Strictly speaking,
a strained body in X exhibits a stretched line element dX. This implies that
the stretch tensor U related to dX is not the identity. Accordingly, B is said
to be unstrained in X if U = I. This is, for instance, the case for a pure rigid
rotation of dX, i.e., for F = R. Although the preceding consideration is based
on the Lagrangian configuration, it may also be employed for the Eulerian
configuration, i.e., for a line element dx at position x, along with the corre-
sponding stretch tensor V. It also bears emphasis that the notion of strain
requires the introduction of a reference configuration to allow the observer to
monitor the change in length of the line elements. In other words, a strain
cannot be determined without a reference configuration.

Based on the stretch tensors U and V, Hill (1968, 1978) (see also Wang &
Truesdell (1973)) introduces general classes of Lagrangian and Eulerian strain
tensors E(™) and e{™), respectively. This definition, however, proves to be in-
convenient, as the computation of the stretch tensors may be regarded as cum-
bersome. Hence, a modified definition in terms of the right and left Cauchy-
Green tensors as, e.g., adopted in Xiao et al. (1998b) is employed here. It
reads

E™ = Zg(xi) C: and e™ = Zg(Xi) B: , (3.25)

i=1 i=1

where x; designates the o distinct eigenvalues of either C or B, and C; as
well as B; are the respective eigenprojections.'® The scale function g(-) is a
sufficiently smooth monotonously increasing function obeying the conditions

1

'2_ )

10Dye to the rotated correspondences (see equation (3.18)), C and B possess equal eigen-
values but different eigenprojections.

g(1)=0 and g'(1) = (3.26)
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with g'(-) denoting the first derivative of g(-). The former condition accounts

for the property of strains to vanish in the unstrained state, while the latter

ensures the strain tensors to be close to the well-known linearized strain tensor

for sufficiently small magnitudes (cf. Wang & Truesdell (1973)). On defining
the scale function as

Lr-1

2, (d" —1) for m#0

9(xi) = (3.27)
3 In (x:) for m=0

(see Doyle & Ericksen (1956) or Seth (1964)), with m € R, all commonly
used Lagrangian and Eulerian strain tensors can be expressed. For instance,
selecting m = 1 yields the Green-Lagrangian strain tensor

1 1
E—gg(xi—nci—g(C—n , (3.28)
and setting m = —1 gives the Almansi-Fulerian strain tensor
e= 13 0-x"Bi=a-B . (3.29)
2 & : 2

The very particular case m = 0 leads to the Hencky strain tensors in the
Lagrangian description

1 < 1
H=g ;ln (x:) C: = 5 1n(C) (3.30)
and in the Eulerian description
h=1i Za:ln (xi)Bi = =In(B) . (3.31)
2 & 2

A suggestive interpretation for E as well as e is given by the difference be-
tween the squared lengths of corresponding line elements dX and dx in the
Lagrangian and Eulerian configurations as

ldx|* - [dX[*=dX - E-dX =dx-e-dx . (3.32)

The Hencky strain tensors may be interpreted as the well-known natural strain
into the principal directions of C or B (see Hencky (1928, 1929a, 1929b)).
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3.3 Stress measures

If a deformable material body as considered in Section 3.1 is exposed to an
external mechanical load, internal interactions between adjacent material par-
ticles arise throughout the body. They are reflected by the notion of stress as
measure for the local mechanical load. Stresses may be quantified by virtue of
imaginary surfaces passing through the current configuration B; of the body B
as depicted in Figure 3.3. Therein, S; denotes a single surface with unit nor-
mal vector n and area a which cuts B; into the two parts B;,; and B2, and
F'; represents a set of external force vectors (see Section 4.2.2). The internal

Figure 3.3: Imaginary surface S; passing through a body B in its current con-
figuration B,

force resulting from the transmission of the external load through the uncut
body is schematically accounted for by the internal surface force vector Ak
assigned to an area element Aa within ;. Taking the limit

t = lim Ak dk

Moo Aa  da (3.33)

then yields the Cauchy stress vector t(x,t,n) which identifies a surface force
density. The explicit dependence of t on position x, time £, and unit nor-
mal n is in accord with Cauchy’s fundamental postulate. Cauchy’s theorem
particularly relates t and n by the linear mapping

t=o-n , (3.34)
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with the Eulerian second-order tensor o (x,t) termed Cauchy stress tensor.!!
This tensor maps an area element da onto the force vector dk as

dk=tda=o0-da . (3.35)

Since the derivation of the Cauchy stress tensor is solely based on quanti-
ties of the current configuration, it is also referred to as true stress tensor.
The definition of stress measures is, however, not restricted to the Eulerian
configuration, i.e., different measures of stress may be defined for different
configurations. For instance, transformation of the surface element da used
in (3.35) into the reference configuration by virtue of Nanson’s formula (3.10)
yields the relation

dk=c-da=Jo -F T.-dA=P-dA . (3.36)
The first Piola-Kirchhoff stress tensor
P=Jo-F T=7+.F T |, (3.37)

thus, associates the force vector dk in the current configuration with an area
element dA in the reference configuration. In this sense, P is a Eulerian-
Lagrangian two-point tensor. In (3.37), the Kirchhoff stress tensor or weighted
Cauchy stress tensor T is introduced as

r=Jo , (3.38)

representing a Eulerian second-order tensor. An additional transformation of
the force vector dk into the reference configuration yields the second Piola-
Kirchhoff stress tensor S, which maps the Lagrangian area element dA onto
the Lagrangian surface force vector dK according to

dK=F!.dk=F~!'.-P.dA=S.dA . (3.39)
Hence, the Lagrangian second-order tensor S takes the form

S=F ' P=JF !¢ F T=F'.7.FT . (3.40)

3.4 Objectivity

In Section 3.1, an observer O is introduced who monitors a deformation process
of a material body within the three-dimensional Euclidean space. It is pointed
out that position vector x and time ¢, both corresponding to the location of a
specific particle of the body recorded by O, depend on the arbitrarily chosen
frame of reference of the observer, namely basis e; with origin o and referential
time ¢-. In this sense, a second observer O* using a different frame of reference,

115ometimes, & is introduced by the relation t = n - &. The so-defined stress tensor and
the stress tensor used in this treatise differ by a transposition.
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i.e., basis e; with origin o* and referential time ¢, and being possibly in
relative motion to the first observer, records position x* and time t* for the
same particle. Generally, both measurements do not coincide. The observers
should, however, agree about the distances in space and time they record.
Strictly speaking, there exist one-to-one mappings between x and x* as well
as between t and t*, such that the distances in space and time as well as the
order in which physical phenomena occur during the process of deformation
are invariant. These mappings are referred to as change of frame and can be
expressed by

x"=Q(t)-x+c(t) and t"=t—a . (3.41)

The spatial part consists of a relative rotation and a relative translation be-
tween the two observers, represented by the time-dependent proper orthogonal
tensor Q(t¢) and the time-dependent vector c(t). The temporal part corre-
sponds to a time shift by the constant quantity a € R. On comparing rela-
tions (3.4) and (3.41), a change of frame for a = 0, i.e., at fixed referential
time ¢, = t;, may be interpreted as rigid body motion recorded by one single
observer.

The consequences of a change of frame for scalar, vector, and tensor fields
are reflected by the notion of objectivity. Conceptually, the preceding quan-
tities are said to be objective if they satisfy the transformation rule given
by (3.41). Objectivity addresses the transformation behavior as property of
physical quantities, in contrast to the principle of material frame indifference.
The latter states that the mathematical description of physical phenomena
must be invariant under a change of frame (see Haupt (2000)), which has to
be ensured in the formulation of material laws. The principle of material frame
indifference is considered in Section 4.4.

According to Ogden (1984), the objectivity property depends on the config-
uration in which the physical quantities are defined. Lagrangian scalars ao,
vectors ag, and second-order tensors Ag are said to be objective if they are
invariant under a change of frame, i.e.,

ap = o
a3 = Qg (3.42)
Ag = Ao

In this regard, the Lagrangian configuration is referred to as frame indifferent.
Conversely, objective Eulerian scalars a, vectors o, and second-order tensors A
transform according to

a* =a
a'"=Q-«a (3.43)
A*=Qx A
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Objectivity of the mixed Lagrangian-Eulerian and Eulerian-Lagrangian second-
order tensors defined as

A=ao®a and K=a®ao (3.44)

finally requires
A'=A.Q" and A"=Q-A . (3.45)

Apparently, the Eulerian parts of the two-point tensors are transformed in line
with (3.43;). For instance, from (3.41) follows that line element dx becomes
under a change of frame

dx*=Q-dx , (3.46)
whereas the velocity v = x takes the form
vVi=Q-v+Q-x+¢ . (3.47)

As it may be recognized by comparison with (3.432), the Eulerian vectors dx
and v are objective and non-objective, respectively. This is not surprising, as
the change of frame is length preserving, while the relative motion between
the two frames of reference, represented by Q and ¢, affects the perceived ve-
locity. Both results are crucial for the objectivity analysis of the deformation
gradient F and the velocity gradient L as well as their derived quantities. Sub-
stitution of (3.46) in (3.5) shows that the deformation gradient is an objective
Eulerian-Lagrangian second-order tensor

ox* ox
=ax - Yax-YF

Contrarily, the Eulerian velocity gradient is non-objective as it may be deduced
from (3.20) and (3.47) as

A =Q+L+Q-QT . (3.49)

~ Ox*

Accordingly, the Lagrangian right Cauchy-Green tensor C is objective

F (3.48)

cC'=F)".F =F'".F=C , (3.50)
which also holds true for the Eulerian left Cauchy-Green tensor B
B*'=F-F)'=Q.-F-FT.QT=Q+B . (3.51)

From this it may be inferred that the stretch tensors U and V, the strain
tensors E and e, as well as the Hencky strain tensors H and h are objective
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Lagrangian and Eulerian quantities, respectively. Moreover, although the ve-
locity gradient is non-objective, its symmetric part, i.e., the Eulerian stretching
tensor D, is invariant under a change of frame as

D =1 (L' +1°T) = Q«D . (3.52)
2
This is conversely not the case for the Eulerian vorticity tensor W
W'=%(L"—L*T)=Q*W+Q-QT . (3.53)

Hence, D is objective, while W is non-objective. With respect to the stress
tensors defined in Section 3.3, the stress vector t and the unit normal vector n
transform under a change of frame according to t* = Q -t and n* = Q - n.
This leads to

t*=c* n"=0"-Q-n=Q-t , (3.54)

which can only be fulfilled in general if the Eulerian Cauchy stress tensor is
objective, i.e.,

c°=Q-0-QT . (3.55)
Since the scalar-valued Jacobian is invariant under an orthogonal transfor-
mation of F, objectivity is also preserved by the Eulerian Kirchhoff stress
tensor 7. Therewith, the objectivity proofs for the Eulerian-Lagrangian first

Piola-Kirchhoff stress tensor P and for the Lagrangian second Piola-Kirchhoff
stress tensor S are straightforward as

P=7r"F T=Q-7-Q"-Q-FT=qQ.P (3.56)
and

S*=F""1.P=F'.QT-Q-P=S§ . (3.57)
An elaborated analysis of the objectivity properties of Lagrangian and Eulerian
quantities can be found in Haupt (2000).
3.5 Objective time derivatives

As Lagrangian second-order tensors are invariant under a change of frame (see
equation (3.422)), objectivity is identically guaranteed for their material time
derivatives, i.e.,

Ag=A, . (3.58)

Contrarily, the material time derivatives of objective Eulerian second-order
tensors are affected by a change of frame according to

A'=Q- A Q"T+Q-A-Q"T+Q-A-QT . (3.59)
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Consequently, on preserving objectivity, objective time derivatives for objec-
tive Eulerian second-order tensors are mandatory. In this regard, a variety of
different rates has been established which may be classified into the two cat-
egories of corotational and non-corotational objective rates (cf. Bruhns et al.
(2004)). Both categories have in common, that the material rate of the objec-
tive Eulerian tensor A is applied in a codeforming frame'?. Prominent exam-
ples are the non-corotational Oldroyd rate and the corotational Green-Naghdi
rate on the basis of the reference configuration and a corotating configuration,
respectively.

In line with Xiao et al. (2005, 2006b), a generalized objective time derivative
comprising corotational as well as non-corotational rates can be derived in a
compact way on defining the generalized codeforming frame (-)* through a
time-dependent generalized deformation gradient ¥. Transformation of line
element dx then gives

dxt = ¥(t)-dx with ¥|=o=1 |, (3.60)
and transformation!® of the tensor A provides
At=wv.A. 9T | (3.61)

¥ is general in this sense, that it may include rotations and stretches. For
instance, ¥ equals F~! and R for the Oldroyd rate and the Green-Naghdi
rate, respectively. It should be noted in this context that ¥ modifies the eigen-
values of A under a transformation if it is non-orthogonal.

With the codeforming frame on the basis of ¥ at hand, the generalized objec-
tive rate of A may be defined as

A=A+TT.-A+A.T , (3.62)
with
r=97.¢7 . (3.63)

It can be obtained from the material time derivative of (3.61) as

At=0 A 0T+ 3. A 9T+ 0-A-¥T=0.A. 9T . (3.64)

Evidently, the generalized objective rate coincides with the material rate in
the codeforming frame. For ¥ = Q, it identically satisfies the transformation
rule (3.432) if the objective rate of A is an objective Eulerian quantity.

Integration of (3.64) as it stands, followed by a backward transformation

12Recall that the term deformation includes changes in shape and in position in space.

13Formally, this transformation corresponds to a push-forward or a pull back of co- or
contravariant second-order tensors (e.g., see Ogden (1984)). For the sake of brevity,
mixed second-order tensors are not regarded here.
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with (3.61) from the codeforming frame, leads to the corresponding gener-
alized objective time integration of the objective rate

A=v"! -f\I:-K-q:Tdt-w-T . (3.65)
t

Analogously to the generalized objective rate, the time integration is applied
in the codeforming frame.

3.5.1 Non-corotational rates

The specific choice
F=W+mD+ctr(D)I (3.66)

with the two parameters (c,m) € R describes a family of infinitely many
objective non-corotational rates (cf. Xiao et al. (2005, 2006b) and Hill (1968,
1970, 1978)) which includes well-known rates as particular cases. For instance,
the Oldroyd rate

A9—A_L.A-A-LT (3.67)

(see Oldroyd (1950)) is obtained for m = —1 and ¢ = 0, setting m = 1
and ¢ = 0 yields the Cotter-Rivlin rate

AR —A+LT -A+A-L (3.68)

(see Cotter & Rivlin (1955)), and the combination m = —1 and ¢ = 0.5 leads
to the Truesdell rate

2 : T
ATT=A-L-A-A.-L"+tr(D)-A (3.69)

(see Truesdell (1953)). All three examples may be attributed to the so-called
Lie-derivative (cf. Marsden & Hughes (1983)). The Cotter-Rivlin rate of the
Almansi-Eulerian strain tensor e exhibits the unique property that it equals
the stretching tensor D

3

eCR=D . (3.70)

In this sense, the stretching tensor may be considered as rate of the Almansi-
Eulerian strain tensor.

Selection (3.66) implicitly defines the generalized codeforming frame through
the initial value problem

Fr=9T.¢°T with ¥|mo =1 (3.71)
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(see equations (3.63) and (3.602)), for which Xiao et al. (2006b) provide an
exact solution for the choice m = +1 as

v=JRT- V" . (3.72)

This solution includes the examples of the Lie-derivative considered above. It
particularly leads to the results ¥ = F~! for the Oldroyd rate and to & = FT
for the Cotter-Rivlin rate.

3.5.2 Corotational rates

The selection ¥ = Q restricts the codeforming frame (-)* to a corotating
frame (-)* and provides the general form of the corotational rate as

A=A-Q.A+A-Q . (3.73)

In line with (3.64), this rate of the objective Eulerian second-order tensor A
corresponds to the material rate of A in the corotating frame (cf. Xiao et al.
(1998a)), i.e.,

A"=QxA . (3.74)

The tensor £ in equation (3.73) identifies the skew-symmetric spin tensor
defined as

2=QT.Q=-QT-Q=-97 . (3.75)

Therewith, the corotating frame may implicitly be defined. This definition
is based on a given spin tensor €2, along with a solution of the initial value
problem

Q=-Q-Q with Q=o=1I (3.76)

(see equations (3.63) and (3.602)). The specification of €2 is by no means arbi-
trary, i.e., it has to be ensured that the corotational rate of A is an objective
second-order tensor. A suitable expression for €2 accounting for this require-
ment is derived by Xiao et al. (1998a, 1998b). Motivated by the consideration
that 2 is related to the local deformation, the authors state that £ depends
in a most general form on the deformation gradient F and on the velocity
gradient L, i.e.,

Q=Q(F,L) , (3.77)

both characterizing the local deformation state as well as its change rate,
respectively. In this sense, € is referred to as material spin tensor (see Xiao
et al. (1997a)). On ensuring objectivity, £2 then takes the form

Q=W+7T(B,D) , (3.78)
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where Y denotes an isotropic skew-symmetric tensor-valued function depend-
ing on the left Cauchy-Green tensor B and on the stretching tensor D. Y
is specifically continuous in B. Then, on imposing necessary and reasonable
physical constraints, followed by an application of the representation theo-
rem for isotropic skew-symmetric tensor-valued functions given in, e.g., Wang
(1970b) thereafter, Xiao et al. (1998a, 1998b) arrive at the expression

n=w+;5( (;3) tr(B))B .D-B; . (3.79)

The continuous function A of positive real variables is referred to as spin func-
tion. It owns the property h(z,y) = —h(y,z). Equation (3.79) describes a
general family of possible and reasonable material spin tensors for which the
corotational rate of a Eulerian tensor A is an objective quantity. Thus, to-
gether with (3.79), the corotational rate defined by (3.74) is objective.

A subclass of (3.79) including all known spin tensors as particular cases is
given by

n=w+2h(ﬁ) B,-D-B; , (3.80)
iz X
where the property h(z™!) = —h(z2) is assumed for the continuous function .

For instance, setting h(2) = 0 yields the Zaremba-Jaumann rate

[} .
AV=A-Q' . A+A-Q with Q'=W (3.81)

(see Zaremba (1903) and Jaumann (1911)). This rate was frequently used in
constitutive theories until it turned out to provide an oscillatory stress response
for simple shear tests at finite deformations {e.g., see Lehmann (1972), Dienes
(1979), and Khan & Huang (1995)). In regard of this deficiency, numerous
alternative corotational rates have been established (cf. Xiao et al. (2000)).
Among these is the polar rate or Green-Naghdi rate

AR=A-OR.A+A-OQF with QR =R.R” (3.82)

(e.g., see Green & Naghdi (1965) and Green & Mclnnis (1967)), which can be
obtained on selecting

h(z — V2 . 3.83

(@)= 17 (3.83)

By contrast, it may be inferred from equations (3.75) and (3.822) that the

corotating frame of the Green-Naghdi rate is defined by R”. Special attention
in this treatise is on the choice

h(z) = i + j_i + hjz) (3.84)
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which leads to the logarithmic rate

AL — A _Qlog. A 4 A . Qlos (3.85)

defined by the logarithmic spin tensor §2-°8

Log __ L+ (xi/Xx; 2 .. R.
& W+§ (1—(xz/x;) + ln(Xi/Xj)) Bi-D-B; (3.86)

(see Lehmann et al. (1991), Reinhardt & Dubey (1995, 1996) and Xiao et al.
(1997b)). The unique property of this rate is demonstrated by Xiao et al.
(1997b) in relating an arbitrary Eulerian strain measure e{™ defined in (3.25)
with the stretching tensor D by means of a corotational rate. The authors
show that a solution of the corresponding linear tensor equation

e =™ _q.e™ +e™.q<D (3.87)

only exists if the Eulerian strain measure e™ is identical to the Eulerian
Hencky strain tensor h '

e™in | (3.88)

It then turns out that £2'°% is the unique solution of (3.87) for Q (cf. Xiao
et al. (1997b, 1998a, 1998b)). Strictly speaking, the logarithmic rate of the
Eulerian Hencky strain tensor equals the stretching tensor

h'8 —h_QWe. h4h.QWE=D (3.89)

and it is only the logarithmic rate among all corotational rates showing this
property. The stretching tensor can, thus, be regarded as rate of the Eulerian
Hencky strain tensor in terms of the logarithmic rate. Note that this result is
not in contradiction with (3.70), since both assignments rely on different types
of objective rates, i.e., on corotational and non-corotational rates.

The time integration of the corotational rate of an objective Eulerian tensor
on the basis of the generalized objective time integration (3.65) requires the
evaluation of the corotating frame. This may be achieved by solving the initial
value problem (3.76), which particularly takes the form

RL8 = —RLo8. QL8 with RY8|,_o =1 (3.90)

with R°% denoting the logarithmic rotation tensor. The corotational integra-
tion then reads (see Khan & Huang (1995))

A = (RM8)T & / RLo¢ « Aloggs (3.91)
t



4 Continuum thermodynamics

The kinematics and statics of a deforming body regarded in the previous chap-
ter have to be complemented by thermodynamics to provide a physically con-
sistent framework in which general material laws can be formulated. More
precisely, quantities are introduced in Chapter 3 describing the mechanical
state of continuous material bodies, i.e., the local deformation state as well as
the local stress state, which must obey physically reasonable universal rules
under given conditions. These rules are imposed by thermodynamics. They
are regarded in this chapter, which is organized as follows: In Section 4.1, ba-
sic concepts of thermodynamics are considered which are used throughout this
treatise and fundamental theories concerning equilibrium and non-equilibrium
thermodynamics are discussed. Section 4.2 addresses general balance relations
of thermodynamics which have to be obeyed by the material model developed
in Chapter 5. This is followed by a conjugated work analysis in Section 4.3 to
relate the stress and strain measures with each other which are considered in
Chapter 3. In Section 4.4, the formalism of rational thermodynamics ensuring
a thermodynamically consistent development of material laws is presented.
Focus is on the Eulerian framework in which the constitutive equations are
later formulated. The chapter closes with the derivation of a rate equation for
the thermomechanical coupling of general deformation processes.

4.1 Introduction

The introduction of a thermodynamic system and its environment proves em-
inent in the thermodynamic analysis of physical processes. Geometrically,
a thermodynamic system is defined by a region in space named control vol-
ume. The region outside the control volume is considered as environment.
Both, thermodynamic system and environment interact with each other, which
may be reflected by the following basic classification of thermodynamic sys-
tems:

1. Open systems may exchange energy and matter with their environ-
ment.

2. Closed systems may exchange energy but no matter with their envi-
ronment.

3. Isolated systems do not exchange any energy or matter with their en-
vironment.

The thermodynamic analysis in classical continuum mechanics is usually con-
cerned with deformable bodies obeying the continuum hypothesis. In this
regard, the control volume of the thermodynamic system is often defined as
at least a subdomain of the geometric representation in space of the body at
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issue. Since any exchange of matter between the system and its environment is
ruled out, the type of thermodynamic system is classically restricted to closed
systems.

Besides the control volume, state variables are major components in the defini-
tion of a thermodynamic system (see Kuiken (1994)). They may be interpreted
as thermodynamic coordinates of the system characterizing its thermodynamic
state in terms of the mechanical state as a whole, such as position in space or
velocity, and the thermodynamical state, e.g., density, temperature or, stress.
State variables can be classified into extensive and intensive quantities. Con-
ceptually, ertensive quantities are dependent on and intensive quantities are
independent of the size of the thermodynamic system (cf. Honig (1999)). For
instance, volume or mass represent extensive state variables, whereas stress
or temperature are intensive state variables. An extensive quantity divided
by the mass of the thermodynamic system is labeled specific (see the rec-
ommendations of Cohen & Giacomo (1987)). If the magnitudes of the state
variables change, the thermodynamic system is said to undergo a change of
state. Such a change may be induced by interactions between the system and
its environment furnishing a thermodynamic process, i.e., a thermodynamic
process reflects any process for which the state of the thermodynamic system
changes significantly (cf. Hudson (1996)). A change of state is well-defined
by the initial and final states of the system during a thermodynamic process
and is, thus, path-independent. Contrarily, since a specific change of state
can be reached by a series of different processes, a thermodynamic process is
path-dependent. Moreover, although the final state of the system for a given
process does generally not coincide with the initial state, the initial state can
always be recovered by virtue of additional processes (see Planck (1897)). If
the latter lead to a sustainable change within the environment of the system,
the given process is termed irreversible, otherwise it is referred to as reversible
(cf. Honig (1999)). Irreversibility is predominant in natural processes, whereas
reversibility may be regarded as limiting case for idealized processes (see also
Hudson (1996)).

A very particular state of a thermodynamic system represents the equilibrium
state. A system is conceptually regarded to be in the state of equilibrium if
the variation of its state variables is negligible in a suitable time period (cf.
Honig (1999)). The equilibrium state is reached by virtue of internal relax-
ation processes initiating at the end of a given external process (see Baehr
(2002)). If the external process proceeds with a velocity much smaller than
the velocity of the internal relaxation processes, the resulting change of state
can be regarded as a sequence of equilibrium states. In this case, the external
process is said to be quasi-static. A general process, however, is a sequence
of non-equilibrium states (cf. Callen (1960)) and is, thus, named dynamic. In
this sense, the assumption of a quasi-static change of state may be considered
as approximation. It also bears emphasis that reversible processes are quasi-
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static, whereas quasi-static processes are not necessarily reversible (cf. Adkins
(1983) and Kuiken (1994)). Only if no dissipative effects occur, a quasi-static
process is reversible. Moreover, a state of equilibrium is not to be confused
with the state the system takes for a stationary process. Although the state
of the system within a stationary process remains constant, the system may
be far from an equilibrium state. In this context, by interrupting the exter-
nal process, the system attains an equilibrium by virtue of internal relaxation
processes.

In regard of a mathematical treatment of general thermodynamic processes,
different thermodynamic frameworks have been established. One of these is
the classical theory of equilibrium thermodynamics for which the system at is-
sue is supposed to be in a global state of equilibrium (e.g., see Kuiken (1994)).
Non-equilibrium processes are only qualitatively regarded, i.e., it is stated
that they are irreversible. For natural processes, however, the assumption
of a global equilibrium turns out to be too restrictive. In this context, the
theory of thermodynamics of irreversible processes provides a first approach
to non-equilibrium thermodynamics, extrapolating classical thermodynamics
to irreversibility (e.g., see De Groot & Mazur (1963)). Thermodynamics of
irreversible processes conceptually relies on the principle of local equilibrium,
i.e., it is assumed that the state of the system is locally close to an equilib-
rium state, so that the relations of classical thermodynamics remain valid (see
Kuiken (1994)). In contrast to classical equilibrium thermodynamics, however,
the system is not supposed to be globally in a state of equilibrium. With this
principle at hand, an evolution equation for the entropy as measure for the
irreversibility of a given process can be derived. The production of entropy is
particularly governed by conjugated thermodynamic forces and fluxes. While
the known forces are functions of the current state of the thermodynamic sys-
tem, the unknown fluxes are defined by phenomenological functions in this
manner that the production of entropy vanishes for a global equilibrium state.
The principle of local equilibrium may, however, also be too restrictive for a
wide class of natural processes (cf. Miiller (1985b)), although it can be con-
sidered as good assumption for slow processes. In this sense, thermodynamics
of irreversible processes may be regarded as a first order theory (cf. Kuiken
(1994)). The principle of local equilibrium is removed within the theory of ra-
tional thermodynamics (e.g., see Truesdell (1969)). This theory is principally
based on the postulate of an evolution equation for the production of entropy
named Clausius-Duhem inequality, which is used to derive equations for the
thermodynamic state of the system. The postulation of the Clausius-Duhem
inequality relies, however, on the definition of an entropy flux, which is only
valid close to equilibrium. Thus, although the removal of the principle of lo-
cal equilibrium within the theory of rational thermodynamics provides a step
into the direction of proper non-equilibrium thermodynamics, this theory still
cannot be regarded as general (cf. Miiller (1985b)). Improvements of both
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preceding non-equilibrium theories are given, for instance, by the theory of ez-
tended irreversible thermodynamics (see Jou et al. (1993)) and by the theory of
rational extended thermodynamics (see Miiller & Ruggeri (1998)). Compared
to the unextended theories, the theoretical complexity of the extensions is sig-
nificantly increased. In what follows, the theory of rational thermodynamics
is assumed to be sufficiently accurate.

4.2 Balance equations

Physical quantities such as mass, momentum, energy, and entropy can be
exchanged between a thermodynamic system and its environment across the
boundaries of the system and directly into its interior (see Miiller (1985b)).
This exchange is mathematically reflected by thermodynamical balance rela-
tions. If a physical quantity cannot be created or destroyed within the thermo-
dynamic system, it is specifically referred to a conservative, i.e., a conservative
quantity remains constant, if its exchange between the thermodynamic system
and the environment is interrupted. In this sense, the balance equations for
conservative quantities are named conservation laws. This section provides an
overview on the balance relations of continuum thermodynamics. A detailed
review on this subject can be found in the works of Malvern (1969), Wang &
Truesdell (1973), Marsden & Hughes (1983), Ogden (1984), Miiller (1985b),
Stein & Barthold (1996), Silhavy (1997), Haupt (2000), and Truesdell & Noll
(2004). Throughout this section, all derivations are based on the current con-
figuration B; of the body B. The considered thermodynamic system is defined
as a subdomain R of B,, i.e., Rt C B, with boundary or surface 9R;.

4.2.1 Balance of mass

The total mass m(t) of the subdomain R, can be obtained from

m=fpdv , (4.1)
R

with the mass density p (x, t) > 0 in the current configuration of the body B.
Since m is a conservative quantity and R, represents a closed system, such
that any external supply of mass is excluded, m remains constant throughout
a process of deformation and, thus, its material time derivative vanishes

dm
n=—= ; 4.2
m=-—=0 (4.2)
Equation (4.2) represents the global form of the balance of mass also known
as continuity equation. It can be recast into

m=/[i)+ptr(D)]dv=0 (4.3)
R
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by transforming (4.1) through (3.12) into the time-independent reference con-
figuration, along with the relation

J=Jtr(D) . (4.4)

The global form of the balance of mass holds true for every chosen subdomain
R: C B:. Thus, on stipulating that the integrand in (4.3) is continuous in x,
the local form of the balance of mass becomes

p+ ptr(D)=0 , (4.5)
or, equivalently,

(pJ)y =0 . (4.6)

4.2.2 Balance of linear momentum

The conservative quantity I(t) of subdomain R, defined as

I=/vdm=/vpdv (4.7)
R:

R

is referred to as linear momentum. Its material time derivative reflects the
rate at which the linear state of motion of R, changes (see Haupt (2000)).
In agreement with the global form of the balance of linear momentum termed
Euler’s first law of motion

. dl _

i=3=F , (4.8)

this change rate is only affected by the resultant applied force F the thermo-
dynamic system is exposed to. As indicated in Figure 4.1, the force F may be
attributed to external forces F; acting on the surface B; of the body B and to
internal volume force densities pb (x, t) acting on each particle P within the
volume B, of the body B. In particular, with the considerations of Section 3.3
at hand, these applied forces lead to the force densities t and pb acting on the
thermodynamic system. In this regard, F can additively be decomposed as

F=F.+F, (4.9)

into a resultant applied surface force

F, = /tda=/V-a'dv (4.10)

R, R
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expressing the integrated surface force densities t and into a resultant applied
volume force

F. =/bdm=/bpdv (4.11)
Re R

arising from the integrated volume force densities pb. In relation (4.10),
Cauchy’s theorem is used and the divergence theorem is applied thereafter.
Equations (4.8) and (4.9) reflect the nature of I as conservative quantity, i.e.,
I only changes with a supply of linear momentum through the boundaries
of R; as well as into its interior, expressed by F, and F,. It bears emphasis
that surface and volume torque densities are excluded in Figure 4.1. This
assumption is sometimes referred to as Boltzmann’s theorem. Moreover, (4.8)

e

OB, F3

Figure 4.1: Forces acting on the current configuration B; of the body B as well
as on the (magnified) subdomain R, C B,

is based on the existence of an inertial frame of reference, i.e., on a frame of
reference in which I is constant for vanishing force F (cf. Ogden (1984)).
With equations (4.7) to (4.11), in conjunction with the continuity equation (4.6),
the balance of linear momentum takes the form

[irpdv:/[v-a + pb]dv . (4.12)
R R:

On stipulating that this equation is valid for arbitrary subdomains R, C B,
and that the integrand is continuous in x, the local form of the balance of
linear momentum named Cauchy’s first law of motion becomes

vp=V-o + pb . (4.13)
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4.2.3 Balance of angular momentum

The angular momentum HP° (t) of subdomain R, defined as

H° = / (x - x°) x v pdv (4.14)
Rt

is a conservative quantity, expressing the rotational state of motion of R,
about an arbitrary position x° within the Euclidean space. According to the
global form of the balance of angular momentum referred to as Euler’s second
law of motion, the material time derivative of H® equals the resultant applied
moment or torque M° the domain R, is subjected to with respect to x°

0 _ dH°
H" = dt

In line with Boltzmann’s theorem stated previously, the resultant applied
torque solely arises from the surface and volume force densities which act
on the subdomain. Thus, similar to the resultant applied force, the resultant
applied torque can be split as

=M° . (4.15)

M° = M? + M? (4.16)
into a part
M) = / (x - x°) x tda (4.17)
OR,

and into a part

M3=/(x—x°) X bdm=/(x—x°) x bpdv . (4.18)
Rt 'th

M? results from the surface force densities t and M2 accounts for the vol-
ume force densities pb. With the rate form of (4.14), the balance of angular
momentum can then be written as

/(x—xo) x vpdv = / (x — x°) xtda-}-/(x—xo) x bpdv . (4.19)
R, oR¢ Re

Replacing v p by Cauchy’s first law of motion, substituting Cauchy’s theorem
for t, and applying the divergence theorem thereafter yields

fIx odv=0 . (4.20)
R:
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On stipulating arbitrariness of R, C B; and continuity of the integrand, the
local form of the balance of angular momentum labeled Cauchy’s second law
of motion can be deduced as

Ixo=0 , (4.21)
which can only be fulfilled in general if
oc=0" . (4.22)

In other words, the balance of angular momentum together with Boltzmann’s
theorem impose the symmetry of the Cauchy stress tensor.

4.2.4 Balance of energy

The total energy E(t) of subdomain R, comprises an internal energy U(t) as
well as a kinetic energy K(t) as

E=U+K . (4.23)

With the specific internal energy u(x, t), the internal energy becomes

U=/udm=fupdv , (4.24)

whereas the kinetic energy may be written in terms of the velocity as

K=%fv-vdm=%/v-vpdv . (4.25)
Rg Rt

E is a conservative quantity in contrast to its components U and K. More
precisely, U and K can be transformed into each other, i.e., they can be created
or destroyed in this way that £ remains constant.

In agreement with the global form of the balance of total energy, the total
energy change of R; equals the increments of heat and work exchanged between
the subdomain and its environment during a given thermodynamic process.
This is reflected by the rate equation

E=P+Q , (4.26)

in which @) denotes the heat power and P expresses the power of the generalized
applied forces. Note that the total energy is a state variable accounting for the
thermodynamic state of R;, whereas heat and work are process variables (cf.
Kuiken (1994)). The generalized applied forces may be attributed to electrical,
magnetical, or mechanical forces. Among these, mechanical forces are usually
subject to classical continuum mechanics. Therewith, and with respect to
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Boltzmann’s theorem stated in Section 4.2.2, the power of the applied forces
becomes

P = /v-tda+/b-vpdv=/[v-(v-a)+b-vp] dv . (4.27)
R, R: R

In (4.27), Cauchy’s theorem is used and the divergence theorem is applied to
the surface integral thereafter. The exchange of heat represents an alternative
form of energy transfer. More precisely, after an energy supply of the sub-
domain either as work or heat, the transferred energy is indistinguishable in
its origin (cf. Callen (1960)). Accordingly, heat is like work divided within
the theory of rational thermodynamics into surface and volume parts. This
is schematically depicted in Figure 4.2, where the quantities Q; exemplarily
represent the heat supply through the surface of the body. The heat transfer
across the boundaries of the subdomain is reflected by the heat flux q(x, t),
while the heat absorbed by each particle within the volume of the subdomain
is represented by the heat source r(x, t) (see Truesdell & Toupin (1960) and
Truesdell (1969)). The heat power supplied to the subdomain R, thus, takes
the form

Q= / —q-nda+/rpdv=/[—V-q+rp] dv . (4.28)

R, R, Re

* n OR:

R

¥

8B, Q3

Figure 4.2: Heat supply of the current configuration B; of the body B as well
as of the (magnified) subdomain R, C B,
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With the rate form of equations (4.23) to (4.25), together with (4.27) and (4.28),
the balance of total energy (4.26) becomes

f[ﬂ+v-¢]pdv=/'[V'(v-a)+b-vp—V'q+rp]dv . {(4.29)
Re Ry

Hence, on stipulating arbitrariness of R; and continuity of the integrands with
respect to X, the local form of the balance of total energy reads

[k+v-V]p=V-(v-o)+b-vp—-V.q+rp . (4.30)

The balance of energy is often termed first law of thermodynamics. Like the
total energy, it can be split into an internal and an external balance, as subse-
quently demonstrated. However, the resulting balance equations do not rep-
resent conservation laws due to the non-conservative character of the internal
energy U and the kinetic energy K.

Balance of internal energy

By expanding the term V - (v - o) and by using Cauchy’s first law of motion,
along with the relation D = 1/2 (Vv + (Vv)T), equation (4.29) can be recast
into the global form of the balance of internal energy

/ﬁpdv=[[a‘:D—V-q+rp] dv . (4.31)
R

R

As this equation balances the internal energy rate, the term o : D may be
considered as internal part of the specific power of the applied forces. In this
sense, P may additively be decomposed as

P=P+PF, (4.32)
into an internal part P and into a remaining, external part P. with
P-=fa‘:Dd‘u and Pezf[v-(V-a‘)+b~vp]dv : (4.33)
Re Re

P, expresses a production or destruction of internal energy and, thus, reflects
that U is a non-conservative quantity (cf. Miiller (1985b)). For a general
thermodynamic process comprising reversible and irreversible deformations, it
may additionally be split into a reversible part P and into an irreversible
part Rirr as

.’Di — Pirev + Piil'l' (4.34)
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(cf. Lehmann (1974, 1984)), with

PreY = / :D™dv and P = / o:D"dv . (4.35)

'R.g Rt
It may further be assumed for an elastic-inelastic deformation process that
the reversible stretching tensor D™ and the irreversible stretching tensor D"
arise from elastic and inelastic deformations, respectively. Then, on stipulating

that D™ = D® and D' = D'", relations (4.34) and (4.35) furnish an additive
decomposition of D as

D —_ Drev + Dil‘l‘ —_ Del + Din . (4'36)

Finally, as R may arbitrarily be chosen, the corresponding local form of the
balance of internal energy reads

up=0c:D-V-q+rp . (4.37)

Balance of mechanical energy

Equation (4.26) balances all energetic quantities exchanged between the sub-
domain and its environment. On focusing only on ezternal or mechanical
quantities, the global form of the balance of mechanical energy becomes

K=P. . (4.38)

With the rate form of (4.25), together with (4.332), this leads to

/v-ﬁpdv:/[v-(v-a)+b-vp] dv . (4.39)
Ry

R

It may be inferred that the mechanical energy balance can alternatively be
obtained by taking the difference between the total energy balance and the in-
ternal energy balance as in equations (4.29) and (4.31), as well as by multiply-
ing Cauchy’s first law of motion with the velocity v followed by an integration
over R;. Relation (4.39) can be recast into the well-known form

/v-tda+/b-vpdv=/v-\'rpdv+/'a:de ; (4.40)
R, Ry Re Ry

which balances the power of the applied forces with the rate of the kinetic
energy and the power of the internal forces. Its corresponding local form may
be written as

Vi(v:o)+b-vp=v-vp+o:D . (4.41)



52 4 Continuum thermodynamics

4.2.5 Balance of entropy

While the first law of thermodynamics expresses a general interconvertibility
of total energy, work, and heat, natural processes show that the transforma-
tion direction of these quantities is restricted by a certain asymmetry. For
instance, heat can only be transferred from warm to cold, whereas the reverse
transformation is impossible without any compensation. Thus, in the sense
of Section 4.1, the exchange of heat represents an irreversible process. The
transformation asymmetry of energetic quantities and in turn the resulting
irreversibility of natural processes is reflected by the second law of thermody-
namics.

Fundamental work in the description of irreversible processes may be at-
tributed to Clausius who studied the exchange of heat within Carnot cycles
for thermodynamic systems with homogeneous temperature distributions (e.g.,
see Truesdell (1969) and Miiller (1985b)). It turned out that for purely re-
versible processes the quotient between the heat power transferred into the
thermodynamic system and the respective system temperature furnishes a
new quantity that Clausius termed entropy.!* Clausius extended his analysis
to irreversible processes thereafter and stated that, in this case, the rate of
entropy cannot be smaller than the rate of entropy transferred into the system
by heat. Obviously, since the system temperature is supposed to be homo-
geneous, the approach of Clausius cannot account for irreversible effects due
to heat conduction within the system. This deficiency is removed within the
theory of rational thermodynamics in which the idea of Clausius is extended
in this way, that a local entropy supply by heat is regarded (see Truesdell &
Toupin (1960)). This leads to the inequality

$> f—qé—ﬁda+[%pdv (4.42)
R, Rt

which represents the global form of the Clausius-Duhem inequality (see Cole-
man & Noll (1963)). S(¢) and © (x, t) > 0 denote the entropy and the ab-
solute (local) temperature. The definition of a non-negative temperature is
sometimes referred to as zeroth law of thermodynamics. The Clausius-Duhem
inequality reduces for a homogeneous temperature distribution to the Clausius-
Planck inequality (cf. Truesdell & Noll (2004)). Moreover, for a reversible
process, the Clausius-Duhem inequality yields the Gibbs equation known from
thermostatics. Note that, although the transferred heat is a process vari-
able, the entropy is a state variable being independent of the process path (cf.
Miiller (1985b)).

14The notion of entropy according to Clausius is based on the comparison of two equilib-
rium states at the beginning and at the end of a thermodynamic process. In this regard,
the definition of the entropy rate as heat power divided by temperature is only valid
close to equilibrium (e.g., see Miiller (1985b, 1998) and Jou et al. (1993)}).
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By introducing the quantity S™V(¢) through

Srev _Q'ﬁ 1
S —/ o da+/epdv (4.43)
R:

R,
together with the non-negative quantity S (¢) as
Sirrzs_swev 20 , (4'44)

the Clausius-Duhem inequality may be rewritten as the global form of the
balance of entropy

=845 | (4.45)

It shows that the rate of entropy is governed by two factors, i.e., by the ex-
change of entropy across the boundaries and into the interior of R; expressed
by S, and by the production of entropy inside the system arising from ir-
reversible processes reflected by $*. In this regard, the entropy is not a
conservative quantity. Only in the case of pure reversibility for which $™
vanishes, S may be regarded as conservative.

With the introduction of the specific quantities s (x, ¢) and s"* (x, t), and af-
ter applying the divergence theorem and the continuity equation, the balance
of entropy reads

/s’pdvz f [—V- (%) + E;-p-i-éi"p] dv , (4.46)
Ry Ry

providing the local form

ép=—V-(%)+%p+émp . (4.47)

Expanding the term V- (q/©) and substituting the first law of thermodynam-
ics (4.37) then yields

@épzéq-ve+i¢p—o’:D+@éi"p . (4.48)

On this basis, the dissipation function D which reflects the uncompensated
heat of irreversible processes can be defined as

D=605"p>0 , (4.49)
such that

'D=a:D—izp—|—@.§p—éq-V@20 . (4.50)
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Equation (4.50) represents the local form of the Clausius-Duhem inequality.
Accordingly, the local form of the Gibbs equation reads

c:D-4p+Osp=0 . (4.51)

In line with Truesdell & Noll (2004) (see also Truesdell (1969)), a split of the
local form of the Clausius-Duhem inequality may be postulated as

D = D]OC + Dcon 2 0 . (4.52)

Dioc denotes the local form of the Clausius-Planck inequality expressing the
local energy dissipation at constant temperature

Doc=0:D—-up+0sp>0 (4.53)

and Deon determines the local form of the Fourier inequality resulting from a
convective energy dissipation in terms of thermal dissipations

Dcon - _Ei)' q . V(‘) 2 0 . (4-54)

The latter inequality ensures the direction of the heat flow from warm to cold.
The resolution above represents a stronger form of the Clausius-Duhem in-
equality. It is only valid if the local and convective dissipations are uncoupled
(e.g., see Coleman & Gurtin (1967)).

It bears emphasis that the entropy cannot decrease for an adiabatic process for
which a heat exchange between the thermodynamic system and its environ-
ment is inhibited, as it may be deduced from (4.42). In this case, the entropy
is maximized in a state of equilibrium (see Miiller (1985b)). Conversely, on
rewriting (4.53)

c:D+0Osp>up (4.55)

it may be inferred that the specific internal energy cannot increase for an
isentropic process with constant entropy at constant deformations. In this
context, the value of u in a state of equilibrium characterizes a minimum.

4.3 Stress power and conjugated work analysis

In Chapter 3, different measures of stress and strain are defined without re-
lating these quantities to each other. With the results of Section 4.2.4, this
is now complemented by adopting the formalism of the conjugated work ana-
lysis proposed by Hill (1968) (see also Macvean (1968) and Hill (1978)). An
essential quantity therein is the stress power p; defined as

pi=%a:D . (4.56)
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It can be obtained from P; introduced in (4.33;) as

Pi=/a':de=/pidm . (4.57)
R

Re

Since o and D constitute the stress power, the Cauchy stress tensor and the
stretching tensor may be regarded as pair of energetically conjugated quan-
tities. This assignment is, however, not unique, as the stress power may be
formulated in different configurations (see Macvean (1968)). For instance, in
regard of the stress tensors introduced in Section 3.3, pi can be written as
pi=1a:D=iT:D=iP:F=is:E , (4.58)
p Po Po Po
providing additional pairs of conjugated quantities. Note that the conjugated
stress of D may alternatively be o or 7. This ambiguity can be resolved on
substituting (4.58) into (4.57). It may be deduced that & and D are con-
jugated with respect to an integration in the current configuration, while 7
and D form a conjugated pair for an integration in the reference configuration
(cf. Malvern (1969)). . .
Kinematical tensors such as D, F, or E express the local shape change rate
of the body. If one of these quantities equals the rate of a local deformation
tensor, this tensor is said to be work conjugated to the respective conjugated
stress tensor. Since a variety of objective rates within the Eulerian config-
uration exists, such an assignment may provide an additional unambiguity.
For instance, the logarithmic rate of the Hencky strain tensor h as well as the
Cotter-Rivlin rate of the Almansi-Eulerian strain tensor e equal the stretching
tensor and, thus, h as well as e can be regarded as work conjugated to, both,
T or o. In the Lagrangian configuration, however, for which the material time
derivative is objective, the assignment of conjugated quantities is unique, such
that P and F as well as S and E form conjugated pairs.
In what follows, in anticipation of the material model derived in Chapter 5,
the Kirchhoff stress tensor 7 and its work conjugated Hencky strain tensor h
are employed, along with the logarithmic rate as objective corotational time
derivative. The balance equations of Section 4.2 are accordingly reformulated.

4.4 Thermodynamic consistency

The balance equations considered in Section 4.2 provide a general framework
for the development of constitutive theories. Altogether, they basically require
the following nine quantities to be specified for the description of a specific
material behavior for each particle P of the body B at time ¢:!°

15Note that the spatial position x renders the deformation gradient as well as the velocity
gradient.
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Spatial position x =x(P,t)
Mass density p =p(Pt)
Temperature ©=0(P1t)
Stress tensor T =1(Pt)
Specific internal energy u = u (P, t)
Specific entropy s =8 (P, t)
Force density b =b(P,t)
Heat flux vector q =q(P,t)
Heat source r =r(Pt)

Such a specification is, however, not arbitrary as it has to ensure physical re-
strictions imposed by thermodynamics. A general procedure accounting for
this essential aspect is provided by Coleman & Noll (1963). According to their
formalism, a thermodynamic process is considered to be fully described by the
above nine quantities, along with the balance equations of mass, momentum,
and total energy.'® This process is assumed to be driven by position x as well
as entropy s as independent variables. Additionally, constitutive equations in
form of response functions are introduced, specifying the four quantities tem-
perature ©, stress tensor T, internal energy u, and heat flux vector q. The
remaining three quantities, i.e., density p, force density b, and heat source r,
are then uniquely determined by the continuity equation, Cauchy’s first law of
motion, and the first law of thermodynamics, as in relations (4.5), (4.13), and
(4.37), respectively. The definitions of the constitutive equations for ©, 7, q,
and u have to obey the following basic principles (e.g., see Wang & Truesdell
(1973)):

1. Principle of determinism or alternatively principle of local action
2. Principle of equipresence

3. Principle of material frame indifference

The principle of determinism demands the response functions of a generic par-
ticle P at time ¢ to depend on the current and past states of all particles defin-
ing the body during a process of deformation. This strict principle is usually
replaced by the weaker principle of local action. It asserts that the constitutive
equations for particle P at time ¢ solely depend on the current and past states
of the particles within the (local) neighborhood of P. A material body follow-
ing the principle of local action is referred to as simple body. The principle
of equipresence governs the independent variables of the constitutive equa-
tions. It states that the same independent variables should be present in all
response functions, unless this does not lead to any contradiction with respect
to material symmetry, material objectivity, or thermodynamic consistency (cf.

160riginally, Coleman & Noll do not consider the mass density as basic quantity.
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Coleman & Noll (1964)). The principle of material frame indifference finally
ensures the constitutive equations to be independent of the underlying frame
of reference.

The dependence of the material behavior on the current and past thermody-
namic states of the body may be interpreted as memory. This memory is
said to be fading if the influence of past thermodynamic states decreases with
increasing distance in time to the present thermodynamic state (see Coleman
(1964) and Day (1972)). This particularly addresses internal relaxation pro-
cesses which transfer the body from a non-equilibrium state to an equilibrium
state (see Section 4.1), furnishing the theory of rational thermodynamics a
non-equilibrium theory.

In Coleman & Gurtin (1967), the formalism above is extended by adding the
following general set of tensorial variables to the thermodynamic framework:

Set of internal variables ¢ = ¢ (P, t)

Its rate accounts for the change of the internal material structure during a
deformation process. This may, for instance, result from the formation of
dislocations due to plastic deformations, from viscosity, or from phase trans-
formations. In contrast to quantities like density, temperature, or stress, the
set of variables ¢ can externally not be measured. In this sense, it is referred
to as set of internal variables, whereas the former are termed ezternal variables
(cf. Lehmann (1989)).!7 Similar to the quantities ©, T, q, and u, a response
function has to be defined for (.

A thermodynamic process is labeled aedmissible in agreement with Coleman
& Noll (1963) if it is compatible with the constitutive equations for ©, 7, q,
and u, i.e., if it is reflected by the constitutive assumptions defining a specific
material behavior. Then, by imposing the remaining entropy balance equa-
tion in form of the Clausius-Duhem inequality to hold true for all admissible
thermodynamic processes, relations between the constitutive equations can be
established. They show that the response functions are not independent of
each other. This is considered next for two essential classes of materials.

Thermoelastic simple body

A widely used simple body material is a thermoelastic material. It may be
defined in line with Coleman & Noll (1963) by the constitutive equations of
the form:

u=1u (h%, s)
=7 (h%, 5) (4.59)
@ = ©(h*, s)

17Note that in classical thermodynamics external state variables are sometimes related to
the external or mechanical state of the system as a whole, such as position in space or
velocity, whereas internal state variables are associated with the internal or thermody-
namical state of the system, e.g., density, temperature, or stress (see Kuiken (1994)).
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In Coleman & Mizel (1964), this special kind of material is referred to as
perfect material (see also Truesdell & Noll (2004)). h® denotes the elastic
Hencky strain tensor. It reflects that the total deformations of thermoelastic
materials are purely elastic, i.e.,

h=h . (4.60)

As it may be inferred from equations (4.59), only the local deformation state
and the local entropy affect the local response functions. This is in agreement
with the principle of local action. The principle of equipresence is accounted
for by selecting h® and s as independent variables in all constitutive equations.
The principle of material frame indifference may be satisfied by defining all re-
sponse functions of the objective Eulerian second-order tensor h® as isotropic
tensor functions.!®

The thermoelastic material defined by (4.59) does not include any memory,
i.e., the state of each material particle is solely determined by the current state
of this particle and its local neighborhood. Thus, in the sense of Section 4.1,
a thermoelastic material is restricted to quasi-static processes for which it is
in a state of equilibrium throughout the deformation process. Strictly speak-
ing, internal relaxation processes transferring the material body from a non-
equilibrium state to an equilibrium state proceed with unlimited velocity.
Application of the material time rate to the specific internal energy (4.59:),
along with the identity (3.89) between the logarithmic rate of the Hencky
strain tensor and the stretching tensor, gives'®

. ou 1 Ou

=—:D"4+—3 . .
U I + 55 ° (4.61)
Then, by replacing the Cauchy stress tensor with the Kirchhoff stress tensor,
the local form of the Clausius-Duhem inequality (4.50) becomes

P du el Ou| .
= — —pp— | : -—152 . 4.62
D 0 [-r ”"ahe‘] D +p[@ as]s_O (4.62)
Since this inequality is assumed to hold true for all admissible processes, i.e.,
for all arbitrary admissible values of h® and s as well as of D® and 3§, two
equations of state can be deduced as

Ou Ou
T = py W and O = 55 . (4'63)

18 A scalar-valued isotropic tensor function ¢ and a symmetric second-order tensor-valued
isotropic tensor function ¢, both depending on the objective Eulerian second-order ten-
sor A, possess the properties ¢(Q » A) = ¢(A) and ¢(Q x A) = Q x ¢(A), with Q
denoting an arbitrary tensor of the special orthogonal group (e.g., see Wang (1970a)).

19This evaluation relies on the chain rule for scalar-valued isotropic tensor functions ¢(A)
of the form

99 A=

d
n oW =g dA

=]
which is holds true for arbitrary corotational rates (-) (see Xiao et al. (1997a)).

d
4 ]
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They explicitly determine 7 and © by the specific internal energy u. In this
context, u is referred to as thermodynamic potential.

Substitution of equations (4.63) into the rate of the internal energy (4.61)
reveals the Gibbs equation (4.51) in terms of the Kirchhoff stress tensor

i=Lr:D%+035 . (4.64)
Po

Hence, in addition to the observation that thermoelastic materials are re-
stricted to quasi-static processes, these materials are also restricted to pure
reversibility. This can also be observed by substituting relations (4.63) into
the inequality (4.62), showing that the dissipation function vanishes. In this
sense, the elastic stretching tensor in fact equals the reversible stretching ten-
sor considered in (4.36).
In regard of the externally controllable variables within a thermodynamic pro-
cess, the definition of other independent variables in relations (4.59) than h*
and s may sometimes be convenient. Extending the right-hand side of (4.64)

by the difference i/p, h®' : 78 _1/p he: 7198 yields after rearrangement®”

iz=_plhe':-‘}L°g+eé , (4.65)
0

with the thermodynamic potential

h(r, ) =u— —7: h? (4.66)
Po
termed specific enthalpy. Then, with the internal energy and the enthalpy at
hand, two additional potentials can be derived on replacing the entropy as
independent variable by the temperature. Adding the difference 30 — s© to
the right-hand side of relations (4.64) and (4.65) leads to

q'b=i'r:Del—se (4.67)
Po
and
. 1 el, S Lo .
g=——h":17"%-50 |, (4.68)
Po
with the specific Helmholtz free energy
P(h, ©)=u—-0s (4.69)

and the specific Gibbs free energy
9(r,©)=h-0s . (4.70)

- Q
20Note the identity + : he!' + 7 : bl = #Lo8 . hol 4 ¢ ; pellog
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Thermodynamic potentials Equations of state
Internal energy u(h®, s) e = g—z T = p %
Enthalpy h(T, s) © = g% h® = —p, g_’:—_
Free energy ¥(h®, ©) s = —g—g T = P %
Free enthalpy g(7, ©) s = —% h® = —p, %’_—

Table 4.1: Equations of state of the thermodynamic potentials

u, h, ¥, and g are equivalent representations of the stored energy in the ma-
terial body. In this regard, equations (4.64), (4.65), (4.67), and (4.68) are
equivalent representations of the Gibbs equation. Mathematically, the fore-
going transformations are referred to as Legendre transformations (e.g., see
Callen (1960)).

Equations of state for the additional thermodynamic potentials, namely the
enthalpy, Helmholtz free energy, and Gibbs free energy, can be obtained by
comparing the rates of these potentials with the respective forms of the Gibbs
equation. The results are summarized in Table 4.1. For instance, matching
the coefficients of the material time derivative of v

a¢ :De|+2'£e

Y= one P (4.71)
with equation (4.67) gives
__% —, 9
=% and T = p, 557 (4.72)

Furthermore, with the equations of state expressing the elastic strain or the
stress, an explicit relation for the elastic stretching tensor may be derived.
Taking the logarithmic rate of

dg
el _
h® = —p, 3 (4.73)
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Thermodynamic potentials Maxwell relations
Internal energy u(h®, s) % , = _pl; g—: pe!
Enthalpy h(T, s) g_?- , =~ % 3;: .
Free energy y(h®, ©) - (;;il o ;1; g_(; Pl
Free enthalpy g(7, ©) - gf o p_lo 66}(1; .

Table 4.2: Maxwell relations of the thermodynamic potentials

together with relation (3.89), yields?!
D'=D:7"%+ad . (4.74)

(7, ©) represents the elastic compliance tensor and a(7, ©) denotes the
tensor of thermal expansion coefficients, both defined as

ahel ahel
and a =

D=5l 30 |,

(4.75)

Adopting the preceding equations of state, four relations between the partial
derivatives of the state variables named Mazwell relations can be derived on
exploiting the identity of the mixed second derivatives of the thermodynamic
potentials. They are listed in Table 4.2. For instance, the mixed second
derivatives of the specific internal energy yield

BENCANENE AN
., 6h'\d3s/) ds\on?)  p, Os

21yse is made of the chain rule for symmetric second-order tensor-valued isotropic tensor
functions ¢{A) of the form

d _d¢ ,  dp ¢
M =gaA=qa A

Q
which is valid for arbitrary corotational rates (-) (see Xiao et al. (1999)).

00
ahel

(4.76)

hcl
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Thermoinelastic simple body with heat conduction

As the thermoelastic simple body material is restricted to pure reversibility,
it cannot account for irreversible effects, such as plastic deformations, heat
conduction, or phase transformations. Thus, with respect to the material
model considered in Chapter 5, the thermoelastic simple body material has
to be extended to irreversibility. In line with Coleman & Gurtin (1967), this
may be achieved by defining internal variables and the heat flux as additional
independent variables, such that the constitutive equations of a thermoinelastic
simple body material with heat conduction become:??

P =p(h, , ¢)
r=7(h"8,()
s=3s(h% 0, ¢) (4.77)

a=q(h", 0, V8, )
¢=¢(h, 0,Ve,()

In anticipation of Chapter 5, the internal energy is replaced by the Helmholtz
free energy, depending, in agreement with Lehmann (1984), on the purely
elastic component of the total strain. This elastic strain may be understood
as being directly related to the current stress (see Xiao et al. (2007)), e.g.,
for zero stress the elastic strain may vanish and vice versa. In this sense,
stress, temperature, and elastic strain may be regarded as redundant quantities
to some extent. A direct determination of the elastic strain from the total
deformation, however, turns out to be cumbersome, if not even impossible, for
an elastic-inelastic finite deformation process.22 On this account, the elastic
Hencky strain tensor in (4.77) is replaced by the Kirchhoff stress tensor, such
that:

Y= d’('rs @7 C)
h=h(r, 6, ()
s=s(1,6,¢) (4.78)

q= Q(T’ e, Ve, C)
¢= C(T1 0, Vo, C)

With this set of equations at hand, the Clausius-Duhem inequality can be
exploited in the same way as for the thermoelastic material. On substituting
the rate form of (4.69) and on replacing the Cauchy stress tensor with the
Kirchhoff stress tensor thereafter, the local form of the Clausius-Duhem in-
equality (4.50) in terms of the Helmholtz free energy and the Kirchhoff stress
tensor reads

= : — — — e > . .
p=Xr:D p(1p+se) 5q-Ve 20 (4.79)

22 Alternatively to the introduction of internal variables, the entire deformation history of
the body may be accounted for within the constitutive equations (see Coleman & Gurtin
(1967)). This, however, may hardly be tractable for realistic purposes.

23Gee Xiao et al. (2006a) for a thorough discussion on this matter.
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By virtue of the material time rate of (4.78;)

12’ — 51/) o Log+ 6'1,0 @ + g’é" CLog ’ (4-80)

in conjunction with the additive decomposition of the stretching tensor as
in (4.36) and the thermoelastic rate equation (4.74), equation (4.79) takes the
form

'D=£T:Di"+£[‘r D- poad)] 5 Log
Po Po 9

—p[s+a—1'/)—l ]@ paw EL°g—lq-V920 . (4.81)

90 p, o¢ - e
Assuming this inequality to hold true for all admissible processes then yields
oy _ 1 ay 1
— =T - — =T . 4.82
30 PoT a—s and 3 por D (4.82)
As a consequence, the Clausius-Duhem inequality reduces to
p in 310 Lo 1
D=—7:D C E——-q-VO>0 . 4.83
o0 ~PEC 5 (4.83)

With respect to the split of the Clausius-Duhem inequality (4.83) as performed
in Section 4.2.5, the Clausius-Planck inequality, thus, becomes

Dioc = & 7: D™ — a”’ . ¢Log > 0 (4.84)
Po C
and the Fourier inequality takes the form
Deon = —é q-VO>0 . (4.85)

It bears emphasis that, although irreversible effects are accounted for by ¢{
and q, the thermoelastic material response of the considered thermoinelas-
tic material is restricted to states close to a local equilibrium. This reflects
the intrinsic character of the regarded thermoinelastic material as extended
thermoelastic material.

4.5 Thermomechanical coupling

In general, elastic-inelastic processes of deformation are involved processes,
being characterized by a strong coupling between mechanical and thermal
effects. In this regard, the temperature evolution of a deforming body is
governed by three factors, i.e., the heat conduction, the heat entering the body,
and the heat generated within the body during processes of deformation. This
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may be expressed by the energy conservation principle considered in Section 4.2
for the subdomain R, with the focus on heat. It yields

U= Q + Qgen (4.86)

where @ and Qgen represent the power of heat transferred into and the power of
heat generated within the subdomain, respectively (cf. Mills (1999)). The lat-
ter may be attributed to the thermomechanically coupled property of elastic-
inelastic deformation processes. This quantity may be introduced as

Qgen = / Ggen pdv (4.87)
Re

with ggen expressing the specific generated heat power. Moreover, since only
heat related processes are considered, U may be written in terms of

U=/&pdv=/cv9pdv . (4.88)
R,

Re

The quantity c, represents the specific heat capacity at constant volume. In
general, it may not be confused with the quantity ¢, denoting the specific heat
capacity at constant pressure, which is subsequently used. For solid materials
as considered in this treatise, however, for which the ratio between the thermal
expansion coefficient and the compressibility coefficient is sufficiently small, ¢,
and ¢, may be regarded as equivalent (e.g., see Honig (1999), Mills (1999),
and Tian & Wu (2001)), i.e.,

cv=¢p=c¢C . (4.89)
Then, along with (4.28), relation (4.86) becomes
/cépdv:/[—v-q+rp+qgenp] dv , (4.90)
Re Re
providing the local form
cOp=-V-q+rp+geenp , (4.91)

where arbitrariness of R, and continuity of the integrands with respect to x
are stipulated.

Next, the specific generated heat power ggen is specified. In doing so, the
definition of the heat capacity at constant pressure may be exploited (e.g., see
Honig (1999)), which reads

Cp = @ aa—g . (4-92)
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On rearranging equation of state (4.82,)
S=—T!:Q —F+% , (493)

the partial derivative of s with respect to © at constant 7 becomes

ds 1. B Py

6|, ‘50 ~ 907 (4.94)

Therewith, (4.92) can be rewritten in terms of the Helmholtz free energy

2
c=_1_91_:aa_@611)

> %6~ 9357 - (4.95)

where use is made of approximation (4.89). Moreover, rearranging the mate-
rial time derivative of (4.93) and replacing the result into (4.95) gives a rate
equation for the temperature

o o
- Log _
cO=03 o 91‘ ( 70 @)

3271’ 1 i Log 62¢ 2 Log

Its evaluation, however, requires the specification of §, which may be obtained
on comparing the rate form of the Helmholtz free energy as in (4.69)
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with relation (4.80). This leads, together with equations of state (4.82) and
rate equation (4.74), to
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Substituting the first law of thermodynamics (4.37) in form of the Kirchhoff
stress tensor

(;L°“ . (4.98)

wp = p—r D-V-q+rp (4.99)
o

and the elastic-inelastic separation (4.36) of the stretching tensor then gives
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Thus, on replacing (4.100) in (4.96) and comparing the result with (4.91), the
specific generated heat power can finally be identified as
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5 Phenomenological model

This chapter is concerned with the derivation of constitutive equations for the
description of the pseudoelastic shape memory effect at finite deformations.
In line with the Eulerian rate formulation proposed by Xiao et al. (2007),
the model is consistently formulated within a Eulerian framework based on
the Kirchhoff stress tensor, the stretching tensor, and the logarithmic rate.
This formulation is discussed in Section 5.1. Of paramount importance for
the material model is the introduction of a non-convex Helmholtz free en-
ergy function in Section 5.2. It comprises phase specific energies of the single
phases austenite and martensite and an additional term which accounts for
phase interactions. Internal variables are defined for the overall mass fraction
of martensite and the average orientation of the martensite variants. There-
with, a separation of the martensite into a (stress-induced) oriented part and
a (temperature-induced) self-accommodated part, both treated as two distinct
phases as postulated in the phase-diagram approaches (see Brinson (1993)),
can be avoided.?* Section 5.3 addresses the total stress tensor, the total tem-
perature, and the total stretching tensor of the material. The relations of these
quantities conceptually rely on the principle of local equilibrium considered in
Section 4.4. Moreover, in contrast to the commonly adopted assumption of
equivalent phase specific stresses, a degree of freedom is introduced which al-
lows for deviating martensitic and austenitic stresses. The implications of the
underlying principle of local equilibrium are then analyzed in detail in Sec-
tion 5.4. Finally, constitutive equations ensuring thermodynamic consistency
as regarded in Section 4.4 are formulated for the mass fraction of martensite,
the average orientation of the martensite variants, and the generated heat
related to the thermomechanically coupled material behavior.

5.1 Mechanical framework

The material model derived in this treatise relies on a Eulerian rate formu-
lation in terms of the Kirchhoff stress tensor, the stretching tensor, and the
logarithmic rate, which may principally be attributed to the works of Hencky,
Truesdell, and Xiao, Bruhns & Meyers. Analyzing pure elasticity within prin-
cipal stress and strain, Hencky (1928, 1929b, 1929a) states that the simplest
physically reasonable material law for finite elastic deformations of continuous
material bodies, connecting linearly a stress measure with a strain measure,
is given by a mapping between the Kirchhoff stress tensor and the Hencky

24Since the physical and chemical properties of oriented and self-accommodated marten-
site do not differ, both types of martensite formations belong to the same kind of phase.
Strictly speaking, during an experimental measurement, such as a resistivity measure-
ment, it cannot be distinguished between oriented and self-accommodated martensite
(see also Boyd & Lagoudas (1996a) for a discussion).
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strain tensor.2> Therewith, Hencky formulates a physically sound extension
of Hooke’s law of infinitesimal isotropic elasticity to finite deformations which
is referred to as Hencky’s elasticity model. Experimental validations of this
model are carried out by Anand (1979, 1986) for a wide class of elastic mate-
rials such as metals and rubber under a variety of finite deformation modes.
In these works, Hencky’s elasticity model coincides well with the experimental
data for moderate deformations and it provides better agreements than al-
ternative extensions of Hooke’s law including different work conjugated stress
and strain measures. This finding is confirmed by Bruhns et al. (2000) who
analyze finite torsion of cylindrical rods and tubes with free ends. The authors
also demonstrate that Hencky's elasticity model can predict second-order ef-
fects like the change of length in the axial direction commonly referred to as
Poynting effect.

Although the preceding works motivate from a physical point of view that the
Kirchhoff stress tensor and the Hencky strain tensor provide sound mechanical
quantities for material laws at finite deformations, a direct description of finite
elastic-inelastic deformation processes by means of these quantities turns out
to be cumbersome. This is due to the fact, that such a description requires the
total strain to be separated into elastic and inelastic components. To overcome
this difficulty, the hypoelastic theory introduced by Truesdell (1953) may be
helpful. Conceptually, this theory considers a mapping between the rates of
stress and deformation (see Truesdell (1955)) in contrast to a classical direct
mapping between stress and deformation. More precisely, the hypoelastic the-
ory establishes a linear, possibly stress-dependent relation between the stretch-
ing tensor and the objective rate of a conjugated stress tensor (see Truesdell
& Noll (2004)). In this connection, Truesdell (1955) refers to the hypoelastic
theory as simplest rate theory. It is particularly free of strain-like variables. In
the view of Truesdell (1952), a theory based on a strain measure requires the
introduction of a natural state for which the body at issue is unstressed. In
general, however, this state is not known or even impossible without destroying
the continuity of the body.2® Although Truesdell addresses only elastic defor-
mation processes in the course of his considerations, the hypoelastic theory is
not restricted to pure elasticity. Finite elastic-inelastic deformation processes
may be encountered by an additive split of the total stretching tensor into
elastic and inelastic parts as considered in relation (4.36). In this sense, the
hypoelastic theory is to be regarded as a general theory including elasticity, in
particular hyperelasticity as a special case (see Noll (1955)).

25 Actually, Hencky first uses the Cauchy stress tensor (see Hencky (1928)). Due to the
fact that the Kirchhoff stress tensor is an absolute tensor in contrast to the Cauchy
stress tensor being a tensor density (cf. Brillouin (1925), see also Kiistner (1964)), he
replaces the Cauchy stress tensor by the Kirchhoff stress tensor in a later work (see
Hencky (1929b)).

28For an elaborated review on this matter also refer to Xiao et al. (2006a).
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The advantages of the hypoelastic theory and the Eulerian framework in terms
of the Kirchhoff stress tensor and the Hencky strain tensor may be combined
by virtue of the logarithmic rate, as this rate relates the Hencky strain tensor
with the stretching tensor. From this point of view, the logarithmic rate may
be regarded as unique objective time derivative for the resulting hypoelastic
framework based on the Kirchhoff stress tensor and the stretching tensor. The
uniqueness of the logarithmic rate may also be inferred from physical criteria
ensuring physical consistency, which restrict the set of all corotational and
non-corotational time derivatives. One of these criteria is the ezact integrabil-
ity criterion also referred to as self-consistency criterion (see Xiao et al. (1999)
and Bruhns et al. (1999), also Simo & Pister (1984)). It conceptually states
that a hypoelastic relation intended to describe an elastic material behavior
must be exactly integrable to define an elastic, in particular a hyperelastic
relation for a process of pure elastic deformations. In this sense, an objective
rate obeying the exact integrability criterion is referred to as self-consistent,
otherwise it is called self-inconsistent. Adopting the self-consistency criterion,
Xiao et al. (2005) prove that among a wide class of corotational and non-
corotational rates only the logarithmic rate turns out to be self-consistent,
restricting uniquely the set of objective rates to the logarithmic rate. Alter-
natively, the uniqueness of the logarithmic rate may also be deduced from
the yielding stationarity criterion. It basically states that the yield function
known from plasticity is stationary for vanishing rates of its arguments, such
as stress, temperature, or internal variables. In this regard, assuming that the
yield function is represented by a scalar-valued function of the invariants of
an objective Eulerian second-order tensor, Xiao et al. (2000) demonstrate for
a wide class of corotational and non-corotational rates that only the former
rates can fulfill the yielding stationarity criterion. Then, on stipulating that
the integrated stretching tensor is a Eulerian strain tensor, Xiao et al. (1997b,
1998a, 1998b) uniquely determine the logarithmic rate as only admissible ob-
jective rate.

5.2 Specific Helmholtz free energy

In the course of the proposed model, the energetical state of the material is
described by a specific Helmholtz free energy 3 which is introduced in Sec-
tion 4.4 in a general form as function of the Kirchhoff stress tensor 7, the
temperature ©, and a set of internal variables {. In this context, to account
for the local composition of the two-phase solid material in terms of austenitic
and martensitic phase fractions, the introduction of the scalar-valued vari-
able £ referred to as mass fraction of martensite proves to be valuable. This
quantity may be defined as
dmM .

£= —cm- with dm = dmA + de N (5-1)
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where dm denotes the total mass of all particles within a generic material
neighborhood and dm”® and dmM express the masses of the corresponding
austenitic and martensitic particles. Here and henceforth, quantities related
to the phases austenite and martensite are labeled with the superscripts A
and M or with v representing A or M. Then, on considering £ as internal
variable and on expressing the set of the remaining internal variables by the
quantity =, ¢ may be decomposed as

¢={¢E} . (5.2)

Note that the mass fraction instead of the volume fraction is used here as a
characteristic measure for the amount of the single phases, as this quantity is
independent of the deformation. Moreover, since the chemical composition of
the material is invariant during the diffusionless martensitic phase transforma-
tion (see Otsuka & Wayman (1998a)), no internal variable has to be defined
in this regard.

5.2.1 Specific Helmholtz free energy of a two-phase solid

In agreement with the thermodynamics of mixtures, an extensive specific quan-
tity of a multiphase material can generally be written as weighted sum of the
extensive specific quantities of the single phases plus an additional term ex-
pressing phase interactions (see Miiller (2001) and Baehr (2002)). In partic-
ular, with respect to the two-phase solid material comprising austenitic and
martensitic phases, the specific total Helmholtz free energy 1 may be expressed
by

¥(7,0, ¢ 8)=(1-&P* +epM+ oMMy . (5.3)

Here, the mass fraction £ is employed as weighting factor between the specific
Helmholtz free energies of austenite and martensite P2 and ¥M. A*My de-
notes the specific Helmholtz free energy of internal interactions. This energy
proves crucial for the modeling of shape memory alloys, since it allows for
the description of the hysteretic behavior observed for phase transformations
in solid materials (cf. Miiller (1989)). Accordingly, A*My vanishes in the
absence of phase interactions, which is, for instance, the case for phase trans-
formations in gases (cf. Miiller (1985b)) or for single-phase materials.

Intrinsic specific Helmholtz free energy

It may be inferred from experimental data provided by Jacobus et al. (1996)
and Orgéas & Favier (1998) for NiTi shape memory alloys that the material
behavior of the single phases austenite and martensite is isotropic and linear-
elastic in stress and strain. On this account, the phase specific, intrinsic
energies of the single phases may be described by an isotropic thermoelastic
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energy function of the form?’

[#(h?, ©)]" = [% h: C: h - (6 — ©) ;1; o:C:h
0

Y
+cv(6—60—61n(@2))+u0—509] . (54)
0

Its derivation can be reviewed in the works of Raniecki & Bruhns (1991) and
Oberste-Brandenburg (1999). Here, the phase specific quantities C” and «”
express the isotropic elasticity tensor and the isotropic tensor of thermal ez-
pansion coefficients, the constants u] as well as s] denote energetical and en-
tropical parameters, and ©] represents a referential temperature. C” and "
are particularly defined as

C'=AI®I+2u"1 and a"=0a"1 , (5.5)

with the Lamé constants A\ and u” related to Young’s modulus E” and Pois-
son’s ratio p” through

e et 6

and with I denoting the symmetric fourth-order identity tensor. Equation (5.4)
relies on the assumption of a constant specific heat capacity ¢] at constant vol-
ume, which may be regarded as being sufficiently fulfilled for the pseudoelastic
temperature range of near equiatomic NiTi shape memory alloys (see Raniecki
& Bruhns (1991)). Also, the elasticity tensor as well as the tensor of thermal
expansion coefficients are supposed to be at most linear in temperature. Fi-
nally, since ¥” defined in (5.4) is an isotropic tensor function of the objective
second-order tensor h®'?, it identically fulfills the principle of material frame
indifference stated in Section 4.4.

Equation (5.4) may be employed to derive a relation for the intrinsic elastic
Hencky strain tensor. In doing so, equation of state (4.722) may be invoked
for each single phase, i.e.,

oY

1 [Po a—he_'r , (5.7)

so that h®'” becomes

h'"=[C':7+a(®@-600)] . (5.8)

271t should be noted that this assumption does not restrict the description of the frequently
observed asymmetric deformation behavior of pseudoelastic NiTi shape memory alloys
well-known as tension/compression asymmetry (see Jacobus et al. (1996), Lim & Mc-
Dowell (1999), and Bouvet et al. (2004b) among others), as this effect may be ascribed
to phase transformations (e.g., see Patoor et al. (1995), Saburi (1998), Gall & Sehitoglu
(1999), and Lexcellent et al. (2006)).
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Evidently, the intrinsic elastic Hencky strain tensor can only be quantified for
given stress and temperature. Substituting relation (5.8) into (5.4) then gives
the specific Helmholtz free energy in terms of the IKirchhoff stress tensor

N P B S ST S
[w(r,@)p_[%T.c 7= g (0-8a:Cia

@ Y
+c(@—@o—®1n (e—))—l—uo—soe] . (5.9)
0

where use is made of approximation (4.89) for the specific heat capacity. For
constant values of ¥7 and @, equation (5.9) reflects a paraboloid within the
principle stress space, being oviented into the (1, 1, 1)-direction. This find-
ing is adopted in Figure 5.1 for a graphical representation of ¥” at constant
temperature, which relies on the definition of a two-dimensional stress space
perpendicular to the paraboloid orientation.

Figure 5.1: Representation of the specific Helinholtz free energy for constant
temperature within a plane perpendicular to the (1, 1, 1)-direction
in the principle stress space; 7, and 7, denote the stresses in this
plane.

It should be noted that equation of state (5.7) is a stronger form of the prin-
ciple of local equilibrium than it is stated by equation of state (4.722). More
precisely, {5.7) imposes the principle of local equilibrium for every singlc phase
within each material particle of the body B, while (4.722) demands the local
equilibrium for each material particle as a whole.
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In what follows, the thermoelastic properties of the single phases are assumed
to be equal and constant, i.e.,

r=cM=c and pf=pY=p, , (5.10)
as well as
C*=CM=C and a*=cM=a . (5.11)

The equality of the phase specific heat capacities and densities is in agreement
with data provided by Hodgson & Brown (2000) and Tian & Wu (2001) for
NiTi. Basically, the equality of the intrinsic densities relies on negligible vol-
ume changes during martensitic phase transformations as reported by Shimizu
& Tadaki (1987). The equality of the phase specific elastic properties of NiTi
may be inferred from in-situ ultrasonic experimental data obtained by Kaack
(2002) and Sittner et al. (2006a), in which the phase specific Poisson’s ra-
tios as well as Young’s moduli may be regarded as comparable. Within both
works, however, the austenitic Poisson’s ratio seems to be slightly higher than
its martensitic counterpart and the specific Young’s modulus for austenite is
slightly lower than for martensite.

Specific Helmholtz free energy of internal interaction

In agreement with Miiller (1989) and Miiller & Xu (1991), the specific Helm-
holtz free energy of internal interactions A*My may be attributed to the in-
terfacial energy between austenitic and martensitic domains within the solid
material body. The latter reflects the energy necessary to form interfaces
between austenitic and martensitic regions which specifically comprises the
energy arising from distortions due to elastic misfits or elastic interactions of
the phases. A micromechanical motivation of the interaction energy is given
by Patoor et al. (1995), who relates this energy to the internal stress field
which arises from coexisting phases (see also Gall & Sehitoglu (1999), Patoor
et al. (2006), and Wang et al. (2008) among others). Based on the works of
Miiller (1989), Raniecki et al. (1992), and Miiller & Seelecke (2001), A*My is
introduced here as

AMY(O,6,8)=¢(1-A (5.12)

with the scalar-valued isotropic tensor function A(©, &) denoting the co-
herency coefficient. In contrast to the aforementioned authors, the arguments
of the coherency coefficient are amended by the independent set of internal
variables =, as A is related to the interaction of the phases and, thus, to the
internal material structure. As outlined by Miiller & Xu (1991), the coherency
coefficient proves to be eminent for the description of the hysteresis observed
for pseudoelasticity.
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5.2.2 The essence of solid state phase transformations

Getting a deeper insight into phase stability criteria and equilibrium states
is of fundamental importance for the understanding of phase transformation
processes and, thus, for the modeling of shape memory alloys. It is pointed
out in Section 4.2.5 that an equilibrium state is principally characterized by
two factors, i.e., a minimum of the specific internal energy and a maximum
of the specific entropy. Based on this finding, it may be inferred from (4.69)
that the specific Helmholtz free energy tends towards a minimum for a gen-
eral irreversible process of deformation on reaching an equilibrium state (cf.
Miiller (1985b)). This result may also be deduced from the local form of the
Clausius-Planck inequality (4.53), which can be written in terms of the specific
Helmbholtz free energy and the Kirchhoff stress tensor as

D.oc=—p-r:D-p(12;+sé)zo : (5.13)

Po

Rearranging inequality (5.13) leads, along with (4.36) and (4.74), to
l‘r:Di"+l'r:Il]>:-?'1‘°g—(i'r:cx+s)(;)2{[) . (5.14)
Po Po Po

It shows that ¢ cannot increase for an isothermal state with constant stress
and constant inelastic deformation. This tendency of the specific Helmholtz
free energy towards a minimum provides a first criterion for the onset of phase
transformations in multiphase materials, i.e., an austenite to martensite trans-
formation can only initiate if

Pt > M (5.15)
whereas a martensite to austenite transformation requires
P >yt (5.16)

to hold true. In this regard, criteria (5.15) and (5.16) are necessary for the
initiation of phase transformations. Phase transformations, however, do not
instantaneously initiate if either of the criteria (5.15) and (5.16) is fulfilled.
The difference between the specific intrinsic energies has merely to exceed a
certain threshold value which represents the driving force for the phase nu-
cleation (e.g., see Shimizu & Tadaki (1987)). This requirement furnishes a
second and sufficient criterion for the onset of phase transformations.

The preceding considerations are schematically illustrated in Figure 5.2 for
temperature-induced phase transformations at zero stress. In this figure, start-
ing temperatures of phase transformations into martensite and austenite on
cooling and on heating are represented by M§ and Aj, respectively. The equi-
librium temperature © reflects the arithmetic mean of these quantities as

6= (M5 +43) (5.17)
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,¢A . wM

Figure 5.2: Temperature-induced phase transformations at zero stress; start-
ing temperatures M§ and Ap for initiating phase transformations,
driving forces A’MAB and A-g/)h,,g, and equilibrium temperature ©

at which the phase specific energies are identical (see Otsuka & Wayman
(1998a)). The driving forces for the phase nucleation are expressed by the
quantities Ad|ars and Azb[yy. They are linked to the differences between Mg
and © and between Ay and © by means of the degree of supercooling and su-
perheating of the material. It bears emphasis that, according to Falk (1983),
the difference between the specific intrinsic energy functions ¥* and ™ is
taken to be linear in temperature. This is in line with (5.9) if the referential
temperatures O and O} are assumed to be equal for both phases. Falk (1983)
also attributes the stability of martensite and austenite at different temper-
ature levels to the decomposition of ¥ into energetic and entropic parts (see
also Miuller (1989)). In this context, as the influence of the entropic part on %
increases with increasing temperature, the two phases austenite and marten-
site may be regarded as being stabilized by entropy and by internal energy,
respectively.

The stabilization of martensite is, however, not restricted to low temperatures.
At high temperatures, at which the austenite is stable in the unstressed state,
the martensitic phase can also be stabilized by stress as it may be observed
for pseudoelastic deformation processes (cf. Otsuka & Wayman (1998b)).



76 5 Phenomenological model

N

A .t"“""‘l Wt
QRO
NGO
‘3‘%@\‘&“ t& @

M

Figure 5.3: Specific Helmholtz free energies of martensite and austenite within
the austenitic stress space 7{* and 74' (see Figure 5.1)

Conceptual analysis of pseudoeclastic phase transformations

A deeper insight into the martensitic stabilization by stress may be obtained on
introducing an arbitrary but fixed reference stress space {o render the specific
intrinsic energy functions comparable. In particular, since austenite is the ini-
tial or parent phase for pseudoelasticity, it is convenient to define the austenitic
stress space as a reference space. For the conceptual analysis, the stress is as-
sumed to be externally controlled in this way that the material is exposed to
a constant stress direction throughout the process of phase transformation. In
this case, only a small number of martensite variants is preferably activated
showing the most favorable orientation to the applied stress (see Sittner et al.
(2006b)). Focus is specifically on one martensite variant nucleating during a
stress-induced phase transformations. From the phase stability criteria con-
sidered above it may then be inferred for this variant that the minimum of its
specific Helmholtz free energy, i.e., its potential well is shifted towards higher
stresses compared to the potential well of the austenite.?® This is indicated in
Figure 5.3, where, in accord with (5.9), the specific intrinsic energy functions
are represented by parabolas. Note that a vertical shift of the parabolas may
also arise from different values of the material parameters u, and s, reflecting
the entropic stabilization of the austenitic phase in the unstressed state. The
horizontal shift of the martensitic parabola provides a new essential tensorial

28Note that the potential well of the martensitic phasc is commonly regarded as being
shifted towards higher strains (c.g.. sce Falk (1983), Ball & James (1987), and Miiller
(1989)), despite the fact that martensite is stress-induced.
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quantity 7o which furnishes a transformation rule for the martensitic stress
into the austenitic stress space of the form

TM = TA —T0 . (5’18)

In this sense, the second-order tensor 7¢ can be interpreted as the potential
well position of the single martensite variant in the austenitic stress space.
It bears emphasis that (5.18) is not to be confused with an approach for the
intrinsic stresses. Up to this point, it only serves for the transformation of the
specific martensitic Helmholtz free energy into the austenitic stress space.
For a further analysis of stress-induced phase transformation processes, the
preceding conceptual analysis is extended in such a way, that the material
is assumed to transform completely from austenite into martensite. In this
case, the material in the martensitic state may be supposed to compensate
the same load as in its austenitic state, such that the stresses of austenite
and martensite before and after the phase transformation may be regarded as
comparable. Moreover, on concentrating on purely mechanical properties, the
temperatures before and after the phase transformation are considered to be
equal. This may hold true after a sufficient time range for a non-adiabatic
process. Then, with the purely thermoelastic relation (5.8), together with
assumption (5.11;), the intrinsic elastic strains become

4 =C':7* and W'M=C'.sM . (5.19)

Since the thermoelastic austenite is the parent phase for pseudoelasticity, the
total strain h equals the total austenitic strain h® before the phase transfor-
mation. It follows

h=h*=hn"4=C"":7" . (5.20)

Consequently, 7# vanishes for an unstrained material. In this case, if the re-
verse phase transformation from martensite to austenite is imaginarily inhib-
ited, it may be deduced from (5.18) that the martensitic stress 7™ equals —7o.
Analogously to the austenitic state, h is equivalent to the total martensitic
strain h™M after the completion of the phase transformation. Then, as the
martensitic phase is purely thermoelastic, it follows that the total strain of
the material after the phase transformation takes the form

h=bM=C"!:(*M+7¢) . (5.21)

In other words, h™ is linear-elastic in terms of the stress 7™ + 7o. Rela-
tions (5.20) and (5.21) allow for an estimation of the total deformations before
and after complete phase transformation processes with constant stress direc-
tion. From this, an essential property of 7o may be deduced, stating that this
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Figure 5.4: Process of phase transformation proceeding from point (1) to
point (2); the upper-left diagram depicts the intrinsic energy func-
tions, the lower-left diagram reflects the intrinsic stresses within
the austenitic stress space, and the lower-right diagram expresses
the intrinsic relations between stress and strain.

quantity is deviatoric. In particular, as the volume change of the material dur-
ing phase transformation processes is negligible for NiTi shape memory alloys
(see Shimizu & Tadaki (1987)), it follows that

tr (C™': 7) < tr (C':(F+70) = tr(C™":70) 0 (5.22)
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and, hence,
tr (7o) =0 . (5.23)

The quantity ¥ in relations (5.22) denotes the equivalent austenitic and marten-
sitic stresses before and after the phase transformation process.

The preceding considerations are graphically illustrated in Figure 5.4. The
upper-left diagram shows the specific Helmholtz free energy functions of the
phases martensite and austenite. The phase transformation sets in at point (1)
in the austenitic state and comes to a complete rest at point (2) in the marten-
sitic state. The lower-left diagram depicts the intrinsic stresses within the
austenitic stress space. This diagram particularly reflects relation (5.18). The
lower-right diagram finally visualizes the intrinsic thermoelastic relations be-
tween strain and stress which are represented by (5.20) and (5.21). In all
three diagrams, the transformation path is unknown. This is indicated by the
dashed line between points (1) and (2).

Multivariant phase transformation processes

Up to this point, only one martensite variant which forms during a phase
transformation process is considered. In this context, the deviatoric tensorial
quantity 7o is introduced, describing the position of the martensitic potential
well within the austenitic stress space. Generally, however, different marten-
site variants can be activated with differently distributed potential wells. In
fact, up to 24 martensite variants with distinct orientations may nucleate in
NiTi single crystals (cf. Miyazaki (1996)). Thus, motivated by the fact that
a polycrystal consists of a manifold of differently oriented single crystals, the
potential wells of all martensite variants may be considered as continuously
distributed around the potential well of the austenite. This approximation
may be regarded as fairly accurate for an untextured polycrystal within the
context of a phenomenological theory. Hence, the possible locations 7¢ of all
potential wells of the martensite variants may be approximated by
A

To = o ITAll ] (5'24)

where [74| denotes the Frobenius norm of the austenitic stress deviator 74’
Equation (5.24) describes a sphere with radius 7o in the austenitic stress space.
It is schematically illustrated in Figure 5.5 within the two-dimensional stress
space employed in Figure 5.3. Note that the radius 7 in this figure is taken
as stress dependent with respect to a possibly asymmetric initiation of phase
transformation processes.

In regard of the diversity of different martensite variants, the martensitic
Helmholtz free energy function introduced by relation (5.9) is to be regarded
as average energetical quantity of solely the activated martensite variants, as
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T2 locations of the potential wells
T of all martensite variants (see (5.24))
current location of the
average energetic minimum
T iy of the activated martensite
variants (see (5.25))
\\ | ,)—_IA
~ t
possible locations of the average
energetic minimum of the aclivated
martensite variants

Figure 5.5: Potential well positions of the martensite variants within a plane
perpendicular to the (1, 1, 1)-direction in the principle austenitic
stress space and suggestive interpretation of the quantities 7o, 70,
and t

only these variants dominate the actual material behavior of shape memory
alloys. Accordingly, the quantity T describes the location of the encrgetical
minimum of the currently activated variants. In this sense and with respect
to relation (5.24), it may multiplicatively be decomposed into the two average
quantities t and 7y as

To=70t with t:t=1 and 7 €[0, 7] |, (5.25)

where the deviatoric second-order tensor t and the scalar-valued variable 7q re-
flect the average orientation and the average distortion of the activaled marten-
site variants. This decomposition may also be reviewed in Figure 5.5. Among
both quantities t and 7o, the former may directly be specified for proportional
loadings with constant stress direction. In this case, the martensite orienta-
tion t and the stress direction s may be regarded as parallel, so that

/

, T
t =35 with s= -
il

(5.26)

It may, hence, be inferred that t changes on every variation of s which is in
line with the observation that unfavorable martensite variants transform into
favorable ones to accommodate the current stress. For a constant mass fraction
of martensite this effect is referred to as reorientation. Nevertheless, although
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it seems physically sound to describe reorientation by (5.26), this approach can
only be regarded as rough estimation for general, non-proportional loadings
(e.g., see Orgéas & Favier (1998)). This issue is addressed Section 5.5.3.

The two variables 7o and t may be employed as internal variables for the
description of the internal material structure. In particular, these variables
can be used to describe reoriented martensite during the pseudoelastic and
the pseudoplastic effects. Thus, the set of internal variables ¢ in (5.2) may be
finalized as

¢ ={§ 70, t} . (5.27)

However, on restricting the subsequent derivations to pseudoelasticity, 7o is
set equal to 7p, such that only £ and t are considered as internal variables.
For the sake of simplicity, 7o is additionally set constant, i.e., invariant on the
stress direction.

5.3 Stress, temperature, and stretching

By invoking the principle of local equilibrium, the temperatures of the phases
austenite and martensite may locally assumed to be equal

ert=eM=0 . (5.28)

For the intrinsic, phase specific stresses, however, an equivalent relation need
not necessarily hold true as there exist mechanical interactions between austen-
ite and martensite even in the state of a local equilibrium. This is addressed
in the first part of this section. Based on the findings therein, the second part
is devoted to the total stretching tensor and the total stress tensor.

5.3.1 Intrinsic stress and intrinsic temperature

To review the mechanical interactions between the single phases austenite
and martensite, consider an austenitic material that instantaneously and com-
pletely transforms into martensite under a given load. It may then be deduced
from (5.18) that the material structure is weakened right after the transforma-
tion which leads to a snap-through-like problem. More precisely, if the material
in the martensitic state is exposed to the same load as in the austenitic state,
the material structure is in a non-equilibrium state directly after the phase
transformation, so that stress and strain cannot explicitly be assigned to each
other. This is graphically illustrated in Figure 5.6, in which the phase transfor-
mation proceeds from point (1) in the austenitic state to a certain point in the
martensitic state. Ideally, point (2') would directly be reached after the phase
transformation. Since the material at point (2') is, however, instantaneously
exposed to the load 7, its state directly moves over to the stable point (2"),
such that the material in point (2’) is in a strong non-equilibrium. Hence,
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77 A

Figure 5.6: Process of phase transformation proceeding from point (1) to
point (2”) at high transformation velocity, with point (2') being
in a strong non-equilibrium state

similar to the approach used for the intrinsic temperatures in equation (5.28),
an approach of the form

A=rM=r (5.29)

seems to be reasonable for the phase specific stresses.

The snap-through-like problem is fully developed for high transformation ve-
locities as motivated by the example above. Nevertheless, it represents a lim-
iting case, as thermoelastic martensitic phase transformations proceed sequen-
tially, i.e., the amount of the transformed material depends on the velocity of
the externally controlled thermomechanical process. Hence, the transformed
domain is generally embedded within a matrix consisting of austenite and
martensite. This matrix provides a supporting effect which compensates the
weakening of the transformed region to some extent. Due to this, the trans-
formed domain after the phase transformation is not fully exposed to the same
load as before the phase transformation. In this sense, point (2’) in Figure 5.6
may be regarded to be in a state of equilibrium if the transformed region is
sufficiently small. This leads to the following limiting case for slow processes
of phase transformation

™MaorA (5.30)

Altogether, relations (5.29) and (5.30) may be regarded as complementary
limiting cases, representing upper and lower bounds for the intrinsic stresses.
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Figure 5.7: Martensitic stress directly after phase transformation from the
austenitic phase

They may be combined in a simple manner on introducing a phenomenological
scaling parameter 1 € [0, 1] through the linear mapping

™MorA_gry (5.31)

in which 7 accounts for the internal stress field distribution and, thus, for the
influence of the supporting effect. The selection 77 = 0 provides (5.29) for
high transformation velocities, whereas the choice n = 1 yields (5.30) for slow
transformation processes. This is indicated in Figure 5.7.

It bears emphasis, that the preceding considerations do not account for me-
chanical interactions of the single phases at the phase interfaces. Strictly
speaking, the stresses in the vicinity of the phase interfaces may deviate from
the average intrinsic stresses which are encountered by the generalized rela-
tion (5.31). This, however, is restricted by the fact that significant differences
may cause additional phase transformations, which minimize the deviations
between the stresses. Consequently, the limiting case n = 1 cannot be ex-
pected to be reached for realistic processes. As this can also not be expected
for the limiting case 7 = 0 at unlimited transformation velocities, the selec-
tions n = 0 and n = 1 are to be excluded from the considerations, so that n is
to be defined over the open set |0, 1[. It should also be noted that 1 generally
depends on the material microstructure, although it is taken as constant here
for the sake of simplicity.

The foregoing approaches are illustrated by a suggestive case study in terms
of a numerical homogenization scheme. The example is based on the concept
of a representative volume element (e.g., see Hill (1963)) for which a volume
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element of the material at the microscale is assumed to represent statistically
the material properties at the macroscale. The volume element is taken as
rectangular in shape, being fully austenitic in its initial state. In its cen-
ter, a small spherical domain is supposed to transform instantaneously into
martensite. The distribution of the single phases after phase transformation is
depicted in Figure 5.8. The calculations are restricted to infinitesimal defor-
mations, so that the Hencky strain tensor and the Kirchhoff stress tensor are
replaced by the tensors € and & denoting the respective nominal quantities
of the geometrically linearized theory. Moreover, on concentrating on purely
mechanical properties, the temperature is assumed to be constant throughout
the process of phase transformation. With equations (5.20) and (5.21), the
intrinsic strain-stress relations are then given by

o?=C:e”* and oM=C:eM -0 . (5.32)

In order to satisfy Hill’s condition (e.g., see Hill (1963) or Zohdi & Wrig-
gers (2005)) demanding the stress power at the microscale to be identical to
the stress power at the macroscale, a linear displacement into the x-direction
is prescribed at the boundary of the representative volume element. In this
regard, it may be expected that the average orientation t of the martensite
variants equals the loading direction. It is additionally assumed for simplicity
that the phase transformation initiates if the austenitic stress exceeds a given
threshold value.
The distribution of the local stress component o), after phase transforma-
tion is illustrated in Figure 5.9, whereas in Figure 5.10 the xx-, yy-, and
zz-components of the stress tensor within the center of the transformed do-
main are plotted against the corresponding strains. Both figures show that the
average magnitudes of the phase specific stresses cannot be regarded as com-
parable. In particular, the magnitude of the stress component into the loading
direction, i.e., the x-direction, instantaneously decreases on the initiation of
the phase transformation, instead of remaining constant. This reflects the
support of the transformed domain by the surrounding structure. Neverthe-
less, a moderate inelastic deformation resulting from the instantaneous phase
transformation can be observed, indicating the existence of a snap-through-
like problem. Both results support the considerations above in which the two
approaches (5.29) and (5.30) are regarded as limiting cases.
The strain-stress relations in Figure 5.10 may be predicted by the approaches
for the intrinsic stresses considered so far. In doing so, the parameter n may
be estimated and the inelastic strain arising from the phase transformation
may be analyzed. On adopting (5.31)

oM =0"—-noy , (5.33)
together with (5.322), the total martensitic strain is obtained as

eM=Cl:(c*+(1-n)0o0) , (5.34)
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Phases

Austenite
Martensite

Figure 5.8: Phase distribution inside one-fourth of the representative volume
element after phase transformation
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Figure 5.9: Distribution of the intrinsic stresses oy, after phase transformation



86 5 Phenomenological model

ol /| MPa
600 1

400 1

1= (y’z) 1l

+ simulation
—— prediction

——F ettt —————+—1 £} / %
-02 00 02 04 06 08 10 1.2 14

Figure 5.10: Strain-stress relations inside the transformation region for the
directions ¢ = (x,y, z)

such that o™ and ™ can be determined for given ¢* and &¢. Analogously,
with (5.321), the total austenitic strain in terms of o* reads

ef=C1:0* . (5.35)

Among both quantities ¢ and oo, the latter may be set equivalent to the load-
ing direction with the regard to the example considered above. Then, on noting
that the austenitic stresses are, in average, unaffected by the phase transfor-
mation, the predicted results in Figure 5.10 may be obtained, for which 7
equals 0.6. Evidently, this value is just in-between the limiting cases n = 0
and 7 = 1. Also, the inelastic strain €*™ of the snap-through-like problem
can be quantified within the underlying geometrically linear framework as

eM=eM_eA=1-mC':00 . (5.36)

This strain is illustrated in Figure 5.11. It may be inferred that for n = 1
the austenitic and martensitic strains are equivalent, which corresponds to the
Voigt bound (e.g., see Doghri (2000)). Accordingly, n = 0 provides equivalent
intrinsic stresses in analogy to the Reuf bound.

5.3.2 Total stretching

In order to derive a relation for the total stretching tensor, consider a represen-
tative volume element dv consisting of the two parts dv®* and dv™ of austenite
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-0'0

Figure 5.11: Material behavior of the single phases and phase transformation
strain e*™ arising from the snap-through-like problem due to the
phase transformation from point (1) to point (2)

and martensite under a general deformation process. The rate of change of dv
is then given by

(dv) = (dv?) + (do™M) (5.37)

with (-)" denoting the material time derivative of (-). On adopting (3.24),
(5.37) can be recast into

tr (dvD) = tr (dv® D* + do™ DM) . (5.38)

Motivated by this relation, it is convenient to define the total stretching tensor
as weighted sum of the total intrinsic stretching tensors as

D=¢DM+(1-¢)D* . (5.39)

Here, the equality of the intrinsic densities is exploited, so that the volume
fractions and mass fractions coincide. The intrinsic stretching tensors may be
derived from the intrinsic Hencky strain tensors by virtue of the logarithmic
rate. In this context, the total thermoelastic austenitic strain may be obtained
from equations (5.8), (5.11), and (5.28) as

h*=C':7*+a(®—-6¢) . (5.40)
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Analogously, application of (5.21), (5.25), and (5.31) shows that

BM=C':(+* + (1 - 1ot)+ a2 (®—6p) . (5.41)
Taking the logarithmic rate of these quantities then gives

DA=C!:728 L a© (5.42)
for austenite and

DM =C™':7ALE L @ 4 (1 —n)7pC ) : tlos (5.43)

for martensite. Evidently, equation (5.42) can be replaced in (5.43), which
provides a relation for DM in terms of D* as

DM =DA 4+ (1-n)nCl:tle (5.44)

It may be inferred that both intrinsic stretching tensors are equivalent for
purely thermoelastic deformations. This is in accordance with experimental
data provided by Sittner et al. (2006b) obtained during a neutron diffraction
analysis. Since the austenitic phase is assumed to be purely thermoelastic, it
follows for the elastic part of the martensitic stretching tensor that

Del M = DA . (5.45)

Up to this point, phase transformations are not included into the total stretch-
ing tensor. In this regard, equation (5.39) is amended by a term D** to express
transformational stretchings

D=¢(DM+(1-6)D*+ D . (5.46)

Motivated by the previous section, D is set proportional to the local inelas-
tic deformations considered in (5.36), and it is related to the corresponding
amount of martensite nucleating during the ongoing phase transformation as

DY =€ [(1-n)C™' 7] . (5.47)

On substituting equations (5.44) and (5.47) into (5.46), the total stretching
can then be recast into

D=DA+£(1—-77)TOC_1:%L°g+(1—1))'roC—l:té . (5.48)

The first term on the right-hand side expresses total thermoelastic deforma-
tions of the material, i.e.,

D =D* | (5.49)
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whereas the second and third terms account for deformations arising from
reorientations of the martensite variants and from phase transformations, re-
spectively. The latter terms describe inelastic deformations as

D" =£(1-n)7C  tle 4+ (1—n)7oC 1t . (5.50)
Thus, D can additively be decomposed into
D=D"+D" . (5.51)

It should be noted that the inelastic stretching tensor introduced here does not
account for inelastic deformations resulting from damage or plasticity. Nev-
ertheless, on defining an additional adequate stretching tensor which is added
to (5.50), these deformations may be included. It also bears emphasis that the
derivations leading to equations (5.42) and (5.43) underlie the assumption of
identical logarithmic spin tensors for austenite and martensite. This may be
justified on assigning both phases to the same material particle.

5.3.3 Total stress and total stress rate

The total stress tensor may be obtained from equation of state (4.82;) as

7 =p,C: %”’ . (5.52)
Replacing (5.3), (5.9), as well as (5.12), and noting (5.10) and (5.11) lead to
arh ar™
— (1 — AL YT M, Y7
T=01-&7": e +€T el (5.53)
Moreover, from the approach (5.31) for the martensitic stress follows that
orM oA arM
= o7 and 9k = I . (5.54)

Substitution of (5.54;) into (5.53) and differentiating the result with respect
to T thereafter then yields, along with (5.543), to

or arh
5K = B (5.55)
Here, use is made of the identity
o2rh a fort
arA0r = Br (B't'_A) =0 (5.56)

with @ denoting the fourth-order zero tensor. In addition, since D¢ = D4, it
may be deduced that

ot

s =1 . (5.57)
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Accordingly, the following identities hold true

orM oA
or ~or - (5.58)
Application of (5.53) then shows that the total stress equals the weighted

phase specific stresses

r=(1-87r2+eM . (5.59)
With (5.31), the austenitic stress becomes
™ =1 +nfnt (5.60)

whereas the martensitic stress takes the form
M=r—n1-8mt . (5.61)

In regard of the preceding findings, the total stress rate can be quantified.
Taking the logarithmic rate of (5.60)

:;_Log=;.Anog_né7.ot_n§7_0§1.og , (5.62)

solving (5.42) for the austenitic stress rate, and substituting the result into (5.62)
yields

$LosZC: (DA - ad) —nroté —nEm i . (5.63)

This can be rewritten on employing (5.48) as
Tl —C: (D—-aé)—Toté—-fTo‘:LOg . (5.64)

Equation (5.64) expresses the total stress rate in terms of the total stretching
tensor, the temperature rate, and the rates of the internal variables.

It bears emphasis that, with the relations for the total stretching tensor and
the total stress tensor at hand, and in agreement with (4.32), the total stress
power defined in (4.58) can additively be decomposed into an elastic part and
an inelastic part according to

1 .
pi=—1-‘r:D=— [(1—§)T‘°‘+§TM] : [De'+D'“]
Po Po
1 _A.pA 1 M.pem, 1 in (5.65)
=(1-&—7*:DA+—™M: DMy — 7D
Po Po Po

= (1 =€) pf* +Ep™ +pi” = pf! + pi°

Here, use is made of equations (5.45), (5.49), (5.51), and (5.59). pf' and pi"
denote the elastic and inelastic stress power, respectively.



5.4 Equilibrium states 91

5.4 Equilibrium states

If the total stress is taken as externally controlled quantity, the minimum of
the total specific Helmholtz free energy in a state of equilibrium is governed
by the following constraint minimization problem (see (5.3) and (5.59))

(1-8v* +EyM +€(1-€ A > min (5.66)
subject to
r=(1-6)7r+erM . (5.67)

Therewith, the coherency coefficient A can be estimated. In this context,
A(©, t) is replaced by the more general formulation A(©, 74, 7M) which re-
flects that the elastic misfits and elastic interactions of the single phases af-
fecting the interfacial energy are dominated by the local stress field. Then, on
adopting the method of Lagrange multipliers in the same line as demonstrated
in Miiller (1989), the constraint minimization problem above can be recast
into the relaxed minimization problem of the form

‘C(@’ TAa TM, E) = (1 —€)¢A +£¢M +€(1 _E)A
“ A [(1 —&) A 4™ —’r] —min . (5.68)
The second-order tensor A denotes the Lagrange multiplier. As the solution

of problem (5.68) requires zero partial derivatives of £, the derivatives with
respect to the intrinsic stresses, expressing the mechanical equilibrium, give

oc L _ l A ;-1 afi
A =0 = A—po-r :C +£—aTA
_ (5.69)
oL 1 _ _1_ M, =1 _ 0A
BTM—O = A—por :C77 + (1 §)—aTM
and equating both relations yields
dA BA _ 1 A My, -
1-8 pymv £ 575 = 7o (r 7):C . (5.70)

It may be expected that, on the one hand, the intrinsic stresses affect the inter-
facial energy in a similar manner and that, on the other hand, their influences
are governed by the internal material structure. In this vein the following
equivalences may be assumed

_| 64
~|lorM

24
orA

0A
ot

(5.71)
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They provide two approaches for the partial derivative dA/8t which differ in
the sign. Considering first the case

9A 04 _ 9A
ot  orM  arA

together with relations (5.25) and (5.31) for the martensitic stress, yields

(5.72)

%:[ﬁgnmt:(ﬁ_l] 1_125 . (5.73)
The step between equations (5.70) and (5.73) may mathematically be regarded
as substitution (74, 7™M) — t. Obviously, the derivative DA/8t is singular
for £ = 0.5 and it changes its sign in the vicinity of £ = 0.5. Since this result
may not be regarded as physically sound, (5.72) is replaced by the alternative
approach for 0A/0t as

A _HA _ 0BA

gt  orM orA (5.74)
which provides the constant expression in &
0A 1 -1
E = poﬂTot :C . (5.75)
Integration of (5.75) with respect to t then gives
A=i-1)7'ot:C'1:t+ao . (5.76)
2 Po

with the integration constant ao(©) possibly depending on the temperature.
The dependence of A on 79 and t demonstrates the explicit property of the
coherency coefficient as being directly related to the internal structure of the
material. However, since C is isotropic and t is deviatoric and normalized,

such that
C':t=-t and t:C':t=—— ,
2u 2u

A turns out to be independent of t. With respect to the temperature depen-
dence of A it is then assumed, in line with Raniecki et al. (1992), that A is
linear in ©. Accordingly, the coherency coefficient takes the form

A=A+ A0 |, (5.78)

(5.77)

with the material parameters A; and A..
The partial derivative of the minimization problem (5.68) with respect to &,
reflecting phase equilibrium, reads

?9_?=o = M -PA+(1-20A-2: (M- =0 . (579)
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From this equation, an explicit relation for the mass fraction of martensite can
be formulated. Employing (5.692), along with (5.61), (5.74), and (5.75), gives
the Lagrange multiplier X\ as

A=Lr.ct . (5.80)
Po

Then, with equation (5.31), (5.79) can be rearranged into

1 To

§=ﬂ[¢M—¢ +Zp0 :t+A} : (5.81)

It should be noted that (5.81) expresses the evolution of £ if the material un-
dergoes a sequence of equilibrium states. This, however, does not hold true for
general processes of phase transformation as these processes are characterized
by a sequence of meta-stable, in particular non-equilibrium states (cf. Miiller
& Xu (1991)).

5.5 Thermodynamic consistency

For the description of general deformation processes, the preceding relations
have to be complemented by constitutive equations for the heat generation
and conduction as well as for the internal variables, namely the mass fraction
of martensite £ and the average orientation of the martensite variants t. In
doing so, the restrictions imposed by thermodynamics have to be obeyed to
ensure physical consistency as considered in Section 4.4. In this regard, the
Clausius-Duhem inequality as crucial thermodynamic relation is first specified
to the equations which have been derived in the preceding sections. Then, the
transformation kinetics, the reorientation of the martensite variants, as well as
the heat generation and conduction are considered. Throughout this section,
the variables 7, ©, £, and t are taken as independent in line with the principle
of equipresence stated in Section 4.4.

5.5.1 Clausius-Duhem inequality

As £ and t are the only internal variables within the general set ¢, the local
form of the Clausius-Duhem inequality (4.83) reduces to

P in d’ 1/) 1
D="—71:D" - + = —q-VO>0 . 5.82
PoT [656 eq - ( )
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With equations (5.3), (5.9), (5.12), and (5.78) the partial derivative of ¢ with
respect to £ can be determined as

%% =t + (1= orh i %
+¢M+§%TM :C™ 8;-;“ +(1-28A , (5.83)

whereas the partial derivative of 1 with respect to t reads

@_(1_5)— A.c? 6; +£— M.c!: a;_:« (5.84)
Adopting (5.60) and (5.61) yields

Q%:nrot and %=77Tot , (5.85)
as well as

ag—::gnfoﬂ and %=—(1—£)7)T01[ . (5.86)

Therewith, together with the relations (5.31), (5.59), and (5.77,), the partial
derivatives of 1 can be recast into

oY _ nm . M A _

5 =2p Tt -vt (1204 (5.87)
and

o _n'w

3 = 2500 E(1- 8t . (5.88)

Thus, substituting (5.50), (5.87), and (5.88) into the Clausius-Duhem inequal-
ity (5.82) and noting the identity

t:tlo8 =0 (5.89)
which directly follows from definition (5.25;), give
P ez, P _t %Log_ 1
D=-— + =7 :t°%—-—q-VO>0 . 5.90
o £ p” 54 > (5.90)

7¢(1, ©, §, t) and 7t(T, O, £, t) denote thermodynamic forces driving phase
transformations and reorientations of the martensite variants. They are de-
fined as

52 Tt +po (PP — M — (1-2¢) A) (5.91)
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and

at=¢ (1—“2%’2 T . (5.92)

On substituting (5.9) into (5.91), along with equations (5.31) and (5.60), 7*
can further be specified to

e_(A=mw0 . 1 _on (T, 4 _
T = o T:t—(1-2§) ( Y + po + po (Aug — © Asp)
(5.93)
with
Aug =ub —ud)' and Aso=sg —s) . (5.94)

To ensure physical consistency for the subsequently regarded constitutive equa-
tions, it is supposed that the Clausius-Duhem inequality may be written in a
stronger form as

D=D_+Dic+Deon 20 , (5.95)
with
¢ P qeg >0
loc Po T E
Dt =L gt .tlos > (5.96)
Po

1
con— —~ Q" >
D 54 Vo 0

This formulation practically uncouples the convective dissipation and the local
dissipation arising from phase transformations and reorientations.

5.5.2 Processes of phase transformation

In agreement with the phase transformation formalism proposed by Raniecki
et al. (1992), the thermodynamic driving force associated with phase trans-
formations from austenite to martensite (A — M) and from martensite to
austenite (M — A) is prescribed by two phenomenological functions k*~M(¢&)
and kM—4 () for each transformation process as

kA M and Af=EMTA (5.97)

Both functions are to be defined in this way, that the rate of the entropy pro-
duction during processes of phase transformation is non-negative. In doing
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A-M M—o A
kA—M >0 gM—A <0
P_Ig kA—»M = 00 Eli_I.I(l)kM_'A = —00
kA—»M|£=0 =0 kM-A|€=1 =0
3"2? >0 6’“:: >0

Figure 5.12: Constraints for k2~M(¢) and kM4 (¢) over € € [0, 1]

so, it may be inferred from inequality (5.96;) that 7% is non-negative for the
A — M phase transformation for which.é > 0, whereas it is non-positive for
the M — A phase transformation with £ < 0. Together with relations (5.97),
this requires that ¥*~M and k™4 are non-negative and non-positive, re-
spectively. Also, as complete phase transformations do generally not occur for
natural processes (see Miyazaki et al. (1981), Brinson et al. (2004), Schmahl
et al. (2004)), the absolute value of the driving force for phase transformations
may be regarded as large at the end the forward and reverse transformation
processes. This can mathematically be realized on demanding the limiting
values of kA~M and kM~ to reach infinity and minus infinity for £ — 0 and
§ — 1, respectively. Additionally, formal constraints may be imposed on stip-
ulating that 7€ vanishes for initiating phase transformations and that £*—M
and kM~4 increase monotonically in £.

The preceding considerations lead to the set of constraints over £ € [0, 1] sum-
marized in Figure 5.12. They may be fulfilled by the following phenomenolog-
ical functions

KN =—a " m(1-+at (5.98)
and

M) =a2(1-" (@) —2(1-6) (5.99)
in which a; > 0, b; > 0 and ¢; > 0 with i = (0, 1) denote material parameters.
These functions are exemplarily depicted in Figure 5.13.

Based on relations (5.97) and on also taking into account states beyond phase
transformations, phase transformation functions f°(n®, £) with @ represent-
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kﬁ

kA—‘M kM—bA

Figure 5.13: Phenomenological functions and

ing A — M and M — A may be introduced as:

5 7 —kA~M < for A — M transformation
ff= Mo A (5.100)
-+ EM=A <90 for M — A transformation

These functions separate processes of phase transformation from all other pro-
cesses such as thermoelastic or reorientation processes.?® Thus, with (5.97),
necessary criteria for the initiation of phase transformations read:

Transformation A — M: fA~M =g
(5.101)
Transformation M — A: fM-A =

They prove particularly to be necessary but not sufficient, as they are restricted
to a current material state and do not consider the current deformation process.
Hence, the rates of the phase transformation functions are additionally to be
analyzed. In this context, it follows from (5.101) during each process of phase
transformation that

ff=o0 |, (5.102)
or, equivalently, that

=k, (5.103)

29Note the analogy to the classical theory of plasticity in which the phase transformation
functions correspond to yield functions governing the initiation of plastic deformations.
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i.e., fP is stationary during phase transformations.3® This finding may be
employed to derive an evolution equation for the mass fraction of martensite.
On quantifying #¢ and k” as

€ o]
irf=%’fr_:rL°g+gi@e+% t‘*°8+%’; (5.104)
and
P i
P = 3 ’ (5.105)

it turns out, however, that such a derivation requires the determination of an
evolution equation for the average orientation of the martensite variants at
first. In doing so, the analysis of the correction of t during processes of phase
transformation may be helpful. More precisely, during a particular phase
transformation process, only these martensite variants are activated which are
consistent with the current stress direction (e.g., see Sittner et al. (2006b)).
Then, if the stress direction changes during the process of phase transforma-
tion, the orientation of the newly activated martensite variants differs from
the average orientation of the already existing variants, such that t has to be
corrected by a new averaging procedure. In this context, consider a state of the
material at time ¢ for which the mass fraction of martensite and the average
orientation of the martensite variants are given by £|, and t|,. Assume that
the material at time ¢+ At is loaded into a different direction than t|,, leading
to the nucleation of the mass fraction of martensite A§ = §[,, A, — £|, into the
current stress direction s|,, ,, as regarded in (5.26). The average orientation
of the martensite variants at time ¢ + At then becomes

£, t], + A S|t+At
€lirae

tleae = (5.106)

On taking the limit At — 0, the total derivative of t with respect to £ can be
obtained as
t -t -
ﬁ = lim |t+At |t — s—t
d¢ Ac—o JAYS 3

(5.107)
Thus, the correction of t during a process of phase transformation is accounted
for by the evolution equation

s—t
Tg . (5.108)

30In regard of the analogy to the theory of plasticity, (5.102) may be considered as con-
sistency criterion during A — M and M — A phase transformations.

(]
tLog —
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A correction of the average orientation of the martensite variants is only nec-
essary if new martensite variants nucleate, i.e., during an A — M phase trans-
formation. For the M — A phase transformation, however, t may be regarded
as constant. Hence, the evolution equation for the average orientation of the
martensite variants reads

tlos — AB¢ | (5.109)
with:
s—t .
3 for A — M transformation
A° = £ (5.110)
0 for M — A transformation

With this finding, a rate equation for the mass fraction of martensite can now
be quantified. On substituting (5.104), (5.105), and (5.109) into (5.103) this
rate equation reads

£ = .o (5.111)
dk? _on® _omt 5 '
d¢ 98¢ ot

with #¢ | ) denoting the rate of the driving force at constant £ and constant t
and being defined as

£ §

& _0m oneg, 9T o 5.112

n|m) P L 2T O (5.112)
The latter quantity particularly complements the criteria for the onset of phase
transformations given by (5.101), as an ongoing phase transformation process

requires 1'r€| €.v) O be positive or negative for A — M or M — A phase trans-

formations, respectively. Consequently, the complemented criteria (5.101) be-
31
come:

Transformation A — M: fA~M=0 A 7'r€|(£ 0 > 0
' (5.113)

Transformation M — A: fM=A=0 A <0

ﬁ’gl(ﬁ,t)

To conclude the derivations of a constitutive equation for £, the derivatives
necessary to quantify (5.111) are left to be evaluated. With respect to (5.78)
and (5.93), the rate of the driving force at constant £ and constant t takes the
form

€ (1-=m)70,  oLog :
=-—4: - 1- A A 5.114
T €0 5, T po ((1—2&) Az + Asp) © ( )

31Within the context of the analogy to the theory of plasticity, the additional criteria may
be regarded as loading conditions.
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and the partial derivatives 87°/8¢ and 07¢ /8t become

ot  np*7é
B " 24 +2p0 (A1 + A2 0) (5.115)

and

ont _ (1-—17)7'01_
ot~ 2pu

(5.116)

Moreover, evaluating the derivatives of the phenomenological functions kA—M

and kM~ with respect to £ gives
dkA—.M a) Ebl b1 —1
T = 1—¢ —a1bi € In(1-¢)+a (5.117)
and

dkM—A gy (1 —¢)*2
dg §

The constitutive equations considered above satisfy the restrictions imposed
by thermodynamics, i.e., they comply with the Clausius-Duhem inequality
in terms of inequalities (5.96,,2). In particular, with the restrictions of the
phenomenological functions kA~M and kM~ stated in Figure 5.12, inequal-
ity (5.961) is identically fulfilled for the evolution of the martensitic mass
fraction. Moreover, on recalling (5.92), inequality (5.962) becomes

—a2b(1-62""In)+c2 . (5.118)

Dioc = ﬁ § (I_TZ)T—" TitE>0 . (5.119)

With the property of t being deviatoric, together with the definition of s
in (5.262), this inequality can be recast into

Po 2p

The expression in the parentheses is non-negative in general. It is, thus, left
to ensure that

Dioc = (ﬂ gl=Mm I‘r'l) s:tl8>0 . (5.120)

s:tE>0 | (5.121)
or, equivalently with (5.109), that
s:APE>0 . (5.122)

Along with (5.110), this inequality is identically fulfilled for the M — A phase
transformation. For the A — M phase transformation, for which £ > 0, the
proof of the thermodynamic consistency reduces to

(1-s:t)>0 , (5.123)
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which is identically fulfilled as
-1<s:t<1 . (5.124)

For the particular loading case of radial loadings, relations for the initiation
and conclusion of phase transformations in terms of the respective critical
stresses Tﬁ, can explicitly be derived from (5.97). In doing so and on replacing

relations (5.26) and (5.93) into (5.97), these critical stresses read
2.2
B _ _28p0 — n 7o _ 8
Teq = 1-n) [(1 2¢) (4pp0 +A) Aug +OAso+k ] , (5.125)

where the equivalent stress measure 7Teq is defined as

Teq = |7'| . (5.126)

Then, with (5.78) and on noting that the functions k? only depend on &,
differentiation of (5.125) with respect to © gives

61-& _ 2ﬂpo
00 (1-7n)7o

[(1—26€) A2 + Asg] . (5.127)

It may be deduced that, since (5.127) is constant in temperature, the stress
necessary to induce phase transformations increases linearly with increasing
temperature. This is in accord with the Clausius-Clapeyron-like relation con-
sidered, e.g., in Ortin & Planes (1989), Shaw & Kyriakides (1995), and Hayashi
et al. (2004). Figure 5.14 exemplarily shows the stresses plotted against the
temperature at the initiation and conclusion of A - M or M — A phase

B

Teq Mf Ms As Af
N
21 po
Tomm T8l
1
. . . i e
M§ M§ A} A

Figure 5.14: Transformation stresses plotted against the temperature
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transformations, i.e., for £ = 0 and £ = 1.32 These curves reflect the stress
dependence of the transformation start and finish temperatures M® and M
for the A — M transformation and of the transformation start and finish tem-
peratures A° and Af for the M — A transformation. M§ and A§ may directly
be estimated from (5.125) in the absence of stress by setting ‘Te% and k? equal
to zero. It should also be noted that, since the proposed constitutive model is
concerned with pseudoelasticity, only temperatures above Af are in the focus
of the present considerations.

5.5.3 Processes of reorientation

In the preceding section, an evolution equation accounting for the correction
of t during phase transformation processes is proposed. This relation, how-
ever, does not account for reorientations of formerly activated variants during
general loadings, as it is based on a reconducted averaging procedure of t
for newly activated variants. In this sense, the preceding considerations are
complemented in this section by a constitutive relation for t in the case of
reorientations of the martensite variants.

Raniecki et al. (1992) set the average orientation of the martensite variants
parallel to the current direction of the stress deviator to provide a suggestive
approach for t. This approach is essentially based on the experimental obser-
vation, that only these martensite variants are activated during radial loadings
which are preferred by the respective loading direction. On changing the cur-
rent stress direction, the approach also implies that the average orientation
of the martensite variants changes accordingly, in particular instantaneously.
In this case, both, the loading direction and the martensite orientation re-
main parallel throughout the processes of deformation. It may, however, be
inferred from experiments concerned with biaxial loadings of polycrystalline
NiTi shape memory alloys carried out, e.g., by Lim & McDowell (1999) and
Grabe & Bruhns (2008) that the preceding assumption is to be regarded as
rough approximation, i.e., the loading direction and the martensite orienta-
tion should not be assumed parallel for general loadings. In this regard, a
circle-shaped test conducted by Grabe & Bruhns (2008) spanning all axial
and torsional quadrants is exemplarily analyzed more in detail. The biaxial
experiment is carried out at a strain controlled rate of 10~2s™! under quasi-
isothermal conditions. The results are shown in Figure 5.15 for the prescribed
axial/torsional strains and in Figure 5.16 for the material response in terms of

32The microstructure at the end of the pseudoelastic hysteresis is generally not completely
martensitic, as it is known from experiments (see Miyazaki et al. (1981), Brinson et al.
(2004), Schmahl et al. (2004)). The exact determination of the actual mass fraction
of martensite, however, requires sophisticated experimental methods such as neutron
deflection or synchrotron radiations (see Bourke et al. (1996), Sittner et al. (2004), Sitepu
et al. (2003)). In this sense, the assumption of a complete phase transformation, i.e.,
the selection £ = 1, is to be regarded as limiting case, until reliable data are available.
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Figure 5.15: Combined circle test; prescribed axial/torsional strains
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Figure 5.16: Combined circle test; results for axial/torsional stresses
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the axial/torsional stresses. In both diagrams, the arrows indicate the loading
path. € and o denote the tensile strain and the tensile stress, whereas v’ and 7/
are defined as

v = % and 7' =v37 , (5.128)

with v and 7 representing the measured shear strain and shear stress, respec-
tively. Note the asymmetry of the axial/torsional stresses in Figure 5.16. It
reflects the asymmetric transformation behavior of the material well-known
as tension/compression asymmetry. Points (1) to (5) denote the loading se-
quence. They particularly represent same points in time within both dia-
grams and can, thus, directly be associated with each other. From this, Grabe
& Bruhns (2008) infer that the stress-stress curve is somehow rotated with
respect to the strain-strain curve. In other words, it seems that the stress-
stress curve anticipates the prescribed strain-strain curve to some extent. The
foregoing can also be observed in Figure 5.17 in which the angles d. and 4,
introduced in Figures 5.15 and 5.16 are plotted against the experimental run-
time. It may be concluded from the foregoing that the average orientation
of the martensite variants and the stress direction are not parallel, i.e., there
exists a degree of freedom between t and s which may be encountered by the

§:/°
400 T

300 +

200 -

100 T

0 50 100 150 200

Figure 5.17: Angles §. and §, introduced in Figures 5.15 and 5.16 plotted
against the experimental runtime
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reorientation function r(t, s) of the form
r=t:s>19=const . (5.129)

Here, ¥ denotes a material parameter within the domain || < 1. The equality
in relation (5.129) as limiting case states that the projection of s on t remains
constant throughout a process of reorientation, such that the maximum ad-
missible deviation between s and t is restricted by 9. In this sense, it may be
inferred that for ¥ = 1 the orientation of the martensite variants and the stress
direction are parallel, in particular identical during all deformation processes,
as it is assumed in the work of Raniecki et al. (1992).

With r at hand, a first criterion for the initiation of reorientations is given by

r=t:s=9 . (5.130)

It represents a necessary criterion, as it solely reflects a current state of the
material and not the current process of deformation. This criterion has, thus,
to be amended by the evolution of r which takes the form>?

F=t:8lo8 fg:tlos (5.131)

If reorientations are not initiated, the rate of t is governed by phase transfor-
mations expressed by (5.109). In this case, + reads

F=t:s84+s:AE . (5.132)

If (5.130) additionally holds and 7 as in (5.132) is negative, inequality (5.129)
would be violated. This, however, is impeded by the initiation of reorienta-
tions. More precisely, t is adjusted through reorienting martensite variants
in this way, that r remains stationary. Then, (5.130) holds throughout the
process of deformation and, thus,

F=t:sloe g tlos—q | (5.133)

Contrariwise, if (5.130) holds and 7 in (5.132) is positive, inequality (5.129)
will be obeyed and reorientations do not initiate. Consequently, the criteria
for the initiation of reorientations of the martensite variants take the form

r=9 A t:s®4s:APE<0 . (5.134)

An additional criterion results from the requirement of a sufficient stress mag-
nitude to induce reorientations. In the case of pseudoelasticity, this is to be
regarded as being implicitly fulfilled.

=} .
33Here, the identities s : t "% =s:t and t : $1°8 = ¢ : § are used.
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A formalism for exploiting inequality (5.129) may be obtained on expressing t
and s in their spectral representations as

3 3
t = Z t; T; and s= Z 8:S; . (5.135)
i=1 i=1

t; and s; denote the eigenvalues of t and s, and T; and S; are the respective
eigenprojections. For distinct eigenvalues, the latter can be written in terms
of the eigenvectors t; and s; as

T, =t; ®t; and S;=s;:®s; . (5.136)

Here and henceforth, the subscript ¢ equals (1, 2, 3). The reorientation func-
tion then becomes

3
r=> tim 29 with mi=s:T: , (5.137)

i=1

leading for a process of reorientation to

3
t:s=9 = > tir=9 . (5.138)

i=1

Also, the property of t being deviatoric gives
tr(t) =0 = 23: t;=0 , (5.139)
i=1
whereas the property of t being normalized yields
t:t=1 =

t2=1 . (5.140)
1

3
i=
Consequently, for known eigenprojections T, the eigenvalues ¢; can explicitly
be determined from equations (5.138) to (5.140) during a process of reorien-
tation. A deeper insight into this solution may be obtained on adopting the

relation

2 . (2w
t; = \/; sin (% - ac) , (5.141)

which identically fulfills (5.139) and (5.140). Therein, a. represents an inde-
pendent variable which uniquely governs all eigenvalues of t. In this context
and on substituting relation (5.141) into (5.137) as

3
2 ) 271
r= \/; ,-Ezl sin (T - at) >0 (5.142)



5.5 Thermodynamic consistency 107

the reorientation function can graphically be illustrated in terms of a if the
coeflicients r; are held constant. For the sake of simplicity, the case of t and s
being coaxial is considered first. The coefficients r; then reduce to s;, such
that the reorientation function becomes

3 )
2 . (2w
r= \/; E sin (—3— - at) 829 . (5.143)

i=l
For constant s;, (5.143) is visualized in Figure 5.18. It may be inferred that

r
107

0.5 4

0.0

-0.5 ¢  __ coaxiality N

---- non-coaxiality

-104

N -
.....

Figure 5.18: Reorientation function r for the cases of coaxiality and non-
coaxiality of t and s; r is shown for two different sets of pa-
rameters r; in the absence of coaxiality.

the solution of (5.138) for a; is not unambiguous in general if |¢| < 1, which
is indicated by the points (1) and (3). This ambiguity may be resolved on
ensuring the rotation direction between t and s to be maintained within the
principle space during reorientation processes. It can also be observed that
the maximum value of 7 equals 1 as indicated by point (2). In this case, the
eigenvalues of t and s are equivalent and, thus, along with the coaxiality of
t and s, both tensors are parallel, in particular identical. Analogously, the
eigenvalues ¢; and s; deviate by their sign for r = —1.

Altogether, since 9| < 1, a solution of (5.138) always exists for coaxiality
of t and s. This, however, is not the case in the absence of coaxiality. More
precisely, if t and s are not coaxial, the maximum value of r is always smaller
than 1, such that a solution of (5.138) is not necessarily guaranteed. This
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fact has to be considered in deriving a constitutive equation for the eigenpro-
jections of t. In the following, however, coaxiality of t and s is postulated
for simplicity. It should be noted that this postulation implies the eigenpro-
jections of t to change instantaneously on changing the eigenprojections of s
during non-proportional loadings, even for the case of pure phase transforma-
tions as considered in the previous section. Although this behavior expresses a
reorientation process of the martensite variants to some extent, the term reori-
entation is restricted in the following to the case in which the criteria (5.134)
are fulfilled.

Along with equations (5.262) and (5.130), the thermodynamic force driving
phase transformations given in (5.93) simplifies during reorientations to

1-7n)709 ’ 13
wt = L2001 - (12 26) (T2 4 o) + o (Ao — 0 80)

(5.144)

On employing the same formalism as in the preceding section, the evolution
equation for the mass fraction of martensite can then be derived as

_ e
T

de - o¢

A—M
E, k

£ = (5.145)

The derivatives of 7 , and kM~* with respect to £ are given by equa-

tions (5.115), (5.117), and (5.118), whereas the rate of the driving force at
constant £ reads

¢ ot .
€] — . Logl ©
T lf or T 00
(5.146)

_ _27270—19 s: 718 — po ((1—26) Az + As0) ©

It may, thus, be inferred that the criteria for the initiation of phase transfor-
mations in the case of reorientations take the form:

Transformation A — M: fA"M =0 A ‘fr5|€ >0
(5.147)
Transformation M — A:  fM~A =0 A 49 ¢ <0

Finally, the thermodynamic consistency of the reorientation approach is left
to be analyzed, i.e., the approach for t has to obey inequality (5.962) or,
alternatively, the relation (see inequality (5.121))

oL
s:t >0 . (5.148)
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In this context, equation (5.133) provides the identity

s:tLo8 = _; glos (5.149)

which holds true during reorientation processes. In addition, the sufficient
criterion (5.1342) for the initiation of reorientations demands

t:s84+s:APE<0 . (5.150)

As the second term on the left-hand side of this inequality is non-negative (see
inequality (5.122)), it follows that

t:se <0 . (5.151)

Consequently, along with (5.149), inequality (5.148) is fulfilled in general, such
that the approach for t considered in this section satisfies the criteria for
thermodynamically consistency.

5.5.4 Processes of heat conduction and heat generation

Equations are introduced in Section 4.5 describing the thermomechanically
coupled material behavior during processes of deformation in its general form,
i.e., in terms of the heat conduction, the heat exchange, and the heat gener-
ation. In this regard, constitutive equations for the heat conduction and for
the rate of heat generation are left to be defined.

Heat conduction

In the context of a phenomenological theory, the conduction of heat may be
encountered by Fourier’s law of heat conduction (cf. Mills (1999))

q=-kVO . (5.152)

The material parameter k is referred to as thermal conductivity. For most

materials, it may be taken as constant and positive. In this case, Fourier’s law
of heat conduction identically fulfills the dissipation inequality (5.963) as

1 1

Deon = —=q-VO = =

con =) q =)

and it, thus, can be regarded as thermodynamically consistent. (5.152) states

that the transport of heat is linked with the steepest descent of the temperature

field, i.e., heat can only be transferred from warm to cold. Substitution of
(5.152) into (4.91) then leads to the heat conduction equation of the form

kVO.-VO>0 |, (5.153)

Cép= V- (kve)+7'p+Qgenp . (5.154)
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Heat generation

The term ggen in equation (5.154) accounts for the specific heat generated
during processes of deformation. It may be specified on adopting (4.101),
with € and t being the only internal variables in the general set {. Then, noting
that the tensor of thermal expansion coefficients given by equations (5.52) and
(5.113), leads to

2
Qgen=@( 621/} —lal):‘?'LOG—F(@ Y _6_¢)£

009¢ 0O¢

621»[) a¢ . oLog 1 in
The derivatives of ¢ with respect to £ and t are formulated in (5.87) and (5.88).
In particular, with equations (5.9), (5.31), (5.60), and (5.78), the deriva-
tive (5.87) takes the form

oY _ (nz o + (A1 + A2 G)) (1-2¢8)— Aup +9OAsp . (5.156)
¢ 4pp0
Therewith, the following mixed partial derivatives can be obtained
OV (1 264z + As (5.157)
90 0¢ ~ 2T '
and
0%y
55 =0 - (5.158)
Moreover, application of relations (4.822) and (5.11,) shows that
%y
5= =0 - (5.159)

Consequently, on substituting equations (5.50), (5.88), and (5.156) to (5.159)
into relation (5.155), and on recalling (5.771) and (5.89), the specific generated
heat can be written as

dgen = (l;en . 7 Log 4 qge,.é + Cl;en : zLog , (5.160)
with
Qgen = —p—loael
< _1-m_ n’° 73
Ggen = 21 g ToT:t — (41“)0 +A1) (1-2&)+ Aug (5.161)
=t 1-7
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The quantities qg,,, q"ée,,, and q;en govern the specific generated heat related
to stress, mass fraction of martensite, and reorientation of the martensite
variants, respectively.

5.6 Summary of the material model

This section summarizes the essential relations of the proposed material model.
Basic equations of the model, e.g., concerning the stress rate and the gener-
ation of heat are given in Figure 5.19. The constitutive equations for the
internal variables as well as the criteria for phase transformations are reflected
in Figure 5.20 for, both, in the absence of reorientations and under reorien-
tations. The two cases are separated by the reorientation criteria listed in
Figure 5.19.

e Stress rate:
Q

L : : fL
7% = :(D—a@)—Totﬁ—E‘rot o8
e Heat generation:

_ o . _ o
Ggen = q;en . 4 Log + qgen £+ q;en . tLos

with:

1-17 7’18
£ Y - —
Qgen — ToT : t (4#'00 + A1) (1-28) + Auo

Ghen = 575 6T

o Phenomenological functions driving phase transformations:

KA TME) = —a1 €2 In(1 - &) + 1 €
M2 ) =a2(1 -6 In(€) —c2(1 - €)

e Coherency coeflicient:
A=A+ A0

e (Ciriteria for reorientations:

r=49 A t:§L°g+s:Aﬁé<O

Figure 5.19: Summary of the material model
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(a) Constitutive equations in the absence of reorientations

¢ Thermodynamic force driving phase transformations:

1— 2.2
= %T:t— (1 —2&)(774;0 +p0A)+Po (Auo — © Aso)

e Criteria for phase transformations:
. § _ LA—M X
A-M: nf=k A7 >0
X € _ L.M—A ¥
M- A: =k A 7r|(£,t)<0

e Constitutive equations for the internal variables:

. 4 3 3 -1
i = ﬁ_el dk” 9n* 8r . AP
(€, ¢t)

d¢ 8 ot
tlos — AP
with:
AP = (s—t)¢! forA—-M
- 0 forM— A

t and s coaxial

(b) Constitutive equations under reorientations

¢ Thermodynamic force driving phase transformations:

_ 2_2
= (1_2727-_0_2 |1"| -(1-2¢) (77 70 + poA)-l—po (Aug — © Asg)

dp
e Criteria for phase transformations:
A-M:  af=pM oA @ >0
M—A: 78 = kM—A A fr5£<0

e Constitutive equations for the internal variables:

el (kP arf\T
=+ (% - %)
3

3
9 Zti=0 Z?=1
i=1

i=1

O
.
[
-
I

t and s coaxial

Figure 5.20: Summary of the material model (cont’d)
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Some basic characteristics of the proposed material model are illustrated in
this chapter. The aim is to asses the reliability of the constitutive assump-
tions for complex loadings and the applicability of the constitutive equations
for structural simulations. In this context, the material model is implemented
into the commercially available finite element environment MSC.Marc/Mentat
whose basic properties are addressed in Section 6.1. Section 6.2 is concerned
with a calibration of the material parameters and a comparison of numerical
results with experimental measurements. As experimental data are generally
given in terms of nominal quantities like nominal strain and nominal stress the
calibration and implementation are restricted to a geometrically linear frame-
work. Finite deformations are then regarded in Section 6.3 in which a fully
thermomechanically coupled finite element analysis of a structural example
in terms of a testing specimen for experimental measurements is conducted.
Complementary to the geometrically linear framework, special attention is
in this section on the incremental objectivity of the integration procedure to
satisfy the principle of material frame indifference from a numerical point of
view.

6.1 Introduction

Mathematically, the kinematic and static relations, the balance equations, the
constitutive relations presented in the previous sections, and the initial and
boundary conditions of the considered thermomechanical problem furnish a
non-linear initial boundary value problem. For its numerical solution, the
problem may be discretized in space and time within the framework of the fi-
nite element method. In doing so, the displacement and temperature fields can
be computed by solving the discretized balance equation of linear momentum
and the discretized heat equation for each time step. The material response
is then obtained by evaluating, in particular integrating the local constitutive
equations on the basis of the local deformation and the local temperature. This
evaluation includes the determination of the local state variables, the local in-
cremental heat generation, as well as the local algorithmic tangent moduli.
Finally, on the grounds of the integrated material model, new displacement
and temperature fields can be calculated, relaunching the above iterative so-
lution procedure.

The foregoing formalism may be categorized into a global iteration in which the
displacement and temperature fields are determined and into a local iteration
computing the local material response. For the local iteration, the total initial
boundary value problem reduces to an initial value problem, i.e., the local
state of the material at initial time ¢,, is known and the increments of the local
deformation as well as of the local temperature, driving the state of the ma-
terial from time ¢, to time t,4+1 = ¢, + At,, are given. Here, At,, denotes the
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time increment. The explicit set of differential equations representing the ma-
terial response is, however, unknown, as the state of the material at time ¢,41
is not specified. To circumvent this difficulty, an operator split method may
be employed which uncouples the initial value problem by means of predictor
and corrector steps (e.g., see Ortiz et al. (1983) and Pinsky et al. (1983)).
For the predictor step, relaxed trial states may be computed on freezing the
evolution of the internal variables. In this context, the corrector step is only
mandatory if the predictor step does not meet physical constraints imposed
by the material model. On adopting efficient numerical integration schemes
such as single-step or multi-step algorithms (e.g., see Hairer & Wanner (2002))
the constitutive equations can then be integrated. In what follows, focus is on
the local iteration and the underlying integration scheme. For an elaborated
review on the finite element method, refer to the works of Hughes (2000), Be-
lytschko et al. (2000), and Zienkiewicz & Taylor (2005).

In this treatise, the finite element environment MSC.Marc/Mentat is em-
ployed, which provides the subroutines hypela and hypela2 for the specifica-
tion of user-defined material models. While the subroutine hypela is restricted
to a geometrically linear framework, finite deformations can be encountered
by the subroutine hypela2. Two aspects are noteworthy concerning the imple-
mentation into this environment. On the one hand, MSC.Marc/Mentat does
not support the Eulerian framework comprising the Kirchhoff stress tensor, the
stretching tensor, and the logarithmic rate as it is used in this treatise. Due
to this, the respective quantities which are required to evaluate the material
model have to be transformed from the mechanical framework of the sub-
routine hypela2, for example the Lagrangian framework including the second
Piola-Kirchhoff stress tensor as well as the Green-Lagrangian strain tensor,
to the adopted Eulerian framework. As a direct consequence, the local algo-
rithmic tangent moduli being of fundamental importance for the convergence
of the global iteration procedure during the determination of the displace-
ment and temperature fields are computed numerically, based on a formalism
proposed by Miehe (1996). On the other hand, MSC.Marc/Mentat does not
account for a monolithic solution of the discretized balance equation of linear
momentum and the discretized heat equation, i.e., these equations are solved
sequentially. More precisely, the incremental heat generated during the incre-
mental processes of deformation is computed during the solution of the balance
equation of linear momentum and is then passed to the subsequent solution of
the heat equation.

6.2 Basic characteristics of the material model

A major issue in the material modeling is to ensure consistency of the consti-
tutive assumptions with experimental measurements. Only if the constitutive
model complies with experiments, it can be expected to provide reliable results
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for structural simulations. Experimental data are generally given in terms of
nominal quantities, i.e., in nominal stress and nominal strain. The reason
for this lies in the complexity of the determination of actual quantities which
requires a sophisticated experimental setup. This determination may even
render impossible for complex experiments as discussed in Grabe (2007). For
instance, measuring the actual stress implies the determination of the actual
cross section area of the specimen, which is not necessarily constant over the
gauge length. This may particularly be cumbersome for tubular specimens
which are commonly used for biaxial experiments. As a consequence, a mate-
rial model formulated at finite deformations is enforcedly to be specified to a
geometrically linear framework in the context of a calibration and a validation.
In doing so, the respective integration strategy of the material model derived in
Chapter 5 is presented in Section 6.2.1. The identification and the calibration
of the material parameters are then addressed in Section 6.2.2. Section 6.2.3
is concerned with the validation of the material model with experimental re-
sults. In this context, the quality of the constitutive assumptions is estimated.
Finally, some thermomechanical properties of the model are presented in Sec-
tion 6.2.4.

6.2.1 Implementation within a geometrically linear theory

For the integration of the material model summarized in Figures 5.19 and
5.20, an implicit backward Euler scheme is used in the following. Although
this integration algorithm is only first-order accurate, it features some no-
ticeable properties. On the one hand, the implicit backward Euler scheme is
unconditionally stable which especially proves crucial for the integration of
stiff differential systems (cf. Hairer & Wanner (2002)). On the other hand, it
inherits a good long-term accuracy for At — oo which can even be superior
to the long-term accuracies of alternative higher-order algorithms (cf. Simo
(1998)). With respect to the operator split method considered above, two trial
states are introduced capturing the processes of phase transformation and re-
orientation. The employed formalism principally follows the return-mapping
algorithm regarded by Simo & Hughes (1998). Note, however, that only one
trial state is considered by the authors in regard of a single physical constraint
in terms of the yield condition of plasticity.

Adaptation of the implicit backward Euler scheme to the stress rate equa-
tion (5.64) yields the total stress at time ¢,41 in the form

On+1 =0n+C: (Ae — aAO,)
— 00tns1 (€n+1 —&n) — 00 &n+1 (tny1 —tn) . (6.1)
Here, as this section is devoted to a geometrically linear framework, the Kirch-

hoff stress tensor 7 is replaced by the nominal stress tensor o and 79 is substi-
tuted by o9, accordingly. Ae as well as A©®,, represent the nominal strain and
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temperature increments, both corresponding to the time increment At,,. Cer-
tainly, the rate equation for the mass fraction of martensite given by (5.111)
and (5.145) may be integrated in an analogous manner. As the thermody-
namic force 7¢, however, equals k° during processes of phase transformation,
£n+1 may alternatively be obtained on evaluating equations (5.93), (5.98), and
(5.99), along with (5.97) at time t,41, i.e.,

7O n+1, Ont1, bnt1, Enit) = K2 (Env1) . (6.2)

Note that no distinction between the driving forces in the presence and in the
absence of reorientation processes is necessary for the iterative solution. Then,
based on the current stress o,+1 and the current mass fraction of marten-
site £n+1, the actual average martensite variant orientation t,+1 can be quan-
tified. In doing so, as the correction of t during phase transformations as
discussed in Section 5.5.2 may be expected to show minor impacts on the
computed pseudoelastic material behavior and as this chapter is devoted to
some basic properties of the proposed material model, the correction of t dur-
ing phase transformations is neglected, such that t, 4, is explicitly determined
by the eigenvalues (si)n+1 and eigenprojections (S;)n+1 of the current stress
direction s,+1. Thus, based on the definition

4
an-{-l
G 1= 6.3
n+1 |0’$,+1| ’ ( )

tn+1 may be written as

tntl = Z (ti)n+1 (Si)n+1 (6.4)

i=1

in the presence of reorientation processes, whereas it may be recast into

tny1 = Z (ti)n (Si)n+1 (6.5)

in the absence of reorientation processes. The eigenvalues (¢;)n+1 of t,+1 can
be obtained from the following system of equations

3 3 3
Dt Sdner =79 D ()1 =0 D (E)i=1  (6.6)
i=1 i=1 i=1

on maintaining the rotation direction between t, and s, and between t,4+1
and sn+1 within the principle space to ensure uniqueness of the solution.

Although the total stress state and the internal variables are specified by equa-
tions (6.1) to (6.6), their computation requires an estimation of the material
state at time step ¢n+1. This is due to the fact that the underlying consti-
tutive equations for the determination of o n+1, €n+1, and t,4; rely on the
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1. Given state t,, Ae and AS, and ©,4+) = O, + AO
2. Compute trial state ¢;,.; in the absence of reorientations
i. Compute trial state t%',, in the absence of phase transformations
solve for o%', ; and €5},
o =0 +C: (Ac —aAOn) — 00&a (th, — tn)
£y =&n
with

n+l Z t’)n (S )n+l

W

ii. Test for phase transformations

A—M: w2 = KATMP >0
. _ £|Pt M—A
M- A: T [ T + k |n+1 >0

if not (A - Mor M — A) then
set (*)mw1 = (-)P%., and go to step 3
end if
ili. Compute trial state t;;.; under phase transformations

solve for oy and %,
Onye1 =0n+C: (A —alAB,)
— Ootny1 (bnvr —&n) —00&nyr (bry1 — tn)

é(‘7510-;-1,@n+1, nt1r€ngl) = kﬁ(£n+1
with

togl = Z(t )n (Si)n

3. Test for reorientatlons
if (siy1 @ tiy, < 9) then
go to step 4.
else
set (-)n+1 = (*)ny1 and go to step 5
end if

Figure 6.1: Extended return-mapping algorithm
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4. Compute state £,41 under reorientations
. Compute trial state t5,, in the absence of phase transformations
solve for oF’,, and €% +1
ol =0, +C:(Ae ~alO,) —go&n (£, — tn)

€n+1 = 5’1
with

n+1 = Z(tl)n-l-l (S )n+1

i=1
()R 1 = (& )n+1 (33)n+1
ii. Test for phase transformations

A — M: x| — EATMP S0

n+1 n+41

M—A:  —nfP + EMAR >0
if not (A > Mor M — A) then
set ()n+1 = ()%, and go to step 5
end if
iii. Compute state t,+1 under phase transformations
solve for n+1 and &,41
Ont1 =0n+C: (A —alB,)
— 0o tnt1 (§n+1 —&n) — 00 €nt1 (tns1 — tn)
¢ (0n+1,Ont1, tne1,€n1) = kﬁ(§n+l)
with 3

the = Z (ti)n+1 (Si)n+

i=1

(ti)n+1 = (ti)n+1((85)n+1)
5. Compute incremental generation of heat

A(Qgen)n = qgen|n+1 : (an+1 - O'n) + qgen ntl (fn-{-l - Eﬂ)

+ q;enln.*.l D (tn41 — tn)

Figure 6.2: Extended return-mapping algorithm (cont’d)
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elastic-inelastic deformation processes driving the material state from time ¢,
to time £,+1. In this context, the operator split method is employed for which
the material state at time ¢,4+1 is estimated by an predictor step and, if nec-
essary, corrected by a subsequent corrector step. The resulting procedure is
summarized in Figures 6.1 and 6.2. Note therein that the quantities on+1
and §,4+1 are the only independent variables. They may be computed from
equations (6.1) to (6.6) by a classical iterative solution procedure such as New-
ton’s method or the BFGS method. It also bears emphasis that two trial states
th',, and ;2 are introduced in which phase transformation and reorientation
processes are frozen, respectively.
The predictor-corrector iteration begins with a given material state at time ¢,
as well as given strain and temperature increments (step 1.). It is assumed as
an initial guess that reorientations do not occur, i.e., the trial state ¢;.; in the
absence of reorientations is computed first (step 2.). In this context, the trial
state t7', | in the absence of phase transformations is quantified (step 2.i.).
If this state does not meet the criteria for phase transformations, the trial
state ¢y equals the trial state tﬁ’f‘_l (step 2.ii.). Otherwise the trial state
1 has to be recomputed on also including phase transformations (step 2.iii.).
With the trial state ¢}, at hand, the reorientation function can be checked
(step 3.). If it is obeyed, the trial state ¢;y; equals the state of the material
at time t,4+1. Otherwise, the state £,41 has to be corrected by additionally
considering reorientations (step 4.). The integration scheme is completed with
the computation of the incrementally generated heat A(ggen)n (step 5.).

6.2.2 Calibration of the material parameters

The proposed constitutive model for NiTi shape memory alloys depends on
a series of distinct material parameters which are briefly summarized in Ta-
ble 6.1. Thereof, the first six parameters characterize the purely thermoelastic
behavior of the material, whereas the pseudoelastic material behavior includ-
ing phase transformations and reorientations is reflected by the remaining
thirteen parameters. The parameter 77 accounts for mechanical interactions
between the phases martensite and austenite. With respect to Section 5.3.1, it
may be set equal to 0.5. As the parameter oo expresses the average distortion
of the martensite variants, it is directly related to the length of the pseudoe-
lastic hysteresis. The level and the height of the hysteresis are determined
by the parameters Au, As, A;, and Az. More precisely, after replacing the
equivalent stress 7eq in (5.125) by the corresponding nominal quantity eq, the
critical stresses a;“;,_’M and a&’,"‘“‘ at the initiation of phase transformations
can be deduced as

A—M _ _21po n° of _
Oeq = = T-moo [4upo+A1 Aup + O (Asp + A2) (6.7)
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Symbol Description

a thermal expansion coefficient
Po density

c heat capacity

k thermal conductivity

7] Lamé constant

A Lamé constant

i degree of the mechanical interactions between the phases

oo average distortion of martensite variants

Au internal energy difference of the unloaded phases

As internal entropy difference of the unloaded phases

Ay parameter of the coherency coefficient

A2 parameter of the coherency coeflicient

ai phenomenological parameter for A — M transformations
az phenomenological parameter for M — A transformations
b1 phenomenological parameter for A — M transformations
b2 phenomenological parameter for M — A transformations
c1 phenomenological parameter for A — M transformations
c2 phenomenological parameter for M — A transformations
0} deviation between stress direction/martensite orientation

Table 6.1: Summary of the material parameters

for the A — M phase transformation at £ = 0 and as
2

2
M—A 2ppo 1" oo
= - —-A; - A —A .
Oeq (1 — 77) 70 [ 1 p0 1 ug + © (ASQ 2)] (6 8)
for the M — A phase transformation at £ = 1.3 Relations (6.7) and (6.8)
characterize two opposite points within the hysteresis as schematically depicted
in Figure 6.3. Therein, analogously to the equivalent stress oeq, the equivalent
total strain e.q is defined by

Eeq = |€’| ) (6.9)

with € denoting the deviator of the nominal total strain tensor. Evidently,
the height AO'::]M of the hysteresis at constant temperature can be obtained
from the difference between equations (6.7) and (6.8) as

dppo  [nod
AoiM = [ A+ 604, , 6.10
Oeq T=mn oo |2zpo + A 2 (6.10)

343ee Footnote 32 on Page 102.
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Oeq
=AM
Feq
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Figure 6.3: Influence of the material parameters Au, As, A;, A2, and op on
the pseudoelastic hysteresis

while the hysteresis level &;’:,M equals the arithmetic mean of (6.7) and (6.8)

_AM _ 2upo

o'eq = (_1—_17)0'—0 [—A’U.o + eASO] . (611)
On stipulating that the thermoelastic parameters p and po are known and
that 5 and ¢ are given, evaluation of (6.7) and (6.8) or alternatively of (6.10)
and (6.11) at two distinct temperatures provides a set of four equations for
the determination of the parameters Au, As, A;, and A2. In solving this
set of equations, however, it has to be ensured that the Clausius-Clapeyron-
like relation considered in Section 5.5.2 is obeyed. In particular, in line with
experiments, e.g., in Miyazaki et al. (1981), Shaw & Kyriakides (1995), and
Hayashi et al. (2004), the critical stresses for A — M and M — A phase
transformations described by (6.7) and (6.8) feature positive slopes in ©. This
constraint is expressed by the two inequalities

As+ A2 >0 and As— Az >0 . (6.12)

Also, the critical stress for the A — M phase transformation always exceeds
the critical stress for the M — A phase transformation. This furnishes the
requirement

n’ o !
+ A1 +60A42>0 . (6.13)
4 1 po
The parameters a;, b;, and ¢; with i = (1,2) are purely phenomenological.
They specify the particular shape of the hysteresis during phase transforma-
tions, such as slope and curvature. The parameter ¥ finally expresses the
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maximum admissible deviation between the stress direction and the average
orientation of the martensite variants.

The material model is calibrated to experimental data presented in the work of
Grabe (2007} which is concerned with an extensive analysis of uniaxial and bi-
axial experiments of NiTi shape memory alloys at different temperature levels.
In this work, the thermoelastic parameters of the investigated alloy are already
determined by the author and can directly be adopted. For the calibration of
the phase transformation related parameters Au, As, A, A2, ai, a2, b1, b2,
c1, ¢c2, and o9, two isothermal tests in simple tension are considered, showing
a maximum tensile strain of 5% and being conducted at the testing tempera-
tures of 10°C and 27.5°C. In this context, the microstructure is assumed to
be completely martensitic at the maximum applied tensile strain in order to
employ relations (6.7) and (6.8) or, alternatively, relations (6.10) and (6.11).
The latter assumption is supported by the observation that the experiments
cover the whole pseudoelastic hysteresis of the material.®® The selection of the
parameter 9 is finally based on the non-proportional box-shaped test consid-
ered at the end of this section.

The calibrated material parameters are listed in Table 6.2 and the measured
and computed simple tension tests can be reviewed in Figures 6.4 and 6.5.
€ and o denote the tensile strain and the tensile stress within the linearized
theory. It bears emphasis that, although the material model seems to be well-
adapted to the experiments, the presented calibration relies on an estimation
of the material parameters. Specifically, rigorous calibration techniques should
generally be employed based on a monolithic minimization of the error between
the computed and the measured material responses, for example in terms of
the least square error, considering the whole set of all relevant material param-
eters at once. The so-defined problem constitutes an inverse problem in which
the model parameters are to be calculated from a known material response (cf.
Tarantola (1987)). Due to its complexity, hard optimization techniques have
to be utilized. For instance, neural networks and evolutionary algorithms are
successfully adopted in the works of Helm (2005) and Grabe (2007) for the
calibration of material models for shape memory alloys.

It should be noted that the material used in the work of Grabe (2007) ex-
hibits the R-phase, as pointed out by the author.?® Although this phase may
have a strong influence on the material behavior, it is classically omitted in
the course of the material modeling of NiTi shape memory alloys, i.e., it is
commonly assumed that the B2-austenite directly transforms into the B19’-
martensite. Phase transformations are supposed to occur only at the upper
and lower bounds of the pseudoelastic hysteresis within the strain-stress dia-
gram, while all other regions are regarded as purely thermoelastic. The reason

35See Footnote 32 on Page 102.

30For an introduction to R-phase related phenomena, the reader is referred to the works
of Miyazaki & Otsuka (1986}, Otsuka (1990), and Saburi {1998).
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Symbol  Value Unit

o 8-107% 1k
Po 6500 kg/m3
c 837.3 Ik
k 10 W/m K
u 15598 MPa
A 2289 MPa
N 0.50 -
00 1540 MPa
Au 6078 kg
As 23.55 J/kg K
Al —281.2 J/kg
A2 —3.40 g K
ai 0.15 -
az 0.15 -
) 1.80 -
b 3.00 -
c1 2.80 -
C2 2.80 -
d 0.65 -

Table 6.2: Calibrated material parameters

for this may be attributed to the fact that R-phase activities inherit com-
paratively small inelastic deformations (cf. Otsuka & Ren (1999)), so that
their occurrence can often not be perceived on solely concentrating on the
strain-stress diagram (see Sittner et al. (2006a)). On this account, the re-
gions providing linear relations between strain and stress may mistakenly be
interpreted as linear-elastic, although these regions may already be affected
by the R-phase. A thorough analysis on this matter can be found in Sittner
et al. (2006a,c). Also, the works of Raniecki et al. (1999), Oliferuk (1999),
and Tanaka et al. (1999) are concerned with the thermomechanical behavior
of the R-phase under tension/torsion tests. The influences of the R-phase
on the material behavior can be manifold. For instance, R-phase transfor-
mations may lead to a severe generation of heat (cf. Oliferuk (1999)), which
may also be observed in the apparently linear-elastic regions of the material.
Moreover, the inelastic deformations resulting from R-phase transformations
and/or reorientations of R-phase variants may lead to a significant decrease
of the magnitude of the apparently linear-elastic material parameters such
as the Lamé constants (see Sittner et al. (2006b)). Finally, the R-phase may
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Figure 6.4: Simple tension test at 10 °C; experimental and numerical results
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Figure 6.5: Simple tension test at 27.5 °C; experimental and numerical results
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inherit an asymmetric transformation behavior contributing to the overall ten-
sion/compression asymmetry of NiTi shape memory alloys (cf. Sittner et al.
(2006a) and Raniecki et al. (1999)). As reported in Luig et al. (2007), some
of these effects can be observed for the investigated alloy.

6.2.3 Validation of the material model

Although the experiments in the work of Grabe (2007) are affected by the
R-phase, they may be taken as reference for an estimation of some basic prop-
erties of the proposed constitutive model. This may be motivated by the fact
that the inelastic deformations related to R-phase activities can be regarded
as subordinate compared to the inelastic deformations arising from B2 — B19’
phase transformations and from reorientations of B19’ martensite variants (cf.
Saburi (1998)).37 In this context, the calibrated parameters listed in Table 6.2
are utilized for the computations. In order to reduce the impact of R-phase
activities on the thermomechanical material behavior, the validation is re-
stricted to isothermal tests. Moreover, all considered experiments are carried
out strain-controlled. Throughout this section, £ and o represent the ten-
sile strain and the tensile stress. Additionally, following Grabe (2007), the
quantities 7' and 4’ are defined as

v =-L and =371 , (6.14)

V3

with 7 and 4 denoting the measured shear stress and shear strain.

At first, two isothermal simple tests in torsion with a maximum shear strain
of v/ = 3.4%, both conducted at 10°C and 27.5°C, are considered. The exper-
imental and numerical results are depicted in Figures 6.6 and 6.7. The observ-
able deviations principally reflect the consequences of the asymmetric trans-
formation behavior of NiTi shape memory alloys, i.e., the tension/compression
asymmetry, which is not accounted for in the proposed material model. Nev-
ertheless, as the calibrated material parameters stem from an adaptation to
tensile tests, the predictions can be improved by a recalibration to shear tests.
In this regard, it proves imperative to incorporate the tension/compression
asymmetry into the material model to improve the accuracy of the predictions
for complex loadings. Note, however, that the observable asymmetric trans-
formation behavior of the material may also be attributed to existing R-phase
activities, which may enlarge the effects of the tension/compression asymme-
try to some extent.

Next, an isothermal box-shaped loading path in the first axial/torsional strain
quadrant is considered. The experiment is carried out at the testing tempera-
ture of 27.5°C with, both, a maximum tensile strain € and a maximum shear

37Maximum recoverable strains due to B2 — B19’ and B2 — R phase transformations are
the range of 8% and 1%, respectively (cf. Miyazaki (1996) and Otsuka & Ren (1999)).
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Figure 6.6: Simple torsion test at 10 °C; experimental and numerical results
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Figure 6.7: Simple torsion test at 27.5°C; experimental and numerical results
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strain 7' of 2%. The loading sequence can be reviewed in Figure 6.8, being
indicated by the points (1) to (4). First, the specimen is elongated into the
axial direction and is then distorted at constant tensile strain. Thereafter, the
axial displacement is reversed, followed by a release of the distortion. The
stress response in terms of experimental and numerical results is graphically
illustrated in Figures 6.9 to 6.11. The points (1) to (4) in all figures can di-
rectly be assigned to each other, as they denote same points in time. The
material response in Figure 6.9 is qualitatively predicted by the computation.
Especially, the introduced reorientation function expressing the deviation be-
tween the stress direction and the martensite orientation proves eminent for
the description of the negative axial stress at zero tensile strain in point (4). In
particular, on selecting 9 = 1, the strain and stress directions are parallel and,
thus, this effect cannot be captured by the computation. The magnitude of the
negative axial stress decreases on reversing the distortion, until it completely
disappears between points (4) and (1). This originates from the fact that the
unloading process induces a M — A phase transformation, leading to a van-
ishing contribution of the martensitic phase on the total deformation. The
kink between points (3) and (4) indicates an initiating M — A phase trans-
formation which provides an increase of the shear stress. The softening of the
shear response starting in point (3) during the computation arises from the
assumed coaxiality of the stress direction and the martensite orientation. To
some extent, this coaxiality expresses a reorientation process of the martensite
variants during the non-proportional loading section. Figures 6.10 and 6.11
show the extracted results for the axial and torsional directions. The material
response into the axial direction is well-predicted, whereas the predictions into
the torsional direction are in a qualitative agreement with the experiment.
Principally, the deviations between the computed and measured results may
be attributed to three factors. Firstly, they may originate from the occurrence
of the R-phase. Certainly, as the R-phase is not accounted for in the material
model, inelastic deformations resulting from R-phase activities cannot be re-
flected by the computation. These deformations, however, can be regarded to
be small compared the total deformations. Secondly, the deviations may arise
from the tension/compression asymmetry of the material which is not consid-
ered in the constitutive model. This is supported by the observation that the
predictions of the material response are in good accord with the experiment for
the axial direction, which is not the case for the torsional direction. Thirdly,
the deviations may result from the assumed coaxiality of the stress direction
and the average orientation of the martensite variants. As discussed above for
the loading sequence starting in point (3) in Figure 6.9, this assumption may
particularly lead to a weakening of the predicted material response.

In order to gain a deeper insight into the deviations between the computed
and measured results, an isothermal butterfly-shaped loading path in the first
axial/torsional strain quadrant is regarded next. The testing temperatures
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Figure 6.8: Combined box test; prescribed axial/torsional strains
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Figure 6.9: Combined box test; results for axial/torsional stresses
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Figure 6.10: Combined box test; results for axial strain-stress
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Figure 6.11: Combined box test; results for torsional strain-stress
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Figure 6.12: Combined butterfly test; prescribed axial/torsional strains
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Figure 6.13: Combined butterfly test; results for axial/torsional stresses
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Figure 6.14: Combined butterfly test; results for axial strain-stress
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Figure 6.15: Combined butterfly test; results for torsional strain-stress
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and the maximum prescribed strains are the same as for the box-shaped ex-
periment. The loading sequence is depicted in Figure 6.12. The specimen is
strained into the axial direction, followed by an increasing distortion and a
proportional release of the axial displacement. Then, at constant shear, the
specimen is again elongated into the axial direction. Finally, the axial and
torsional deformations are proportionally reversed. The corresponding com-
puted and measured stress responses are given in Figures 6.13 to 6.15. Like
for the box-shape loading path, the predicted material response visualized in
Figure 6.13 is in a fairly good agreement with the measured response. Again,
the negative tensile stress at zero tensile strain in point (3) can be reproduced.
However, the predicted response of the loading section starting in point (2)
and proceeding to point (3) in Figures 6.13 and 6.15 is well-below the mea-
sured response. The two observable kinks in this section result from initiating
phase transformations. Specifically, the phase transformations starting at the
kink near point (2) stop soon after their initiation. Moreover, the criteria for
reorientations are not fulfilled between point (2) and the first kink. Hence, the
computed material response for this section of the loading sequence is solely
dominated by the assumed coaxiality of the stress direction and the average
orientation of the martensite variants. A deeper insight into this finding may
be gained from a modified computation in which the coaxiality assumption is
removed. It is specifically assumed that the material behavior for the loading
section starting in point (2) is purely elastic. The results of this computa-
tion are accordingly represented by the dashed lines in Figures 6.12 to 6.15.
The computation is arbitrarily interrupted in point (3’), as the analysis con-
centrates on the predicted material behavior for a changing loading direction.
Apparently, the computed predictions may significantly be enhanced by the
modification. This suggests that reorientations do not instantaneously initi-
ate on changing the loading direction during non-proportional loadings. Along
with the analysis of the box-shaped experiment, it may, thus, be concluded that
the assumed coaxiality between the stress direction and the average martensite
variant orientation leads to a weak predicted material response for complex
loadings.

6.2.4 Thermomechanical characteristics

In this section, the foregoing isothermal analyses are complemented by a pre-
sentation of some thermomechanical characteristics. Again, the computations
are based on the calibrated material parameters listed in Table 6.2.

A comparison between the stress responses for isothermal and adiabatic simple
tension tests is graphically illustrated in Figure 6.16. The temperature of the
isothermal test as well as the initial temperature of the adiabatic test are 10 °C.
Conceptually, the results reflect the exothermic and endothermic properties of
A — M and M — A phase transformations. As heat is generated for the
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exothermic A — M phase transformation, the temperature increases in the
adiabatic case. Along with the Clausius-Clapeyron-like relation considered in
Section 5.5.2, this results in an increase of the critical transformation stresses.
For the endothermic M — A phase transformation, however, the temperature
and in turn the critical transformation stresses decrease, such that the stresses
in the isothermal and in the adiabatic cases nearly coincide at the end of the
unloading process.

Figure 6.17 depicts the stress response of an adiabatic tension test with one
internal cycle. Therein, points (1) to (4) represent the loading sequence, while
the arrows indicate the loading direction. The initial temperature of this test
is again 10°C. It may be inferred that phase transformations only initiate at
the upper and lower bounds of the pseudoelastic hysteresis. This behavior can
experimentally be observed for NiTi in Tanaka et al. (1995), Helm (2001), or
Tobushi et al. (2003). Figures 6.18 and 6.19 show the corresponding evolutions
of the martensitic mass fraction and of the temperature, both plotted against
the tensile strain. The linear relation between the mass fraction of martensite
and the strain is consistent with in-situ neutron diffraction analyses obtained
by Vaidyanathan et al. (1999) and the temperature evolution clearly reflects
the exothermic and endothermic characteristics of the A - M and M — A
phase transformations discussed above. Particularly, the piezocaloric effect
can be observed in the strain-temperature diagram leading to a temperature
change for elastic, volumetric deformations. This effect may, however, be re-
garded as subordinate compared to the temperature change arising from phase
transformations. Note that the temperature at the end of the unloading pro-
cess is slightly above the initial temperature.

6.2.5 Concluding remarks

As demonstrated in Section 6.2.3, the introduction of the tensorial internal
variable t is essential for the prediction of the material response in the case of
complex loadings. Particularly, the degree of freedom expressing the deviation
between the stress direction and the martensite orientation in terms of the re-
orientation function proves valuable for the description of the experimentally
observed negative axial stress at zero tensile strain. The comparisons between
the computed and measured material responses reveal, however, some devi-
ations which may principally be ascribed to the asymmetric transformation
behavior of NiTi shape memory alloys as well as to the assumed coaxial-
ity of the stress direction and the martensite orientation. As considered in
Section 6.2.3, the tension/compression asymmetry may not be neglected and
should, thus, be incorporated into the constitutive model. Further analyses on
this matter can be found, e.g., in Bouvet et al. (2004a) and Lexcellent et al.
(2006). Moreover, although the assumed coaxiality of the stress direction and
the martensite orientation leads to a straightforward formalism for the com-
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putation of the tensorial internal variable t, this approach seems to provide a
weak material response for complex loadings. It may specifically be inferred
from the modified computation performed at the end of Section 6.2.3 that the
material behavior is purely elastic directly on changing the loading direction
within an intermediate austenitic-martensitic state. This finding motivates
that t and s can neither be taken as coaxial nor as parallel as assumed by
Raniecki et al. (1992). In this regard, the existing approach for the tensorial
internal variable t has to be modified. For instance, the coaxiality assumption
may be removed by introducing a constitutive equation for the eigenprojections
of t in which they rotate into the direction of the eigenprojections of s after
reaching a certain threshold value. In this context, it has to be guaranteed that
a solution of the reorientation function for the eigenvalues of t unconditionally
exists as discussed in Section 5.5.3, which requires the maximum value of the
reorientation function to exceed the parameter ¥. This provides, on the one
hand, a criterion for the initiation of the eigenprojection rotation of t and, on
the other hand, an equation for the respective rotation angle. Alternatively
to this approach, the reorientation function may be exploited on adopting the
formalism for the correction of t during processes of phase transformation as
regarded in Section 5.5.2. The underlying idea follows the observation that,
during reorientations, martensite variants being inconsistent with the current
stress direction are to be replaced by new, favored variants. Then, on satisfy-
ing the reorientation function, the amount of the exchanged martensitic mass
fraction may be determined, which provides an evolution equation for t in the
same line as in Section 5.5.2.

6.3 Finite element analysis

This section addresses the numerical implementation of the proposed constitu-
tive model at finite deformations. Since these deformations may exhibit super-
imposed rigid body motions, the implementation considered in Section 6.2.1
cannot be adopted here. Instead, integration algorithms have to be employed
ensuring the integrated discretized constitutive equations to be consistent with
the principle of material frame indifference and, thus, to be incrementally ob-
jective (cf. Simo & Hughes (1998)). This aspect is addressed in Section 6.3.1 in
deriving a general framework for the incrementally objective time integration.
In Section 6.3.2, the resulting formalism is specified to the proposed material
model. Throughout the implementation, the coaxiality assumption between
the stress direction and the martensite orientation is removed and the reorien-
tation approach for the martensite variants is not taken into account. Focus is
particularly on phase transformations including the correction of the average
orientation of the martensite variants discussed in Section 5.5.2. A fully ther-
momechanically coupled structural example in terms of a testing specimen for
experimental measurements is then presented in Section 6.3.3.
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6.3.1 Incrementally objective time integration

Incrementally objective time integration algorithms require proper objective
approximations of the relevant kinematical quantities. In this regard, suppose
that the motions x,, and x,,,, of each material particle of the body at issue
at time ¢, and time ¢, are given. Then, any intermediate motion X, ., at
time t,+o may be approximated by

xn+a = (1 - a) Xn + QXn-i-l ’ (615)

where « represents a scalar parameter with a € [0,1] and ¢,4+ denotes an
intermediate time between t, and t»+1, accordingly. Using this approximation,
along with relation (3.5), provides the intermediate deformation gradient

Fn+a = (1 - a) Fn + Can+1 . (6.16)

Therewith, the intermediate incremental deformation gradient f,,, may be
introduced as

fota = Foja - Frb . (6.17)

It reflects the incremental mapping between the line elements dx,, and dx, +a
at times t, and t,4. as

an+a = fn+a * an . (6-18)

The intermediate incremental deformation gradient especially proves helpful
for the determination of the properly discretized stretching tensor D, .+, and
vorticity tensor Wp4o. According to Simo & Hughes (1998), objective ap-
proximations of these quantities read

Dnta = 5 At £7, . (f,,+1 Ky — I) £l (6.19)
and
W = 1 ((Fasr =D - £} (£T -1)) (6.20)
n+aoa 2At n+ n+a n+a n+l .

Moreover, with the deformation gradient F,, ;.o together with equation (3.172),
the intermediate left Cauchy-Green tensor B, ., becomes

Bn+a —_— Fn+a Fn_l_a . (6.21)

Altogether, the objective approximations of the stretching tensor, the vorticity
tensor, as well as the left Cauchy-Green tensor furnish the properly discretized

logarithmic spin tensor Q2% 2%, considered in Section 3.5.2. A formalism for its

computation can be found in Xiao et al. (1998a). Then, with Q58 at hand,
the logarithmic rotation tensor Rf‘l‘fa defining the logarithmic corotational
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frame can be quantified by solving the incremental form of the initial value
problem (3.90). As the state of the material at time ¢, is given, the latter can
be rewritten as

RUos = _RLos. Qlog  with RL8|,_, =RL® . (6.22)
Its solution
RL% = RLo%. (exp(a At QLS )T (6.23)

is presented in the work of Simo & Hughes (1998), in which a procedure for
the evaluation of the exponential map can additionally be reviewed (see also
Belytschko et al. (2000)).

On the basis of the preceding incrementally objective quantities, the corota-
tional time integration regarded in Section 3.5.2 can be employed. As this
procedure conceptually relies on the correspondence between the corotational
rate of the arbitrary objective Eulerian second-order tensor A and the mate-
rial rate of the transformed tensor A* in the corotating frame, the implicit
backward Euler scheme may directly be adopted to equation (3.74). Along
with transformation rule (3.433), and on focusing on the logarithmic rate, this
leads to the relation

. % o
AL =AL+AtAL, =RLBx A, + AtREE « AL (6.24)

where equations (3.433) and (3.74) are evaluated at time ¢, and at time t,41,
respectively. The tensor A,4; at time ¢{,4+1 can then be obtained from a
backward rotation of (6.24) into the Eulerian frame as

Any1 = (Rﬁ?l-gl Y ALy = r&?l-gl *An + At Alf;:‘gl ) (6.25)
with
recf = (Ry3%)T - R = exp(At 2.5 (6.26)

representing the incremental logarithmic rotation tensor.

6.3.2 Implementation within a geometrically non-linear theory

Concentrating on processes of phase transformation, the subsequent implemen-
tation is carried out on the basis of the relations summarized in Figures 5.19
and 5.20 (a). Although the assumption of coaxiality between t and s is re-
moved throughout this section, the correction of t during phase transformation
processes is particularly taken into account.

Adaptation of the implicit backward Euler scheme as in equation (6.25) to the
rate form of the Kirchoff stress tensor yields

Totl =ToB % Tn + At718 (6.27)
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along with the discretized stress rate

At 758 =C: (AtDny1 — @ AB) — Totrss (Ent1 — En)

= T0&n+1 (bng1 — zigl *t,) . (6.28)

Here, the rate of t is consistently approximated by a differential quotient
derived from (6.25). Thus, the Kirchhoff stress 7,41 takes the form

Tn+l = rn+1 * (Tn + 70 En-|-1 tn) + C (At Dn+1 « A@)
— Totn+1(26n+1 — &) . (6.29)

As outlined in Section 6.2.1, the mass fraction of martensite {41 may be
obtained by evaluating the thermodynamic force driving phase transformations
as well as the functions k? at time ¢,y as

7r€(7'n+1,en+1, tnt+1,€nt1) = kﬂ(€n+l) . (6.30)
Finally, adopting (6.25) to the rate equation for t in Figure 5.20 (a) gives:

Log

Fopi*tn + (Sn+1 — tnt1) (€n41—&n) for A M
tn+1 = £n+l (631)
r%8 * tn for M — A

For the solution of the unknown quantities T,+1, én+1, and t,4) in equa-
tions (6.29) to (6.31), a similar strategy as in Section 6.2.1 based on an operator
split method may be employed In contrast to the foregoing strategy, however,
only the trial state tF +1 accounting for phase transformations is required here,
as processes of reorientation are excluded. The resulting formalism is summa-
rized in Figure 6.20. It is assumed that all relevant quantities at time ¢, as
well as the increments At and A© are given. From this, along with the defor-
mation gradient at time ¢,+3, the input variables ©,4,, Dn+1, and rn +1 are
to be specified (step 1). Then, the trial state t£",, is computed on assuming
that phase transformations do not occur in the next time step (step 2). If the
criteria for phase transformations are not fulfilled, this state equals the actual
state at ¢,4+1. Otherwise, the state at t,4+1 has to be recomputed on also tak-
ing phase transformations into account (step 4). The incrementally generated
heat is finally evaluated at the end of the integration procedure (step 5).

6.3.3 Structural example

Based on the implementation in the preceding section, a fully thermomechan-
ically coupled finite element simulation of a specimen used in the work of
Heckmann (2003) for tensile tests is presented in this section. The experimen-
tal apparatus, the specimen geometry, and the corresponding finite element
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1. Given state t,, At and AO, ©,4+) = 6, + AO, Dp+1, and rﬁ‘fl
2. Compute trial state t¥',, in the absence of phase transformations
solve for 755, 1, th',,, and €5%,
thin = 1'5131 * tn
pt _
n+l - Eﬂ

3. Test for phase transformations

. gpt _ A—M]|Pt

A —M: wt | = KA, >0
. — &Pt M—A (Pt

M- A: w| F EMTA,, >0

if not (A - M or M — A) then
set (-)n+1 = (-)P, and go to step 5
end if
4. Compute state ¢t,4+1 under phase transformations
solve for Th+1, tnt+1, and En4i
Tnt1 = Tuss % (T + Tobnt1tn) + C : (At Doy — a AO)
— 10 tnt1 (26n41 — &n)

rﬁigl *tn + (Sn+1 — tnt1) (§ns1 —6n) A—-M
tn-l-l = £n+l
r:ﬁi * tn M= A

T (Tnt1, Ont1, tnst, €ntr) = kP (€ns1)
5. Compute incremental generation of heat
A(Qgen)n = t_];e,,lnH : (Tn+l - Tn) + (ige., il (En-{-l - gn)

+ (?lzenlu_|_1 : (bnt+1 — tn)

Figure 6.20: Extended return-mapping algorithm at finite deformations

model exploiting the symmetry of the specimen are depicted in Figure 6.21.
Altogether, the finite element model consists of 242 hexagonal elements in-
cluding 456 nodes.
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Figure 6.21: Experimental apparatus used in Heckmann (2003) (upper left),
sample geometry (upper right), and finite element model of the
sample; measures are in mm.

During the simulation, one loading-unloading cycle of the specimen into its
axial direction is considered. As the material exhibits a strong thermomechan-
ically coupled behavior, the specimen is simultaneously exposed to mechanical
and thermal loads, such that adequate initial and boundary conditions are
to be specified. At the beginning of the deformation process, the specimen
temperature is assumed to be equal to the ambient temperature of 10 °C. In
this stage, the initial structure of the material is considered to be completely
austenitic. The process of deformation is realized by a uniformly distributed
axial displacement of the left end of the model for 20 s with a constant velocity
of 0.02 mm/; for, both, the loading and the unloading process, whereas the axial
position on the right end of the model is held constant. To account for the heat
exchange between the specimen and its environment, a convective heat flux
is applied to the outer surface of the specimen on assuming the heat transfer
coefficient to be 20 W/mm? k. The inner surfaces of the model resulting from
the exploited symmetry of the specimen, are taken as adiabatic. Moreover,
on stipulating that the temperature of the clamping is unaffected by thermal
effects, the surface temperature on the right end of the model is held constant
throughout the process of deformation. The simulation is carried out on the
basis of the material parameters identified in Section 6.2.2.
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Figure 6.22: Evolution of the equivalent stress
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Figures 6.22 to 6.25 show the distribution of the equivalent Kirchhoff stress, the
temperature, the mass fraction of martensite, and the reorientation function
for selected time steps. Therein, the thermomechanically coupled deformation
process can readily be observed. During the loading process, the specimen
temperature increases due to the exothermic A — M phase transformation.
Its maximum value of 14 °C is reached in the gauge length of the specimen
at ¢ = 20 s, which is not surprising as the phase transformation activities
are merely restricted to this region. Accordingly, the specimen temperature
decreases for the endothermic M — A phase transformation during the un-
loading process, such that its minimum value of 6 °C is again reached in the
gauge length at the end of the deformation process. The difference between
this temperature and the initial temperature of 10 °C principally arises from
the heat conduction within the specimen and the heat exchange between the
specimen and its environment. In fact, the specimen would recover its initial
temperature for a sufficiently long time range after the deformation. From the
distribution of the reorientation function it may be inferred that the deviation
between the stress direction and the martensite orientation can be regarded as
small. In this context, a process of reorientation would possibly not initiate for
the considered experiment. Beyond this finding, it can also be deduced that
a pure radial loading path for which the stress direction remains constant can
generally not be realized for elastic-inelastic deformation processes even in the
case of constant external loads. This underlines the necessity of constitutive

F,/N
700 T

t=20s

600 -
500 T

400 T

300 1

200 T
i | t=30s

100 1
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Figure 6.26: Applied total force for prescribed total displacement
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models for shape memory alloys to account for non-proportional loadings in
order to provide reliable results for a realistic simulation of complex struc-
tures.

Figure 6.26 depicts the total axial force plotted against the total axial dis-
placement. The observable plateau can be ascribed to uniformly distributed
phase transformations within the gauge length of the specimen. These trans-
formations are completed at the end of the plateau, such that the slope of the
displacement-force curve increases. The phase transformations are, however,
not completed, as there exist ongoing phase transformation activities between
the clamping region and the gauge length on additional loadings. As these
activities are interrupted during unloading, the slopes for the loading and the
unloading processes at the end of the plateau differ. In fact, the structural
response on unloading characterizes a purely thermoelastic material behav-
ior until the critical stress for the phase transformation into the austenite is
reached.
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7 Summary and outlook

This treatise addresses the formulation of a three-dimensional constitutive
model for pseudoelastic NiTi shape memory alloys at finite deformations. The
model is embedded into a hypoelastic theory in terms of the Kirchhoff stress
tensor, the stretching tensor, and the logarithmic rate. It is consistently for-
mulated in a general framework of continuum thermodynamics for solid state
transformations between the two phases austenite and martensite, taking into
account the irreversibility of the transformation processes.

The energetic state of the material is characterized by a non-convex specific
Helmholtz free energy function which comprises the phase specific energies of
austenite and martensite as well as an energetic term accounting for phase
interactions. This energy is particularly formulated in terms of stress, temper-
ature, and internal variables. The dependence on the stress does not contra-
dict the classical formulation of the Helmholtz free energy in which the purely
elastic component of the total strain is employed, as the elastic strain may be
regarded as redundant quantity of the stress. The determination of the elas-
tic strain may, however, be considered as cumbersome within the framework
of finite deformations. On the basis of this formulation, the potential wells of
the martensite variants are assumed to be continuously distributed around the
single potential well of the austenite within the austenitic stress space. This
consideration may ideally be regarded as fulfilled for untextured polycrystals.
It accounts for the observation that martensite is stabilized by stress in the
course of the pseudoelastic shape memory effect and that, thus, the potential
wells of the single martensite variants are shifted towards higher stresses. The
energetic state of the overall martensitic phase is then represented by an av-
erage specific Helmholtz free energy function.

A set of three internal variables is introduced. Two scalar-valued internal vari-
ables describe the overall mass fraction and average distortion of the marten-
sitic phase. The average orientation of the martensite variants is accounted
for by a tensorial internal variable. Together, the average distortion and
the average orientation of the martensite characterize the position of the av-
erage martensitic energy minimum within the austenitic stress space. On
this account, the unphysical decomposition of the mass fraction of marten-
site into self-accommodated and oriented parts as employed by phase diagram
approaches can be avoided. Instead, the martensitic phase is described by
averaged quantities. In restricting to pseudoelasticity, the average distortion
of the martensite is then set constant.

An analysis of the mechanical interactions between martensitic and austenitic
domains reveals an approach for the intrinsic, phase specific stresses. It turns
out that snap through-like processes of phase transformation can neither ex-
clusively be presumed nor can they be ignored. Application of the principle
of local equilibrium then provides relations for the total stretching tensor and
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the total stress tensor. In this regard, local mechanical and thermal equilibria
are postulated, whereas a phase equilibrium is not assumed. In ensuring ther-
modynamic consistency in terms of the Clausius-Duhem inequality, thermody-
namic forces driving the processes of phase transformation and reorientation
of the martensite variants are identified. By virtue of the former, an evolution
equation for the martensitic mass fraction is derived. The evolution equation
for the average orientation of the martensite variants is formulated on the ba-
sis of experimental data obtained from biaxial test. These data specifically
exhibit that the stress and strain directions, and in turn the average orienta-
tion of the martensite variants, generally deviate from each other for complex
loadings. A constitutive equation accounting for this finding is accordingly
proposed. Finally, exploitation of the first law of thermodynamics, along with
the adopted specific Helmholtz free energy function, provides a relation for the
heat generated during deformation processes, which particularly includes the
generated heat arising from phase transformations.

The model is implemented into the finite element method by employing a
straightforward extension of the classical return-mapping algorithm. The fo-
cus is first on a geometrically linear implementation in the course of a vali-
dation of the material model with experimental results. A calibration of the
material parameters and a subsequent comparison between simulated and mea-
sured material responses during biaxial tests demonstrate the appropriateness
of the constitutive assumptions. Thereafter, the numerical implementation is
extended to finite deformations. Special attention is on the incremental ob-
jectivity in order to ensure an objective time integration of the Eulerian rate
model. On the basis of this implementation, a thermomechanically coupled
simulation of a shape memory structure is presented showing the applicability
of the model for structural simulations.

Although the current formulation of the proposed constitutive model focuses
on the pseudoelastic shape memory effect, an extension to the pseudoplastic
effect and in turn to the one-way shape memory effect is possible. It can be
achieved by specifying a constitutive equation for the average distortion of the
martensite which is set constant in the course of pseudoelasticity. In doing so
and in conjunction with the average orientation of the martensite variants, the
position of the average energetic minimum of the martensitic phase within the
austenitic stress space can be well-described, accounting for oriented and self-
accommodated martensite through averaged quantities. For the specification
of a respective thermodynamically consistent constitutive equation, a similar
formalism as applied for the martensitic mass fraction £ may be adopted. This
methodology is based on the observation, that 7o and £ exhibit similar struc-
tures, i.e., 7o and £ are scalar-valued and underlie the restrictions 7o € [0, o]
and £ € [0, 1], where 7o is the maximum admissible distortion of the marten-
site. Thus, an evolution equation for 7o may accordingly be obtained from the
Clausius-Duhem inequality.
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As discussed during the validation of the constitutive model, the prediction
of the pseudoelastic material response may be refined by accounting for the
asymmetric transformation behavior which is often exhibited by NiTi alloys
and by removing the coaxiality assumption between the stress direction and
the martensite orientation. An valuable quantity for the former may be the
third invariant of the average martensite orientation which basically inherits
a directional information. Therewith, the maximum admissible martensitic
distortion 7 and the functions k° prescribing the evolution of the thermody-
namic driving force for phase transformations may be defined as orientation-
dependent isotropic tensor functions. Removing the coaxiality assumption
between the stress direction and the average martensite orientation may re-
quire additional evolution equations for the respective eigenprojections in the
case of reorientation processes. In this regard, it has to be ensured that a so-
lution for the eigenvalues of the martensite orientation always exists. It may,
for instance, be assumed that the eigenprojections of the martensite orien-
tation rotate into the directions of the eigenprojections of the current stress
direction. This approach may, however, lead to a high computational effort.
Alternatively, the correction procedure of the martensite orientation during
phase transformation processes may be adopted for reorientations. This idea
is based on the observation, that favorably oriented variants grow during re-
orientations on the expense of unfavorably oriented variants. The amount of
the reoriented mass fraction of martensite may then be obtained from the
reorientation function.
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len Parameter linearer Schwingungssysteme (Februar 1984)

Uwe Zdebel:
Theoretische und experimentelle Untersuchungen zu einem thermo-
plastischen Stoffgesetz (Dezember 1984)

Jan Kubik:
Thermodiffusion Flows in a Solid with a Dominant Constituent (April
1985)
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Horst J. Klepp:
Uber die Gleichgewichtslagen und Gleichgewichtsbereiche nichtline-
arer autonomer Systeme (Juni 1985)

J. Makowsky/L.-P. Nolte/H. Stumpf;
Finite In-Plane Deformations of Flexible Rods - Insight into Nonlinear
Shell Problems (Juli 1985)

Franz Karl Labisch:

Grundlagen einer Analyse mehrdeutiger Losungen nichtlinearer
Randwertprobleme der Elastostatik mit Hilfe von Variationsverfahren
(August 1985)

J. Chroscielewski/L.-P. Nolte:
Strategien zur Losung nichtlinearer Probleme der Strukturmechanik
und ihre modulare Aufbereitung im Konzept MESY (Oktober 1985)

Karl-Heinz Biirger:
Gewichtsoptimierung rotationssymmetrischer Platten unter instatio-
ndrer Erregung (Dezember 1985)

Ulrich Schmid:
Zur Berechnung des plastischen Setzens von Schraubenfedern (Feb-
ruar 1987)

Jorg Frischbier:

Theorie der Stobelastung orthotroper Platten und ihr experimentelle
Uberpriifung am Beispiel einer unidirektional verstiarkten CFK-Ver-
bundplatte (Marz 1987)

W. Tampczynski:
Strain history effect in cyclic plasticity (Juli 1987)

Dieter Weichert:
Zum Problem geometrischer Nichtlinearitéten in der Plastizitédtstheo-
rie (Dezember 1987)

Heinz Antes/Thomas Meise/Thomas Wiebe:

Wellenausbreitung in akustischen Medien

Randelement-Prozeduren im 2-D Frequenzraum und im 3-D Zeit-
bereich (Januar 1988)

Wojciech Pietraszkiewicz:
Geometrically non-linear theories of thin elastic shells (Marz 1988)

Jerzy Makowski/Helmut Stumpf:
Finite strain theory of rods (April 1988)
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Andreas Pape:

Zur Beschreibung des transienten und stationdren Verfestigungsver-
haltens von Stahl mit Hilfe eines nichtlinearen Grenzflachenmodells
(Mai 1988)

Johannes Grofi-Weege:
Zum Einspielverhalten von Flachentragwerken (Juni 1988)

Peihua Liu:
Optimierung von Kreisplatten unter dynamischer nicht rotationssym-
metrischer Last (Juli 1988)

Reinhard Schmidt:

Die Anwendung von Zustandsbeobachtern zur Schwingungsiiberwa-
chung und Schadensfritherkennung auf mechanische Konstruktionen
(August 1988)

Martin Pitzer:
Vergleich einiger FE-Formulierungen auf der Basis eines inelastischen
Stoffgesetzes (Juli 1988)

Jerzy Makowski/Helmut Stumpf:
Geometric structure of fully nonlinear and linearized Cosserat type
shell theory (Dezember 1988)

O. T. Bruhns:
GroBe plastische Forménderungen — Bad Honnef 1988 (Januar 1989)

Khanh Chau Le/Helmut Stumpf/Dieter Weichert:
Variational principles of fracture mechanics (Juli 1989)

Guido Obermiiller:
Ein Beitrag zur Strukturoptimierung unter stochastischen Lasten
(Juni 1989)

Herbert Diehl:
Ein Materialmodell zur Berechnung von Hochgeschwindigkeitsdefor-
mationen metallischer Werkstoffe unter besonderer Beriicksichtigung

der Schidigung durch Scherbénder (Juni 1989)

Michael Geis:
Zur Berechnung ebener, elastodynamischer Riflprobleme mit der
Randelementmethode (November 1989)

Giinter Renker:
Zur Identifikation nichtlinearer strukturmechanischer Systeme (No-
vember 1989)
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Berthold Schieck:
Grofle elastische Dehnungen in Schalen aus hyperelastischen inkom-
pressiblen Materialien (November 1989)

Frank Szepan:

Ein elastisch-viskoplastisches Stoffgesetz zur Beschreibung grofler
Forménderungen unter Beriicksichtigung der thermomechanischen
Kopplung (Dezember 1989)

Christian Scholz:
Ein Beitrag zur Gestaltsoptimierung druckbelasteter Rotations-
schalen (Dezember 1989)

J. Badur/H. Stumpf:
On the influence of E. and F. Cosserat on modern continuum me-
chanics and field theory (Dezember 1989)

Werner Fornefeld:

Zur Parameteridentifikation und Berechnung von Hochgeschwindig-
keitsdeformationen metallischer Werkstoffe anhand eines Kontinu-
ums-Damage-Modells (Januar 1990)

J. Saczuk/H. Stumpf:
On statical shakedown theorems for non-linear problems (April 1990)

Andreas Feldmiiller:
Ein thermoplastisches Stoffgesetz isotrop geschadigter Kontinua
(April 1991)

Ulfert Rott:
Ein neues Konzept zur Berechnung viskoplastischer Strukturen (April
1991)

Thomas Heinrich Pingel:
Beitrag zur Herleitung und numerischen Realisierung eines mathe-
matischen Modells der menschlichen Wirbelsaule (Juli 1991)

O. T. Bruhns:
Grofle plastische Formanderungen - Bad Honnef 1991 (Dezember
1991)

J. Makowski/J. Chroscielewski/H. Stumpf:
Computational Analysis of Shells Undergoing Large Elastic Deforma-
tion Part I: Theoretical Foundations
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J. Chroscielewski/J. Makowski/H. Stumpf:
Computational Analysis of Shells Undergoing Large Elastic Deforma-
tion Part II: Finite Element Implementation

R. H. Frania/H. Waller:
Entwicklung und Anwendung spezieller finiter Elemente fiir Kerb-
spannungsprobleme im Maschinenbau (Mai 1992)

B. Bischoff-Beiermann:

Zur selbstkonsistenten Berechnung von Eigenspannungen in poly-
kristallinem Eis unter Beriicksichtigung der Monokristallanisotropie
(Juli 1992)

J. Pohé:
Ein Beitrag zur Stoffgesetzentwicklung fiir polykristallines Eis (Feb-
ruar 1993)

U. Kikillus:
Ein Beitrag zum zyklischen Kiechverhalten von Ck 15 (Mai 1993)

T. Guo:
Untersuchung des singuldaren RiBspitzenfeldes bei stationarem Rif3-
wachstum in verfestigendem Material (Juni 1993)

Achim Menne:
Identifikation der dynamischen Eigenschaften von hydrodynamischen
Wandlern (Januar 1994)

Uwe Folchert:
Identifikation der dynamischen Eigenschaften hydrodynamischer
Kupplungen (Januar 1994)

Jorg Korber:

Ein verallgemeinertes Finite-Element-Verfahren mit asymptotischer
Stabilisierung angewendet auf viskoplastische Materialmodelle (April
1994)

Peer Schiefle:
Ein Beitag zur Berechnung des Deformationsverhaltens anisotrop ge-

schadigter Kontinua unter Beriicksichtigung der thermoplastischen
Kopplung (April 1994)

Egbert Schopphoft:
Dreidimensionale mechanische Analyse der menschlichen Wirbelsdule
(Juli 1994)
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Christoph Beerens:
Zur Modellierung nichtlinearer Dampfungsphédnomene in der Struk-
turmechanik (Juli 1994)

K. C. Le/H. Stumpf:
Finte elastoplasticity with microstructure (November 1994)

O. T. Bruhns:
Grofle plastische Formanderungen — Bad Honnef 1994 (Dezember
1994)

Armin Lenzen:
Untersuchung von dynamischen Systemen mit der Singuldrwertzer-
legung — Erfassung von Strukturveréinderungen (Dezember 1994)

J. Makowski/H. Stumpf:
Mechanics of Irregular Shell Structures (Dezember 1994)

J. Chroscielewski/J. Makowski/H. Stumpf:
Finte Elements for Irregular Nonlinear Shells (Dezember 1994)

W. Krings/A. Lenzen/u. a.:
Festschrift zum 60. Geburtstag von Heinz Waller (Februar 1995)

Ralf Podleschny:
Untersuchung zum Instabilitdtsverhalten scherbeanspruchter Risse
(April 1995)

Bernd Westerhoff:
Eine Untersuchung zum geschwindigkeitsabhangigen Verhalten von
Stahl (Juli 1995)

Marc Mittelbach:
Simulation des Deformations- und Schadigungsverhaltens beim Sto8-
versuch mit einem Kontinuums-Damage-Modell (Dezember 1995)

Ulrich Hoppe:
Uber grundlegende Konzepte der nichtlinearen Kontinuumsmechanik
und Schalentheorie (Mai 1996)

Marcus Otto:
Erweiterung des Kaustikenverfahrens zur Analyse raumlicher Span-
nungskonzentrationen (Juni 1996)

Horst Lanzerath:
Zur Modalanalyse unter Verwendung der Randelementemethode (Juli
1996)
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Andreas Wichtmann:
Entwicklung eines thermodynamisch konsistenten Stoffgesetzes zur
Beschreibung der Reckalterung (August 1996)

Bjarne Fossa:
Ein Beitrag zur FlieBflichenmessung bei vorgedehnten Stahlen (Ok-
tober 1996)

Khanh Cha Le:
Kontinuumsmechanisches Modellieren von Medien mit veranderlicher
Mikrostruktur (Dezember 1996)

Holger Behrens:
Nichtlineare Modellierung und Identifikation hydrodynamischer
Kupplungen mit allgemeinen diskreten Modellansétzen (Januar 1997)

Johannes Moosheimer:
Gesteuerte Schwingungsdampfung mit Elektrorheologischen Fluiden
(Juli 1997)

Dirk Klaus Anding:
Zur simultanen Bestimmung materialabhéingiger Koeflizienten inela-
stischer Stoffgesetze (Oktober 1997)

Stephan Weng;:
Ein Evolutionsmodell zur mechanischen Analyse biologischer Struk-
turen (Dezember 1997)

Michael Strassberger:
Aktive Schallreduktion durch digitale Zustandsregelung der Struktur-
schwingungen mit Hilfe piezo-keramischer Aktoren (Dezember 1997)

Hans-Jorg Becker:
Simultation des Deformationsverhaltens polykristallinen Eises auf der
Basis eines monokristallinen Stoffgesetzes (Dezember 1997)

Thomas Nerzak:

Modellierung und Simulation der Ausbreitung adiabatischer Scher-
bander in metallischen Werkstoffen bei Hochgeschwindigkeitsdefor-
mationen (Dezember 1997)

O. T. Bruhns:
Grofle plastische Formédnderungen (Marz 1998)

Jan Steinhausen:
Die Beschreibung der Dynamik von Antriebsstrangen durch Black-
Box-Modelle hydrodynamischer Kupplungen (August 1998)
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Thomas Pandorf:
Experimentelle und numerische Untersuchungen zur Kerbspitzenbe-
anspruchung bei schlagbelasteten Biegeproben (August 1998)

Claus Oberste-Brandenburg;:

Ein Materialmodell zur Beschreibung der Austenit-Martensit Phasen-
transformation unter Beriicksichtigung der transformationsinduzier-
ten Plastizitat (Juni 1999)

Michael Martens:
Regelung mechanischer Strukturen mit Hilfe piezokeramischer Stapel-
aktoren (Dezember 1999)

Dirk Kamarys:
Detektion von Strukturverianderungen durch neue Identifikationsver-
fahren in der experimentellen Modalanalyse (Dezember 1999)

Wolfgang Hiese:
Giiltigkeitskriterien zur Bestimmung von Scherbruchzihigkeiten
(Januar 2000)

Peter Jaschke:
Mathematische Modellierung des Betriebsverhaltens hydrodynami-
scher Kupplungen mit hybriden Modellansatzen (Februar 2000)

Stefan Miiller:
Zum Einsatz von semi-aktiven Aktoren zur optimalen Schwingungs-
reduktion in Tragwerken (Februar 2000)

Dirk Eichel:
Zur Kondensation strukturdynamischer Aufgaben mit Hilfe von Poly-
nommatrizen (Juni 2000)

Andreas Biirgel:
Bruchmechanische Kennwerte beim Wechsel im Versagensverhalten
dynamisch scherbeanspruchter Risse (August 2000)

Daniela Liirding:
Modellierung groler Deformationen in orthotropen, hyperelastischen
Schalenstrukturen (Mérz 2001)

Thorsten Quent:

Ein mikromechanisch begriindetes Modell zur Beschreibung des duk-
tilen Verhaltens metallischer Werkstoffe bei endlichen Deformationen
unter Beriicksichtigung von Porenschiadigung (Mai 2001)
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Ndzi C. Bongmba:
Ein finites anisotropes Materialmodell auf der Basis der Hencky-
Dehnung und der logarithmischen Rate zur Beschreibung duktiler

Schadigung (Mai 2001)

Henning Schiitte:
Ein finites Modell fiir sprode Schéddigung basierend auf der Aus-
breitung von Mikrorissen (August 2001)

Henner Vogelsang:
Parameteridentifikation fiir ein selbstkonsistentes Stoffmodell unter
Beriicksichtigung von Phasentransformationen (Dezember 2001)

Jorn Mosler:
Finite Elemente mit sprungstetigen Abbildungen des Verschiebungs-
feldes fiir numerische Analysen lokalisierter Versagenszustande (De-
zember 2002)

Karin Preusch:
Hierarchische Schalenmodelle fiir nichtlineare Kontinua mit der p-
Version der Finite-Element Methode (Mai 2003)

Christoph Miiller:
Thermodynamic modeling of polycrystalline shape memory alloys at
finite strains (August 2003)

Martin Heiderich:
Ein Beitrag zur zerstérungsfreien Schadigungsanalyse (Juni 2004)

Raoul Costamagna:
Globale Materialbeziehungen fiir das gekliiftete Gebirge (Juli 2004)

Markus Bol:
Numerische Simulation von Polymernetzwerken mit Hilfe der Finite-
Elemente-Methode (Januar 2005)

Gregor Kotucha:
Regularisierung von Problemen der Topologieoptimierung unter Ein-
beziehung von Dichtegradienten (August 2005)

Michael Steiner:

Deformations- und Versagensverhalten innendruckbeanspruchter Stahlrohre

durch Stofibelastung (Februar 2006)

Dirk Bergmannshoft:
Das Instabilitdtsverhalten zug-/scherbeanspruchter Risse bei Varia-
tion des Belastungspfades (Dezember 2006)
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Olaf Schilling:
Uber eine implizite Partikelmethode zur Simulation von Umform-
prozessen (Januar 2007)

Jorn Mosler:

On the numerical modeling of localized material failure at finite strains
by means of variational mesh adaption and cohesive elements (Mai
2007)

Rainer Fechte-Heinen:
Mikromechanische Modellierung von Formgedachtnismaterialien (Juni
2007)

Christian Grabe:
Experimental testing and parameter identification on the multidimen-
sional material behavior of shape memory alloys (Juni 2007)

Markus Peters:
Modellierung von Rissausbreitung unter Verwendung der p-Version
der XFEM mit einer adaptiven Integrationsmethode (Juli 2007)

Claus Oberste-Brandenburg:
Thermomechanical modeling of shape memory alloys at different length
scales (Juli 2007)

Stefan Reichling:
Das inverse Problem der quantitativen Ultraschallelastografie unter
Beriicksichtigung grofiler Deformationen (Juli 2007)

Kianoush Molla-Abbasi:
A Consistent Anisotropic Brittle Damage Model Based on the Con-
cept of Growing Elliptical Cracks (Januar 2008)

Sandra Ilic:
Application of the multiscale FEM to the modeling of composite ma-
terials {August 2008)

Patrick Luig:
A consistent Eulerian rate model for shape memory alloys (Oktober
2008)
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