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Zusammenfassung

Diese Arbeit behandelt die mehraxiale, thermomechanische Charakterisierung
einer binären NiTi-Formgedächtnislegierung. Zur Realisierung der Versuche wird
ein Versuchsstand mit einem neuartigen, aktiven Temperaturregelungskonzept
und einem biaxialen Dehnungsmesssystem, das für einen großen Temperatur-
bereich und große Verdrehungen geeignet ist, entwickelt. Die experimentellen
Aufgabenstellungen lassen sich in drei Themenkomplexe unterteilen. Dies sind
Versuche zum viskosen und dehnratenabhängigen Materialverhalten im pseu-
doelastischen Temperaturbereich, die Untersuchung der Materialantwort auf bi-
axiale Dehnpfade in allen vier Quadranten des Normal-/Scherdehnungsraums
und die Identifikation des Materialverhaltens bezüglich biaxialer Spannungs-
pfade hinsichtlich des Einwegeffektes. Bei den Versuchen zum letztgenannten
Bereich wird die Probe im martensitischen Zustand belastet und eine Entlastung
wird sowohl an der martensitischen als auch der austenitischen Mikrostruktur
durchgeführt.
Im Hinblick auf das zur Parameteridentifikation verwendete kontinuumsmecha-
nische Materialmodell wird eine Erweiterung zur Beschreibung der Zug/Torsions-
Asymmetrie vorgeschlagen. Mit Hilfe eines parallelisierten, evolutionären Opti-
mierungsalgorithmus unter Verwendung verschiedener Minimierungsstrategien
werden die Modellparameter identifiziert. Daraufhin findet ein Vergleich zur
Evaluierung und Validierung des Modells zwischen experimentell ermittelten
Messdaten und mit dem Modell und den identifizierten Parametern berechneten
Daten statt.

Abstract

This thesis treats the multidimensional, thermomechanical characterization of
a binary NiTi shape memory alloy. In this regard, a novel, active temperature
control scheme is developed. Furthermore, a biaxial strain measuring device
suitable for a large temperature range and large distortions is realized. Three
experimental key issues can be identified, which are pseudoelastic experiments
with respect to a viscous and strain rate dependent material behavior, the de-
termination of the material response to biaxial strain paths spanning all four
quadrants of the normal/shear strain space, and the examination of the multidi-
mensional material behavior with reference to the one-way effect. For the latter
case, unloading is performed on austenitic and martensitic microstructures.

A modification of the material model, for which the material parameters are
to be identified, is proposed. That way, the model is capable of predicting the
tension/torsion asymmetry. The parameters are identified by means of a par-
allelized evolutionary algorithm using different search strategies. Subsequently,
the material model and the identified parameter set is evaluated and validated
against experimental data.
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x Position in the current configuration
X Position in the reference configuration

Vectors (Greek characters)

χ Deformation

Second order tensors (boldface roman)

1 Unit tensor
B Left Cauchy-Green tensor
C Right Cauchy-Green tensor
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1 Introduction

1.1 Motivation

During the last decades, a steadily increasing trend to miniaturize technical com-
ponents has been noticeable. Today, this is even more an issue than ever before.
However, miniaturization is not an aim in itself. Moreover, it is frequently the
prerequisite for efficiency enhancements, for instance, in the aerospace and auto-
motive industry. Another example is medical technology, where minimally inva-
sive surgery is more and more gaining ground, since the patients’ recovery times
can be significantly reduced due to less damage to tissue and muscle and less
blood loss. In this regard, newly found materials or fluids, which exhibit special
properties are highly challenging. Oftentimes, those materials are referred to as
intelligent, functional or smart materials and fluids. Amongst others, this field
comprises semiconductors, piezoceramics, magnetorheological fluids and shape
memory alloys. The existence of microcomputers and cellular phones would be
unthinkable without semiconductors. Piezoceramics are used in state of the art
diesel fuel injectors whereas some automakers use magnetorheological fluids for
realizing adaptive suspension systems.
Shape memory alloys, which will be the key issue in this treatise, combine mul-
tiple effects that are highly absorbing. The most prominent effects are pseudoe-
lasticity and the one-way and two-way shape memory effect. Furthermore, what
makes shape memory alloys additionally fascinating, is the possibility to use
them as sensors and actuators simultaneously, so that two classical components
can be substituted by one single shape memory element.
Referring to the unique effects, pseudoelasticity is fundamentally characterized
by extremely large recoverable strains1 upon loading and unloading. In compar-
ison to pseudoelasticity, the one-way shape memory or, simply, shape memory
effect can be observed at the same alloy at lower temperatures. Here, the material
may be deformed so that apparently plastic deformations are existent on unload-
ing, which is why this part of the one-way effect is also termed pseudoplasticity.
Upon heating this apparently plastic deformation is completely eliminated. The
term two-way effect indicates the switching between two particular strain states
by means of changing the temperature of the material. All three effects will be
explained in more detail in Chapter 2.
Figure 1.1 shows some typical samples for applications of NiTi shape memory
alloys. A peripheral stent, which is designed to support the walls of blood vessels

1Recoverable strains in the order of 11% and 7% are reported for NiTi single crystals
and polycrystals, respectively, cf. Saburi, T. (1998).
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2 Chapter 1. Introduction

(a) Peripheral stent (Photograph courtesy of
Memory-Metalle GmbH, Germany)

(b) Staples for foot surgery (Photograph
courtesy of Research Centre Jülich in the
Helmholtz Association of National Re-
search Centres, Germany)

Figure 1.1: NiTi devices and implants

making use of the pseudoelastic effect, is depicted in Figure 1.1(a). Figure 1.1(b)
illustrates the working principle of a staple for foot surgery, which is based on
the one-way effect, see Krone, L. et al. (2005). Here, a compressive force acts on
the fracture zone to assist the healing process.

In order to save development costs and time, today, it is mandatory, to compute
the mechanical behavior beforehand, optimizing the shape of new components
with reference to functionality, reliability and costs. Consequently, if complex
geometries are considered, like in the case of stents, it is of paramount importance
to be able to perform three-dimensional structural analyses. In this regard, a
continuum mechanical material model for shape memory alloys incorporating
large deformations was thermodynamically consistently derived by Müller, C.
(2003) based on the RL-model by Raniecki, B. et al. (1992). Several material
parameters were introduced with this phenomenological approach. Since some
of those material parameters are specific to the model and others are different for
distinct microstructures or heat treatments, a consistent set of model parameters
is not at hand. Hence, a parameter identification would have to be realized on
one single NiTi alloy.

The identification of model parameters for a shape memory alloy is one of the
major topics in this work. Furthermore, multidimensional validation experi-
ments are projected to show the capabilities and limitations of the given material
model. In addition, to allow for a further amendment of material models and
a deeper understanding of the thermodynamically coupled mechanical material
behavior, multidimensional axial/torsional experiments should be conducted.
Concomitantly, the material temperature should be controlled so that different
thermodynamic effects may be decoupled and thus may be interpreted more
easily.
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1.2 Outline

The present thesis is structured in nine chapters. Subsequent to this intro-
duction, the basic properties of shape memory alloys are presented. First, the
microscopic effects are treated, simultaneously elucidating the martensitic phase
transformation on shape memory alloys, which gives rise to the specific shape
memory behavior. Furthermore, the notion of lattice invariant shear is briefly
introduced. Thereafter, the particular material behavior of shape memory alloys
is schematically illustrated on the macroscale.

Chapter 3 establishes the basic notations concerning the continuum mechanical
and thermodynamic framework, which are used in this treatise. More specifi-
cally, different stress and strain measures are derived, and the concept of work
conjugacy is illustrated, leading to work conjugated pairs of stress and strain.
Consecutively, special focus is on the concept of objectivity, which results in some
reflections with respect to objective rates, and which yields the work conjugated
pair of stress and strain used later on. Additionally, the fundamental balance
laws and conservation equations are accounted with the Clausius-Duhem in-
equality being the representation of the second law of thermodynamics. Finally,
the thermomechanical coupling is very briefly inferred.

A sketch of the basic structure of the material model as derived by Müller, C.
(2003) is presented in the first part of Chapter 4. Here, the train of thought
is analogous to the concept presented in Müller, C. (2003). The second part
treats possible extensions of the RL-model and a short survey of the respective
literature. Furthermore, a modification of the given material model is proposed
incorporating the tension/shear asymmetry.

Since one of the principal topics of this work is the execution of experiments, a
comparably large part, namely Chapter 5, addresses the experimental setup. At
this juncture, special importance is attached to the concepts of heating and cool-
ing of the specimen, which furnish, together with the temperature measurement,
the integrated system of temperature control. Furthermore, a new biaxial strain
measuring device is developed, which is compatible to the overall temperature
control setup.

Thereupon, the experimental examinations are outlined. Foremost, the given
specimen material is characterized and the specimen preparation is exemplified.
Here, the microstructure and the mechanical behavior are explored. In the fol-
lowing, the rate dependence of the mechanical material behavior is determined.
Several isothermal tests with varying deformation rates and strain- and stress-
hold periods are conducted. Thereafter, Section 6.3 is about complex loading
paths in the tension/compression/torsion subspace presenting tests that span
all four strain quadrants. Finally, complex multidimensional experiments are
performed on different crystallographic microstructures, in order to examine the
one-way effect for the given material. Thereby, the temperature is varied within
a large interval.

A second key issue is the identification of the model parameters for the RL-
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and modified RL-model, respectively. On this account, Chapter 7 deals with
numerical methods for the parameter identification. In this connection, the
notions of the direct and inverse problem are discussed. Besides, different opti-
mization procedures are surveyed with special focus on the comparison between
deterministic and stochastic search algorithms. As a conclusion, the performed
implementation and realization of the parameter identification is given.
The determination of material parameters is the topic of Chapter 8. After some
basic considerations concerning reasonable constraints in order to increase the
convergence rate, the material parameters are identified. Subsequently, the ex-
periments, which are used for the identification, are recalculated using the iden-
tified parameters and compared to the measurements. For validation purposes,
new, multidimensional experiments are computed and checked against actually
measured, multidimensional data.
Concluding this thesis, the last chapter summarizes the main results of this work
and gives an outlook with reference to a further amendment of the experimental
database.



2 Illustration of NiTi shape memory behavior

In order to be able to investigate the mechanical and thermodynamically coupled
material behavior of shape memory alloys, it is of high importance to understand
the basic mechanisms, which are responsible for the unique phenomenological
effects. On this account, this chapter is meant to give a short overview of some
microscopic considerations and the impact thereof on the macroscopic material
behavior. It is pointed out that only a simplified view on the crystallography
of shape memory alloys will be given here. In this connection, the main focus
is on polycrystals. Furthermore, even though most of the following statements
concerning shape memory alloys hold true in general, the key issue in this work
are binary, nearly equiatomic NiTi alloys.
In this connection, NiTi is chosen as specimen material for this treatise, since it
is the most prominent and most widely-used shape memory alloy. The reasons
therefor are higher transformation stresses and strains, a superior biocompatibil-
ity, and an improved mechanical stability in comparison to other shape memory
alloys, cf. Miyazaki, S. (1996); Melton, K.N. (1998); Miyazaki, S. (1998).

2.1 Microscopic properties

Fundamentally, the different features of shape memory alloys can be traced back
to the martensitic transformation behavior of shape memory alloys. This specific
type of phase transformation was termed “martensitic” in honor of the eminent
German metallurgist Adolf Martens (1850-1914) who conducted his research in
the field of microstructural steel characterization at the end of the 19th century.
Otsuka, K. & Wayman C. M. (1998) define the martensitic phase transformation
as being “a diffusionless phase transformation in solids, in which atoms move
cooperatively, and often by a shear-like mechanism. Usually the parent phase
(a high temperature phase) is cubic, and the martensite (a lower temperature
phase) has a lower symmetry”. Sometimes, the martensitic transformation is
referred to as displacive due to the cooperative movement of the atoms. By virtue
of the lower degree of symmetry, a large number of distinct martensite variants1

may form upon phase transformation. However, only one single austenite variant
is existent for NiTi. In this regard, a volumetric change of −0.34% can be
observed for a NiTi austenite-martensite phase transformation, Shimizu, K. &
Tadaki, T. (1984).
The aforementioned shear-like deformation of the crystal lattice is called Bain
strain and is depicted in a simplified form for a single crystal in Figure 2.1a),

112 martensite variants exist. All of them are crystallographically equivalent.
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c)b)a)

Figure 2.1: a) Shape change upon martensitic transformation; accommodation
of strain due to b) slip and c) twinning

Otsuka, K. & Wayman C. M. (1998). On the left, the parent phase, austenite,
is shown while on the right the distorted lattice of martensite is evident. It is
obvious that due to the shearing deformation a large shape change occurs around
the martensite. However, an overall shape change of the material cannot be
observed in reality for a temperature induced phase transformation. The reason
is that it is essential for the nucleation and growth of martensite to minimize
the strain energy, thus, to reduce the strain. The mechanism to achieve this is
called lattice invariant shear. Two different types fo this mechanism, namely
slip and twinning, are known. They are sketched for a single crystal and only
two different martensite variants in Figures 2.1b) and 2.1c). Slip comes along
with the introduction and movement of dislocations and is, thus, an irreversible
step. This is not the case for twinning, as the movement of twin boundaries
is reversible. Which kind of lattice invariant shear appears, depends on the
particular alloy. Nevertheless, the mechanism of twinning plays a major role for
NiTi, which is why twinning is, here and henceforth, considered as the primary
lattice invariant shear effect.

Ort́ın, J. & Planes, A. (1989) state that, from a thermodynamic viewpoint,
temperature and externally applied stress play equivalent roles for the phase
transformation. Against this background, Figure 2.2 elucidates the different ef-
fects inherent in shape memory alloys for two martensite variants, cf. Helm, D.
(2001). Fundamentally, in the case of temperature-induced phase transforma-
tion, self-accommodated martensite forms due to the absence of external stresses,
as can be seen in the upper two schematic drawings. Here, the starting point of
the particular effects is temperature-induced martensite being the stable phase
at the present material temperature. Advancing from top to bottom, pseudo-
plasticity is the isothermal part of the one-way effect. It occurs upon loading
of the self-accommodated martensitic microstructure. Since twin boundaries are
quite mobile, detwinning and variant reorientation takes place in order to ac-
commodate the external stress. The growing of one variant at the expense of
other variants is frequently referred to as variant coalescence, cf. Miyazaki, S.
(1996). If the external stress is high enough, the microstructure will become
one single variant. However, the microstructure is almost completely sustained
upon unloading so that an apparently plastic deformation of the material is ev-
ident. Basically, only elastic unloading takes place but no repeated twinning. If
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Figure 2.2: Shape memory effects and deformation mechanisms on the microscale

the alloy is subsequently heated, resulting in austenite being the stable phase,
the initial shape is recovered due to the higher symmetry of the parent phase.
Upon cooling, self-accommodated martensite is regained. The one-way effect
comprises the whole process including heating and cooling.

Regarding the two-way effect, the stable martensite phase is loaded by externally
applied or eigenstresses. These eigenstresses may result from the existence of dis-
locations or precipitates. Consequently, it is referred to the extrinsic or intrinsic
two-way effect. The crystallographic material response is similar for both cases.
First, as the crystal lattice is loaded, the stress is accommodated. The initial
shape is regained upon heating due to the aforementioned reasons resulting in



8 Chapter 2. Illustration of NiTi shape memory behavior

an austenitic microstructure. In contrast to the one-way effect, the stresses are
still present so that a preferentially oriented microstructure is retrieved upon
cooling.

Pseudoelasticity can be observed, if austenite is the only stable phase under
zero applied stress at the actual material temperature. Then, martensite can be
formed by the application of external stress. Since the material accommodates
the external stress state, oriented martensite is the result of this process leading
to an overall deformation of the material. The energetically most beneficial
variants develop. However, upon unloading the parent phase which shows a
higher degree of symmetry reappears. Under the assumption that no irreversible
slip is introduced, the resulting austenite microstructure is identical to the initial
one, since only one single austenite variant exists.

While fully annealed NiTi alloys transform from austenite, B2, directly to the
monoclinic B19′ martensite phase, for thermomechanically treated alloys, this
is frequently not the case, as those feature oftentimes a two-stage martensitic
B2 → R→ B19′ phase transformation. In this context, the martensitic R-phase
is characterized by a trigonal structure, cf. Saburi, T. (1998). Considerably
smaller hystereses are associated with the transformation between the B2- and
the R-phase so that in the case of mechanical material modeling this phase
transformation is usually neglected.

2.2 Thermomechanical properties

The aforementioned effects on the microscale provoke distinct stress-strain curves
on the macroscale. The macroscopically phenomenological material behavior is
addressed in the following.

In the context of martensitic transformations the start and finish temperatures of
the respective phase transitions are of high importance. Here, the martensite and
austenite temperatures are denoted by M and A with the start and finish points
signified by the indices “s” and “f”. Since these transformation temperatures
differ, a hysteretic material behavior can be observed in the stress-strain space.
The respective size depends strongly on the specific alloy.

Generally, pseudoelasticity and the one-way effect may occur at the same alloy,
see Figure 2.3 after Shimizu, K. & Tadaki, T. (1984); Miyazaki, S. (1996). That
is, the shape memory effect is existent for temperatures below As followed by
heating above Af. By contrast, if the critical stress to induce irreversible slip is
high enough, the pseudoelastic range is above Af where martensite is completely
unstable for vanishing external stresses. Within the temperature regime between
As and Af a mixed material behavior may be noted. The straight line featuring a
positive slope characterizes the necessary stress to induce martensite as described
by a Clausius-Clapeyron-like equation, cf. Ort́ın, J. & Planes, A. (1989). The
two other straight lines exhibiting negative slopes indicate two arbitrary, critical
stress progressions for the induction of slip. Following the ideas explained in
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Figure 2.3: Schematic diagram showing the regions of pseudoelasticity and of the
one-way shape memory effect

Section 2.1, a reversible, pseudoelastic material behavior is impossible, if slip
occurs, since slip is not recovered upon unloading or heating. However, against
the background of physical metallurgy, the critical line for slip can be shifted by
means of solution hardening, precipitation hardening, or work hardening, refer
to Otsuka, K. & Wayman C. M. (1998).
Figure 2.4 presents the phenomenological stress-strain behavior for the cases of
plastic austenite, pseudoelasticity, and the one-way effect. Above a certain tem-
perature, Md, the introduction of plastic slip is energetically preferred over the
formation of stress-induced martensite. Consequently, the austenite is plasti-
cally deformed. When temperatures between Af and Md are considered, stress-
induced martensite as described in Section 2.1 is formed upon loading. Finally,
since martensite is unstable at this elevated temperature level, the complete
strain is recovered as the stress is released.
Below Mf, martensite is the stable phase featuring a self-accommodated crys-
tallographic microstructure. Due to variant coalescence the applied external
stress is accommodated leading to an overall strain. Only elastic unloading is
observed upon unloading but during heating, austenite develops starting at As.
This process is concluded at Af. After cooling below Mf, a twinned martensitic
microstructure is regained.
The intrinsic two-way memory effect is sketched schematically in Figure 2.5. The
term “intrinsic” applies, since no external stresses are present. However, due to
local stress fields by virtue of eigenstresses a preferred martensitic microstructure
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Figure 2.4: Schematic drawing of the one-way shape memory effect, pseudoelas-
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Figure 2.5: Sketch of the intrinsic two-way shape memory relation between tem-
perature and strain, heat expansion is included

exists. Because of the higher degree of symmetry of the austenitic lattice and
the constant local stress fields, it can be switched between two strain states by
changing the material temperature. A similar temperature-strain relationship
can be observed, if the load is externally applied.

2.3 Terminology

In this chapter, only transformation pseudoelasticity has been considered. As
this term implies, the origin of this effect is a phase transformation between a
parent and a martensitic phase. However, other types of pseudoelasticity exist,
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such as twinning pseudoelasticity (Hornbogen, E. (1995)) or rubber-like behavior
(Otsuka, K. & Wayman C. M. (1998)). Both terms are attributed to an effect
which may be observed on particular twinned martensitic microstructures. Here,
detwinning takes place upon loading but the twinned microstructure is regained
upon unloading. Consequently, it describes the reversible movement of twin
boundaries, Otsuka, K. & Wayman C. M. (1998). The reasons for this material
behavior are subject to ongoing research. In Section 6.1.5, this effect is revis-
ited. The term “superelasticity” is proposed for transformation pseudoelasticity
by Otsuka, K. & Wayman C. M. (1998) whereas Hornbogen, E. (1995) sug-
gests to use the latter in order to avoid misunderstandings. However, the term
“transformation pseudoelasticity” is used in this work whenever confusion seems
possible.



3 Continuum mechanical and thermodynamic
frame

This chapter gives a short glance on some basic principles of continuum mechan-
ics and thermodynamics. It is not exhaustive nor it is meant to be. Moreover,
the intention is to establish a consistent nomenclature and to introduce the basic
assumptions and laws needed in the subsequent parts of this work.
This chapter is organized as follows. The first section gives some fundamentals
on kinematics and kinetics, i.e. strain and stress measures and the respective
material rates are introduced. Section 3.2 treats the first and second law of
thermodynamics additionally to conservation and balance laws.
For a more detailed view on theses subject matters the interested reader is
referred to the works Truesdell, C. & Noll, W. (2003); Ogden, R.W. (1997);
Stein, E. & Barthold, F.-J. (1996); Altenbach, J. & Altenbach, H. (1994); Xiao,
H. et al. (2006).

3.1 Continuum mechanical framework

3.1.1 Kinematics

In the following sections a body B as a set of particles or material points is
considered. Therein, a generic particle is labeled by X. Fundamentally, differ-
ent configurations of the body may exist which shall be denoted by B. Now,
assuming a fixed referential configuration B0 which coincides, for the sake of
simplicity, with the initial configuration of the body, the reference position of
the generic particle X is designated by the position vector X. Thus, a mapping
of the particle onto its position in the reference (Euclidean) point space is re-
alized so that the material point can be identified by the local position in the
reference configuration. Accordingly, the position of the particle in the current
configuration B is indicated by x. In this context, different coordinate systems
with different origins may be chosen for reference and current configuration.
Then, the following equation can be used for describing the deformation of the
body B:

x = χ(X). (3.1)

It follows from the physics that this is supposed to be a one-to-one mapping
between current and reference configuration which is said to be bijective. Figure
3.1 depicts the aforementioned interrelations.

12
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Figure 3.1: Body and particle in reference and current configuration

Consequently, physical observations can be expressed as a function of the ref-
erence or the current configuration, respectively resulting in the Lagrangian (or
material) and the Eulerian (or spatial) description, the latter being of special
interest in this work.
The material deformation gradient mapping a line element in the reference con-
figuration dX onto the corresponding line element in the current configuration
dx is given by

dx = FdX. (3.2)

In order to calculate the deformation gradient which is a two-point second-order
tensor field, use of the following equation is made,

F = Gradx with Grad =
∂

∂X
. (3.3)

Furthermore, stipulating consistency of the current configuration and account-
ing that detF = 1 for the special case of coincidence of reference and current
configuration the inverse mapping,

F−1 = gradX with grad =
∂

∂x
(3.4)

follows, with

J := detF > 0. (3.5)

J is called the Jacobian (determinant) and can be interpreted in anticipation of
the conservation of mass in Section 3.2 as the ratio of the mass densities in the
reference and current configuration,

J =
dV

dv
=
ρ0
ρ
, (3.6)
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with dV and dv being the respective element volumes. Since the deformation
gradient comprehends the total motion of the body between reference and current
configuration including rigid body rotations1, the deformation gradient F is not
well-suited for describing the distortion of the body. But, as the deformation
gradient is non-singular, a polar decomposition as shown below is always possible

F = RU = VR, (3.7)

with the proper orthogonal rotation tensor R and the uniquely determinable
symmetric and positive definite right and left stretch tensor, U and V, respec-
tively. Evidently, the tensors U and V are independent of rigid body rotations.
Nevertheless, the stretch tensors U and V are complicated irrational functions
of the deformation gradient F and as a consequence, for special cases, it proves
advantageous to use the right and left Cauchy-Green tensor,

C = FT F = UU (3.8)

and

B = FFT = VV, (3.9)

respectively. By contrast, for handling general considerations, U and V are
rather used, see Truesdell, C. & Noll, W. (2003).
Albeit the independence of rigid body motions, for an unstrained body the iden-
tity U = V = C = B = 1 holds. However, often a strain measure is desired
which exhibits a value of zero for an unstrained body instead of the identity,
Altenbach, J. & Altenbach, H. (1994). On this account, a set of general strain
measures can be established following Equations (3.10), cf. Ogden, R.W. (1997).

Lagrange Euler

m 6= 0 1
m
(Um − I) 1

m
(Vm − I)

m = 0 lnU lnV

(3.10)

For the special cases of m = 2 and m = −2 the Green-Lagrangian and Almansi-
Eulerian strain tensor,

E =
1

2
(C− 1) (3.11)

and

e =
1

2
(I−B−1) (3.12)

1Rigid body translations have no effect on the deformation gradient due to the differen-
tiation with respect to X.
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are obtained.

Besides, the logarithmic strain measures

H =
1

2
ln(C) and h =

1

2
ln(B), (3.13)

also called Hencky strains and obtained for m = 0, play a special role because of
some intrinsic features. One of those is that they can be decomposed additively
into two parts which are associated with the change of the volume and the change
of the shape of the body. Due to numerous reasons stated later on, the Eulerian
Hencky strain h is of particular interest in this work.

The fundamental base of the analysis of strain velocities is the velocity gradient
tensor L defined as

dẋ = ḞF−1dx = Ldx. (3.14)

It can be interpreted as the spatial gradient of the velocity ẋ, hence, relating an
Eulerian line element dx to its material time derivative dẋ. L can be additively
decomposed into a symmetric and a skew-symmetric part furnishing the Eulerian
strain rate or stretching tensor D and the spin tensor W given by

L = sym(L) + skw(L) = D+W (3.15)

with

D =
1

2

“
L+ LT

”
and W =

1

2

“
L− LT

”
. (3.16)

3.1.2 Kinetics

Due to a system of applied forces on the current configuration B of a body, at
every imaginary cut surface of the body, a vector field exists, which is called the
stress vector t. With the resultant contact force dk and the area element da it
follows

dk = t da. (3.17)

As a result from Cauchy’s fundamental postulate, one may find that the stress
vectors at two opposing faces of an assumed cut are equal but oppositely oriented.
Additionally accounting Cauchy’s theorem, a second-order tensor T exists with

t = Tn and dk = T da, (3.18)

and n being the normal vector to the actual area a. T is an Eulerian stress
measure and is called Cauchy or true stress tensor.

Consistent to the above remarks concerning strain measures, different Eulerian
and Lagrangian stress measures may be established. Weighted by the Jacobian
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or the ratio of mass densities for referential and current configuration in the case
of closed systems, T can be transformed into the Kirchhoff stress tensor τ ,

τ = J T. (3.19)

If the contact forces are associated with face elements in the referential config-
uration dA, the first Piola-Kirchhoff stress tensor can be derived, which is a
two-point tensor, yielding

dk = P1 dA. (3.20)

By means of Nanson’s formula, cf. Stein, E. & Barthold, F.-J. (1996),

da = det(F)F−T dA, (3.21)

the first Piola-Kirchhoff tensor can be calculated from

P1 = det(F)TF−T. (3.22)

If a Lagrangian stress measure is needed, a fictitious referential contact force
can be imagined, which associated with a referential face element yields the
symmetric second Piola-Kirchhoff stress tensor P2,

dK = P2 dA, (3.23)

with

P2 = det(F)F−1 TF−T . (3.24)

P2 has no physical meaning and is therefore only used for calculation purposes.

Beyond, for the constitutive modeling of material behavior, in anticipation of
Section 3.2, the stress power ẇ is utilized to determine appropriate pairs of
stress and strain measures. Fundamentally, the stress power is calculated from

ẇ = τ : D. (3.25)

Notwithstanding this fundamental relationship between Kirchhoff stress, Eule-
rian stretching and stress power other stress/strain rate pairs can be found which
fulfill this work conjugacy equation. Some of them are P1 and Ḟ or P2 and Ė
while by contrast D could not be associated with a time derivative of a strain
tensor for a long time.

The closure of this problem will be readdressed in the course of this section
after some additional considerations concerning frame of reference or observer
indifference.
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3.1.3 Objectivity and objective rates

If two independent observers are considered who are in relative motion to one
another, the following relationship for the description of the motion of a body is
evident

x? = Q(t)x+ c(t) and t? = t− a, (3.26)

with the relative rotation and translation of the two observers Q(t), c(t) and the
time shift a. In contrast to their kinematical description, physical phenomena do
not depend on the choice of observer. Therefore, mathematical formulations of
physical interrelations must reflect this independence, see Ogden, R.W. (1997).
Physical quantities, which are independent of the choice of observer, are termed
objective. The transformation rule for an objective second-order tensor reads

A?(x?) = Q(t)A(x)QT(t). (3.27)

Objective tensor fields are for example D, E, T, τ , and P2. In this regard,
special attention has to be paid on time derivatives. For Lagrangian tensors the
material time derivative is objective. Contrastively, for Eulerian measures this
is not the case, so that modified time derivatives have to be used. The material
time derivative for the (objective) Cauchy stress is given below,

Ṫ
?
=

˙
QTQT

= Q̇TQT +QṪQT +QTQ̇
T
. (3.28)

As evident, the material time derivative of an objective Eulerian second-order
tensor does not transform objectively. Prominent classical objective time deriva-
tives are according to Xiao, H. et al. (2000a) the Oldroyd and Truesdell rates
and the Zaremba-Jaumann and Green-Naghdi rate. Just recently, it was shown
in Xiao, H. et al. (2000b) that the logarithmic rate of the Eulerian Hencky2

strain yields the stretching tensor,

◦
h log = D. (3.29)

Hereby, it can be shown that the Hencky strain and the Kirchhof stress form a
work conjugated pair, which is the work conjugated pair of choice for all further
considerations.
For the modeling of elastoplastic and akin material behaviors, the decomposi-
tion of a strain or deformation measure into a reversible and irreversible part is
essential, due to the different modeling approaches for reversible and irreversible
processes. It was shown in Xiao, H. et al. (2006) that, motivated by a split of
the stress power into a reversible and irreversible part,

ẇ = τ : D = ẇe + ẇi, (3.30)

2Only by use of this combination, logarithmic rate and Eulerian Hencky strain, the
stretching tensor can be interpreted as a corotational time derivative of a strain tensor.



18 Chapter 3. Continuum mechanical and thermodynamic frame

with

ẇe = τ : De and ẇi = τ : Di, (3.31)

associated with elastic and inelastic deformation, the stretching tensor and its
additive decomposition should be taken for elastoplastic and related material
models,

D = De +Di. (3.32)

3.2 Balance laws

In this section, a general overview of the five fundamental balance equations and
conservation laws is given. This section is just meant to show the basic concepts,
results, and implications from those laws. It is not intended to give a detailed
derivation of each. Furthermore, only Boltzmann continua are treated which
results in the neglect of volume-distributed moments.
Basically, the considered balance laws can be written in the following form ac-
cording to Altenbach, J. & Altenbach, H. (1994)

d

dt

Z
B
Ψ(x, t)ρ dv =

Z
∂B

Φ(x, t)n da+

Z
B
Ξ(x, t)ρ dv. (3.33)

In this equation, Ψ are tensor-valued balance quantity densities. Φ and Ξ are the
respective fluxes through the surface area ∂B of the current configuration B of
the body and mass specific generation or annihilation due to external influences
or internal sources or sinks, respectively.
Sufficient smoothness of all solutions is assumed so that in all subsequent sections
the local forms of the balance equations are given.

3.2.1 Mass conservation

Assuming that mass is not annihilated or generated within the body, and that no
mass transfer takes place throughout the surface of the body, the conservation
equation of mass can be written as

m =

Z
B
ρ dv =

Z
B0

ρ0 dV (3.34)

with Ψ = 1 and Φ = Ξ = 0. By means of the deformation gradient F, the first
local form of mass conservation follows,

ρ0
ρ

= detF = J. (3.35)

Besides, differentiation of the global form with respect to time yields the continu-
ity equation or second local form of mass conservation, cf. Stein, E. & Barthold,
F.-J. (1996),

ρ̇+ ρ div ẋ = 0. (3.36)
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3.2.2 Balance of linear momentum

The conservation of linear momentum states that the velocity of change of linear
momentum is equal to the applied surface- and body-forces. The balance law
can be inferred from the general balance equation, (3.33), for Ψ = ẋ, Φ = T,
and Ξ = b

d

dt

Z
B
ẋρ dv =

Z
∂B

Tn da+

Z
B
bρ dv. (3.37)

Here, T is the Cauchy stress tensor, and b is the body-force density. Applica-
tion of the divergence theorem leads to the local form, which is also known as
Cauchy’s first law of motion

divT+ ρ(b− ẍ) = 0. (3.38)

3.2.3 Balance of angular momentum

The essence of the balance of angular momentum is, that the vectorial sum
of moments resulting from the applied surface- and body-forces, with reference
to an arbitrarily chosen point, is equal to the velocity of change of angular
momentum. The respective balance law reads

d

dt

Z
B
(x−x0)× ẋρ dv =

Z
∂B

(x−x0)× (Tn) da+

Z
B
(x−x0)×bρ dv, (3.39)

with x0 being an arbitrarily chosen reference point. Reference is given to Equa-
tion (3.33) by Ψ = (x− x0)× ẋ, Φn = (x− x0)× (Tn), and Ξ = (x− x0)× b.
By means of the continuity equation, (3.36), the divergence theorem, and stip-
ulating smoothness of the solution, the essence of the conservation of angular
momentum can be given by the symmetry of the true stress tensor,

T = TT. (3.40)

This is not to be confused with the fact that all stress measures may be sym-
metric, which is beyond doubt not the case.

3.2.4 Conservation of energy/first law of thermodynamics

For all considered bodies, the velocity of change of total energy is equal to the
velocity of heat supply and the power of the applied external forces. Herein, the
total energy can be split into the internal and kinetic energy. Thus, the change of
internal energy equals the internal stress power and the supplied heat, resulting
in

d

dt

Z
B
uρ dv =

Z
∂B

(Tẋ− q) · n da+

Z
B
rρ dv. (3.41)
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Here, u denotes the internal energy. q and r are the heat flux and heat sources,
respectively. Consequently, Equation (3.41) results from the general form of
balance equation, (3.33), by Ψ = u, Φ = Tẋ − q, and Ξ = r. By means of
the moment of angular momentum, utilizing the symmetry of the Cauchy stress
tensor, the local form of the first law of thermodynamics is given by

u̇ = r − 1

ρ
divq+

1

ρ
T : D. (3.42)

3.2.5 Balance of entropy/second law of thermodynamics

The existence of entropy S and absolute temperature Θ is assumed. Further-
more, the entropy has its minimum with S = 0 at Θ = 0. This is sometimes
referred to as the third law of thermodynamics, see Altenbach, J. & Altenbach,
H. (1994). Now, the balance of entropy states that the velocity of change of
entropy is equal to the sum of internal entropy production and entropy supply
due to internal heat sources and heat fluxes through the surface. Hence, the
balance of entropy can be written as

d

dt

Z
B
sρ dv = −

Z
∂B

1

Θ
q · n da+

Z
B

“ r
Θ

+ γ̇
”
ρ dv, (3.43)

with the mass specific entropy s and the internal entropy production rate γ̇.
Formally, this can be ascribed to Equation (3.33) with Ψ = s, Φ = − 1

Θ
q,

and Ξ = r
Θ

+ γ̇. Realizing that the internal entropy production is always non-
negative, with the border case of reversible processes for which γ̇ = 0, it follows
that

γ̇ ≥ 0. (3.44)

Incorporating this into Equation (3.43), and stipulating smoothness of the solu-
tions, Equation (3.44) yields

Θργ̇ = ρṡ− ρr

Θ
+ div

q

Θ
≥ 0. (3.45)

Consecutive rearranging then gives the Clausius-Duhem inequality with

ṡ ≥ r

Θ
− 1

ρ
div

q

Θ
. (3.46)

Substituting the term of internal heat sources by means of the balance of energy
(3.42), and establishing the notion of the specific Helmholtz free energy

ψ = u−Θs, (3.47)

the Clausius-Duhem inequality can be reformulated to yield

Θργ̇ = T : D− ρ
“
ψ̇ + sΘ̇

”
− 1

Θ
q · gradΘ ≥ 0. (3.48)
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3.3 Thermomechanical coupling

Since thermal and mechanical effects are strongly interrelated in the context
of thermodynamic consistent material modeling, it has to be accounted for the
thermomechanical coupling, when deriving governing equations for deformation
and temperature.
By means of the principle of conservation of energy and a Legendre transforma-
tion reflection on different representations of energy, noting that

∂g

a
=
∂ψ

a
, (3.49)

the governing equation for the thermomechanical coupling is inferred as

cpΘ̇ = −1

ρ
divq+

1

ρ
ḣlat, (3.50)

cf. Müller, C. (2003) for further details. In this context, ḣlat denotes the latent
heat generation per unit volume as a function of the specific Gibbs free energy
g. Recalling that for scalar valued functions the following identity holds

ġ =
◦
g log, (3.51)

and for isotropic tensorial functions the chain rule for corotating rates can be
applied, Xiao, H. et al. (1999), the determining equation for ḣlat reads

1

ρ
ḣlat =

1

ρ0
τ : Dtr + r− ∂g

∂a
· ◦a log +Θ

∂2g

∂Θ∂τ
:

◦
τ log +Θ

∂2g

∂Θ∂a
:
◦
a log. (3.52)

Here, a represents the set of internal variables of the respective material model.



4 Phenomenological modeling

As this work is partly concerned with the identification of material parameters,
the respective material model is presented in this chapter. The material model
was developed in original form for small deformations by Raniecki, B. et al.
(1992), and extended to finite deformations by Müller, C. (2003); Müller, C. &
Bruhns, O.T. (2004, 2006). Additionally, special attention was paid by Müller
to the thermodynamic frame.
The fundamentals of the RL-model for finite deformations are demonstrated in
the first section of this chapter. As a matter of fact, the purpose of this chapter
is to offer an introduction to the RL-model. Nevertheless, in order to gain a
detailed insight, the disposed reader is referred to the aforementioned treatises.
Afterwards, some remarks are made with respect to several shortcomings of
the material model, which prove the parameter identification for tension/torsion
tests cumbersome. Finally, after some comments about different approaches
in the literature, a modification of the extended RL-model is suggested, which
incorporates the “tension/torsion” asymmetry.

4.1 RL-model for finite deformations

Fundamental base of the presented material model is the additive decomposi-
tion of the stretching tensor, which can be motivated from the split of the stress
power, (3.30). Since only elastic and pseudoelastic material behavior is consid-
ered here, the latter being associated with phase transformations, inelasticity in
terms of plastic material behavior is not accounted. Moreover, the dissipative
deformations are completely linked to phase transitions. Thus, Equation (3.32)
becomes

D = De +Dtr, (4.1)

with Dtr denoting the inelastic stretching tensor due to recoverable phase trans-
formations. Starting thereof, and recalling Equation (3.29), the following split
of the Hencky strain is used

h = he + htr. (4.2)

For the elastic material behavior, it is assumed that the stress admits a hypere-
lastic potential1 according to

Σ(τ ) =
1

2
τ : D : τ + (Θ−Θ0)α : τ . (4.3)

1Due to the axiom of material symmetry this is an isotropic tensor function with D and
α being isotropic material properties.

22



4.1. RL-model for finite deformations 23

Here, D and α are the fourth-order elastic compliance tensor and second-order
tensor of thermal expansion, respectively. Additionally, a reference temperature
Θ0 is introduced.

Based on Equation (4.3), it is straightforward to derive the stress in terms of
the elastic strain and the absolute temperature Θ, i.e.

τ = he : C− (Θ−Θ0)α : C. (4.4)

Herein, an additional tensorial quantity C is established, which is the inverse of
the elastic compliance tensor, and which is termed elastic stiffness tensor.

In order to characterize the phase composition of the material, the mass fraction
of martensite ξ is introduced,

ξ =
mM

m
, m = mA +mM. (4.5)

Here and in the course of this work, the superscripts A and M respectively denote
the austenite and martensite specific quantities. Accordingly, as only austenite-
martensite and martensite-austenite two-stage phase transitions are considered,
the mass fraction of austenite is given by

mA

m
= 1− ξ. (4.6)

In contrast to several other phenomenological material models, cf. for example
Qidwai, M.A. & Lagoudas, D.C. (2000); Juhász, L. et al. (2002), the mass frac-
tion instead of the volume fraction is taken in accord to the conservation of mass,
(3.34). Nevertheless, with the assumption of constant and equal mass densities
for austenite and martensite the two different formulations coincide.

Henceforth, the only internal variable of the material model shall be the marten-
site mass fraction, thus

a = {ξ}. (4.7)

As the material model is to be formulated in terms of the state variables he,
Θ, and a, the specific Helmholtz free energy has to be considered as governing
measure.

The overall Helmholtz free energy can be calculated from the energies of the
single phases by using the following mixing rule,

ψ = (1− ξ)ψA + ξψM + ξ (1− ξ)ψit, (4.8)

cf. Müller, C. (2003). Here, the internal interaction ψit is given by

ψit(Θ) = ū0 −Θs̄0 ≥ 0, (4.9)
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with the material parameters ū0 and s̄0 as configurational internal energy and
entropy. An analogous type of mixing rule, which is motivated by microme-
chanical considerations, is chosen for the calculation of the macroscopic strain

h = (1− ξ)hA + ξhM, (4.10)

with

hα = heα + htrα, α = {A,M}. (4.11)

In order to characterize the transformation strain, which is associated with the
generation of martensite, the intrinsic phase distortion κ is introduced,

κ : κ = η2 = const. (4.12)

κ is chosen to have properties of a strain like quantity.
Though the intrinsic phase distortion itself is subject to changes, the respective
Frobenius norm is constant. The value of this norm, η, is termed amplitude of
pseudoelastic strain or pseudoelastic flow, and can be interpreted as the length
of the pseudoelastic hysteresis.
Since the martensitic transformation is assumed to be volume preserving, volu-
metric changes of only −0.34% are reported in the literature, see Shimizu, K. &
Tadaki, T. (1984) in Funakubo, H. (1984), κ is taken to be deviatoric. The fact,
that the considered transformation is induced by stress, suggests that the phase
distortion may be proportional to the stress deviator,

κ = η
τ ′

τ
, τ =

√
T2, (4.13)

with T2 being the second invariant of the stress deviator, defined by

T2 = tr (τ ′ · τ ′) = τ ′ : τ ′. (4.14)

In other words, the orientation of the martensitic phase is equal to the load or
stress direction.
Resulting from the definition of κ, the transformation strain of the martensite
phase with respect to the parent phase, namely austenite, is determined by

htr M = κ ⇒ tr
`
htrM´ = 0. (4.15)

Accordingly, it follows

htrA = 0. (4.16)

Now, incorporating Equations (4.15) and (4.16) into the mixing rule, (4.10),
the overall transformation strain can be derived straightforward in terms of the
martensite fraction and phase distortion, yielding

htr = ξκ ⇒ tr
`
htr´ = 0. (4.17)
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Then, assuming constant and equal elastic stiffness and thermal dilatation for
the two phases, CA = CM = C = C0, α

A = αM = α = α0, the resultant specific
Helmholtz free energy reads

ψ (he,Θ, ξ) =
1

2ρ0
he : C0 : he − (Θ−Θ0)

1

ρ0
α0 : C0 : he

+ cv

„
Θ−Θ0 −Θ ln

„
Θ

Θ0

««
+ u∗A

0 −Θs∗A
0 − ξπf

0 (Θ) + ξ (1− ξ)ψit (Θ) . (4.18)

Here, u∗α
0 and s∗α

0 , with α = {A,M}, denote the phase specific internal energy
and entropy, respectively.

πf
0 is defined as the difference between the two phase specific Helmholtz free

energies,

πf
0(Θ) = ψA − ψM , (4.19)

and is called phase chemical potential. With the incorporation of the equations
for the phase specific Helmholtz energies, given for example in Müller, C. &
Bruhns, O.T. (2004, 2006), πf

0 can be recast to

πf
0(Θ) = ∆u∗ −Θ∆s∗, (4.20)

with the differences of internal energy ∆u∗ and entropy ∆s∗,

∆u∗ = u∗A
0 − u∗M

0 (4.21)

∆s∗ = s∗A
0 − s∗M

0 . (4.22)

Beyond the principle of conservation of energy, the second law of thermodynam-
ics stating the direction of thermomechanical processes must be satisfied as well.
Recalling the Clausius-Duhem inequality (Equation (3.48)), computing the total
differential of ψ, and noting that the only internal variable is the martensite
fraction, resulting in a = amech, the internal entropy production rate can be de-
composed additively into independent mechanically and thermally induced parts

Θργ̇ = Θργ̇mech +Θργ̇th ≥ 0. (4.23)

Then, the two addenda on the right side are defined by

Θργ̇mech =
ρ

ρ0
ẇtr − ρ

∂ψ

∂a
· ◦
a log (4.24)

Θργ̇th = − 1

Θ
q · gradΘ. (4.25)
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Under the assumption that Fourier’s law, cf. Mills, A.F. (1999), holds and for
non-negative values of the thermal conductivity k, the thermally induced part of
the Clausius-Duhem inequality is always non-negative, i.e.

Θργ̇th =
k

ρΘ2
(gradΘ)2 ≥ 0. (4.26)

Subsequently as a consequence, the mechanically induced part of the entropy
production has to be non-negative as well,

Θργ̇mech ≥ 0. (4.27)

This can be further specified to yield

τ :
◦
h tr log − ρ0

∂ψ

∂ξ
ξ̇ ≥ 0. (4.28)

With the governing equation for the transformation strain, Equation (4.17), the
first addendum in Equation (4.28) can be calculated to give

τ :
◦
h tr log = ξ̇τ : κ+ ξτ :

◦
κ log. (4.29)

Now, for the very special case that the Frobenius norm of κ is constant (Equation
(4.12)) and that κ is not only coaxial to but also linearly dependent on τ ′

(Equation (4.13)) the second addendum of Equation (4.29) vanishes. Hence,
Equation (4.28) can be written as product of a thermodynamic driving force
πf and a thermodynamic flux, which is in this case the time derivative of the
martensite fraction,

πfξ̇ ≥ 0, (4.30)

with

πf =
1

ξ
τ : htr − ρ0

∂ψ

∂ξ
. (4.31)

Equation (4.30) implies that

ξ̇ > 0 for πf > 0

ξ̇ < 0 for πf < 0.
(4.32)

For the evolution of the thermodynamic driving force, it is assumed that a yield-
surface-like function may exist, for which the following equations hold

fA→M = const for ξ̇ > 0

fM→A = const for ξ̇ < 0.
(4.33)
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A simple evolution equation is adopted with a new function kα(ξ), α = {A →
M,M → A}, which proves crucial for the behavior of the material law, i.e.,

fA→M(πf, ξ) = πf − ρ0k
A→M(ξ) ≤ 0

fM→A(πf, ξ) = −πf + ρ0k
M→A(ξ) ≤ 0.

(4.34)

Straightforward, the rate of the thermodynamic force πf may be calculated based
on Equations (4.33) and (4.34)

π̇f = ρ0k̇
A→M for ξ̇ > 0

π̇f = ρ0k̇
M→A for ξ̇ < 0.

(4.35)

In Raniecki, B. et al. (1992), the following form of the phase transformation
function is proposed

ρ0k
A→M(ξ) = −(A1 +B1ξ) ln(1− ξ) + C1ξ ≥ 0

ρ0k
M→A(ξ) = (A2 −B2(1− ξ)) ln ξ − C2(1− ξ) ≤ 0,

(4.36)

with the constants Ai, Bi, and Ci, i = {1, 2}, which are further specified by

A1 =
∆s∗ − s̄0

a1
B1 =

2r1s̄0
a1

C1 = 2r1ψit(M
0
s )

A2 =
∆s∗ + s̄0

a2
B2 =

2r2s̄0
a2

C1 = 2r2ψit(A
0
s ).

(4.37)

Thereupon, by means of the consideration of so-called neutral processes, mean-
ing that the martensite fraction is kept constant, and, similar to the theory of
plasticity, building the total differential of the thermodynamic force, the rate of
the martensite fraction can be deduced as

ξ̇α =
π̇f|ξ=const„

ρ0
∂kα

∂ξ
− 1

ξ
τ :

∂htr

∂ξ
+

1

ξ2
τ : htr − 2ρ0ψit

« . (4.38)

For a detailed derivation of Equation (4.38), the interested reader is referred to
Müller, C. (2003).
In what follows, the hyperelastic potential Σ(τ ) being isotropic in respect of the
Kirchhoff stress τ , see Footnote 1 on page 22, is further specified. The isotropic
tensor of thermal expansion and elastic stiffness tensor are taken as

α0 = α01 (4.39)

C0 = κ1⊗ 1+ 2µ

„
I− 1

3
1⊗ 1

«
. (4.40)
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Furthermore, the bulk modulus κ can be expressed in terms of the Lamé constants
µ and λ:

κ = λ+
2

3
µ. (4.41)

Altogether, (4.4), (4.39), (4.40), (4.41), the Kirchhoff stress can be easily calcu-
lated from the elastic Hencky strain

τ = λ tr (he)1+ 2µhe − 3κ (Θ−Θ0)α01. (4.42)

Moreover, it can be shown that the stress deviator τ ′, the elastic strain deviator
he′, the transformation strain htr, and thus the overall strain deviator h′ are
coaxial, see Müller, C. (2003).
For further simplifications, a new quantity is introduced, termed as equivalent
Hencky strain, which is defined as

h =
√
h′ : h′. (4.43)

The equivalent strain is an isotropic tensor function. Thus, its time derivative
can be calculated by means of the chain rule for corotating rates to yield

ḣ =
1

h
h′ : D. (4.44)

This, together with τ ′, he′, htr, h′ being coaxial is used for deriving the rate of
htr, i.e.

◦
h tr log = Dtr =

η

h

„
h′ξ̇ + ξ

„
I− 1

3
1⊗ 1− 1

h2

`
h′ ⊗ h′´« : D

«
. (4.45)

Finally, after substantial calculations, cf. Müller, C. (2003), Equation (4.38) can
be specified to give a scalar expression for the formation of martensite

ξ̇a =
2µηḣ+ ρ0(−∆s∗ + (1− 2ξ)s̄0)Θ̇

ρ0
∂kα

∂ξ
− 2ρ0ψit + 2µη2

. (4.46)

Additionally, also the thermodynamic driving force derived in Equation (4.31),
playing a major role for the material model, can be further particularized. Thus,
πf reads for the aforementioned special case with Equations (4.9), (4.18), and
(4.20)

πf = τη + ρ0 (∆u
∗ −Θ∆s∗)− ρ0 (1− 2ξ) (ū0 −Θs̄0) . (4.47)

By means of Equation (4.18) furnishing the overall Helmholtz free energy, and
under the assumption of an isotropic hyperelastic potential, the governing equa-
tion for the latent heat, (3.52), is obtained as

1

ρ
ḣlat =

1

ρ0
τ : Dtr + (∆u∗ − ū0(1− 2ξ))ξ̇ − 1

ρ0
Θα0 :

◦
τ log. (4.48)
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4.2 Discussion of the RL-model and modification

In this section, a modification of the presented RL-model for finite deforma-
tions is proposed. The main focus of this modification is on the description of
asymmetric effects concerning the tension/torsion behavior. It is not intended
to modify the material model to describe the well-known tension/compression
asymmetry, though this effect may be incorporated in the same straightforward
manner shown below. Before the new approach is described in detail, some
shortcomings of the existing material model are discussed in order to give a
motivation for the applied changes.
As can be observed by Equation (4.47), the RL-model is based on a von-Mises
type equivalent stress τ and according to Equations (4.43), (4.44), and (4.46) an
equivalent strain of the same type with

τ =
√
T2 =

√
τ ′ : τ ′, (4.49)

h =
√
H2 =

√
h′ : h′, (4.50)

respectively.
Albeit, the equivalent strain cannot be termed as being of von-Mises type2 be-
cause of the different weighting factors for shear stress and strain in the von-Mises
frame, which result from the requirement of strain energy equivalence

w = τ : h = τ∗h∗. (4.51)

Here, τ∗ and h∗ are a von-Mises equivalent stress and strain, respectively.
This condition is not fulfilled for the RL-model specific equivalent stress and
strain, i.e.

w = τ : h 6= τh. (4.52)

Moreover, it can be shown that the tension/torsion material behavior of conven-
tional shape memory alloys cannot be predicted accurately by material models
which are based on a von-Mises type equivalent stress. This can be substanti-
ated for example by the works of Lexcellent, C. et al. (2006); Helm, D. (2001);
Lexcellent, C. & Rejzner, J. (2000); Raniecki, B. & Lexcellent, C. (1998); Lim,
T.J. & McDowell, D.L. (1999) for NiTi, but which is also observed for Cu-based
shape memory alloys, cf. Tokuda, M. et al. (1998); Šittner, P. et al. (1995). In

2In Tokuda, M. et al. (2002); Lim, T.J. & McDowell, D.L. (1999) von-Mises equivalent
stress and strain are defined by the following equations

σeq =

r
σ2 +

“√
3τ

”2
εeq =

s
ε2 +

„
γ√
3

«2

,

with σ, τ and ε, γ being the normal and shear components of the stress, strain tensor,
respectively.
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many cases, this is not stated explicitly but can be verified directly by analyzing
the published experimental data, see e.g. Helm, D. (2001). This is in particu-
lar interesting, since the “tension/torsion asymmetry” is not as well-known and
discussed as extensively in the literature as the tension/compression asymmetry,
although the effect is supposed to be at least as important.
In this context, different approaches exist for covering the special tension/torsion
relationship. Šittner and co-workers, for example, who use a micromechanical
material model, deal with the tension/torsion behavior outside the actual model,
refer to Šittner, P. et al. (1997, 1996). In this ad-hoc approach, two material
parameters are introduced, which are similar to the von-Mises weighting factors√
3 and 1√

3
but exhibit different and variable values. Those parameters are to

be identified for each alloy so that the stress responses of two simple uniaxial
tension, torsion tests coincide. Hence, modified stress and strain tensors are
generated from the original ones by weighting normal and shear components
differently. Afterwards, the so-modified stress and strain tensors are used as
input to the micromechanical material model.
The approach presented by Raniecki, B. & Lexcellent, C. (1998); Lexcellent,
C. & Rejzner, J. (2000), points into a different direction. Here, a modification
or generalization of the RL-model is proposed. A new potential, g∗(τ ) ≥ 0,
is introduced, and it is assumed that the intrinsic phase distortion admits this
potential and is calculated thereof (compare to plasticity),

κ = ρ0
∂g∗(τ )

∂τ
. (4.53)

A general form of the potential is proposed, which is subject to further specifi-
cation

g∗(τ ) =
η

ρ0
τf(y), y =

3
√
6T3

τ3
, (4.54)

with

T3 = det(τ ). (4.55)

Then, specific potentials are calculated for the cases of pure tension, compression,
and pure shear. Finally, the effective potential of a proportional loading path
is calculated as a linear combination of the simple cases. Herein, the weighting
factors are proportional to the respective strain components.
By contrast, a slightly different approach is suggested in this work. It is in-
tended to modify the governing equation of the intrinsic phase distortion so that
the thermodynamic driving force πf describes the observed asymmetry of the
tension/torsion behavior. In order to be able to formulate the material model
with respect to finite deformations using the logarithmic rate, the thermody-
namic driving force has to be an isotropic tensor function. Only in this case, the
chain rule for corotational rates can be utilized for the calculation of the total



4.2. Discussion of the RL-model and modification 31

differential of the thermodynamic force, cf. Xiao, H. et al. (1999). The obvious
and self-evident first approach to decompose the stress deviator additively into
an axial and a shear component part proves inappropriate, since the resultant
tensor function representing the thermodynamic force is non-isotropic. To ac-
count for this, a new equivalent stress measure is introduced, which is based on
the first and second invariant of the stress tensor,

τ̂ =

r
b2(S2 − S2

1) +
2

3
S2
1 , (4.56)

with

S1 = tr(τ ) and S2 = tr(τ · τ ) = τ : τ , (4.57)

and the material parameter b. Hereby, the phase distortion κ is assumed as

κ = η
τ̂

τ2
τ ′. (4.58)

With Equation (4.17), the governing equation for the transformation induced
strain reads

htr = ξη
τ̂

τ2
τ ′. (4.59)

Analogous to Section 4.1, the thermodynamic driving force can be specialized
under the assumption of an isotropic potential Σ(τ ), yielding

πf = τ̂ η + ρ0 (∆u
∗ −Θ∆s∗)− ρ0 (1− 2ξ) (ū0 −Θs̄0) . (4.60)

The only difference between Equations (4.60) and (4.47) lies in the definition of
the equivalent stress. Consequently, the governing equation for the martensite
fraction is given by Equation (4.38), which leads for this special case to

ξ̇α =
η
τ2 [τ ′ : Z(τ ) + τ̂τ ′] :

◦
τ log + ρ0 (−∆s∗ + (1− 2ξ) s̄0) Θ̇

ρ0
∂kα

∂ξ
− 2ρ0ψit

, (4.61)

with the fourth-order tensorial function Z(τ ) given by

Z(τ ) = τ ′ ⊗ τ ∗

τ̂
+ τ̂

„
Idev − 2

τ2
τ ′ ⊗ τ ′

«
. (4.62)

Furthermore, the second-order tensor field τ ∗ and the fourth-order deviatoric
unit tensor Idev are introduced for simplification purposes,

τ ∗ = b2τ +

„
2

3
− b2

«
tr(τ )1 (4.63)

Idev = I− 1

3
1⊗ 1. (4.64)
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Figure 4.1: Comparison of the simple torsion stress-strain behavior for different
values of the material parameter b

In this context, the rate of the transformation induced strain
◦
htr log can be

derived as well, so that

◦
h tr log = Dtr =

η

τ2

“
ξ̇ τ̂τ ′ + ξ Z(τ ) : ◦

τ log
”
. (4.65)

Altogether, one additional material parameter is introduced in order to capture
the tension/torsion asymmetry and moreover, it can be seen from Equations
(4.60) and (4.56) that the scalar-valued tensor function πf is isotropic, as it is
formulated in terms of invariants of the stress tensor.
Accordingly, Figure 4.1 shows a comparison of simple torsion test computations
for different values of the material parameter b. It can be seen that the hysteresis
shifts to higher stresses for lower values of b. Furthermore, the height of the
hysteresis is increased for a decreasing parameter b. For the special case of b = 1,
the modified RL-model and the RL-model presented in Section 4.1 coincide, with

τ̂(b = 1) =

r
S2 − 1

3
S2
1 =

√
T2 = τ. (4.66)

Thus, in the h-τ -space the stress curves for a simple torsion test with b = 1 and
a simple tension test regardless of the parameter b are identical. Consequently,
for b = 1, torsion and tension curves coincide in the h-τ -space.
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If Equations (4.58) and (4.60) are compared to the findings in Raniecki, B. &
Lexcellent, C. (1998), an alternative interpretation of the material parameter b
comes into mind, and Equations (4.58) and (4.60) can be reformulated, resulting
in

κ = η̂
τ ′

τ
(4.67)

and

πf = τ η̂ + ρ0 (∆u
∗ −Θ∆s∗)− ρ0 (1− 2ξ) (ū0 −Θs̄0) (4.68)

with

η̂ = η
τ̂

τ
. (4.69)

The analogy to the unmodified RL-model, separated by Equations (4.13) and
(4.47), is obvious.
Now, two particular but simple cases are considered, on the one hand a simple
tension test and on the other hand a simple torsion test. In the simple tension
case the resulting amplitude of pseudoelastic flow η̂ten is identical to η

η̂ten = η, (4.70)

whereas for simple torsion the resulting amplitude of pseudoelastic flow reads

η̂tor = b η. (4.71)

Consequently, b can be interpreted as the ratio of the amplitudes of pseudoelastic
strain in the simple torsion and tension case,

b =
η̂tor
η̂ten

. (4.72)

This can be further clarified after recalling Figure 4.1. Here, it is obvious that
the lengths of the hystereses correlate with the values of b. As pointed out before
and immanent in Equation (4.72), smaller values of b result in smaller hysteresis
lengths. Again, it is reminded of the coincidence of tension and torsion curves
for b = 1.
At the end of this chapter, special attention is drawn to the Clausius-Duhem
inequality. As pointed out on page 26, just for one special case, the Clausius-
Duhem inequality can be split multiplicatively into a scalar thermodynamic force
and flux. It is seen that the Frobenius norm of the intrinsic phase distortion κ
is not constant within the modified model deduced in this section. Accordingly,
the second addendum of Equation (4.29) can not be neglected for arbitrary
loading paths. Nevertheless, if the material model is restricted to loading paths
without reorientation, as is done by Qidwai, M.A. & Lagoudas, D.C. (2000), the
Clausius-Duhem inequality can be fulfilled in advance. On this account, at most
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proportional loading paths are shown in Raniecki, B. & Lexcellent, C. (1998);
Lexcellent, C. & Rejzner, J. (2000). Above all, the magnitude of the resultant
error, if nonetheless loading paths with reorientation are considered, is subject
to further examination and specific to the particular load case. This topic will
be revisited in context of the parameter identification in Chapter 8.



5 Experimental setup

For the thermomechanical characterization of NiTi and the parameter identifi-
cation of a respective material model, it is necessary to be able to realize well-
defined and, within certain limitations, freely configurable thermomechanical
experiments. Here, the physically relevant temperature range, which is between
−100◦C and +100◦C in this work, has to be covered by a temperature control,
which is to be implemented. Due to the abrupt generation and absorption of
latent heat, the temperature control procedure has to exhibit a highly dynamic
behavior.
Moreover, stresses and strains are to be applied and to be measured. Beyond
that, the specimen geometry has to be chosen with reference to the testing
material and to the testing machine. The fact that strain values up to 10% are
desired, poses a significant challenge to the projected measuring devices.
This chapter is subdivided into nine sections. Firstly, the specimen material
and specimen geometry are presented. This is followed by a detailed review of
heating and cooling mechanisms and the applied heating and cooling concepts.
Subsequently, general temperature measuring by means of thermocouples and
the specific temperature measuring, which is implemented in this work are in-
troduced. Section 5.5 states the temperature control scheme, which is based on
the concepts illustrated in the preceding sections while Sections 5.6, 5.7, and 5.8
deal with the mechanical part of the experimental setup. Finally, this chapter
is concluded by a presentation of the complete testing system.

5.1 Specimen material and geometry

The shape memory alloy, which is used in all experiments within this work is a
special NiTi alloy1, exhibiting pseudoelastic behavior at room temperature. The
nominal composition is 50.7 at.% NiTi. Figure 5.1 shows a typical DSC2 curve3

of the as-received material. Typical values of the peak temperatures Ap
4, Mp

5

are −20◦C, −60◦C, respectively.
In the as-received state, the alloy features a single step forward and reverse
transformation. In spite of the existence of two distinct transformation peaks and

1Co. Euroflex GmbH, Nitinol SE 508 tubing
2Differential Scanning Calorimetry, a thermoanalytical technique for characterizing mate-

rials by which the amount of energy that is absorbed or released by a sample and a reference
during cooling and heating are measured as a function of temperature.

3Co. TA Instruments, 2920 CE, differential scanning calorimeter
4Austenite peak temperature
5Martensite peak temperature

35
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Figure 5.1: DSC curve of the as-received material

a testing temperature above the endothermic peak, the material shows hardly
any mechanically pseudoelastic behavior in the as-received state, as evident in
Figure 5.2 showing the stress-strain relation for three simple tension tests at
different temperatures. In order to “improve” the mechanical behavior, a special
thermomechanical treatment has to be found. This procedure is explained in
detail in Chapter 6.1.

The specimens are cut from tubular stock6 of one single charge of material as to
minimize any potential variation in the material behavior.

A special geometry is chosen for the specimens as shown in Figure 5.3. An hour-
glass shape is selected so that a stress concentration and thus, the beginning of
phase transition, is localized in the gage section of the specimen. The length of
the gage section is a consequence of a compromise between the objective that
no buckling and kinking may occur during compression and torsion tests and
that the temperature profile is as uniform as possible without large boundary
effects. Incorporating a radius-to-wall-thickness ratio of 5:1 resulting from an
outer, inner diameter of 9.6 mm, 7.92 mm, respectively, the specimen can be
considered as thin-walled, Lim, T.J. & McDowell, D.L. (1999); Li, Z.Q. & Sun,
Q.P. (2002).

Figure 5.4 shows a polished micrograph section of the specimen wall within the

6Inner diameter 7.92 mm, outer diameter 12.7 mm
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Figure 5.2: Simple tension tests of the as-received material for different start
temperatures, strain rate ε̇ = 10−4 s−1

gage section. It can be recognized that the grains are comparatively large, cf.
Sun, Q.P. & Li, Z.Q. (2002). Nevertheless, with a grain size of approximately
150 µm, considering a gage length of 20 mm, and a perimeter of 27.5 mm, one
ends up with a rough estimate of 150,000 grains within the gage section. As a
consequence, according to Rogueda, C. et al. (1996), grain size effects can be
neglected.

5.2 Heating of the specimen

Specimen heating can be realized in numerous ways. This is depicted by Equa-
tion (5.1) showing the heat balance of an arbitrary specimen.

Ėst = Q̇cond + Q̇conv + Q̇rad + Ėg (5.1)

Here, Q̇cond, Q̇conv, Q̇rad represent the heat flow resulting from conduction,
convection, and radiation, respectively. Furthermore, Ėg stands for thermal
energy generation, also known as internal heat sources, and Est is the internal
energy, which is to be increased in order to raise the temperature of the specimen.
Consequently, a specimen can be heated using convection, conduction, radiation,
or internal heat sources. Actually, most of those effects are used for heating
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(a) Photograph of the specimen

(b) Engineering drawing of the specimen geometry

Figure 5.3: Specimen geometry

Figure 5.4: Polished micrograph section of the wall within the gage section, mag-
nification of 100x
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specimens. However, not all of those are appropriate for special demands. Hence,
the most suitable method has to be found.
Usually, the heating of specimens is realized by inductive or resistance heating
furnaces representing heating by internal heat sources and convective heating,
respectively. Conceptually, the former type of furnace has certain advantages,
i.e., an amount of energy can be allotted very efficiently, since no surrounding
medium has to be heated. In addition to that, heat is generated at near-surface
layers inside the specimen and not only at the outer surface. This results in very
low radiation losses. Thus, inductive heating is very fast. Nevertheless, it has
to be pointed out that inductive heating comes with high-frequency electromag-
netic fields, which is unproblematic for annealing or heat treatment purposes,
but which is not admissible when using highly sensible electrical sensors in the
immediate vicinity. Complex shielding and measuring filters would be necessary
to prevent or reduce resulting artifacts, simultaneously worsening the measur-
ing dynamics. In respect of electrical sensors, another disadvantage of inductive
heating is the direct heating of metal-based components in the same magnitude
as for the specimen.
Convection heating can be subdivided into two different types. One of those uses
air as a convective medium whilst the other uses a different ambient medium
such as oil or water. In the first case, air is usually heated by resistance heating.
Both convective methods are comparatively slow, with time constants of several
decades of minutes, since heat transfer takes place just at the specimen surface.
Furthermore, before the specimen is heated the temperature of the medium has
to be raised, resulting in an indirect heating of the specimen. However, consid-
ering certain limitations, convective heating using e.g. oil as ambient medium
is capable of realizing isothermal conditions, see Shaw, J.A. & Kyriakides, S.
(1995).
For special applications, even radiation is used to heat up specimens. This
procedure is mainly utilized in the semiconductor industry for rapid thermal
processing of wafers using halogen lamps. Very high temperature rates can
be realized that way because the surrounding medium is not heated. Since heat
transfer takes place only at the surface, radiation heating is especially interesting
when considering thin specimens. However, when shadowing effects cannot be
neglected, radiation heating should not be the method of choice.
For this work, heating is realized using the ohmic loss. This method of heating
is called Joule heating. The basic effect is as follows. As current flows through
an electrical conductor, a part of the electrical energy is converted into thermal
energy. The conductor gets warmer. This is due to the driven current and the
conductor’s resistivity,

Ėg = R · I2 = U · I. (5.2)

Thus, knowing the effective resistivity of the conductor, the heating power can
be directly controlled by changing the driven current. In this manner, the heat is
generated throughout the whole cross-sectional area. In doing so, the heating of
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Figure 5.5: Applied heating concept

the ambient medium is just a by-product and not the means for heat transfer. In
contrast to most other heating mechanisms, which are using just a small part of
the specimen for heat transfer, the Joule heating produces heat homogeneously
throughout the specimen material.

Figure 5.5 shows the applied heating concept. Here, an adjustable DC power
supply is connected to the specimen. Thus, the sample can be electrically ener-
gized. A digital controller supervises and monitors the actual current and voltage
of the power supply. This allows for variations in the electrical resistance of the
specimen due to temperature changes during experiments. Hence, not only the
current is controlled but also the heating power, which is the governing vari-
able for temperature manipulations. A DC power supply is chosen instead of
an AC power supply because of the same reasons, which ruled out the induc-
tive heating procedure, namely high-frequency electro-magnetic fields leading to
corrupted measurements due to the alternating direction of the current flow.

As a power supply two cascaded precision bench power supplies7 are used, which
belong to the manufacturer’s 3 kW-series. The maximum output voltage and
current are 15 V, 200 A, respectively. For the two possible cascade configura-
tions, this results in an effective output voltage and current of 30 V and 200 A
for the serial, or 15 V and 400 A for the parallel setup, which is used in this
work.

The maximum heating power is limited in all experiments to 250 W. Figure 5.6
shows the resulting heating curves for some typical values of Ėg. Furthermore, a
comparison of different starting temperatures for each value of the heating power

7Co. Delta Elektronika BV, SM 15-200 D, ripple + noise (rms/p-p) < 100/250 mA
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Figure 5.6: Temperature changes for heating powers Ėg of 38 W, 75 W, 113 W
and 150 W, comparison for different starting temperatures

is depicted. This shows that the heating behavior is independent of the starting
point. Besides, the gradients can be considered linear for the observed period of
time.

With respect to the practical realization of the test rig, it has to be accounted
for an effective electrical insulation from the energized parts. This means that
on the one hand the drive shaft and the machine frame as on the other hand any
measurement device, which is sensitive to electrical current have to be electrically
decoupled. The insulation of the drive shaft and the machine frame is realized by
means of PEEK 8-bushings and two PTFE9-shims. Additionally, the insulation
of the measurement devices is illustrated in the respective sections.

5.3 Cooling of the specimen

The temperature and the temperature distribution inside the specimen depend
on several external factors. In general, heat transfer is driven by temperature
gradients and temperature variations. According to Incropera, F.P. & DeWitt,

8Polyetheretherketone
9Polytetrafluorethylene
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D.P. (1996); Mills, A.F. (1999), the assumption, that the specimen is gray10 and
small in comparison to the surroundings, leads to the following form of Equation
(5.1) in the context of specimen cooling

Ėst = Q̇cond + Q̇conv + Q̇rad

=

Z
Ω

div(k gradΘ) dV −
Z
∂Ω

hc∆ΘdA−
Z
∂Ω

hr∆ΘdA, (5.3)

with

∆Θ = Θs −Θ∞, (5.4)

where k is the thermal conductivity and Θs and Θ∞ are defined as the tempera-
ture at the surface and as the temperature of the surroundings. The coefficients
hc and hr are called convection and radiation heat transfer coefficient, respec-
tively. Here, hr is strongly dependent on the temperature difference ∆Θ.

Obviously, radiation cannot be used for cooling down the specimen, since the
governing parameters for hr, namely material parameters like the thermal emis-
sivity or the temperature of the surrounding body, are very difficult to modify.

Also, the thermal conductivity k is an intrinsic parameter of the specimen mate-
rial, which cannot be influenced without changing the overall material behavior.
In order to increase the heat flow due to conduction, the temperature gradient
gradΘ has to be increased. This leads again to a solid body cooling problem.
Thus, controlled cooling of a specimen using conduction seems in this context
impracticable.

In contrast, it is very easy to increase the convection heat transfer coefficient
hc in the case of forced convection. This can be achieved by applying a higher
volume flow of the fluid, resulting in higher flow rates. Besides, using a different
fluid also changes hc. Furthermore, a different temperature of the fluid does not
only contribute to the convective heat transfer by the temperature difference ∆Θ
but also modifies hc.

Since cooling of a specimen can only take place at surfaces or through cross-
sectional areas, forced convection is the method of choice in this work.

Figure 5.7 gives an overview of the cooling concept. Here, the volume flow is
controlled via controlling the dynamic pressure by means of the pressure system
(A), see 5.3.1. The desired temperature of the fluid is adjusted within the heat
exchanger system (B), cf. 5.3.2. Afterwards, the cooling fluid is blown through
the nozzle system (C) onto the gage section of the specimen (D). Additionally,
some part of the cooling fluid is blown through an inward fluid feed (E) into the
interior of the specimen in order to use every free surface of the specimen for
heat transfer.

10Gray in terms of radiation heat transfer means that the absorptivity and emissivity of
the body are equal. Furthermore, the absorptivity and emissivity are independent of the
wavelength of the incident and emitted radiation, respectively.
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Figure 5.7: Cooling concept: A) Pressure system; B) Heat exchanger system; C)
Nozzle system; D) Specimen; E) Inward fluid feed

5.3.1 Pressure system

The pressure system is used to control the volume flow of the cooling fluid.
Cooled, gaseous nitrogen is chosen therefor as convective medium. It is assumed
that for the pressure range of concern, 0 − 0.5 bar, a proportional relationship
between the volume flow and the dynamic pressure of the fluid exists, neglecting
different friction losses for different fluid velocities. Figure 5.8 illustrates the
operation principles.
Compressed gaseous nitrogen is stored within a gas bottle (A)11. At the outlet
of the bottle, the nitrogen pressure is reduced and set to a specific and fixed
value by the manually operated pressure-regulation valve (B). Subsequently, the
gaseous nitrogen flows into a storage tank (D) where it is pressed through liquid
nitrogen12. That way, the gaseous nitrogen is cooled down. Because of the
positive pressure inside the storage tank, cooled-down gasiform nitrogen is forced
out of the container and streams through the nozzle feed (G) to the system of
nozzles, cf. 5.3.3, where it is blown onto the specimen. The actual value of
the internal container pressure is measured by means of a pressure gage (C)13

and supervised by a digital controller, which is connected to the gage. With
the aid of proportional valves (E,F) at the inlet and at the outlet of the storage

11The maximum pressure for the completely filled bottle is 200 bar.
12Due to the perpetual vaporization the liquid nitrogen is kept at a temperature of

−196 ◦C.
13Co. American Sensor Technologies, Inc., AST4000, pressure range 0-25 psi, analog

output 1-6 V
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Figure 5.8: Pressure system: A) Supply bottle, Ng
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tank, the pressure inside the container can be digitally controlled. In doing so,
a classical closed loop control can be implemented, which shows a nice control
behavior even for a simple PI-algorithm14. This is particularly advantageous,
since a PI-controller can be tuned very easily.
For the implementation of the digital controller a positional algorithm is used,

u(k) = Kp

 
e(k) +Ki

kX
i=1

e(i)− e(i− 1)

2
∆t

!
, (5.5)

with Kp, Ki, u(k) and e(k) being the proportional gain, integral gain and the
time discrete values for the controller output and the error between setpoint and
process variable, see Unbehauen, H (1997); Isermann (1988).

5.3.2 Heat exchanger

As mentioned earlier, the heat exchanger is used to keep the fluid temperature
at the specimen at a desired setpoint. This is mainly necessary in conjunction

14Proportional-Integral control algorithm, see equation below: The controller output is
calculated from the error and the integral of the error, realizing zero offset behavior.

u(t) = Kp

„
e(t) + Ki

Z t

0

e(t) dt

«
Here, u(t), e(t), Kp and Ki represent controller output, error/difference between setpoint
and process variable, proportional and integral gain, respectively.
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Figure 5.9: Heat exchanger system: A) Exchanger tubing; B) N2 tubing; C)
Radial blower; D) Heating wire element; E) Outlet thermocouple; F)
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with long-lasting experiments, since without active control, a temperature bal-
ancing between the cooling fluid and the tubing takes place leading to a creeping
decrease of the fluid temperature at the nozzles. In turn, this results in a change
of the temperature conditions at the specimen worsening the interpretability of
the conducted experiments and the control behavior.

To circumvent this difficulty, a heat exchanger system is designed, which allows
for long-lasting experiments without any significant change in the temperature
of the cooling fluid.

Figure 5.9 shows a sketch of the applied heat exchanger concept. Here, the
cooling medium temperature can only be raised. Thus, the heat exchanger is
just used for heating the cooling fluid. There is no need for further cooling of the
fluid within the exchanger device, since supercooled nitrogen is already utilized
for the cooling concept.

The described system consists of the exchanger itself, a heating wire element,
a blower, two type K thermocouples1516, and a digital controller. Two tubes
with different diameters form the exchanger which is designed as a concentric
tube heat exchanger. It is operated in counterflow mode in order to maximize
the heat exchanger effectiveness, see Incropera, F.P. & DeWitt, D.P. (1996).
The cooling medium streams through the smaller-diameter-tube whereas warm
air is blown through the surrounding larger-diameter-tube. The large tube is
thermally insulated at the outer surface to prevent any heat losses apart from

15Co. Conatex, TM12K02GG2, wire diameter 0.2 mm, class 1 according to DIN 43722
(1994)

16Co. Omega Engineering, Inc., IEC-TFCY-003/IEC-TFAL-003, wire diameter 0.08 mm,
class 1 according to DIN 43722 (1994)



46 Chapter 5. Experimental setup

the heat transfer between the two tubes. By means of the heating wire element17

the temperature of the warm air can be raised. 16 different heating stages can
be digitally addressed by the controller. It can be shown that the number of 16
stages is sufficient for changing the temperature of the nitrogen smoothly.

The volume flow of the warm air is produced by a radial blower18, which is
connected to the 16 bit D/A converter board19 of the digital controller. Thus,
the fan speed can be adjusted between standstill and maximum speed almost
continuously. Nevertheless, for the applied temperature control of the cooling
fluid, the fan is driven with the highest possible speed.

The two type K thermocouples are installed inside the nitrogen tube at two
different locations, one of which is at the outlet of the heat exchanger and the
other at the inlet of the nozzle system. Due to the extremely small dimensions of
the sensors, changes of the temperature of the surrounding medium are detected
almost instantaneously.

This system is operated by two cascaded digital PI-controllers, see 5.3.1 for
the general implementation of the simple PI-control algorithm. The inner, fast
control loop controls the temperature at the outlet of the heat exchanger. The
controller output determines the stage of the heating wire element. The setpoint
temperature at the outlet of the heat exchanger is governed by the superordinate,
outer controller. Its process variable is the cooling medium temperature at the
nozzles. Because of the applied setup, it can be accounted for the large dead
time within the system and hence, large overshoots are inhibited and the overall
control behavior is improved. As a consequence, the temperature of the cooling
medium is kept within a range of 2 K around the setpoint.

5.3.3 Nozzle system

In this section, the inward fluid feed and the nozzle system, which spreads gasi-
form nitrogen onto the outer surface of the specimen’s gage section are specified.

The nozzle system consists of three identical, perforated, tubular copper nozzles,
which are arranged equally around the specimen, resulting in an angular shift of
120◦ between each of the nozzles. The nozzles and the supply tubing are designed
to allow for sufficient space for the deformation and distortion measurement
devices described later, see Section 5.8. The nozzle system and the hole pattern
are depicted by the photography shown in Figure 5.10. In order to achieve an
optimal nitrogen covering of the gage section, the pattern and the size of the
holes are specifically chosen. It can be seen that in every other row two holes
are situated, which are offset from the middle line. That way, the nitrogen
exhalation region is widened at both sides of the nozzle.

17Co. Steinel GmbH, HL1810S, Θmax = 600◦C at V̇ = 500 l/min
18Co. Micronel AG, U97EM-012KK-3, speed 10650 r.p.m., air flow rate 575 l/min
19Co. Meilhaus Electronic GmbH, ME-4670i, galvanically isolated, 500kHz/16bit A/D-

conversion
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(a) General view of the nozzle system
mounted on specimen

(b) Magnified view of the nozzle system
and nozzle hole pattern

Figure 5.10: Nozzle system

Since a large part of the free surface area, namely the interior of the specimen,
cannot be cooled down using the copper nozzles, nitrogen has to be supplied to
the interior using an additional supply line. Herein, this is called inward fluid
feed. However, in the same amount as cooling fluid is supplied to the inside of the
specimen, nitrogen has to be drained to avoid overpressure. Furthermore, the
supply and drain setup has to be symmetrical in favor of an optimal temperature
field. Altogether, this leads to the special design of the clamping core shown in
the drawing in Figure 5.11.

5.4 Temperature measurement

In this work, temperature measurements are conducted using thermocouples.
The working principle is the thermoelectric (Seebeck) effect, meaning that an
electromotive force (EMF) is generated due to the temperature difference be-
tween two junctions of two conductors of different material or alloy, which are
part of the same electronic circuit, DIN EN 60584-2 (1994).
Consequently, when an electrical conductor is exposed to a temperature gradi-
ent, it will generate an electric voltage. There, the value of the voltage strongly
depends on the material of the conductor. In order to measure the voltage,
the electronic circuit has to be completed. This is done by means of a second
conductor. Likewise, this conductor is subjected to the same temperature gra-
dient as the other one, leading to a measured voltage of 0 V, if both conductors
are of the same material. This results from the fact that at locations with equal
temperatures two conductors of the same material exhibit identical electrical po-
tentials. Consequently, a pair of wires is chosen so that the measurable voltage
is maximized. Thus, knowing the type of the pairing and knowing the voltage,
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Figure 5.11: Inward fluid feed

the temperature gradient can be calculated.
As usually not the temperature gradient itself but the absolute value of the tem-
perature is to be measured, one junction, the cold junction, of the thermocouple
has to be kept at a constant temperature, known as the reference temperature.
Often, in temperature measuring amplifiers this cold junction is simulated by
electrical, temperature sensitive components. Then, this electronic circuit is
called cold junction compensation.
In what follows, type K thermocouples are used for all applications. These are
composed of a Chromel20 and an Alumel21 wire. They are widely used because of
their large temperature range22 and the moderate costs. Nevertheless, one has to
take into account the comparatively low accuracy of thermocouples23. However,
several advantages let thermocouples outperform other standard temperature
measuring devices for the described applications of concern.
The objective of the temperature measurement is to measure the temperature at
each location within the gage length, inside and outside. Naturally, a thermoop-
tical procedure seems to be the first choice. On the other hand, a thermocamera,
for example, can only be used if it has an unobstructed view onto the specimen.
This cannot be guaranteed as a cold nitrogen exhalation is used for the cool-
ing, a thick, small window24 is situated between camera and specimen, and the
specimen itself is shadowed by large parts of the deformation measuring device.
PT100- and resistance-thermometers, whereas more accurate, are also rejected
due to the limited available space.

20Ni-Cr alloy
21Ni-Al alloy
22−200◦C to +1200◦C according to DIN EN 60584-2 (1994)
23±1.5◦C between −40◦C and +375◦C according to DIN EN 60584-2 (1994)
24Additionally, a temperature chamber is used, see 5.5.2
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Figure 5.12: Thermocouple bead

Due to the desired high local resolution of the temperature measurements, mul-
tiple temperature sensors have to be utilized. Two different sets of type K
thermocouples are used2526. As a matter of fact, many different techniques
concerning the mode of thermal connection between sensor and specimen exist.
Furthermore, the shape and the type of the junction of the two thermo wires
is crucial. Thorough studies have been conducted by Körtvélyessy, L. (1998).
Besides, Vogelsang, H. (2001) reported a new and very efficient way of using
type K thermocouples with high accuracy.

It was shown that the frequently used twisting of the two thermo wires to create
the measuring tip, after being attached to the specimen, leads to a virtual mea-
suring point, which does not lie on the surface of the specimen, thus, resulting
in a faulty measuring of the temperatures. Moreover, when a current is driven
in order to energize and heat up the specimen, step voltages might occur at the
thermocouples due to the not exactly defined contact points with the specimen.
Corrupted measurements and hence, unstable control behavior are the probable
consequences.

As a matter of fact, Vogelsang, H. (2001) presented a new way to create signif-
icantly improved thermocouple junctions, see Figure 5.12. After a well-defined
twisting27, the junction of the two wires is arc welded within an argon atmo-
sphere to an almost perfect sphere.

Thermal contact is most frequently realized by gluing or clamping the sensor
onto the specimen. The disadvantage of gluing is the comparatively poor thermal
contact resulting in slow measurements. Also clamping is not the appropriate
choice for the experiments within this work, since an additional clamping device

25Co. Conatex, TM12K02GG2, wire diameter 0.2 mm, class 1 according to DIN 43722
(1994)

26Co. Omega Engineering, Inc., IEC-TFCY-005/IEC-TFAL-005, wire diameter 0.13 mm,
class 1 according to DIN 43722 (1994)

27The twisted portion has to contain always the same amount of material.
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(a) Polished micrograph section, magnifi-
cation of 100x

(b) SEM picture, magnification of 500x

Figure 5.13: Thermocouple (top) / specimen (bottom) join patch

would be required, which consumes additional space being unavailable.

In order to circumvent those complications, the thermocouples are welded onto
the specimens using the single-pulse welding procedure presented and discussed
in detail in Vogelsang, H. (2001). Typical join patches are shown in Figure 5.13.
It can be observed that the microstructure of the specimen is not altered due
to the welding process. The reason is the very small heat affected zone. The
welding setup was improved and modified to achieve an even higher accuracy
and repeatability. Furthermore, a new device was added so that thermocouples
can be welded actually onto the inner surface of the specimen.

Seven thermocouples are applied onto the outer and one additional thermocouple
onto the inner surface of the specimen within the gage length. For the inner
thermocouple, the aforementioned small diameter thermo wires are used. Figure
5.14 shows a picture of the inner thermocouple.

The main reason for using these small cross-sectional area wires is that the wires
have to be transferred out of the inside of the specimen. The only possible way
of doing so, is to use the already limited cross-sectional area of the supply, drain
lines of the inward fluid feed, respectively, which explains the need for reducing
the cross section of the wires themselves, cf. 5.3.3. Though it seems appropriate
to lead each of the two thermo wires through a different inward feed, in order to
block as few as possible of the draining nitrogen, unfortunately, this turns out to
be impracticable. The reason is that the electromagnetic field, generated by the
heating of the specimen, induces measuring artifacts when the two thermo wires
are led through different inward feeds. Drawing attention to the arrangement of
the thermocouples, the application pattern is depicted in Figure 5.15.
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(a) General view of a showcase specimen
whose gage section is opened in order
to allow an unobstructed view of the
inner thermocouple

(b) Magnified view of the inner thermo-
couple

Figure 5.14: Inner thermocouple

Figure 5.15: Arrangement of the thermocouples

Two multiple channel thermocouple measuring amplifiers28 are used for the tem-
perature measurements. Cold junction compensation and calculation of the tem-
perature values are realized within this digital device.

28Co. Hottinger Baldwin Messtechnik GmbH, 2xML801/AP409, galvanically isolated,
being part of the digital amplifier system MGCplus
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5.5 Temperature control

5.5.1 Calculation of the mean temperature

As the temperature field is measured at eight different locations and as it is
not possible to change the temperature at each location independently, a mean
temperature has to be calculated. This may be done in numerous ways e.g. in the
simplest form by using the arithmetic average. Nevertheless, an algorithm, which
incorporates the spacing and the local arrangement, seems more promising.
The temperature has to be averaged in three directions. That are the longitudi-
nal, circumferential, and thickness direction. Averaging in longitudinal direction
leads to

Θ̄ =

3X
α=1

aαΘ̄α, (5.6)

with Θ̄ and Θ̄α being the overall and circumferential mean temperatures, re-
spectively. Here, α = 1, 2, 3 denote the top, middle, and bottom values of the in
circumference direction already averaged temperatures. These circumferential
mean values are calculated using

Θ̄α =

3X
β=1

bβΘ̄αβ , (5.7)

where the averaged temperature at longitudinal position α and circumferen-
tial position β, with β = 1, 2, 3 representing the circumference positions at
0◦, 60◦, 180◦, is given by Θ̄αβ . Since the wall thickness within the gage length
is relatively small, cf. Figure 5.3, and a rough calculation of the heat diffusion
equation shows that the temperature developing is almost linear, averaging in
thickness direction is realized by simply taking the arithmetic average of the
inside and outside temperatures

Θ̄αβ =
1

2
(Θαβout +Θαβ in). (5.8)

Now, assuming that the temperature difference between inside and outside ∆Θαβt

is constant throughout the whole gage section, the equation for Θαβ in reads

Θαβ in = Θαβout +∆Θt with ∆Θt = Θmid0◦ in −Θmid0◦out. (5.9)

Additionally, the temperature difference between circumference position β = 60◦

and β = 180◦ is supposed to be constant for each longitudinal position, thus,
resulting in

Θα180◦ = Θα60◦ +∆Θα180◦ with ∆Θα180◦ = Θmid180◦ −Θmid180◦ . (5.10)

As the three nozzles are equally distributed around the specimen, a 120◦ spacing
is evident. Presuming that all temperature conditions apart from the position
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of the nozzles are equal for all circumference positions, it is reasonable to set the
weighting factors bβ to

b0◦ = 0.50

b60◦ = 0.25 (5.11)

b180◦ = 0.25.

Hence, the arithmetic average between positions facing and between two nozzles
is calculated.

The values for the weighting factors aα follow from the longitudinal spacing of
the thermocouples

atop = 0.275

amid = 0.450 (5.12)

abottom = 0.275.

Thereupon, Equation (5.6) yields for the overall mean temperature

Θ̄ = +0.1375 ·Θtop0◦out
− 0.275 ·Θmid0◦out + 0.1375 ·Θbottom0◦out

+0.1375 ·Θtop60◦out
− 0.025 ·Θmid60◦out + 0.1375 ·Θbottom60◦out

+0.25 ·Θmid180◦out + 0.5 ·Θmid0◦ in. (5.13)

5.5.2 Temperature chamber

In addition to the fast and direct heating and cooling approaches already de-
scribed in this chapter, a temperature chamber29 is used to control the temper-
ature of the whole setup including the clamping and the deformation measuring
devices, see Figure 5.16. In so doing, the surrounding temperature of the spec-
imen can be varied and set to a particular value. Naturally, the temperature
chamber is comparatively slow. Hence, it is used to shift the starting or base
temperatures for certain experiments. Also, it can be used if the time constant
for temperature changes is not critical and if it is desired to guarantee almost
no temperature gradients within the specimen resulting from the bulky steel
clamping shown in Figure 5.20.

5.5.3 Temperature control algorithm/procedure

As already mentioned in Paragraph 5.5.2, the temperature chamber is used to
realize the baseline temperature. In addition to that, heating by the ohmic loss
described in detail in Section 5.2 and cooling by exhaling cold nitrogen, see 5.3,
is used for fast and local temperature control.

29Co. Fresenberger, TK 18.400.100, temperature range −100◦C to +400◦C, heat-
ing/cooling rates for empty chamber: +20◦C to +400◦C in 22 min, +20◦C to −100◦C in
10 min
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Figure 5.16: Temperature chamber

Now, the task is as follows. One parameter, which is temperature, is to be
controlled and four parameters, which are heating power, volume flow, and tem-
perature of nitrogen, and setpoint temperature of the temperature chamber,
can be adjusted. In this regard, a theoretically possible though adverse control
scheme with one single control and multiple output variables is avoided, since it
tends to exhibit an unstable control behavior. By contrast, it proves successful
to set the nitrogen volume flow and the nitrogen temperature to predefined, fixed
levels so that only the heating power is subject to adjustment in order to realize
the projected temperature control.

Again, a simple PI-algorithm is sufficient for achieving a very good control per-
formance as well for disturbance reaction as for reference action. In this context,
Figure 5.17 shows two averaged temperature progressions for two similar but,
according to the thermal conditions, significantly different simple tension tests,
as one experiment is carried out with active temperature control whereas for
the other case the temperature of the specimen is not manipulated at all. Here,
only a basic setup with four independent thermocouples is used whose measured
temperatures are averaged accordingly. The high frequency oscillations, which
can be observed at the temperature curve for the case with enabled temperature
control, originate from the aggressive tuning of the control algorithm. This is
necessary as to guarantee a good disturbance behavior of the applied control
scheme so that disturbances are immediately compensated.

In order to evaluate the overall control performance, also the individual tem-
perature readings are shown, Figure 5.18. Here, it can be seen that, naturally,
because of the heterogeneous transformation behavior of the specimen material,
the experiment cannot be performed in a locally isothermal way. If this was re-
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Figure 5.17: Two identical tension tests, with and without temperature control
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Figure 5.18: Two identical tension tests, with and without temperature control,
the readings of four thermocouples are given without averaging
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quired, a locally infinitely high resolution heating and cooling procedure would
be necessary, which proves infeasible due to heat flow effects, space limitations
etc. Nevertheless, it remains subject of further examination to what degree
the realized macroscopically isothermal conditions imply effectively isothermal
conditions for the performed experiments, see Chapter 6.

5.6 Mechanical loading

A sketch of the mechanical loading setup is shown in Figure 5.19. The core of
the mechanical experimental rig is the electromechanical tension/torsion testing
machine30. It consists of a mechanical loading frame31 (A), an analog machine
control (C), and a loading cell32 (B). The maximal loading in axial, torsional
direction is ±50 kN, ±300 Nm, respectively. Furthermore, traverse paths up to
1500 mm from peak to peak are generally possible, even though some restrictions
exist for the applied setup due to the height of the temperature chamber (L).
In rotary direction, no limitations are present so that the maximum allowable
torque can be realized for angles α = ±∞◦. This is due to the drive concept of
the machine.
As mentioned above, the testing machine is electromechanically driven, i.e., two
braced spindles, moving the crosshead, are driven by an electric motor with
disc-shaped rotor. Consequently, the natural control mode of the machine is dis-
placement rate control. By contrast, the commonly used servo-hydraulic testing
machines are intrinsically force-controlled.
The second control axis is driven by a similar motor. Again, two drive shafts are
braced in order to minimize the reversal clearance. Via a form-closed connected
rotary disc a specimen can be loaded in torsional direction.
The machine can be operated in two ways, manually and programmatically.
Hence, preparing an experiment can be realized by using the manual control of
the machine while for the actual experiment an afore coded program is executed.
The digital governing of the analog control is implemented by means of a freely
configurable control system33, which is connected to a PC. A parallel IEEE-488
digital communications bus is used for the connection between PC and digital
machine control. Through a freely programmable software front-end, more com-
plex control paths are possible than with the analog curve generator, which is
part of the analog machine control.
Besides displacement rate control, additional control modes are possible uti-
lizing a cascaded control scheme, Unbehauen, H. (1997). Force, torque and
displacement (rate), rotation (rate) control, respectively, are already hard-wired
configured within the analog machine control. The actual value is measured

30Co. Schenck Trebel GmbH, RM 50
31Co. Schenck Trebel GmbH, RME
32Co. Lebow Products, Inc., 6467-110, Fmax = 50 kN, Nonlinearity < 0.01%, Mmax =

300 Nm, Nonlinearity < 0.05%
33Co. HuDe Datenmesstechnik GmbH, Interfacer 4
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Figure 5.19: Mechanical loading setup: A) Machine frame; B) Tension/Torsion
load cell; C) Analog machine control; D) Incremental linear encoder;
E) Incremental angle encoder; F) PC counter card; G) Deformation
measuring system; H) Digital machine interface; I) Digital, modular
measuring amplifier; K) Control PC; L) Temperature chamber

by the load cell (B) or internal potentiometric transducers for displacement or
angle. Furthermore, displacement and angle can be measured very accurately
using additionally integrated incremental encoders34 (D,E) and a PC counter
card35 (F). However, in so doing, an analog signal is not generated, which could
be used within the control loop. Nevertheless, the two incremental devices are
used for supervision purposes in order to have a certain degree of redundancy
within the system so that in cases of breakdown or malfunction of the primary
transducers the system can be halted. Furthermore, the calibration of inductive

34Co. Dr. Johannes Heidenhain GmbH,
Angle: RON 255, line count 18000, measuring step 0.001◦, system accuracy ±5′′

Displacement: ULS 300, grating period 20 µm, measuring step 0.5 µm, system accuracy
0.5 µm

35Co. Dr. Johannes Heidenhain GmbH, IK 220
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or strain gage based displacement measuring devices is carried out utilizing these
highly linear and accurate encoders.

In addition to the hard-wired measuring transducers other sensors can be used
for the machine control, too. For the integration of other measuring devices the
actual measuring signal has to be converted or amplified to an analog signal
in the range of ±10 V, which serves as input for the analog control loop3637.
The amplification of the measuring signal is performed by a modular digital 24
bit measuring amplifier38 (I). Moreover, the measurement data of all connected
sensors is provided by the amplifier through different digital interfaces like IEEE-
488 and RS232 so that the data can be stored or further processed by PCs.

By using this alternative approach, the deformation measuring system (G) pre-
sented in Section 5.8 can be integrated into the analog control loop, thus, result-
ing in a control of engineering strain in axial and torsional direction.

5.6.1 Measuring of stress

Since the lateral deformation cannot be measured, see Section 5.8 for a detailed
explanation thereof, only engineering stress is used in the context of experimental
observations within this work. Consequently the measuring of stress reduces
to a measuring of axial force F and torque Mt using the aforementioned load
cell. Finally, the governing equations for axial and shearing stress (σ, τ) as a
consequence of axial force and torque read

σ =
F

A
(5.14)

and

τ =Mt
16 do

π (d4o − d4i )
, (5.15)

with A, di, and do respectively representing the cross-sectional area, inner and
outer diameter of the specimen.

5.7 Clamping of the specimen

A four-jaw clamping device depicted in Figure 5.20 is constructed so that the
clamping forces are equally distributed and well-repeatable. In order to prevent
the specimen from buckling within the clamping region, reusable clamping man-
drels are used, which are already shown in Figure 5.11 and which additionally
serve as inward fluid feed.

36Co. Schenck Trebel, MV 150, accuracy class 0.05
37Co. Schenck Trebel, MV 154
38Co. Hottinger Baldwin Messtechnik GmbH, MGCplus, accuracy class 0.03, max. sample

rate 19.2 kHz, 24 bit A/D converter for each measuring channel



5.8. Strain measuring 59

Figure 5.20: Photograph of the clamping device

The clamping devices are fixed to the machine by screws, which are guided by
slotted holes so that during the mounting process the clamping devices are free to
move in lateral direction with respect to the specimen axis and bending moments
on the specimen due to a possible misalignment are minimized.
PTFE39-panels are used to implement some thermal decoupling between the
clamping device and the machine flange.

5.8 Strain measuring

Whenever referring to experiments or experimental data in this work, engineer-
ing strain is used. This is due to the fact that the measuring of the lateral
deformation is quite crucial for a tubular specimen because of the mandatory
measurement of the deformation at the inner surface. Additionally, boundary
effects cannot be neglected. Thus, the lateral deformation is not necessarily
and most unlikely uniform throughout the gage section. As a consequence, a
local high-resolution procedure such as the laser speckle interferometry or other
optical techniques would have to be chosen, lacking in most cases the ability
to generate analog signals, which could be used as input for the control of the
testing machine. Furthermore, the exhalation of cold nitrogen resulting in local
density gradients and the window of the temperature chamber interfere with op-
tical methods. Hence, for now, direct strain control cannot be realized for true
strain within the shown experimental concept.
Consequently, the problem of strain measuring reduces to the measuring of axial
displacement and angle, i.e.,

ε =
∆l

l
(5.16)

39Polytetrafluorethylene
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and

γ =
∆ϕ r

l
, (5.17)

with ∆l and ∆ϕ being elongation and twist. r and l denote the effective radius
and initial gage length of the specimen.

Moreover, only a local measuring of displacement and angle guarantees a good
quality and interpretability of experimental data. This is in sharp contrast to
the measurement of displacement and angle of the crosshead and rotary disk of
the testing machine, respectively.

Several standard procedures exist for the task of strain/displacement measuring,
some of which are for instance strain gauges, extensometers or the already ruled-
out optical techniques. Table 5.1 gives a short overview of the requirements for
the desired strain measurement system.

Temperature range : −100◦C < Θ < +100◦C

Gage length : l0 = 20 mm

Maximum strain : εmax = γ′
max

40 = 10%

Axial range : −2 mm < ∆l < +2 mm

Torsional range : −45◦ < ∆ϕ < +45◦

Direction : Axial/Torsional

Table 5.1: Requirements for the strain measuring device, axial and torsional
range result from gage length and maximum strain

At first sight, strain gauges seem to be the device of choice. Nevertheless, two
problems arise when utilizing strain gauges. This is on the one hand the resultant
shielding of the specimen. Nitrogen cannot be blown onto the specimen surface
but is blown onto the strain gauge, thus, thermally insulating the specimen.
Furthermore, strain gauges are, with some exceptions, intentionally localized
measuring devices, meaning that, for example, temperature cannot be measured
within the gage length of the gauge.

These limitations do not exist for extensometers. Nevertheless, the necessity
of measuring axial and torsional deformation poses significant problems to this
technique. Even though biaxial tension/torsion extensometers exist, the require-
ment that the device may cover a torsional range between −45◦ and +45◦ cannot
be fulfilled by standard biaxial extensometers. Altogether, this leads to the con-
sequence that a custom-made strain measuring device has to be constructed.

The basis of the new strain measuring device are two aluminum disks. Figure
5.21 presents an engineering drawing thereof. Three holders are mounted equally

40von-Mises equivalent strain, see Section 4.2
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Figure 5.21: Drawing of the aluminum disks

distributed41 on each of the disks, two of which are fixedly attached while the
third one is, supported by linear bearings, movable in radial direction. This
third holder has a cutting-edge-like shape. Furthermore, in order to implement
an effective electrical insulation between the disks and the energized specimen,
PEEK-bushings and -shims are utilized at the contact surfaces between holders
and disks additional to ceramic carrier elements of the fixed holders.
By virtue of a spring, which implements a radial force onto the movable edge
with respect to the specimen, each disk is clamped onto the specimen so that
the rotation axes of the specimen and the disks coincide. Hence, each disk is
self-supportingly fixed on the specimen. The axial distance between the two
disks equals the gage length.
Because of the edge-like shape of the movable holder and the corrugated con-
tact surface of the two counterholders, the disks are prevented from slippage
in axial and circumferential direction. Consequently, by measuring the relative
movement of the disks, the gage length elongation and twist can be directly
deduced.

5.8.1 Axial displacement measuring

The measurement of the relative, axial movement of the two discs is performed
by means of two inductive transducers42. These are located so that the center
line of the specimen is intersected by the connecting line of the two transducers.
In so doing, only two sensors are needed to fully measure the axial elongation,
compensating any rotation of the disks perpendicular to the longitudinal axis of

41Resulting in a 120◦ degree shift
42Co. Hottinger Baldwin Messtechnik GmbH, W2AK, accuracy class 0.4, nominal range

±2 mm
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(a) General view of the strain measuring
device

(b) Magnified view of the lever system
which is used to transfer the axial dis-
placement to the inductive transducer

Figure 5.22: Axial strain measurement

the specimen. Figure 5.22(a) shows a photograph of the strain measuring system
with the two axial transducers.
The axial movement is measured by a gliding feeler head and transferred to
the sensors via a lever system, which is shown in a magnified photograph in
Figure 5.22(b). This setup allows for any rotational movement of the disks with
respect to its center line. Thus, the axial transducers are decoupled from any
circumferential motion. The arithmetic mean of the two measurements, weighted
by the leverage, gives the elongation of the gage length of the specimen and thus,
the axial strain.

5.8.2 Twist measuring

Also in the circumference direction, two inductive transducers43 are utilized for
quantifying the relative motion of the two disks.
Steel cords with a diameter of 0.45 mm are attached to each of the disks. A small
guideway groove leads the cords around the disks. Besides, each cord is stressed
by a weight of m = 40 g so that the tension force is always constant. Figure
5.23(b) gives an impression of the guideway groove and the cord attachment.
Here, the fixing points are indicated by white circles.
By virtue of two deflection rollers the movement of the steel cords is transferred
to the inductive transducers. In Figure 5.23(a) the transducer system including

43Co. Hottinger Baldwin Messtechnik GmbH, W50K, accuracy class 0.4, nominal range
±50 mm
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(a) General view of the strain measuring
device, outside the temperature cham-
ber on the left: deflection rollers and
inductive transducer system for the
twist measuring

(b) Magnified view of the disks, the fix-
ing points of the steel cords (indicated
by white circles) and the guideway
grooves

Figure 5.23: Details of the torsional strain measurement

the rollers can be viewed outside the temperature chamber on the left. Through
a differential measurement of the two sensors and by knowing the effective radius,
the twist within the gage section can be easily calculated.

5.9 Complete system

By means of the presented experimental setup, freely configurable thermome-
chanical tests can be conducted. The schematic of the complete system is pre-
sented in Figure 5.24. Here, the temperature closed loop control is realized by
a PC. This PC operates the temperature chamber and the cooling fluid system
consisting of the pressure/volume flow control and the fluid temperature control
including the heat exchanger system. Additionally, the Joule heating is managed
by this digital PC-based controller.
A second PC is used for implementing the control of the mechanical loading
system. Both controllers are interconnected within an Ethernet44-based network
so that each controller is capable of reacting to the respective counterpart. As
a consequence, thermomechanically coupled experiments are possible. Based
on an IEEE-48845 bus system, the fast data acquisition is performed by the

44Ethernet, standardized as IEEE 802.3, stands for a large family of frame-based computer
networking technologies for local area networks (LANs)

45IEEE-488, also known as HP-IB (Hewlett-Packard Instrument Bus) or GPIB (General
Purpose Interface Bus) is an 8-bit parallel bus which can be used to connect up to 15 devices.
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Figure 5.24: Schematic of the complete experimental system

temperature control PC in connection with the digital amplifier system.

Because of a handshake procedure the slowest device governs the data transfer rate



6 Experiments

6.1 Pretests and preparatory experiments

This section treats the conducted pretests, which are necessary in order to char-
acterize the material, and in order to prepare the specimen material for the
consecutive multiaxial, mechanical tests. Furthermore, these preparatory tests
are essential to facilitate the interpretation of later experiments.

As already mentioned in Section 5.1, the specimen material cannot be used
for mechanical testing in the as-received state. This is based on the following
observations.

Indeed, the shape memory alloy exhibits a thermally “pseudoelastic” behavior
at room temperature as can be observed in the respective DSC curve, Figure
5.1, since two well-defined peaks according to a martensitic transformation are
evident. But nevertheless, a mechanically pseudoelastic behavior, which is ex-
pressed by a hysteresis in the stress-strain space cannot be noticed, see Figure
5.2. Accordingly, the plastic deformation and the transformation region are not
well-separable. Usually, this is also the case for solutionized NiTi, Miyazaki, S.
et al. (1982).

Moreover, on account of the comparatively large grains, cf. Figure 5.4, it would
be also expedient, if the grain size could be reduced, even though this is not
mandatory according to the train of argument in Section 5.1.

Altogether, this leads to the consequence that a thermomechanical treatment
is to be performed prior to the actual mechanical experiments. By means of
a plastic deformation process, such as rolling or forging, the grain size can be
in fact significantly reduced. But, as the shape of the tubular stock is close
to the projected specimen geometry, and an even smaller specimen size is not
suitable for the testing machine at hand, due to the given range of mechanical
loading, Section 5.6, an antecedent mechanical forming process is abandoned.
Consequently, the preceding thermomechanical treatment reduces to a preceding
heat treatment process. However, therewith a reduction of the grain size cannot
be achieved.

6.1.1 Heat treatment

As in standard heat treatment procedures, the first step is a solution annealing
process. Here, the existing dislocations and the present precipitates are annihi-
lated. That way, a well-defined initial state can be attained. Contrastively to
few other works in the literature in which the specimen material is cooled down

65
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within the furnace, cf. Tanaka, K. et al. (1999); Lexcellent, C. & Tobushi, H.
(1995); Lin, P. et al. (1996b); Lim, T.J. & McDowell, D.L. (1995), the specimen
material used in this work is quenched in water after each annealing step. In so
doing, the state achieved at the end of the heating process is frozen, regardless
of the specific furnace so that the microstructure is well-repeatable and well-
reproducible. This procedure is in accord to the treatises of Brinson, L.C. et al.
(2004); Gall, K. et al. (2000); Khalil Allafi, J. (2002); Otsuka, K. (1990).

Subsequently, an aging or precipitation annealing step is conducted, again fol-
lowed by a quenching in water, given that as aforementioned in the solutionized
state usually no pseudoelasticity is observed, Miyazaki, S. et al. (1982). Thanks
to finely dispersed Ni4Ti3 precipitates the plastic deformation and the trans-
formation region can be shifted respectively to higher, lower stresses, hence,
resulting in a well-defined and distinct transformation region within the stress-
strain space. This is due to the fact that Ni4Ti3 precipitates act as nucleation
sites for martensite, concomitantly impeding dislocation motion, Treppmann,
D. & Hornbogen, E. (1995). For this reason the pseudoelastic stress-strain re-
sponse can be stabilized, Miyazaki, S. et al. (1986). In this regard, the size and
the amount of Ni4Ti3 precipitates are crucial. This is directly connected to the
aging temperature and the duration of aging, which are still subject to further
research, cf. Khalil Allafi, J. (2002), for example.

Two different heat treatments are chosen, which shall be denoted in the course
of this work by HT 1 and HT 2. It is clear from Table 6.1 that the solution an-

annealing step HT 1 HT 2

solution annealing 1h@850◦C 1h@850◦C

aging 1h@350◦C 0.5h@350◦C

Table 6.1: Applied heat treatments HT 1 and HT 2

nealing step is equal for both heat treatments, while the only difference between
the two types of heat treatment is the duration of aging.

6.1.2 Mechanical tests on specifically heat treated specimens

Different types of strain controlled, uniaxial tests are performed on HT 1 and
HT 2 specimens at room temperature in order to find out if the material behaves
pseudoelastically after the respective heat treatment.

Figures 6.1(a) and 6.1(b) show simple tension and compression experiments for
a HT 1 specimen. Here, for each experiment the stress-strain hysteresis is almost
perfectly closed. Also in the case of torsion tests for a HT 2 specimen, Figure 6.2,
an almost ideally pseudoelastic behavior can be observed. Von-Mises equivalent
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Figure 6.1: Uniaxial tests for a HT 1 specimen with ε̇ = 10−4s−1, starting at
room temperature
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Figure 6.2: Simple torsion tests for a HT 2 specimen with γ̇′ = 10−4s−1, starting
at room temperature

stress and strain1 are used in this diagram.

Noting that the specimen material is pseudoelastic at room temperature for the
applied heat treatments, it is of particular interest to determine the degree of
degradation of the stress-strain behavior for multiple consecutive experiments,
Miyazaki, S. et al. (1986). This knowledge is in particular essential, since it
gives rise to the number of experiments that can be conducted on one single
specimen without deteriorating the final conclusions. In this connection repeated
strain controlled simple tension tests are carried out on HT 2 specimens at room
temperature, see Figure 6.3.

A maximum strain of 3.5% is chosen, which is well within the maximum possi-
ble hysteresis2. The strain rate is ε̇ = 10−3s−1. It is obvious from Figure 6.3(a)
that the hystereses degrade, which means that the shape of the curves is sub-
ject to change. For higher cycle indices the slope of the stress developing gets
steeper, concomitantly reducing the size of the hysteresis. Furthermore, resid-
ual strains are evident. In this regard, it is worthwhile taking a closer look at
the temperature-strain curve. It can be recognized that large temperature dif-

1See Section 4.2 for a definition thereof.
2It is well-known that at the end of the hysteresis the martensitic transformation is most

unlikely accomplished. Additionally, a martensitic fraction of 100% has to be assumed as an
unrealizable limiting case.
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Figure 6.3: Repeated simple tension tests, HT 2
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ferences with respect to the ambient atmosphere occur during the experiment.
Moreover, the temperature at the end of the experiment is well below the start-
ing temperature, which is simultaneously the ambient temperature as well. The
residual strain can be attributed to this negative temperature difference at the
end of the tests shifting the transformation stress to lower values so that local
eigenstresses may impede the complete reverse transformation. This explanation
is substantiated by the diminishment of the residual strains, as the difference be-
tween ambient and specimen temperature is decreased. Consequently, isother-
mal3 tension tests might prove better suited in order to reduce the degradation
process.

Those experiments are shown in Figure 6.4. Here, the residual strain is signifi-
cantly reduced. Beyond that, the slope of the stress curve does not vary as much
as in the non-isothermal case. Nevertheless, an evolution of the stress-strain be-
havior is still recognizable resulting in a flattening of the curves, if the region
between the elastic and the transformation regime is considered.

In this connection, the behavior of a HT 1 specimen must also be examined.
As a result of the foregoing observations, isothermal uniaxial tension tests are
performed as well, Figure 6.5. Again, a further improvement of the degradation
behavior is noticed. Almost no evolution can be spotted for the different cycle
indices. But the stress-strain curves are quantitatively different from the HT 2
curves. This is expressed by a different stress level of the stress plateau and a
smaller slope in the elastic region. However, as a consequence of this improved
“fatigue” behavior, for all further mechanical experiments, the heat treatment
denoted by HT 1 is applied, unless stated otherwise.

6.1.3 DSC4 results

Irrespective of the first mechanical tests, further examinations are performed
in order to characterize the material. In Figure 6.6, the DSC curves for the
two different heat treatments are shown together with the DSC curve of the
as-received material. It is obvious that the differences between the two heat
treatments according to the DSC curves are marginal in spite of the large differ-
ences, which are observed in the stress-strain space, Section 6.1.2. In comparison
to the as-received material, it is evident that instead of a one-step transforma-
tion the material passes through two steps as well for the forward as for the
reverse transformation. This is partly in accord with the findings in Khalil Al-
lafi, J. (2002), even though the DSC curves in this work correspond best with
the respective curves for precipitation temperatures of 500◦C. Furthermore, it
can be observed that the endothermic austenite peak at −20◦C shifts to higher
temperatures for the two heat treatments. The reason for the peak shift might

3In Section 6.2, isothermal conditions and the possible realization are thoroughly dis-
cussed. As mentioned earlier (Section 5.5), completely isothermal conditions cannot be
achieved.

4Differential Scanning Calorimetry, see Footnote 2 on page 35
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Figure 6.4: Repeated isothermal tension tests, HT 2



72 Chapter 6. Experiments

0

200

400

0 1 2 3 4

σ
/
M
P
a

ε/%

N = 2
N = 18
N = 42

Figure 6.5: Repeated isothermal tension tests, HT 1

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-160 -80 0 80 160

q/
W
/g

Θ/◦C

as-received
HT 1
HT 2

Figure 6.6: DSC curves for HT 1, HT 2, and as-received specimen material



6.1. Pretests and preparatory experiments 73

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-160 -80 0 80 160

q/
W
/g

Θ/◦C

HT 1
HT 1, reduced cycle

Figure 6.7: Comparison of two different DSC cycles for HT 1

be the depletion of Ni in the NiTi matrix due to the precipitation of Ni4Ti3.

Comparing the two heat treatments, it can be stated that for the longer precip-
itation duration, HT 1, the additional peaks are slightly more pronounced than
in the case of the second heat treatment, HT 2.

In order to identify the origin of the additional peaks, further experiments are
requisite. Khalil Allafi, J. (2002) identifies for a similar alloy the origin of the
first exothermic peak as a B2 → R transformation at the grain boundaries
due to heterogenous Ni4Ti3 precipitates whereas the two peaks on heating are
both assigned to a B19′ → B2 transformation. In this regard, an additional
DSC cycle is realized on HT 1 specimen material. Here, the cycle is limited by
temperatures just below the first exothermic transformation peak upon cooling,
see Figure 6.7. A similar procedure is proposed in Tanaka, K. et al. (1999) in
order to identify the start and finish temperatures for a two step transforming
NiTi alloy whose reverse transformation peaks on heating partially overlap one
another in the DSC measurements. By accounting these two DSC curves, it
stands to reason that the two right peaks in the cooling and heating path belong
together so that the origin of the respective peaks might be B2 → R and R→ B2
transformations. This can be explained by the fact that if on the cooling path
no B19′ is generated, which is the case for the small DSC cycle according to
Khalil Allafi, J. (2002), a transformation from B19′ is not possible upon heating
because only B2- and R-phase may be present.
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[111]B2

Figure 6.8: Schematic of the ordering of lenticular Ni4Ti3 precipitates according
to Michutta, J. (2005)

6.1.4 TEM5 results

For a further characterization of the microstructure and the transformation be-
havior, especially for the classification of the two additional peaks in the DSC
curves, TEM examinations are conducted on HT 1 specimen material. Here, for
all TEM measurements in this work the same electron microscope is used6. For
a detailed description of the fundamentals on TEM, refer to Eggeler, G. (2001b).
Specifically, it is also intended to get a deeper insight in the distribution and size
of Ni4Ti3 precipitates.

Before microscopy images of the grain and precipitate structure are presented,
the schematic ordering of Ni4Ti3 precipitates is recalled, see Figure 6.8 from
Michutta, J. (2005), which is of major importance for the interpretation of the
respective TEM micrographs. Here, the lenticular shape of the Ni4Ti3 precipi-
tates is obvious. Four different orientations exist, which is why three of the four
projections of precipitates are shown as ellipses in the two-dimensional picture
in Figure 6.8.

Now, in order to analyze the Ni4Ti3 precipitates, bright field TEM images are
taken at 70◦C, Figure 6.9. Images with a larger and a smaller magnification are
shown. It is quite difficult to spot the elliptical precipitates at first sight within
Figure 6.9(b) and impossible within Figure 6.9(a). But a closer view reveals that
a vast number of precipitates in different variants is present whose characteristic
length scale is even below 10 nm, substantiating the notion of finely dispersed
Ni4Ti3 precipitates stated earlier in this chapter. Some of those are indicated by
white arrows in Figure 6.9(b). In this context, it is very difficult to estimate the
volumetric amount of Ni4Ti3 precipitates due to the smallness of the precipitates.

For the characterization of the origin of the right hand side exothermic peak
with reference to the DSC curves, a cooling test is performed within the elec-
tron microscope. Here, the temperature is decreased from a start value of 70◦C.

5Transmission Electron Microscopy
6Co. Philips, CM 20, transmission electron microscope featuring a 200 kV high voltage

electron beam and equipped with a LaB6 electron emitting cathode. For cooling tests a
Gatan, Inc. 636 double tilt holder is utilized.
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(a) Magnification of 8800x (b) Magnification of 50000x

Figure 6.9: Bright field TEM images of an HT 1 specimen at 70◦C

The respective experiment finish temperature is 26◦C, which is approximately
the temperature corresponding to the maximum heat flow. Consequently, the
exothermic process is not completely accomplished at this point. In this regard,
a second set of bright field images is taken showing the microstructure at 26◦C,
Figure 6.10. In doing so, bright field images are given for the experiment start
and finish temperatures. It has to be highlighted that no difference in the mi-
crostructure can be recognized simply from the bright field images. That is why
a set of SAD7 measurements is conducted. In so doing, the lattice structure is
visualized so that different phases can be identified unambiguously in general.
Figure 6.11 depicts four SADPs at four distinct temperatures in the direct vicin-
ity of the aforementioned exothermic peak. Again, two images are shown cor-
responding to the start and finish values of the experiment temperature, see
Figures 6.11(a) and 6.11(d). Additionally, two further SAD images are taken
at 48◦C and 39◦C, Figures 6.11(b) and 6.11(c). Beginning with Figure 6.11(a),
the classical austenite B2 pattern can be observed, which is characterized by the
clear hexagonal structure of the reflections without any additional superlattice
reflections, cf. Heckmann, A. (2003), for example. This observation is in good
accord with the DSC curves, since a temperature of 70◦C is well above the last
endothermic peak upon heating, implying that the microstructure is completely
austenitic under the assumption that the amount of the untransformed portions
of the specimen can be neglected. Figure 6.11(b) presents a similar picture.

7Selected Area Diffraction: The diffraction image exhibiting a certain selected area
diffraction pattern, SADP, is a by-product of the TEM, as due to size effects a part of the
electron beam gets diffracted and can be made visible afterwards, see Eggeler, G. (2001b) for
a detailed introduction.
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grain boundary

(a) Magnification of 15000x (b) Magnification of 50000x

Figure 6.10: Bright field TEM images of an HT 1 specimen at 26◦C

Again, the microstructure is clearly austenitic, which is also concluded from the
DSC curves. This can be explained by the fact that the SAD image in Figure
6.11(b) is taken on a cooling path, well before the first tails of the exothermic
peak are encountered according to Figure 6.7. However, the interpretation of
Figure 6.11(c) is not as evident. Here, some additional extra spots might be an-
ticipated but this is far from being unambiguous. This can be explained as the
respective temperature, 39◦C, lies just at the onset of the exothermic process,
see Figure 6.7. By contrast, the SADP of Figure 6.11(d) clearly features su-
perlattice reflections some of which are indicated by white arrows. These small
1/38 < 110 > 9 superlattice reflections are characteristic for the lattice struc-
ture of the R-phase, cf. Khalil Allafi, J. (2002); Michutta, J. (2005); Hara, T.
et al. (1997). Nevertheless, only one single variant can be observed, since all
1/3 < 110> reflections are oriented from the upper left to the lower right. A
possible reason might be the production process of the tubular stock resulting
in a slightly textured microstructure, Hara, T. et al. (1997).

As a conclusion from the reduced DSC cycle and the TEM measurements, it
stands to reason that the two right hand side peaks in the DSC curves correspond
to B2 → R and R→ B2 phase transitions.

8This parameter states that the small extra reflections are positioned at every multiple
of one third of the distance between two large reflections.

9<110> denotes a direction of <110> type. Various <110> directions exist, Eggeler,
G. (2001a)
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Figure 6.11: Various SADPs of an HT 1 specimen at different temperatures,
diffraction images in direction of the [111] zone axis

6.1.5 Effect of temperature on the stress-induced transformation
behavior

A set of simple isothermal tension tests is performed on HT 1 specimens at dif-
ferent temperatures. Temperatures between 0◦C and 65◦C are chosen, which is
motivated by the positions of the reverse transformation peaks in the earlier dis-
cussed DSC curves, Fig. 6.7. It is assumed that above a temperature of 50◦C the
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Figure 6.12: Isothermal tension tests for different temperatures on a HT 1 speci-
men; experiment temperatures are 0◦C, 10◦C, 19◦C, 27.5◦C, 38◦C,
45◦C, 55◦C, 65◦C

specimen material is completely austenitic, hence, resulting in the best possible
pseudoelastic behavior for the performed heat treatment. In the temperature
range between 0◦C and 40◦C, a mixed B2/R-phase microstructure is supposed
with a presumably different pseudoelastic behavior than that observed above a
temperature of 50◦C. Figure 6.12 depicts the measured stress-strain behavior
for the different temperatures.

Fundamentally, pseudoelastic material behavior can be noticed for almost all
temperatures under investigation. Obviously, the lower limit of the pseudoelastic
domain is in the vicinity of 0◦C, since a remaining strain of 0.5% is evident from
the stress response at this temperature. The fact that, irrespective of the curves
for 0◦C and 65◦C, a qualitatively similar pseudoelastic stress-strain behavior
can be noticed for all experiments is especially surprising as the lower temper-
ature tests are carried out within a supposedly mixed B2/R-phase regime, as
mentioned before. In this context, it is noteworthy that for several tested speci-
mens fracture occurs at 65◦C around 2% axial strain, which is presumably well
within the pseudoelastic stress-strain hysteresis. Actually, around that particu-
lar temperature an almost ideally pseudoelastic material behavior is expected,
since this temperature is just above the second endothermic peak in the DSC
curve (Fig. 6.7), which was ascribed to a R→ B2 phase transition. The reason
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Figure 6.13: Effect of temperature on transformation stress and apparent
Young’s modulus

for the reproducible occurrence of fracture might be the high transformation
stress level resulting from the high temperature as described by the Clausius-
Clapeyron equation, see Ort́ın, J. & Planes, A. (1989). Additionally, the method
of heat treatment may play its part, since the specimen, being enwrapped in a
foil, is heated in air. In this vein, small oxide particles may be introduced into
the specimen, which might cause brittle fracture above a specific stress limit. By
contrast a heat treatment using an inert gas atmosphere or an airtight quartz
covering of the specimen might be used to avoid this effect. Consequently, the
temperature range between 10◦C and 55◦C is considered the pseudoelastic do-
main in the following as defined by Otsuka, K. & Wayman C. M. (1998) and
discussed in Section 2.3.

Figure 6.13 shows the temperature effect on the forward transformation stress
and the apparent Young’s modulus. The term “apparent” Young’s modulus is
defined later in this paragraph. Since distinctive stress plateaus for the reverse
transformation cannot be identified from the stress-strain curves in Figure 6.12,
the reverse transformation stress function is not given in Figure 6.13.

An almost linear progression of the transformation stress, which has a slope in
the range of 8.5MPa/K is evident. This is in good accord with the reported values
in the literature. For nearly equiatomic NiTi, Honma, T. (1984); Shaw, J.A. &
Kyriakides, S. (1995) present values of 7.5MPa/K and 8MPa/K, for example.
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Evidently, the apparent Young’s modulus is strongly dependent on temperature.
In this connection, the term “apparent” Young’s modulus is used in reference
to Šittner, P. et al. (2006). There, it is accounted that for NiTi a Young’s
modulus below 60GPa indicates the existence of the R-phase. The reorientation
process of the twinned R-phase, which occurs at low stress values, degrades the
elastic modulus. Furthermore, the temperature dependence of the slope in the
linear range is attributed to the increasing R-phase distortion for decreasing
temperatures. In this way, the strong temperature dependence of the, otherwise
reported, temperature insensitive Young’s modulus of NiTi can be explained for
the considered material. In this regard, the absence of residual strains upon
unloading is noteworthy. This may be elucidated by the process of “twinning
pseudoelasticity” as established by Hornbogen, E. (1995). There, it is claimed
that as dislocations or eigenstresses due to coherent particles are given, which is
the case for the performed heat treatment, a preferred twinning microstructure
may exist, which is reestablished after the release of external stresses, hence,
resulting in a shape memory of the specimen material and a full recovery of the
strains.

Finally, it is supposed that for the considered material and heat treatment, the
pseudoelastic material behavior may be attributed mainly to R-phase reorien-
tation and R → B19′ phase transition processes. However, it is assumed that
the initial microstructure in the pseudoelastic temperature range is a mixture of
B2- and primarily R-phase with varying proportions depending on the specific
temperature. In this connection, it has to be noted that further experiments
would be necessary for a profound investigation of the origin of the observed
pseudoelasticity, which is beyond the scope of this work.

6.2 Characterization of viscous and rate dependent material
behavior

Throughout the last years, more and more experimental data on shape mem-
ory alloys and NiTi in particular have been accumulated. In this context, the
thermomechanical coupling of the material behavior is especially intriguing. Ex-
tensive studies have been performed with reference thereof to the connection
between specimen temperature and transformation stress, which can be defined
as the critical stress that is needed for the triggering of a stress-induced trans-
formation of the microstructure. The description of these phenomena using the
Clausius-Clapeyron relation is meanwhile well adopted, see Ort́ın, J. & Planes,
A. (1989), for instance.

Moreover, as a large amount of mechanical experiments is performed under strain
control, multiple works have been dedicated to the characterization and determi-
nation of the strain rate effect on the stress-strain behavior. Mukherjee, K. et al.
(1985) have been among the first to report a direct connection between higher
strain rates and higher transformation stress levels. Similar findings have been
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made by Shaw, J.A. & Kyriakides, S. (1995); Leo, P.H. et al. (1993); McCormick,
P.G. et al. (1992). Herein, it is shown that a rise of the specimen temperature
is observed during the loading process, which depends on the magnitude of the
strain rate. Furthermore, Shaw, J.A. & Kyriakides, S. (1995); McCormick, P.G.
et al. (1992) present experimental data for different ambient media, thus, result-
ing in different heat transfer conditions, i.e., different specimen temperatures and
different stress-strain curves due to the temperature dependence of the transfor-
mation stress, cf. Ort́ın, J. & Planes, A. (1989).

It is well accepted today that the transformation process results in the produc-
tion of latent heat leading to an exchange of heat between the specimen and
the environment. Hence, the specimen temperature is changed. Consequently,
different specimen geometries and different surrounding media lead to different
experimental results. Finally, the outcome of the experiments strongly depends
on the particular setup, which renders experimental data from distinct exper-
imental setups incomparable. This is why it is highly important to realize an
experimental setup, which is independent of the specific geometry and the ex-
ternal conditions, thus, allowing for a decoupled examination of strain rate and
temperature effects on the material behavior.

Referring to the modeling part of material characterization, Leo, P.H. et al.
(1993); McCormick, P.G. et al. (1993) use a one-dimensional material model,
which incorporates heat transfer due to conduction, convection, and radiation,
yielding a satisfactory agreement between modeled and material behavior ob-
served on wire. Lexcellent (Lexcellent, C. & Rejzner, J. (2000)) arrives for a
three-dimensional model and two-dimensional experiments conducted by Lim,
T.J. & McDowell, D.L. (1999) at a similar result.

Although these modeling efforts give a first lead concerning the rate dependency
of the mechanical material behavior, together with the awareness that part of
the increase of the transformation stress can be attributed to the increase of
the specimen temperature, the reverse, implying that the material behavior is
independent of strain rate, is far from being a stringent conclusion. Moreover,
it is questionable to what extent it is possible to render a material model the
“true” model just by the fact that a certain effect can be fitted well.

On this account, temperature controlled experiments are imperative. Some such
experiments are conducted by the research group around Tobushi and Lin (Lin,
P. et al. (1996a,b); Tobushi, H. et al. (1998, 1999)) on 0.1mm wire. Conse-
quently, only uniaxial tension tests are possible. The specimen temperature is
measured using one single thermocouple, which is pressed on the central part of
the specimen. Based on the results of these tests, it is reported that the material
behavior is independent of strain rate.

In order to generalize these findings and to determine whether this holds true
even for bulk material, isothermal multidimensional experiments are to be car-
ried out on three-dimensional specimens. The next section is dealing therewith.
Preliminary results were published in Grabe, C. & Bruhns, O.T. (2006, 2007).

Throwing a glance at a different field of viscous material behavior, some non-
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isothermal relaxation and creep experiments have been presented by Helm, D.
(2001) recently. Similar to the experimental data published by Lim, T.J. & Mc-
Dowell, D.L. (1999), it is stated for relaxation experiments that during strain
hold periods the specimen temperature decreases, which results in a stress drop.
Nevertheless, Helm goes even further by claiming that the material unambigu-
ously exhibits a viscous behavior. He also states that for higher strain rates10

this effect might be even more distinctive. However, the obligatory proof thereof
is still missing, since the respective experiments were not conducted. The reason
may lay in the fact that the superimposed temperature effect gets predominant
for higher strain rates, and a temperature control scheme was not implemented
in Helm’s experimental setup. By contrast, it is argued by Tobushi, H. et al.
(2003); Matsui, R. et al. (2004) that the pseudoviscoelastic material behavior,
which is observed for creep and relaxation tests, might be completely assigned to
the temperature variation as described by the Clausius-Clapeyron equation, due
to latent heat effects during transformation processes. In order to give proof for
the former or the latter assumption, isothermal creep and relaxation experiments
are presented subsequent to the section dealing with isothermal mechanical tests
at different strain rates.

6.2.1 Comparison between non-isothermal and isothermal tests

In this section, three different types of experiments are discussed, two of which
are simple uniaxial tests and the third one is a combined or two-dimensional test.
For each experiment type, the isothermal and non-isothermal material behavior
are compared. The given data pertains mechanical and thermal data so that, for
each stress-strain or akin diagram, the respective temperature diagram is shown.

At the beginning, the uniaxial tension tests are presented. These experiments
can be directly linked to the aforementioned uniaxial wire experiments of Lin
and Tobushi (Lin, P. et al. (1996b); Tobushi, H. et al. (1998)) representing a
generalization of their findings, which, in anticipation of the following section, are
rendered valid even for three-dimensional specimen geometries. Consecutively,
some simple torsion tests are depicted while at the end of this section, two-
dimensional box experiments are treated.

6.2.1.1 Simple tension

Three different strain rates are applied for the simple tension experiments rang-
ing from ε̇ = 10−5 s−1 via ε̇ = 10−4 s−1 to ε̇ = 10−3 s−1. Thus, two decades of
strain rates are considered. In this regard, mechanical processes, which feature
the lowest applied strain rate (ε̇ = 10−5 s−1) are commonly regarded as being
quasi-static. The maximum strain is chosen to be εmax = 3.5%, which is well
below the end of the pseudoelastic hysteresis, see Figure 6.5.

10A strain rate of ε̇ = 10−4 s−1 is applied by Helm.
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Figure 6.14: Uniaxial tension tests for different strain rates, starting at room
temperature
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The material response under non-isothermal conditions is illustrated by Figure
6.14. Here, Figure 6.14(a) comprehends the stress-strain curves for the different
strain rates while Figure 6.14(b) represents the respective temperature-strain
diagram. Furthermore, as a measure of the local heterogeneity of the specimen
temperature field, the temperature difference between highest and lowest tem-
perature reading of the utilized thermocouples (∆Θ) is given as a function of
time, 6.14(b). Consequently, this curve immanently features positive values. As
announced in Section 5.5, the ideal control provoking locally isothermal con-
ditions, hence, leading to a ∆Θ-curve, which coincides with the zero line, is
infeasible so that, for temperature controlled tests, these curves can be used for
an estimation of the quality of the applied setup.

It is evident from Figure 6.14(a) that the slope of the stress “plateau” steepens
for higher strain rates. Simultaneously, the reverse transformation stress values
are shifted to lower values with respect to the forward transformation stress
curve, thus, yielding a larger hysteresis for larger strain rates. This cannot be
directly distinguished from the curve for ε̇ = 10−3 s−1 but it is obvious for the
two other stress progressions.

Naturally, a higher rate of latent heat is generated for higher strain rates. Since
the amount of heat transfer per unit time between the specimen and the environ-
ment is finite, the specimen gets significantly warmer for the higher strain rates,
leading to a maximum heating of 13K for the case of ε̇ = 10−3 s−1 and only a
slight increase of approximately 1K for the lowest strain rate (ε̇ = 10−5 s−1).
Due to the strong heterogeneity of the transformation process, the local tem-
perature heterogeneity is largest for the case of a high strain rate. Furthermore,
the local temperature heterogeneity occurs most pronounced at the end of the
reverse transformation.

In Figure 6.15, the respective diagrams for the isothermal test conditions are
given. Figures 6.15(a) and 6.15(b) illustrate the stress-strain and temperature-
strain behavior, respectively. It is obvious from the temperature-strain diagram
that the mean specimen temperature is kept constant at 27.5◦C. In this context,
it is of further interest to inspect the ∆Θ-curves in detail in order to estimate
the quality of the temperature control, as stated before. Different from the
respective curves for the non-isothermal conditions, the ∆Θ-curves in Figure
6.15(b) are almost identical for the different strain rates, neglecting the larger
local temperature heterogeneity at the end of the reverse transformation for the
case of ε̇ = 10−3 s−1. A qualitatively similar heterogeneity can be observed for
the same strain rate under non-isothermal conditions as well. However, the local
heterogeneity for the macroscopically isothermal conditions can be quantified as
being in the order of 3K.

It is evident in Figure 6.15(a) that the stress-strain curves are identical for the
different strain rates. The plateaus exhibit the same slope and the hystereses
coincide. Consequently, under the applied isothermal conditions the material
behavior is independent of strain rate for the given strain rate range. Moreover,
it is straightforward to claim that the achieved, macroscopically isothermal con-
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Figure 6.15: Uniaxial isothermal tension tests for different strain rates
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ditions are effectively isothermal for the transformation process. Consistently,
the quality of the temperature control is approved.

6.2.1.2 Simple torsion

For the torsional tests, three different strain rates in the non-isothermal case and
two strain rates for the isothermal case are applied. The experiments are strain
controlled. Together with the usage of a timed sequence of strain setpoints,
the tests are strain rate controlled. As measures of strain and stress, von-Mises
equivalent quantities are used, see Footnote 2 on page 29. The maximum strain
is γ′ = 3.5% for each experiment.
The material response is displayed in Figure 6.16. Analogous to the tensile
case, high strain rates effectuate a high temperature increase (up to 13K) and
a transformation stress shift. Again, hystereses get larger due to the strong
temperature sensitivity of the material, which can be observed best for the cases
featuring the lower strain rates, since for the highest strain rate the complete
hysteresis is steepened so that the respective comparison is rendered impossible
at a first glance. Other than in the tensile case, the largest local temperature
heterogeneity occurs at the end of the forward transformation.
The isothermal behavior of simple torsion tests is given in Figure 6.17. This time,
only two distinct strain rates are applied. Nevertheless, the chosen strain rates
lead to significantly different stress-strain curves under non-isothermal condi-
tions. For each experiment, the specimen temperature is held constant at 23◦C
with the local temperature heterogeneity being in the range of 5K. The rea-
son for the larger temperature heterogeneity with respect to the tensile tests is
the usage of a different hole pattern of the nitrogen nozzles, which are used for
cooling11. Nevertheless, even for such a large local temperature variation, the
stress-strain curves in Figure 6.17(a) coincide, leading to the notion that, also
under these circumstances, effectively isothermal conditions are provided, and
the mechanical material behavior is independent of the applied strain rate for
the case of torsional loading as well.

6.2.1.3 Combined box tests in the first axial/torsional strain-strain quadrant

A box-shaped loading path in the first axial/torsional strain-strain quadrant
is chosen as representative of two-dimensional experiments. Again, von-Mises
equivalent quantities are used. The loading path is implemented so that the
maximum torsional and axial equivalent strains are equal and the maximum is
given by εmax = γ′

max = 2.0% resulting in a square in the von-Mises equivalent
strain-strain space. First, the specimen is loaded in axial direction until the
maximum strain value is reached. Subsequently, the axial strain is held constant
while the specimen is distorted up to the maximum shear strain. The unloading is
realized accordingly in the following order, first, axial, then torsional unloading.

11See Section 5.3 for further details on the application of nitrogen.
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Figure 6.16: Uniaxial torsion tests for different strain rates on a HT 2 specimen,
started at room temperature
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Figure 6.17: Uniaxial isothermal torsion tests for different strain rates on a HT
2 specimen
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Loading velocities, which span two decades of strain rate, are applied with ε̇ =
10−5... 10−3 s−1.

Figures 6.18, 6.19, and 6.20 present the mechanical and thermal behavior of the
specimen material for the box test under non-isothermal conditions. While Fig-
ure 6.18(a) illustrates the control path, i.e., the strain-strain progression, Figure
6.18(b) shows the respective stress-stress response. The stress-strain behavior in
axial and torsional direction can be viewed in the subsequent figure (6.19).

Similar curves for non-isothermal conditions have been reported by Helm, D.
(2001). In the first part of the box test, the loading corresponds to the uniax-
ial case of simple tension exhibiting the behavior discussed in Section 6.2.1.1.
Afterwards, when the specimen is loaded in torsional direction, the axial stress
continuously decreases, which motivates the notion that the forward transforma-
tion may be ascribed to an equivalent stress measure, since one stress component
reduces while the other is increased. At the beginning of the axial unloading pro-
cess, a shear stress dip is obvious. Different from the findings in Helm, D. (2001),
the renewed increase of the shear stress does not correspond to a change of the
axial stress direction. However, during axial unloading the normal stress indeed
migrates into the compression domain. A continuous increase of the shear stress
after the dip is evident until the shear strain is reduced, resulting in a concurrent
decrease of the shear and the compressive stress.

These diagrams show that the conclusions drawn in the case of uniaxial ex-
periments can be analogously applied to the two-dimensional test. Once more,
the higher the strain rates, the larger is the specimen temperature rise, Figure
6.20(a). Consequently, a transformation stress shift takes place so that hystereses
get larger for higher strain rates even though this behavior is not as pronounced
as in the uniaxial cases due to the lower overall strain level. Moreover, the local
temperature heterogeneity is larger for the higher strain rates.

The material behavior of the respective isothermal experiments is examined in
the following, see Figures 6.21 - 6.23. Clearly, the stress response is identical for
the different strain rates. Analogous to the uniaxial cases, this is ascribed to the
isothermal conditions with the macroscopic mean temperature being constantly
kept at 27.5◦C. Irrespective of two outliers, the local temperature heterogene-
ity (Figure 6.23(b)) is constant for all three experiments featuring an order of
2K. Due to the stress response and the constant temperature heterogeneity, the
macroscopically isothermal conditions can be regarded as effectively isothermal.

6.2.1.4 Conclusions

As a concluding remark, it can be accounted that the specimen material shows
no strain rate dependence within the examined strain rate range. This does
not hold true only for uniaxial cases and one-dimensional wire-like specimens
but also for complex loading paths and complex specimen geometries. More-
over, the applied temperature control scheme, though only capable of realizing
macroscopically isothermal conditions, can be used for implementing thermal
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Figure 6.18: Combined box test for different strain rates, starting at room tem-
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Figure 6.19: Combined box test for different strain rates, starting at room tem-
perature; axial and torsional stress-strain diagram
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Figure 6.20: Temperature response for the combined box test for different strain
rates, starting at room temperature



6.2. Characterization of viscous and rate dependent material behavior 93

0

1

2

-1 0 1 2 3

γ
′ /
%

ε/%

ε̇ = γ̇′ = 10−3 s−1

ε̇ = γ̇′ = 10−4 s−1

ε̇ = γ̇′ = 10−5 s−1

(a) Strain-strain diagram

0

200

400

-200 0 200 400 600

τ
′ /
M
P
a

σ/MPa

ε̇ = γ̇′ = 10−3 s−1

ε̇ = γ̇′ = 10−4 s−1

ε̇ = γ̇′ = 10−5 s−1

(b) Stress-stress diagram

Figure 6.21: Combined isothermal box test for different strain rates; strain-strain
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Figure 6.23: Temperature response for the isothermal combined box test for dif-
ferent strain rates
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Figure 6.24: Stress-strain diagram for isothermal relaxation tests

boundary conditions, which prove effectively isothermal for the transformation
process.

6.2.2 Relaxation behavior

As announced at the beginning of this section, relaxation experiments are con-
ducted under isothermal conditions in order to identify the origin of a relaxation-
like material behavior observed on non-temperature controlled relaxation tests,
see for instance Helm, D. (2001); Lim, T.J. & McDowell, D.L. (1999). In this
context, it is important to decouple the viscous and the temperature induced
material behavior. Simple strain controlled tension tests are performed, which
are interrupted by strain-hold periods, i.e., the strain is maintained at a constant
value. Each strain-hold period takes 900 s. The stress-strain behavior for two of
those experiments is shown in Figure 6.24. The applied strain rate is 10−3 s−1

and the experiment temperature is 27.5◦C. Figure 6.25 illustrates the temper-
ature proceeding for the simple relaxation test with a maximum strain of 3.5%
whose stress response is presented in Figure 6.24.

It is obvious (Figure 6.25) that the mean temperature is constant during the
whole experiment and that the local temperature difference is constant, too,
apart from the first hold period where a very slight increase in the local temper-
ature heterogeneity can be observed. At a first glance, a stress drop is evident
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in the stress-strain curve (Figure 6.24) for the strain-hold periods, substantiat-
ing the notion of a viscous relaxation material response even under isothermal
conditions. In order to examine the material behavior more thoroughly, and
to elucidate this stress drop, a further postprocessing of the acquired data is
mandatory. On this account, stress and strain are plotted as functions of time,
Figure 6.26.

Here, as already pointed out, the strain curve is the path of the control variable
whereas the stress proceeding represents the material response. The different
strain steps are evident with the strain being kept constant at multiples of 1.5%.
Consequently, the strain is held at the forward and reverse transformation at
strains of 1.5% and 3.0% for 900 s each. Since in Figure 6.26 the scale of the
stress axis is too large for an estimation of the degree of the viscous material
behavior, the stress responses for the strain-hold periods are drawn on a larger
scale in figure 6.27.

From upper left to lower right, this figure shows the consecutive strain-hold peri-
ods as fluctuations with respect to distinct, appropriately chosen stress reference
values. Consequently, the upper diagrams represent strain-hold periods within
the forward transformation path while the lower two diagrams show the respec-
tive curves for the reverse phase transformation. That way, the stress curves
for the four different hold periods can be directly compared on a large stress
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scale although the stress level of each curve is inherently different. This results
from the fact that strain hold periods within the forward and reverse phase
transformation are realized.

At first sight, the four distinct stress overshootings at the beginning of each
strain-hold period catch the observer’s eye. This phenomenon has to be ascribed
to the overshooting of the actual strain value, which results from the machine
control. Since the machine is electromechanically driven12, a slight overshooting
is inevitable unless a very sluggish control behavior is approved. Consistently,
the overshootings correspond to the direction of the changing of strain, leading
to a positive overshooting for the two strain hold periods within the forward
and a negative overshooting for the two strain hold periods within the reverse
phase transformation. Besides, this is the reason why the first impression is when
Figure 6.24 is regarded that the material might indeed exhibit some kind of stress
relaxation. Moreover, those very small abrupt stress changes in the range of 1-2
MPa during the strain-hold periods have to be attributed to the control action as
well. That is, since a digital measuring amplifier13 is used, the measuring/control
resolution is not infinite. Once these control artifacts are disregarded, it is
obvious that a distinctive decrease/increase of the stress level for the strain-

12Cf. Section 5.6 for a detailed description of the machine concept.
13See Section 5.6 for further details.
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Figure 6.27: Magnified view at the stress progressions during hold times of the
relaxation test; stresses are given as fluctuations with respect to a
chosen stress reference value, i.e. σ = σ0+∆σ; upper left: first hold
period with σ0 = 362MPa; upper right: second hold period with
σ0 = 380MPa; lower left: third hold period with σ0 = 313MPa;
lower right: fourth hold period with σ0 = 278MPa

hold periods within the loading/unloading path (upper/lower diagrams) due
to a viscous relaxation of the specimen material is lacking. Finally, a viscous
material behavior, which might be attributed to stress relaxation cannot be
observed under isothermal conditions.

6.2.3 Creep behavior

In order to investigate a potential creep behavior of the alloy, simple isothermal
tension tests are carried out on different specimens. All these experiments are
performed under stress control utilizing a stress rate of 2MPa/s, which allows
for a careful examination of the stress plateau. In this context, it is of special
interest to look at the creep behavior within the transformation region, which is
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why the stress-hold stresses are chosen to be located in the direct vicinity of the
transformation start stress.

Figure 6.28 shows the stress-strain behavior of two such simple tension exper-
iments with test temperatures of 27.5◦C. The hold stresses of 380MPa and
387MPa are kept constant for 600 s and 900 s, respectively. Figure 6.29 presents
the corresponding stress and strain progressions as functions of time. In this vein,
the chronological order of events is exemplified. Naturally, the stress curves are
represented by straight lines, since stress is the control variable, which is set
by the controller. After a first increase of the load, the stress is held constant.
Subsequently, the specimens are further loaded up to the maximum stress fol-
lowed by the final unloading. Consequently, stresses and strains of the different
experiments can be assigned to one another by their respective experiment dura-
tions, which results from the different stress-hold periods of the two experiments.
Since the temperature profile is of paramount importance for the development
of strain within the transformation region, the temperature progressions, which
are measured by all eight thermocouples, are given separately in Figure 6.30
for the 387MPa hold stress case. Moreover, the calculated mean temperature
is depicted as well. Vertical dotted lines mark the beginning and end of the
stress-hold periods. Evidently, steady state conditions are realized within the
stress-hold period.
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Figure 6.31 allows a more detailed insight into the respective strain behavior
showing the same strain progressions as in Figure 6.29, but plotted on a larger
scale, so that only the strain development during the stress-hold periods is pre-
sented. It is evident that a certain strain drift is existent. This strain drift, in
the order of only a few hundredth of one percent strain, is however relatively
small, compared to measurements conducted during non-isothermal experiments
commonly found in the literature. Tobushi, H. et al. (2003) report, for instance,
that the specimen material transforms for a constant stress under non-isothermal
conditions until the end of the hysteresis is reached leading to a pseudo-creep be-
havior. Furthermore, it is stated that the only reason for this creep-like behavior
may be the variation of temperature.

Finally, as repeatedly pointed out before, completely isothermal conditions can-
not be realized with the applied setup for the conducted experiments within this
work. Fundamentally, even small amounts of heat transfer due to conduction
processes are sufficient to shift the local transformation stress to lower values
and, hence, to trigger a local transformation of the microstructure, which is
embodied by a pseudo-creep behavior of the specimen material. Following this
train of thought, the observed strain drift is assumed to be attributed to small
local heat transfer processes.

A significantly different behavior can be noted for a third simple tension test
whose stress-strain response is given in Figure 6.32. The test temperature is
22◦C, and the stress is held constant at multiples of 172.5MPa with a maximum
stress value of 355MPa. Even in the stress-strain diagramm, large pseudo-creep
strains are obvious. Again, in order to exemplify the load history, stress and
strain are plotted against time in Figure 6.33.

Stress-hold periods are not only inserted during the increase of the loading, as
was done in the two already discussed cases, but also in the unloading process.
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Figure 6.34: Magnified view at the strain progressions during hold times

Concerning the experiment procedure and stress rate, analogous statements hold
true with respect to previously made explanations. Even though the scale of Fig-
ure 6.33 seems large enough to estimate the creep behavior, in Figure 6.34, the
strain development is shown in the same scale as is used for Figure 6.31 to ren-
der the different diagrams comparable. Clearly, during the first and the last
stress-hold periods a strain drift, which might be ascribed to creep is not exis-
tent. Those two stress-hold periods are exemplary for the “elastic” range and
the material behavior therein. What is even more intriguing is the strain devel-
opment during the second and third stress-hold periods, which corresponds to
the already shown experiments. Very large strains are accumulated. While the
strain development in the second period might look like classical creep, featuring
an asymptotic curvature characteristic for primary and steady-state creep, the
strain development in the third period is supposed to be attributed to a dif-
ferent cause, since a primary-like creep is absent. Furthermore, the accelerated
accumulation of strain, which might look like tertiary creep associated with a
self-accelerating softening of the microstructure, does not lead to a damaging
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Figure 6.35: Specimen temperatures as functions of time

of the specimen, which is proven by consecutive tests. Apparently, this behav-
ior, which can be observed on other specimens as well, might be triggered by
comparably large local temperature fluctuations, which is why the different tem-
perature progressions for this test are presented in Figure 6.35. The same scale as
used for Figure 6.30 is utilized. Again, vertical dotted lines mark the stress-hold
periods. Fundamentally, time-dependent temperature alterations in the range
of 1K can be observed during the beginning of the second and during the end
of the third stress-hold period concurrently representing the periods featuring
the largest strain changes. Nevertheless, no such conclusion can be drawn from
the progression of the mean temperature exclusively because the mean temper-
ature is constant during the whole experiment. Furthermore, it is impossible
to deduce, if there are any even larger time dependent temperature alterations
within the specimen, since temperature is measured only at eight distinct lo-
cations. Due to the local character of the temperature measuring and control
scheme, local effects cannot be neglected, which is why different phenomena can
be observed for similar experiment procedures.

Finally, it can be concluded that the findings based on the experiments presented
in Figures 6.28 - 6.35 corroborate the notion that the frequently reported creep
behavior of nearly equiatomic NiTi may be completely ascribed to the strong in-
terrelation between temperature and transformation stress commonly described
by a Clausius-Clapeyron type equation (Ort́ın, J. & Planes, A. (1989)). Even
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though the presented experiments do not represent a direct proof for the absence
of a temperature independent creep due to the existence of local temperature
variations, a stronger lead than the experiments published in the literature is
given concerning the origin of the pseudo-creep behavior.

6.3 Complex loading paths in the tension/compression/torsion
subspace

Even though a high interest to model the material behavior of shape memory
alloys and NiTi in particular is evident, the experimental data, which is used to
fit the material models to, is in most cases associated to simple uniaxial tests or
even simple tension experiments. Albeit in some cases the tension/compression
asymmetry is incorporated, the tension/torsion asymmetry is in most cases com-
pletely neglected. In this regard and in order to allow for the development of
reliable models, which may be used to compute complex structures, it is of
paramount importance to use multidimensional experiments so that material
models can be cross-checked utilizing a high degree of complexity. However, it
is quite cumbersome to find nonproportional, multidimensional data in the lit-
erature. In this connection, a brief survey of some fundamental experimental
works is given in the following. Naturally, this summary is not exhaustive nor it
is meant to be.

Fundamentally, most experimental research in the field of shape memory alloys is
conducted on Cu-based and NiTi shape memory alloys. As to examine the initial
surface of transformation onset, elaborate tests concerning internal pressure and
bi-compression experiments on Cu-based shape memory alloys are published,
for instance, by the research group around Bouvet (Bouvet, C. et al. (2002a,b,
2004)). Different from that, Jacobus, K. et al. (1996); Gall, K. et al. (1997,
1998) concentrate on the influence of the triaxial compression state on the mate-
rial behavior of NiTi, analyzing zero hydrostatic pressure, triaxial compression,
and hydrostatic compression states. Addressing the tension/torsion behavior,
which is of special interest in this work, Šittner, P. et al. (1995, 1996) for exam-
ple show some box and triangle experiments on Cu-based shape memory alloys
in the first axial/torsional stress quadrant. Moreover, the path dependence re-
garding the loading and unloading sequence is studied there. Similar studies
concerning the examination of the path dependence in the first axial/torsional
quadrant, but for NiTi, are presented by Rogueda, C. et al. (1996). Also Im-
beni, V. et al. (2003); McNaney, J.M. et al. (2003) address the combined ten-
sion/torsion behavior for different box tests in the first axial/torsional quadrant
varying the aspect ratios of the respective box shape. Extensive biaxial tests
are performed by Helm, D. (2001); Helm, D. & Haupt, P. (2003) who present
their findings on box and butterfly shaped strain controlled experiments. So
far, the accounted publications regarding tension/torsion experiments focus on
the material behavior in the first axial/torsional stress or strain quadrant. Yet,
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very little has been reported concerning the material behavior in the complete
tension/compression/torsion subspace with Lim, T.J. & McDowell, D.L. (1999)
being among the very few to present experimental data of that kind, namely the
material response to a circular strain path having its center in the origin of the
aforementioned subspace.

On this account, some complex biaxial experiments in all four axial/torsional
quadrants are discussed in the following. Beginning with the material response
to a circular strain path, box and butterfly experiments are shown consecutively.
Regarding the latter two types of experiments, special attention is paid to the
path dependence and loading/unloading sequence. Again, all experiments are
carried out under macroscopically isothermal conditions with a testing tempera-
ture of 27.5◦C. Since it has been shown in Section 6.2 that the material behavior
is independent of the strain rate for constant specimen temperatures, the defor-
mation velocity is chosen to be 10−3 s−1.

6.3.1 Combined circle test spanning all four axial/torsional strain
quadrants

The strain path of the circle experiment is shown in Figure 6.36(a). Arrows
indicate the loading direction. First, the specimen is loaded in simple tension in
order to get from a state of zero strain to the maximum von-Mises equivalent
strain value, which is concomitantly the radius of the circle (r = 1.7%). Due to
the accurate shape of the strain path, it can be stated that the quality of the
strain control is satisfactory.

The second diagram in Figure 6.36, namely 6.36(b), contains the stress data as
the material response to the given strain path. Again, arrows signify the stress
change direction. Here and subsequently, the respective arrows characterize the
same points in time or points of loading referring to different representations
of the material behavior. Hence, each arrow in the stress-stress diagram can be
directly associated to a corresponding arrow in the strain-strain diagram. In this
way, it can be observed that the stress-stress curve is rotated with respect to
the strain-strain curve, since, at particular points, negative axial stresses exist
while the specimen is still positively elongated, see the upper arrows. Besides,
at these points the shear strain increases whereas the shear stress decreases.
This is further substantiated by the respective locations of the circle endpoints.
Naturally, within the strain-strain diagram the endpoint exhibits a zero shear
strain whereas in the stress-stress diagram a shear stress of substantial magnitude
is evident for the corresponding circle endpoint. Similar results concerning a
rotated stress-stress curve with reference to a circular strain control path were
reported by Lim, T.J. & McDowell, D.L. (1999). In anticipation of the later
presented stress-strain diagrams, all this is synonymous with the stress-strain
curves intersecting the strain axes upon unloading at an other position than the
origin. The same can be observed for a classically plastic material behavior.
Finally, upon axial unloading, the shear stress reduces so that, as the origin of
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Figure 6.36: Combined isothermal circle test spanning all axial/torsional quad-
rants; strain-strain and stress-stress diagram
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the strain-strain diagram is reached, the residual shear stress is nearly zero.

Regarding further the stress-stress diagram, the observer’s eye is caught by the
asymmetric shape of the curve with respect to the ordinate. This is obviously
attributed to the well-known tension/compression asymmetry, and will be evi-
dent for all further complex strain paths spanning the complete axial-torsional
subspace.

Figure 6.37 features the stress-strain behavior in axial and torsional direction.
Clearly, at the very beginning, the axial stress-strain curve resembles the simple
tension case, since the first loading is indeed purely tension, as mentioned before.
It can be recognized that, in compression, almost directly after the onset of phase
transformation, the specimen is unloaded again. This transformation region is
significantly smaller than in the tension case. That effect is ascribed to the
tension/compression asymmetry with higher compressive stresses requisite for
the triggering of phase transition and the fact that Young’s modulus is identical
for the two loading directions. However, phase transition does take place even
for the compression part of the strain path. As can be already assessed from
the stress-stress curve, the specimen is still loaded in tension when a zero strain
state is attained upon completion of the experiment.

In Figure 6.37(b), the arrows are omitted as they would be located at the very
small vertical segments of the torsional stress-strain curve and, thus, have limited
informative value. However, it is clear that the chronology of the loading leads
to a clockwise progression of the stress-strain points. As a matter of course, the
onset of phase transformation cannot be spotted as clearly as in the axial case.

6.3.2 Combined box tests spanning all four axial/torsional strain
quadrants

On the following pages, the material response to two different box tests, spanning
the complete tension/compression/torsion subspace, is reviewed. Here, special
attention is turned on the path dependence of the specimen material. For this
reason and in order to investigate the tension/compression asymmetry, the two
strain paths differ in the initial loading direction. For each experiment type, the
complete loading from and unloading to the origin of the strain space is shown.
This is further illustrated by the strain control path depicted in Figure 6.38(a).
The maximum von-Mises equivalent strain is εeq = 1.5%.

Again, the loading direction is indicated by arrows. Moreover, the distinct ex-
periment curves are plotted using different line types. Obviously, the box test
starting in simple tension runs through the box path in counterclockwise direc-
tion. Complementary, the other loading path is clockwise oriented.

Figure 6.38(b) shows the respective stress-stress curves. Again, the rotation of
the curves and the pronounced tension/compression asymmetry is evident for
both experiments. Furthermore, the overall shape of the two distinct curves is
qualitatively similar, which is why the two curves are discussed as a whole.
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Figure 6.37: Combined isothermal circle test spanning all axial/torsional quad-
rants; axial and torsional stress-strain diagram
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Clearly, after loading in torsional direction, a small shear stress dip can be dis-
covered upon unloading in axial direction. This was already discussed in Section
6.2.1.3 for the box test in the first axial/torsional strain-strain quadrant only.
It is absorbing that a similar behavior can be recognized for the complementary
box test and even for the case of a torsional unloading after an axial loading.
Fundamentally, it can be noted that, after the deformation direction is changed,
keeping the strain in the other direction constant, a stress dip followed by a
renewed increase in the stress associated with the constant strain is existent
regardless of the sequence of torsional and axial loading and unloading.

Regarding the stress-strain diagrams in Figure 6.39, a smaller number of arrows
can be remarked. The reason is that the arrows pointing in direction of the
abscissa are left out because of the limited size of the vertical curve segments
and the altering stress change direction there. The reason for the alteration of
the stress change direction lies in the interrelation between axial and torsional
stress. As a rule of thumb, it can be accounted that one stress component
increases as the other one decreases under the condition of one strain component
being held constant. This does not hold true perfectly as the already discussed
stress dips and the rotation of the stress-stress curves exist. Fundamentally,
qualitatively similar progressions referring to the two distinct experiment types
may also be noted for the stress-strain diagrams. The slight difference between
two torsional stress-strain curves might be attributed to effects concerning the
specific microstructure and not to the general material behavior.

6.3.3 Combined butterfly tests spanning all four axial/torsional strain
quadrants

Compared to circle and box tests, the butterfly shaped strain path consti-
tutes a more complex experiment type as it pertains as well proportional as
non-proportional strain path segments, and it traverses several times the axial-
torsional strain space origin. Consequently, the overall loading is repeatedly
reduced to and increased from a state of zero strain.

Again, special focus is on the path dependence of the material behavior with
two distinct strain paths starting in tension and torsion direction, respectively.
Arrows signify the deformation direction. The maximum von-Mises equivalent
strain is chosen to be εeq = 1.5%. Figure 6.40(a) pictures the respective strain
control paths. Evidently, in this case, the very first loading step is a proportional
step with the origin of the strain space being part of the butterfly shape. This is
different from the already discussed biaxial strain paths, namely circle and box,
for which uniaxial loading and unloading steps are used in order to get to the
actual circular or box shape.

At first sight, the stress-stress diagram (Figure 6.40(b)) comprehends two sig-
nificantly different stress-stress curves. Apparently, the difference between the
two experiments is larger than the difference that was noted for the box tests.
Nevertheless, a large part of the discrepancies between the two curves may again
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Figure 6.39: Combined isothermal box tests spanning all axial/torsional quad-
rants; examination of path dependence
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be attributed to the tension/compression asymmetry. Non-proportional strain
path segments are preceded and followed by a proportional loading and unload-
ing step. The enclosed angle between the adjacent stress progression segments is
highly dependent on the tension/compression asymmetry, leading to significantly
smaller angles in the compression half-space at the change of the deformation di-
rection. Consequently, this results in the impression that the stress-stress curves
are highly different.

Contemplating the proportional unloading segments, winding stress-stress pro-
gressions can be observed. These conclusions can be equivalently made for both
experiment types. Basically, angles between the non-proportional and the pro-
portional unloading segments are much larger than in the cases of proportional
loading. Once more, with the shear strain component held constant, i.e., within
the non-proportional segments, the shear stress increases as the absolute value
of the normal stress decreases.

The stress-strain diagrams for the two butterfly tests are depicted in Figure 6.41.
Only three different arrows are plotted in Figure 6.41(b) due to the aforemen-
tioned reasons, see Sections 6.3.1 and 6.3.2. Consequently, as a continuous evo-
lution of the axial strain takes place, all arrows are given in the axial stress-strain
diagram. Concerning this axial stress-strain diagram, it is interesting to see that
almost identical curve segments are revisited in the tension half-space whereas
the corresponding observation cannot be made for the compression half-space,
as an evolution of the stress-strain curve is evident upon a repeated loading in
compression. However, this does not hold true for all tested specimens in general.

6.4 One-way effect under different loading conditions

This section treats the one-way shape memory effect under different loading
conditions. For the sake of completeness, the well-known uniaxial cases of sim-
ple tension and simple torsion are presented first. Subsequently, different com-
plex loading paths in the tension/compression/torsion region are accounted with
the respective unloading being performed as well in the martensitic as in the
austenitic state. In addition to the experiments in this chapter, some further
experiments are given in Appendix B.

Clearly, since a temperature range of nearly 150K14 has to be covered by the
strain measuring device, the temperature effect on the system cannot be ne-
glected for the measurement of axial strain15. Two distinct effects are evident.
On the one hand it is the drift of the zero signal of the inductive displace-
ment transducers as these sensors are permanently exposed to the temperature
changes within the temperature chamber. On the other hand it is the thermal

14This temperature range results from the requirement of thermally inducing phase tran-
sitions between the austenitic and martensitic microstructure and vice versa.

15As the measuring of the relative distortion within the gage length is based on a differen-
tial measuring of distortion, the temperature effect on the determination of torsional strain
can be disregarded.
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Figure 6.41: Combined isothermal butterfly tests spanning all axial/torsional
quadrants; examination of path dependence
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expansion of the transducer holder system, thus, moving the transducer body
relatively to the transducer plunger. On this account, the axial system has to
be temperature calibrated in order to account for the measurement error due to
the thermal effects. Fundamentally, this is realized by performing a complete
temperature cycle between highest and lowest applied temperature. Here, the
measuring device is clamped onto the specimen and the specimen is kept free
of axial stress during the whole calibration run. Using these data, for all subse-
quent experiments, each measured data value is offset-compensated to yield the
calibrated axial strain values. That way, the thermal expansion of the specimen
and the volume change due to a phase transition of the specimen material are
also eliminated for all in the following presented axial strain curves. This has to
be kept in mind when comparing the given experimental data with respective
data in the literature. However, in this manner, the shown strain response of
the material can be directly connected to the shape memory effect.

6.4.1 One-way effect under uniaxial loading conditions

Two different simple uniaxial tests are performed, which are simple tension and
simple torsion. Both experiment types are stress controlled. Loading and un-
loading takes place at a temperature of −30◦C, having the specimen cooled down
below the martensite finish temperature to guarantee an initially martensitic mi-
crostructure for the tests. For the remainder of the experiments, the loading is
controlled so that the specimen is free of axial and torsional stress. After com-
pletion of the unloading process, the specimen is heated up to a temperature
of 60◦C, which is supposed to be well above the austenite finish temperature
Af, see the respective DSC measurements in Figure 6.7. Hence, an austenitic
microstructure is realized. Thereafter, in order to generate a martensitic mi-
crostructure, the specimen is cooled down again to a temperature, which is below
the martensite finish temperature Mf. Here, a temperature of −85◦C is chosen,
refer to Figure 6.7 for an estimation of Mf. Subsequently, the temperature is
raised to the initial temperature (−30◦C) so that a complete temperature cycle
is realized.

6.4.1.1 One-way effect for simple tension

Figure 6.42 shows the coupled stress-strain-temperature behavior for the com-
plete simple tension experiment incorporating the already mentioned sequence
of mechanical and thermal loading and unloading. For the sake of clarity, the
two-dimensional projections on the temperature-strain and stress-strain space of
this diagram are shown in Figures 6.43 and 6.44.

Clearly, a pseudoplastic material behavior can be observed at the initial temper-
ature of −30◦C, since a residual strain in the order of 2% axial strain is evident
on mechanical unloading. In the following, the initially remaining strain is com-
pletely recovered as the specimen is heated up. This process is concluded around
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a specimen temperature of 20◦C, which is in good accord with the DSC measure-
ments, since the first endothermic peak has its finish temperature around that
particular value. In this connection, Tanaka, K. et al. (1999), for instance, report
consistently with the findings in this work that almost all of the residual strain
is recovered after the first endothermic peak on heating. During the further
heating, cooling, and re-heating procedure, the magnitude of the axial strain is
permanently negligible so that any residual strain can also be considered absent
as the starting temperature is reached again. Furthermore, a second phase trans-
formation, as anticipated due to the existence of a second endothermic peak in
the DSC curve, cannot be observed, possibly because of the small magnitude of
strain that is commonly associated with a second phase transformation (Tanaka,
K. et al. (1999)).

6.4.1.2 One-way effect for simple torsion

Analogous to the last paragraph, the simple torsional experiment concerning
the one-way shape memory effect is discussed here. According to the afore-
mentioned succession of mechanical and thermal loading and unloading steps,
the strain response of the specimen material is shown in Figure 6.45 as a func-
tion of the control variables, namely torsional stress and specimen temperature.
Consequently, von-Mises equivalent stress and strain are used again.
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Figures 6.46 and 6.47 present a two-dimensional view at the strain behavior
as a function of the two independent variables torsional stress and specimen
temperature. The qualitative behavior is the same as in the simple tension case.
First, in the martensitic state, a pseudoplastic material response featuring a
residual strain after mechanical unloading can be clearly observed. Upon heating
above a specific limit temperature, the strain is almost completely recovered
without any subsequent change in the state of torsional strain on the further
thermal cycling. Again, the phase transformation, which is associated with the
strain recovery is concluded at 20◦C.
The small remnant torsional strain in the order of 0.1% may be attributed
to the foregoing generation of the martensitic microstructure. The reason is
that, upon transforming into martensite, the specimen material is extremely
sensitive to actually smallest external loads, see Tanaka, K. et al. (1999), so that
even stresses in the order of only a few megapascals are sufficient to trigger the
generation of a small amount of favored martensite variants yielding strains in
the observed magnitude.

6.4.2 One-way effect under complex loading conditions

The focus of the following part is on the strain response of the specimen material
under combined tension/compression/torsion loading in the martensitic state.
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This section is further subdivided with reference to the unloading process and the
respective microstructure of the material. The foregoing generation of martensite
as explained in the preceding paragraph and the initial temperature of −30◦C
are common to all experiments in this section.

6.4.2.1 Unloading in the martensitic state

The subsequently discussed experiment can be considered the logical extrapo-
lation of the uniaxial tension and torsion tests onto the two-dimensional ten-
sion/compression/torsion space. Once more, the mechanical loading and un-
loading takes place at the initial temperature of −30◦C. Hence, the same mi-
crostructure is existent for loading and unloading. Stress control is applied.

As a simple biaxial stress path, a box path in the first axial/torsional stress
quadrant is chosen starting with simple tension. Consecutive to the mechanical
loading/unloading, the specimen is heated, cooled, and re-heated in the same
manner with the same limiting temperatures (60◦C, −85◦C) as in the uniaxial
cases, refer to the previous section (6.4.1) for a detailed discussion on the chosen
temperatures. In this vein, a complete temperature cycle is realized and the mi-
crostructure is rearranged from martensite to austenite and back to martensite.
The respective control path in dependence of all three control variables, namely
temperature, normal stress, and shear stress is given in Figure 6.48.
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Figure 6.49: Pseudoplastic strain response as a function of temperature on the
box stress path in the first axial/torsional stress quadrant

In this and the following diagrams, the loading direction is indicated by arrows
when appropriate. Arrows are omitted wherever the respective curve features a
change of direction for a consistent loading direction or the curve segment is too
small for the applied arrow size. Then again, the arrows signify the same points
in the loading history, irrespective of the specific diagram type. Furthermore,
crosses label the change of the loading direction so that different curve segments
can be doubtlessly ascribed to the different mechanical steps of the experiment.

Figure 6.49 shows the strain response on the stress path pictured in Figure 6.48.
Here, the strain response is given as a function of the temperature. In order to
facilitate the interpretation of the diagram, the two-dimensional projection onto
the normal/shear strain space is plotted additionally in Figure 6.49 and sepa-
rately in Figure 6.50. At the beginning of tensile unloading, normal and shear
strain increase simultaneously, followed by a consecutive decrease and increase
of normal and shear strain, respectively, at the end. Subsequently, upon further
unloading, the strains in both directions diminish resulting in residual strains in
the order of 1.0% and 0.75%. The recovery of the residual strains is obvious
in the last segment of the strain-strain curve. Furthermore, the strain recovery
is also shown as a function of temperature in Figure 6.51. Here, temperature is
plotted against equivalent strain as defined in Footnote 2 on page 29. In this
manner, normal and shear strain are depicted in one single diagram. Clearly,
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Figure 6.51: Strain recovery of the pseudoplastic box test
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Figure 6.52: Stress-strain diagrams for the pseudoplastic box test

the strain curves resemble the uniaxial cases exhibiting S -shaped progressions
and a completion of the strain recovery around 20◦C. Apparently, the strain
recoveries in the distinct directions are independent of one another.

In order to draw a complete picture of the material behavior for the pseudoplastic
box test, the respective stress-strain curves are given in Figure 6.52. Once more,
equivalent measures are utilized. Here, some shortcomings of the analog machine
control are evident. This can be recognized in particular by the inspection of the
torsional stress curve as the stress is not perfectly constant during the stress-
hold periods upon the first loading step and during heating of the specimen.
Especially as the specimen temperature is raised, and phase transition occurs,
the strain rate gets extremely large. This poses a big challenge on the machine
control. Furthermore, on tensile unloading a compressive stress of −5MPa is
reached. This is readjusted after torsional unloading so that the normal stress
vanishes as well. A similar control behavior can be discovered for the following
pseudoplastic experiments, too.

It is noteworthy that the stress progressions are identical during the loading
process. However, it has to be kept in mind that, upon torsional loading, the
specimen is already stressed in axial direction. Moreover, the identity of the
stress-strain curves upon loading cannot be observed in this clarity comparing the
respective stress-strain curves for the uniaxial cases. There, the torsional stress
curve exhibits a steeper slope for larger stress values featuring an identical stress-
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strain behavior only up to stress, strain values of 80MPa, 0.2%, respectively.
Accordingly, the torsional stress-strain slope is reduced due to the distinctly
oriented pre-stressing of the specimen. As a matter of fact, an identity of the
stress-strain curves will not be existent for different values of the normal stress
prior to torsional loading.

6.4.2.2 Unloading in the austenitic state

Different from the presented pseudoplastic experiments, the unloading of the
specimen in this section is carried out as the specimen features an austenitic
microstructure. First, the specimen is loaded at the same initial temperature
(−30◦C). Consecutively, the temperature is raised above 90◦C. Here, the speci-
men is unloaded. The temperature is increased up to a higher temperature than
before in order to account for the stress-induced shift of the transformation tem-
peratures, see for example Tanaka, K. et al. (1999). Ort́ın, J. & Planes, A. (1989)
point out that “temperature and applied stress play equivalent thermodynamic
roles” concerning the process of phase transition, hence, yielding the consequence
that for higher applied stresses higher transformation temperatures are existent.
Two different experiments are discussed both being stress controlled.

Regarding the first of the two experiments, the stress path is identical to the
box path already discussed in Section 6.4.2.1 but with the unloading steps be-
ing performed on the austenitic microstructure, see Figure 6.53 for the control
path. Again, arrows and crosses are used to facilitate the interpretability of the
diagrams when appropriate. From Figure 6.53, it is clear that the unloading is
implemented at a different temperature level than the loading.

Thereupon, Figure 6.54 shows the strain response of the material as a function of
temperature. These data are further processed to yield the two-dimensional pro-
jections in the strain-strain and the temperature-equivalent-strain space, Figures
6.55, 6.56. Clearly, the phase transition is shifted due to the applied stress. In
comparison to the phase transformations without external stresses, refer to the
preceding sections16, the onset of the phase transformation is shifted about 40K,
simultaneously reducing the width of the transformation region to about 30K.
A second phase transformation, which is suggested by the shape of the DSC-
curves, cannot be observed though the highest applied temperature is supposed
to be well above the finish temperature of the second peak. This is corroborated
by the fact that the strain recovery is concluded around a temperature of 50◦C.

Moreover, the temperature range between the completion of loading and the
onset of phase transformation into the parent phase is particularly absorbing.
Here, the strain significantly increases in loading direction. Further research
might be necessary to explain this particular material behavior. Finally, the
stress-strain curves are given in Figure 6.57. Clearly, the unloading is completely

16Beware of the different scales of the temperature strain diagrams resulting from the
different temperature ranges.



6.4. One-way effect under different loading conditions 127

0
50

100
150 0

50
100

150

-80

-40

0

40

80

Θ/◦C

stress path
change in loading direction

σ/MPa τ ′/MPa

Θ/◦C

Figure 6.53: Pseudoplastic control path of an interupted box test
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Figure 6.54: Pseudoplastic strain response as a function of temperature on the
interrupted box stress path
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Figure 6.56: Strain as function of temperature for the interrupted pseudoplastic
box test
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Figure 6.57: Stress-strain diagrams for the interrupted pseudoplastic box test

elastic as the transformation stress at a temperature of 90◦C is substantially
larger than the applied stress.

So far, the pseudoplastic material behavior has been investigated only in the
first axial/torsional stress quadrant of the tension/compression/torsion subspace.
In the following, a third multiaxial experiment is discussed, now, exhibiting a
compressive stress component, see Figure 6.58 for the control path. The loading
and unloading temperatures stay the same (−30◦C, 90◦C) as in the preceding
experiment. Unlike before, after an identical loading process the axial stress is
reduced from tension to a zero axial stress state and increased in compressive
direction up to the same absolute value as in tension before.

Figures 6.59, 6.60, and 6.61 present the strain response of the specimen material
on the accounted control path. While Figure 6.59 represents a three-dimensional
temperature strain diagram featuring all interrelations between temperature,
axial and torsional strain, Figures 6.60 and 6.61 give the two-dimensional pro-
jections into the axial-torsional strain and temperature-equivalent-strain space.
With respect to the shear strain curves, it has to be noted that a small offset
strain is existent due to the foregoing generation of the martensitic microstruc-
ture. It was pointed out before that even small stresses, which are below the
control accuracy of the testing machine, may lead to a slightly larger amount of
preferentially oriented martensite variants in comparison to other variants. This
phenomenon leads to the observed offset strain. However, it is found intriguing
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Figure 6.58: Pseudoplastic control path of an interupted box test with compres-
sion

that the shear strain increases as well for loading in tension direction as for un-
loading and further loading in compression direction. This is accompanied by
an increase of the axial strain upon tension and a subsequent reduction of axial
strain as the tensile load is reduced followed by a compressive loading.
Again, similar to the conclusions for the preceding experiment, the axial strain
component proceeds in loading direction at the beginning of the heating process
directly after the completion of the mechanical loading. This process is reversed
as the phase transformation sets in. By contrast, this effect cannot be observed
for the shear strain. Whether this phenomenon has to be attributed to time
dependent creep-like effects, may be subject to further research.
Figure 6.62 contains the respective stress-strain behavior of the specimen ma-
terial. Consequently, unloading is again completely elastic. The pseudoplastic
material behavior is obvious upon axial unloading and further loading in the
reverse direction.
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Figure 6.59: Pseudoplastic strain response as a function of temperature on the
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Figure 6.61: Strain as function of temperature for the interrupted pseudoplastic
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7 Numerical methods for the parameter
identification

In the context of parameter identification, the concepts of forward and inverse
problems are frequently utilized.

Fundamentally, these concepts characterize on the one hand side the problem of
identifying the output of a given model for a known parameter set and on the
other side the inference of a model parameter set from a given observed data
set. In the following, this concept is further elucidated and specified to fit the
needs of this work.

7.1 Direct problem

If a physical system is to be described, the common scientific practice is to
parametrize the systems. Once this is done, usually, efforts are conducted to
model the system behavior, i.e., to specify the physical laws. In this account,
it is important to mention that the set of parameters consists of observable
and model parameters, which are mutually interrelated. This results in the
fact that for a completely known set of model parameters some of the observable
parameters can be predicted as a result of measurements. This is termed forward
or direct problem, cf. Tarantola, A. (1987) for a detailed insight.

For the special case of thermomechanical material modeling, some observable
parameters are, for instance, deformation and temperature. As the modified RL-
model is considered, the constitutive equations represent a system of ordinary
differential equations and thus, an initial boundary value problem.

As pointed out in Section 5.8, it is quite cumbersome, if not even impossible, to
deduce actual stress and actual strain from measurements on thin-walled tubular
specimens within the presented experimental setup. Accordingly, actual stress
and strain cannot be considered as observable parameters. Moreover, only en-
gineering stress and strain can be inferred from the measured quantities. As
a consequence, if observable parameters shall be used as input of the material
model, the modified RL-model presented in Section 4.2 should be specified for
small deformations. This results in a material model relating engineering stress
and strain. A summary of the fundamental governing equations of this modified
RL-model for small deformations is given in Figure 7.1. Here, the linearized
strain tensor ε and the engineering stress σ are introduced. Furthermore, all
stress quantities, which are denoted by the greek symbol τ in Section 4.2, are
now substituted by the respective small deformational quantities labeled by the

134



7.1. Direct problem 135

Thermoelasticity: σ = C0 :
`
ε− εtr −Θα0

´
Pseudoelasticity: ε̇tr =

η

σ2

“
ξ̇ασ̂σ′ + ξZ(σ) : σ̇

”
Evolution equation: ξ̇α =

1

ρ0
∂kα

∂ξ
− 2ρ0ψit

·
„
η

σ2

ˆ
σ′ : Z(σ) + σ̂σ′˜ : σ̇

+ρ0 (−∆s∗ + (1− 2ξ) s̄0) Θ̇

«
Thermodynamic

force: πf = ση̂ + ρ0π
f
0 (Θ)− ρ0 (1− 2ξ)ψit (Θ)

Criteria for

active processes: A → M : πf > 0 ∧ π̇f
˛̨
ξ
> 0

M → A : πf < 0 ∧ π̇f
˛̨
ξ
< 0

π̇f
˛̨
ξ
=

η

σ2

ˆ
σ′ : Z(σ) + σ̂σ′˜ : σ̇

+ρ0 (−∆s∗ + (1− 2ξ) s̄0) Θ̇

Stress quantities: Z(σ) = σ′ ⊗ σ∗

σ̂
+ σ̂

„
Idev − 2

σ2
σ′ ⊗ σ′

«
σ∗ = b2σ +

„
2

3
− b2

«
tr(σ)1

σ =
√
T2

σ̂ =

r
b2(S2 − S2

1) +
2

3
S2
1

Figure 7.1: Modified RL-model specified for small deformations

symbol σ. Since for the parameter identification only simple uniaxial experi-
ments are to be used, the material model can be further specified. In this regard
a closer look is directed onto the boundary conditions resulting from the exper-
imental setup and the experimental process.

In Section 5.1, it was highlighted that the specimen can be considered thin-walled
resulting in the assumption of constant shear stresses in wall-thickness direction.
Additionally, it is assumed that the tapered specimen section is sufficiently long
as to guarantee the absence of notch and clamping effects within the gage length.
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Figure 7.2: Specification of stress quantities for special load cases

Consequently, for the case of single tensile or torsional forces with respect to the
longitudinal axis, a state of plane stress can be adopted as no external forces
impede a deformation in radial and circumference direction. Hence, the basic
stress quantities can be calculated for the cases of simple tension and simple
torsion, which is shown in compact form in Figure 7.2.

Because of the complexity of the material model, the system of differential equa-
tions eludes any direct analytical integration, which is why time integration has
to be performed numerically. Different procedures, such as single-step and multi-
step, multi-value algorithms, exist, cf. for example Press, W.H. et al. (2001).
According to the considered system of differential equations, only single-step al-
gorithms are of further interest. However, time integration can be realized using
explicit or implicit approaches. A prominent one-parameter class of integration
schemes is according to Simo, J.C. & Hughes, T.J.R. (1998) the generalized
midpoint rule

xn+1 = xn +∆t f(xn+ϑ)

xn+ϑ = ϑxn+1 + (1− ϑ)xn, with ϑ ∈ [0, 1] .
(7.1)

Here, x and f(x) respectively denote the independent variable and function value
at discrete points in time. ∆t represents the time increment. For the limiting
cases of the class parameter ϑ, the well-known Euler integration schemes are
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deduced,

ϑ = 0 ⇒ explicit forward Euler

ϑ = 1 ⇒ implicit backward Euler.
(7.2)

Generally speaking, implicit integration schemes are the method of choice due
to their superior stability behavior, cf. Press, W.H. et al. (2001); Anding, D.K.
(1997). One benefit is that significantly larger step-sizes can be realized without
resulting in convergence problems. Nevertheless, in certain cases, for instance
time critical ones, such as crashworthiness computations, or intrinsically par-
allelized applications, explicit time integration algorithms may prove advanta-
geous.

In this regard some convergence tests were conducted on the implicit and mixed1

implementations of the RL-model coded by Müller, C. (2003). It turned out that
comparable increment sizes are requisite for the implicit as well as the mixed
integration scheme in order to guarantee solutions of equal accuracy. Because
of that, together with the fact that the mixed integration algorithm converges
within one single iteration step2, and because an implicit implementation leads
to highly complex derivatives and equations, a mixed integration scheme is used
for formulating the forward problem.

The so obtained system of nonlinear equations can be solved, for example, by
using Newton’s method, see Section 7.3.1 and Appendix A.

7.2 Inverse problem

Let a physical system be considered, which can be described in part by a math-
ematical model and the corresponding model parameters. The inverse problem
is to derive the “true” model parameters for a given set of observable data, pro-
vided that the model is “correct” itself. Usually, the number of observed data
is higher than the number of model parameters so that Tarantola, A. (1987)
concludes that the inverse problem is as well overdetermined as concomitantly
underdetermined. Overdetermination in this case results from the fact that more
data values are given than needed for the identification of a certain set of model
parameters. Hence, data redundancy exists. While on the one hand overdeter-
mination of model parameters is typically unproblematic, on the other hand an
inherent lack of data is present, which is why the complementary set of model
parameters is kept underdetermined. The reason is that some “observable” data
might not be measurable, or intrinsically different combinations of model pa-
rameters might exist, which lead to similar observable parameters. Yet, another

1The implementation is neither completely implicit nor completely explicit, thus, allowing
for a higher accuracy than purely explicit implementations on the one side and a considerable
speedup in comparison to implicit implementations on the other side.

2Computation time is a paramount parameter for the identification of material parameters
as can be seen in the further sections of this chapter.
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point, which adds to the topic of underdetermination, are the experimental un-
certainties, like those due to measurement errors, for example. Because of the
propagation of errors, the quality of the identified model parameters is thus
deteriorated.

Then, some of the model parameters, being in a state of underdetermination,
leads to the notion of an ill-posed problem, which is used in the context of model
parameter identification synonymously with the term “inverse problem”. Ac-
cording to Hadamard’s definition, a problem is called “ill-posed”, if the solution
is not unique, or if it is not a continuous function of the given data, Tarantola,
A. (1987).

7.2.1 Probability density and lp-norm

As mentioned above, it is impossible to infer a set of discrete model parameters,
which are taken from a continuous model parameter space from uncertain data.
Even the “true” model exhibiting the “true” model parameters will not produce
exactly the observed data. On this account, it has to be dealt with probabilities.
The challenge is to determine a set of model parameters so that the observable
data are the most likely, hence, the likelihood is to be maximized. Consequently,
also model parameters are supposed to be given within error bars. Since the
exact probability density of the parameters is not known, it has to be estimated.
This yields in the notion of error estimators and maximum likelihood estimation
as stated above.

In this regard, the one-parameter generalized Gaussian probability density is
frequently used and can be formulated as follows,

fp(yi) =
p(1−1/p)

2Spi Γ(1/p)
exp

„
−1

p

„
yi − y(xi, ai)

Spi

«p«
, (7.3)

with y(xi, ai), yi, Spi being calculated data values, measured data values, and the
respective estimators of dispersion. Furthermore, xi and ai denote the model
input observable parameters and model parameters while Γ(·) and p are the
Gamma function and the generalized Gauss parameter.

In this context, the weighted lp-norm is of further interest being defined as

||z||p =

NX
i

„ |zi|
di

«p

, (7.4)

with zi indicating the components of z and the weighting factors di.

Now, for specific values of p, the generalized Gaussian leads to

f1(yi) =
1

2S1i

exp

„
−|yi − y(xi, ai)|

S1i

«
, (7.5)
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being the symmetric exponential probability density for p = 1,

f2(yi) =
1√

2πS2i

exp

 
−1

2

„
yi − y(xi, ai)

S2i

«2
!
, (7.6)

being the well-known normal (Gaussian) distribution for p = 2, and

f∞(yi) =

(
1/(2S∞) for y(xi, ai)− S∞ ≤ yi ≤ y(xi, ai) + S∞

0 otherwise,
(7.7)

being the box-car probability density for p = ∞ with the respective estimators
of dispersion, namely the mean deviation S1, standard deviation S2, and mid
range S∞. Moreover, the choice of the probability density type is crucial for the
further estimation of model parameters. Frequently, a normal error distribution
is assumed for measurement and modelization errors, which is motivated by the
fact that the sum of a very large number of small random deviations almost
always converges to a normal distribution, Press, W.H. et al. (2001).
Now, specifying the condition for a maximum likelihood of the observed data
set, the cumulative probability of the measured data has to be maximized, which
leads for the case of a normal distribution to

P ∝ exp

 
−1

2

NX
i=1

„
yi − y(xi, ai)

S2i

«2
!

−→ max. (7.8)

This maximization problem can be further simplified so that for a maximization
of the overall probability P , the following relation has to be minimized,

χ2 :=

NX
i=1

„
yi − y(xi, ai)

S2i

«2

−→ min. (7.9)

This sum is frequently referred to as chi-square whereas the minimization prob-
lem as a whole is called weighted least squares. In terms of the notion of an
lp-norm with the Gauss parameter p, Equation (7.9) represents the weighted
sum of the l2-norm.
For the case of a constant standard deviation with Si

2 = S2, the problem of
weighted least squares collapses to the problem of least squares, which is conse-
quently the minimization of the cumulated l2-norm of the measurement errors,
i.e.,

NX
i=1

(yi − y(xi, ai))
2 −→ min. (7.10)

As this derivation is based on the assumption of normally distributed measure-
ment errors, strictly speaking, normally distributed errors are implicitly sup-
posed for every minimization using least squares. Moreover, it is evident that
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the probability of the mean or mathematical expectation of each measured da-
tum, being the central estimator of the normal distribution, is maximized, cf.
Tarantola, A. (1987).
Nevertheless, in many cases, the normal distribution is a rather poor estimation
of measurement or modelization errors as for a normal distribution the probabil-
ity of the occurrence of very large outliers is null without a significant adjustment
of the standard deviation. The reason is that the variance of a normal distribu-
tion is limited. That is why a small number of outliers is capable of corrupting
the parameter identification on a set of otherwise adequate data.
A significantly more robust type is the Cauchy probability density function as
it features infinite variance,

fc(yi) =
1

πSci

1

1 +
“

yi−y(xi,ai)
Sci

”2 . (7.11)

Additionally, it is also bell-shaped like the normal distribution. However, it does
not lead to a minimization of an lp-norm. By contrast, also more robust than
the normal Gaussian, the symmetric exponential distribution (Equation (7.5))
can be utilized to reduce the inverse problem to a minimization of the l1-norm
leading to the least-absolute-value criterion, Tarantola, A. (1987).
If different types of error are considered, which result, for instance, from rounding
of the last digit of the measurement reading, the box-car distribution associated
with the l∞-norm comes into play, which yields the minmax criterion. Here, the
maximum absolute value of the error is minimized.
Infinitely many error distributions can be imagined leading to a minimization
of an lp-norm. Here, it is emphasized that the higher the order of lp-norm, the
higher is the sensitivity to large errors. In this context and in consideration of
modelization errors, it is always possible, unless known otherwise, to drop the
assumption of a normal error distribution in favor of a different probability den-
sity type. However, keeping the drawbacks of a normal distribution in mind, and
not knowing any better, a first guess might always be the normal distribution.
For an evaluation of the goodness-of-fit of a normal distribution with reference
to the adopted model, the chosen model parameters, and the chosen probability
density type, the weighted least squares can be used as well, Press, W.H. et al.
(2001). Here, the calculated chi-square has to be compared with the chi-square
distribution for N −M degrees of freedom, with N and M respectively being the
number of measured data and model parameters.
As pointed out at the beginning of this section, the respective estimator of dis-
persion of the model parameters is of paramount interest not only for an assumed
normal distribution but also for all probability density types. For complicated
mathematical models, it can be quite cumbersome to calculate this measure, as
such the standard deviations being the main diagonal elements of the covariance
matrix in the case of a normal distribution. Anding, D.K. (1997), for example,
adopts a different path with respect to the propositions made by Press, W.H.
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et al. (2001). Here, once the validity of the error distribution is verified, multiple
sets of “observed” data are Monte Carlo3 generated in the vicinity of the origi-
nally measured data values using the assumed error distribution. Then, utilizing
this vast set of generated data recalculating the model parameters, the standard
deviation of each model parameter is estimated.

7.3 Optimization procedures

As the inverse problem for the identification of material parameters represents
an optimization problem, and several systems of nonlinear equations exist within
this work, which can be reformulated yielding optimization problems, such as
the direct problem pertaining the problem of plane stress and the calculation of
internal variables, attention is drawn to the field of optimization procedures. In
general, optimization problems can be solved analytically and numerically. As
problems get more complicated, typically, there remains no choice anymore as
to what road is to be taken. That together with the fact that computing power
is still increasing abets the application of numerical procedures.
Different types of optimization procedures can be classified utilizing the order
of information needed for the respective calculation. In this regard, the order
of the optimization method complies to the order of derivatives that are incor-
porated within the algorithm. In Vogelsang, H. (2001), a classification of some
well-known optimization methods is carried out, see Table 7.1. Hereof, it is ob-

Procedure Order Information Convergence Effort

Newton 2 f,∇f,∇2f
quasi-Newton 1 f,∇f
conj. gradient 1 f,∇f
Gauss-Seidel 0 f
stochastic 0 f �

Table 7.1: Computation effort and convergence for several optimization proce-
dures according to Vogelsang, H. (2001)

vious that the higher the order of the optimization algorithm, the better is the
convergence rate. Concomitantly, a high order implying high derivatives leads to
a significant raise of the computational costs as the computation of derivatives
is usually very expensive. Sometimes, the calculation of derivatives is not even
possible at all. In this regard, the convergence rate has to be weighed against
the computational costs in order to minimize the overall computation time.
However, the overall convergence behavior is additionally of further interest.
Newton’s method for example converges only locally quadratically, meaning that,

3see Section 7.3 or Press, W.H. et al. (2001); Tarantola, A. (1987) for a description of
Monte Carlo methods
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dependent on the starting values, it is possible that Newton’s method converges
only subquadratically or does not converge at all. Moreover, for multimodal ob-
jective functions, gradient based methods, although more robust than Newton’s
method, cf. Geiger, C. & Kanzow, C. (1999), i.e., a minimum is always found,
converge usually to local minima.

In this connection, iterative optimization procedures can be further subdivided
to give the categories of deterministic and stochastic approaches, Table 7.2.

iterative/numerical analytical

stochastic deterministic

Monte Carlo Newton methods extreme value problem
trial & error gradient based

evolutionary algorithms

Table 7.2: Classification of optimization algorithms

The main difference between stochastic and deterministic approaches is the scope
of information. Fundamentally, deterministic algorithms seek locally for a min-
imum. As long as the objective function is sufficiently smooth or the starting
values are chosen luckily, a deterministic algorithm delivers the global minimum.
By contrast, in case of multimodal or noisy objective functions, deterministic al-
gorithms typically get stuck within local minima as stated before.

Eventually, because of the random component, stochastic methods represent in-
trinsically parallel search algorithms whereas deterministic procedures are based
on an inherently sequential search.

Evolutionary algorithms are specifically intriguing, since, herewith, it is tried
to combine the advantages of both categories of iterative optimization proce-
dures. On the one hand a global search is guaranteed by use of a random search
component while on the other hand, similar to deterministic approaches, the
incorporation of the last ameliorating steps leads to a significant acceleration of
convergence with respect to purely stochastic algorithms. In this regard, it is
dealt with evolutionary algorithms in detail in Section 7.3.3.

However, as deterministic algorithms are very important also for the solution of
optimization problems within this work, Newton’s method and the NEWUOA4

algorithm, explained in detail in Powell, M.J.D. (2004a), are shortly presented
in the next sections.

7.3.1 Newton’s and damped Newton method

The basic problem of an optimization is the minimization problem. Also prob-
lems of maximization can be reformulated to yield minimization problems. Con-

4NEW Unconstrained Optimization Algorithm



7.3. Optimization procedures 143

sequently, for a given objective function

f :


Rn → R
x 7→ f(x)

(7.12)

the problem reads

f(x) −→ min. (7.13)

The idea behind Newton’s method is to approximate the objective function by
the respective second-order Taylor expansion, see Nocedal, J. & Wright, S.J.
(1999),

qk(x) := f(xk) +∇f(xk)
T(x− xk) +

1

2
(x− xk)

T∇2f(xk)(x− xk). (7.14)

Here, ∇f(·) and ∇2f(·) denote the gradient vector and Hessian of the objective
function, xk being the independent variables at iteration step k. Subsequently,
the approximated function qk is minimized instead of the objective function
itself,

qk(x) −→ min. (7.15)

As the calculation of the inverse of the Hessian is usually expensive, the following
system of linear equations is solved for zk,

∇2f(xk)zk = −∇f(xk). (7.16)

As a direct consequence of the minimization of qk, xk+1 can be taken as

xk+1 := xk + zk. (7.17)

But as already mentioned, sometimes Newton’s method does not yield a min-
imum according to the specific objective function. Then, it proves useful in
certain cases to take a different governing equation for xk+1, resulting in the
damped Newton method with

xk+1 := xk + tkzk, (7.18)

which is subject to an additional condition specifying tk. Verfürth, R. (2005) for
example suggests

|f(xk + tkzk)|2 ≤
„
1− tk

2

«
|f(xk)|2 (7.19)

in order to find the adequate damping parameter tk.
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7.3.2 The NEWUOA algorithm

One of the major advantages of the NEWUOA approach is that no derivatives
of the objective function f(x) are needed. The only requirement is that the
function may be calculated for every vector of variables x. Again, the aim is to
find the minimum of the objective function defined in Equation (7.12), i.e.,

f(x) −→ min. (7.20)

Based on m interpolation points, a quadratic model q(x) of the function f(x) is
generated so that the following identity holds for the interpolation points xi

k,

qk(x
i
k) = f(xi

k), i = 1, 2, ... ,m with n+2 ≤ m ≤ 1

2
(n+1)(n+2), (7.21)

and n being the number of independent variables. It is noteworthy that, gener-
ally, the number of interpolation points is well below the number of independent
parameters of the quadratic model, 1

2
(n+1)(n+2). Consequently, there is some

freedom in the independent parameters, which is taken up for the initial model
by setting all undefined elements of the Hessian ∇2q0(x) to zero.
Subsequently, the minimum of the so obtained quadratic approximation of the
objective function can be approximated by means of a trust region subproblem,

qk(x
opt
k + vk) −→ min, subject to |vk| ≤ ∆, (7.22)

with the parameter ∆ characterizing the trust region. Here, xopt
k is defined by

f(xopt
k ) = min{f(xi

k)}, i = 1, 2, ... ,m. (7.23)

If the minimum of f(x) is not satisfactorily approximated, the quadratic model
has to be modified. This is realized by altering one single interpolation point
according to

xt
k+1 := xopt

k + vk, t ∈ {1, 2, ... ,m}, (7.24)

and

xi
k+1 := xi

k, i ∈ {1, 2, ... ,m}\{t}. (7.25)

Analogous to Equation (7.21), the new quadratic model qk+1(x) has to fulfill the
respective interpolation conditions for k + 1. Nevertheless, since fewer interpo-
lation conditions than independent parameters are given, some parameters stay
undefined. On this account, the difference function dk is introduced, i.e.,

dk(x) = qk+1(x)− qk(x). (7.26)

The undefined independent parameters are thereupon determined by minimizing
the Hessian of the Frobenius-norm of the difference function dk(x),

||∇2dk(x)||F −→ min (7.27)
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subject to

dk(x
i
k+1) =

`
f(xt

k+1)− qk(x
t
k+1)

´
δit, i = 1, 2, ... ,m, (7.28)

with δit representing the Kronecker delta. Consequently, dk(x
i
k+1) vanishes for

i 6= t.
For a more detailed introduction of the NEWUOA algorithm the interested
reader is referred to Powell, M.J.D. (2002, 2004a,b) and the references cited
therein.

7.3.3 Evolutionary algorithms

As pointed out in the beginning of Section 7.3, evolutionary algorithms are
conceptually different from strictly deterministic approaches, such as Newton’s
method and the NEWUOA algorithm presented in Sections 7.3.1 and 7.3.2. Fur-
thermore, they are supposed to be better suited to cope with multimodal, noisy,
and rugged shaped objective functions. In this section, a short introduction
to evolutionary algorithms is given in order to clarify the used procedures and
nomenclature.
Nowadays, the term evolutionary algorithms combines three similar but tradi-
tionally and historically separated schools, which are respectively known as evo-
lutionary programming, evolution strategies, and genetic algorithms. According
to Pohlheim, H. (1999), the first works in those fields can be attributed to Fogel,
L.J. et al. (1966); Rechenberg, I. (1973); Holland, J.H. (1975). Although the
differences of those three approaches were highlighted in the past in order to ex-
plain its respective right to exist, now, it is common understanding to emphasize
the similarities, and to profit from each other’s findings.
In this regard, the basic principle of evolutionary algorithms is to mimic and
to adapt successful procedures of nature. In this context, it is important to
distinguish between a one-to-one copy and an adaptation and abstraction of
natural methods, which is the procedure of choice.
Again, as in the preceding sections, the objective is to solve a problem as formu-
lated by Equations (7.12) and (7.13). As the consecutive steps of evolutionary
algorithms can be attributed or compared to natural processes, biological no-
tions are oftentimes used for describing the working principles. In Vogelsang,
H. (2001), for example, a correspondence table is given in reference to a day-to-
day engineering language. There, some fundamental terms are specified that are
frequently used in connection with evolutionary algorithms. A partly amended
version is shown in Table 7.3.

7.3.3.1 Simple evolutionary algorithm

As shown in Figure 7.3, a typical simple evolutionary algorithm comprises three
distinct and evolutionary algorithm specific steps, which are termed selection,
recombination, and mutation in analogy to evolutionary biology. While selection
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gene → single parameter e.g. Young’s modulus
individual → vector of parameters
genotype → general set of distinct parameters

within a parameter vector
population → set of all parameter vectors
generation → population at a specific point in time

habitat → objective function
chance of survival, fitness → value of objective function

Table 7.3: Correspondence table specifying some fundamental terms in reference
to evolutionary algorithms

is used in all evolutionary algorithms, the two latter steps are utilized in varying
degrees, sometimes, even completely left out depending on the specific algorithm.
Moreover, some additional tasks have to be performed one of which is the crucial
assignment of each individual’s fitness.
At the start of each evolutionary optimization, an initial population, being the
first generation, has to be generated. That is, a predefined and throughout
the whole optimization constant number of parameter vectors is created. Here,
the initialization can be performed uniformly at random or with reference to
some chosen parameter vectors, which are supposed to be good starting guesses,
meaning that on the one hand the chosen parameter vectors themselves can
be incorporated into the initial population, or uniformly at random distributed
vectors around the starting guesses can be used. With reference to deterministic
approaches, which use in general a much smaller number of initial parameter
vectors, the starting point for evolutionary algorithms is, hence, much more
diverse.
Subsequently and within each further iteration step, the value of the objective
function has to be calculated for each parameter vector. As soon as all objective
values are known, the goodness of each parameter vector has to be estimated,
i.e., fitness has to be assigned. As is the case for all single steps of the simple
evolutionary algorithm, several approaches exist as how to assign fitness in the
most efficient way. Prominent methods are, for instance, proportional5 and
rank-based fitness assignment. Pohlheim (Pohlheim, H. (1999)) points out that
due to several reasons6, it can be shown that a rank-based fitness assignment
outperforms other fitness assignment approaches.
Once the fitness and the fitness distribution is known, it can be decided, which
parameter vectors should be utilized for the creation of even better parameter
vectors, thus, resulting in a new generation. In analogy to evolutionary biology,

5The fitness of each individual is proportionally assigned with reference to its own objec-
tive value and the objective value of the others.

6Proportional fitness assignment may lead to premature convergence or stagnation.
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Figure 7.3: Structure of the simple evolutionary algorithm according to
Pohlheim, H. (1999)

it is determined, which individuals should become parents, i.e., are used for mat-
ing. This process is known as selection. Consequently, individuals exhibiting a
higher fitness are supposed to be chosen with a higher probability. Nevertheless,
truncation selection, which neglects all individuals that feature a fitness below
a well-defined threshold value is not always the appropriate method. Further-
more, stochastic universal sampling, roulette wheel selection, and tournament
selection might prove advantageous in multiple cases, see Pohlheim, H. (1999)
for a detailed review on this topic.

The actual process of mating and reproduction of offspring is a combination of
recombination and mutation. The former is characterized by an interpolation
or discrete interchange of single parameters between several7 selected parent
parameter vectors.

Following the recombination step, each newly created parameter vector is mu-
tated. In so doing, small statistical fluctuation terms with a zero mean are
added to the parameters. As evident, the variance of the stochastic mutation
is a crucial parameter of the specific evolutionary algorithm as such governing
the coarseness of the search. With reference to deterministic optimization algo-
rithms, which often work with a step-size adaptation, see Geiger, C. & Kanzow,
C. (1999), algorithms for adaptive step-size control can also be incorporated into
evolutionary algorithms, then adapting the mutation variance, see Ostermeier,
A. et al. (1994); Hansen, N. (2005). Albeit possible, Pohlheim, H. (1999) sug-
gests a different methodology, which will be revisited in Section 7.3.3.2. The
main drawback of an adaption of the mutation step is correspondingly the ten-

7Different from biological evolution, the number of parents who are used for mating is
not necessarily two within evolutionary algorithms.
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Figure 7.4: Structure of the extended evolutionary algorithm according to
Pohlheim, H. (1999)

dency to converge to local minima.

As already mentioned, the total size of the population is kept constant. Conse-
quently, due to the generation of offspring, a larger pool of individuals compared
to the fixed population size is existent after recombination. On this account,
only a part of all parameter vectors is reinserted into the new generation. This
leads, for example, to the concepts of elitest or pure reinsertion, cf. Pohlheim, H.
(1999). At this point the new generation has been created and the next iteration
can be conducted.

7.3.3.2 Extended evolutionary algorithm

In contrast to Section 7.3.3.1, now, the constraint that only one single homoge-
neous population may be existent is abandoned. It can be shown that, hereby,
a significant enhancement of the convergence behavior is attained in most cases.
Furthermore, by using this amendment of the simple algorithm, evolution is
modeled in a way that is significantly more similar to biological evolution. The
structure of the extended version of the simple evolutionary algorithm is given
in Figure 7.4.

In the following, the special case of a regional model featuring competition and
migration is accounted. Nevertheless, Figure 7.4 also applies to the general
case of an extended evolutionary algorithm. The interested reader is once more
referred to the excellent monograph by Pohlheim, H. (1999).

The regional model concept is based on the notion of multiple subpopulations.
In the general case, different populations coexist without any interrelation. That
means, different evolutionary algorithms with respect to different feasible oper-
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ators8 can be realized. In so doing, it can be surveyed to what extent different
strategies are appropriate for solving the optimization problem. As this infor-
mation is indeed interesting but does not directly lead to an improvement of
the convergence rate, the concept of competing subpopulations is added. Here,
after each iteration step the success9 of the different populations is compared.
This together with the possibility of individuals leaving and joining specific sub-
populations according to the respective success of the subpopulations, known as
migration, yields a powerful optimization tool. Thus, it is feasible to reallot the
computational resources of the subpopulations. The practical realization is that
the subpopulation size is changing, concomitantly keeping the overall population
size constant. Accordingly, “successful” subpopulations are subject to immigra-
tion processes from less successful subpopulations resulting in a growth of the
respective population size.

In this regard, it is important that the subpopulations are separated from each
other most of the time, and, only occasionally, migration is possible. Further-
more, a lower limit of the subpopulation size is mandatory in order to inhibit
the complete annihilation of a subpopulation.

In this manner, it is possible and highly probable that different subpopulations
are dominant referring to the population size at distinct points in time. The
reason is that, as different operators may be used, distinct strategies prove suc-
cessful at different points in time during the optimization process. A typical
example is the use of different mutation variances. In this vein, one subpopu-
lation seeks after an optimum very coarsely within the search space while the
other performs a very fine search. It is evident that the coarse search will be
more successful in most cases at the beginning of an optimization run while a
finer search will be more promising later on as most parameter vectors are in
the vicinity of the optimum.

In the light of step size adaptation, the regional approach incorporating compe-
tition and migration is considered more robust, since, as a minimum subpopu-
lation size is immanent so that subpopulations are not annihilated, larger step
sizes are more likely even if a subpopulation with a very small mutation variance
is dominant. By this means, the probability of a premature convergence can be
efficiently reduced.

7.3.3.3 Classification of evolutionary algorithms

Generally speaking, the only way to assure the finding of the optimum of a mul-
timodal, rugged shaped, and noisy objective function is to perform a systematic
exploration of the model space. However, this proves impossible due to the ex-
tremely high computational costs for a high-dimensional model space. Because
of this, stochastic methods have been developed.

8fitness assignment, selection, recombination, mutation, reinsertion
9for example the best parameter vector of every subpopulation
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In this section, it is tried to classify the distinct steps of a simple10 evolutionary
algorithm with respect to stochastic and deterministic methods. The same can
be done for general evolutionary algorithms in a straightforward manner.

Starting with the generation of an initial population, it can be stated that the
procedure is very similar to deterministic approaches. As long as “good” solu-
tions of a problem are known, those are used as a first guess. The subsequent
calculation of the objective values for the parameter vectors and the fitness
assignment are as well straightforward and strictly deterministic. Accounting
selection as being the consecutive step within evolutionary algorithms, this step
can also be regarded as deterministic, albeit with some exceptions. In the case of
a truncation selection procedure, the first part of the just mentioned statement
holds true without any restrictions while for the case of different selection meth-
ods, a stochastic component is introduced and the latter restriction is evident.
Nevertheless, a selection of parameter vectors with lower objective values is even
in the other cases more likely and the reason for using a stochastic component
within the selection step is just to guarantee a higher diversity of the solutions.

With respect to the recombination process, it is pointed out that the interchange
or interpolation is also considered mainly deterministic. Indeed, what makes the
family of evolutionary algorithms belong partly to stochastic methods is the
occurrence of mutation. Here, irrespective of the earlier iteration progression,
single parameters of the parameter vectors are altered. As already mentioned
in Section 7.3.3.2, this step is responsible for an ongoing iteration even if local
minima are detected. In general, this holds true for a finite period of time, which,
in particular, can be very long though.

7.4 Implementation and realization

7.4.1 Formulation of the objective function

The main idea behind the applied concept of parameter identification is to reduce
the parameter identification problem to an optimization problem, see Section 7.2.
Consequently, the objective function has to be formulated.

An appropriate measure of the goodness of the fit seems to be naturally the
error between observed and modeled data using an adequate lp-norm, Section
7.2.1. In the case of a continuum mechanics, material model, this leads to the
comparison of measured and computed stress values for distinct strain values.
This means that the objective function value depending on the independent vari-
ables, namely the material parameters, is the accumulated stress error. Hence,
for the computation of each single objective value, the direct problem as shown
in Section 7.1 has to be solved. In this context, it is obvious that an analyt-
ical evaluation of the derivatives of the objective function with respect to the
independent variables is impossible, since only discrete objective values can be

10This specialization is made without loss of generality.
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computed. Furthermore, it turns out that the objective function is multimodal,
noisy, and rugged shaped. These points together with the considerations con-
cerning optimization methods in Section 7.3 and the proceedings in Anding, D.K.
(1997); Vogelsang, H. (2001) lead to the consequence of using an evolutionary
algorithm in order to find the global minimum of the cumulative stress error.
The general realization thereof is presented in the following.
In order to be able to give a stochastically funded estimation of the true pa-
rameters, the same experiments have to be performed repeatedly using different
specimens from one single charge. As several distinct experimental data are used,
different sample points exist in each data set so that it is impossible to directly
compare two sample points belonging to two distinct experiments. Neverthe-
less, a direct comparison between two experiments is actually not necessary on
a point-by-point base. It is rather important to compare the experimentally ob-
served and computed stress values at the same sample points. In this regard, two
imaginable proceedings are either to compute the stress values at the measured
strain values and thus to alter the step size for the computation permanently,
or to interpolate the measured stress values so that a constant step size can be
used for the computation of the model stresses. As the latter procedure is com-
mon practice in the field of parameter identification, see for instance Vogelsang,
H. (2001), and as it can be shown that the former procedure leads to profound
computation problems, the interpolation procedure is chosen within this work.
Consequently, an even noisier and more rugged shape of the objective function
is prevented.
As evident from Section 7.3.3, the estimation of the objective function leading
to the computation of the direct problem (Section 7.1) and thus, the calculation
of the material law has to be performed repeatedly within the optimization run.
Based on the work of Müller, C. (2003) who implemented the RL-model pre-
sented in Section 4.1 using a user subroutine of the commercial finite element
software MSC.Marc11, the modified version of the RL-model according to Sec-
tion 4.2 is realized yielding a modified subroutine. Here, as mentioned before,
the time integration is performed using a mixed Euler scheme resulting in a
system of linear equations, which can be solved efficiently. By this means, the
calculation of the material model, giving the engineering stress and thus, the
applied axial and torsional load ((5.14), (5.15)), is realized at one single Gauss
point in reference to a finite element approach, which was shown to be suffi-
cient in Section 7.1. Recapitulating the just stated, the respective stress state is
evaluated for a given strain state.
As mentioned in Section 7.1, a plane stress state is existent so that the respective
strain state is not known in advance. Hence, the complete stress and strain
state have to be calculated outside but incorporating the actual evaluation of
the material law. This is performed utilizing an iterative approach by means of
an additional damped Newton iteration. Finally, this implementation yields the

11Co. MSC Software Corporation, MSC.Marc, nonlinear finite element analysis (FEA)
program incorporating geometric and material nonlinearities
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stand alone program for calculating the objective value for a given set of material
parameters and experimental data, which is constitutive for the realization of
the evolutionary algorithm.

7.4.2 Implementation of the evolutionary algorithm

The actual evolutionary optimization is implemented using the Genetic and
Evolutionary Algorithms Toolbox (GEATbx) for MATLAB12 by Pohlheim, H.
(2005a,b,c). Herewith, it is possible to realize a vast number of different evolu-
tionary strategies, and to incorporate the different methods presented in Section
7.3.3. Furthermore, the progress of the optimization run is visualized very con-
cisely so that the actual state of the population is known to the user at every
point in time. Since a FORTRAN and C software interface is integrated part of
the MATLAB software, external user subroutines can be directly incorporated
into the MATLAB code. However, precompiled stand alone executable programs
can be utilized even more easily.

7.4.3 Parallelization of the evolutionary algorithm

It was emphasized in Section 7.3 that the downside of stochastic algorithms
is the significantly larger number of calculations with respect to deterministic
approaches. Even though by use of evolutionary algorithms the effective num-
ber of calculations can be efficiently reduced in comparison to purely stochastic
procedures, the computational costs are still noticeably higher than for the de-
terministic algorithms. At this point, the intrinsic parallelism of evolutionary
algorithms comes into play. In this context, parallelism has a double meaning
according to Vogelsang, H. (2001). On the one side it is the parallel structure on
the population level using temporarily separated subpopulations. On the other
hand it is the independence of the calculation of two objective values for two
distinct parameter vectors.

Vogelsang, H. (2001) and Anding, D.K. (1997) showed that a parallelization of
evolutionary algorithms is straightforward and that a significant speedup can
be realized though different proceedings were chosen in the two works. In this
regard, it is essential to know the bottleneck of the sequential implementation. In
most cases, the performance of the objective function realization slows down the
overall computation so that it proves most efficient to perform a parallelization
on this stage of the program. First tests with the sequential version of the
evolution algorithm and the stand alone objective function evaluation application
featuring, for a typical setup, a run-time13 of 1.3 s, will subsequently substantiate
this first estimation. Since the evaluation of the objective function values is

12Co. The MathWorks, Inc., MATLAB, short for MATrix LABoratory, is a numerical
computing environment and programming language written in C.

13CPU, Intel Pentium IV 3.2GHz with 2Gbyte RAM
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anyway inherently parallel, as just mentioned, the program can be parallelized
at that stage without large effort in general.
The actual realization of a parallelized MATLAB code using different computers
is nevertheless quite complicated. In fact, different toolboxes exist for the par-
allelization of MATLAB, such as the Distributed Computing Toolbox by Math-
Works or the Distributed and Parallel Application (DP) toolbox by Pawletta, S.
et al. (2005). But all of them require one single independent MATLAB license
for each computer, cf. for instance Kempner, J. & Travinin, N. (2003); Levy,
S.D. et al. (2005); Pohlheim, H. et al. (1999), which proves extremely expensive.
In this regard, a different custom-tailored approach is used for the parallelization,
which is based on the aforementioned DP toolbox. As this toolbox is funded on
the message-passing system Parallel Virtual Machine (PVM), cf. Geist, A. et al.
(1994) for further details, two layers corresponding to two different abstraction
levels are existent. Pawletta, S. et al. (2005) describe the lower layer as having
an “abstraction level that is too low to meet the productivity requirements of a
‘real’ MATLAB user”. Nevertheless, by a modification of this low layer, special
parallel applications can be realized so that only one single MATLAB license is
needed for the given parameter identification problem.
The parallel system that is used for the computations is based on a Beowulf 14

cluster15. The parallel setup follows the master-slave paradigm, see Figure 7.5
and Geist, A. et al. (1994); Vogelsang, H. (2001).
Here, the server termed master assigns tasks to the nodes, which are called
slaves. An efficient dynamic load balancing can be attained that way so that for

14A cluster consisting of several similar or identical commercial-off-the-shelf (COTS) com-
puters which use as operating system a free and open source software.

15The cluster consists of the server which exhibits an Intel Pentium IV 3.2Ghz CPU and
13 nodes featuring 1 Intel Pentium IV 3.2Ghz, 1 AMD Athlon 2600+, 6 Intel Pentium III
700Mhz, 2 Intel Pentium III 650Mhz, and 3 Intel Pentium III 550Mhz CPUs.
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Figure 7.6: Speedup due to a parallelization of the algorithm

a large number of objective function evaluations and a heterogeneous system, as
given, the overall performance is not slowed down by single slow CPUs.
Vogelsang, H. (2001) estimates in his work the potential speedup for a parallel
setup like the one used here, as follows

tparallel

tserial
=

n
l
tobj +

tobj

2
+ n tadm

n tobj
=

1

l

„
1 +

l

2n
+ l

tadm
tobj

«
≈ 1

l

under the assumptions that

n� l ≥ 1 and tadm � tobj.

Here, n, l, tobj, and tadm respectively represent the number of tasks, the number
of identical nodes, the period of time that is necessary to compute the objective
function value, and the period of time required for administration and communi-
cation purposes. Consequently, an almost linear speedup can be expected under
the given assumptions.
The resulting speedup is surveyed for the implemented parallel evolutionary
algorithm using eight nodes calculating the same objective function value over
and over in order to guarantee comparability. Using the server, the computation
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time of one single objective function evaluation is 0.1 s. The achieved speedup
is shown in Figure 7.6.
Since different CPUs of a similar type are used, the cumulated clock rate is uti-
lized to estimate the overall computing power. It is evident that the computation
time scales almost perfectly linearly with the cumulated computation power of
the single nodes. For more complex computations leading to larger computation
times it proves reasonable to additionally use the master itself for the evaluation
of the objective function values.



8 Determination of material parameters

8.1 Basic considerations

Before the actual parameter identification can be initialized, the admissible do-
main of the material parameters has to be accurately defined. It is of paramount
importance for the computation time to reduce the size of the search space ap-
propriately. Then again, it has to be large enough so that good or optimal
solutions are not excluded. On this account, the meaning of the different mate-
rial parameters is summarized in the following. In this regard, Table 8.1 gives a
brief survey of the different material parameters that are included in the mate-
rial model. Evidently, fifteen distinct material parameters are used. Müller, C.

Symbol Material parameter Measuring unit

E Young’s modulus MPa
ν Poisson’s ratio –
α0 thermal expansion coefficient 1/K
ρ0 density kg/mmm2

cp isobaric specific heat J/kgK

∆u∗ phase specific internal energy difference J/kg
∆s∗ phase specific internal entropy difference J/kgK

ū0 configurational internal energy J/kg
s̄0 configurational internal entropy J/kgK

η amplitude of pseudoelastic strain –
a1 slope parameter forward transformation –
a2 slope parameter reverse transformation –
r1 radius parameter forward transformation –
r2 radius parameter reverse transformation –
b tension/torsion asymmetry parameter –

Table 8.1: Material parameters of the modified RL-model

(2003) takes the values for three of those from Hodgson, D.E. & Brown, J.W.
(2000), namely the thermal expansion coefficient, the isobaric specific heat, and
the mass density. In particular, the values of the former two parameters cannot
be measured by means of the earlier described experimental setup, refer to Chap-

156
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ter 6 for more details thereof. Consequently, these two1 are adopted as reported
by Hodgson, D.E. & Brown, J.W. (2000). By contrast, the assessment of the
material density is straightforward and can be conducted without much effort2.
In this vein, those three material parameters are set prior to the optimization so
that the respective values can be considered constant for the later identification
process. They are shown in Table 8.2.

Parameter Value

α0/1/K 8.8 · 10−6

ρ0/kg/mmm2 6.5 · 10−3

cp/J/kgK 837.36

Table 8.2: Material parameters that are taken from the literature and identified
in advance

As a consequence, only twelve variables are left over whose values are to be
identified by the calculation of the inverse problem. In this connection, it is well
known that Young’s modulus and Poisson’s ratio characterize the apparently
elastic region of the material with Young’s modulus representing the slope of the
tensile stress-strain curve in the elastic region and Poisson’s ratio embodying
the parameter to yield the respective slope upon shear loading3. Furthermore, it
was pointed out in Chapter 4 that the amplitude of pseudoelastic strain or pseu-
doelastic flow, namely η, can be interpreted as the length of the pseudoelastic
stress-strain hysteresis in tension. In this regard, the tension/torsion asymme-
try coefficient b furnishes by means of Equation (4.71) the respective hysteresis
length in torsion or shear. Moreover, this asymmetry coefficient additionally
deforms the shear stress-strain curve with respect to the tension stress-strain
curve as illustrated in Figure 4.14.
As clearly suggested by the respective names, a1, a2, r1, r2 are purely phe-
nomenological parameters adjusting the plateau slopes and the radii between
the end of transformation and the further elastic loading or unloading depend-
ing on the transformation direction.

1In accord with the proceeding in Müller, C. (2003), the arithmetic mean of the thermal
expansion coefficients of austenite and martensite is utilized.

2A graduated beaker filled with water is positioned on a set of scales. Subsequently, a
small NiTi specimen, irrespective of its shape, is put into the beaker. The volume of the
displaced amount of water and the additional weight can be measured directly so that the
density of the specimen material follows from the quotient of the two measurements.

3According to Hooke’s law, the elastic slope for simple shear, namely the shear modulus
G, is given by

G =
E

2(1 + ν)

so that the elastic slope is defined by a combination of Poisson’s ratio and Young’s modulus.
4It was shown that for b = 1 the stress-strain curves in simple tension and simple shear

coincide.
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While the effect of most of the material parameters on the stress-strain diagram
is elucidated by now, the interpretation of the remaining four model parameters,
which govern the transformation process is not as obvious at first sight. In this
connection it is instructive to take a closer look at the driving force as defined
in Equation (4.68), which is to be specified for the onset of the forward and
reverse phase transition. It can be inferred from Equations (4.34) and (4.36)
that the driving force vanishes at the beginning of the phase transformation
with the martensite mass fraction being identical to zero or one referring to the
particular transformation direction. Hence, Equation (4.68) collapses to yield
clear equations for the transformation stresses

σ =
ρ0
η̂

[(ū0 −∆u∗) + (∆s∗ − s̄0)Θ] (forward transformation) (8.1)

σ =− ρ0
η̂

[(ū0 +∆u∗) + (∆s∗ + s̄0)Θ] (reverse transformation) (8.2)

and thus, for the hysteresis height ∆σ and level σ̄ as functions of the four con-
sidered material parameters and the specimen temperature,

∆σ = ρ0
2(ū0 −Θs̄0)

η̂
, (8.3)

σ̄ = −ρ0∆u
∗ −Θ∆s∗

η̂
. (8.4)

Figure 8.1 illustrates schematically these interrelations and delivers a phenomeno-
logical interpretation of the material parameters, which affect the onset of the
transformation process. This figure displays a modified version of a similar
diagram taken from Luig, P. et al. (2006), which addressed the RL-model as
derived by Müller, C. (2003). Here, it is adapted to the modified RL-model
using small deformations5. It follows from Equations (8.3) and (8.4) that at
least two different experiments, which are to be conducted at distinct temper-
atures, are necessary for the definite identification of the four parameters ū0,
s̄0, u

∗, s∗. Moreover, those two experiments must cover the whole hysteresis so
that the microstructure is almost completely martensitic exhibiting a martensite
mass fraction that is approximately equal to one6 at the onset of reverse phase
transformation. Referring to simple tension tests, the transition region between
the phase transformation domain and the elastic/plastic loading of martensite is

5The model itself is formulated in large deformations. Nonetheless, due to the measuring
conditions only small deformation measures can be acquired so that a small deformation
version of the modified RL-model is enforcedly used for the identification of the model pa-
rameters, see Section 7.1 for a more detailed discussion on this topic.

6It is well-known today that the microstructure of the shape memory alloy is not com-
pletely martensitic at the end of the mechanical hysteresis, cf. Brinson, L.C. et al. (2004).
However, it is rather complicated to determine the exact martensite mass fraction, since in-
tricate methods like neutron deflection or synchrotron radiation examinations are mandatory.
Thus, a completely martensitic microstructure is just a first guess until the true microstruc-
ture is measured and can be adopted in the model.
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σ̄ = −ρ0 ∆u∗−Θ∆s∗
η̂

∆σ = ρ0
2(ū0−Θs̄0)

η̂

πf(ξ = 0) = 0

∆ε = η̂

πf(ξ = 1) = 0

ε

σ

Figure 8.1: Phenomenological interpretation of selected material parameters,
utilizing equivalent quantities as defined in Equations (4.49), (4.50)
and specified for small deformations

very distinctive in the stress-strain diagram. On this account, at least two simple
tension tests are used as input data for the identification process. All material
parameters, apart from Poisson’s ratio and the tension/torsion asymmetry co-
efficient, may be identified using these data. As emphasized before, Poisson’s
ratio and the tension/torsion asymmetry coefficient characterize the material
behavior upon shear with respect to simple tension. Consequently, experiments
that feature a shear component, like simple torsion experiments, are to be re-
alized, too. Therefore, two simple torsion tests are additionally performed at
the same distinct temperatures as in the simple tension cases. Altogether, four
experiments at two different temperature levels are conducted. 500 indepen-
dent sample points per experiment are then used for the subsequent parameter
identification.

By means of one set of above stated experiments it is possible to calculate a
rough estimate of the “true” material parameters by hand, which may be used
as initial guess and starting point for the consecutive, numerical optimization
run. Besides, the limits of the search space may be assessed. Consequently, the
search space as depicted in the course of this paragraph might prove suitable
only for the utilized specimen material and heat treatment. Table 8.3 lists the
various domains of the material parameters that are left over for the evolutionary
optimization.

In addition to the search space limits, some other constraints are existent, which
pose restrictions on specific combinations of material parameters. Similar to the
search space limits themselves, these constraints are not imperative for the pa-
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Parameter Domain

E [25000, 47000]
ν [0, 0.35]

∆u∗ [0, 30000]
∆s∗ [0, 100]
ū0 [0, 17000]
s̄0 [0, 50]
η [0, 0.055]
a1 [0, 1.1]
a2 [0, 15]
r1 [0, 10]
r2 [0, 10]
b [0.75, 1]

Table 8.3: Admissible domain of the material parameters for the modified RL-
model

rameter identification but may lead to a much faster convergence rate. Pohlheim,
H. (1999) concludes that every inch of previous knowledge is to be used for the
identification process in order to get the best solution taking the shortest com-
putation time.
Ort́ın, J. & Planes, A. (1989) showed that an interrelation between transforma-
tion start, finish temperatures and the applied external stress exists, which may
be formulated by means of a Clausius-Clapeyron-like equation. In this regard, it
appears fruitful to inspect the governing equation for the driving force, Equation
(4.68), in detail. Under the assumption that the driving force is a function of the
martensite mass fraction only, cf. Equation (4.34), the slopes of the start and
finish lines of the transformation temperatures can be inferred straightforward
as functions of the externally applied stress to yield

dσ

dΘ

˛̨̨̨
Mσ

s

=
dσ

dΘ

˛̨̨̨
Aσ

f

=
ρ0
η̂
(∆s∗ − s̄0) (8.5)

and

dσ

dΘ

˛̨̨̨
Aσ

s

=
dσ

dΘ

˛̨̨̨
Mσ

f

=
ρ0
η̂
(∆s∗ + s̄0). (8.6)

Here, the martensite mass fraction is set to ξ = 0 for Mσ
s and Aσ

f and ξ = 1
for Aσ

s and Mσ
f , see Footnote 6 on page 158 for a discussion on the martensite

mass fraction at the end of the hysteresis. These interrelations are illustrated
in Figure 8.2, taken in an adapted version from Müller, C. (2003) to suit the
modified RL-model. Since only pseudoelastic material behavior is accounted,



8.1. Basic considerations 161
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η̂

(∆s∗ − s̄0)

Figure 8.2: Physical interpretation of selected material parameters

and temperatures below A0
f are beyond the scope of the considered material

model7, those parts of the curves which are below that particular temperature
are denoted by dashed lines, see Müller, C. (2003) for further details.
As known from the literature (Shaw, J.A. & Kyriakides, S. (1995); Tanaka, K.
et al. (1995)), the start lines of forward and reverse transformation as depicted
in Figure 8.2 feature positive slopes. Consequently, Equation (8.5) leads to the
requirement

s̄0 < ∆s∗. (8.7)

Moreover, it may be deduced from experimental data that the austenite start
line proceeds within the pseudoelastic temperature range below the martensite
start line resulting in the fact that the reverse transformation stress exhibits a
lower value than the forward transformation stress. With Equations (8.1) and
(8.2) this constraint reads

s̄0Θ < ū0. (8.8)

Finally, the values of the transformation stresses have to be positive so that,

7Even though it is supposed that the parent phase is mainly R-phase (Section 6.1),
the material behavior might be described very well by the considered material model. The
reason is that the microstructural difference between austenite and R-phase is relatively
small compared to the B19′-microstructure so that the stress-strain curves for B2 → B19′

and R → B19′ look very similar. Naturally, the strong temperature dependence of the
apparent Young’s modulus as reported in Section 6.1.5 is not implemented as this effect is
inexistent for an austenitic microstructure.
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Figure 8.3: Typical simple tension stress-strain progressions measured on three
different spcimens at two distinct temperatures (10◦C, 27.5◦C)

based on Equations (8.1) and (8.2), the following relations have to hold

∆u∗ < (∆s∗ − s̄0)Θ + ū0 (8.9)

∆u∗ < (∆s∗ + s̄0)Θ− ū0. (8.10)

8.1.1 Results of the parameter identification

Seven sets of four experiments each are conducted on seven different specimens.
As mentioned in the last paragraph, two simple tension and two simple torsion
tests at two different temperatures are chosen as parameter identification input
data. The maximum strains are ε = 5% and γ′ = 3.5% with testing temperatures
of 10◦C and 27.5◦C. Each test is strain and temperature controlled so that
macroscopically isothermal conditions are warranted.
Figures 8.3 and 8.4 show a selection of some typical stress-strain progressions of
the conducted experiments. Clearly, for the higher temperature the respective
curves correspond very well while for 10◦C the spreading is significantly larger.
The impact thereof on the parameter identification is discussed later in this
section.



8.1. Basic considerations 163

0

200

400

0 2 4

τ
′ /
M
P
a

γ′/%

Figure 8.4: Typical simple torsion stress-strain progressions measured on three
different spcimens at two distinct temperatures 10◦C, 27.5◦C)

Having started the formulation of the objective function in terms of the l2-norm
and having tested different other lp-norms for the given problem, it emerges that
the assumption of normally distributed errors leads to reasonable optimization
results. Consequently, an objective function based on the l2-norm is used in the
following, see Section 7.4.1 for further details. Referring to computation time,
it was argued in Section 7.4.3 that a considerable speedup of evolutionary algo-
rithms can be achieved by means of a parallelization implemented on a Beowulf
cluster. For the subsequently presented parameter identification, such a cluster
is utilized containing four 3GHz- and eleven 650MHz-class CPUs. The applied
evolutionary algorithm uses a regional model featuring four competing subpop-
ulations with initial subpopulation sizes of 25 individuals. Hence, the overall
population consists of 100 individuals in total. In this context, the concept of
subpopulation migration is implemented exhibiting a minimum subpopulation
size of seven individuals and a migration interval of ten generations. Four distinct
search strategies with varying mutation parameters are realized for the different
subpopulations in order to allow for a coarse as well as a fine examination of the
search space.

Subsequent to the evolutionary parameter identification, the parameter values
are taken as input data for a further optimization by means of the NEWUOA
algorithm, which was briefly sketched in Section 7.3.2. It turns out that an
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appreciable, further improvement of the material parameters cannot be achieved
by the application of this deterministic approach. This might be ascribed to the
rugged shape of the objective function, see Section 7.3.

Normalized
Parameter Mean Standard deviation

standard deviation

E 33194 1051 0.03
ν 0.064 0.04 0.65

∆u∗ 10297 715 0.07
∆s∗ 40.9 2.4 0.06
ū0 1622 571 0.35
s̄0 4.3 2.0 0.46
η 0.0499 0.0016 0.03
a1 0.45 0.03 0.06
a2 0.45 0.23 0.51
r1 0.70 0.16 0.22
r2 0.96 0.23 0.24
b 0.82 0.01 0.01

Table 8.4: Identified material parameters, mean, standard deviation, and nor-
malized standard deviation

Table 8.4 specifies the mean values of the material parameters and the respective
standard deviations. It has to be emphasized that these values are calculated
from the seven optimized material parameter sets. The particular parameter
sets are listed in Appendix C.1. Due to the complexity of the material model
and the applied identification procedure, the individual standard deviations are
not computed separately for each parameter set. Furthermore, the simulation
of synthetic data sets, as proposed in Press, W.H. et al. (2001) and as applied
by Anding, D.K. (1997) in order to corroborate the statistical significance of the
identification, proves impracticable because of the high computational costs8

associated with this procedure.
Even though the number of experimental data is limited to seven sets of experi-
ments due to the high computation, material, and machining costs, the spreading
of the different parameter values is comparably small. However, the amendment
of the experimental database might be subject to further research.
With reference to the standard deviations, some particular material parameters
are to be discussed in more detail. These are ν, ū0, s̄0, a2, r1, r2. In addition
to the standard deviation of Poisson’s ratio the mean value itself is especially
noteworthy, since it is far-off the expected value, which is in the vicinity of 0.33.

8Computation times of 24 hours or longer are typical for the parameter identification on
one single set of experiments in the described manner. Parallelization is already considered
therefor by means of the aforementioned Beowulf cluster.
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The reason for this shift lies in the existence of the R-phase. It is evident (Figures
8.3, 8.4) that such strong temperature dependence of the apparently elastic slope
cannot be observed in the stress-strain diagram upon shear compared to the
normal stress-strain curves. Consequently, as the elastic region is superimposed
with an additional effect, which, apparently, depends strongly on the loading
direction, the original meaning of the elastic parameters is considerably obscured.
Clearly, the shear modulus G is almost constant for the different experiments.
Hence, even relatively small deviations of Young’s modulus lead to extremely
large relative deviations of Poisson’s ratio. The reason is the special relationship
between the shear modulus, Young’s modulus, and Poisson’s ratio.

By contrast, if ū0 and s̄0 are considered, it is instructive to recall Equation (8.4).
Basically, those two material parameters govern the height of the hysteresis. In
this regard, the aforementioned spreading of the stress-strain curves at 10◦C
has to be revisited, cf. Figure 8.3. Since, at low temperatures, the reverse
transformation clearly shows a larger spread than the forward transformation
segment of the stress-strain curves including different levels, slopes, and radii,
the deviation of the respective material parameters, namely ū0, s̄0, a2, r2 is
relatively large, too. Referring to the forward transformation, the reason why r1
exhibits a standard deviation of the same order lies in the different development
of the transition region between phase transformation and elastic/plastic loading
of martensite as illustrated in the stress-strain diagram.

Figures 8.5 and 8.6 contain measured and computed stress-strain curves for
the chosen parameter identification input tests. Here, the experimental data
of one specific set of experiments is shown. Furthermore, material parameters
have been identified using these data both for the RL-model as described by
Müller, C. (2003) and for the modified RL-model as derived in Section 4.2. For
comparison, the calculated material response using the two distinct models and
the just mentioned material parameters is depicted as well. Consequently, the
mean values evaluated from all parameter identifications are not utilized here.
The intention is to illustrate the capacity of each model to predict the material
behavior and to show the differences that result from the models.

First, the simple tension curves are regarded as given in Figure 8.5. Inherent
in the material models, the smooth transition between the apparently elastic
and the phase transformation regions is not modeled. However, the modified
model fits the experimental data better, meaning that stress deviations with
respect to the measurements are smaller. Moreover, the hysteresis height is
predicted more accurately. Notwithstanding the better overall performance of
the modified approach, it is noteworthy that for the higher temperature, namely
27.5◦C, an unnatural, positive slope can be noted. This behavior originates from
the identification process, since experimental data associated with torsion is also
used featuring a positive slope within the transformation region.

In this connection, it is imperative to address the simple torsion curves, which
are plotted in Figure 8.6. Here, the better performance of the modified model is
evident. The reason is that the stress levels of the stress-strain curves in the shear
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Figure 8.5: Computed and measured simple tension tests
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Figure 8.6: Computed and measured simple torsion tests
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space cannot be predicted appropriately by the original RL-model. Although,
the stress-strain curve of the modified approach is not forecast as accurately as in
the simple tension case within the forward transformation region, the RL-model
shows a considerably worse approximation of the material behavior.
Altogether, it has to be stated that the modified RL-model is capable of bet-
ter reproducing the measured stress-strain behavior compared to the original
RL-model. Even though this modified approach features some shortcomings re-
ferring to experiments with reorientation of the microstructure9 it is obvious
that the original model is not better suited for complex experiments, since the
relation between tension and torsion is not modeled accurately. Nonetheless,
for a further improvement of the description of the tension/torsion asymmetry
it proves mandatory to incorporate additionally some asymmetry into the phe-
nomenological material parameters which govern the slopes of the transformation
regions.

8.2 Comparison between calculated and measured data sets

In this section, experimental and calculated data are compared. Only results
from the modified RL-model are presented. Different from the last section,
the experimental data, which is utilized here, is not taken for the parameter
identification. Consequently, it can be evaluated in what extent the material
model can be applied to problems, to which the model is not fitted to. In
this regard, it is noteworthy that only experiments in the first axial/torsional
strain quadrant are chosen because the tension/compression asymmetry is not
modeled. Hence, the calculated stress response in the compression region would
be inherently less accurate than the respective response in the tension region
anyway.
Again, all experiments are performed under strain and temperature control lead-
ing to macroscopically isothermal conditions. The von-Mises equivalent strain
rates are chosen as ε̇eq = 10−4 s−1. First, proportional experiments are pre-
sented, since the Clausius-Duhem inequality is fulfilled a priori in that case,
refer to Section 4.2 for a discussion on this topic. Subsequently, some experi-
ments with reorientation of the microstructure are treated, see also Appendix
C.2.

8.2.1 Proportional experiments

Two distinct proportional tests are considered in the following. For each experi-
ment the maximum von-Mises equivalent strain is chosen as εeqmax

= 3.5%. The
particular experiments are characterized by the ratio between axial and shear
strain, which is defined by

α =
γ′

ε
. (8.11)

9This topic is discussed in detail in Section 8.2.2.
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The two experiments feature proportionality coefficients of α = 0.5 and α = 2.
The strain control paths and the respective stress-stress response are plotted in
Figure 8.7. For clarity, a circle exhibiting a radius of εeqmax

= 3.5% is drawn
in order to exemplify the identical maximum equivalent strains. Obviously, the
material returns to a state of zero stress upon completion of the experiments
whereas the model predicts residual stress components.

However, it can be concluded that the material behavior is predicted considerably
well by the modified RL-model. This is further corroborated by the diagrams in
Figure 8.8. The overall stress levels are in good accord with the measurements
and the shape of the computed curves is mostly consistent with the measured
progressions. As mentioned before, the slope of the forward transformation
segment in the axial stress-strain diagram is slightly overestimated. Besides, for
the case of predominantly tensile loading, the shear stress level is underestimated.
Simultaneously, within the shear stress forward transformation region, the model
predicts decreasing stress values while, in fact, the measured shear stress is still
increasing. The contrary is true for the case of primarily torsional loading. Here,
the normal stress is decreasing for a forward phase transformation whereas a
positive slope is computed using the material model.

8.2.2 Nonproportional experiments

The aim of this section is to assess the applicability of the modified RL-model
with reference to nonproportional experiments. Here, only the box test as dis-
cussed in the context of strain rate dependence in Section 6.2.1.3 is treated. One
further experiment, namely a butterfly test, is presented in Appendix C.2. Nat-
urally, the basic conclusions are identical for the two different cases. The maxi-
mum strains for the box test are ε = 2% and γ′ = 2% starting in simple tension.
Subsequently, special focus is on the development of the entropy production rate,
which is to be non-negative according to the Clausius-Duhem equation (4.29).
However, it was stated in Section 4.2 that for loadcases featuring reorientation
the Clausius-Duhem inequality is not fulfilled a priori. Consequently, the en-
tropy production rate is evaluated and the compliance with the Clausius-Duhem
inequality is inspected after each computation step.

Figure 8.9 shows the strain control path and the stress response of the material.
Crosses indicate the violation of the Clausius-Duhem inequality. Evidently, as
the specimen is loaded above the onset of phase transformation and the loading
direction is changed, the Clausius-Duhem inequality is immediately violated.
This is also the case during unloading in axial direction until a state of zero
normal stress is reached. If the stress-stress curves are regarded, it is especially
intriguing that upon the final torsional unloading the calculated normal stress
proceeds in the wrong direction accumulating compressive stresses. In contrast
to the measurements, residual stresses are still existent when all strains are
completely reduced.

The stress-strain curves are depicted in Figure 8.10. If the final unloading step is
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Figure 8.10: Combined box test, measured and calculated; axial and torsional
stress-strain diagrams
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disregarded, the material behavior is qualitatively well approximated by the ma-
terial model. However, the Clausius-Duhem relation is infringed for the largest
part of the experiment and the final unloading cannot even qualitatively be pre-
dicted accurately. As a concluding remark, it has to be mentioned that as stated
in Section 4.2 the applicability of the modified RL-model has to be restricted to
proportional loadcases only.



9 Conclusions and possible extensions

9.1 Summary

The key issues in this thesis were the identification of model parameters for the
RL- and modified RL-model, respectively, and the examination of multidimen-
sional experiments in order to enlighten the thermomechanical coupling inherent
in the material behavior of polycrystalline NiTi shape memory alloys.

After an introduction comprising the motivation and outline of the present work,
the basic shape memory effects were elucidated on the micro- and macroscale.
Here, just a simplified overview was presented. Thereafter, the focus was on
the establishment of the continuum mechanical and thermodynamic framework
used in this treatise, followed by a presentation and brief deduction of the RL-
model as derived by Müller, C. (2003). Finally, Chapter 4 was concluded by the
introduction of a modification of the afore-discussed RL-model and a survey of
several existing approaches to model the tension/torsion asymmetry.

Addressing the experimental part of this work, the experimental setup was il-
lustrated subsequently. On the one hand, the existing basic configuration was
shown, while on the other, several newly developed devices and novel concepts
were presented. Thereafter, an extensive characterization of the utilized shape
memory alloy was performed. The idea was both to identify some key prop-
erties of the given material and to find an appropriate heat treatment. The
first mechanical main experiments were meant to discover, if the pseudoelas-
tic material behavior is rate dependent. This was viewed apart from possible
temperature effects, which potentially were the result of specific geometries and
heat transfer conditions. On this account, uniaxial and biaxial, macroscopically
isothermal tests were conducted. Moreover, some isothermal uniaxial relax-
ation and creep experiments were performed with time constants in the order
of decades of minutes. In the case of relaxation tests, considerably large strain
rates could be applied for the loading and unloading processes. A second, major
topic of the experiments was the assessment of the biaxial material behavior in
all four axial/shear strain quadrants containing the tension/compression/torsion
subspaces. In this connection, special attention was drawn on the path and di-
rection dependence of the loading and unloading of the specimen. The third
and last part of the material testing dealt with the one-way shape memory ef-
fect. The classical uniaxial tests were conducted first. Consecutively, biaxial
experiments in the first axial/torsional stress quadrant featuring the unload-
ing of the specimen on a martensitic as well as on an austenitic microstructure
were shown. This section was completed by a biaxial experiment in the first
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two axial/torsional quadrants with loading and unloading of the specimen being
performed at different crystallographic microstructures.

The other principal topic, apart from the examination of multidimensional ma-
terial testing, was the identification of material model parameters. In this con-
nection, Chapter 7 gave a brief introduction to the concepts of direct and inverse
problems. Furthermore, the direct formulation was specified to the given problem
in terms of the applied material model. In the course of that chapter, different
numerical optimization procedures were presented with special attention to the
comparison between deterministic and partly stochastic methods. Besides, some
considerations concerning the formulation of the objective function referring to
different probability densities were given. Finally, the implementation of the pa-
rameter identification was exemplified, followed by a discussion of the practical
realization thereof. Subsequently, the material parameters were identified and,
for comparison, the experimental data, which was used for the identification
process, was recalculated using the identified parameters and the given material
models. In the end of that chapter, some multidimensional experimental data
were compared to calculated data utilizing the identified model parameters.

9.2 Conclusions

Referring to the experimental setup, it can be stated that the developed new
strain measuring and temperature control configuration is capable of realizing
macroscopically isothermal conditions as well as biaxial strain states with con-
siderably large specimen distortions. Here, it is important that the strain state
is measured locally at the gage length contrary to the frequently utilized concept
of deducing the strain state from the movement of the crosshead. Furthermore,
the realized temperature control setup is one of the first to guarantee macro-
scopically isothermal conditions for three-dimensional specimens as opposed to
thin wire samples. Due to the active control scheme, even very fast temperature
variations can be compensated.

Resulting from the uniaxial tension and torsion and the biaxial box tests with dif-
ferent strain rates under isothermal and non-isothermal conditions, it is evident
that the considered shape memory alloy does not exhibit any strain rate depen-
dence within the pseudoelastic regime. Moreover, the relaxation experiments
show that the effect of stress relaxation is absent under the applied conditions.
Concerning the creep behavior, it is difficult to draw a final conclusion, never-
theless, strong cues are given, which imply that a potentially noted pseudocreep
behavior may be the result of temperature effects.

The box and butterfly experiments are to the author’s knowledge and apart from
circle tests the first multidimensional experiments on NiTi to cover all four ax-
ial/torsional strain quadrants. In this connection, explanations for the observed
direction dependence of the loading were presented and the tension/compression
asymmetry was assessed. It is inferred that the apparent direction dependence of
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the measurements associated with the two experiment types may be elucidated
by the tension/compression asymmetry.

Some new types of experiments were discussed in connection to pseudoplasticity
and the one-way shape memory effect. The classical behavior is also observed
under combined stress states without any measurable interrelation between the
different loading axes as the specimen temperature is increased. However, some
interesting material behavior can be noticed for biaxially loaded specimens upon
heating, which could not be explained in the course of this work.

Referring to the parameter identification, it has to be concluded that adequate
parameter sets were found. Besides, it is noteworthy that a further improvement
of the identified parameter sets cannot be achieved by means of the applied de-
terministic optimization approach. Additionally, the comparison between the
RL- and the modified RL-model shows that the measured tension/torsion asym-
metry, which can also be deduced from several experimental data published in
the literature, is accurately predicted by the modified approach in opposition
to the original RL-model. Nevertheless, it is left to mention that the modified
approach appears impracticable for the prediction of loading paths incorporating
reorientation of the microstructure by virtue of a violation of the second law of
thermodynamics in form of the Clausius-Duhem relation.

Concluding this treatise, the principal new contributions of this work are con-
cisely highlighted.

• An effective digital temperature control scheme for three-dimensional spec-
imens was implemented on the base of Joule heating, convective cooling
by means of liquid nitrogen, and a temperature measuring by the use of a
set of multiple thermocouples.

• A biaxial strain measuring device capable of measuring strains resulting
from considerably large distortions was developed, which minimizes cross-
talk, and which can readily be used within a large temperature region.

• According to the isothermal and non-isothermal experiments, it was shown
that the material does not exhibit any strain rate dependence for pseudoe-
lasticity.

• Evidence was presented that stress relaxation is absent for pseudoelasticity
under macroscopically isothermal conditions.

• Biaxial tests were performed, which are the first nonproportional tests on
NiTi, apart from circular strain paths, covering all four axial/torsional
strain quadrants.

• Multidimensional experiments on different microstructures were conducted
with reference to pseudoplasticity and the one-way shape memory effect,
which are the first of this kind for NiTi specimens.
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• Model parameters were systematically identified for the RL- and the mod-
ified RL-model followed by a validation of the models utilizing data asso-
ciated with uniaxial and biaxial experiments.

9.3 Outlook

Some fundamentally new experiments and experiment types were performed in
the present work. Besides, the parameter identification was realized in a concise
and stringent way. Nevertheless, the execution of further experiments could
prove fruitful in order to allow for a deeper understanding of the transformation
progress and the point of transformation onset for different thermomechanical
loading conditions.
With reference to the realized parameter identification and the further identifica-
tion of model parameters for other material models, it is mandatory to know the
martensite mass fraction and the proceeding of the martensitic transformation.
On this account, some neutron deflection examinations are to be carried out for
the shown multidimensional experiments. That way, the material modeling is
facilitated, as the onset and progress of the phase transition are of paramount
importance for the calculation of the material response.
Clearly, the effect of reorientation should be incorporated in a continuum me-
chanical material model. At that time, it seems extremely difficult to adapt
the existing RL- or modified RL-model to reorientation processes concomitantly
allowing for a modeling of the axial/shear asymmetry. In this regard, it has to
be assessed to what extent some new considerations are to be integrated in an
amended material model and if the basic structure of the existent model can be
maintained.
Readdressing the presented creep experiments, it is necessary to extend the
experimental database. In this connection, it might be sufficient to perform
uniaxial tests on thin wire samples whose temperature is kept constant by means
of a passive temperature control system as described in Shaw, J.A. & Kyriakides,
S. (1995). However, it appears necessary to utilize a local strain measuring device
in order to prevent the system from any deterioration of the measurement results
as a consequence of the gripping and the sample geometry within the gripping.
Furthermore, the viscous material behavior within the pseudoplastic tempera-
ture regime is of special interest. Some effects, which could be observed on the
experiments concerning the one-way shape memory, may be elucidated thereby.
Due to the same reason, more extensive testing with reference to the one-way
effect in the described manner seems appropriate.



A Implementation of the modified RL-model

In this section, the material model is implemented by recourse to time discretiza-
tion, see Section 7.3.1. The task is to compute the martensite mass fraction and
the stress state for every time step. Consequently, the system of equations has
to be solved with respect to the unknowns x as defined by

xk+1 =

„
σk+1

ξk+1

«
(A.1)

with

xk+1 = xk + zk (A.2)

and
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Basically, zk has to be determined in order to get xk+1. On this account, New-
ton’s method is applied to the following function
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Furthermore, the transformation strain increment is specified from Equation
(4.65)
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rk =
η

σ2
k

σ̂kσ
′
k (A.10)

and

Yk =
η

σ2
k

ξk Zk(σk). (A.11)

zk is inferred as the system of equations,

∇Rzk = −R, (A.12)

is solved. Consequently, ∇R reads
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The missing derivatives collapse to
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the gradient of the function R can be calculated to yield

∇R =

 I+ C0 : (Yn : I) C0 : rn

−wn : I 1

!
. (A.19)

After solving the system of linear equations as presented in Equation (A.12) the
problem can be considered as solved, since the stress state and the martensite
mass fraction are known for the next time step.



B Additional experiments concerning the
one-way effect

This section is meant as an addendum to Section 6.4. Two experiments are con-
sidered which feature different microstructures for loading and unloading. The
tests are conducted under stress and temperature control. Loading is performed
in the martensitic state of the specimen. This is realized by cooling down the
specimen below −85◦C. Afterwards, the specimen is heated up to a temperature
of −30◦C. Common to both experiment types are the first two loading steps.
The experiments are treated consecutively.
The first experiment type is an interrupted box test in the first axial/torsional
stress quadrant. At the beginning of the experiment, the specimen is loaded in
tension followed by a loading in torsion concomitantly keeping the axial stress
constant. The maximum stresses are σ = 127MPa and τ ′ = 127MPa. Subse-
quently, the specimen is heated above 60◦C which is supposed to be below the
R → B2 phase transformation under the considered stress state. As soon as
the specimen is cooled down to 27.5◦C, it is unloaded in the reverse loading or-
der. Similar diagrams to Section 6.4.2.1 are presented in Figures B.1 - B.5. The
most interesting parts of the diagrams are the segments which cover the cooling
from 60◦C and the subsequent unloading. In this region, the temperature de-
pendence of Young’s modulus is evident as the strain is continuously decreased
and increased depending on the direction of the temperature change. Finally,
the strain is almost completely reduced after unloading. The residual strains are
of the same order as for the aforementioned tests and might be neglected. The
reason is that on cooling even smallest stresses are sufficient to trigger strains in
the considered order, see Section 6.4.
The second experiment type which is treated in this section is similar to the
first one concerning the temperature cycle and the respective temperatures for
loading and unloading. The only difference is that the tensile stress is reduced
to zero followed by a loading in compression after the two initial loading steps.
The compressive stress is σ = 127MPa. Axial and shear stress are kept constant
for the subsequent temperature changes. Again, the most interesting parts of
the diagrams in Figures B.6 - B.10 are related to the heating and cooling above
27.5◦C. In this context, it is instructive to compare those curve segments as
shown in Figures B.6 - B.10 and 6.58 - 6.62.
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C Results of the parameter identification

C.1 Identified material parameters

Parameter 1 2 3 4 5 6 7

E 34762 34857 33068 32540 32315 32585 32237
ν 0.157 0.074 0.053 0.066 0.023 0.032 0.039

∆u∗ 10539 9610 11005 9662 11016 9241 11012
∆s∗ 41.8 38.2 43.2 38.9 43.3 37.3 43.4
ū0 1595 2254 1997 847 2012 688 1967
s̄0 4.4 6.6 5.5 1.5 5.4 1.1 5.4
η 0.0518 0.0464 0.0500 0.0514 0.0498 0.0499 0.0504
a1 0.47 0.52 0.43 0.47 0.44 0.43 0.44
a2 0.15 0.19 0.85 0.42 0.69 0.43 0.44
r1 0.85 0.48 0.60 0.87 0.59 0.90 0.61
r2 0.56 0.65 1.14 1.12 1.04 1.14 1.01
b 0.80 0.83 0.81 0.80 0.82 0.82 0.83

Table C.1: Identified material parameters for seven different specimens

C.2 Additional nonproportional experiments and comparison

In addition to the nonproportional box tests presented in Section 8.2.2, two sets
of experimental and calculated data for a butterfly loading path are compared
in this section. Again, strain and temperature control is applied. The von-Mises
equivalent strain rate is continuous ε̇eq = 10−4 s−1. Furthermore, the compliance
with the Clausius-Duhem relation is inspected after each computation step. For
clarity, the violation of the Clausius-Duhem inequality is signified by crosses in
all diagrams. Beyond the violation of the Clausius-Duhem relation a second
problem comes into play as the butterfly test is considered. That is, the missing
convergence of the material model at specific points in the computation process.
Naturally, if the computation is pursued beyond a state of non-convergence, all
further data are deteriorated. In this connection, it has to be pointed out that
the problem of missing convergence depends strongly on the material parameter
set and the computation step size.
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The respective diagrams are shown in Figures C.1 and C.2. As the particular
diagrams are regarded, it is surprising that the measured material behavior is
approximated as accurately albeit all the aforementioned problems.
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ner, M., Eggeler, G., Christ, D., Reese, S., Bogdanski, D., Köller,
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Pohlheim, H. (1999): Evolutionäre Algorithmen: Verfahren, Operatoren und
Hinweise für die Praxis, Springer-Verlag Berlin; Heidelberg; New York 1999.

Pohlheim, H. (2005a): GEATbx Introduction – Evolutionary Algorithms:
Overview, Methods and Operators, version 3.7 , URL http://www.geatbx.

com.

Pohlheim, H. (2005b): GEATbx Options – Parameter Options, version 3.7 ,
URL http://www.geatbx.com.

Pohlheim, H. (2005c): GEATbx Tutorial – Genetic and Evolutionary Algorithm
Toolbox for use with Matlab, Genetic and Evolutionary Algorithm Toolbox for
use with Matlab, version 3.7.

Pohlheim, H., Pawletta, S. & Westphal, A. (1999): Parallel Evolutionary
Optimization under Matlab on standard computing networks, in: Banzhaf,
W. (Ed.): GECCO’99 - Proceedings of the Genetic and Evolutionary Compu-
tation Conference - Workshop program, Kaufmann, M. 1999, pp. 174–176.

Powell, M.J.D. (2002): Least Frobenius norm updating of quadratic models that
satisfy interpolation conditions, Technical Report DAMTP 2002/NA08, De-
partment of Applied Mathematics and Theoretical Physics, Centre for Math-
ematical Sciences, Wilberford Road, Cambridge CB3 0WA, England, 2002.

Powell, M.J.D. (2004a): The NEWUOA software for unconstrained optimiza-
tion without derivatives, Technical Report DAMTP 2004/NA05, Department
of Applied Mathematics and Theoretical Physics, Centre for Mathematical
Sciences, Wilberford Road, Cambridge CB3 0WA, England, 2004a.



Bibliography 199

Powell, M.J.D. (2004b): On the use of quadratic models in unconstrained
minimization without derivatives, in: Optimization Methods & Software, Vol-
ume 19, 3-4, 399–411.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P.
(2001): Numerical Recipes in Fortran 77: The Art of Scientific Computing ,
Volume 1, 2nd Edition, Cambridge University Press 2001.

Qidwai, M.A. & Lagoudas, D.C. (2000): On thermomechanics and trans-
formation surfaces of polycrystalline NiTi shape memory alloy material , in:
International Journal of Plasticity, Volume 16, 1309–1343.

Raniecki, B. & Lexcellent, C. (1998): Thermodynamics of isotropic pseu-
doelasticity in shape memory alloys, in: European Journal of Mechanics,
A/Solids, Volume 17, 2, 185–205.

Raniecki, B., Lexcellent, C. & Tanaka, K. (1992): Thermodynamic models
of pseudoelastic behaviour of shape memory alloys, in: Archives of Mechanics,
Volume 44, 3, 261–284.

Rechenberg, I. (1973): Evolutionsstrategie: Optimierung technischer Sys-
teme nach Prinzipien der biologischen Evolution, Friedrich Frommann Verlag
(Günter Holzboog KG.), Stuttgart-Bad Cannstatt 1973.

Rogueda, C., Lexcellent, C. & Bocher, L. (1996): Experimental study
of pseudoelastic behaviour of a Cu Zn Al polycrystalline shape memory al-
loy under tension-torsion proportional and non-proportional loading tests, in:
Archives of Mechanics, Volume 48, 6, 1025–1045.

Saburi, T. (1998): Ti-Ni shape memory alloys, in: Otsuka, K. & Eayman,
C.M. (Eds.): Shape Memory Materials, Cambridge University Press 1998.

Shaw, J.A. & Kyriakides, S. (1995): Thermomechanical Aspects of NiTi , in:
J. Mech. Phys. Solids, Volume 43, 8, 1243–1281.

Shimizu, K. & Tadaki, T. (1984): Shape Memory Effect: Mechanism, in: Fu-
nakubo, H. (Ed.): Shape Memory Alloys, Gordon and Breach Science Pub-
lishers 1984, Volume 1 of Precision Machinery and Robotics, pp. 1–60.

Simo, J.C. & Hughes, T.J.R. (1998): Computational Inelasticity , Volume 7 of
Interdisciplinary applied mathematics, Springer-Verlag New-York, Inc. 1998.
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