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Zusammenfassung

Das Ziel der vorliegenden Arbeit liegt in der Entwicklung eines dreidimensionalen Finite-
Elemente-Modells zur numerischen Simulation von Versagensformen unter Berticksichti-
gung endlicher Formanderung. Um auch komplexe Versagensvorginge effizient beschrei-
ben zu kénnen, wird ein kohisives Materialmodell verwendet. Hierzu wird eine konsti-
tutive Gleichung betrachtet, welche den Spannungsvektor an einer Flache mit einer Ver-
schiebungsdiskontinuitéit, wie z.B. der Risséffnung, koppelt. Die numerische Implemen-
tierung dieser erweiterten Materialbeschreibung stellt einen wesentlichen Themenkomplex
der vorliegenden Arbeit dar. Im Gegensatz zu bisherigen Modellen erlaubt die vorgeschla-
gene Methode, dass beliebige konstitutive Gleichungen integriert werden kénnen. Auch
die Wahl der Approximationsgiite des stetigen Anteils der Deformationsabbildung unter-
liegt keinen Restriktionen. Um die Qualitdt des numerischen Modells abschétzen und
gegebenenfalls verbessern zu kénnen, wird im zweiten Teil der Arbeit ein neues adaptives
Verfahren entwickelt. Unter der Annahme, das zu analysierende mechanische Problem
sei durch einen variationellen Rahmen charakterisiert, wie z.B. die Minimierung eines
Energiepotenzials, werden so genannte variationelle adaptive Finite-Elemente-Methoden
ausgearbeitet. Diese Verfahren verwenden das zugrundeliegende variationelle KKonzept
sowohl zur Berechnung der Zustandsvariablen und der Deformationsabbildung als auch
zur Verbesserung der Finite-Elemente-Diskretisierung. Die Leistungsfahigkeit dieser Me-
thoden wird anhand zweier Prototypen (r-Adaptivitat und h-Adaptivitit) aufgezeigt und
die Kopplung mit den zuvor beschriebenen kohésiven Modellen skizziert.

Abstract

This thesis is concerned with the development of three-dimensional finite element for-
mulations suitable for the analysis of material failure at finite strains. Focus is on the
simulation of complex failure patterns. For that purpose, a cohesive-type constitutive
model is adopted and further elaborated. More precisely, a traction-separation law con-
necting the stress vector acting at a certain surface to a displacement jump such as a
crack opening displacement is considered. A numerically efficient implementation of this
non-standard model is one of the ultimate goals of the present thesis. The advocated finite
element formulation allows for a broad range of different constitutive models. Further-
more, no restrictions regarding the space of the continuous displacement approximations
are required, i.e., higher-order polynomials can be applied as well. For estimating the
quality of the numerical solution a novel class of adaptive methods is presented in the
second part of the thesis. Assuming the considered mechanical problem is driven by a
variational principle such as energy minimization, so-called variational adaptive finite el-
ement formulations are developed. Within those methods, the state variables and the
deformation mapping as well as an improved discretization are computed from the same
overriding principle. The performance of those variational mesh adaptions is illustrated
by means of two prototypes: variational r-adaptivity and variational h-adaptivity. Fi-
nally, the coupling of cohesive finite element formulations and variational mesh adaption
is briefly discussed.
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Chapter 1

Introduction

1.1 Motivation

The finite element method represents one of the most powerful and versatile tools available
for the numerical analysis of complex engineering structures. In many cases, it provides
the only avenue for ascertaining the physical behavior of a system under investigation.
This approach was originally developed in the field of computational solid mechanics and
continues to be widely used in this context. A typical application is the computation of
the ultimate load of a structure which is a significance design parameter for practical en-
gineering problems. However, commonly adopted procedures for computing this maximal
load are based on rather crude approximations which naturally lead to certain drawbacks.
On the one hand, the design of a structure developed by applying these estimates may
be too conservative resulting in relatively low cost effectiveness. On the other hand, and
even more importantly, the resistance of a structure may be overestimated. It is obvious
that this can lead to disastrous consequences. The aforementioned problems demonstrate
clearly the need of reliable and efficient numerical methods for the analysis of engineering
structures.

The maximal loading of a mechanical system depends either on local material instabilities
such as strain-softening or on global stability problems like buckling. While global effects
can be accounted for by using an exact geometric description of the deformation, the phe-
nomena associated with material instabilities are far less understood. In recent decades,
much effort in the field of computational mechanics has been spent on the efficient and
physically sound modeling of dissipative material behavior. In particular, realistic simula-
tions of the failure of structures resulting from strain-softening represent one of the most
active research areas nowadays. Strain-softening can be interpreted as a local material
instability, characterized by decreasing stresses with increasing strains, which ultimately
leads to the global failure of a system. Concrete is a typical material which shows such
behavior under tensile loading - in this case, softening is related to the formation of

1



2 Chapter 1: Introduction

micro- and macro-cracks in the material. Often strain-softening is accompanied by the
presence of narrow bands exhibiting highly localized deformations. A typical example is
the formation of slip bands in soils. The thickness of these bands is several dimensions
smaller than the characteristic diameter of the respective structure. As a result, such an
effect can be understood as a multi-scale problem. This observation is crucial, since it
implies some consequences for the development of efficient numerical models.

The importance of designing methods for the prediction of strain-softening is obvious,
since classical continuum models are not objective in the presence of those local insta-
bilities. Numerical results obtained by standard constitutive laws in conjunction with
the finite element method thus show pathological mesh dependence. Consequently, the
computed solutions are not meaningful. For this reason, one part of the present thesis
deals with a new model] suitable for the analysis of material failure. This approach fulfills,
among other things, the following properties:

e The deformation is described in a geometrically exact manner.
e The model is fully three-dimensional.

e The results obtained by the model are independent of the finite element triangula-
tion.

e It is multi-scale and accounts for the different length scales associated with the
characteristic diameter of the structure and the thickness of the zones showing
strain-softening.

The first three items ensure the objectivity of the numerical results for fully three-
dimensional problems undergoing large deformations, while the fourth point is, as men-
tioned before, related to the efficiency of the implementation. Obviously, the third con-
dition listed above can only be guaranteed asymptotically. More precisely, the space
of deformations spanned by the finite element formulation must be large enough. One
possible way of achieving this condition is classical (uniform) h-refinement, i. e., a dis-
cretization is generated in which the largest diameter of all finite elements is sufficiently
small. This seemingly simple method shows two different problems. On the one hand,
the term "sufficiently small” depends highly on the physical system under investigation.
Consequently, this length scale cannot be computed a priori. On the other hand, uniform
refinement strategies lead to a large number of finite elements and hence, they result in
huge systems of equations. As a consequence, these approaches are relatively expensive.

As an alternative, an initially coarse triangulation can be locally refined. These models
are referred to as adaptive finite element formulations. In contrast to uniform refine-
ment, adaptive strategies enrich the space of deformations only where it is needed. For
instance, if a notched beam is analyzed numerically, the vicinity of the notch requires finer
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discretization compared to the remaining part of the body. Otherwise stress singularities
cannot be captured adequately.

Nowadays, adaptive finite element methods are relatively well developed in the context of
linearized elasticity theory. However, most physical phenomena require a geometrically
exact description. If a linearized framework is used, the obtained results may be com-
pletely different compared to those predicted by the more exact theory. Unfortunately,
the extension of adaptive methods originally derived for linearized models to the nonlinear
case is by no means straightforward. This is mainly related to the fact that the theory
of convergence is far from understood for nonlinear mechanics. Even the existence of the
solution is often not known. However, the theory of convergence is required for the deriva-
tion of mathematically sound a posteriori error estimates which themselves represent the
fundamentals of rigorous adaptive finite element formulations. The adaptive models for
nonlinear problems which can be found in the literature are based on error indicators.
Although some of them seem to give promising results, they are mostly introduced ad
hoc.

The problems mentioned before point out the need of developing adaptive finite element
formulations which can be applied to problems of nonlinear continuum mechanics. There-
fore, the second part of the present thesis addresses a class of novel mesh adaptions. These
new methods show the following properties:

e The deformation is described in a geometrically exact manner.
e The models are fully three-dimensional.

e Refinement is driven by the same principle which governs the underlying physical
problem.

o It allows for refinement as well as for coarsening.

The first two items summarized above are identical to those fulfilled by the class of
cohesive finite elements presented in this work. This is necessary to be able to couple
both approaches. The canonical structure of the novel mesh adaptions is highlighted in
the third point. More precisely, an error indicator is developed which guarantees a priori
that the adaptively improved mesh leads to a better approximation of the underlying
physical principle than the initial triangulation.

In many cases, the optimal mesh depends on the loading stage. For example, if crack
propagation is analyzed numerically, the discretization in the vicinity of the crack tip has
to be sufficiently fine. However, the position of this region changes due to crack growth.
Hence, previously refined domains should be coarsened, while the vicinity of the new crack
tip should be refined. Consequently, refinement has to be coupled with a de-refinement
strategy.
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1.2 State of the art review

As already mentioned, the first part of the present work is concerned with the development
of a new class of finite elements suitable for the analysis of material failure resulting from
strain-softening. Therefore, a state of the art review of such numerical approaches is given
first. Since the number of different models is very large, attention is restricted to a special
subset into which the newly proposed finite element formulation falls. Subsequently, a
motivation for coupling those models with adaptive finite element methods is given and
a state of the art review on mesh adaptions is addressed.

Nowadays, it is well known that numerical analyses based on standard (local) continuum
models show a pathological mesh-dependence (see [DE BORST 1986]), if they are applied
to the simulation of problems involving strain-localization. This is strongly related to the,
by now classical, results on localization phenomena as studied for instance in [HADAMARD
1903; HiLL 1958; THoMAS 1961; MANDEL 1966; RuDNICKI & RICE 1975]. In
these works, the authors studied the transition of a smooth deformation field into one
exhibiting weak discontinuities (the deformation field belongs to C/C!). In the static
case, this transition is associated with the loss of ellipticity of the governing equations,
see [MARSDEN & HUGHES 1994]. As a result, the respective Boundary Value Problem
(BVP) is not well-posed anymore leading to non-uniqueness of the solution.

Unfortunately, the mesh-dependence corresponding to standard (local) continuum mod-
els as shown in [DE BORST 1986; DE BORST 2001] is not the only problem when
dealing with problems involving strain-softening. As mentioned earlier, the width of
the zones exhibiting localized deformations is often several orders of magnitude smaller
than the characteristic diameter of the structure considered. Thus, the application of
enhanced continuum models, such as non-local theories [P1IAUDIER-CABOT & BAZANT
1987; BaZANT & PLJIAUDIER-CABOT 1988] or gradient enhanced models [MUHLHAUS
& AIFANTIS 1991; DE BORST & MUHLHAUS 1992] (which involve a length scale re-
lated to the failure process) to the numerical analysis of a structural component requires
a sufficiently fine resolution of the localization zone; the computational cost of which may
be prohibitive.

According to [BELYTSCHKO, FiSH & ENGELMANN 1988], an efficient approach suitable
for the analysis of large-scale engineering structures should not only avoid the mesh depen-
dence of the results computed numerically, but also account for the described multi-scale
character of the underlying physical problem. Most approaches complying with both re-
strictions are based on the incorporation of the kinematics associated with the small-scale
(the softening zone) into a large-scale macroscopic material model, cf. [SiMO, OLIVER
& ARMERO 1993; GARIKIPATI & HUGHES 1998; ARMERO 1999; Moks, DoLBow
& BELYTSCHKO 1999; ORTIZ & REPETTO 1999; CARSTENSEN, HACKL & MIELKE
2002; MIEHE & LAMBRECHT 2003]. In these works, small-scale kinematics are captured
either by an enriched displacement field or a strain field.
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One class of models fulfilling the conditions of [BELYTSCHKO, FISH & ENGELMANN
1988] is represented by approaches based on strong discontinuities (jumps in the defor-
mation field), see [NEEDLEMAN 1990; DVORKIN, CUITINO & GIOIA 1990; KLISINSKI,
RUNESSON & STURE 1991; Smmo, OLIVER & ARMERO 1993; CAMACHO & ORTIZ
1996; ORTIZ & PANDOLFI 1999; MOES, DoLBOwW & BELYTSCHKO 1999; SUKUMAR,
Moks, MORAN & BELYTSCHKO 2000]. These approaches can be understood as an ex-
tension of the cohesive zone models advocated in [DUGDALE 1960; BARENBLATT 1962]
and further elaborated by [HILLERBORG, MODEER & PETERSSON 1976 who proposed
the Fictitious Crack Model. In contrast to classical continuum theories, these models are
based on cohesive laws connecting the traction vector with the displacement discontinu-
ity. For example in [HILLERBORG, MODEER & PETERSSON 1976), the authors analyzed
cracking in brittle materials and postulated the normal vector of the stress vector acting
at the considered micro-crack to be a function of the crack-opening displacement.

The approaches using kinematics induced by strong discontinuities can be subdivided into
two classes. The models which were proposed first fall into the range of interface elements,
cf. [NEEDLEMAN 1990; CAMACHO & ORTIZ 1996; ORTIZ & PANDOLFI 1999]. That
is, a jump in the deformation field is allowed to occur only at the boundary between
neighboring elements. Within the second class of methods, the discontinuity can evolve
arbitrarily. More precisely, displacement jumps are even accounted for in the interior
of finite elements, see [DVORKIN, CUITINO & GIo1A 1990; KLISINSKI, RUNESSON &
STURE 1991; SiMo, OLIVER & ARMERO 1993; MokEs, DoLBow & BELYTSCHKO
1999; SUKUMAR, MoiEs, MORAN & BELYTSCHKO 2000]. A further classification is
possible, if the way of modeling the discontinuity is used as a criterion. In the numerical
models [DVORKIN, CUITINO & GIolA 1990; KLisINSKI, RUNESSON & STURE 1991;
SiMoO, OLIVER & ARMERO 1993], the displacement jump is approximated element-wise.
Continuity of the field of the discontinuities is not guaranteed at the element boundaries.
These implementations are often referred to as Strong Discontinuity Approaches (SDA).
Since the work of [S1MO, OLIVER & ARMERO 1993], most of the SDAs are based on the
Enhanced Assumed Strain (EAS) concept, cf. [SiMO & RiFal 1990; SIMO & ARMERO
1992, i. e., the jump in the displacement field is not modeled directly. Instead, only
the resulting strain field is taken into account. The other class of approaches accounting
for discontinuities within finite elements is represented by the so-called eXtended Finite
Element Method (X-FEM) or Partition of Unity Finite Element Method (PU-FEM), cf.
[Mogs, DoLBow & BELYTSCHKO 1999; SUKUMAR, MOES, MORAN & BELYTSCHKO
2000]. As implied by the second name of this procedure, it is based on the Partition
of Unity concept as introduced by [BABUSKA & MELENK 1996; BABUSKA & MELENK
1997]. Conceptually speaking, a given deformation approximation is locally enriched by
functions showing a compact support. In contrast to the SDA, the displacement field
itself is modified resulting in a continuous interpolation of the deformation jumps across
element boundaries.
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At present, many discussions on the advantages and drawbacks associated with each of the
just described cohesive finite element approaches can be found in the scientific literature,
cf. [JIRASEK 2000; JIRASEK & BELYTSCHKO 2002; MOSLER & MESCHKE 2004;
DUMSTORFF, MOSLER & MESCHKE 2003; OLIVER, HUESPE, PULIDO & SAMANIEGO
2005]. From the discussions contained in these works, it follows that none of the cohesive
element strategies published so far can be considered to be fully superior to the others.
For instance, the possibility of modeling a crack arbitrarily crossing a finite element as
allowed by using the SDA or the X-FEM sounds very promising. But this implies that the
topology of the singular surface characterizing a crack or a shear band has to be stored,
e. g. by using level sets cf. [STOLARSKA, CHOPP, MOES & BELYTSCHKO 2001). Clearly,
even in the three-dimensional case, this does not represent a problem, if only few cracks
are modeled. However, if complex crack patterns such as branching and intersecting
cracks are to be simulated, the numerical costs are prohibitive. As a result, the SDA as
well as the X-FEM have not been applied to such problems so far.

On the other hand, interface elements allow for computing complex crack paths and their
implementation is relatively straightforward, see [ORTIZ & PANDOLFI 1999; PANDOLFI,
KRyYSL & ORTIZ 1999; PANDOLFI, KRYSL & ORTIZ 1999; CIRAK, ORTIZ & PANDOLFI
2005). However, approximating the topology of a hyperplane by the facets of the finite
elements contained in the respective discretization can lead to an overestimation of the
dissipation, see [PAPOULIA, VAVAsIS & GANGULY 2005]. More precisely, if a standard
triangulation is considered and no adaptive techniques are applied, the area of the numer-
ically computed crack surface cannot converge to the one corresponding to the analytical
solution in general. Based on this observation [PAPOULIA, VAVASIS & GANGULY 2005]
recently proposed to use so-called pinwheel-based discretizations, cf. [RADIN & SADUN
1996; GANGULY, VAvasis & PAPOULIA 2005]. The interesting characteristic of those
two-dimensional triangulations is the isoperimetric property. This property means that
the length of the shortest path between two points (P and Q) that uses only edges of
the finite element mesh converges to the length of the EUCLIDIAN distance from P to Q.
Consequently, the space of admissible crack paths spanned by the discretization is rich
enough to guarantee convergence. Evidently, this property is not fulfilled for standard
meshes. Although the results reported in [PAPOULIA, VAVASIS & GANGULY 2005] seem
to be very promising, it should be pointed out that the proofs in [RADIN & SADUN 1996
are restricted to two-dimensional problems. Furthermore, even for plane triangulations,
the rate of convergence is not known. Hence, the results are only asymptotical in nature
and their extension to three dimensions is not straightforward.

As pointed out in the previous paragraphs, none of the cohesive element concepts is
completely superior to the others. In the present work, a model which falls into the class
of SDAs is advocated. In contrast to the interface elements and the X-FEM, the strong
discontinuities are modeled element-wise, i. e., in an incompatible manner. By this means,
the implementation is, conceptually speaking, restricted to the element level. Thus, in
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contrast to X-FEM, the algorithmic formulation is not very expensive, cf. [OLIVER,
HUESPE, PULIDO & SAMANIEGO 2005). However, it should be noted that enforcing crack
path continuity induces a nonlocal effect. More precisely, information of the neighboring
elements are required, cf. [OLIVER 1996; OLIVER, HUESPE, SAMANIEGO & CHAVES
2002].

The Strong Discontinuity Approach (SDA) in its modern form has been advocated by
[SiMO, OLIVER & ARMERO 1993; SiMO & OLIVER 1994]. Nowadays, the geomet-
rically linearized SDA is relatively well developed. For a review article see [MOSLER
2004]. Most of the finite element formulations which are in line with [SitMo, OLIVER
& ARMERO 1993] are based on the implementation known from the underlying EAS
concept. More precisely, the additional degrees of freedom associated with the discon-
tinuous deformation mapping are condensed out by employing the static condensation
technique, see, e. g. References [SIMO & OLIVER 1994; OLIVER 1996; ARMERO &
GARIKIPATI 1996; LARRSON & RUNESSON 1996; ARMERO 1999; WELLS & SLUYS
2001c; JIRASEK & ZIMMERMANN 2001]. Alternatively, [BORJA 2000; MOSLER &
MESCHKE 2000; MOSLER & MESCHKE 2001] proposed an algorithm avoiding the use
of the static condensation technique. In contrast to the classical EAS concept according to
[SiMO & RiFAl 1990; SiMO & ARMERO 1992|, the L,-orthogonality condition between
the stresses and the enhanced strain variations is not computed simultaneously with the
weak form of equilibrium. Instead, a staggered solution scheme is applied. It turns out
that the Lo-orthogonality condition can be interpreted as a consistency conditions known
from classical plasticity theory formulated in stress-space. This observation is crucial,
since on the one hand, it opens up the the possibility of applying efficient integration
algorithms originally designed for standard (continuous deformations) continuum mod-
els to cohesive finite element formulations, cf. [MOSLER & MESCHKE 2003; MOSLER
2005E]. On the other hand, the implementation as proposed in [BORJA 2000; MOSLER
& MESCHKE 2000; MOSLER & MESCHKE 2001] can be regarded as the continuation of
the work done by [SiMO, OLIVER & ARMERO 1993]. More specifically, the analogy as
well as the link between material models for continuous deformations and interface laws
such as traction-separation relations has been highlighted and extended to their numerical
implementation.

According to [MOSLER 2004], the equivalence between SDAs based on the static con-
densation and models falling into the algorithmic framework advocated in [BORJA 2000;
MOSLER & MESCHKE 2000; MOSLER & MESCHKE 2001] holds only for finite elements
using a constant approximation of the strains. For higher order elements, both approaches
lead to different results. Furthermore, and even more importantly, if the degrees of free-
dom corresponding to the discontinuous deformation field are already condensed out at
the material point level, crack path continuity cannot be enforced for higher order ele-
ments. However, this is essential for computations being almost independent with respect
to the mesh bias, cf. [JIRASEK & ZIMMERMANN 2001; OLIVER, HUESPE, SAMANIEGO
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& CHAVES 2002; FEIST & HOFSTETTER 2005]. Without enforcing continuity of the
crack surface, the results obtained from SDAs are almost identical to those predicted by
smeared crack models, see [MOSLER & MESCHKE 2004]. That is, they show a depen-
dence with respect to the given mesh bias. For this reason, a novel SDA was proposed
in [MOSLER 2005B|. In this work, the L,-orthogonality condition is re-written such
that it is formally identical to the necessary condition for yielding known from standard
plasticity theories. For higher order elements, this equation is formulated in terms of an
average stress tensor. It can be shown that the resulting finite element formulation is fully
equivalent to the one used in most SDAs, e. g. [SiMO & OLIVER 1994; OLIVER 1996;
ARMERO & GARIKIPATI 1996; LARRSON & RUNESSON 1996; ARMERO 1999; WELLS
& Sruys 2001C; JIRASEK & ZIMMERMANN 2001]. However, the numerical implemen-
tation differs. Analogous to the previous works [BORJA 2000; MOSLER & MESCHKE
2000; MOSLER & MESCHKE 2001], subroutines developed for classical plasticity theory
(continuous deformation) are applied to the integration of the internal variables. More
precisely, a return-mapping algorithm is adopted. In summary, the SDA as suggested in
[MoOsSLER 2005B] combines the advantages of the finite element models [BOrRJA 2000;
MOSLER & MESCHKE 2000; MOSLER 2002; MOSLER & MESCHKE 2004] by leaving
the original model itself (see [SIMO & OLIVER 1994; OLIVER 1996]) unaffected. As a
consequence, it is possible to enforce crack path continuity.

It is well known that geometrical nonlinearities affect considerably the process of strain
localization. More precisely, finite deformation effects do not only influence the time of
bifurcation of a homogeneously distributed strain field into a highly localized one, but
also the corresponding failure mode, cf. [STEINMANN, LARSSON & RUNESSON 1997].
Additionally, in many engineering applications, the response of the considered structure
depends crucially on geometrical nonlinearities such as buckling. For instance, energy ab-
sorption in composite materials cannot be modeled adequately with linearized kinematics,
cf. [JANSSON 2002]. Thus, neglecting finite deformation effects can lead to an overesti-
mation of the ultimate load of the structural component analyzed. For this reason, the
extension of the linearized kinematics of the SDA to finite strains was given by [ARMERO
& GARIKIPATI 1996; GARIKIPATI 1996]. In these references, the authors proposed a
SCHMID-type traction-separation law connecting the relative shear sliding displacement
to the tangential component of the traction vector acting at the surface of strong dis-
continuities. The finite element model presented in the cited works was restricted to the
two-dimensional case and based on a solution strategy almost identical to the one used
for the geometrically linearized theory. More precisely, the standard implementation of
the EAS concept was adopted, cf. [SIMO & ARMERO 1992; SIMO, ARMERO & TAYLOR
1993]. In contrast to [ARMERO & GARIKIPATI 1996; GARIKIPATI 1996], some authors
approximate the displacement discontinuity by means of a ramp function. This leads
to regularized strong discontinuities, cf. [LARSSON, STEINMANN & RUNESSON 1998;
STEINMANN & BETSCH 2000; LARSSON & JANSSON 2002; OLIVER, HUESPE, PULIDO
& SAMANIEGO 2003]. Since in this case, the deformation gradient is still bounded (in the
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sense of the operator norm), standard continuum models can be applied. However, this
approximation will not be considered throughout the rest of the present thesis. The ideas
presented by [ARMERO & GARIKIPATI 1996; GARIKIPATI 1996] were further elaborated
in [ARMERO 1999] in which the authors proposed a framework to embed a localized dissi-
pative mechanism, i. e., a traction-separation law, into a large-scale problem (continuous
deformation). By assuming the postulate of maximum dissipation, ARMERO derived the
evolution laws of the model. Restricting to linearized kinematics, a similar concept has
been presented in [MIEHE & SCHRODER 1994; OHLSSON & OLOFsSSON 1997]. This
concept is very appealing, since it allows the development of cohesive laws which are
completely decoupled from the bulk material. For instance, [BORJA 2002] argues that
the constitutive response associated with the continuous deformation would not be nec-
essarily identical to that of the post-localization regime. His argumentation is based on
the constitutive response of rocks.

The implementations of the geometrically exact SDA-based finite element formulations,
which have been cited so far, are almost identical to those of the EAS concept. That
is, the degrees of freedom characterizing the continuous, i. e., conforming, displacement
field and those associated with the displacement jump are computed simultaneously from
the weak form of equilibrium and the Lj-orthogonality condition, cf. [ARMERO & Ga-
RIKIPATI 1996; ARMERO 1999; LARSSON, STEINMANN & RUNESSON 1998; STEIN-
MANN & BETSCH 2000; LARSSON & JANSSON 2002; OLIVER, HUESPE, PULIDO &
SAMANIEGO 2003; GASSER & HOLZAPFEL 2003; CALLARI & ARMERO 2004]. The
resulting stiffness matrix is computed by applying the static condensation technique. As
an alternative, [BORJA 2002] proposed a SDA completely avoiding this technique. His
model is a continuation of the ideas previously advocated for infinitesimal deformations,
cf. [BORJA 2000; MOSLER & MESCHKE 2000; MOSLER & MESCHKE 2001]. In con-
trast to [ARMERO & GARIKIPATI 1996; ARMERO 1999; LARSSON, STEINMANN &
RUNESSON 1998; STEINMANN & BETSCH 2000; LARSSON & JANSSON 2002; OLIVER,
HuesPE, PuLIDO & SAMANIEGO 2003; GASSER & HOLZAPFEL 2003; CALLARI &
ARMERO 2004], BORJA followed the implementations in [BORJA 2000; MOSLER &
MESCHKE 2000; MOSLER & MESCHKE 2001] and eliminated the additional degrees of
freedom corresponding to the displacement jump on the material point level. The rate of
the amplitude of the displacement jump was interpreted as a plastic multiplier. As men-
tioned earlier, this strategy shows the advantages that analogies with standard continuum
theories can be observed leading to a better understanding of the model and standard
integration algorithms such as the return-mapping algorithin can be applied.

Unfortunately, the numerical implementation in [BORJA 2002] has several limitations
and has to be understood rather more as a prototype. It has been designed specifically
for constant strain triangle elements and for the modeling of slip bands. The extensions
necessary for higher order elements, three-dimensional problems or more complex traction-
separation laws have not been discussed. However, they are crucial whenever engineering
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problems are to be analyzed numerically in a realistic manner. To the best knowledge
of the author, with the exception of the work [GASSER & HOLZAPFEL 2003] which is
based on a specific damage-type traction-separation law and the static condensation tech-
nique, only two-dimensional geometrically exact SDAs can be found in the literature, cf.
[ARMERO & GARIKIPATI 1996; ARMERO 1999; LARSSON, STEINMANN & RUNESSON
1998; STEINMANN & BETSCH 2000; LARSSON & JANSSON 2002; OLIVER, HUESPE,
PULIDO & SAMANIEGO 2003; CALLARI & ARMERO 2004).

The ideas presented in [MOSLER 2005B| were generalized to a geometrically exact the-
ory in [MOSLER 2005A]. In this paper, a novel numerical implementation of locally
embedded strong discontinuities is suggested. In line with [BORJA 2000; MOSLER &
MESCHKE 2000; MOSLER & MESCHKE 2001; BORJA 2002], the displacement jump
is condensed out at the material point level. However, in contrast to [BORJA 2002], no
specific assumption concerning the traction-separation law and the evolution equations of
the displacement jump is made, i. e., this novel numerical framework holds for a broad
range of different, fully three-dimensional, constitutive interface models. In contrast to
previous works on the SDA accounting for finite strains, the finite element formulation
in [MOSLER 20054] is based on a return-mapping algorithm similar to that of standard
plasticity theory. The conforming part of deformation and the part resulting from the
displacement discontinuity are computed according to a predictor-corrector step proce-
dure, cf. [S1MO 1998; SiMO & HUGHES 1998]. As a consequence, subroutines designed
for classical (continuous displacement field) continuum models can be applied with only
minor modifications necessary.

Although the X-FEM as well as the SDA allow for the modeling of material surfaces
such as cracks crossing arbitrarily finite elements, the numerical results are, in general,
not completely mesh independent. The reason for this is twofold. First, all criteria
necessary for predicting the growth direction of the internal surface depend significantly
on the quality of the numerical solution of the homogeneous deformation. For instance,
if crack growth is modeled by the RANKINE criterion (the crack propagates orthogonal
to the direction of the maximum principle stress), the direction of a new crack segment
depends apparently on the stress field. As a consequence, even SDAs or X-FEMs have
to be coupled with adaptive finite element methods. Otherwise, a sufficient quality of
the stress field cannot be guaranteed. Second, the way of computing the topology of the
internal surface is far from being understood. Usually strain-based (see [GEERS, PEIIS &
BREKELMANS 1996; SIMONE, WELLS & SLUYS 2003]), stress-based (see [ERDOGAN &
SiH 1963; MoEs, DoLBow & BELYTSCHKO 1999; WELLS & SLuys 2001B; JIRASEK
& ZIMMERMANN 2001]), energy-based (see [NUISMER 1975; SiH 1974]), or criteria
based on material bifurcation such as [StM0, OLIVER & ARMERO 1993; SiM0O & OLIVER
1994; OLIVER & SIMO 1994] are applied. Often these are used in a slightly different
form. More specifically, they are computed by means of non-local stress or strain fields, cf.
[SiMONE, WELLS & SLuys 2003; FEIST & HOFSTETTER 2005; GASSER & HOLZAPFEL
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2006). However, according to [SIMONE, ASKES & SLUYS 2004], those modifications lead,
in many cases, to non-physical results.

Obviously, the criterion best suited for the prediction of the growth direction of the
internal surface depends on the underlying physical problem. For instance, the principle
of energy-minimization, or dissipation-maximization cannot be applied to non-associative
plasticity theories, since they do not obey such a variational structure. However, even if
a reasonable criterion has been chosen, the computation of the resulting topology of the
internal surface is not straightforward. Most of the approaches which can be found in
the literature are based on geometrical smoothing techniques [OLIVER 1996; GASSER &
HOLZAPFEL 2005; GASSER & HOLZAPFEL 2006] rather than on physical considerations.
In any case, a new segment is connected with a previously existing one [OLIVER, HUESPE,
SAMANIEGO & CHAVES 2002; FEIST & HOFSTETTER 2005; DUMSTORFF & MESCHKE
2005]. Those approaches work reasonably well if the internal surfaces do not cross each
other, i. e., if the mapping between a new segment and its parent is unique. Unfortunately,
many physical problems such as crack branching and intersecting cracks do not fulfill this
condition. As mentioned before, interface elements do not show this problem. They can
be applied to the analysis of complex crack patterns. However, since the results depend
on the finite element discretization (cracks are allowed to propagate only between existing
finite elements), they have to be coupled with adaptive strategies. In summary, the SDA
or the X-FEM as well as interface elements have to be combined with adaptive methods.
These concepts are needed in order to guarantee a sufficiently accurate computation of
the growth direction of the internal surface and, if interface elements are used, to enrich
the space of potential crack paths.

Nowadays, the mathematical theory of error estimates is relatively well understood and
established in the case of linearized elasticity theory, cf. [VERFURTH 1996; VERFURTH
1999; AINSWORTH & ODEN 1997; AINSWORTH & ODEN 2000]. However, almost
all mathematically rigorously derived estimates are restricted to isotropic meshes. More
precisely, shape regularity of the finite elements is postulated a priori. Obviously, this
excludes anisotropic meshes. Since it is well known that for many applications such as
shock wave propagation and localized failure, discretizations with independent length
scales in different spatial directions are significantly more efficient than their isotropic
counterparts, this represents a serious restriction, cf. [FREY & ALAuUzET 2005; Li,
SHEPHARD & BEALL 2005]. Unfortunately, from a theoretical as well as from a practical
point of view, the anisotropic case is much more complicated and hence, it is much less
developed. For an overview, refer to [APEL 1999]. This is mainly related to interpolation
theory and local interpolation errors which are, in general, restricted to isotropic meshes.

In addition to the just mentioned problems, most physical phenomena require a nonlinear
description. In the case of cohesive element formulation presented in this work, those
nonlinearities result from both geometrical as well as physical effects. However, accord-
ing to [VERFURTH 1996; VERFURTH 1999], the extension of error estimates originally
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derived for linearized models to the nonlinear case is by no means straightforward. One
of the most serious problems associated with such a generalization is the dependence of a
certain factor involved in the estimate on the unknown solution. Consequently, this factor
cannot be computed a priori. Furthermore, for many problems, it is not even bounded.

A way to apply the well-known results of error estimates developed for linearized elasticity
to strongly nonlinear problems was advocated by [RADOVITZKY & ORTIZ 1999] (see also
[RADOVITZKY 1998; MOLINARI & ORTIZ 2002]). In this work the authors assumed a
variational structure of the underlying physical problem. This property ensures the ex-
istence of a symmetric DIRICHLET form. As a result, the nonlinear problem decomposes
locally (in time) into linear subproblems fully identical to those of linearized elasticity
theory. By virtue of this observation, an efficient a posteriori error estimate resulting in
an adaptive finite element method was derived. The adaptive strategy as proposed in
[RADOVITZKY & ORTIZ 1999 is based on the assumption that the physical problem is
driven by a variational structure. Although such a structure is not required by a physical
law, it serves as a good approximation for many phenomena. For instance, the stable
configurations of a hyperelastic body obey the principle of minimum potential energy.
Even for a large class of dissipative materials a pseudo potential can be derived, cf. [OR-
Tiz & STAINIER 1999], cf. [ComI & PEREGO 1995]. More precisely, for all standard
dissipative media (SDM) in the sense of [HALPHEN & NGUYEN 1975] (see also [MANDEL
1972; GERMAN, NGUYEN & SUQUET 1983; LEMAITRE 1985; HACKL 1997]) which
obey the principle of maximum dissipation such a variational structure exists. The ex-
tension to fully thermomechanically coupled problems was given in [YANG, STAINIER &
ORTIZ 2005]. The advantages resulting from those principles are twofold. First, they
open up the possibility of analyzing the existence of a solution by using, by now classical,
techniques known from hyperelasticity, cf. [BALL 1978] (see also [ORTIZ & REPETTO
1999; CARSTENSEN, HACKL & MIELKE 2002; MIEHE & LAMBRECHT 2003]). Fur-
thermore, other promising mathematical theories such as I’-convergence can be applied
as well, see [DAL Maso 1983; BRAIDES 2002]. This theory of convergence is very pow-
erful for analyzing the asymptotical behavior of numerical methods. For an investigation
of the convergence of variational smeared crack approaches, cf. [NEGRI 2005A]. Sec-
ond, and perhaps equally importantly, minimization principles provide a suitable basis
for a posteriori error estimation and, consequently, for adaptive finite element methods.
For example, if the potential to be minimized is denoted as I(¢), and two different ad-
missible candidates (") and ¢® with I(¢()) < I(¢®) are considered, then I{xp") is
closer to the exact minimum and hence, (! is regarded as a better solution than ¢?,
cf. [THOUTIREDDY 2003; THOUTIREDDY & ORTIZ 2004]|. Based on this optimality
criterion, different variational finite element mesh adaptions can be developed.

The concept of using the underlying variational principle to optimize the discretization
enjoys a long tradition dating back, at least, to [MCNEICE & MARCAL 1973; FELIPPA
1976], in the special context of two-dimensional linearized elasticity. In these approaches,



1.2 State of the art review 13

also referred to as variational r-adaptions, the deformation and the optimal finite ele-
ment discretization follow jointly from energy minimization. In contrast to the publi-
cations cited previously, the connection between mesh optimization and configurational
or energetic forces [ESHELBY 1951; ESHELBY 1975| has only been recognized recently
[BRAUN 1997; MUELLER & MAUGIN 2002; THOUTIREDDY 2003; THOUTIREDDY &
ORrTIZ 2004; KUHL, ASKES & STEINMANN 2004; ASKES, KUHL & STEINMANN 2004].
[BRAUN 1997] computed the forces associated with a variation of the nodal positions in
the reference configuration in a finite element discretization and speculated on the possi-
bility of computing such positions so as to attain configurational equilibrium. However, a
full solution procedure was not proposed in that work. A variety of solution strategies have
recently been proposed based on a steepest gradient algorithm [MUELLER & MAUGIN
2002]; conjugate gradients [THOUTIREDDY 2003; THOUTIREDDY & ORTIZ 2004]; and
NEWTON’s method [KUHL, ASKES & STEINMANN 2004; ASKES, KUHL & STEINMANN
2004]. [THouTIREDDY & ORTIZ 2004] in addition to optimizing the positions of the
nodes in the interior and on the boundary, allowed for changes in the connectivity of the
mesh. In particular, the connectivity of the mesh was changed during the optimization of
the nodal positions so as to maintain a DELAUNAY triangulation at all times.

Despite the conceptual appeal of variational r-adaption, its robust numerical implementa-
tion is not without difficulty, cf. [MOSLER & ORTIz 2005]. More precisely, the function to
be minimized is nonconvex and its HESSIAN is highly singular. For this reason, [MOSLER
& ORTIZ 2005] developed a solution strategy based on a viscous regularization of the con-
figurational forces, i. e., the system of forces conjugate to the location of the nodes in the
reference configuration. This method eliminates the just described problems by leaving
the physical problem itself unaffected. As noted in [THOUTIREDDY 2003; THOUTIREDDY
& ORTIZ 2004], in addition to optimizing the geometry of the mesh, i. e., the location of
the nodes in the reference configuration, it is equally important to optimize the topology
or connectivity of the mesh. Indeed, keeping the connectivity of the mesh fixed introduces
strong topological or locking constraints which severely restrict the range of meshes that
can be attained and, consequently, the quality of the solution. However, the determination
of the energy-minimizing mesh connectivity for a fixed nodal set is a challenging discrete
optimization problem. In two-dimensions, an upper bound on the number of different
triangulation exists (cf. [AICHHOLZER, HURTADO & NoY 2004]) and, consequently, a
global minimum is guaranteed. However, the number of different triangulations increases
exponentially with the number of nodes [AICHHOLZER, HURTADO & NoOY 2004], and
the global minimum cannot be computed in practice. Instead, [MOSLER & ORTIZ 2005]
proposed to modify the mesh topology by applying so-called LAwsON flips (cf. [LAWSON
1986; JoE 1989; JOE 1991]) based on an energy criterion. Specifically, a flip is accepted
if it lowers the energy of the solution. The algorithm terminates when all flips raise or
leave unchanged the energy of the solution.
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In many cases, although variational r-adaption improves the numerically computed so-
lution significantly, the space of interpolations has to be enlarged further. This can be
achieved, for instance, by using h-edaptivity or p-adaptivity, cf. [SzABG & BABUSKA
1991]. Since the final goal of the present work is the coupling of mesh adaption with
cohesive finite elements for the analysis of localized material failure, the function to be
approximated, i. e., the deformation mapping, is not very smooth. For this reason, atten-
tion is restricted to h-adaptive strategies.

A novel variational h-adaption was advocated in [MOSLER & ORTIz 2006]. In line
with [MOSLER & ORTIZ 2005], it is based on the assumed underlying minimization
principle governing the physical problem. As a prototype, it has been applied to standard
dissipative media. For refinement, an edge-bisection algorithm is adopted. Contrary to
most previous numerical models, the energy represents the only refinement criterion in
the presented algorithm. As a consequence, anisotropic meshes may evolve if they are
energetically favorable. It is demonstrated that those meshes are superior compared to
their isotropic counterparts. Unfortunately, if the elements are almost degenerate, the
conditioning of the resulting stiffness matrix is relatively poor thereby resulting in a
larger number of iteration cycles if indirect solvers are used. However, the energy-based
h-adaption can be coupled with a criterion guaranteeing a small aspect ratio of the finite
elements. In [MOSLER & ORTIZ 2006], a longest edge-bisection algorithm is employed,
cf. [BANSCH 1991B; RIVARA 1991].

The coupling of mesh adaption with cohesive finite elements represents one of the on-
going research subjects. First ideas can be found in [NEGRI 2005B; MOSLER, ORTIZ
& PANDOLFI 2006]. These works are in line with [FRANCFORT & MARIGO 1998;
BOURDIN, FRANCFORT & MARIGO 2000; DAL MAsSO & ZANINI 2005]. The models
in [NEGRI 2005B; MOSLER, ORTIZ & PANDOLFI 2006| are based on the assumption
that crack growth is governed by a minimization principle. Roughly speaking, the idea
is that the deformation mapping as well as the topology of the crack are computed from
the same minimization principle simultaneously.

1.3 Structure of the present work

The present work is divided into two main parts. In Chapter 2, a short state of the art
review concerning the modeling of dissipative materials is given. As a prototype, finite
strain plasticity theory is considered. However, the modifications necessary for damage-
induced stiffness degradation are briefly discussed as well. The main focus of this chapter is
on standard dissipative media. For such constitutive models, the state variables, together
with the deformation mapping, follow from a variational principle. More precisely, the
respective finite element formulation takes the form of a minimum principle. This is a very
significant aspect of the resulting approach, since it opens up the possibility of applying
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standard optimization algorithms to the numerical implementation. Additionally, and
even more importantly, a minimization principle provides a suitable foundation required
for error estimation and mesh adaption. The chapter closes with a canonical extension
of standard dissipative media to fully thermomechanical coupled problems governed by a
minimization principle.

The first main part of the present thesis is addressed in Chapter 3. It is concerned with a
new class of cohesive elements suitable for the analyses of material failure such as cracking
in brittle structures, the formation of slip bands in soils or the development of LUDERS
bands. From a macroscopic point of view, those phenomena are characterized by a discon-
tinuity in the deformation mapping, since the width of the part of the structure showing
localized strains is several dimensions smaller than the diameter of the system considered.
For this reason, the new numerical model is based on the kinematics induced by strong
discontinuities (jumps in the deformation mapping). Instead of classical stress-strain re-
lationships, the dissipation is reflected by a cohesive law connecting the displacement
jump with the traction vector. The advocated framework is relatively universal. It can
be applied to a broad range of different cohesive interface laws and to any type of finite
elements. In contrast to previously published models on cohesive approaches, the analogy
between the novel numerical model and standard (continuous deformation mapping) finite
element formulations is highlighted.

As already pointed out in the first section of this chapter, the results obtained by cohesive
elements can only be accurate, if the diameter of the finite elements is sufficiently small.
This condition can be achieved by applying either an expensive uniform refinement or
by using a computationally efficient adaptive approach. For this reason, a class of novel
adaptive finite element formulation is presented in the second main part of this thesis
consisting of Chapters 4 — 6. Assuming the underlying physical problem is driven by an
energy minimization principle such as that of standard dissipative media, three different
mesh adaptions are advocated. The first of those represents a Variational Arbitrary
Lagrangian-Eulerian (VALE) formulation. It is described in Chapter 4. In contrast to
classical NEWTONIAN mechanics, this method seeks to minimize the energy function not
only with respect to the finite element mesh over the deformed configuration of the body,
but also over the undeformed triangulation. Since the corresponding space of interpolation
functions is a superset of that associated with the classical NEWTONIAN approach, the
predicted minimum is always closer to the analytical solution. Consequently, this method
leads to an improvement of the numerically obtained results. If the mentioned VALE finite
element formulation is applied and the connectivities of the elements are kept constant,
strong topological constraints may evolve which severely restrict the range of meshes that
can be attained and, consequently, the quality of the solution. Thus, it is important to
improve the topology (connectivity) of the considered triangulation as well. In Chapter 5,
an energy-driven re-triangulation is proposed. Based on local mesh transformations, the
resulting discretization shows always a lower energy than the initial mesh. Hence, an
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improvement of the solution is guaranteed a priori. In many cases, keeping the number
of degrees of freedom as constant is not sufficient for getting accurate results. As a
consequence, Chapter 6 deals with a method enriching further the space of admissible
solutions. More specifically, a novel variational h-adaption is suggested. Assuming an
underlying physical minimization principle, the interpolation space is locally enlarged.
Only if the resulting new triangulation improves the solution significantly, it is stored.
Otherwise, the old discretization is used.

The present work closes with a summary and with some first ideas concerning the coupling
of variational mesh adaptions with cohesive finite element formulations. Those ideas seem
to be well-suited and very powerful for the numerical analyses of complex engineering
problems showing localized material failure. As a prototype, cracking in brittle structures
is considered.



Chapter 2

Constitutive modeling at finite
strains

This chapter is concerned with a short state of the art review on the modeling of dissipative
materials. Following standard restrictions of continuum mechanics, the deformation map-
ping is assumed to be sufficiently smooth. Weak or strong discontinuities are excluded.
As a prototype dissipative material, a class of finite strain plasticity theories is discussed.
However, the modifications necessary for damage-induced stiffness degradation are briefly
presented as well. Special attention is turned on the variational structure of plasticity
models governed by the postulate of maximum dissipation. This structure allows to for-
mulate the constitutive update as a minimization problem. It represents the essential
ingredient for the adaptive finite element formulations as described in Chapters 4 - 6.
The present chapter closes with a canonical extension of variational constitutive updates
for fully thermomechanically coupled general dissipative solids.

This chapter represents neither an introduction to continuum mechanics, nor to consti-
tutive modeling. It only provides the fundamentals required for the following chapters.
For further details on continuum mechanics, the interested reader is referred to the ex-
cellent works [TRUESDELL & ToOUPIN 1960; TRUESDELL & NoOLL 1965; MARSDEN &
HUGHES 1994; ANTMAN 1995; STEIN & BARTHOLD 1995; OGDEN 1997; CHADWICK
2000; HAuPT 2000; ORT1Z 2003] and the references cites therein. In the case of model-
ing dissipative materials, the monographs [TRUESDELL & NOLL 1965; KRAWIETZ 1986;
KraJcinovic 1996; LUBLINER 1997; SiMO & HUGHEs 1998; HAurpT 2000; ORTIZ
2002; NEMAT-NASSER 2004; BERTRAM 2005; X1A0, BRUHNS & MEYERS 2006] are
comprehensive surveys.

17
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2.1 Kinematics

In what follows, a domain @ C R3, that is, an open, bounded and connected set, is
considered. It is assumed that this domain represents the reference configuration of a
body. The material points P € Q are identified by their position vectors X (P) relative
to a cartesian coordinate system with center O. Curvilinear coordinates will only be used
when necessary. The body deforms under the action of applied body forces and tractions
and prescribed displacements. The resulting deformation is described by the mapping
@ : 8 — R3, which is sufficiently smooth, injective except possibly on the boundary
and maps the position X € € of material particles in the reference configuration to
their position & € () in the deformed configuration (cf. [CIARLET 1988]). With
these assumptions, the local deformation is well defined and can be characterized by the
deformation gradient

) . v (o). (2.1)

F:=GRADp, with GRAD(e):= zo= =

Since ¢p|q is injective, ¢p~!|q exists and by the inverse function theorem det F' # 0VX € Q.
Taking into account that ¢ = id for an undeformed body, detid > 0, together with the
sufficient smoothness of ¢, the local invertibility condition

detF>0 VYXeQ (2.2)

follows. Evidently, the global invertibility condition cannot be derived based on Eq. (2.2).
Eq. (2.2) is only a necessary condition.

Since F € GL,(3) with GL.(n) denoting the general linear group of dimension n showing
a positive determinant, a right and a left polar decomposition exist, i. e.,

VFeGL(n), 3RUEGL(n) : F=R.-U

VFeGL(n), IR,VeGL(n) : F=V-R (23)

Here and henceforth, the dot (-) represents the simple contraction (F;; = Ry Uy;). In
Eq. (2.3), R is a proper orthogonal tensor (R € SO(3)) and U as well as V' are symmetric
and positive definite. Consequently, the spectral decomposition theorem can be applied
to U and V leading to

3
U=Z/\?N.®N, N;-N,-=6;,-

i3t (2.4)
V=ZA$ n,-®ni n,--n,-=6,-j

i=1

where A? are the eigenvalues (); > 0) and N; and n; are the eigenvectors of U and V,
respectively. Based on this decomposition, a family of strain measures can be introduced.
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According to [HILL 1968; HILL 1978], each HILL strain is defined by

3
A(U)= Zf (AY) N:®N;

iﬁl (2.5)
a(V)=) f(¥) n;®n;

with f representing a scale function which is monotonically increasing and smooth and
required to meet the normalizing condition f(1) = f (1) — 1 = 0. For instance, setting
f(A3) = 1/2()? = 1), A equals the GREEN-LAGRANGE strain tensor.

2.2 Balance equations

This section summarizes briefly some of the balance equations of classical continuum
mechanics which are used in the following chapters. A complete description will not be
given here.

According to Section 2.1, the present thesis is exclusively concerned with BOLTZMANN
continua. Additional rotational degrees of freedom are not considered. Furthermore,
all problems discussed in this work fall into the range of simple bodies in the sense of
[COLEMAN 1964; TRUESDELL & NOLL 1965; NoLL 1972]. It is well known that those
assumptions impose some restrictions on the balance equations. The last assumption
affecting the balance equations is that the systems under investigation are closed. As a
result, the principle of conservation of mass is adopted.

2.2.1 Conservation of linear momentum

In what follows, po, B and T represent the referential mass density per unit undeformed
configuration €2, the referential material body-force per unit mass and the material trac-
tion per unit undeformed area, respectively. With respect to the deformed configuration
() those variables are denoted as p, b and t. With these definitions, the resulting forces
acting on a subset E C €2, are computed as

K=/poBdV+/TdA. (2.6)
E oF

Clearly, by using p, b and ¢, Eq. (2.6) can be re-formulated in terms of variables defined
on ().

The balance law of conservation of linear momentum states that the rate of the linear
momentum

d )
L=a/po<pdV=/po<pdv 2.7)
E E
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equals the forces K. In Eq. (2.7), the superposed dot represents the time derivative, i. e.,
¢ = dep/dt, with ¢t being the time. For spatial fields, the superposed dot denotes the
material time derivative, cf. [TRUESDELL & NOLL 1965]. Applying the conservation law
of mass for closed systems, i. e., g = 0, the identity

/pog'de=/poBdV+/TdA 2.8)
E or

E

is obtained. This global- or integral-type of the balance law can be re-written into an
equivalent local or differential form by using CAUCHY’s theorem, together with the di-
vergence theorem and assuming sufficiently smooth solutions. The resulting equation
yields

DIVP+poB=pypp VXE€e (2.9)

Here and henceforth, P denotes the first PIOLA-KIRCHHOFF stress tensor and DIV(e) is
the divergence operator with respect to X. Obviously, a corresponding equation formu-
lated with respect to the deformed configuration can be derived similarly. According to
Eq. (2.9), conservation of energy can be regarded as the extension of NEWTON’s axiom
for discrete particles to continua.

Remark 2.2.1.1 Conservation of angular momentum is not considered in the present
section. It requires the CAUCHY stresses, or equivelently, the second P1OLA-KIRCHHOFF
stresses to be symmetric. However, by using appropriate material models, this symmetry
ts fulfilled a priori as shown in the following sections.

2.2.2 Conservation of energy

The total energy of a body can be decomposed into four parts. The first of those is
represented by the kinetic energy

1 X
KE) =3 [mlelav (2.10)
E

being an extensive set function. Clearly, || || is the EUCLIDIAN norm. The second part
contributing to change of the total energy is associated with heat. It shows the form

é(E)=/poRdV—/H-NdA. 2.11)
E 8E

Here, R denotes the material heat-source density and H - N depending on the normal
vector N of the hyperplane OF is the outward material heat flux. It should be emphasized

that the variable @ has to be understood as defined by Eq. (2.11). It is not necessarily
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the time derivative of a function @, cf. [STEIN & BARTHOLD 1995]. Finally, the power
expended by the forces applied to the subbody E can be computed as

gx‘=/m3-¢dv+/r-qodf1. (2.12)
E SE

o
With this notation, together with the introduction of the rate of the internal energy Ej.,
conservation of energy reads

éinl +K = Pex+ Q . (213)
As a consequence, the sum of the rate of the internal energy and the rate of the kinetic
energy must be equal to the power expended by the forces T and B and additional
terms related to heat. Analogously to Eq. (2.11), E’im has to be understood as defined
by Eq. (2.13). However, according to observations made from experiments, the integral
of ]_?;m over a time interval is almost independent of the respective path. For this reason,
the existence of a material internal energy density U per unit mass can be justified and
hence, its resulting energy yields

Bul(B) = [mU V. | (2.14)
E

Thus, the rate of internal energy simplifies to the time derivative of Eq. (2.14), i. e.,
éint= Eint- (215)

Inserting Eq. (2.15) into Eq. (2.13), using the divergence theorem, conservation of linear
momentum and assuming sufficiently smooth solutions, the balance law of energy results
in

poU=P:F+p R-DIVH VXeQ (2.16)

As in the previous section, this equation can be re-written into an equivalent spatial form.

2.2.3 The second law of thermodynamics / Balance of entropy

In contrast to the conservation laws presented in the previous subsection, the balance
of entropy represents only a conservation law, if reversible processes are considered. In
general, the balance of entropy defines the direction of a thermodynamical process. It
should be noted that different versions of this law can be found in the literature, cf.
[HUTTER 1977]. In the present work, the second law is formulated according to rational
mechanics, see [COLEMAN & GURTIN 1967; TRUESDELL & NoOLL 1965].

Introducing the entropy S of a subbody £ C 2

S(E) = / po N dV (2.17)
E
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by the referential entropy density NV per unit mass, together with the absolute temperature
8, the second law of thermodynamics reads

%/poNdef%}—de—/#dA. (2.18)
E E oF

It states that the rate of the entropy is never smaller than the one associated with external
entropy supply resulting from heat sources and fluxes, respectively. The entropy repre-
sents a measure for the amount of energy irreversibly transformed. For a more detailed
motivation of the second law, the reader is referred to [COLEMAN & GURTIN 1967 (see
also [ORTIZ 2002 for a collection of illustrative examples).

Assuming sufficiently smooth solutions, Eq. (2.18) can be transformed into the equivalent

local counterpart R
. H
oo N — ”°T +DIV 2 >0. (2.19)
This equation is the local statement of the CLAUSIUS-DUHEM inequality in material form.

An alternative form can be derived by applying a LEGENDRE-transformation of the type
Yo(e,8) = igf {U(e,N) — 0 N}. (2.20)

Here, 1, is the HELMHOLTZ free energy. Using Eq. (2.20) and the law of energy conser-
vation, the CLAUSIUS-DUHEM inequality reads

P:F—p (éN+¢n)-%H-GRADozo. (2.21)
It is obvious that generally, one cannot resolve Ineq. (2.21) into an internal dissipation
inequality P : F — py (6 N + 1) = 0 holding for GRADE # 0 and a heat-conduction
inequality H - GRADG > 0 holding for a nonzero rate of the internal variables (see Sec-
tion 2.4), cf. [COLEMAN & GURTIN 1967]. However, according to [SIMO 1998], such a
decomposition leading to the CLAUSIUS-PLANK form of the second law of thermodynam-
ics
P:F—p (éN+1/}0)20 (2.22)

is fulfilled for FOURIER-type models of heat conduction.

2.3 Hyperelasticity

In this section, a short review on non-dissipative materials is given. More precisely,
special attention is restricted to standard (local) hyperelastic models. These models are
characterized by the existence of a potential whose time derivative equals the stress power.
In contrast to elastoplasticity, the concept of hyperelasticity is, nowadays, well accepted
and understood from a mechanical point of view. However, many mathematical questions
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such as existence of a solution and uniqueness are still unanswered, see [BALL 1978;
CIARLET 1988]. Throughout the rest of this section thermal effects are neglected.

According to the definition of (local) elasticity (in the sense of CAUCHY), the stress tensor
depends only on the deformation gradient, i. e., P = P(F'). Here and henceforth, the
dependence of the spatial position X on P is not explicitely highlighted.

Hyperelastic continua, also referred to as GREEN-elastic materials, are characterized by
the additional property that the work of deformation P : F is path independent. Conse-
quently, a potential ¥ exists, with
OV (F) . .
= —F" d = HF J .
P oF an V=P:F (2.23)
Inserting Eq. (2.23) into Ineq. (2.22) and considering a mechanical process without dissi-
pation, the identity
U(F) = po Yo(F) (2.24)

follows. As a result, a hyperelastic material is defined uniquely by its HELMHOLTZ free
energy. By virtue of the principle of material frame indifference (see also covariance
requirement according to [MARSDEN & HUGHES 1994]), it must be possible to express
o as a function of the right CAUCHY-GREEN tensor C = FT . F. Thus,

av(C) I(C)

P=2F =& aC

=2 Po F. (2.25)
Often further restrictions on the form of the strain-energy density function follow from
material symmetry. Mathematically, a material is said to be symmetric with respect to the
symmetry group S C SO(3), if its response is not affected by a rotation of an infinitesimal
neighborhood with respect to the undeformed configuration. In mathematical terms,

¥QT-C-Q)=¥C) VQeScSo®M). (2.26)

If S = SO(3), the material is referred to as isotropic. Clearly, in this case, the HELMHOLTZ
free energy depends only on the eigenvalues A€ of C, i. e.,

¥ =¥\, A8, XE). (2.27)

It is obvious that instead of the eigenvalues A, different invariants of C can be used as
well.

For more complex symmetry groups (S # SO(3)), the reader is referred to [SPENCER &
RIVLIN 1962; SPENCER 1971] (see also [BETTEN 1993]). In the cited works, the authors
derived integrity bases based on structural tensors. Those bases fulfill the symmetry
condition (2.26). Clearly, for S = SO(3) the eigenvalues of C represent an admissible
set of integrity bases. In the case of more complex symmetry groups, the strain-energy
density has to be formulated in terms of the respective basis.
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Remark 2.3.0.1 The second PIOLA-KIRCHHOFF lensor S resulting from a hyperelastic
material law takes the form S = 2 0c¥. Without loss of generality, this derivative can be
represented by a symmetric tensor, since C is symmetric. That is, the identity S = ST
is fulfilled a priori. As a consequence, conservation of angular momentum is guaranteed.

2.3.1 Examples

In the present work, three different hyperelastic models will be applied. Each of them is
isotropic. The respective strain-energy densities are:

e HENCKY's strain-energy function, cf. [BRUHNS, X1A0 & MEYERS 2001]
U= -;- Alferteate+p [(€1)2+(€2)* +(3)°],  ei=log\/AC  (2.28)
e Neo-HOOKE, version I, cf. [SIMO & PISTER 1984]
= %,\ log? J + % p(trC—-3-21logJ), J=detF,trtC=C:1 (2.29)
o Neo-HOOKE, version II, cf. [CIARLET 1988]

J2-1

U= YR (%-i—p) logJ+%p (trC — 3) (2.30)

In Egs. (2.28)-(2.30), X and p represent the LAME constants. It should be noted that
among the enumerated models only CIARLET’s neo-HOOKEan function is polyconvex.
It can easily be seen that the strain-energy density defining HENCKY’s model as well
as that of the first version of the neo-HOOKEan are not convex in J. Due to [BALL
1978] polyconvexity is very important from a mathematical point of view since it implies
quasiconvexity of 1 and hence, under a few further conditions, the lower semicontinuity
of the resulting potential of the system considered. This property is crucial for proving
the existence of solutions.

2.3.2 Principle of minimum potential energy

In this subsection, the Boundary Value Problem (BVP) of a hyperelastic body is re-
formulated as a minimization problem. In what follows, thermal as well as dynamical
effects are neglected. As a consequence, the resulting BVP reads

DIVP+pB = 0 VXeQ
@ VX € 0,0 (2.31)
P.N VX € 8,9

4
T

Il



2.4 Plasticity theory 25

where 9,Q is the displacement boundary; 3, = 9Q/0;2 is the traction boundary; @ is
the prescribed value of the deformation mapping on 8,9; and T are the applied tractions.

Applying the principle of virtual work, together with a BUBNOV-GALERKIN method, the
solution of the BVP can be re-written as

Find ¢ € V such that

/P:GRADndV=/pOB‘ﬂdV+/T.ndA VeV (2.32)
a Q X

Clearly, ¢ has to comply with the boundary conditions and the test functions 1 must be
zero on 9. If V is large enough, Eq. (2.32) implies the local form Eq. (2.31). It is well
known that if P derives from a potential according to Eq. (2.25), Eq. (2.32) represents
the stationarity condition of the equation

() = f ¥(GRADy) dV — / oo B-odV + / T o dA. (2.33)
N 144 3314

More precisely, ¢ can be computed from the minimization principle
“1’161{, I(p). (2.34)

The assumption that Problem (2.34) is the overriding principle (instead of just the station-
arity condition of I) originates from the presumption that the stable configurations are
energy minimizers. Furthermore, in the case of isotropic linearized elasticity, Eq. (2.32)
is, as well known, associated with a minimum.

Remark 2.3.2.1 From a mathematical point of view, a convex function V(F') would be
preferable, since it guarantees the erxistence of a unique minimizer (if a solution exists).
Unfortunately, as pointed out for instance in [TRUESDELL & NoOLL 1965; CIARLET
1988/ such an assumption would violate fundamental physical observations. For example,
a hydrostatic compression stress state could not be modeled.

2.4 Plasticity theory

In this section, a class of finite strain plasticity models is presented. In contrast to
elasticity, there exists a large number of different theories for plasticity accounting for
finite strains. According to [X1A0, BRUHNS & MEYERS 2006], the most frequently
applied ones can be subdivided into the following classes:

e Classical EULERIAN rate formulations, cf. [HILL 1958; LEHMANN 1960; BRUHNS,
X1A & MEYERS 2001]. Those models are based on the additive decomposition of
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the deformation rate d := (F'- F~')»™ into an elastic part d° and a plastic part dP,
i. e,
d=d+d". (2.35)

e Additive decomposition of LAGRANGIAN strains, cf. [GREEN & NAGHDI 1965; Pa-
PADOPOULOS & LI 1998; MIEHE, APEL & LAMBRECHT 2002]. The fundamental
assumption of those approaches is the additive decomposition of a LAGRANGIAN
strain measure A into elastic and plastic parts, i. e.,

A= A°+ AP, (2.36)

o Multiplicative decomposition of the deformation gradient, cf. [LEE 1969; SIMO &
ORTIz 1985]. The introduction of an unstressed configuration (locally) represents
the basic principle for the models advocated by LEE. In mathematical terms, this
postulate reads

F=F°.F°, with detF®>0, det F® > 0. (2.37)

See also [BERTRAM 1999; SVENDSON 1998] for models based on material isomor-
phism. They are related to theories using multiplicative kinematics. For further
details, the reader is referred to [ITSkOv 2001; X140, BRUHNS & MEYERS 2006].

For a detailed overview and critical comments, refer to [NAGHD1 1990; NEMAT-NASSER
2004; X1a0, BRUHNS & MEYERS 2006]. It should be emphasized that in the case of
linearized kinematics, all three methods are completely equivalent.

Since one focus of the present work is on the implementation of the mechanical models
developed, computational issues are of great importance. For this reason, classical Eu-
LERIAN rate formulations are not considered. Although they are physically sound, they
require, in general, expensive numerical integration schemes, even if the solid unloads
purely elastically. Theories in the sense of [GREEN & NAGHDI 1965] show the problem
that they are not well-motivated from a physical point of view, cf. [X1A0, BRUHNS &
MEYERS 2006]. Furthermore, they may result in a questionable material response, see
[ITskov 2004]. As a consequence, models based on the multiplicative decomposition of
the deformation gradient will be used throughout the rest of this work. However, it is
well-known that also those models are not completely unquestionable. One issue is the
not uniquely defined intermediate configuration introduced by the split (2.37).

It should be noted that the material models used in this work are either fully isotropic,
or the respective flow rule specifies FP completely. In the case of a fully isotropic re-
sponse, the intermediate configuration is not important, see [SIMO & HUGHES 1998|.
More precisely, a rotation with respect to the intermediate configuration does not affect
any constitutive equation. On the other hand, if FP is determined completely by the con-
stitutive model such as for single-crystal plasticity (cf. [ASARO 1983]), the intermediate
configuration is defined uniquely, see [SIMO 1998].
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2.4.1 Fundamentals

The fundamentals of finite strain plasticity theory based on a multiplicative decompo-
sition of the deformation gradient in the sense of [LEE 1969] are briefly discussed in
this subsection. Multisurface plasticity is not considered. For more details, the reader is
referred to [LUBLINER 1997; MIEHE 1993; SiMo 1998; SimMo & HUGHES 1998]. In
line with the previous section, isothermal static conditions are assumed. Additionally,
for modeling a dissipative material response, a description with internal state variables is
used, cf. [COLEMAN & GURTIN 1967]. Within this framework, a stored energy density
of the type

¥ = U(F°, F®, a) (2.38)

is considered with a € R" being strain-like internal variables associated with hardening
or softening. More specifically, an energy functional ¥ of the type

U = T°(F°) + ¥P(a). (2.39)

is adopted. According to this equation, the elastic response modeled by ¥° is assumed
to be completely independent of the internal processes reproduced by a. Clearly, by the
principle of material frame indifference, ¥°(F°) = ¥°(C°) where C° := F° - F* is the
elastic right CAUCHY-GREEN tensor. The second term in Eq. (2.39), denoted as UP,
represents the stored energy due to plastic work. It is associated with isotropic/kinematic
hardening/softening. For more details about energy functionals of the type (2.39), refer
to [LUBLINER 1972]. It should be noted that in most applications, a functional of the
type (2.39) is adopted.

Remark 2.4.1.1 In the case of damage-induced stiffness degradation, the material prop-
erties depend, apparently on the internal variables and hence, the assumption made before
is wrong. For those models ¢ = ¥V*(C"°, o).

Using Eq. (2.37), the CLAUSIUS-PLANK form (2.22) of the second law of thermodynamics
for isothermal processes

D=P:F—\P=S:%C—\i!20 (2.40)
yields
(.5 —29¥ Y. 1 s (P .o F*) 40O ¢
D (F S-F 260‘,).2c+s.(1«* o, F)+Q a>0. (241)

In Eqs. (2.40) and (2.41), S := F~! . P denotes the second PIOLA-KIRCHHOFF stress
tensor and Q := —0,V is the stress-like internal variable work conjugate to a. According
to Eq. (2.41), the dissipation is decomposed additively into one part associated with the
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elastic strain rate and a second part corresponding to plastic deformation. Since both
parts are independent of one another, Ineq. (2.41) gives rise to

L0 o 0¥ 7
| S_23_C_2F 'GCG'F (2.42)
and the reduced dissipation inequality
D=X:L°P+Q-a>0. (2.43)

Here and henceforth, ¥ = 2 C° - 9c-¥ are the MANDEL stresses (cf. [MANDEL 1972|)
and LP = F° . FP™' denotes the plastic velocity gradient.

Following geometrically linearized plasticity theory, the elastic domain has to be defined.
For that purpose, the admissible stress space E, is introduced, c¢f. [LUBLINER 1997].
Since according to Ineq. (2.43), the reduced dissipation inequality depends naturally on
the MANDEL stresses, E, is formulated in terms of X, i. e.,

E, = {(Z,Q) e R*" | ¢(Z,Q) <0}. (2.44)

The boundary JE, represents a level set function measuring the elastic limit of the ma-
terial considered. That is, if (X,Q) € intE,, the solid deforms purely elastically. Only
if (,Q) € OE,, a plastic response is possible. Clearly, the yield function ¢ has to be
derived from experimental observation. Additionally, ¢ must be convex and sufficiently
smooth, cf. [MAUGIN 1992).

Remark 2.4.1.2 The MANDEL stresses are defined by £ = 2 C® - 9c=V. Consequently,
it is a mized variant tensor operating on the intermediate configuration. More precisely, it
maps cotangent vectors into cotangent vectors belonging to the same space. That is, ¥ can

be interpreted as an endomorphism and hence, its eigenvalues are well defined (compare
to HAckL 1997)).

The constitutive model is completed by evolution equations for LP and a and by load-
ing/unloading conditions. They can be derived from the postulate of maximum dissipa-
tion. More precisely,

_max [2 ‘LP+ Q- a]] . (2.45)
(2,Q)€Ee
This postulate leads to the evolution equations
LP =)A0s¢p &= A0g9, (2.46)

together with the KARUSH-KUHN-TUCKER conditions
A>0 dA2>0. (2.47)

As a result, plastic deformations require (X,Q) € 9E,. The plastic multiplier X is
obtained from the consistency condition

¢ =0. (2.48)
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Evolution laws of the type (2.46) are characterized by the property that the rates of the
internal variables (together with LP) are proportional to the gradient of the yield function.
Such laws are referred to as associated flow rules or normality rules. They follow, as
shown before, from the postulate of maximum dissipation. Although this postulate is
mathematically and physically very appealing, it cannot be applied to the modeling of
every material. That is, in contrast to the second law of thermodynamics, it is not a
physical law. Hence, a generalization of the evolution Eqs. (2.46) is sometimes necessary.

By analogy to Eq. (2.46), the generalized flow rules are postulated as
LP =) agg a=\ aqh (2.49)

Here, the plastic potential ¢ and the hardening potential 2 define the directions of the
rates of LP and «, respectively. Setting g = h = ¢, the associative case is recovered.

Remark 2.4.1.3 In the case of damage-induced stiffness degradation, similar evolution
equations can be derived. However, since the respective internal variables are contained in
e, they results in a change of the elastic response, ¢f. [SiMo & Ju 1989; MIEHE 1993;
OLIVER, HUESPE, PULIDO & SAMANIEGO 2003/.

Remark 2.4.1.4 According to Eq. (2.46), the flow rule is nine-dimensional, since the
yield function is formulated in terms of MANDEL siresses. Some researchers believe that
this characteristic of the described model is not physically sound, ¢f. [LUBLINER 1997/,
page 460. Nevertheless, it should be noted that if an isotropic hyperelastic material model
is applied (which is the case in this work), the MANDEL stresses are symmetric resulling
in a siz-dimensional flow rule.

Remark 2.4.1.5 Introducing the characteristic function of E,

0 V(%,Q)€E,

oo  otherwise, (2:50)

1(2,Q)= {

flow rules derived from the principle of maximum dissipation can be re-writlen into the
form
(LP,a) € 8J(Z,Q) (2.51)

where 3J is the sub-differential of J, i. e.,

8J(Z,Q) = {(L" &) eR*™ | J(Z+,Q+Q)>

JSQ+E:LP+Q - & V(E Qe R9+,,} (2.52)
For further details, the reader is referred to [MAUGIN 1992; ROCKAFELLAR. 1970]

Remark 2.4.1.6 A broad class of different plasticity models governed by the normality
rule are defined by a yield function of the type

8(2,Q) = Tee(T, Q) — B (253)
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where Zoq : R®" — R is an equivalent stress measure and £ > 0 is associated with the
size of the elastic domain before plastic deformation occurs. Most of the yield functions
applied in practice are based on an equivalent stress measure being a convexr and positively
homogeneous function of degree one, i. e.,

Sl (5,Q)) = ¢ 5qf5,Q)  VeeR, (2.54)
cf. [SiMo 1998/. With this property, the dissipation can be re-written as
D=AZTh >0. (2.55)

Since A > 0 and )3;';}; > 0, the second law of thermodynamics is fulfilled a priori. It should
be noted that all yield functions used herein show the form (2.58) and (2.54).

2.4.2 Example: Single-crystal plasticity / single slip system

As an example, the yield function and the respective evolution equations of single-crystal
plasticity theory are briefly presented in this subsection. It will be shown that if cohesive
models are re-written according to the framework discussed in Chapter 3, they are formally
identical to plasticity theories for a single slip system. More details about crystal-plasticity
can be found in [ASArRO 1983].

Since single-crystal plasticity (in the sense of SCHMID’s law) is based on associative evo-
lution equations, the model is defined completely by the respective yield function ¢.
Introducing a slip plane by its corresponding normal vector 72 and the slip direction 7,
¢ is given by

#(Z,a) =T : (MmO7)|-Qa) - =2 (2.56)

Evidently, the vectors 2 and 772 are objects that belong to the intermediate configuration.
They are orthogonal to one another and time-independent, i. e.,

a-m=0 |a=|m|, =1 (2.57)

Isotropic hardening/softening is taken into account by the yield stress @ depending on
the strain-like internal variable a. Applying Eq. (2.46), the plastic velocity gradient

LP =) (m®n), with A= \sign[D: (" n) (2.58)
is obtained.
Remark 2.4.2.1 Eq. (2.56) can be re-written as
¢=35(%,Q) -4 (2.59)

Obviously, ZL’,‘]‘(E, Q) is conver and positively homogeneous of degree one. Hence, the
resulting dissipation is given by D = A\ EL’(‘:, ¢f. Remark 2.4.1.6.
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2.4.3 Numerical implementation

The numerical implementation of finite strain plasticity models such as those discussed
in the previous subsection can be found in [SIMO & HUGHES 1998; SiMo 1998; ORTIZ
2003]. For a more recent state of the art review, refer to [SCHMIDT-BALDASSARI &
HACKL 2006]. The two fundamental ingredients required for the numerical computation
of the problem defined in the previous subsection are:

¢ Integration of the evolution as defined by Egs. (2.49)

e Operator split techniques allowing for decoupling the problem into fully elastic sub-
problems and plastic corrector steps.

A comprehensive overview on integration algorithms can be found in [HAIRER & WAN-
NER 2000]. For operator split methods, the reader is referred to [CHORIN, HUGHES,
MCCRACKEN & MARSDEN 1978|. An interesting comparison between different schemes
is given in [SCHMIDT-BALDASSARI & HACKL 2006].

Herein, the backward-EULER integration is applied. More precisely, the by now classical
return-mapping algorithm is adopted, cf. [SIMO & HUGHES 1998]. That is, based on an
operator split method, the solution is computed first by assuming a fully elastic loading
step (the trial state). If the stresses corresponding to this solution do not belong to E,, a
plastic corrector step is performed. Within this step the evolution equations are integrated
by means of the backward-EULER scheme.

According to [HAIRER & WANNER 2000], the backward-EULER scheme is first order
accurate. Clearly, more accurate methods are available, cf. [SCHMIDT-BALDASSARI &
HACKL 2006]. Nevertheless, as mentioned in [SIMO 1998], if the long-term response is
more important, the backward-EULER integration is often more accurate than algorithms
showing a better short-term accuracy such as second order approaches. Furthermore, the
numerical implementation presented in this subsection will be applied to problems like
cracking. Consequently, the solution is not very smooth, in general.

In addition to the good long-term response of the backward-EULER scheme, the method
is unconditional stable. More precisely, it possesses the linearized stability properties:
L-stability (and hence, A-stability) and B-stability, cf. [SiMO 1998]. Those properties
are needed in order to guarantee a bounded response of the integration algorithm.

In what follows, the numerical implementation of the class of material models described
in the previous subsection is addressed. More specifically, the return-mapping algorithm
is discussed.

Suppose the deformation gradient at time £, is denoted as F',,;. Then, an elastic trial
state is defined by
F?., = F¥%, Quy = Q. (2.60)
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Evidently, this state is characterized by a purely elastic response. With those equations,
the elastic right CAUCHY-GREEN tensor reads

Con = F'::l *Crtr Fﬁ-—l-ll» with Fl.=F}. (2.61)

Based on Eq. (2.61), the trial stresses ¥,,;; and subsequently, the discrete loading condi-
tion

H(Zns1,00) >0 (2.62)
are computed. Clearly, if Ineq. (2.62) is not fulfilled, the loading state is fully elastic,

and consequently, the solution of the trial state is already the solution of the problem
considered.

On the other hand, if Ineq. (2.62) holds, a plastic corrector step is applied. For that pur-
pose, the evolution Egs. (2.49) are integrated numerically by using an implicit backward-
EULER scheme leading to

Fh., =F?+ A 6Eg|2n+n,a,.+, -Fh ., Opny1 = Oy + AN thlnanwl (2.63)

with AX = A (tn41 — tn). Here, it has been assumed that the internal variables are
scalar-valued, since, obviously, the integration depends on the tensorial character of the
evolution equation to be approximated, cf. [PINSKY, ORTIZ & PISTER 1983; SiMO &
HUGHES 1998|.

It should be noted that a modified exponential integration scheme of the type

F?., =exp (Az\ azglz:,.+,,q,,+,) - F* (2.64)

is often advantageous, see [WEBER & ANAND 1990; ETEROVIC & BATHE 1990; CuITI
NO & ORTIZ 1992]. For instance, this technique guarantees that isochronic constraints
(det FP = 1) are preserved. For this reason, it will be used for the numerical implemen-
tation. For the computation of the derivatives of the exponential mapping necessary for
the algorithmic formulation, the reader is referred to [OrTIZ, RADOVITZKY & REPETTO
2001; ITskov 2003].

The approximation of the evolution equations transforms the set of algebraic differential
equations into the purely algebraic problem

Ropi= [RGB =0 A $(Z041,Quin) =0 (2.65)
where the residuals are defined by

R, = —Fh, +Fh+AX 629|z,,+,,q"+l - Fh (2:66)

R}, = —0pu1t+a,+AA th|2n+:.Q,.+,'

Evidently, in the case of the exponential mapping, the first residual reads

Ry = —Fp +exp (A,\ dsg

En-l-luQn+l) : Fﬁ‘ (2.67)
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The solution of the nonlinear set of Egs. (2.65) can be computed by means of different tech-
niques. Herein, a classical NEWTON-type scheme guaranteeing an asymptotic quadratic
convergence (for sufficiently smooth functions) is adopted. Linearizing this procedure at

the solution point gives the algorithmic tangent C2,, i. e.,

dP
| = n+1
Cfl-{-l dFu+l

(2.68)

Further details are omitted. They can be found in [SiMO & HuUGHES 1998; SiMO 1998;
ORriz 2002; SCHMIDT-BALDASSARI & HACKL 2006).

Remark 2.4.3.1 The nonlinear set of Egs. (2.65) is a (9+ dim a+ 1)-dimensional prob-
lem. However, in many cases, this dimension can be reduced significantly. For instance, if
the hyperelastic response as well as the plastic potential are isotropic tensor functions, the
tensors C°, ¥ and Osg are coazial. Consequently, if the exponential mapping according
to Eq. (2.67) is applied, Cyy and C;,,, are coazial with Cy representing the trial elastic
right CAUCHY-GREEN tensor. That is, all tensors involved in the algorithmic formula-
tion are coazial and hence, the algorithm can be performed in principle azes, leading to a
(3 + dim e + 1)-dimensional problem, cf. [SiMO 1992; SiMO 1998).

Remark 2.4.3.2 If HENCKY s hyperelastic potential (2.28), together with an isotropic
yield function (and associative evolution equations) are applied, the multiplicative decom-
position of the deformation gradient results in an additive split of the HENCKY strain
tensor. Since for HENCKY ’s potential the stresses depend linearly on the strain tensor, a
decomposition formally identical to the one known from classical small strain theory can
be derived. Hence, standard algorithms designed for the geometrically linear theory can be
used, see [SIMO 1998; ORTIZ 2002/.

Remark 2.4.3.3 In the case of HENCKY ’s hyperelastic potential (2.28), together with the
VON MISES yield function (and associative evolution equations), the set of equations (2.65)
reduces to a single scalar-valued equation depending only on the integrated plastic multi-
plier A), ¢f. [S1MO 1992; SiMO 1998/. Hence, the resulting numerical implementation
is very efficient. This particular model is adopted for the numerical ezamples contained
in Chapter 6.

2.5 Standard dissipative media

If the evolution equations obey the normality rule (see Eq. (2.46)), they can be derived
from a variational principle. More precisely, in this case, the solution of the algebraic
differential equation characterizing the material response follows from a minimization
principle. The advantages resulting from such a principle are manifold. On the one hand,
the existence of solutions can be analyzed by using the same tools originally designed for
hyperelastic material models, cf. [BALL 1978; ORTIZ & REPETTO 1999; CARSTENSEN,
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HAckKL & MIELKE 2002]. On the other hand, a minimum principle can be taken as a
canonical basis for error estimation, c¢f. [RADOVITZKY & ORTIZ 1999; THOUTIREDDY
& ORtiz 2004; MosLER & ORTIZ 2005]. In addition, from an implementational point
of view, a minimization principle opens up the possibility to apply state of the art opti-
mization algorithms. Particularly for multisurface plasticity models such as single-crystal
plasticity this represents and interesting feature.

The concept of using the underlying variational principle for the constitutive update en-
joys a relatively long tradition dating back, at least, to [CoM1, CORIGLIANO & MAIER
1991; ComI & PEREGO 1995]. In those works, the authors, derived a Hu-WAsHIzU
functional whose minimum corresponds to the solution of the discretized algebraic differ-
ential equations defining the material model. In the respective numerical implementation,
the constitutive model was enforced in a weak sense. That is, the resulting finite element
formulation is different compared to the one usually applied in computational plasticity,
cf. [SiMo & HUGHES 1998; SiMO 1998]. According to the previous section, most fre-
quently, the constitutive law is strongly enforced pointwise (usually at the integration
points).

Probably inspired by the works [Comi, CORIGLIANO & MAIER 1991; Comi & PEREGO
1995], ORTIZ advocated a constitutive update based on a minimization principle as well,
cf. [ORTIZ & STAINIER 1999; ORTIZ 2002]. Nevertheless, in contrast to the previous
works, the proposed algorithmic formulation coincides with the structure of standard finite
element codes. That is, the update is performed pointwise, i. e., at the integration points.
The ideas suggested by ORTIZ are briefly discussed in this section. They represent the
fundamental ingredient for the adaptive finite element schemes presented in Chapters 4
— 6. Similar numerical procedure and further elaborations can be found, for instance, in
[CARSTENSEN, HACKL & MIELKE 2002]. For models based on linearized kinematics,
the reader is referred to [MIEHE 2002].

2.5.1 Fundamentals

The goal of this section is the derivation of a potential of the type (2.33), from which the
unknown deformation mapping can be computed by minimization. Evidently, for path
dependent problems such as plasticity theory, this potential is defined pointwise (with
respect to the (pseudo) time). As in the previous sections, isothermal conditions are
assumed and dynamical effects are neglected.

Following [ORTIZ & STAINIER 1999; ORTIZ 2002; CARSTENSEN, HACKL & MIELKE
2002], the functional

Ep, F*,&,%,Q) = ¥(p, F*,&) + D(F, &, %, Q)+ J(Z,Q) (2.69)

is introduced. According to Eq. (2.69), for admissible stress states, i. e., (£, Q) € E,, £
represents the sum of the rate of the free energy and the dissipation, cf. Remark 2.4.1.5.
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Clearly, if (X, Q) € E,,
E@,F,6,2,Q)=P: F =P, (2.70)

cf. Eq. (2.21). That is, £ equals the deformation power denoted as P. Inadmissible stress
states are penalized by J = co. The interesting properties of the functional (2.69) become
apparent, if the stationarity conditions are computed. A variation of £ with respect to

(2, Q) leads to

(LP, &) € 8J. (2.71)
The respective equation associated with & reads
ov

Q= “ e (2.72)

Finally, a variation with respect to F* yields

r 0¥ . OV
Y=F° -W—2Coﬁ. (2.73)
As a consequence, the stationarity condition of £ results in the flow rule (2.71), the consti-
tutive relation for the internal stress-like variables (2.72) and the constitutive relation for
the MANDEL stresses 3. The remaining variation of £ with respect to ¢ will be discussed

in the next paragraph.

According to [ORTIZ & STAINIER 1999; ORTIZ 2002; CARSTENSEN, HACKL & MIELKE
2002], it is possible to derive a reduced functional, denoted as £, which only depends on
the rate of the deformation and the strain-like internal variables o« and FP. For that
purpose, £ is re-written by applying the LEGENDRE transformation

J'(LP,&)=sup {S: L’ +Q -&| (,Q) €E,} (2.74)

of J. Since J* is positively homogeneous of degree one, a maximization of £ with respect
to (¥, Q), results in

E(p, FF a) = ¥(p, F¥,a) + J* (L, ). (2.75)

Hence, the only remaining variables are ¢, F® and é&. Even more importantly, the strain-
like internal variables F* and « follow jointly from the minimization principle

Veea (#) 1= 0 £(p, F”, &) (2.76)

which, itself, gives rise to the introduction of the reduced functional &t,ed depending only

on the deformation mapping. It is interesting to note that for hyperelastic continua, Wyeq
equals the rate of the strain-energy density, i. e.,

Ured (@) = ¥(e). (2.77)
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As a result, in this case, \imd represents the time derivative of a potential. This identity
leads to the presumption that the time integration of Eq. (2.76) or Eq. (2.77) defines an
incremental functional, denoted as [;,., which extends the principle of minimum potential
energy according to Subsection 2.3.2 to standard dissipative continua, i. e.,

tn+1

linclip) = inf //e(qa,iv"’,a) dth—/poB-tpdV—/T-tpdA (2.78)
" la i Q 520

and
p = arg ir‘;f Tine(¢p)- (2.79)

It should be pointed out that the minimization path of the internal variables according to
Problem (2.78) can only be computed analytically for selected, relatively simple examples,
cf. [CARSTENSEN, HACKL & MIELKE 2002].

Remark 2.5.1.1 The extension of the method described in this subsection necessary for
rate-sensitivity (for the inelastic deformations) as well as for viscous material models
is relatively straightforward, see [ORTIZ & STAINIER 1999; ORTIZ 2002/. For further
details concerning the implementation of non-linear finite viscoelasticity, refer to [FAN-
CELLO, PONTHOT & STAINIER 2005].

2.5.2 Numerical implementation

As mentioned before, the analytical solution of the minimization path of the internal
variables required in Eq. (2.78) can only be computed for simple problems. For more
complex systems, the time integration is approximated by the following methods

LP At~ [1 - P, o IPAtmlog [Fg+1 : Fg"] (2.80)
and
& At = [atpy1 — O] . (2.81)

Here, At = t,,, — t, is the length of the time interval considered. The numerical
schemes (2.80) and (2.81) are equivalent to the time integrations (2.63) and (2.64). Ap-
plying these approximations, time integration of Eq. (2.75) leads to

tn41
/ Edt =¥(p,y1, Fryyy@nst) — Yo, Foyan) + J(LP At,0nyy — o)

tn

(2.82)
= ‘I’ap,F",a(‘Pn-g-h Fﬁ+1, an+l)

where the assumption that J* is positively homogeneous of degree one was introduced
and At > 0. Obviously, the functional ¥, r» o is not unique. It depends on the time
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integration applied, cf. [ORTIZ & STAINIER 1999; ORTIZ 2002; CARSTENSEN, HACKL
& MIELKE 2002]. Since Eq. (2.82) represents an approximation (time discretization)
of Eq. (2.75), the strain-like internal variables are obtained by minimizing ¥, rr o with
respect to F'n,, and c,1. That is,

(Fﬁ+11 an+l) =arg iln£ “ ‘I'tp.F",a(‘Pn+h F,'L,u an+l)- (2'83)
n411%n
It is noteworthy that FP and o are defined pointwise. Consequently, the optimization
problem (2.83) is restricted to the integration points, if standard finite element formu-
lations are used. For the computation of the tuple (F%,,, an41) classical numerical
procedures such as NEWTON’s method can be applied. Inserting the solution (F¥%_,,
Qi qy) into Yo, o o gives rise to the definition of the reduced potential

Wine(Pns1) = o inf \I'qp,FP.c(‘PnH»F?&h Qpy)- (2.84)

ntl Qnl

According to Eq. (2.84), ¥;,. depends on the state variables at time ¢, and hence, it is
incremental in nature. If now the hyperelastic functional ¥ in Eq. (2.33) is replaced by

‘I’inc(‘pn+l)’ I(‘Pn-{-l) reads

Honi) = [Volbre) V= [ BeppaaV = [Togaa  @89)
Q Q 2

The interesting property of this function becomes apparent if the respective stationarity
condition is computed. It gives

a\Ilim:

DIVP + po B =0, P.N=T, with P= .
aFn+l

(2.86)

Consequently conservation of linear momentum, together with the NEUMANN boundary
conditions, are obtained by a variation of I with respect to ¢o. More precisely and fully
analogously to hyperelastic materials, the deformation mapping follows from the mini-
mization principle

Py = AIE qi’nfl {( Ry (2.87)

and the reduced functional ¥;,. acts like a potential for the first P1OLA-KIRCHHOFF
stresses P. The only difference between hyperelastic continua and standard dissipative
solids is the specific form of ¥ and ¥;,.. In summary, the strain-like internal variables
F? and a as well as the deformation mapping are governed by the variational formula-
tion (2.83) and (2.87), respectively. Further details about variational constitutive updates
can be found in [CoMI, CORIGLIANO & MAIER 1991; CoMI & PEREGO 1995; OR-
T1Z & STAINIER 1999; ORTIZ 2002; CARSTENSEN, HACKL & MIELKE 2002; MIEHE
2002].
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Remark 2.5.2.1 Clearly, the algorithmic tangent obtained by linearizing the variational
update described in this section is always symmetric. Consequently, the resulting stiffness
matriz is also symmetric leading to an increase in computational efficency.

Remark 2.5.2.2 It should be pointed out that in contrast to conventional plasticity theo-
ries, the variational formulation as advocated in [ORTIZ & STAINIER 1999/ is not based
on the introduction of a yield function. Instead of that, the flow rule represents the prim-
itive postulate. The yield function depending on this rule follows from the variational
update. This procedure is sometimes advantageous, ¢f. [ORTIZ & PANDOLFI 2004/.

2.5.3 Example: vON MISES plasticity model

In this subsection, the previously discussed variational update is applied to VON MISES
plasticity theory. The resulting numerical implementation is used in the examples in
Chapter 6. The particular model addressed in this subsection follows to a large extent
[ORTIZ & STAINIER 1999], see also [ORTIZ 2002]. However, in contrast to the original
work, a yield function in terms of MANDEL stresses is introduced a priori.

The space of admissible stresses corresponding to classical vON MISES plasticity model
can be defined by the yield function

¢(Z,Q) = |ldev[Z]|l. — Zy — Q™). (2.88)

Here, P is the vVON MISES effective plastic strain, and dev[X] denotes the deviatoric part
of . It should be noted that the entire model is isotropic and hence, the MANDEL stress
tensor X is symmetric. Since ¢ is positively homogeneous of degree one (in X and Q), J*
reads

Jr=¢rTh (2.89)

(cf. Remark 2.4.1.6), if the plastic deformations are admissible, i. e.,

F'.FP™ =¢P M, with ttM =0, M=MT, %M :M=1, £ >0. (2.90)
Otherwise, J* = oco. Further details may be found in |[ORrRTIZ & STAINIER 1999;
ALBERTY, CARSTENSEN & ZARRABI 1999; ORTIZ 2002; CARSTENSEN, HACKL &
MIELKE 2002]. Clearly, since  is symmetric, the plastic spin WP = skew[F" . F"-']
(relative to the intermediate configuration) cannot be computed by Eq. (2.90),. However,
as mentioned before, the reason for the symmetry of M is that the model proposed here
is fully isotropic. For such theories the orientation of the intermediate configuration is
irrelevant. More precisely, the plastic spin remains arbitrary. The model as described
has to be supplemented by an energy density. As a result of the different volumetric
and deviatoric material response associated with metals which are often modeled by VON
MISES plasticity theory, an energy functional of the type

U(C® eP) = U (J®) + p ||e°]|2 + TP(eP),  J® =det F® (2.91)



2.5 Standard dissipative media 39

represents a reasonable choice. Here, e® denotes the deviatoric part of the HENCKY strains
€% i e,
1 1
ef:=¢° — 3 tr[e®] 1, €= 3 log C°. (2.92)

Alternatively, by using the properties of the exponential mapping, e® can be re-written
as

1
e =7 log Celdev) (2.93)

with C®*") being the elastic right CAUCHY-GREEN tensor corresponding to a volume
preserving deformation, i. e.,

Celder) = pelden)” . pelden)  ith Pl = g Fe det B9 =1, (2.94)

cf. [SiMO & TAYLOR 1991]. With those identities, the elastic isochoric part of the energy
density (2.91) reads

3
pllel3=n Y log? g (2.95)
A=1
where A9 are the principal stretches associated with Fe°@") Clearly, by specifying the
elastic dilatant material response by setting

wl(Je) = % klog?J’, K=A+ g i, (2.96)
HENCKY's model is obtained, cf. [SIMO 1998], page 391. The interesting property of the
density (2.91) is that the resulting deviatoric stresses

= v e
dev|[S] := Fes = 2ue (2.97)
governing inelastic deformations depend linearly on the strains e®, cf. [CuITI NO & ORTIZ
1992; ORTIZ 2002]. This fact leads, as it will be shown, to a numerical implementation
formally identical to that of standard small strain plasticity models.

If the exponential time integration scheme according to Eq. (2.64) is used, the computed
inelastic deformations are purely deviatoric, i. e., tr[M] = 0 and det Fo,, = 1. Fur-
thermore, in the case of the model adopted, the direction of the plastic flow is constant
within the return-mapping algorithm. That is, M|,,; = M = const. Considering those
identities, the deviatoric part of the stresses takes the form

dev[S]|,,, =2 p e, with e, =ef —Aeh,, M. (2.98)

Clearly, here ef, are the elastic trial strains. By inserting Eq. (2.98), into the energy
density, the incremental potential (2.82) simplifies to

\p‘P'FP'eP = ‘I’p,ﬂ"gp (‘Pﬂ-i-l’ A&'ﬁ,‘_l, M, (pn, Fg, Eg). (2.99)
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As a result, this potential depends only on the deformation mapping and the plastic
multiplier at time {,.; and on the flow direction M being constant within the return-
mapping algorithm. Minimization of Eq. (2.99) with respect to M yields

Mo deviSu] 3 e (2.100)
Finally, inserting this equation and minimizing with respect to Ae!_, defines the reduced

potential U;,.. Further details are omitted. They may be found in [ORTIZ & STAINIER
1999; OrTIZ 2002].

According to Remark 2.5.3.1, the flow direction can be re-written alternatively as
_ 3 _dev[X,]
2 ||dev[Zu]ll2
in terms of MANDEL stresses. Interestingly, since ¢ is a positively homogeneous function
of degree one, the minimum problem governing the internal variables (2.83), together with
the flow rule (2.101), is equivalent to the discrete yield condition, i. e.,

arg inf Yome <<= Aeg,; 20 : §(Z,Q(Ae))],y =0 (2.102)

En+t

M (2.101)

This problem is solved locally (for each integration point) by applying NEWTON’s scheme.
The consistent linearization of the algorithm necessary for an asymptotic quadratic conver-
gence can be derived in a relatively straightforward manner, cf. [ORTIZ 2002]. It requires
the derivative of the exponential and logarithmic mapping, cf. [ORTIZ, RADOVITZKY &
REPETTO 2001; ITSKOV 2003]. Details are omitted.

Remark 2.5.3.1 Here, it is shown that the discrete flow rule (2.100) can alternatively
be re-written as

_ 2 dev[Zy]
M= 3 TSl (2103
From the assumed potential (2.91) the KIRCHHOFF stresses are obtained as
Vo
T=—1tp log b°(de¥) (2.104)

with b°9Y) being the left CAUCHY-GREEN tensor defined by the volume preserving defor-
mation gradient (2.94),. Using this equation, the deviatoric part of the MANDEL stresses
is defined by

3
dev|S] = p dev [Fe" log b=V . Fe"’] =24 Y logA  Na®Na  (2.105)
A=l

where N 4 represent the eigenvectors of C° and C*9®Y), respectively. Purthermore, apply-
ing Eq. (2.93), the strain tensor e® yields

3
e’ = % log[devC®] = Z log A& N, ® N 4. (2.106)
A=1
Consequently devE = devS and thus, the equivalence (2.103) holds.
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2.6 Variational, thermomechanically
coupled formulation

The extension of the variational constitutive formulation, as described previously, which
is necessary for thermodynamically coupled problems, is briefly discussed in this section.
Although the variational coupling of mechanical and thermal processes enjoys a relatively
long tradition (dating back at least to [BloT 1956; BioT 1958] in the case of thermoe-
lasticity) a consistent framework taking into account large deformations and dissipation
resulting from plasticity or material damage, rate sensitivity and viscosity has been pro-
posed only recently, [YANG 2004; YANG, STAINIER & ORTiZ 2005}, see also [HACKL
1997).

Since a naive coupling of the purely mechanical problem with heat conduction does not
lead to a variational structure and consequently, it does not lead to a symmetric stiffness
matrix, most of the previous implementations were based on staggered solution schemes
consisting of two subproblems, each of them showing a symmetric tangent matrix. A state
of the art review concerning those models can be found in [SiMo 1998]. Despite this ad
hoc decoupling, those models require additional constitutive assumptions. For instance,
usually the TAYLOR-QUINNEY factor is introduced (see [TAYLOR & QUINNEY 1937])
measuring the fraction of plastic power converted to heat.

With a variational constitutive update as proposed in [YANG 2004; YANG, STAINIER
& ORTIZ 2005], those drawbacks can be avoided. Additionally, as mentioned in the
previous sections, a variational structure opens up the possibility to analyze the existence
of solutions by using, nowadays, standard techniques originally designed for hyperelastic
continua. Furthermore, such a structure can be taken as a basis for canonical error
estimation. This will be shown in Chapters 4 - 6.

Conceptually speaking, the extension of the variational formulation advocated in [ORTIZ
& STAINIER 1999] to the fully thermodynamically coupled problem as proposed in [YANG
2004; YANG, STAINIER & ORTIZ 2005] requires three modifications.

e Thermal effects have to be added to the dissipation. For the sake of clarity and
simplicity, a fully uncoupled plasticity, viscosity and heat conduction is assumed.
The more general case does not cause any additional problems. With this postulate,
the dissipation resulting from plastic deformations is reflected by J* according to
Eq. (2.74). Introducing a viscous-type dissipation pseudo-potential ¢* in the sense
of [ORTIZ & STAINIER 1999] and a FOURIER-type dissipation pseudo-potential x
(cf. [S1MO 1998], page 437), such that

Pligeo = 050" (2.107)

and i
H = dgx, with G= ~3 GRADS, (2.108)
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a positive dissipation is guaranteed a priori, if J* and ¢* are convex and x is a
concave function. Here, Py iS the viscous or non-equilibrium stress of first PIOLA-
KIRCHHOFF type.

The second step necessary to obtain a variational structure is the distinction between
the equilibrium temperature and the ezternal temperature, cf. [YANG, STAINIER &
ORTIZ 2005]. While the external temperature 8 is the standard one, the equilibrium
temperature 6 is given by the equilibrium condition, i. e.,

6 = OyU(F, F®,a, N) (2.109)

with U denoting the internal energy density and N is the entropy, see Subsec-
tions 2.2.2 and 2.2.3. Clearly, at equilibrium those two temperature are equal.
However, this condition is only enforced in a weak form by applying a Hu-WASHIZU
formulation. That is, # and N can be varied independently of one another.

If the standard field equations governing the thermomechanical problem are re-
written into a corresponding weak form, they do not represent the EULER-LAGRAN-
GE equations of a potential. In [YANG, STAINIER & ORTIZ 2005], this problem is
solved by using integrating factors obtained by a time rescaling. More specifically,
the integration factor derived from the symmetry condition of the DIRICHLET form
of the rescaled weak form reads

£(8,8) = g (2.110)

Evidently, at equilibrium, f = 1 and hence, no rescaling occurs. Further details are
omitted. They can be found in [YANG 2004; YANG, STAINIER & ORTIZ 2005].

Applying the three steps listed above, [YANG 2004; YANG, STAINIER & ORTIZ 2005]
finally derived the variational problem

with

I(¢,0,N, &, F") =

inf supI(p,0, N, é&, F°) (2.111)
P& F N 8

[U _ON+A (g (BB, &), -% GRADH)] v

poB-tpdV—/T-gbdA (2.112)
50
0

poRlogidV— /H-N—dA.
Bo 6o

|
P PSP

850
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Here, g is the temperature of the referential state 0, 02 is the boundary with prescribed

heat fluxes and
A=J+¢"-x. (2.113)

It can be shown in a relatively straightforward manner that the EULER-LAGRANGE equa-
tions associated with Eq. (2.112) are equivalent to the field equations governing the cou-
pled thermomechanical problem. For further details, the reader is referred to [YANG
2004; YANG, STAINIER & ORTIZ 2005].

Similarly to the purely mechanical formulation, the variational constitutive update is
based on an approximation of Eq. (2.112). More specifically, a time discretization of
Eq. (2.112) leads to the incremental functional

¢n+1

‘I’lp,F",aﬂ.N((Pn-}-l ) on+h Nn+l: Fz+h an+l) = / I(‘P’ 01 Nz d, Fp) dt (2114)

tn

Clearly, the stationarity conditions of Eq. (2.114) represent consistent approximations of
the field equations of the thermomechanically coupled problem. Following Section 2.5,
the internal variables and the entropy are computed from the minimization principle

inc(Pns1sOnt1) = inf U, FPa0.N (2.115)
Nn-i-luFL.’.pan'Q-l

which defines the reduced pseudo-potential ¥;,.. Finally, the deformation mapping and

the temperature follow from the variational problem

(Pns1r In+1) = arg inf sup Y. (2.116)
Pn+l Ont1
It should be noted that for many material models the minimization problem (2.115) can
be simplified significantly.

2.7 Range of application of classical local continuum
theories

Since the early work of [HADAMARD 1903] it is known that classical local continuum the-
ories may lead to non-physical solutions. More precisely, [HADAMARD 1903] showed that
the wave propagation speed depending on the constitutive relation can become complex-
valued. This phenomenon is strongly linked to the loss of ellipticity of the governing
equations, cf. [HIiLL 1958; THOMAS 1961; MANDEL 1966; RUDNICKI & RICE 1975;
RANIECKI & BRUHNS 1981; MARSDEN & HUGHES 1994]. That is, the partial dif-
ferential equation corresponding to the respective physical problem may change from the
elliptic to the hyperbolic type (in the static case). Hence, it is possible that the considered
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Boundary Value Problem (BVP) becomes ill-posed (see [BRAESS 1997]). If this transi-
tion occurs, the solution of the BVP is not unique anymore. Clearly, applying the finite
element method to the numerical analysis of such problems, the described mathematical
implications result in a lack of invariance of the computed solution with respect to the
spatial discretization, cf. [DE BORST 1986; DE BORST 2001].

The just mentioned ill-posedness of the governing equations characterizing the considered
physical problem is often activated by strain-softening. This type of softening is defined
as the effect of decreasing stresses while the respective strains are increasing. For instance,
the macroscopic material response due to cracking in brittle materials, slip bands in soils
or LUDER’s bands shows strain-softening. As a consequence, those physical phenomena
cannot be modeled by applying a standard local continuum theory.

The mesh dependency of the numerical results is not the only problem when dealing
with strain-softening. Often, the regions showing inelastic deformations are highly lo-
calized. More precisely, the characteristic diameter of those regions is several orders of
magnitude smaller than the respective engineering structure under investigation. As a
consequence, strain-softening can be understood as a multi-scale problem. According to
[BELYTSCHKO, FIsH & ENGELMANN 1988], an efficient approach suitable for the anal-
ysis of strain-softening should not only avoid the mesh dependence of the numerically
computed solutions resulting from the ill-posedness of the governing equations, but it
should also account for the multi-scale character of the underlying physical problem. In
the next chapter, a model falling into the range of such multi-scale approaches will be
proposed.



Chapter 3

Modeling of localized material
failure by strong discontinuities

In this chapter, a finite element formulation suitable for numerical analyses of highly lo-
calized material failure such as cracking in concrete or shear bands in ductile metals is
presented. The model is based on the so-called Strong Discontinuity Approach (SDA).
Within this framework, the final failure kinematics of solids are approximated by means
of a discontinuous displacement field (jumps in the deformation mapping). Following the
Enhanced Assumed Strain concept (EAS), an additive decomposition of the displacement
gradient into a conforming and an enhanced part is employed. While the conforming part
is represented in a standard manner by using classical LAGRANGIAN interpolations, the
enhanced part is derived from a discontinuous displacement field reflecting the kinematics
induced by localized material failure. Referring to the displacement jump, no special as-
sumption, such as purely mode-I or mode-II failure, is made. The same holds for the class
of interface laws considered which govern the evolution of the displacement discontinuity
in terms of the traction vector acting at the surface of strong discontinuities. Conse-
quently, the suggested numerical framework can be applied to a broad range of different
interface laws, including damage-based models. In contrast to previous works, the pre-
sented finite element formulation does not require the static condensation technique to be
employed. More precisely, instead of computing the conforming part of deformation and
the displacement jump simultaneously from the weak form of equilibrium and the weak
form of traction continuity, the different parts of the local deformation are decomposed ac-
cording to a predictor-corrector algorithm. The proposed predictor and the corrector step
are formally identical to those of classical computational plasticity models. Hence, sub-
routines originally designed for standard models (continuous deformation) can be applied
with only minor modifications necessary. The applicability as well as the performance of
the resulting finite element formulation are demonstrated by means of selected numerical
examples.

45
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Xa,” =Xy . et :bsh

Figure 3.1: Body 2 C R? separated into two parts Q= and Q* by a two-dimensional
submanifold 8,9 of class C!

3.1 Kinematics induced by strong discontinuities

A review on the kinematics associated with the Strong Discontinuity Approach (SDA) is
given. At first, discontinuous deformation mappings are described in a general format.
Subsequently, the characteristical assumptions concerning the SDA are incorporated. This
section follows to a large extent [MOSLER 2004; MOSLER 2005B; MOSLER 2005A).

3.1.1 Fundamentals

According to [OLIVER & SIMO 1994; OLIVER & SiMO 1994; OLIVER 1995A; OLIVER
19958], a domain Q@ C R3 (more precisely, an open bounded set) is assumed to be
separated into two parts Q~ and Q% by means of a surface 3, (see Fig. 3.1). In what
follows, it is sufficient to postulate that 8,0 is a piecewise C! hyperplane. From a physical
point of view, this hyperplane represents a crack surface or a slip plane, respectively.
Since 8,0 is of class C!, the normal vector N € Nx, of the submanifold 3, at the point
Xo € 0,0 is well-defined, i. e., dim Nx, = 1. Clearly, the introduction of a surface 3,2
induces a partition, i. e.,

Q= QruN"usA0. (3.1)

Next, a discontinuous deformation mapping ¢ is considered. This mapping connects each
point X in the reference configuration €2 to the corresponding point 2 in the current
placement (). Since Q is assumed as connected and ¢ = idg + u, a discontinuous
deformation mapping is equivalent to a discontinuous displacement field . In what
follows, a displacement mapping of the type

ulos € CP(QE,RY), QO :=Q*uUQ- (3.2)

is considered, i. e., ¥ may be discontinuous at 8,0 while it is smooth on Q*. This re-
striction is reasonable, since the finite element kinematics as proposed in Section 3.1.3
are based on a polynomial approximation of the displacement field #|o+. Applying condi-
tion (3.2), the left hand limit w~(X) and the right hand limit #*(X,) of the displacement
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mapping u :  — R3 at X € §,Q are obtained as
w(Xo) = lim u(XE), (XDaen€ (@), XioXo(n—oo).  (33)
Hence, the discontinuity of © at X, is computed as
[u(Xo)] := u*(Xo) —u™(Xo) VX, € . (3.4)

Introducing the HEAVISIDE function with respect to the singular surface ., i. e., the
indicating function of the subset Q*, a displacement field of the type (3.2) can be re-
written into the form

w(X)=u_(X)+ H, (u (X)-u_(X)), u_,u, € Coo(,R3). (3.5)

Since u_ and u, are completely independent of one another, u|g- = u_|o- and u|g+ =
. |o+ are independent as well. As a consequence, the jump of the deformation gradient
F computed from Eq. (3.5) is not zero, in general, i. e.,

[F(Xo)] #0,  Xo€a0. (36)

All numerical models based on the incorporation of strong discontinuities into finite el-
ements are based on a deformation mapping characterized by Eq. (3.5), see [SIMO &
OLIVER 1994; ARMERO & GARIKIPATI 1995; LARSSON, RUNESSON & AKESSON 1995;
LARRSON & RUNESSON 1996; OLIVER 1996; ORTIZ & PANDOLFI 1999; ARMERO
1999; BorJA & REGUEIRO 2001; WELLS & SLuys 2001c; WELLS & SLuys 2001B;
DoLBow, MOES & BELYTSCHKO 2002; MOSLER & MESCHKE 2003; MOSLER &
BRUHNS 2004]. In some approaches, an additional term associated with the stress singu-
larity at the crack tip is added to the displacement field (3.5), cf. [BELYTSCHKO & BLACK
1999; MoEs, GRAVOUIL & BELYTSCHKO 2002B; MoEs, GRAVOUIL & BELYTSCHKO
20024].

Remark 3.1.1.1 The displacement field (3.5) and its corresponding deformation map-
ping are piecewise continuous. More precisely, u belongs to the space of special functions
with bounded variations (SBV), ¢f. [AMBROSIO, Fusco & PALLARA 2000/. This space
is spanned by all functions having bounded deformations (BD) in the sense of [MATTHIES,
STRANG & CHRISTIANSEN 1979; TEMAN & STRANG 1980/ and a singular CANTOR-
part. According to [NEGRI 20058/, the space SBV is large enough for most free disconti-
nuity problems but significantly more regular than BD.

3.1.2 The strong discontinuity approach

After having presented the general kinematics induced by a discontinuous deformation
mapping, attention is turned to the displacement field characteristical for the strong dis-
continuity approach in the sense of [SIMO, OLIVER & ARMERO 1993; SiMO & OLIVER
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1994; OLIVER 1996]. According to [OLIVER 1996], a displacement field of the format
u=1u+[u] (H,—¢), with @ eC®(Q,R?), ¢ C®(Q,R) (3.7)
is assumed. By comparing Eq. (3.7) to Eq. (3.5),
u.=t-[u] ¢ and u,=ua+[u] (1-9¢) (3.8)

is obtained. The smooth ramp function ¢ allows to prescribe the Dirichlet boundary
conditions in terms of & (see [SIMO & OLIVER 1994; OLIVER 1996]). This will be
described in Subsection 3.1.3.

Applying the generalized derivative D to the Heaviside function which results in the
identity DH, = N 4, the deformation gradient is computed from Eq. (3.7) as

F—1+3—;+a[u]] (Hi— o) +[u]®N § ~ [u] ® =&

[

o (3.9)

Here, &, represents the DIRAC-delta distribution with respect to 3,Q. Clearly, Eq. (3.9)
has to be understood in a distributional sense, cf. [STAKGOLD 1967; STAKGOLD 1998|.
According to Eq. (3.9), F consists of three parts: An absolutely continuous part 1 +
01/0X — 0 [u] /0X ¢ —[u] ® Fp/dX, a jump part 3 [u] /0X H, and a singular distri-
bution [u] ® N 4.

Remark 3.1.2.1 Restricting attention to the one-dimensional case for now and applying
the partial derivative to Eq. (3.7), the non-vanishing component F of the deformation
gradient in QF := QY UQ~ is computed as

F=1 + - - [u] (3.10)

Consequently, the limits according to Eq. (3.3) yield

F* = xlimx (1 + == — [¥] ) ,  with Xp = 9,Q. (3.11)
—A0

Since 4,p € C®, the equivalence

- ou Op
+ = | — _— —_r
Fr=F (ax [l ax) Xo

holds. Hence, in contrast to the displacement field (3.5), the kinematics corresponding to
Q- and QF are not completely independent of one another, c¢f. Eq. (3.6). For further
details refer to [JIRASEK & BELYTSCHKO 2002; MOSLER & BRUHNS 2004/. As it will
be shoun, for the SDA, the identity (3.12) is also fulfilled in the three-dimensional case.

(3.12)
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3.1.3 Numerical implementation

The approaches using kinematics induced by strong discontinuities can be subdivided into
two classes:

e Interface elements as proposed in [NEEDLEMAN 1990; CAMACHO & ORTIZ 1996;
ORrriz & PANDOLFI 1999]. For such models, a jump in the deformation field is
allowed to occur only at the boundary between neighboring finite elements.

e Approaches accounting for displacement jumps in the interior of finite elements. A
further classification is possible, if the way of modeling the discontinuity is used as
a criterion.

— The deformation discontinuity is approximated element-wise (SDA). Continu-
ity of the field of the discontinuities is not guaranteed at the element bound-
aries, cf. [DVORKIN, CUITINO & GioiA 1990; KLisINSKI, RUNESSON &
STURE 1991; SiMO, OLIVER & ARMERO 1993].

— eXtended Finite Element Method (X-FEM) or Partition of Unity Finite Ele-
ment Method (PU-FEM), cf. [MOES, DoLBOW & BELYTSCHKO 1999; SUKU-
MAR, MOES, MORAN & BELYTSCHKO 2000]. Conceptually speaking, a given
deformation approximation is locally enriched by functions showing a compact
support.

More detailed comparisons between numerical models based on strong discontinuity kine-
matics are given in [JIRASEK 2000; JIRASEK & BELYTSCHKO 2002; MOSLER & MESCH-
KE 2004; DUMSTORFF, MOSLER & MESCHKE 2003; MOSLER 2004; OLIVER, HUESPE,
PuULIDO & SAMANIEGO 2005|. From the discussions contained in these works follows
that at present, it is not clear which of those approaches is more promising.

On the one hand, finite element formulations accounting for deformation jumps within
the interior of the elements show the advantage that the space of admissible disconti-
nuities (the geometry of 9,2) is very large. However, those approaches imply that the
topology of 8,2 has to be stored, e. g. by using level, cf. [STOLARSKA, CHOPP, MOES
& BELYTSCHKO 2001]. Consequently, the resulting numerical costs are very expensive.
To the best knowledge of the author, neither the SDA nor the X-FEM have been applied
to the simulation of complex material failure with 9,0 modeled in a continuous manner.

On the other hand interface elements allow for computing complex material failure. In
the case of cracking in brittle structures, the reader is referred to [ORTIZ & PANDOLFI
1999; PANDOLFI, KRYSL & ORTIZ 1999; PANDOLFI, KRYSL & ORTIZ 1999; CIRAK,
ORtIz & PANDOLFI 2005]. However, by approximating 8,2 by the facets of the finite
elements, the space of admissible discontinuities is relatively small. Hence, this method
can lead to an overestimation of the dissipation, see [PAPOULIA, VAvAsIS & GANGULY
2005].
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In the present work, a finite element formulation based on the Enhanced Assumed Strain
concept (EAS), cf. [SiMO & RiIFal 1990; SiMmo & ARMERO 1992; SIMO, ARMERO &
TAYLOR 1993], is proposed. It falls into the framework advocated by [SiMO, OLIVER &
ARMERO 1993; SiMO & OLIVER 1994; OLIVER 1996]. The numerical comparison be-
tween the SDA and the X-FEM contained in [OLIVER, HUESPE, PULIDO & SAMANIEGO
2005] leads to the conjecture that the SDA is, in many cases, more efficient than the
X-FEM.

Following the EAS concept, the enhanced part of the deformation gradient is modeled in
an incompatible fashion. In what follows, only the displacement field % is approximated
globally (conforming), i. e.,

Ninode

=Y N, (3.13)
i=1

with the nodal displacements @; at node i. Eq. (3.13) gives rise to the introduction of
the deformation gradient
ot

F =1+ GRAD1, GRAD% := X (3.14)

corresponding to the conforming part of the deformation.

Assuming the jump [u] is known, only the ramp function ¢ has to be specified in order to
define the kinematics (3.9) uniquely. In line with [OLIVER 1996], ¢ is designed by using
the standard shape functions N;. More precisely,

¢= Z N;. (3.15)

naF
Here, Z denotes the summation over all nodes of the respective finite element belonging
i=1

to Q+. Owing to the properties of the shape functions,
(X)) =u4(X;) VX, (3.16)

i. e., the displacement field is identical to the globally conforming one at the nodes X§ of
the finite element e and hence, the DIRICHLET boundary conditions can be formulated in
terms of 4. Most of the finite element formulations dealing with strong discontinuities are
based on an element-wise plane surface 9,92. This approximation is used for the numerical
model presented in this chapter as well. If 3,0 is plane, it can be checked efficiently, if a
node belongs to Q* or Q~.

Interpolating only % in a compatible manner, the incompatible enhanced displacement
gradient results in

H=2 (g )i [WeNb6-Rlo 2, (3.17)
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cf. Eq. (3.9). Since H does not need to represent the derivative of a conforming dis-
continuous deformation field, it is admissible to neglect the gradient of the displacement
discontinuity, i. e., 8[u] /0X = 0 and to consider a deformation gradient of the type

~

F=1+%+[u]®N&,—[u]®g—§. (3.18)
The assumption 9 Ju] /0X = 0 is characteristic for the SDA, see e. g. [SIMO & OLIVER
1994; OLIVER 1996; ARMERO & GARIKIPATI 1996; LARRSON & RUNESSON 1996;
ARMERO 1999; BoRrJA 2000; WELLS & SLuys 2001C; JIRASEK & ZIMMERMANN
2001]. Clearly, only in the case @[u] /0X = 0, Eq. (3.18) represents the generalized
derivative of the deformation mapping (3.7). However, F captures the highly localized
displacements and complies with the restrictions of the EAS concept. It should be noted
that the more general case 9 [u] /0X # 0 does not lead to any problems, cf. [ALFAIATE,
SIMONE & SLuys 2003].

The additive decomposition (3.18) of the deformation gradient is not well-suited for the
development of constitutive equations. Following [GARIKIPATI 1996; ARMERO & GA-
RIKIPATI 1996], Eq. (3.18) is re-written into a multiplicative decomposition as

F = 1+J®NJ, J:=F""[u]. (3.19)

As a consequence, F' represents the regularly distributed part of the deformation gradi-
ent, while F is associated with the singular distribution resulting from the generalized
derivative of the displacement jump. In Eq. (3.19), J denotes the material counterpart
of the displacement discontinuity, i. e., J is the pull-back of [u] with respect to the
mapping represented by F in a differential geometry framework. Therefore, J can be
interpreted as a vector on the intermediate configuration induced by the multiplicative
decomposition (3.19);. However, since

Flas = Flos, (3.20)

the pull-back of tensors (with F') defined on ¢(Q2*) leads to objects on the undeformed

configuration. More precisely, the multiplicative decomposition (3.19); holds only for
X, € 3,9. For X € Q% it reduces to F = F.

Analogous to standard multiplicative plasticity theory, the spatial velocity gradient  :=
F . F~! is computed as

= F.F'

l=i+2, With - 2 ~-1 =_1
= F-F-F -F .

(3.21)

) i

According to Eq. (3.21), 1 is decomposed additively. It consists of a part I, associated
with the continuous deformation mapping and a second term I, resulting from the rate
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of the displacement discontinuity. Since F' is regularly distributed, I can be computed
in standard manner. However, to obtain I, an inversion of a singular distribution is
necessary. To the best knowledge of the author, I was computed in [GARIKIPATI 1996;
ARMERO & GARIKIPATI 1996] for the first time. For that purpose, F was interpreted as
a linear mapping between two vector spaces. Alternatively, it is possible to approximate
the DIRAC-delta function by using an h-sequence, that is,

oh = % &8 (h— o), (3.22)
applying the well-known SHERMAN-MORRISON formula and computing the limiting value,
i. e., h — o0, cf. [LARSSON, STEINMANN & RUNESSON 1998]. Both procedures result
in

=L, [uje N-F'4, (3.23)

where £, [u] represents a LIE-type derivative according to

8 (e I
L, [u]—F-E{F -[u]}—[u]+l-[u]. (3.24)
Here, xs,n denotes the indicating function of the subset ;2.

Remark 3.1.3.1 According to Egs. (3.13) and (3.15), 4 € C*(2,R3) and p € C*°(Q, R).
As a result,

[Fl=[F] =0 vXeaQ (3.25)

Hence, as in the one-dimensional case, the kinematics in Qt and Q= are not completely
independent of one another, ¢f. Remark 3.1.2.1.

Remark 3.1.3.2 Note that for functions belonging to SBV, boundary conditions or the
definition of the displacement jump require the trace of u, cf. [NEGRI 2005B]. However,
most finite element formulations, including the one presented in this work, are based
on piecewise smooth deformation approrimations. As a consequence, the trace operation
reduces to the standard evaluation of u or @, respectively.

Remark 3.1.3.3 The kinematics, as well as the finite element implementation proposed
in this chapter are based on only one localization surface 8;Q within the body Q (the finite
element). For the case of multiple strong discontinuities, see [MOSLER 2004; MOSLER
2005D/.

Remark 3.1.3.4 Since in what follows, an evolution equation for J will be applied, F
can be computed. As a consequence, the intermediate configuration induced by the multi-
plicative decomposition (3.19) of the deformation gradient is defined uniquely.
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3.1.4 Comparison to other
SDA-based finite element formulations

Many different numerical methods based on embedded strong discontinuities can be found
in the literature. In this section, it will be shown that some of them are equivalent, cf.
[MosLER 2004]. Since most of the approaches are restricted to a geometrically linearized
theory, the small strain tensor ¢ is required. From the kinematics described in the previous
subsection ¢ results in

e = (Vu)™™ = (V&)"™ — ([u] ® Vo)”™ + ([u] ® N)*™ 4. (3.26)

=:€

Restricting attention to constant strain triangle elements and using VOIGT notation (the
conversion between a tensor A and its corresponding matrix is indicated by brackets, i. e.,
[A]), [IRASEK & ZIMMERMANN 2001] considered a strain field of the type

(3
e]=Bd—BHe, VXeQ* with d=[ag]. (3.27)

ity

Here, B represents the B-operator, d the vector of nodal displacements (see [BATHE
1995]), e the vector of the displacement jump with respect to a local cartesian coordi-
nate system defined by the normal N and H a matrix which reflects the effect of the
displacement discontinuity on the nodal displacements, respectively. The B-operator is
decomposed into a differential operator Dg and the interpolation matrix IN according to
[BATHE 1995]
MO -0
B:=Dg N, N:= 0 N, .. Ns]'

Clearly, B d = [V®™i] (compare Egs. (3.27) and (3.28) to Egs. (3.26) and (3.13)).
Hence, to show the equivalence of Eq. (3.27) and Eq. (3.26),

(3.28)

E]=BHe. (3.29)

Without loss of generality, it is assumed that X3 € Q% while X{, X3 € Q. In this case,
the matrix H is of the type (see [JIRASEK & ZIMMERMANN 2001])

cosa Sina

00
T __ T T T 1 = = =
H —[Hl,Hz,H:,] with H, = H, [0 0],H3 [—sina oS &

] . (3.30)

With Eq. (3.15) and applying the differential operator D¢, the left hand side of Eq. (3.29)
yields
] = De (¢ [ul), with =N, (331)
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Inserting Eq. (3.31) into Eq. (3.29) and computing the product N H, Eq. (3.29) is
re-written as
N; [u] = N; HY e. (3.32)

Since [u] = HJ e, i. e., the matrix HJ transforms the local components of the dis-
placement discontinuity denoted as e to the global counterparts [u], both strain fields
(Eq. (3.26) and Eq. (3.27)) are fully equivalent.

In contrast to [JIRASEK & ZIMMERMANN 2001], [DVORKIN, CulTINO & Gio1a 1990]
proposed an enhanced strain field of the type

€] =B ¢ U". (3.33)

In Eq. (3.33), U* denotes the displacement discontinuity with respect to a global coordi-
nate system, i. e., U°® = [u], and the matrix ¢ is defined as

. 0 if X{eQ"
¢ =o7,... 45 ), with & ={ 1 if Yecqr Ol€Mue®). (339)

As a consequence, the identity ¢ U° = H e holds. Hence, the kinematics suggested by
[JIRASEK & ZIMMERMANN 2001] are fully equivalent to those presented in [DVORKIN,
CurtiNo & Groia 1990].

Independently of the work [DVORKIN, CUITINO & Gio1a 1990], [KLISINSKI, RUNESSON
& STURE 1991; OLOFSSON, KLISINSKI & NEDAR 1994; KLISINSKI, OLOFSSON &
TANO 1995] suggested an enhanced strain field of the type

El=B AHTe. (3.35)

In Eq. (3.35), A represents the so-called redistribution matriz, cf. [KLISINSKI, OLOFSSON
& TANO 1995]. It should be noted that in the original work [KLISINSKI, OLOFSSON &
TANO 1995], [E] = B A q e, with ¢ # H3. This difference (g # HY) between
[KLisINSKI, OLOFSSON & TANO 1995] and [JIRASEK & ZIMMERMANN 2001] results
from different local coordinates. However, by applying the same local cartesian coordinate
system, ¢ = Hj. Restricting attention to constant strain triangles and assuming that
3 € QO while X§, X35 € Q~, A is specified by (see [KLISINSKI, OLOFSSON & TANO
1995])
r_[-€ 0 -€£0 1-
A= [ 0 - 0 € O
The parameter £ defines the relative distance of the discontinuity within the finite element.
However, it can be shown directly that the product B A is independent of £. Hence,

without loss of generality, £ is set to £ = 0. Applying the product of A(¢ = 0) HJ, the
equivalence

£ 0
_¢ ] £ eo,1]. (3.36)

H = A(¢ =0) H] (3.37)
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is verified. As a consequence, B A Hj e = B H e, and the kinematics proposed by
KLISINSKI and co-workers are fully equivalent to those presented in the previous Sub-
section. It should be noted that the works of [DVORKIN, CuUITINO & GIoIA 1990] and
[KLisiNsKI, RUNESSON & STURE 1991] were published earliest; three (two) years earlier
than the paper [SIMO, OLIVER & ARMERO 1993].

3.2 Constitutive equations

3.2.1 Constitutive Equations for X € O*:
Stress-strain laws

According to Section 3.1.3, Fqz is regularly distributed. As a consequence, standard
stress-strain relationship based continuum models such as those presented in Chapter 2
can be applied. Since the main focus of this chapter is on the modeling of localized
inelastic deformations, the homogeneously distributed part of deformation is assumed as
purely elastic. More precisely, the existence of a stored-energy functional ¥, = U,eo(F)
is postulated. Following Section 2.3, the KIRCHHOFF stresses 7 and the second PIOLA-
KIRCHHOFF stress tensor are obtained as

T=2F 05U F' and S=205V, (3.38)
with the right CAUCHY-GREEN tensor
C:=F".F (3.39)

Note that the identity Clo: = C|q+ holds. It should be emphasized that other constitu-
tive models such as plasticity-based formulations can be easily applied as well.

Remark 3.2.1.1 Since the stress tensors are only defined for X € 2%, and for those
points the identity F|q:+ = F|q+ holds, the bar over the second P1OLA-KIRCHHOFF stress
tensor S is omitted.

3.2.2 Constitutive Equations for X € 9,Q:
Traction-separation laws

As shown in Section 3.1.3, the kinematics depend on two independent fields, namely @
and [u]. As a consequence, F' and F as defined by Eq. (3.19) are independent from one
another as well. Therefore, two constitutive laws can be introduced: one as a function of
F and an additional model formulated in terms of F'. The first of those has already been
given in Subsection 3.2.1. Hence, a second material law connecting F with its conjugate
variable is presented here.
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According to Eq. (3.19), F* depends only on the displacement discontinuity (N is time
invariant). Consequently, it is convenient to derive the new constitutive law in terms of
the deformation jump. By analyzing Eq. (3.19), it is evident that a complete decoupling
of F and F requires the new law to be a function of the spatial displacement discontinuity
J. Clearly, in principle, the true deformation jump [u] can be used as well.

Following [SIMO & OLIVER 1994] it can be shown that the displacement discontinuity
[u] is conjugated to the traction vector T = P - N acting within the surface 9,Q2. Laws
connecting [u] with T are referred to as traction-separation laws or cohesive laws. They
are based on the pioneering works by [DUGDALE 1960; BARENBLATT 1962], see also
[HILLERBORG, MODEER & PETERSSON 1976].

For the development of those laws two different concepts can be found in the literature.
[SiMO, OLIVER & ARMERO 1993] proposed to project a standard stress-strain relation-
ship onto a surface leading to a traction-separation law. SIMO and co-workers were the
first who recognized that the singular DIRAC-delta distribution connects classical stress-
strain relationship-based continuum mechanics to discrete phenomena such as cracking
or shear sliding. See References [OLIVER, CERVERA & MANZzOLI 1999; OLIVER 2000;
OLIVER, HUESPE, PULIDO & SAMANIEGO 2003] for more details concerning the discrete
constitutive models induced by strong discontinuities and classical continuum models.

Despite the considerable progress made by SIMO and co-workers and OLIVER and co-
workers in the field of modeling of strain localization, constitutive equations based on the
described projection concept are not totally indisputable. For instance, [BORJA 2002]
argues that the constitutive response associated with the continuous deformation is not
necessarily identical to that of the post-localization regime. His argumentation is based
on the constitutive response of rocks. In line with BORJA, many authors derive a specific
traction-separation law which is completely independent of that corresponding to the ho-
mogeneous deformation, cf. [SNYMAN, BIRD & MARTIN 1991; MIEHE & SCHRODER
1994; ARMERO & GARIKIPATI 1996; ARMERO 1999; MOSLER 2004]. It should be
emphasized that a decoupled material response for Q* and 8,0 is equivalent to an addi-
tive decomposition of the HELMHOLTZ free energy. Such a split is mathematically sound
and often applied, if convergence of cohesive formulations is analyzed, see [FRANCFORT
& MARIGO 1998; NEGRI 2005B; DAL MAsoO & ZANiINI 2005). Furthermore, the pro-
jection method by [S1MO, OLIVER & ARMERO 1993] leads to an additive decomposition
of the energy as well, c¢f. [OLIVER 1996)]. As a result and without loss of generality, in
the following, only interface laws which are completely independent of the bulk response
are considered.

A decoupling of the material models for Q% and 8,9 is equivalent to a HELMHOLTZ free
energy of the type

U(C,J,a) = U, (C) + Vying(J, @) Js. (3.40)

Here, purely elastic deformations in Q* have been assumed. However, the more general
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case does not lead to any further problems. Integration of Eq. (3.40) yields

/ v(C,J,a)dV = / Ve (C) dV + f Voing(J, @) dA. (3.41)
Q Q R ¢]

Hence, the HELMHOLTZ free energy of the whole system is decomposed into a bulk part
and a surface part. In Eq. (3.40) and (3.41), a represents displacement-like internal
variables. Based on an energy of the type (3.40) a novel thermodynamically consistent
procedure for developing traction-separation laws is presented in this section.

For deriving cohesive models, attention is restricted to purely inelastic localized deforma-
tions, i. e., the displacement jump J corresponds to fully inelastic deformations. In this
case, J can also be interpreted as a displacement-like internal variable. Hence, ¥sing(J, )
reduces to Uyng(a(J)). Evidently, a decomposition of J into an elastic and an inelastic
part can be easily applied as well, cf. [MIEHE & SCHRODER 1994; ARMERO 1999).

So far, the mechanical problem describing the material response in Q* and that corre-
sponding to X € 3,02 are uncoupled. The coupling is provided by the condition of con-
tinuity of the traction vector T := P - N where P denotes the first PIOLA-KIRCHHOFF

stress tensor:
T_(Xo) = T+(X0) = T(Xo), X € 3.0, (342)

with T* denoting the left hand and the right hand limits of the traction vector T according
to Eq. (3.3). This canonical condition follows from the extension of the principle of virtual
work to continua with internal surfaces 0,2, if the space of admissible test functions
is chosen as that spanned by the displacement field (3.7), i. e., BUBNOV-GALERKIN-
type. For further details, refer to [SIMO & OLIVER 1994]. Condition (3.42) allows to
compute the stress vector T'(X,) by means of the hyperelastic material law associated
with X € Q*.

Now, the dissipation D in 9,82 can be calculated. Combining Condition (3.42) and the
hyperelastic law (3.38), together with the spatial velocity gradient (3.21), D is obtained
D=1':l—\i!=[(T-I-"_T-N)-,C.,[u]+q-d] 5 > 0. (3.43)

In Eq. (3.43), the internal stress-like variables q := —8,%¥s, conjugate to a have been
introduced. Hence, the scalar product q - & depends on the order of the tensor a. Alter-
natively, the dissipation can be re-written as

D=[(€-5-N)-J+q-] 420 (3.44)

Note that Ineq. (3.44) is formally identical to its counterpart of standard multiplicative
plasticity. To show this equivalence more explicitly, the pull-back (with respect to the
intermediate configuration) of ! resulting in

L=J®Né, (3.45)
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is introduced. With Eq. (3.45), the dissipation yields
D=(C-S):L+q-&8,2>0. (3.46)

Fully analogously to standard continuum models, the dissipation which is now computed
with respect to the intermediate configuration depends on the MANDEL stresses C - S
(compare Eq. (3.45) to Subsection 2.4.2, Eq. (2.58),). Note that & = a(J). Hence, & and
q are also defined on the intermediate configuration and thus, & represents an objective
time derivative.

The evolution equations, i. e., J and ¢, are computed from the postulate of maximum
dissipation under the constraint imposed by the condition of traction continuity. Following
[MosLER 2005B; MOSLER 2004] and using the positive definiteness of a norm || ¢ |, the
constraint (3.42) is re-written as

¢ := ||T™(Xo) — T(Xo)|| = . (3.47)
Alternatively, a pull-back yields
¢ := || T (Xo) - T(Xo)|| =0, with T:=C-S-N. (3.48)

Evidently, this equation is fully equivalent to the necessary condition of yielding known
from standard plasticity models. By this equivalence, the definition of the space of ad-
missible stresses

Er:={(T",q) e R x R" | ¢(T",q) < 0} (3.49)

is motivated. Restricting to the geometrically linearized theory, further details are ad-
dressed in [MOSLER 2005B; MOSLER 2004]. For the special choice, ¢ = T'(X,) and
o(T*,q) = |T* — q||, ¢ = 0 is equivalent to the condition of traction continuity.

However, the condition Tt = T, := TJaq has only to be enforced to compute the
inelastic part of the deformation, i. e., J and é&. In the case of fully elastic loading,
the stress response is defined uniquely by Eq. (3.38). As a consequence, the condition of
traction continuity has only to be enforced to those components of the traction vector
T which are conjugated to non-vanishing components of the material displacement jump
J. Hence, ¢(T",q) needs not necessarily to be identical to ||TF(X,) — T(X,)||- For
instance, plastic deformations occurring in slip bands in ductile materials such as metals
depend exclusively on the resultant of the shear components of T'. Furthermore, the
material response associated with metals does not distinguish between compressive or
tensile loading (approximately). Hence,

¢=||Ti|2 —q(a), with T} :=T"—(T* N)N (3.50)

represents a suitable choice. In the context of linearized kinematics, this yield function
was proposed in [MOSLER 20058B|. It will be used in the numerical analysis presented in
Section 3.6.
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In summary, the postulate of maximum dissipation subjected to the condition of traction
continuity can be written as

_max D(T%,q) (3.51)
(1&.0)651-

Consequently, the evolution equation are obtained as
J=X0z40, G=)59. (3.52)

The plastic multiplier A as introduced in Definition (3.52) is computed from the consis-
tency condition ¢ = 0. Analogous to standard plasticity theory, the evolution laws are
defined completely by means of the yield function, if the postulate of maximum dissipa-
tion is enforced. Non-associative material models can be derived in a similar manner. For
that purpose, two additional potentials g = g(T"',q) and h = h(T+,q) are introduced
and the evolution equations are specified by

J=X08p+9, a=Agh. (3.53)

For the yield function (3.50), the respective associative evolution equations are contained
in [MOSLER 20058].

The singular surface J,Q2 has been postulated to be time invariant, i. e., N = 0. Conse-
quently,

o(T",q)=¢"(C-S,q), with ¢°(A,b):=¢(A-N,b). (3.54)

Hence, equivalently to Eq. (3.53),, the evolution law
JO®N =A0zs9" (3.55)

can be derived. Thus, the space of admissible stresses is formulated in terms of MANDEL-
stresses and the evolution law associated with inelastic deformations governs the inelastic
velocity gradient L. As a result, the constitutive equations describing the localized inelas-
tic part of the deformation are formally identical to those known from standard plasticity
(compare to Section 2.4).

In the following sections, the condition of traction continuity will be replaced by the more
general type of equations ¢(T'", q) or ¢*(€C - S, q). Consequently, T|a,q is included in the
stress-like variable g. Hence, without risk of confusion, the + sign indicating the right
hand side limit is omitted, i. e., T := T'.

Remark 3.2.2.1 The inelastic displacements J can be of plastic nature or damage-
induced. Thus, the presented constitutive framework holds also for a broad range of
damage-type models. If damage accumulation is to be modeled, one part of the inelas-
tic strains has to be connected to the elastic material properties, ¢f. [MOSLER & BRUHNS
2004; MoSLER 2005E]/.
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T“)

Figure 3.2: 3-D constitutive model for the analysis of mixed-mode material failure (n =
2): yield surface ¢ = 0 in the 5B 1 )-’f;{,f]-space for different values of x (see
Eq. (3.59))

Remark 3.2.2.2 Introducing an equivalent stress measure denoted as Too(T) isotropic
hardening/softening can be modeled by

O(T,q) = Teg(T) — T2 — (), (3.56)
cf. Eq. (3.50). Kinematic hardening/softening can be accounted for by using

QS(T; q) = T,;_,II(T — q) — Tini

eq ?

(3.57)

where q is a back-stress vector and ’f’,‘:;' is associated with the elastic space of the virgin ma-
terial. If T.q is a positively homogeneous function of degree one and associative evolution
equations are assumed, both models (Eq. (3.56) and (8.57)) yield a positive dissipation,
i. e.,

D=ATH§,. (3.58)

e

Remark 3.2.2.3 A class of mized mode models suitable for the analysis of cracking in
brittle structures is defined by the yield function

¢(T,q) = (T - N) + & ||Twll™ — q(a), (3.59)

¢f. MOSLER 2005D/. The material parameter k controls the interaction between normal
and shear stresses. Introducing a cartesian coordinate system by its defining vectors N
MDY and MP, the yield surface ¢ = 0 is illustrated in Fig. 3.2.
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3.3 Numerical implementation

This section contains the numerical implementation of the kinematics as proposed in
Section 3.1.3 as well as the constitutive equations presented in Section 3.2. Referring to
the yield function ¢, the evolution equations and the type of finite elements, no special
assumption has to be made. Hence, the model as described in this section holds for a
broad range of different constitutive models and can be applied to a variety of different
problems.

To the best knowledge of the author, with the exception of the work [BORrJA 2002, all
other geometrically exact embedded strong discontinuity models in the sense of [SimO,
OLIVER & ARMERO 1993; SiMO & OLIVER 1994] such as [ARMERO & GARIKIPATI
1996; LARSSON, STEINMANN & RUNESSON 1998; ARMERO 1999; OLIVER, HUESPE,
PuLipo & SAMANIEGO 2003; GASSER & HOLZAPFEL 2003; CALLARI & ARMERO
2004] are based on the static condensation technique. In contrast to this procedure,
[BORJA 2002] proposed a finite element formulation in which the degrees of freedom
characterizing the displacement discontinuity are condensed out at the material level.
In the case of infinitesimal deformations, this approach was presented in [BorJA 2000;
MOosLER & MESCHKE 2000; MOSLER & MESCHKE 2001]. However, the work [BORJA
2002] is restricted to constant strain triangle elements. Furthermore, the displacement
jump is assumed to represent a purely sliding deformation, i.e., J = ( M, with N-M =0
and ¢ denoting the amplitude of the displacement discontinuity. Evidently, the underlying
kinematics cannot capture mode-I or mixed-mode failure. In the two-dimensional case,
these kinematics result in M = 0. Consequently, the scalar ¢ is the only unknown variable
associated with the displacement jump. Additionally, for a purely sliding deformation in
2D, the identity _ )
F-M F-M

IF-Ml, ||F- M|,
holds, cf. Eq. (3.14). Hence, the tangential vector which defines the direction of the
displacement jump depends only on the known (in the case of displacement-based fi-
nite elements) compatible deformation field #. Both simplifications, i. e., M =0 and
Eq. (3.60), have been included in the numerical model as proposed in [BORJA 2002].
However, even for a vanishing normal component of the displacement jump (J - N = 0),
which is a very restrictive assumption, M = 0 is not fulfilled in 3D in general. As a conse-
quence, the extension of the model [BORJA 2002] to a fully three-dimensional framework
is not a straightforward task.

(3.60)

In this section a novel geometrically exact three-dimensional finite element formulation
based on the SDA is presented. The approach is characterized by the following properties:

e A broad range of different constitutive interface models can be applied. Arbitrary
yield functions and non-associative evolution equations can be implemented consis-
tently.
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e The model is not restricted to a certain type of finite elements. Higher-order three-
dimensional formulations can be used as well.

e The implementation is formally identical to that of standard multiplicative plasticity
and hence, existing subroutines can be employed.

e The proposed method is equivalent to the original SDA by [SimO, OLIVER &
ARMERO 1993] (see also [ARMERO & GARIKIPATI 1996]). Only the algorithmic
formulation is different.

For the geometrically linearized theory, a finite element model showing the enumerated
properties was proposed in [MOSLER 2005B]|. In this respect, the implementation of the
SDA as explained in this section can be understood as the generalization of the framework
advocated in [MOSLER 2005B].

In what follows, the fundamentals concerning the novel numerical model are described
first. For that purpose, the finite element formulation in [GARIKIPATI 1996; ARMERO
& GARIKIPATI 1996] which represents the first published work on embedded strong
discontinuities within a finite strain setting is summarized briefly. Subsequently, the new
finite element formulation will be explained.

3.3.1 Fundamentals

The additive decomposition of the deformation gradient according to Eq. (3.18) is formally
identical to that of the well-known EAS concept [SMO & RiFA1 1990; SIMO, ARMERO
& TAYLOR 1993]. Hence, the implementation of most finite element models dealing with
embedded strong discontinuities such as [SiMO, OLIVER & ARMERO 1993; SiMO &
OLIVER 1994; ARMERO & GARIKIPATI 1996; LARSSON, STEINMANN & RUNESSON
1998; ARMERO 1999; OLIVER, HUESPE, PULIDO & SAMANIEGO 2003; GASSER &
HoLzAPFEL 2003; CALLARI & ARMERO 2004] is identical to that applied in the original
EAS concept. More specifically, the stationarity conditions of the respective two field
functional

/GRADno:PdV=/poB-nodV+/T"-nodA (3.61)
Q0 Qe 8,9
and
/fI:PdV:O (3.62)
Qe
depending on the displacement fields @2 and [u] build the starting point of the numerical

model. In Egs. (3.61) and (3.62), 7,, po B and T"* denote a continuous test function, body
forces and prescribed traction vectors acting on the NEUMANN boundary 0,2, respectively.
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The approximations of the kinematics are those contained in Subsection 3.1.3. Following
the EAS concept, the test functions are chosen as

Nnode
M= Nn. (3.63)

£

By designing the variation H of the enhanced displacement gradient according to [GA-
RIKIPATI 1996; ARMERO & GARIKIPATI 1996], namely

A

1 1
H=-5 88N+ 80NG, (3.64)

the Lo-orthogonality condition (3.62) is equivalent to the weak form of traction continuity
—l-/P-NdV—l/T dA (3.65)
Ve A * )
Qe 8.0

where V¢, A, and 3 represent the volume of the finite element e, the volume of the
localization surface, i. e., 4; := [, odA, and the variations of the displacement jump
[u], respectively. For further details, refer to [SIMO & OLIVER 1994; OLIVER 1996]
(see also Remark 3.3.1.1). Since the material displacement jump J does not appear
explicitly in the formulation, but the displacement jump [u], a material law of the type
T'; = Ts([u]) is frequently applied, see [GASSER & HOLZAPFEL 2003] and [GARIKIPATI
1996] (Appendix). The implementation of an interface law in terms of J and T' was
suggested in [LARSSON & JANSSON 2002]. However, the model proposed in the cited
paper is based on an interface element with regularized strong discontinuities. Following
the EAS concept, the solution associated with Egs. (3.61) and (3.62) is computed by
solving both equation simultaneously, cf. [SIMO & ARMERO 1992].

In the present work, a different solution strategy is proposed. For the development of this
model, the average value of T' = P - N is introduced via

ave(T) := f/l—e / P.NdV. (3.66)
n(!

Since T's = T([u]) and [u] has been assumed spatially constant within the respective
finite element (GRAD [u] = 0), the right hand side of Eq. (3.65) simplifies to

- / T,dA=T, (3.67)
sa"Q

As a consequence, Eq. (3.65) can be re-written as

¢ = ||ave(T") — T¢|| = 0. (3.68)
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For further details, refer to [MOSLER 2005B; MOSLER 2004|. Clearly, Eq. (3.68) is
equivalent to
¢ = ||lave(T) — T,|| =0 (3.69)

depending on vectors defined on the intermediate configuration. According to Subsec-
tion 3.2.2, this equation results in

d(ave(T),q) < 0. (3.70)

In the case of constant strain elements, i. e., GRAD@ = const (with respect to X),
which will be considered in Subsections 3.3.2 — 3.3.4, GRAD¢y = const, and consequently,
F = const. Hence, C = const and S = const as well, leading to T = const. As a result,
ave(T) = T and the weak form of traction continuity is equivalent to the strong form

¢(T,q) < 0. (3.71)

Consequently, in the case of loading (A > 0), the stationarity conditions (3.61) and (3.62)
are equivalent to the set of equations

/GRADnodeV = /B-nodV+/T‘-nodA
Q

@ Qe
¢(T\q) = 0.

The extensions necessary for the more general case, i. e., non constant strain elements,
are discussed in Subsection 3.3.5.

(3.72)

Evidently, Egs. (3.72) show the structure of standard (local) finite element models for
finite strain plasticity theory. Thus, according to computational plasticity [SiIMO 1998;
SiMO & HUGHES 1998], the problem defined by means of Eqs. (3.72) is solved in two
steps. At first, if inelastic loading is signaled, the condition of traction continuity (3.72),
is solved (for fixed ). Subsequently, the solution of Eq. (3.72), is computed. It should be
noted that despite the procedure described is not standard in finite element formulations
based on the EAS concept, a similar strategy, namely a staggered solution scheme, has
been successfully applied before, cf. [SIMO, ARMERO & TAYLOR 1993]. However, with
the exception that one of the algorithms proposed in [S1MO, ARMERO & TAYLOR 1993]
is based on a staggered solution scheme as well, the numerical implementation presented
in this work is significantly different.

Remark 3.3.1.1 By construction, the incompatible part of the displacement gradient be-
longs to the space

H= {[u] ® N § — [u] ® GRADyp | [u]- N > 0}. (3.73)

Clearly, since H has been designed such that the Lo-orthogonality condition is equivalent to
the strong form of the traction continuity for the average stresses, H ¢ H, cf. Eq. (3.64).
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Consequently, the proposed model is a PETROV-GALERKIN approach. As a result, even if
the evolution equations are governed by the postulate of mazimum dissipation, a variational
structure such as described in Section 2.5 cannot be derived for the models presented in
this subsection.

However, according to [S1MO & OLIVER 1994/, a standard BUBNOV-GALERKIN approz-
imation of the type

u=1a+[u] (Hs—¢) Mo =1+ B (Hs — ) (3.74)

implies the equilibrium conditions and the traction continuity, as well. Hence, it is rea-
sonable to assume that the solution obtained from the standard BUBNOV-GALERKIN ap-
prorimation converges to the one predicted by the PETROV-GALERKIN method. This
educated guess is verified by the numerical results in fOLIVER, HUESPE, BLANCO &
LINERO 2006/. Obviously, if a BUBNOV-GALERKIN formulation is applied, a material
model based on the postulate of mazimum dissipation can be recast into e minimization
problem such as that described in Section 2.5. Hence, the adaptive strategies presented
in Chapters § - 6 which crucially depend on the variational structure of the underlying
physical problem can be used for the SDA as well.

It should be noted that the convergence rate of the PETROV-GALERKIN-{ype SDA is,
in many cases, significantly better than that of the BUBNOV-GALERKIN approach, cf.
[OLIVER, HUESPE, BLANCO & LINERO 2006]. Conseguently, the numerical implemen-
tation advocated in this section is based on a PETROV-GALERKIN concept. However, only
minor modifications are necessary for the fully variationally consistent model.

3.3.2 Elastic unloading

At first, the solution associated with an elastic load step is computed, i. e., the inequality
#(T,q) <0 is assumed to hold within the considered time interval [t,,t,+]. Thus,

Jopr =Jn, with (8), := (o)]s,.. (3.75)

Consequently, the elastic solution is computed from the weak form of equilibrium (3.72),
subjected to the Constraint (3.75). Since the left hand side of Eq. (3.72), does not
represent the best choice for computational purposes, a standard transformation leading
to

d(e)

/GRAD?‘)O :PdV = /ﬁna :7dV, with grad(e):= % F! (3.76)
Qe s
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is applied. Hence, the solution corresponding to an elastic load step is given by the

procedure
compute: 1,4 under the constraints:

/gTdno:TdV=/B-nodV+/T"'r’odA (3.77)
Qe Qe 820

Jn+1 = Jn'

Analogous to standard displacement-based finite element formulations, %@, 4, is computed
by using a NEWTON-type iteration. For that purpose, the interpolations (3.63); resulting

m
Nnode

gradng = > 15, ® GRADN; - F~' (3.78)
i=1

are inserted into Eq. (3.77), and the residual

Ri= A / [GRADN; - F~] -7 av
e=! g (3.79)
—/N.-BdV—/N;T‘dA
Qe &5

is introduced. Following standard conventions in finite element methods, A denotes the
assembly of all element contributions at the local element node ¢ to the global residual
at the global node I € {1,...,n4}. According to NEWTON’s method, the solution 41
(more precisely, the increment At) associated with R; = 0 (for all global node points I)
is obtained from the iterative scheme

R/ |, + KY| Adyl,,,=0 VIi=1,..,nyh (3.80)
where K'Y denotes the components of the global stiffness matrix, i. e.,
OR
n_ o
K 54, (3.81)

and i, represents the conforming part of the displacement field at global node J. Within
each iteration cycle, @ is updated as t,4y) = @, + Atryy).

The residual R; depends on the regularly distributed part of the deformation gradient.
However, F is not given explicitly. More precisely, it follows from the implicit equation

Fn+l =1 + GRAD‘&,;.{.] - Fn-{-l . Jn ® GRADQO, (382)

cf. Eq. (3.19). Since Eq. (3.82) is linear in F,,; and the tuple (J,,,4,) is given (in
displacement-based finite element formulations), the exact solution of Eq. (3.82) yields

Fﬂ+l = A—l : [1 + GRAD'&,H.l] y (3.83)
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with the fourth-order tensor A defined as

A,‘kpq = I[.-km + [H.'qu Jj GR.ADtpk“'" . (3.84)

Next, the components of the stiffness matrix K are derived. Starting with the rate form
of Eq. (3.72),,

/GRADnO:PdV=fB-n0dv+fT‘-nodA=o, (3.85)
Qe Qe 83“

together with the identity

/ GRADy),: PdV = / gradny: [I- 7+ L,7] AV (3.86)
Qe e

which follows from standard algebraic manipulations, the rate form of the principle of
virtual work is re-written as

fgradno:[i-‘r+£.,‘r] dV=/B-nodV+/T'-nodA=0. (3.87)
e Qe 80

In Eq. (3.87), the LIE-type derivative
Lr=F.§ F (3.88)
has been introduced. Using the raté form of the hyperelastic material law (3.38), i. e.,

07V g

.1 -
==-C:C ith C=4 ——— .
2C , with C 4BC®6C (3.89)
and applying the well-known identity
L,Tt=c: I, with Cgped = FaA F},B Fcc de Cascp, (3.90)
Eq. (3.87) yields
/gmdno:[i-'r+czfj dV=/B-nodV+/T'-nodA=0. (3.91)
Qe Qe &an

Clearly, the only tensor in Eq. (3.91) which depends on the rate of the conforming dis-
placement field @ is the regularly distributed part of the spatial velocity gradient I. In
the context of the iterative solution scheme according to Eq. (3.80), I leads to

P (3.92)

oy

l=d

with the linearization

dF = = - Ad. (3.93)

o5
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By differentiating Eq. (3.83) for fixed J which results in

dF,,) = A”' : GRADA1,,,,, (3.94)
Eq. (3.92) is re-written as
I=(A"':GRADAd@,,,) - F' (3.95)
or equivalently,
I =L°:GRADA%,,,, with L, =A L F. (3.96)

Based on Eq. (3.96), the rate form of the principle of virtual work (3.91), and consequently,
the stiffness matrix K’/ can be computed. It is obtained as

K'Y = KL+ KL, (3.97)
In Eq. (3.97), Kgo denotes the geometric stiffness matrix defined as

Rele
K= A / [GraADN; - F7] -+ ¥ L= GRADN;aV, (3.98)

e--l

and K/ represents the material tangent. It is computed according to

K, = [GRADN; - '] @ ¢:L°- GRADN;dV. (3.99)
e= 1
Qe
The contractions applied in Eq. (3.98) and (3.99) are defined according to Remark 3.3.2.1.
It is obvious that now the operator A denotes the assembly of all element contributions
(e =1,...,nee) at the local element nodes (i,j = 1,...,nq04.) to the components of the
global stiffness matrix K'Y, Clearly, in the case of linearized kinematics, Ké‘.{o = 0.

Remark 3.3.2.1 The notations 0 and (2) represent different type of contractions. i in-

dicates the first component of the tensor on the right hand side of - ® (f) over which the
summation has to be performed, i. e., [a . C]_,“ =a; Cjit and [A (2)

Clearly, for i = 1 the standard contractions are obteined.

Cla = Ajx Ciju-

3.3.3 Inelastic loading

Next, the solution corresponding to an inelastic loading step, i. e., A > 0 is addressed. At
first, according to the return-mapping algorithm [SiMO 1998; Simo & HUGHES 1998]



3.3 Numerical implementation 69

(compare also to Subsection 2.4.3), a trial step characterized by purely elastic deformation
is defined as

A=0 < J=0, a=0, ¢=0

= F",, =1+GRADit.y, — F¥,, - J, ® GRADq. (3.100)

Clearly, F::ﬂ is computed by applying Eq. (3.83). With F't.,, the right CAUCHY-GREEN
trial tensor Cy,, and the second PIOLA-KIRCHHOFF trial stresses S¥, , are introduced
in standard manner. This leads to the trial stress vector

T:.r+1 = C::H -Sp - N. (3.101)
As a consequence, the discrete loading condition is given as

¢ = (T, ), q%,) >0, with ¢, =g,. (3.102)

In the case ¢'* < 0, i. e., a purely elastic loading step, the material response is computed
according to Subsection 3.3.2. Otherwise, if inelastic loading is signaled by ¢'* > 0,
a return-mapping algorithm is performed, cf. Subsection 2.4.3. At first, a backward-
EULER integration is applied to the evolution Eqgs. (3.53). Hence, the displacement jump
(more precisely, its material counterpart) and the internal displacement-like variable a at
time 2,4, are computed as

Jnst = Jn+ Bhnyi 02glas1s Qg1 = @ + Adnys Oghlnss, (3.103)

with AAn1 = Any1 (fns1 — t,). Evidently, by using a backward-EULER integration, the
differential equations characterizing the solution of an inelastic load step are transformed
into a set of nonlinear algebraic equation. This is solved by means of NEWTON’s method.
For that purpose, the residuals

RJ —Jn+l + Jn + AAn+l a‘i"gln+l }
R:= = 3.104
{ Ra } { — Qi + a, + A/\n+l aqh|n+l ( )

are introduced. As a consequence, the solution associated with an inelastic load step is
computed from the algebraic problem

R=0 A ¢ =0. (3.105)

According to NEWTON’s method, the linearizations of Eqs. (3.105) are required. After
some algebraic manipulations, they result in

dR=A"' A +dAX\ VM, dp=Vo-A (3.106)

where the notations

AT L AN g DD B2 g dq
Al:= TeT n+l “Teq , D:=-22 3.107
AX Pozh D'+ A2 h | . dcx (3.107)
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and

AT := [dT;dq]| VMT := [039; 00, ,,, V&' = [0r¢;0,9)l,,, (3.108)

ntl?

have been used. The second-order tensor A” connects the rate of the material displace-
ment jump J to the rate of the traction vector T for a fixed compatible displacement
field @. The identity dT' = —AY - dJ is derived in [MOSLER 2005A].

Based on Eqgs. (3.105) and (3.106), the increment of the plastic multiplier during an
iteration cycle is computed in matrix notation as

$nt1 — VT AR
VA VM

dANpyy = Adpp = A + dAN . (3.109)
Note that the updated deformation gradient ' (A# = 0 during an iteration cycle) follows
from Eq. (3.83).

Remark 3.3.3.1 According to Section 3.2.2, the constitutive laws governing cohesive
models can be re-written into a format fully identical to classical (local) continuum models
as those discussed in Chapter 2. In the present paragraph it has been shown that this
analogy holds for the numerical implementation as well, cf. Subsection 2.4.8. Due to this
similarity, subroutines originally designed for standard continuum models can be used for
cohesive finite element formulations with only minor modifications necessary.

Remark 3.3.3.2 According to Eq. (3.106), the linearizations have been computed with
respect to T', q and AX. Clearly, instead of choosing T' as an independent variable, the
MANDEL-type stresses C - S may be used. That way, the proposed return-mapping algo-
rithm becomes formally identical to that of classical multiplicative plasticity theory. How-
ever, in this case, the dimension of the residuals increases from dim T+dim g+dim A\ =
n + 4 to dim(C - S) + dimqg + dim A\ = 10 + n. Particularly, for isotropic softening
(dimq = 1) which is considered in the numerical ezample presented in Section 3.6, the
number of algebraic equations increases by more than a factor of 2. As a consequence,
this alternative formulation has not been chosen.

3.3.4 Linearization

This subsection contains the consistent linearization of the algorithm necessary for an
asymptotic quadratic convergence, cf. [SIMO & HUGHES 1998|. For fully elastic unload-
ing, this linearization has been given in Subsection 3.3.2. Next, attention is restricted to
an inelastic loading step, i. e., A > 0.

By applying the return-mapping algorithm as proposed in Subsection 3.3.3, the regularly
distributed part of the deformation gradient F', the stresses 7 or S and the elastic moduli ¢
(see Eq. (3.90)) are computed. Hence, with the exception of the spatial velocity gradient I,
all variables appearing in the rate form of equilibrium (3.91) are known. More precisely,
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only the fourth-order tensor IL®* which is necessary for the computation of the stiffness
matrices (3.98) and (3.99) has to be derived. All other variables involved in Eqgs. (3.98)
and (3.99) are already well defined. Since now attention is restricted to an inelastic loading
step, the fourth-oder tensor LL° is renamed as L.

According to Eq. (3.82), the linearization of the regularly distributed part of the defor-
mation gradient yields

dF = GRADA#@ — dF - J ® GRADy — F- dJ ® GRADy. (3.110)

Consequently, dF is obtained as

dF

dFIJ-mt +dF|,_,

. [ORADA@ - F - dJ ® GRADy] . (3.111)

Clearly, dF| —cons: represents the linearization associated with a fully elastic load step,
cf. Subsection 3.3.2. However, the linearization dJ defining dl—"la:wnst is unknown so far.
It follows from the return-mapping algorithm.

At a converged state of the return-mapping algorithm, characterized by R = 0 and
¢ = 0 (cf. Subsection 3.3.3) the linearization of J with respect to T', ¢ and A results
from dR = 0 and d¢ = 0 (see Eq. (3.106)). Evidently, the goal of this paragraph is
to linearize J with respect to the primary variable . For that purpose, the standard
procedure known from computational plasticity theory is borrowed, cf. [SiMO 1998; SiMO
& HuUGHEs 1998)].

By applying the chain rule

=29 [ap,. + aF]

gty (3.112)

u-const]

and inserting the linearization of J with respect to T', ¢ and A), together with A€ :=
aT/dC, T := 8C/OF and A’ := —9T/dJ according to [MOSLER 2005A], Eq. (3.112)
is re-written as

dT AC:T:A!': GRADAG - A -dJ
AC:T:A™': GRADA#L — A7 - [dAX 839 + A Okgpg : AT (3.113)

+AX 8,9 - dg] .

With the matrix A according to Eq. (3.107), the increment of the stress vector T' and
that of the internal variables g are re-written in matrix notation as

J-l 4C .. A1, -
A“A=[A A7:T: AT :GRADA® | _ 4ax war, (3.114)

0
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Pre-multiplying Eq. (3.114) by V¢ A and considering d¢ = V¢T A = 0, the lineariza-
tion of the plastic multiplier with respect to the primary variable % is obtained as

A AC.T:A': GRADAR
0
VT AVM ’ (3.115)

Vel A
dAX =

[03¢ - Ay + 846 - Ay - AT AC T A R
= V& AVM : GRADA#G

where A(; denotes the submatrix ij of the hypermatrix A. Clearly, this equation is
formally identical to that of the standard return-mapping algorithm, cf. [SiMO 1998;
SiMO & HUGHES 1998|.

Next, the linearizations of T and g with respect to the primary variable % are computed.
By inserting Eq. (3.115) into Eq. (3.114) and pre-multiplying Eq. (3.114) by A, these
linearizations are given as

dT = Ay-A’" - A®:T:A':GRADA#L

_ [03¢ - Ay + Og¢ - Apyy] - AT AC T A
V¢T AVM

: GRADA#
(3.116)

(A[“] . afpg + A[12] . aqh)

and
dg = Apy-A’7' A®:T:A™':GRADA%L

[67»4) . A|“| + 3,,45 . A[2l]] . AJ-I . AC : T A-l
V¢l AVM

: GRADA#
(3.117)

(A[2l] -0p9 + A[n] . 6qh) .

Finally, the linearization of J with respect to the primary variable @ is obtained by
inserting Eqgs. (3.115)-(3.117) into
dJ = dAX 81g + AX B3gpg - AT + AN 8} g dg. (3.118)

This leads to
dJ = J : GRADA. (3.119)

The third-oder tensor J is given in the [MOSLER 2005A).
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Now, the linearization of F' can be computed. With Eq. (3.119), Eq. (3.111) is re-written
as

dF = [A™' - (A™' - GRADy) - F- J] : GRADA%. (3.120)
=: P
Hence, IL! is obtained as
i = ]Li : GRADA'&,,.}.), with H‘i’jkl = IP,',,M Fp_jl, (3121)
cf. Eq. (3.96). As a consequence, the geometric stiffness matrix results in
1J Nele =1 (2) i
KJ = A / [GRADN,- F ] .7 P Li. GRADN;dV (3.122)
e=1 Qe

and the material tangent is given as

c:L'-GRADN;dV (3.123)

mat —

e=1 Qe

(compare Egs. (3.122) and (3.123) to Egs. (3.98) and (3.99)).

Remark 3.3.4.1 In the case of a constant direction of the material displacement jump,
i. e., an evolution equation of the type

J=\AM, with M=0, (3.124)

K, = A [GrRADN; - F1] ©

together with an isotropic softening response, the algorithmic formulation presented can
be significantly simplified, cf. [MOSLER 2005A/.

3.3.5 Extension to higher order elements

In Subsections 3.3.2 — 3.3.4, the numerical implementation associated with constant strain
elements has been presented. Now, the more general case is discussed. However, since
the extensions necessary for higher order elements are relatively straightforward, the re-
spective modifications of the algorithm are described in a brief manner. In the case of
linearized kinematics, more details can be found in [MOSLER 20058].

According to Subsection 3.3.1, for non constant strain elements, the restriction imposed
by the weak form of traction continuity across d;{2 reads

¢(ave(T),q) < 0 (3.125)

with the average operator ave(e) defined by Eq. (3.66). Following the arguments as
presented in Subsection 3.2.2, the evolution equations corresponding to the traction-
separation law are obtained as

J = /\ammg

& = Adgh. (3.126)
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Analogous to the yield function, the two potentials g(ave(T"), q) and h(ave(T'), q) depend
now on the average stress vector ave(T'), see [MOSLER 20058]. Clearly, the identity

ave(T) = ave(C-S)- N (3.127)
holds.

Next, the modifications of the kinematics necessary for higher order elements are ex-
plained. All finite element formulations based on the strong discontinuity approach are
based on the assumption 8 [u] /0X = 0, cf. [SIMO & OLIVER 1994; OLIVER 1996;
ARMERO & GARIKIPATI 1996; LARRSON & RUNESSON 1996; ARMERO 1999; BORJA
2000; WELLs & Sruys 2001c; JIRASEK & ZIMMERMANN 2001]. This condition is
enforced for higher order elements as well. Clearly, instead of describing the kinematics
in terms of [u] one can alternatively use its material counterpart J. In this case, it is
canonical to enforce the equivalent constraint 8J /80X = 0. Combining these assumptions
and computing the push forward of J in an average form, results in the transformation

[u] = ave(F)- J. (3.128)

A similar argument leading to Eq. (3.128) was recently proposed by [CALLARI & ARMERO
2004]. Using Eq. (3.128), the trial state of the deformation gradient at time t,,, is
computed as

F'., =1+ GRADii,,, — ave (F;'H) . J, ®GRADy, (3.129)
[“]:H

compare to Eq. (3.82). From the average counterpart of Eq. (3.129), the average trial
deformation gradient is obtained as

ave(F¥, ) = ave(A)™! : [1 + ave(GRAD%,41)] (3.130)

with ave(A) according to Eq. (3.84) (@,41 and J, are known). By inserting Eq. (3.130)
into Eq. (3.129), the local trial deformation gradient can be computed. As a consequence,
the local trial stresses and the discrete loading condition ¢(ave(T::+, ,q,) are well defined.
For the neo-HOOKEan hyperelastic material according to Potential (2.30), the average
MANDEL stresses are computed as

ave(J2) —1
2

ave(C - S) = A 1+pu (ave(C) —-1). (3.131)

3.3.5.1 Elastic unloading

Clearly, if ¢(ave(T::+,,q,‘) < 0, the solution corresponding to the trial state is already
the final solution. In this case, the residuals R; according to Eq. (3.79) can be computed
directly.
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Except for the regularly distributed part of the spatial velocity gradient I, all other vari-
ables necessary to obtain the stiffness matrix are known, compare to Eq. (3.91). Hence,
the linearization of F with respect to i is required. By linearizing Eq. (3.130) and in-
serting the result into the linearization of Eq. (3.129), the final solution reads

dF,;1 = GRADA,,, — [ave(A)™ : ave (GRADA®@,41)] - J, ® GRADp.  (3.132)

3.3.5.2 Inelastic loading

If an inelastic load step is signaled by ¢(ave(’.i‘::+l),q,,) > 0, a backward-EULER integra-
tion is applied to Eqgs. (3.126) and the solution of the resulting nonlinear set of algebraic
Eqgs. (3.105) is computed by means of NEWTON’s method. However, in contrast to con-
stant strain elements, the independent variables are now ave(T'), g, A\. Hence, all partial
derivatives with respect to T' in Subsection (3.3.3) have to be replaced by derivatives with
respect to ave(T'). Since the potentials g and A and the yield function ¢ are formulated in
terms of ave(T') (instead of the local stress vector T'), these derivatives can be computed
easily.

The only significant difference between the return-mapping algorithm for constant strain
elements and that for higher order elements results from the linearization of the aver-
age traction vector with respect to J (instead of dT" = —A” : dJ, for constant strain
elements). However, since

d [ave(T)] = 7z f d(C-S)-N v, (3.133)
(9]

only the local linearization d (C - S) is required. Hence, by applying the equations pre-
sented in [MOSLER 20054, the identity

d(C-S)-N=AC:T:dF (3.134)

with A€ = 9T'/8C and T = OC/AF is derived. Unfortunately, the linearization of F*
with respect to J for constant strain elements differs from that for higher order elements.
However, linearizing the average counterpart of Eq. (3.129) with respect to J (for fixed
), leads to

d [ave(F)] = G - dJ, (3.135)

with
G = ave(A)™! : P, Piji = ave(Fii.) ave(GRADy;) (3.136)

(compare to Step 3 in the Appendix of [MOSLER 2005A]). Finally, the linearization of
the local deformation gradient with respect to J is obtained as

dF = (g : dJ) . J ® GRADy — ave(F) - dJ ® GRADg =: G - dJ. (3.137)
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As a consequence, Eq. (3.133) yields
d [ave(T)] = ave [AC T g] dJ. (3.138)

Now, all linearizations necessary for the return-mapping algorithm have been derived.

Remark 3.3.5.1 The computation of the stiffness matriz for higher order elements is not
presented in detail in this work. However, all linearizations necessary for that purpose
have been given in this subsection.

Remark 3.3.5.2 According to Eq. (3.132), the linearization of a variable with respect
to the conforming displacement field . consists, in general, of two parts. One is associ-
ated with the local displacement gradient and one corresponds to its average counterpart.

Hence, the resulting stiffness matriz shows a similar decomposition. For linearized kine-
matics, details can be found in [MOSLER 2004; MOSLER 2005B/.

3.4 Computation of the normal vector

In the previous sections, the kinematics as well as the constitutive equations associated
with the SDA, together with their implementation, have been presented. However, the
topology, or more precisely, the orientation of the surface 0,02 has been regarded as known.
Hence, in this subsection, the normal vector IN will be computed.

In the literature, different criteria for the prediction of the formation and the orientation
of a surface at which the displacement field or its derivatives are not continuous can be
found. Such surfaces are called singular surfaces, c¢f. |[FETECAU, MARSDEN & WEST
2003]. In this connection, the order of a singular surface is defined by the lowest order
of the derivatives of the deformation map that suffer a non-zero jump across this surface.
Hence, discontinuous displacement fields, i. e., strong discontinuities, belong to the set
of singular surfaces of order zero. For a singular surface of order one the deformation
mapping, i. e., the displacement field, is continuous, but its first-order derivatives (the
velocity or the deformation gradient) are discontinuous. In the case of jumps in the field
of the deformation gradient, these surfaces are referred to as weak discontinuities. Further
details are addressed in [MOSLER 2005c].

The problem discussed in this section is closely related to the classical bifurcation analysis
in the sense of [HADAMARD 1903], cf. [RUDNICKI & RICE 1975; RICE 1976; MAIER
& HUECKEL 1979; RANIECKI & BRUHNS 1981; MARSDEN & HUGHES 1994]. The
questions of interest are: 1.) When does a continuous deformation map bifurcate into a
discontinuous one? 2.) What is the orientation of the resulting surface of discontinuous
displacements?
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In the literature, different methods of resolution can be found. They may be classified
according to:

e Energy-based criteria such as the maximum energy release rate criterion suggested
by [NUISMER 1975] or the minimum strain-energy density criterion presented by
[Si1 1974)]. For a modified GRIFFITH’s criterion, refer to [FRANCFORT & MARIGO
1998].

e Stress-based criteria such as the maximum circumferential stress criterion proposed
by [ERDOGAN & SiH 1963], cf. [MOES, DOLBOW & BELYTSCHKO 1999], or the
maximum principal stress direction, see [WELLS & SLuys 20018B|, [JIRASEK &
ZIMMERMANN 2001]. These concepts are closely related to linear fracture mechan-
ics.

o Strain-based criteria such as that presented by [GEERS, PEIJS & BREKELMANS
1996] which is based on the direction of maximum accumulation of the non-local
equivalent strain, cf. [SIMONE, WELLS & SLuYs 2003].

¢ Transition from weak to strong discontinuities: [OLIVER 1998; OLIVER, CERVERA
& MANzoLl 1999; OLIVER, HUESPE, PULIDO & SAMANIEGO 2003] embedded a
weak discontinuity (jump in the strain field) into the respective finite element when
the classical bifurcation criterion was fulfilled. By assuming an evolution law for the
width of the softening zone, the transition to a strong discontinuity was achieved.

e Bifurcation analysis according to [SiMO, OLIVER & ARMERO 1993; Sim0 &
OLIVER 1994; OLIVER & SIMO 1994]. In these references, the authors ana-
lyzed the condition necessary for a formation of a strong discontinuity in a classical
rate-independent (local) continuum.

It should be noted that the given list is not exhaustive. Since this chapter deals exclusively
with the formation and propagation of strong discontinuities, the idea proposed by SiM0O
and co-workers seems to be most canonical. It will be described briefly in the following
subsection.

3.4.1 Formation of discontinuities in rate independent media

In [SiMO, OLIVER & ARMERO 1993], the authors derived conditions associated with the
transition of a continuous deformation mapping into a discontinuous one. The analysis
presented in the cited work is restricted to the geometrically linearized theory. For finite
strains and arbitrary material symmetries, the generalizations may be found in [MOSLER
2005¢]. It will be shown that the equations characterizing the aforementioned transition
are formally identical to the LEGENDRE-HADAMARD conditions dating back to the early
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20th century, cf. [HADAMARD 1903]. For this reason, the classical conditions are briefly
discussed first.

According to [RuDNICKI & RICE 1975; RICE & RUDNICK! 1980; RANIECKI & BRUHNS
1981], the classical localization condition corresponds to the development of weak discon-
tinuities, i. e., the transition of a deformation mapping showing a continuous deformation
gradient into one with F' ¢ C is considered. Consequently, the local deformation at the
time of bifurcation is of the type

FeC, F¢cC. (3.139)

Assuming F is only discontinuous on the material surface 8,8, the HADAMARD compat-
ibility condition states that F* and F~ defined by Eq. (3.3) have to map all vectors
tangent to §,Q into the same spatial vectors. Clearly, this requires

[[F]] =m®N (3.140)

with IV denoting the normal vector of 8, and m defines the jump direction, cf. [ORTIZ
2003). With Eq. (3.140), the equilibrium condition at the interface reads

[[T]] =7 -1 = (P* - P7).N= (N D N) .m = 0. (3.141)

- -

=:Q
Here, the contraction according to Remark 3.3.2.1 has been applied, C+ = dP/dF and
Q represents the acoustic tensor. Additionally, it has been assumed that [C7] = 0. This
constraint is reasonable, since a discontinuity based on the condition [Cr] # 0 cannot
form before one with [Cr] = 0, [RICE & RubDNIicKI 1980]. The non-trivial solution of
Eq. (3.141) yields
det Q(IN) = 0. (3.142)

The normal vector /N follows from the localization condition (3.142). Once N is known,
m can be computed according to

m € ker Q(N). (3.143)

In the case of the bifurcation condition in the sense of [SiMO, OLIVER & ARMERO 1993],
the transition of ¢ € C into ¢ ¢ C is considered (strong discontinuities). Analogous
as before, the singular surface where the jump occurs is denoted as d,Q2. The crucial
observation made by [SIMO, OLIVER & ARMERO 1993] is that the stress vector acting
in 9,0 is not allowed to be a singular distribution, if traction continuity across 3, is
postulated. This restriction is obvious, since the stresses in Q% result from continuous
deformation mappings and hence, they are regular distributions. Following [MOSLER
2005c], this restriction can be written into the format

dirac [T+ - Tla,n] =0, with pop€C, @¢C. (3.144)
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Here, the DIRAC mapping is defined as
(Ra)n — (RS)Q

14
f = Xozr J (3.145)

dirac :
and xpzr represents the characteristic mapping of the set of singular distributions, cf.
[MOSLER 2005c]. Note that condition (3.144) and (3.141) look formally identical, al-
though they are associated with different physical problems. Clearly, since Tt is regularly
distributed, Eq. (3.144) is equivalent to dirac[T|s,q] = 0.

The computation of the condition dirac[T'|aq] = 0 depends, apparently, on the material
model considered. In [MOSLER 2005C|, a GREEN-NAGHDI-type finite strain plasticity
theory (cf. page 26) allowing for the modeling of arbitrary material symmetries is con-
sidered. For the derivation of the localization condition the following properties are of
utmost importance:

e At the time of bifurcation, dirac|[F] = [u#] ® N 4, cf. Eq. (3.9).
¢ The internal stress-like variables are bounded and hence, dirac[Q] = 0.

e In the case of plasticity theories formulated in stress space, ¢ is stress-like and
consequently, dirac[¢] = 0.

Without going too much into detail, the enumerated properties require the plastic multi-
plier to be a singular distribution, i. e., dirac[A] # 0. It should be noted that the regularly
distributed part of X is not important for the bifurcation analysis. More precisely, the as-
sumption that the regular part of X is zero, as postulated in [SIMO, OLIVER & ARMERO
1993), is not necessary, cf. [MOSLER 2005cC|. Inserting the singular part of the plastic
multiplier into Eq. (3.144) leads finally to the localization condition

Q" (N)-[u] =0, with Q™ (N)=N . N. (3.146)
Here QP denotes the acoustic tensor corresponding to the perfect plastic material. Fur-
ther details are omitted. They are contained in [MOSLER 2005c|. Analogous to the
classical LEGENDRE-HADAMARD condition, the non-trivial solution of Eq. (3.146) gives

rise to
det Q**'(IN) = 0. (3.147)

Interestingly, condition (3.147) is formally identical to the classical one (3.142). However,

it depends now on the tangent C‘,’f’" of the perfect plastic material.

Remark 3.4.1.1 According to fOrTiZ 1987; ORTIZ, LEROY & NEEDLEMAN 1987/, a
condition of the type (3.142) or (3.147) is not well-suited for computational purpose. In
fact, it is more appropriate to consider the optimization problem

N =arg (n}l\lrn det Q(IN )) (3.148)
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under the constraints
det@ <0 A |IN|l =1 (3.149)

Remark 3.4.1.2 Non-local criteria for the prediction of the normal vector N as applied
for instance in [FEIST & HOFSTETTER 2005] are not considered in this work. Although
they seem to give often good numerical results, they can lead to a completely unphysical
initiation and propagation of failure, cf. [SIMONE, ASKES & SLUYS 2004/

3.4.2 TUniqueness of the solution

Based on the localization criterion presented in the previous subsection, or one of the
methods enumerated on page 77, the normal vector of 9,2 can be computed. However,
in general, the solution concerned with det Q(IN) = 0 or a similar concept is not unique.
Consequently, it is convenient to introduce the set of all candidates

In:={N€8%|02detQ(N) < det Q(N*), VN* € 5%} (3.150)

with 82 being the 2-sphere. Even if load cases which are invariant with respect to a
rotation applied to special axes such as uniaxial stress states or hydrostatic stress states
are neglected, not any element of Jx has a physical relevance (see [SIMO & OLIVER
1994; BORJA 2000]). Hence, the "correct” bifurcation mode has to be chosen from Jy.
For that purpose, different solution strategies have been developed.

For instance, restricting to the geometrically linearized plane strain state, together with
an associative VON MISES plasticity theory, condition (3.147) applied to a simple shear
deformation, i. e., u = u; Xp €, and & = 012 (€, ® €2 + €, @ €)), yields Iy = {e), e2}.
However, according to the displacement field, only e; is admissible, cf. [BorJA 2000].

In this chapter, only local criteria for determining the ”correct” vector N € Jn are
considered. They are in contrast to methods based on geometrical smoothing techniques
such as [GARIKIPATI 1996; GASSER & HoLzAPFEL 2006]. Most frequently, the following
local criteria are applied, cf. [MOSLER 2005C]:

e In [ARMERO & GARIKIPATI 1996; GARIKIPATI 1996; BORJA 2000], the vector
N which results in a failure mode more closely aligned with the smooth deformation
field is chosen. Locally, this idea can be re-written into the format (at the onset of
bifurcation F = F = F, see Eq. (3.18))

N = argmax[F : (m @ N)] (3.151)
N
with m denoting the jump direction fulfilling m € ker Q™ and ||m||, = 1.
e In [WELLS & SLuys 20014], the criterion

N = argmax || [a(A)] Il (3.152)
N
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has been applied. Hence, the vector N maximizing the inelastic deformations is
chosen.

e N follows from the principle of maximum dissipation

N =arg ml%xD(N), (3.153)
cf. [MOSLER 2005c].

In what follows, it will be shown that the enumerated criteria are equivalent for many
different material models. The next paragraph follows to a large extent [MOSLER 2005¢].

First, the straightforward equivalence between criteria (3.152) and (3.153) is pointed
out. Clearly, the proof requires the evolution equations of the internal variables and the
displacement jump to be governed by the postulate of maximum dissipation. Assuming a
cohesive law defined by a free HELMHOLTZ energy of the type (3.40) and a yield function
according to Eq. (3.49) depending on a positively homogeneous yield function ¢ of degree
one, the dissipation reads

D=ATH S, (3.154)

cf. Remark. (3.2.2.2). Since the plastic multiplier represents a measure for the amount of
plastic deformations and

AN)2MN) & DN)>DIN) VN eln. (3.155)

the equivalence between criteria (3.152) and (3.153) follows directly.

Next, it is shown that IN predicted by the compatibility condition (3.151) is identical to
the one obtained from the postulate of maximum dissipation. Again, associative evolution
equation and a positively homogeneous yield function of degree one are considered. Since
Egs. (3.152) and (3.153) are rate equations, but Eq. (3.151) does not involve a time
derivative, the different criteria cannot be compared directly to each other. For this
reason, the discrete counterparts induced by a time integration are analyzed.

Assuming a sufficiently small load step, principle (3.153) can be re-written as
(€ - 8)- N,(J,a) = 0)|ns1 2 ¢*((C - S) - N,(J,&) = 0)}ns1, VN €Iy (3.156)

(¢** < 0 implies a zero dissipation). Since the stress-like internal variables are zero before
the deformation localizes, Ineq. (3.156) is equivalent to

T:;((C' §)-N,(J,a) =0)|n41 2 T:;((C' S) -N, (J, a) = 0)|as1, VN € In, (3.157)

cf. Remark. (3.2.2.2). With T, being a positively homogeneous function of degree one,
Ineq. (3.157) reads

(C-8): (MQN))us1 2(C-8): (MON))|ps1, YN €In, (3.158)
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Here, M denotes the flow direction, i. e., M = 93¢. Applying a pull back to Eq. (3.151),
the equivalence between criterion (3.151) and the one based on the principle of maximum
dissipation (3.153) simplifies to

(C-8): (M@N))|as1 2 (€ 8): (M & N))lnss

& C(MON)w 2 C: (M@ N))|war. (3.159)

Obviously, those inequalities are not equivalent for arbitrary material symmetries. More
precisely, a comparison between the deformation-based criterion (3.151) and the stress-
based criterion (3.157) makes only sense for isotropic materials. In this case, the elastic
part of the energy V.., depends only on the invariants of C denoted as J; and the MANDEL
stresses show the form

Vv , OWeeg
oI, ' ol

C-§=2C 0¥ =2 l o A

I]] C -2 I3 1. (3.160)
Additionally, it is assumed that ¥ is independent of the second invariant of C. This
restriction is fulfilled for many materials. For instance, neo-HOOKE-type material models
which will be applied in Section 3.6 are characterized by this assumption, cf. [CIARLET
1988; BASAR & WEICHERT 2000]. Using this postulate, the equivalence (3.159) reduces
to

OVeg = OV ~ .
. > reg reg .
I3 1] (M®N)2> [ 7, C+ o1, I3 1] (M@N)

OWreg 5 OWreg
laz, C+ L

& C:(M@N))ns1 2 € : (M@ N))lusa.
(3.161)
Since all vectors IN € J show the same localization mode characterized by the absolute
value |N - M| (if M is normalized, |[N - M| = 1 & mode-I failure, |[N - M| =0 &
mode-II failure and |IN - M| € (0,1) ¢ mixed-mode failure), without loss of generality,

N.-M=N-M. (3.162)

Applying Eq. (3.162), the equivalence (3.161) requires

O g
a1,

> 0. (3.163)

For isotropic material laws depending only on the first and the third invariant of C,
Ineq. (3.163) is a direct consequence of the so-called empirical inequalities, cf. [WANG &
TRUESDELL 1973; TRUESDELL & NOLL 1965] (see also Remark 3.4.2.1). In summary,
for isotropic elastic materials invariant with respect to I», together with associative evo-
lution equations designed by means of a positively homogeneous yield function of degree
one, the criteria (3.151)-(3.153) are equivalent.
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Remark 3.4.2.1 The empirical inequalities state that
'ffo S Os ¢l > 07 'p-—l S 0. (3.164)

Here, ; depending on the invariants of C defines the response function of the CAUCHY
stresses, 1i. e.,
o=t l+¥i b+ b, with b:=F.F". (3.165)

According to [WANG & TRUESDELL 1973; TRUESDELL & NoLL 1965/, Inegs. (3.164)
imply the so-called ordered forces inequalities as well as the BAKER-ERICKSEN inequali-
ties. It can be shown in a relatively straightforward manner that for materials invariant
with respect to the second invariant of C,

7 |

P >0 = a1,

> 0. (3.166)

3.5 Computation of the topology
of the singular surface g2

The methods described in the previous sections can be applied to compute the topology
of the singular surface 3,). More precisely, only the local topology, namely the normal
vector N, is predicted. However, if 9,82 is to be modeled continuously as necessary in
the case of numerical analyses of cracks, the position of 8§ is required additionally.
Unfortunately, this is not a trivial issue. For instance, if constant strain finite elements
are used, the strain and the resulting stress fields are constant within the elements and
hence, a local criterion cannot define the position of g,(2.

It should be pointed out that enforcing continuity of the singular surface 0, is essential
for computations being almost independent with respect to the mesh bias, cf. [JIRASEK
& ZIMMERMANN 2001; OLIVER, HUESPE, SAMANIEGO & CHAVES 2002; FEIST &
HOFSTETTER 2005]. Without enforcing continuity, the results obtained from SDAs are
almost identical to those predicted by standard smeared crack models, see [MOSLER &
MESCHKE 2004].

Several different methods for computing the global topology of 9,2 can be found in the
literature. Conceptually, they can be grouped into the following two types of approaches:

e When localization is detected, the normal vector IN of a singular surface 9, is
computed first. If no neighboring finite elements are localized, 8,0 is assumed to
cross the centroid of the respective element. On the other side, if a slip band has
already formed in one of the neighboring elements, the new band 4,$? is connected
with the existing one, cf. [OLIVER 1996; GARIKIPATI 1996; BORJA 2000]. The
method just described is applied most frequently. It should be noted that the
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extension of this band tracking algorithm to the fully three-dimensional case is, in
general, not trivial. If 4,0 is assumed to propagate element-wise (the tip of 3,12 is
restricted to the element boundary), the cut set of a planar localization surface 4,02
and one surface of a three-dimensional finite element (linear approximation of the
geometry) is represented by a straight line. Consequently, in general, it is impossible
to connect two neighboring surfaces 9,Q in a continuous fashion (at this cut set).
For this reason, some authors propose to apply smoothing techniques, cf. [GASSER
& HOLZAPFEL 2006).

e Global band tracking algorithms according to OLIVER and co-workers, cf. [OLIVER,
HUESPE, SAMANIEGO & CHAVES 2002; CHAVES 2003]. Conceptually speaking,
OLIVER suggests to compute the solution of an auxiliary PDE. This PDE is designed
such that the isolines of its primary, scalar-valued, variable define possible globally
continuous localization surfaces. Since d,§2 may change each load step, the solution
of the auxiliary PDE has to be determined every step as well. Hence, the resulting
numerical costs are relatively high. For this reason, [FEIST & HOFSTETTER 2005]

suggested to apply OLIVER’s method to certain neighborhoods (close to the tip of
a0).

Although some of the described algorithms sound promising, complex failure modes such
as crack branching and multiple cracks crossing each other cannot be modeled yet. Very
recently, a new class of algorithms has been proposed, [NEGRI 2005B; MOSLER, ORTIZ
& PANDOLFI 2006]. It will be presented in a more detailed way in Chapter 7.2. Here,
only a short description is given. Different from the two approaches discussed before, the
novel numerical formulation can be applied, in principle, to arbitrarily complex problems.

In contrast to the numerical models discussed in this chapter, the novel method according
to [NEGRI 2005B; MOSLER, ORTI1Z & PANDOLFI 2006] is based on interface elements, cf.
page 49. The overriding principle of this approach is energy minimization. More precisely,
assuming the physical problem is governed by the postulate of maximum dissipation, an
incremental potential I can be derived such that the continuous and the discontinuous
displacement field follow from a minimization problem, i. e.,

(&, [u]) = arg inf 1(3, ful), (3.167)

cf. Section 2.5. Such a method has been applied for instance in [YANG, MOTA & ORTIZ
2005|. Evidently, the solution associated with problem (3.167) depends on the topology
of 3,02. As a consequence, a canonical extension of the problem (3.167) yields

(6, [u] ,8.0) = srg _inf _ I( [u], 8,0). (3.168)

¢l s

It is obvious that by thermodynamical considerations, 9,( is not allowed to shrink, i. e.,
OsQe,, € 0s8s,.,,- An approximation of problem (3.168) can be found in [NEGRI 2005B;
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MOsLER, ORTIZ & PANDOLFI 2006]. For instance in [MOSLER, ORTIZ & PANDOLFI
2006] the authors optimize the mesh in order to capture the crack path better by applying
variational mesh adaptions as presented in Chapters 4 — 6. Further details will be given
in Chapter 7.2.

3.6 Numerical examples

The applicability and performance of the strong discontinuity approach as proposed in
the previous sections are investigated by means of a 2D as well as by two different 3D
numerical analyses. While in Subsection 3.6.1, a steel made strip with a hole is analyzed
numerically, a uniaxial tension test is investigated in Subsection 3.6.2.1. Again, a ductile
material model is applied. Finally, a debinding problem is computed in Subsection 3.6.2.2.
In contrast to the other examples, the interface problem is characterized by mode-I failure.

In the numerical examples presented in this section, continuity of g, is enforced by
applying the purely geometrical procedure as adopted by [OLIVER 1996; GARIKIPATI
1996; BORJA 2000], cf. page 83. If the localization criterion leads to more than one
admissible vector IN, the physically relevant one is determined by means of the postulate
of maximum dissipation (see criterion (3.153}).

3.6.1 Two-dimensional problem:
Extension of a strip with a circular hole

In this section, the extension of the SDA to higher order elements as described in Sec-
tion 3.3.5 is shown. As a prototype, a 4-node, purely displacement-based, plane stress
element is used. This element is analyzed by a numerical computation of the extension
of a steel made strip with a circular hole (see Fig. 3.3). A similar problem has been
investigated numerically by several authors, see e. g. [SIMO & HUGHES 1998]. For the
modeling of slip bands in ductile materials, the vON MISES yield function according to
Eq. (3.50) is adopted. A shear band is assumed to propagate, when the condition ¢ > 0
(a loading step) is fulfilled.

To demonstrate the independence of the numerically computed results on the spatial
discretization, three different finite element meshes are used. According to Fig. 3.4, mesh
I and mesh II are aligned with the expected slip band path. They contain 192 and 834
4-node plane stress elements, respectively. In addition to these meshes, an unstructured
discretization (mesh III) is considered as well. It has been designed automatically by
applying an overlay procedure and consists of 176 elements. It is noteworthy that the
stress field associated with the problem illustrated in Fig. 3.3 is highly inhomogeneous
even in the elastic regime. As a consequence, no imperfections are necessary to activate
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Figure 3.3: Numerical study of the extension of a strip with a circular hole: dimensions
(in [em]) and material parameters; thickness of the strip ¢ = 0.1 cm
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Figure 3.4: Numerical study of the extension of a strip with a circular hole: distribution
of the internal variable a representing the relative shear sliding displace-
ment as obtained from discretizations mesh I-1II (8-fold magnifications of
displacements)

localization. Since the resulting deformations are, as it will be shown, relatively small,
linearized kinematics are used.

In Fig. 3.4, the distribution of the internal variable a representing the relative shear
sliding displacement obtained from the numerical analyses is illustrated. The plots are
associated with a displacement # of magnitude u = 0.008835 cm. As expected, the slip
bands computed are almost completely independent of the spatial discretization. The



3.6 Numerical examples 87
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Figure 3.5: Numerical study of the extension of a strip with a circular hole: topology
of the primary slip band as computed from discretizations mesh I-I1I

angle between these bands and the horizontal is about 45°. It should be noted that in
Fig. 3.4 only the primary slip bands are shown. Secondary bands, i. e., those exhibiting
a relative shear sliding displacement several orders of magnitude less than that of the
primary localization surfaces are not presented.

Although the topology of the slip bands computed numerically can be estimated by means
of Fig. 3.4, a more precise analysis of the topology is not realizable. For a more detailed
investigation, the primary localization surfaces are illustrated in Fig. 3.5. As expected
from Fig. 3.4, the slip bands obtained from the finite element analyses based on mesh I-I1II
are almost identical. They are nearly independent of the size of the finite elements and
the bias induced by the discretization. According to Fig. 3.5, the slip band orientations
are not constant. They vary between 6 € [37.44°,47.55°], 6 € [38.74° — 49.71°] and
6 € [38.67°,51.25°] for meshes I, II and III, respectively. Here, # denotes the angle
between the slip band and the horizontal. The slip bands start to form at the hole under
a relatively small angle 6. If loading is further increased, these bands propagate. At the
same time, the angle & at the tip of the band increases. After reaching the maximum value,
@ decreases in the vicinity of the upper and the lower boundary of the strip. Consequently,
the slip bands computed numerically are slightly curved.

The load-displacement diagrams computed from the numerical analyses are shown in
Fig. 3.6. Each of the three discretizations predicts an almost identical structural response.
According to Fig. 3.6, a maximum loading of F,,x = 5.36 kN, F.x = 5.27 kN and
Fioax = 5.44 kN is obtained from meshes I-I11. By comparing the load-displacement curves
to that of the linear solution, it is seen that localization is activated significantly before the
maximum loading Fi,.. is reached. Not until the slip band separates the steel made strip
completely, an overall softening response is observed. However, the differences between
the post-peak behavior computed from meshes I-1II are marginal.
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Figure 3.6: Numerical study of the extension of a strip with a circular hole: load-
displacement diagrams as computed from discretizations mesh I-III

3.6.2 Three-dimensional problems using
geometrically exact kinematics

Next, the applicability of the novel finite element formulation and its numerical perfor-
mance are investigated by means of fully three-dimensional examples. In contrast to the
previous subsection, a geometrically exact theory is used.

To the best knowledge of the author, two different benchmarks are most frequently applied
to the analysis of strong discontinuity approaches at finite strains: the uniaxial tension
or compression test as studied in [GARIKIPATI 1996; ARMERO & GARIKIPATI 1996;
LARSSON, STEINMANN & RUNESSON 1998; ARMERO 1999; BORJA 2002] or a mode-I
type debinding problem, ¢f. [OLIVER, HUESPE, PULIDO & SAMANIEGO 2003; GASSER
& HorzAPFEL 2003]. For the fully three-dimensional case, only one numerical analysis
based on the SDA at finite strains has been presented in [GASSER & HOLZAPFEL 2003]
so far. Both numerical examples, that is, the uniaxial tension/compression test as well as
the mode-I type debinding problem are relatively simple. However, they are reasonable
and meaningful for the analysis of the numerical model. The reasons for this are mani-
fold. First, even in the case of the uniaxial compression or tension test, the stress field
computed is inhomogeneous due to the initial imperfection set to activate localization.
Thus, the localization surface 9,82 does not form at once, but an evolution of 9,92 during
the numerical analysis can be observed. However, the most important property of these
benchmarks is that the topology of the localization surface can be computed analytically.
Furthermore, if an additional assumption concerning the activation of 8, is made, the
complete structural response, i. e., the load-displacement curve, can be calculated ana-
lytically as well. Consequently, the results obtained numerically can be compared to the
analytical solution. Particularly, for the uniaxial tension/compression test the analytical
solution can be computed very easily. As a result, the applicability and the performance
of the finite element formulation proposed will be demonstrated by means of the uniaxial
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Figure 3.7: Numerical study of the tension test: dimensions (in [cm]) and material
parameters

tension test and the debinding problem.

3.6.2.1 Uniaxial tensile test of a ductile bar

In this paragraph, the formation and propagation of shear bands occurring in a steel
made bar are analyzed numerically. The geometry is illustrated in Fig. 3.7. The bar is
subjected to a prescribed displacement field u at its face side. Other boundary conditions
are chosen such that stresses occur only in one direction (uniaxial tension test).

[or the analysis of slip band formation in ductile materials, a voN MISES-type yield
function
HT,q) = |Twmll2 —a(a), with Tp: =T —[T-N] N (3.169)

is adopted, i. e., only the shear stresses T",, govern the evolution of the slip sliding displace-
ments. Following the postulate of maximum dissipation, associative evolution equations
are assumed. According to Eq. (3.169), the softening response characterized by the in-
ternal variable ¢ is modeled as isotropic. Analogous to [GARIKIPATI 1996; ARMERO &
GARIKIPATI 1996; ARMERO 1999|, a linear evolution of ¢ of the type

glay =0, - Ha (3.170)

is chosen. In the case of linearized kinematics, the three-dimensional vON MISES-type
model described was proposed in [MOSLER 20058B]. In this reference, further details
concerning this specific inodel are available. The bulk material is modeled by applying a
hyperclastic materjal law, The respective free energy functional is given in Eq. (2.30).

The model is completed by a criterion necessary for the computation ol the nornal vec-
tor IN of the localization surface. For that purpose, it assumed that the angle between
the vector IN and the direction of the maximum principle stress at the time of localiza-
tion is about 45°. This represents a widely accepted criterion, cf. |[GARIKIPATI 1996;
ARMERO & GARIKIPATI 199G|. In the case of linearized kinematics, it follows from
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mesh | mesh 11

mesh IT1 mesh [V

Figure 3.8: Numerical study of the tension test: finite element discretizations; mesh
I, II, III and IV contain 6, 454, 1405 and 3361 constant strain tetrahedral
elements, respectively

a bifurcation analysis in the sense of [SiMO, OLIVER & ARMERO 1993]. Clearly, the
normal vector 7 in the deformed configuration transforms as n = F~ - N, In contrast
to the localization condition proposed in [SiMO, OLIVER & ARMERO 1993], the shear
band is assumed to propagate when the condition ¢,,; > 0 is [ulfilled {i. e., a loading
step), ¢f. [MOSLER 20058). Of course, other criteria can be easily applied as well. The
adopted criterion shows an impoyrtant advantage compared to other models. According
to [MOSLER 20058], in the casc of small displaccments, the Joad displacement curve can
be computed analytically. More precisely, the maxiinun loading is calculated as

16.0
Fros =800, at u=——2¥ (3.171)
K
and the ultimate displacement (7 = 0, a completely softencd material) as
1
u %y (3.172)

= %ﬁ'
For further details, refer to |[MOSLER 20058].

For the assessment of mesh dependence of the results computed numerically, three differ-
ent discretizations are used. The unstructured meshes I1, III and IV contain 454, 1405
and 3361 constant strain tetrahedral elements, respectively, see Fig. 3.8. Localization is
induced by slightly reducing the initial yield stress o, of one element. Since an infinite
number of possible slip band orientation exists, the norual vector of the first localized
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inesh 1 mesh [V

Figure 3.9: Numerical study of the tension test: distribution of the internal variable
a representing the relative shear sliding displaceient as obtained {row the
proposed finite element formulation (1-fold magnification of the displace-
ments); solution corresponding to the final stage of deformation (g(a) = 0)

clement is explicitly prescribed as N7 = (0;1/v/2;1/v/2]. Again, the numerical analyses
are performed with enforcing slip band path continuity.

Adgitional to meshes [I-1V, another discretization is considered for the sake of comparison.
In contrast to the numnerical analyses based on wmesh 11-1V, no imperfection has to be
prepared for mesh . As a result, the localization surface foris at once. Furthermore, the
orientation of d,§2 is accounted for a priori. Hence, contrary to the numerical analyses
based on mesh I1-IV, the computation performed by means of mesh [ is semi muncrical.

Set of material parameters I First, the material patameters E, v, g, and H, used
for the numerical analysis are assumed according to [GARIKIPAT) 1996], see Fig. 3.7.

Fig. 3.9 contains the distribution of the internal variable a representing the relative shear
sliding displacement as obtained from the proposed finite element formulation. As ex-
pected, independent of the respective discretization, a mode-II failure is observed. Anal-
ogous to the analytical solution, the angle between the uormal vector of the predicted
shear band and that of the maximum principle stress direction is about 45°.

The resulting load-displacement diagrains are shown in Fig. 3.10. For the purpose of
comparison, the structural response computed from the geometrically linearized model as
presented in |[MOoOSLER 20058] is illustrated as well. As shown in Fig. 3.10, the results ob-
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Figure 3.10: Numerical study of the tension test: load-displacement diagram as ob-

tained from the proposed finite element formulation; material parameters
according to Fig. 3.7

tained from the finite strain model are independent with respect to the spatial discretiza-
tion. Furthermore, since the maximum displacement is relatively small (x = 0.159099 cm),
the load-displacement diagrams computed from the geometrically exact model are almost
identical to that predicted by the linearized finite element formulation. In summary, all
results obtained numerically are identical to the small strain analytical solution as defined
by means of Egs. (3.171) and (3.172).

The convergence profiles for the global NEWTON-type iteration are shown in Table 3.1.
The load step considered corresponds to a displacement of the face side of u = 0.1527 cm.

Relative error of the residuals R;
mesh II mesh III mesh IV
7.074E+00 1.561E+400 1.922E+00
2.041E+00 3.738E-02 2.002E-01
1.947E-02 4.318E-07 1.125E-05
1.471E-06 1.168E-12 2.594E-12

4.979E-12

Iteration ¢

o W=

Table 3.1: Numerical study of the tension test: convergence profile of the global
NEWTON-type iteration; magnitude of the load step Az = 0.01 cm; rela-

tive error of the residuals in the maximum norm; convergence tolerance for
all computations TOL = 10~8

Although the prescribed increment of the nodal displacement Au = 0.01 cm is relatively
large, a rapid rate of the convergence is observed. The asymptotic quadratic convergence
shows the exact linearization of the finite element formulation presented.
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Figure 3.11: Numerical study of the tension test: load-displacement diagram as ob-
tained from the proposed finite element formulation; material parameters:
E =2.069 - 10® kN/cm?, v = 0.29, o, = 300 kN/em?, H = 20 kN/cm?

Set of material parameters II In the previous subsection, the applicability as well
as the efficiency of the proposed finite element model have been demonstrated. However,
the material parameters which have been chosen according to [GARIKIPATI 1996] lead to
a maximum displacement of the front size of the bar of u = 0.159099 cm. Hence, only
relatively small strains occur and consequently, geometrical nonlinearities do not play an
important role.

In this subsection, a re-analysis of the tension test as analyzed in the previous subsection
is performed. In contrast to Subsection 3.6.2.1 the material parameters according to
Table 3.2 are assumed.

E v oy H
2069 [kN/cm?] 0.29 [-] 300 [kN/cm?] 20 [kN/cm?]

Table 3.2: Numerical study of the tension test: material parameters

Evidently, the direction of the slip band, that is, the vector IV is not influenced by the
change of the material parameters. Only the vector n is affected.

The computed load-displacement diagram is illustrated in Fig. 3.11. Even before local-
ization occurs, the elastic response as predicted from the linearized model using HOOKE'’s
law differs from that obtained by means of the energy functional (2.30).

The deviation of the maximum load computed from the linearized model to that associated
with the fully nonlinear algorithmic formulation is relatively large. With an ultimate load
of 1891 kN (geometrically exact) and 2400 kN (geometrically linearized), the relative
difference follows to 27%, i. e., the results obtained from the SDA model based on the
assumption of small strains are clearly non conservative.
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Figure 3.12: Numerical study of a debinding problemn: dimensions (in {inm|) and mate-
rial parameters; thickness of the strip £ = 0.5 mm

After the shear band has formed completely, a global softening response is observed.
However, although a linear softening evolution of the type (3.170) has been adopted, a
nonlinear load-displacement diagrain is computed. It is obvious that these nonlinearities
result from the finite strain kinematics. In summary, the structural response as obtained
by assuming small displacements (and strains) differs significantly from that associated
with the finite strain SDA finite element formulation as presented in this work.

[t is interesting to note that the face side displaceinent u corresponding to a completely
softened bar is independent of geometrically exact kinematics. However, this is quite
evident. According to Eq. (3.170), amax = 0y/ H. Hence, at the time when the structure
fails (¢ = 0), the material displacement jump J is computed as J = oy /H [0;1/v2;1/V3)].
Since a stress free, completely softened bar is locally characterized by § =0 < F =1,
the displacement jump [z] is equivalent to its material counterpart J, i. ¢., Ju] = J (in
general, {u] = F - J). As a consequence, the maximum displacement in the direction of
the axis of the bar is computed as [[u]); = 1/v2 o,/H. Clearly, this result is identical to
that predicted by the geomctrically linearized model.

3.6.2.2 Debinding problem: Mode-I failure

The last example is a debinding problem taken from [OrLIVER, HUESPE, PuLIDO &
SAMANIEGO 2003|. However, in contrast to the cited work which deals exclusively with
constant strain triangle elements, a fully threc-dimensional analysis is given in this para-
graph. The geometry and the material parameters defining the mechanical problem are
depicted in Fig. 3.12. It should be noted that the corners of the notch are slightly rounded.
While the bulk material is modeled by the polyconvex energy functional (2.30), the in-
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Figure 3.13: Numerical study of a debinding problem: Dark grey colored elements are
those with active embedded discontinuities (1-fold magnification of the

displacements); solution corresponding to « = 1.0 mm.

terface law is chosen according to Eq. (3.59). Hence, a mixed-mode model is adopted.
In contrast to the examples presented previously, the singular surface 9,€2 is assumed to
exist a priori. More precisely, the interface is located as illustrated in Fig. 3.12. As a
consequence, using a cartesian coordinate system, the normal vector N is N* = (1;0;0).
Due to the symmetry of the problem the shear stresses vanish at the interface. As a
result, the mixed-mode cohesive law (3.59) reduces to the classical RANKINE criterion
and, without loss of generality, the material parameter k is set to K = 0. Consequently,
the mechanical problem is characterized by a pure mode-I failure. Softening is accounted

for by the bi-linear function

[ oy,—H a Va < 0.2475 mm
o} = { (o, — Hy 0.2475) — Hy (a — 0.2475) Va > 0.2475 mm. SR

For the assessment of mesh dependence of the numerically computed results, two different
discretizations are analyzed. It can be seen that the elements of Mesh 11 which cross the
interface 0,2 are 3/5 times smaller than those of Mesh I (in the direction orthogonal to
9:82).

The deformed configurations are shown in Fig. 3.13. The dark grey colored elements are
those with active embedded discontinuities. According to Fig. 3.13 both triangulations

predict an identical structural response.



96 Chapter 3: Modeling of localized material failure by strong discontinuities

T T v T T T
mesh I —
mesh [ ===

20

Force

1 ] — | 1 I_
0 0.25 0.5 0.75 1
Displacement [mm]

Figure 3.14: Numerical study of a debinding problem: load-displacement diagrams com-
puted from mesh I and II

This is verified by the load-displacement diagrams given in Fig. 3.14. The F —u diagrams
are only marginally affected by the discretization.

3.7 Open problems concerning strong discontinuity
approaches

Although finite element formulations based on kinematics induced by strong discontinu-
ities represent, nowadays, one of the most powerful techniques for analyzing problems
exhibiting strain-localization and additionally, these models are relatively well developed,
several questions are still unanswered. One of those is associated with the computation
of the topology of 3;Q2. This subject has been discussed briefly in Section 3.5. Although
some of the methods described in Section 3.5 seem to be very promising, neither the SDA
nor the X-FEM have been applied to the simulation of complex material failure such as
fully three-dimensional problems showing crack branching and intersecting cracks (to the
best knowledge of the author).

Any physically well-motivated method suitable for computing the topology of 8,2 requires
a sufficiently fine resolution of the continuous deformation field. This is obvious, since all
criteria necessary for predicting the growth direction of the internal surface depend sig-
nificantly on the quality of the continuous deformation. An effective way for guaranteeing
such a sufficiently fine resolution is represented by adaptive finite element methods. Par-
ticularly for complex three-dimensional simulations, those methods are essential. Three
of them will be presented in the next chapters.



Chapter 4

A variational r-adaptive finite
element formulation

This chapter is concerned with the implementation of Variational Arbitrary Lagrangian-
Eulerian (VALE) formulations, also known as variational r-adaption methods. These
methods seek to minimize the energy function governing the underlying physical problem
with respect to the finite element mesh over the reference configuration of the body. A
solution strategy is proposed which is based on a viscous regularization of the configu-
rational forces. This procedure eliminates the ill-posedness of the optimization problem
without changing its solutions, i. e., the minimizers of the regularized problems are also
minimizers of the original functional. Selected numerical examples demonstrate the ro-
bustness of the solution procedures and their ability to produce highly anisotropic mesh
refinement in regions of high energy density.

4.1 Introduction to Arbitrary Lagrangian-Eulerian
(VALE) formulations

If the finite element method is applied to the analysis of mechanical problems, the solutions
depend on the approximation of the primary variables resulting from the triangulation
and the shape functions within the finite elements. As a consequence, the quality of an
initial computation can be improved either by modifying the spatial discretization, or
by using higher order interpolations. The latter is referred to as p-adaptive method, cf.
[SzaBS & BABUskA 1991]. In the present work, such approaches will not be considered.
The reasons for this are twofold. First, the problems analyzed numerically here are, in
many cases, highly non-smooth such as cracking in brittle structures. Second, if finite
deformations are to be analyzed, the geometry of the deformed triangulation can be highly
distorted which may lead eventually to ill-defined interpolations. This problem cannot be
eliminated by using higher order elements, cf. [BELYTSCHKO, Liu & MORAN 2000).

97
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deformed
configuration

material
configuration
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Figure 4.1: Different configurations and mappings characterizing the ALE kinematics

The method advocated in this chapter falls into the class of r-edaption, cf. Chapter 7 in
[BELYTSCHKO, L1U & MORAN 2000]. Such models are often referred to as Arbitrary La-
grangian Eulerian formulations (ALE). Within this framework, the positions of the nodes
defining the reference configuration are modified such that the resulting finite element
mesh predicts the response of the mechanical system under investigation better than the
initial triangulation. More specifically, two independent mappings are introduced. Ac-
cording to Fig. 4.1, & . Qn — 2 connects points belonging to the reference domain Qyy
to their counterparts in the material configuration €2, while the motion of the deformed
triangulation is described by the mapping ® : Qy — (). As a result, the deformation
 follows from the composition of both mappings. Clearly, by setting & constant, the
classical LAGRANGIAN description is obtained. In contrast, ® = const is equivalent to an
EULERIAN formulation.

Usually, the LAGRANGIAN framework is adopted when dealing with problems in solid me-
chanics. However, sometimes this framework is inappropriate. For instance, for problems
showing large deformations and hence, highly distorted deformed meshes, LAGRANGIAN
approaches often lead to ill-defined interpolations. Typically, this can be observed in fluid
mechanics where an EULERIAN setting is more suitable. But even in solid mechanics,
LAGRANGIAN formulations are sometimes not applicable. The interesting feature of ALE
methods is that they combine the advantages of both LAGRANGIAN as well as EULERIAN
finite element methods. In the present chapter, a novel ALE formulation for analyzing
problems in solid mechanics is proposed. The EULERIAN part of the finite element model
is used to modify the triangulation such that the interpolations are well-defined and the
initial numerical solution is improved.

Although ALE formulations enjoy a relatively long tradition, dating back, at least, to
[BELYTSCHKO & KENNEDY 1978; HUGHES, Liu & ZIMMERMANN 1981], first ideas
for combining them with hyperelastoplasticity based on a multiplicative decomposition of
the deformation gradient have been just recently presented, for instance in [RODRIGUEZ-
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FERRAN, PEREZ-FOGUET & HUERTA 2002; ARMERO & LOVE 2003]. As a conse-
quence, many questions are still open and ALE formulations represent one of the active
research areas. For example, if the triangulation of the reference or the deformed con-
figuration is highly distorted, smoothing algorithms are usually adopted, cf. [ARMERO
& Love 2003]. However, according to [DONEA 1983], most of those techniques are
entirely based on heuristic developments. In contrast to the references on ALE finite
element methods cited before, Variational Arbitrary Lagrangian-Eulerian formulations
(VALE) do not require such smoothing algorithms. VALE methods will be discussed in
the remaining part of this chapter. It follows to a large extent [MOSLER & ORTiz 2005].

4.2 Introduction to Variational Arbitrary
Lagrangian-Eulerian (VALE) formulations

According to Section 2.3.2, the stable configurations of a hyperelastic body obey the prin-
ciple of minimum potential energy. For dynamical and general dissipative materials, the
incremental problem can also be recast as a minimization problem by recourse to time
discretization, cf. Subsection 2.5.2 and [RADOVITZKY 1998; RADOVITZKY & ORTIZ
1999]. The corresponding finite element approximations then follow from a constrained
minimization of the (pseudo) potential energy over the space of interpolants. However,
strongly nonlinear problems, e. g., involving finite deformations or unstable material be-
havior, may lack uniqueness — or even existence -, e. g., as a consequence of buckling or
material instabilities. In addition, the space of solutions may not have a natural linear
space — much less normed space — structure, and the usual framework of error estimation
fails to apply in general. By virtue of this variational structure, the quality of two solutions
can be compared simply by their respective energies. Based on this optimality criterion,
a class of Variational Arbitrary Eulerian Lagrangian (VALE) methods can be formulated.
In these approaches, the deformation and the optimal finite-element discretization follow
jointly from energy minimization. The resulting energy is the lowest — and, therefore, the
attendant solution is the best — among all allowed discretizations, e. g., of a prescribed
number of nodes.

One of the first VALE formulations can be found in [MCNEICE & MARCAL 1973; FE-
LIPPA 1976). In these works, the nodal positions of a two-dimensional triangulation are
computed from the variational principle governing the mechanical problem under inves-
tigation. More specifically, the principle of potential energy of linearized elasticity theory
was considered. However, at that state, the authors could not give a physical interpre-
tation of a variation with respect to the nodal positions of the undeformed mesh. It
seems that [BRAUN 1997] was the first who realized that this variation is associated
with equilibrium of configurational or energetic forces in the sense of [ESHELBY 1951;
ESHELBY 1975]. Furthermore, BRAUN speculated on the possibility of computing such
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nodal positions of the undeformed mesh so as to attain configurational equilibrium. Prob-
ably inspired by BRAUN’s work, several authors proposed VALE finite methods recently.
More precisely, [MUELLER & MAUGIN 2002; THOUTIREDDY 2003; THOUTIREDDY &
ORTIZ 2004; KUHL, ASKES & STEINMANN 2004] computed the nodal positions of the
undeformed X, as well as the deformed x, configuration by applying the principle of
potential energy corresponding to finite hyperelasticity. In contrast to classical methods
in which energy is expressed in terms of &), only (X}, is assumed as constant), the formu-
lations advocated in the just cited references are based on an energy functional depending
on both z;, and X,. Although the ideas of the VALE methods in the citations share
the same underlying idea, the respective solution strategies vary significantly. [MUELLER
& MAUGIN 2002] proposed a steepest gradient algorithm without a line search. Since
the convergence rate of such a method is relatively low, it has to be understood rather
more as a prototype. More efficient implementations were advocated in [THOUTIREDDY
2003; THOUTIREDDY & ORTIZ 2004; ASKES, KUHL & STEINMANN 2004]. While the
algorithms adopted in the first two works are based on conjugate gradient methods, a
classical NEWTON iteration (without damping or line search) was employed in [ASKES,
KUHL & STEINMANN 2004].

4.3 ALE approximation of the deformed and
the undeformed configuration

Within the variational framework discussed in Sections 2.3.2, 2.5.2 and 2.6, finite-element
approximations may be conveniently characterized as constrained minimizers of the
(pseudo) potential energy. While this connection is standard and well-understood, it
may stand a brief review in the interest of completeness.

Before a finite element analysis can be performed, the domain of analysis must be de-
fined. It is assumed that the domains of interest are triangulable topological polyhedra
[HOFFMANN 1989]. This assumption allows bodies to be described by their bound-
aries, a representational paradigm known as Boundary Representation of Solids (B-Rep)
in the solid modeling literature [HOFFMANN 1989; MANTYLA 1988; REQUICHA 1980;
RADoVITZKY & ORTIZ 2000]. A boundary representation consists of: a topological de-
scription of the connectivity, incidence and adjacency of the vertices, edges, and faces that
constitute the boundary of the body, together with a consistent orientation leading to an
unambiguous determination of the interior and exterior of the domain of analysis; and a
geometrical description of the surface of the domain. The boundary representation of the
domain is particularly important in the present context, since the motion of the nodes in
the reference configuration must ensure that the integrity of the boundary representation
is preserved.

In addition to the geometrical description of the domain, a discretization (X, 7T3) is
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considered. It consists of: an abstract simplicial complex 7y, or triangulation (cf, e. g.,
[HOFFMANN 1989]); and an array of nodal coordinates X, 1= {X,, a = 1,...,%qode}-
It should be noted that the information encoded by 7, is strictly topological. The node
set is required to contain the vertex set of 7, but it may be larger than the latter.
For instance, for ten-node quadratic tetrahedra the node set contains the mid-side nodes
in addition to the vertex nodes. In general the node set will be attached to the cells
of (Xh,7Ts), e. g., vertex nodes to vertices, mid-side nodes to edges, and so on. This
constraint has the consequence that changes in 7, e. g., edge swaps, induces changes in
X, e. g., redefinition of mid-side nodes. For every element e in the triangulation the
standard isoparametric framework conveniently supplies the local embeddings

88 =Y N6 X: (4.1)
a=1

B©) =Y Na(&) (4.2)
a=1

of the standard element domain Qy into R3, cf. Fig. 4.1. In the above representations &
are the natural coordinates over Qy; N, are the standard element shape functions over
QM; NEoge is the number of nodes in element e (e. g., n¢ 4, = 4 for simplicial tetrahedral
elements and n¢ 4, = 10 for quadratic tetrahedral elements); and {X3, e=1,...,n% 4.}
and {z¢, e=1,...,nf,.} are the undeformed and deformed nodal coordinates of element
e, respectively. It should be noted that ALE formulations are, obviously, not restricted
to an isoparametric framework i. e., &’Z and ®; may be interpolated differently. The
mappings i): and <i>: are required to be diffeomorphisms, i. e., bijective, differentiable,
and with differentiable inverse; and {Q¢ = &,(Q), € = 1,..., Nelement} and {@(0°) =
®; (M), €=1,..., Nefement } are required to define a partition of 2 and (), respectively,
cf. Fig. 4.1. The deformation mapping for element e then reads

":ode
o= 0d, =5 N, (4.3)
a=]
where
NE=N,od; " (4.4)

are the element shape functions over Q¢. Clearly, the usual requirement of conformity is
appended, i. e., (p}, is the restriction to Q¢ of a continuous mapping ¢,. This places topo-
logical restrictions on the triangulation and constraints on the standard shape functions.
By virtue of the linearity of the interpolation it follows that

Bnode

¢ph = Z Na;va (4.5)

a=1
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where IV,, are the nodal shape functions over 2. For the coordinates x; to be admis-
sible, they must additionally be consistent with the displacement boundary conditions.
Finally, the deformation gradient F' can be computed. From Eq. (4.3), the element-wise
approximation of F' reads

Fi=Fg F}', (4.6)
with _ e
o 0P}, __ 0%,

Since ®; and @; are diffeomorphisms, the inverses of Fg and F exist and consequently,
the deformation gradient F is well-defined.

4.4 Fundamentals of VALE formulations

By virtue of the preceding representations, the (pseudo) potential energy of the discretized
solid reads

In(@n, X0, Tn) = 1(ipy)- (4.8)
Thus, in addition to being a function of deformation, I}, is also a function of the discretiza-

tion of the domain. The principle of minimum potential energy compels to minimize I
over its entire domain of definition and thus leads to the discrete minimum problem

inf I(zn, X, T 4.9
(@n X T )€ X n(@hs X, Tn) (4.9)

where X}, is the discrete configuration space of the solid. Clearly, in classical finite element
formulations, the optimization problem

lglf In(zh, X, Tn) (X, Ty const (4.10)

is considered. Consequently, principle (4.9) can be understood as the canonical extension
of the classical formulation. It is obvious that X4)(x,,7.)=const C Xn. As a result,

inf In(zh, X0, Th) < inf In(xh, Xn, Tn)
@)

(4.11)
(zh Othﬂl)exh

(Xn.Th)=const’

Hence, the generalized optimization principle (4.9) leads indeed to an improvement of the
solution.

For ease of reference, the constraints that define the discrete configuration space X, of
the solid are enumerated:

C1 7, is an abstract simplicial complex.

C2 The embeddings &}, : @y — R? and &}, : Oy — R® are diffeomorphic.
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C3 {Q2e= i(ﬂ), e=1,...,Nelement} defines a partition of Q.

. T . . = se—1 ., -
C4 The discretization is conforming, i. e., ¢§ = ®} o @, is the restriction to ¢ of a
continuous mapping ¢,,.

C5 The deformations are admissible, i. e., ¢, = @ on 0.

The solution of the minimum problem (4.9) is not without difficulty. Thus, the constraint
C3 that the triangulation spans {2 introduces an interplay between discretization and ge-
ometry of the domain; the function I,(xs, X1, 7,) may be strongly nonconvex in the first
two variables; and the minimization of I;,(xy, X p, 7) with respect to the triangulation is
an exceedingly complex discrete minimization problem. The remainder of this chapter is
devoted to the formulation of solution procedures that effectively address the optimization
of the (pseudo) energy with respect to the nodal coordinates ; and X,. An adaptive
strategy based on varying the connectivity 7, will be presented in the next chapter.

4.5 Optimization of the positions
of the nodal coordinates

In this section, the subproblem of minimizing I;(x), X1, 7,) with respect to (zn, X1)
while keeping the triangulation 7, unchanged is considered. In order to preserve the
boundary representation of the domain the following constraints are enforced:

1. Vertices are fixed points of the reference configuration.
2. Edge nodes are required to remain within their edges.

3. Face nodes are required to remain within their faces.

These constraints introduce boundary conditions in the minimization of I(xs, X1, 7p)
with respect to X. In particular, the number of nodes in each surface edge and face
remains unchanged. The general minimization problem, including the optimization of
the connectivity of the mesh, is considered subsequently in Chapter 5. A more general
implementation that relaxes the constraints on the number of surface nodes is presented
in Section 4.7.
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4.5.1 Fundamentals

Provided that I, is sufficiently differentiable, whenever =, and X, are independent, a
necessary condition for (zj, X)) being a minimum is

— th

r:.= a—m- =0
!
o ol L (4.12)
o= _axh - V.
On the displacement boundary 99, =, and X are related according to
op
(5.‘!:;, = a—XhJX,,, (4.13)

and hence, are not independent. By virtue of this constraint, at 9Q, the stationarity
condition of the functional I, with respect to X, is

oI, ol 3(2) _
X, + oz, 0K, g, (4.14)

instead of Eqs. (4.12).

4.5.1.1 Computation of the first derivatives

Explicit expressions for the residuals (r, R) can be derived in a straightforward manner, cf.
[THOUTIREDDY 2003; THOUTIREDDY & ORTIZ 2004; KUHL, ASKES & STEINMANN
2004). For the sake of completeness they are given in this paragraph.

Clearly, the variation of I, with respect to @, by keeping X, constant is identical to the
discretized principle of virtual work known from classical (LAGRANGIAN) finite element
methods. More specifically,

e=1

Nele —
rr= A | GRADN;-PdV - /po N; BdV - / N; T dA. (4.15)
Q M

Analogous to Eq. (3.79), A denotes the assembly of all element contributions at the
local element node i to the global residual at the global node I € {1,...,np04}.- The
non-standard derivative 8I,/0X, can be derived in a similar manner,

fale

Ri= A GRADN,--MdV—/po GRADN; [B - ] dV

=l @ o (4.16)
- / [GRADN; (F: P+ ¢ -DIVP) — F". P-GRADN;] dV.
Q
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Here, M denotes the ESHELBY momentum tensor, i. e.,
M=9v1-FT.p (4.17)
and P is an arbitrary tensor-valued function such that

P.-N=T VX e,

P.N=0 VXeaQ,. (4.18)

For further details, refer to [THOUTIREDDY & ORTIZ 2004]. While r = 0 corresponds to
classical NEWTONIAN equilibrium, R = 0 is associated with equilibrium of the so-called
configurational forces or material forces. Since the latter are not standard in finite element
implementations (yet), a short physical interpretation is given in Subsection 4.5.1.3.

4.5.1.2 Computation of the second derivatives

Since the proposed VALE implementation is based on a NEWTON-type iteration, the
second derivatives of the (pseudo) potential I, are required. After some straightforward
algebraic transformations they are obtained as

ore 2 8*¥
ozt nf GRADN, i GRADN, dV
oR, )
X = /GRADN., C-GRADN, JdV (4.19)
Q
or. 2 OM
X, / GRADN, 3F GRADN, dV,
Q
with d2(\ll 5
_ -7 @ -7
Cikjl =F y W . . (420)
Clearly, for sufficiently smooth I,, V21, is symmetric resulting in
BRa _ 31‘;, T
T = ( axa) . (4.21)

Further details can be found in [THOUTIREDDY 2003; THOUTIREDDY & ORTIZ 2004;
ASKES, KUHL & STEINMANN 2004]. For the hyperelastic material model characterized
by the energy functional (2.29), the respective derivatives are summarized in Appendix B.

4.5.1.3 Comment on equilibrium of configurational forces

In classical mechanics, forces in the sense of NEWTON are considered, i. e., these forces
cause positional changes relative to the ambient space. In contrast to this viewpoint,
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material forces or configurational forces are closely related to ESHELBY mechanics, cf.
[ESHELBY 1951; ESHELBY 1975]. More specifically, configurational forces are the driving
forces for positional changes relative to the ambient material. For instance, in fracture
mechanics, the force driving crack propagation is important. It is obvious that such a
force cannot be interpreted in the classical NEWTONIAN framework.

Although comprehensive overviews on ESHELBY mechanics and material forces can be
found in [MAUGIN 1993; GURTIN 2000; MAUGIN 2001; STEINMANN 2002], the com-
putation of these forces by applying the finite element method has only been proposed
recently, cf. [BRAUN 1997|. This is relatively surprising, since according to Eq. (4.16),
once the deformation mapping is determined, the configurational forces can be computed
by a simple postprocessing step. Unfortunately, these so-called discrete configurational
forces do not possess all properties of their continuous counterparts. This can be shown
by a relatively simple example. Following [ESHELBY 1951; ESHELBY 1975], the material
force acting on a defect can be obtained from

R=/M-NdA (4.22)
S

where S is a closed surface containing the defect and N is the normal vector of the
hyperplane S. As a result, without a defect R vanishes. However, this is only true for
the analytical solution. If the finite element method is applied, the discretization leads
to additional configurational forces, ¢f. [BRAUN 1997]. As a consequence, physical and
numerical phenomena superpose. This is, of course, a serious problem, since those forces
cannot be interpreted anymore. For instance, in [DENZER, BARTH & STEINMANN 2003]
this effect can be observed. These authors applied the material force method to the
computation of the J-integral.

However, with the proposed VALE formulation this drawback can be avoided completely.
According to the variational principle governing the presented ALE method, the dis-
cretization is modified such that R = 0 for all nodes which are allowed to move (relative
to the ambient material). Consequently, the non-vanishing discrete configurational forces
are exclusively associated with a positional change of physical defects. The excellent
agreement between the analytical solution and discrete configurational forces computed
from the proposed VALE formulation has been pointed out in [THOUTIREDDY 2003;
THOUTIREDDY & ORTIZ 2004]. In these works the authors compared the J-integral
predicted by the VALE formulation to the analytical solution.

4.5.2 Numerical ill-posedness of the optimization problem

Based on the linearizations (4.15), (4.16) and (4.19), several optimization strategies have
been implemented and applied to compute the solution of the minimum problem

nf Ih(wha Xh,lTl'l

mrinx I ) |77. =const”

(4.23)
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More specifically, the following schemes have been employed:

e a NEWTON iteration

e different types of conjugate gradient methods such as the POLAK-RIBIERE method
with different preconditioners

e limited memory LBFGS approaches, cf. [L1u & NOCEDAL 1989].

Each of the enumerated optimization algorithms has been adopted for solving prob-
lem (4.23) monolithically. In addition, staggered, i. e., nested, schemes have been an-
alyzed as well. The global convergence behavior of the schemes has been improved by
line search strategies. Further details are omitted. An excellent overview on optimization
methods is given in [GEIGER & KANzow 1999].

Although for relatively simple problems some of the algorithms find a local minimum,
the iterations fail to converge in general. A careful analysis of the optimization problem
reveals the following essential difficulties:

1. The minimizers can be vastly non-unique. For instance, for constant strain defor-
mations, the discrete energy I, is independent of the nodal coordinates X,

2. The HESSIAN matrix can be singular. By way of illustration, consider the linearized
problem near the undeformed configuration. In this case one finds
32Ih _ 621;. _ 62111 321;,

X2~ 0z 0xn,®0X, 0X,® 0z

(4.24)

which is clearly singular. Additional examples of this source of degeneracy are given
in Subsection 4.6.1.

3. The minimization problem is nonconvex in general. This lack of convexity is illus-
trated by the examples presented in Subsection 4.6.1, for which the HESSIAN matrix
is found to have a number of negative eigenvalues.

[AskEs, KUHL & STEINMANN 2004] have proposed a dynamic constraint for eliminating
the rank-deficiency of the system of equations. The procedure consists of checking if the
absolute value of a component of the residual R associated with X, is lower than a
numerical tolerance. If so, the corresponding equation is eliminated from the NEWTON
step. However, the rank-deficiency of the HESSIAN is not necessarily equal to the number
of vanishing components of R, i. e., the null subspace of the HESSIAN V2], needs not to
coincide with the space spanned by the degrees of freedom in configurational equilibrium,
and the rank-deficiency of the system is not eliminated by constraining the latter space.
In addition, the modes corresponding to negative eigenvalues are not stabilized by the
procedure.
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For the elimination of the rank-deficiency, three different concepts have been implemented.
The first is based on a pseudo-inverse, i. €., with the spectral decomposition of the HES-

SIAN
npoF

Vzlh = Z An;®On; (4.25)
i=1
the pseudo-inverse
RDOF
inv(V2I,) := Z inv(\;) n; ® n;, : (4.26)
i=]
with / N
: [ 1/x VN> TOL
inv(};) := { 0 VA < TOL, (4.27)

has been used. Additionally, the modified inverse

, [ /X VA >TOL
inv()\;) := { 0 VA < TOL (4.28)

has been applied as well. The third alternative is the modified CHOLESKY decomposition
according to [SCHNABEL & Eskow 1990]. In this concept, the HESSIAN is approximated
by means of a symmetric and positive definite matrix. These methods have been combined
with a NEWTON iteration. That is, instead of the standard search direction

d= -V VI, (4.29)
d is replaced by
d=—[A]"' VI, (4.30)

with A representing one of the three different approximations of the HESSIAN. Since for
the second and third method A is symmetric and positive definite, they result in a descent
direction, cf. [GEIGER & KANzow 1999].

The modified NEWTON’s methods improve significantly the robustness of the proposed
VALE formulation. However, for several problems convergence is not attained. For this
reason, a novel solution scheme is developed in the next subsection.

Remark 4.5.2.1 All NEWTON-type iterations briefly discussed in this subsection show
the following properties:

e The criterion
Vii(zi) - di £ —p ||di]|P (4.31)

18 checked. If it is not fulfilled, d), is set to dy, = —V I(x1). Obviously, this criterion
ensures that the direction d;. is a descent direction.

o An ARMLIO line search is applied, i. e.,

b = max{ﬁ’ |l e No} : Iz + 4 di) < f(zi) + o V(=) - di. (4.32)
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Here, for the sake of brevily, the notation £ = (x, Xp,) has been introduced. The number
k indicates the k-th iteration. The numerical parameters p, p, 8 and o have to be chosen
such that p > 0, p > 2, 8 € (0,1), o € (0,1/2). According to [GEIGER & KANZOwW
1999/, for any function I, € C?, the enumerated properties guarantee that every cluster
point generated by the sequence (xr)ren 5 @ stationarity point of I,. As a result, if I
is bounded below, the algorithm converges. Clearly, this property does not imply that
convergence is atltained in practice.

4.5.3 Viscous regularization of the configurational forces

In this subsection, an alternative stabilization strategy based on a viscous regularization
of the configurational forces is proposed. To this end, problem (4.9) is replaced by the
following sequence of problems:

inf In(®ne, X 4.33
(mn+l'4¥:+l)exh ,.(SB +1: Xn+1) ( )
where n=0,..., (xo, Xo) is given, and
Iﬂ(mﬂ+laxn+l) = Ih(mn+laxn+l) +a ”Xn+l - Xn“2 (434)
is a regularized incremental energy function in which @ > 0 is a numerical parameter
and || - || is the EUCLIDEAN norm. The function I, (2,41, X,+1) is the potential for the
equations resulting from a backward-Euler time discretization of the gradient flow
oIy
dX, OI,
—+—=—=0. 4.35
@& Tax,° (4.35b)
The stationarity conditions are now
Ol = ol =y =0 (4.36a)
Oy oz, Li1, X nt1
o1, ol
= =R 200 (Xpy1 — Xa) =0, 4.36b
OXnr1  0Xnlg,,\ X s w1+ 20 (X ) ( )

and the corresponding HESSIAN is

Fl, _ &y (4.37a)
3:!:,2,.,_1 6:3% wn+hX"+l
I, 91,
— 4.37b
6mn+1 ® 6Xn+l Oz, ® 80X, T, X 1 ( )
&I, PI,
3X,2,+1 aX% wn+).xn+l
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From Eq. (4.37c) follows that the regularized HESSIAN can be made positive definite
by choosing a sufficiently large. In addition, if the iteration converges, it follows that
[| X n+1 — Xa]| = 0. Consequently, the viscous term in (4.36b) becomes negligibly small
as convergence is attained.

In calculations, a NEWTON iteration according to Remark 4.5.2.1 is used. The resulting
stabilized iterative procedure can be summarized as follows:

1. Initialize &5 = @, X1 = Xo, set n =0.

2. Compute the solution (41, Xn41) of the regularized problem (4.33) by a NEWTON
iteration.

3. If ||&nsr — @n|| < TOL and || X 41 — Xp|| < TOL exit.

4. Reset nton+1, go to 2.

According to Remark 4.5.3.1, the iterative procedure generates a monotonically decreasing
sequence of energies. As a consequence, under displacement control, the energy is bounded
below and consequently, the energy is guaranteed to converge.

It should be carefully noted that the choice of « influences the rate of convergence. In
particular, a large o tends to slow down convergence. Hence, in calculations « is set to
the smallest value resulting in a strictly convex incremental energy function I,. More
specifically, « is chosen such that the spectrum of V21, is minorized by a prespecified
tolerance TOL. It is noteworthy that, by this criterion, if the original problem is strictly
convex, « equals zero and the problem is not regularized, cf. Remark 4.5.3.2.

Remark 4.5.3.1 In this paragraph, it is shoun that the sequence (In(n, Xp))nen gen-

erated by the proposed algorithm is monotonically decreasing. In what follows, a:ffll and

X fﬂ, denote the solution of the k-th iteration step predicted by the advocated NEWTON’s
method. According to Remark 4.5.2.1, the proposed solution strategy guarantees that

LR, X0, T) > LD, X0, 7). (4.38)
Applying this inequality leads to
I(@a, X, T3) = In(@a, X, To) + @ || XS), - Xl

=0
= In(msg)-la SB{)-I!’I;!)
> L, x® 1) (4.39)

k k k
= It X3 T) +a |1X0), - X1
>0
k k
2 I (“’5.4)-1, f.ll,ﬁ) > In(®nt1, Xns1, Tn).
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Hence, the sequence (In(x,, X4))nen generated by the viscous-type relaxation is indeed
monotonically decreasing.

Remark 4.5.3.2 The relazation parameter « is obtained from
a = inf{a € R, | Anin(VZI, () > TOL}, (4.40)

with Amin denoting the smallest eigenvalue. In practice, the condition Ayin(V23I,(a)) >
TOL is only checked for certain values of a.

4.6 Numerical examples

In this section, the applicability, performance and robustness of the proposed viscous-
type relaxation are demonstrated by means of two numerical examples. Stretching of a
slab is analyzed in Subsection 4.6.1. This example highlights two important facts. First,
without a relaxation, the mechanical minimization problem is ill-posed. Second, allowing
the nodes to move on the boundaries is essential. Otherwise, these boundary conditions
induce topological constraints that limit the range of attainable meshes. The second
example presented in Subsection 4.6.2 is a VALE computation of a uniaxial tensile test
of a notched specimen. It illustrates that anisotropic meshes are, in general, superior to
their isotropic counterparts.

4.6.1 Stretching of a slab

The first example concerns the stretching of a slab of dimensions L x L x L/4. The slab is
clamped on two opposite sides and is subjected to prescribed extensional displacements.
The nominal stretch ratio is 1.5 and the entire deformation is applied in one step. The
discretization of the domain is coarse and contains 80 elements. In all examples, the
material is neo-HOOKEan with strain-energy density

U(F) = -;-,\long+-;—p(F:F—3—2logJ). (4.41)

In calculations the LAME constants are set to A = 1211538 MN/m? and p =
8071.92MN/m?, respectively. A similar problem was analyzed in [MUELLER & MAUGIN
2002] and [ASKES, KUHL & STEINMANN 2004]. However, in contrast to those refer-
ences, three-dimensional tetrahedral elements are used here and the nodes are allowed to
move within the boundary.

The undeformed and the computed deformed configuration in the absence of mesh adap-
tion are shown in Fig. 4.2. The energy I, corresponding to this solution is I,(ll) =
577.859 MNm. By way of comparison, the results obtained by means of the varia-
tional r-adaptive scheme are shown in Fig. 4.3. As may be observed in this figure, the
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a)
b)

Figure 4.2: Stretching of a neo-HOOKEan hyperelastic block. Fixed-mesh solution: a)
undeformed configuration; b) deformed configuration

a)
b)

Figure 4.3: Stretching of a neo-HOOKEan hyperelastic block. r-adapted solution: a)
undeformed configuration; b) deformed configuration

nodes move towards the clamped sides. The energy resulting from the adaptive scheme
is I,(f) = 562.300 MNm, or a 2.8% reduction with respect to the non-adaptive scheme. In
order to gage the effect of the motion of the nodes on the boundary, an additional com-
putation is performed by constraining the respective degrees of freedom on two boundary
faces. The optimized undeformed and deformed configurations are shown in Fig. 4.4. The
resulting energy is now [ ,ES) = 569.678 MNm, which represents a 1.4% reduction from the
non-adaptive energy I, ,(11}. As expected, Iﬁ” >1 ,{13] > I{*) and the addition of constraints
on the motion of boundary nodes wipes out about half the energy gain due to adaption.
This test suggests that the motion of the boundary nodes is important and cannot be
neglected in general.
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b)

Figure 4.4: Stretching of a neo-HOOKEan hyperelastic block. r-adapted solution with
surface nodes constrained on two boundary faces: a) undeformed configura-
tion; b) deformed configuration
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Figure 4.5: Stretching of a neo-HOOKEan hyperelastic block. Distribution of the eigen-
values of V2I,: a) for a predictor step defined by the standard minimization
principle (4.9); b) for the converged solution

The convexity of the minimization problem and the singularity of the HESSIAN can be
monitored by means of the eigenvalues of V21, Fig. 4.5. The dashed and solid lines in the
figure correspond to the converged r-adaptive scheme and a predictor step, respectively.
Owing to the large number of null or nearly-null eigenvalues the problem is highly singular.
Furthermore, the smallest eigenvalue obtained for the predictor step is Ay, = —5.19745
which illustrates the lack of convexity of the problem. In consequence, a direct NEWTON’s
iteration applied to the unregularized problem does not converge in general. However, it
should be noted that two-dimensional problems and boundary motion constraints, such as
considered by [Askgs, KUHL & STEINMANN 2004], add to the stability of the problem.
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Figure 4.6: Numerical study of a uniaxial tensile test of a notched specimen: dimensions
and loading conditions; thickness of the solid L

Under those conditions it is often possible to solve for the r-adapted solution directly
without regularization.

4.6.2 Uniaxial tensile test of a notched specimen

Next, the r-adaption is applied to the numerical analysis of a uniaxial tensile test of a
notched specimen. The dimensions of the structure and the boundary conditions are
depicted in Fig. 4.6. The material model is the one used in the previous subsection. Since
the structure is symmetric with respect to three orthogonal surfaces, only an eight of the
system is discretized.

4.6.2.1 r-adaption based on viscous-type relaxation of configurational forces

The initial finite element mesh is shown in Fig. 4.7a). It contains 1280 tetrahedral el-
ements. First, the deformation of the body is computed by the standard minimization
principle (4.10). The results are shown in Fig. 4.7b). The energy associated with this
solution is about [/ ,E” = 5.557644 - 10" MNm.

The results obtained from the r-adaption are given in Fig. 4.8. As in the previous example,
the nodes move towards the region of highest energy density, i. e., towards the crack tip.
For this example, the proposed adaption leads to an improvement of the solution of about
3.9% (I1¥ = 5.350944 - 10* MNm).

4.6.2.2 On enforcing small aspect ratios of the finite elements

For some applications it is important to avoid elements with large aspect ratios. For
instance, if iterative solvers are used, the number of necessary iterations depends on the
condition of the HESSIAN. It is well known that this number converges to infinity for
degenerated elements, cf. [SHEWCHUK 2002]. Thus, highly distorted elements can slow
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Figure 4.7: Numerical study of a uniaxial tensile test of a notched specimen: results
computed from the standard problem (4.9): a) undeformed mesh; b) de-
formed mesh

a)

b)

Figure 4.8: Numerical study of a uniaxial tensile test of a notched specimen: results
obtained from the proposed r-adaption: a) undeformed mesh; b) deformed
mesh

down the computation. As a consequence, the effect of enforcing small aspect ratios
of the finite elements on the solution is analyzed in this paragraph. For that purpose,
an additional r-adaption is performed. However, the viscous-type relaxation is not used
anymore. Instead, the alternative relaxation

f(mh,Xh) = Ih(a:,-., Xh} + o Igm(Xh) (4.42)

is adopted here. According to Eq. (4.42), the objective function to be minimized consists
of the classical physical energy I, and a purely geometrical part. More specifically, Ige,
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Figure 4.9: Numerical study of a uniaxial tensile test of a notched specimen: energy
I, computed by using different strategies: optimization of I according to
Eq. (4.42) (geom. relax.); the viscous-type relaxation (4.33) (visc. relax);
optimization of I, with respect to x, only (standard). The energy corre-
sponds to an octant of the system.

depends only on the geometry of the undeformed configuration. Clearly, since

ol  aI,
B.'B_h = 6—33},, (443)

every minimum of Eq. (4.42) fulfills the discrete equilibrium conditions in the sense of
NEwWTON. However, the configurational forces are not necessarily in equilibrium. Based
on a suitable choice for I, elements showing a relatively large aspect ratio can be
penalized. In this paragraph, I, is specified by

Rele

Lo = Y f71(Q), (4.44)
e=1

with f denoting a tetrahedral shape measure, cf. Remark 4.6.2.1 and Appendix A. This
function assures that I,,, and consequently I, converge to infinity, if an element degener-
ates (its volume converges to zero). Evidently, the minimum of I, is attained for meshes
consisting of elements with relatively small aspect ratios.

Based on minimizing Eq. (4.42) an additional r-adaption is performed. As a shape mea-
sure, a function f depending on the element condition number is used, cf. [KNUPP 20004A;
KNUPP 20008B; FREITAG & KNUPP 2002]. More details can be found in Appendix A.
Again, the minimization problem is computed by applying NEWTON’s method, together
with the line search strategy according to Remark 4.5.2.1.

The physical energies I, predicted by the optimization problem inf I(z,, X ) are sum-
marized in Fig. 4.9. Obviously, the results depend on the regularization parameter a.
For the sake of comparison, the energies as obtained from the viscous-type relaxation
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Figure 4.10: Numerical study of a uniaxial tensile test of a notched specimen: smallest
eigenvalues of V2I: &) for a predictor step; b) for the converged solution

discussed in Subsection 4.5.3. and the standard formulation (X, is kept fixed) are shown
as well. It can be seen that enforcing elements with small aspect ratios (large values of
&) conflicts with minimizing the physical energy of the mechanical system. In the case of
the analyzed example, the initial discretization represents the minimum of the problem
inf fgeo. As a consequence, the solution associated with large values of & is identical to
the classical approach (X = const). On the other hand, if & is sufficiently small, the
solution of inf I converges to the one predicted by the purely mechanical minimization
problem inf I;,. It is evident from this example that the optimum of the purely geometrical
criterion inf I e, and that of I, do not coincide in general. Thus, from a mechanical point
of view, enforcing small aspect ratios of the elements does not make sense.

It is noteworthy that Eq. (4.44) indeed eliminates the ill-posedness of the original problem
inf I,,. More precisely, if & is chosen sufficiently large, the term & Igeom makes the HESSIAN
of I positive definite. This effect is illustrated in Fig. 4.10.

The analysis of the presented numerical example leads to the idea to consider the mini-
mization problem (4.42) for sufficiently small values of & alternatively to the viscous-type
relaxation. This approach would be physically and mathematically sound, since the me-
chanical problem (the minimum of I;) does not change, and the well-posedness is enforced
by elements having small aspect ratios. Unfortunately, this method does not work in gen-
eral. For instance, if it is applied to the example in Subsection 4.6.1, the problem requires
a relatively large value of & to eliminate the ill-posedness. Hence, the effect of the term
Igeom becomes more dominant and as a result, the difference between the physical energies
I,, predicted by the problems inf I and inf I, is significant.

Remark 4.6.2.1 Several different definitions of tetrahedral shape measures can be found
in the literature. A widely accepted one is given in {DOMPIERRE, LABBE & CAMERERO
1984/. Here, the defining criteria are re-written by using a different notation. A function
[ depending on the vertez coordinates X° = {X%, X3, X35, X5} of a tetrahedron e is
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referred to as a tetrahedral shape measure, if the following properties are fulfilled:

e feC(XS[0,1])
o f=0 <= e is degenerated
o f=1 <= e isideal (all edges have the same length)

o f(X%) = f(X°) with X; =cQ X +a, Vc >0, Va € R? and YQ € SO(3)

The last point enumerated enforces that the shape measure is invariant with respect to
translations, rotations and the size of the considered element. It should be noted that the
invariance of f with respect to the size of the elements wes not postulated in [DOMPIERRE,
LABBE & CAMERERO 1984/. Further details on tetrahedral shape measures ere given
in Appendiz A.

4.7 Node migration in and out of the boundary

Throughout the preceding developments the constraints have been enforced that surface
nodes remain in the surface and move within their corresponding surface component,
namely within their faces or edges; and that vertices in the boundary representation of the
domain remain fixed. As a consequence, the number of nodes in every edge and face of the
boundary remains constant. These boundary conditions introduce topological constraints
that limit the range of attainable meshes. A more general and flexible approach that
allows nodes to migrate in and out of the boundary is presented next.

Node migration from the interior to the boundary can happen spontaneously during the
solution scheme presented in the foregoing and requires no additional algorithmic devel-
opment. When an interior node collides with the boundary, zero volume elements, or
slivers, are generated. These slivers are then eliminated during the mesh-improvement
phase of the solution.

4.7.1 Fundamentals

In order to have a practical O(N) method for allowing nodes to migrate out of the
boundary two approximations are introduced: the problem is localized by considering
one boundary node and its ring of adjacent elements in turn; and the energy release is
estimated locally by fixing the remaining nodes of the model. Thus, the algorithm is
applied by traversing the boundary nodes in turn. For each node that is not a vertex
the ring of elements adjacent to the node is identified (the local neighborhood). Next, the
node is pushed inside its local neighborhood and the local mesh is reconstructed. In so
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doing, care must be exercised in ensuring that all vertices, edges and faces in the bound-
ary representation of the domain be preserved. Based on this new mesh topology, a local
optimization is effected. It consists of: equilibrating the node, now in the interior; and
optimizing its position and the local triangulation. In the course of this local optimization
the displacements and positions of all remaining nodes in the model are held fixed. The
move is accepted, if the energy release —AJj,. thus estimated is positive and exceeds a
prespecified tolerance. Otherwise, the node is left unchanged.

The complete r-adaption procedure accounting for boundary node migration is:

1. Initialize @y = g, X = X, set n =0,

2. Compute the solution (Zp431, Xn+1) of the regularized problem (4.33) using a NEW-
TON iteration.

3. Migrate boundary nodes into the interior.

4. If ||®p41 — xn|| < TOL, || X n41 — Xa|| < TOL and no boundary nodes migrate into
the interior exit.

5. Reset nton +1, go to 2.

As in the preceding cases, the iterative procedure produces a monotonically decreasing
sequence of energies. Consequently, under displacement control, the energies are bounded
below and, hence, the energy is guaranteed to converge.

It is noted that the energy release —Al,. computed from the local procedure is a lower
bound on the maximum energy release —Alj, attainable by the migration of the node to
the interior. This makes the scheme conservative, i. e., it tends to suppress node migration
into the interior. Evidently, better local energy release estimates can be obtained - at
some increase in computational complexity — by considering larger local neighborhoods
of the boundary nodes including additional rings of elements. The algorithm guarantees
that node migration from the boundary indeed lowers the energy of the body. In addition,
the migration of each boundary node requires the solution of a local problem involving
six degrees of freedom only, and the algorithm is O(N) as desired.

Considerable speed-up may also be achieved in some cases by a simple screening criterion
based on the magnitude and direction of the configuration forces. Thus, if a is a surface
node located at a point of smoothness of a face in the boundary representation of the
domain, IN, is the outward normal at ¢ and R, is a component of R at a, then

fo= R, N, (445)

is the configuration force tending to push the node into the interior. Equivalently, R,-IN,
is the energy-release rate corresponding to an infinitesimal migration of the node into the
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Figure 4.11: Bending of a neo-HOOKEan hyperelastic cantilever beam; fixed-mesh solu-
tion: a) undelormed configuration; b) deformed configuration

interior. If e is a non-smooth point of the boundary, the corresponding configurational
force is
fo= max R, N, (4.46)

NoeKa

where /(; is the outward normal cone at a. Applying Eq. (4.46), target surface nodes for
possible migration into the interior are marked, if f, exceeds a certain tolerance, and are
skipped otherwise.

4.7.2 Example: Bending of a cantilever beam

The applicability as well as the cfficiency of the proposed node migration algorithm is
demonstrated by means of a numerical analysis of a bending problem. The cantilever
beain is of dimensions L x L/4 x L/8. The tip of the beam is given a deflection of
magnitude L/8 at two nodes. The material is of neo-HOOKEan hyperelastic type with
strain-energy density (4.41). The LAME constants are set to A = 12115.38 N/mm? and
@ = 8071.92N/mm?, which corresponds to a YOUNG’s modulus E = 21000 N/inm? and
a PoIssON’s rvatio ¥ = 0.3. The energy tolerance for the termination of the iterative
solution scheme equals 1.0 - 1075,

The initial discretization contains 54 nodes and 80 tetrahedral elements, Fig. 4.11a). By
way of comparison, the deformation computed without adaption is shown in Fig. 4.(1b).
The corresponding energy is 1,(1') = 57.0510 MNm.

Next, the problem is recaleulated by means of the proposed r-adaption procedure. [irst,
node migration is not allowed. The resulting extended system las 202 degrees of freedoin.
The computed optimal node location is shown in the undeformed and deformed config-
urations in Figs. 4.12a) and Figs. 4.12b), respectively. Tt is evident fromy these figures
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b)

Figure 4.12: Bending of a neo-HooOKEan hyperelastic cantilever beam; r-adapted so-
lution (without node migration to and from the surface): a) undeformed
configuration; b) deformed configuration

that the nodes move towards the clamped end, i. e., towards the region of highest energy
density. For this calculation, the corresponding energy is /\” = 52.9402 MNm. Hence,
the energy could be lowered by 7.8% compared to the fixed-inesh solution.

Finally, the problemn is recomputed including r-adaption and node migration in and out
of the sirface. The surface node with the highest inward configurational force is marked
by a wbite circle in [Fig. 4.120). This node ends up leaving the surface and entering
the interior of the domain. The computed optimal node location and triangulation are
shown in the undeformed and deformed configurations in Figs. 4.13a) and Figs. 4.13b),
respectively. The final mesh contains 86 elements. The reconstruction of the mesh in the
vicinity of the clamped end is particularly noteworthy. The final energy computed by
means of the complete r-adaption procedure is 1,53) = 52.2553 MNm, corresponding to a
9.2% reduction with respect to the Axed-mesh solution.

4.8 Extension of the VALE formulation
to standard dissipative media

The VALE formulation as discussed in this section requires that the considered mechanical
problem is characterized by a variational structure. More specifically, the primary variable
has to be governed by a minimization principle. Since, according to Section 2.5, standard
dissipative media comply with this requirement, the presented VALE method can be
applied to such models in principle.

Howecver, a careful analysis of the advocated VALI formulation reveals two problens.
First, standard dissipative media such as plasticity theorics are based on rate equations.
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b)

Figure 4.13: Bending of a neo-HoOKEan hyperelastic cantilever beam; r-adapted solu-
tion and node migration to and from the swface: a) undeformed configu-
ration; b) deformed configuration. The surface node marked with a white
circle in Fig. 4.12a) migrates into the interior of the domain.

For instance, the evolution equations of the plastic velocity gradient and the internal
variables according to Egs. (2.46) or (2.49) are rate dependent. Such equations include
the material time derivative, 1. e.,

= O_f (4.47)
dt X =const
Adopting this to & VALE framework leads to
jof| Lo e ox
T Ol el O OXBM
o/ of (4.48)
9 Y ek
at £=const aE N

(sec Fig. 4.1). Thus, the derivative consists of two parts. While the first of those is
standard, the sccond term js related to advection. Clearly in classical LAGRANGIAN
formulations X = 0 and hence, this terms drops out. However, within the proposed
VALE [ramework, advection has to be taken into account what can cause numerical
problems, cf.|ARMERO & LOVE 2003].

The other problem associated with an extension of the VALE formulation to standard
dissipative media is related to the transfer of the history variables. Since a variation of
X i leads to a change in the triangulation, the positions of the integration points change
as well. Consequently, the history variables which are typically defined pointwise (at
the integration points) have to be transfered. Again, this problem does not occur in
a classical LAGRANGIAN formulation. Tt is noted that the problems just discussed arc
strongly related to one another.
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Fortunately, both problems can be solved. According to [ORTIZ & QUIGLEY 1991]
(see also [RADOVITZKY & ORTIZ 1999]), the required transfer operator of the history
variables follows consistently from the variational principle. However, this operator is not
unique, i. e., it depends on the interpolation of the internal variables and thus, several
suitable procedures exist. In the present work, those variables are assumed to be piecewise
constant over the VORONOI cell containing the GAUSS point g of the element e, As
mentioned in [RADOVITZKY & ORTIZ 1999, for such an approximation, the transfer
of the history variables simplifies considerably. More specifically, the state variable at a
new quadrature point is simply the state variable of the nearest old quadrature point.
This procedure shows two important properties. First, the numerical implementation is
straightforward and if it is coded properly, it is very efficient. Second, internal constraints
such that det FP = 1 are preserved.

If the approximation of the history variable f is constant over the VORONOI cell containing
the GAUSS point g of the element e, the (approximated) material time derivative yields

;. 9f , since of 0. (4.49)

ot &=const 86
As a result, the advective term drops out and the standard case is obtained. Consequently,
the only crucial modification necessary for the extension of the VALE formulation to
standard dissipative media is the implementation of a data structure allowing to compute
efficiently the nearest old quadrature point of a given point.

4.9 Further improvements of the VALE formulation

In this chapter the optimization problem

z;l.t.l)[;h In(zn, X1, Tp) |,1;. (4.50)

=const
has been considered. That is, the connectivity of the mesh has been kept fixed. However,
according to [THOUTIREDDY 2003; THOUTIREDDY & ORTIZ 2004], this may introduce
strong topological — or locking — constraints. As a result, it may restrict the range of
meshes that can be attained and, consequently, the quality of the solution. For this
reason a method which improves the connectivity of the mesh is discussed in the next
chapter.



Chapter 5

A variational-based remeshing
strategy

In this chapter, a novel variational-based remeshing strategy is presented. The advocated
procedure can be applied to any finite element formulation provided the primary variable
follows from an extremum principle such as the principle of minimum potential energy or
the postulate of maximum dissipation characterizing standard dissipative media. Based
on so-called LAwsON flips, the topology of an initial triangulation is modified locally
such that the solution associated with the new discretization is closer to the analytical
extremum. As a consequence, the proposed strategy guarantees an improvement of the
solution.

5.1 Introduction

In the previous chapter, a variational r-adaption governed by the principle

inf I;,(a:,,,X,.,??,} (5.1)
mhvxh

Ty=const
has been developed. Evidently, the triangulation of a node set is not unique, and the
discrete energy depends on the precise manner in which the node set is triangulated.
[THOUTIREDDY 2003; THOUTIREDDY & ORTIZ 2004] proposed a VALE formulation in
which they constrained the mesh so as to remain DELAUNAY at all times, and the DELAU-
NAY condition was enforced by means of local LAwWsON flips [JOE 1989; JOE 1991]. In
two dimensions and in the context of potential theory, the DELAUNAY triangulation does
indeed minimize the energy of the body among all possible triangulations [R1PPA 1990).
However, in three dimensions and for general energies the DELAUNAY triangulation is not
necessarily energy-minimizing. In the context of finite elasticity or standard dissipative
media, where a (pseudo) principle of minimum potential is paramount, it is more natural
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to demand that the mesh connectivity itself, in addition to the mesh geometry, be energy
minimizing. Hence, the canonical extension of problem (5.1)

inf Ih(mhaxh,ﬂ) (52)

25, X5, 7n

is considered. However, in contrast to the VALE formulation corresponding to Eq. (5.1),
finding the energy-minimizing triangulation 7, represents a discrete problem, i. e.
In(®n, X1, Tn)l7,=const € C™ but In(xn, Xn, Th)l(wy,X,)=const : A — R with card(A) < oo
(n being sufficiently large). As a consequence, problem (5.2) requires different solution
schemes compared to the VALE formulation driven by Eq. (5.1). For this reason, prob-
lem (5.2) is decomposed additively. First, the nodal coordinates are optimized by applying
the methods discussed in the previous chapter, cf. Eq. (5.1). Subsequently, the optimiza-
tion problem

l%_]f Ih(mhsxh 7;1) (53)
h

(zh,.X5)=CONst
is solved. More specifically, a staggered solution scheme is adopted. A novel, efficient
procedure for finding the energy-minimizing triangulation according to problem (5.3) is
presented in this chapter. It follows to a large extent [MOSLER & ORTIZ 2005].

5.2 Fundamentals

Let 7, denote a particular triangulation of the node set defined, e. g., by means of a
connectivity table. The connectivity table is subject to topological constraints ensuring
that the triangulation of the node set defines a simplicial complex and the interpolation
is conforming. Problem (5.3) is discrete as regards the connectivity optimization and,
therefore, its exact solution is generally unattainable for large problems. For instance,
for a two-dimensional mesh of N nodes [AICHHOLZER, HURTADO & NoOY 2004] have
obtained the lower bound 0.092-2.33" on the number of possible triangulations, which is
a staggering number for large meshes. Instead of attempting an exhaustive search of the
absolute energy-minimizing triangulation, discretizations are determined in this chapter
that are local minima of the energy, i. e., meshes that minimize the energy with respect
to a certain class of variations.

According to [LAWSON 1972], any triangulation of a two-dimensional node set can be
attained by means of a finite sequence of local transformations, or edge swaps. These
transformations are sometimes called LAWSON flips [LAwWSON 1986] and consist of swap-
ping the diagonals of the quadrilateral defined by pairs of adjacent triangles, see Fig. 5.1.
This strategy can be extended to n-dimensional triangulations [LAWSON 1986]. However,
in three dimensions it is not known whether an arbitrary triangulation can be attained
by the application of a finite sequence of local transformations to a given mesh. In three
dimensions the local transformations represent all possible triangulations of five non-
coplanar vertices of adjacent tetrahedra, cf. [LAWSON 1986]. These transformations can
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T22

Figure 5.1: LAWSON flip in two dimensions

be classified as T23, T32, T22 and T44 according as to whether T%j transforms ¢ elements
into j elements [JOE 1989; JOE 1991].

Suppose that (x,, X,) are fixed and let p(7,) denote the potential energy In(xh, X1, Ts)
regarded as a function of the connectivity 7;. The objective is to determine the triangu-
lation 7, that minimizes p(7,) with respect to all local transformations T%j. To this end,
following [JOE 1995] the faces that are removed by the application of a local transfor-
mation are listed. Next, the face list is traversed sequentially and the local optimality of
the faces with respect to the function g is evaluated. Thus, the face is said to be locally
optimal if p is increased by the application of all transformations T7j that remove the
face. If a face is p-locally optimal then no transformation is applied. Otherwise, the best
possible local transformation is selected. The algorithm terminates when all faces are
locally optimal.

Evidently, by virtue of the energy criterion the application of a local transformation neces-
sarily decreases the energy. However, a locally energy-minimizing mesh is not necessarily
globally energy-minimizing, since only local optimality is ensured. Thus, the algorithm
just described does not guarantee that a mesh not attainable by local transformations
does not decrease the energy further. It should be noted that in applying the preceding
algorithm a list of excluded faces that are not to be removed can be specified arbitrarily.
In particular, the algorithm can be applied in such a way as to leave the boundary of the
body unchanged. Hence, convexity of the domain is not required. It should also be care-
fully noted that the algorithm can be employed for minimization problems in general and
that it is completely independent of the r-adaptive procedure described in the foregoing.

Remark 5.2.0.1 In two dimensions, a LAWSON flip does not change the number of ele-
ments of the discretization. Since any triangulation of a two-dimensional node set can be
attained by means of a sequence of those local transformations, all triangulations contained
in the set of admissible meshes have the same number of elements. Thus, a LAWSON flip
can be interpreted as a transposition and the mapping between two discretizations as a per-
mutation consisting of compositions of LAWSON flips. Clearly, the class of compositions
spanned by the proposed remeshing strategy does not contain all admissible transforma-
tions. As a result, even in the two-dimensional case, the algorithm just described does not
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guarantee that the global minimum corresponding to problem (5.8) is attained. Following
fJOE 1995/, the solution of the algorithm can be further improved by enlarging the space
of admissible triangulations. More specifically, criterion

In(Toa) 2 In(Tpew) (5.4)

is not only checked after each single LAWSON flip, but also after application of a compo-
sition containing more than one local transformation. For further details, the reader is
referred to {JOE 1995/.

Remark 5.2.0.2 In what follows, x; = (xx, X ) denotes the converged solution of trian-
gulation T;. Then, the advocated algorithm generates a series of the type

Ih(zsml) 2 Ih(naml) 2 s 2 Ih(q:uxl)’ (5'5)
i. e., the nodal coordinates are fized, but the interpolation changes. Clearly,
(T, z) 2 In(T;,z:) Vie{l,...,n} (5.6)

and hence,
Ih(’]-iixl) > Ih(’I;nmn)' (57)

As a consequence, the proposed algorithm indeed improves the quality of the solution.
However, it should be noted that the inequality

Ih(ﬂ, x,-) > Ih(‘I},x,-) 1< j (58)

does not hold, in general. Consequently, there is no guarantee that the triangulation T,
is better than any of the T;’s for i € {2,...,n —1}. Clearly, Ineq. (5.8) can be enforced
by equilibrating every new triangulation T;. However, such a strategy is very inefficient,
since it requires the computation of several large optimization problems.

5.3 Coupling of the energy-based remeshing strategy
with variational VALE formulations

Energy-driven mesh-optimization transformations can be built into the r-adaption proce-
dure according to Chapter 4 simply as follows:

1. Initialize &, = x4, Xy = Xo, Tpn = Ty, set n = 0.

2. Compute the solution (2,41, X 41, 7) of the regularized problem (4.33) by a NEw-
TON iteration.

3. Perform energy-minimizing mesh transformations to obtain (€p41, Xut1, Tne1)-
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4. If ||@ns1 — Tnl| < TOL, || Xns1 — Xall < TOL and T, = T,_, exit.

5. Reset nton 41, go to 2.

Again, the iterative procedure produces a monotonically decreasing sequence of energies
and since, under displacement control, the energy is bounded below, the energy is guar-
anteed to converge. Mesh transformations become important and need to be performed
in the course of r-adaption. Indeed, the motion of the nodes may lead to mesh entangle-
ment if the transformations are not performed. Conversely, a constant mesh connectivity
constitutes a topological constraint that severely limits the meshes that can be attained
by r-adaptivity.

5.4 Numerical examples

The applicability as well as the performance of the local remeshing algorithm are demon-
strated by means of two examples. While in Subsection 5.4.1, the triangulation of a
cantilever slab is optimized using energy-driven LAWSON flips, the efficiency of the cou-
pling of the energy-based remeshing strategy with the VALE formulation as discussed in
Chapter 4 is illustrated in Subsection 5.4.2 where a notched beam subjected to bending
is analyzed numerically.

5.4.1 Cantilever slab

First, the variational remeshing strategy is applied to the analysis of the cantilever slab
shown in Figs. 5.2 and 5.3. The dimensions of the slab are L x L x L/4. At the left end
the structure is clamped and at the right end a vertical displacement of magnitude L/5 is
prescribed at the top of the slab. For the material response, a hyperelastic model defined
by the potential (4.41) is adopted. The LAME constants are set to A = 12115.38 N/mm?
and g = 8071.92N/mm?. They correspond to a YOUNG’s modulus £ = 21000 N/mm?
and a POISSON’s ratio v = 0.3.

At first, the deformation is computed according to the standard problem inf I,(z3), i. e.,
both the connectivity as well as the nodal coordinates with respect to the undeformed
configuration are kept fixed. Subsequently, the proposed remeshing strategy is applied and
the deformed configuration is computed again using the minimization problem inf Iy (x},).

Two different initial meshes are considered. The results are shown in Figs. 5.2 and 5.3.

According to these figures, the proposed algorithm leads to a remeshing of both initial
triangulations. With an initial energy of 18.0995 MNm (16.1732 MNm) and an improved
energy of 17.8216 MNm (15.9968 MNm), the reduction of energy is about 1.6% (1.1%) in
the case of the coarse (fine) mesh.
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a) ” b)

Figure 5.2: Numerical study of the energy-based remeshing strategy: deformed config-
uration before and after applying the energy-based remeshing strategy. The
initial and the final mesh contain 50 nodes and 96 tetrahedral elements.

a) b)

Figure 5.3: Numerical study of the energy-based remeshing strategy: deformed config-
uration before and after applying the energy-based remeshing strategy. The
initial mesh contains 243 nodes and 768 tetrahedral elements. The final
mesh consists of 767 elements.

It is noteworthy that both meshes illustrated in Fig. 5.2 are equivalent from a purely
geometrical point of view. More precisely, all elements shown in Fig. 5.2 have the same
quality in the sense of tetrahedral shape measures, cf. Remark 4.6.2.1 and Appendix A.
This follows from the fact that such a measure must be invariant to translations and
rotations. Hence, the energy-based remeshing strategy indeed differs from purely geomet-
rically based mesh improvement algorithms.



5.4 Numerical examples 131

Figure 5.4: Bending of a neo-HoOKEan hyperelastic notched beam. Fixed-mesh solu-
tion. One-half of the beam is discretized into 392 nodes and 1170 tetrahedral
elements.

5.4.2 Bending of a notched beam

The next example is concerned with bending of a notched beam of dimensions 101.6 x
25.4 x 12.7 [mm], Fig. 5.4. The length of the notch is 8.47 mm. The beam is clamped
at both ends. A vertical displacement is applied to a 3.9 mm region of the top surface
centered on the symmetry plane. The material is neo-HOOKEan hyperelastic with strain-
energy density (4.41). The LAME constants are set to A = 12115.38 N/mm? and p =
8071.92N/mm?, which corresponds to a YOUNG's modulus £ = 21000 N/mm? and a
Po1sson’s ratio ¥ = 0.3. This example illustrates the performance of the coupling of the
variational remeshing strategy with the VALE formulation presented in Chapter 4. The
energy tolerance for the termination of the VALE scheme according to Subsection 4.5.3
is set to 1.0 - 107°. The symmetries of the problem are exploited to reduce the domain
of analysis to one half of the beam. The problem shows the behavior of the r-adaption
combined with the energy-based remeshing strategy in the presence of strong singularities
such as crack tips and corners.

The deformation of the initial finite element mesh is shown in Fig. 5.4. It contains 392

nodes and 1170 tetrahedral elements (half of the structure). The corresponding energy is
IV = 75506.8 MNm.

Next, the solution is improved by applying the r-adaption procedure presented in Chap-
ter 4, together with the energy-based remeshing strategy. The results are shown in Fig. 5.5.
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Figure 5.5: Bending of a neo-HOOKEan hyperelastic notched beam. r-adapted solution
with energy-based mesh-improvement {without node migration to and from
the surface): a) undeformed configuration; b) deformed configuration. The
solution s symmetric about the plane of the notch and only one half of the
beam is shown in the figures.

The energy of the adapted solution is ]}(,2) = 69672.2 MNm, corresponding to a 8.4% re-
duction with respect to the Axed-mesh solution. As is evident from the figure, the nodes
move towards to regions of highest strain-energy density, namely, the tips of the notches,
the region under the center loads, and the corners at the clamped ends. The reconstrue-
tion of the mesh in those regions resulting from the energy-based mesh improvements
is particularly noteworthy. For instance, a careful examination reveals that the optimal
mesh is highly anisotropic in the region of the crack tip. The anisotropy of the mesh
stands to reason, since the solution near the tip varies slowly along the crack front and
rapidly normal to it. That the energy-based criterion should discern this feature of the
solution and adapt the mesh to it is quite remarkable.

5.5 Further improvements of the VALE formulation
and the energy-based remeshing strategy

The coupling of the presented energy-based remeshing strategy with the variational VALE
formulations as discussed in Chapter 4 improves significantly the solution predicted by
the finite element method. However, in many cases it is necessary to enlarge the space
of admissible deformations further. For this reason, a novel variational h-adaption is
developed in the next chapter.



Chapter 6

A variational h-adaptive finite
element formulation

A variational h-adaptive strategy in which the evolution of the mesh is driven directly
by the governing minimum principle is proposed in this chapter. This minimum prin-
ciple is the principle of minimum potential energy in the case of elastostatics (cf. Sub-
section 2.3.2); and the minimum principle for the incremental static problem of elasto-
viscoplasticity according to Section 2.5. In particular, the mesh is refined locally when
the resulting energy or incremental pseudo-energy released exceeds a certain threshold
value. In order to avoid global recomputes, the local energy released by mesh refinement
is estimated by means of a lower bound obtained by relaxing a local patch of elements.
This bound can be computed locally, which reduces the complexity of the refinement algo-
rithm to O(N). The advocated h-adaption can be directly coupled with other refinement
strategies driven by energy minimization. As a prototype, a coupled, fully variational hr-
adaptive strategy is discussed. Because of the strict variational nature of the h-refinement
algorithm, the resulting meshes are anisotropic and outperform other refinement strate-
gies based on aspect ratio or other purely geometrical measures of mesh quality. Since
many problems in mechanics such as crack propagation are characterized by moving sin-
gularities, the proposed h-adaption is completed by an energy-driven coarsening strategy.
The versatility and rate of convergence of the resulting approach are illustrated by means
of selected numerical examples. The present chapter follows to a large extent [MOSLER
& ORrTIZ 2006).

6.1 Introduction

h-adaptive finite element formulations for linear elliptic problems may be based on stan-
dard error estimates. In this context, adaptivity strives to minimize an error bound
among all meshes of a fixed size; or by the recursive application of local refinement steps
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(cf, e. g., [VERFURTH 1996; AINSWORTH & ODEN 2000] for reviews). Error estimation
pre-supposes existence and uniqueness of the solution; relies strongly on the linearity of
the problem; and in the corresponding HILBERT-space structure of the solution space. In
addition, the standard error bounds require a certain regularity of the solution for their
validity, and averaging over patches of elements is typically required in order to estimate
the local errors (cf, e. g., [CIARLET 1988]). Error estimates break down entirely when
the solution lacks regularity; and when loss or near-loss of ellipticity occurs, e. g., as a
consequence of localization instabilities.

If error estimation is not without difficulty in a linear framework, it is entirely inimical to
strongly nonlinear problems involving finite kinematics. Indeed, these problems often lack
uniqueness, owing to instabilities such as buckling, and even existence due to nonconvexity
arising from material instabilities, phase transitions and other root causes. Furthermore,
the topologies that are natural to these problems are often not normed, and the spaces
where solutions are to be found may not have a linear structure at all. As a consequence,
the framework of error estimation fails to apply to nonlinear mechanical problems in
general and hence, error indicators have to be used.

Even for linear elliptic problems, standard h-adaptive refinement strategies can be im-
proved in many cases. According to [VERFURTH 1996], the development of a priori error
estimates can be decomposed into two parts. While the first of those is affected by the
properties of the considered mechanical problem, the second part results from interpo-
lation theory and consequently, it is problem independent. As regards the latter, shape
regularity is usually postulated, i. e., inequality

sup{he/pe | € € Tp} < 00 (6.1}

is assumed to be fulfilled with k. and p. denoting the diameter of finite element e and the
diameter of the largest ball contained in e, respectively. However, it is well known that
anisotropic meshes which violate Ineq. (6.1) are more efficient in many cases, cf. [SIMPSON
1994; APEL 1999]. Unfortunately, the theory of error estimates for anisotropic meshes
is far less understood, see [APEL 1999].

The aforementioned problems motivate the development of adaptive finite element for-
mulations which can be applied to the numerical analysis of complex systems showing a
fully nonlinear behavior. Furthermore, provided the mechanical problem under consid-
eration is driven by energy minimization, anisotropic meshes should evolve, if they are
energetically favorable.

6.2 A local refinement strategy

Variational h-adaption relies on the underlying variational principle to drive the process
of mesh refinement and unrefinement. In particular, no error estimates are invoked at any
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stage of the adaption procedure. In this work, attention is confined to simplicial meshes
and edge bisection (cf. [BANSCH 1991B; BANSCH 1991A; RIVARA 1991; RIVARA &
LEVIN 1992; R1vARA 1997]) as the device for achieving mesh refinement. Two different
strategies will be explained in this section.

In what follows, the set of all tetrahedra T defining the discretization is denoted as 7},
and E(T') represents the set of all edges E contained in element T'. Consequently,

) = | &) (6.2)

TeT;,

is the collection of all edges in the triangulation 7;. Furthermore,

we= |J T (6.3)
Ee&(T)
is the set of all neighboring elements of the edge E and the nodes X, of an element T
are contained in N'(T), cf. [VERFURTH 1996]. Hence, A (7,) is the set of all nodes.

6.2.1 A local refinement strategy based on marked edges

Suppose a physically sound error indicator or a mathematical-based error estimate has
marked edges to be refined. Then, the following algorithm is applied:

For all marked edges E, DO:

i) Determine wg.

ii) VT € wg : Cut the element T by bisecting the marked edge E.

For a certain edge, this method is illustrated in Fig. 6.1. Clearly, the resulting new trian-
gulation is always conforming, i. e., hanging nodes cannot be generated. The new nodes
are added by computing their positions based on the underlying geometry approximation
of the respective parent element. As a consequence, the boundary representation of the
structure considered does not change. It should be noted that the prescribed algorithm
is not stable. Hence, highly anisotropic meshes may evolve whose elements show large
aspect ratios. More precisely, examples can be easily generated demonstrating that the
obtained aspect ratios are not even bounded. However, it will be shown that this ratio
does not correlate well with performance in problems exhibiting strong directionality.

6.2.2 A local refinement strategy based on marked elements

Suppose now that elements have been marked for refinement by an error indicator. In
this case, an edge-bisection approach according to [BANSCH 1991B; Rivara 1991] is
applied. In contrast to the method described in Subsection 6.2.2, the algorithm is stable.
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a) b) c)

Figure 6.1: Edge-bisection of simplicial mesh: a) edge star before bisection; b} bisection
and reconstruction of the star of the bisected edge; ¢) edge biscction in a 10-
nodc tetrahedral element by using edge bisection. The filled circles designed
nodes existing prior to bisection; open squares indicate new nodes inserted
as a result of bisection

Rivara’s Longest-Edge Bisection method is defined as {ollows: Let E denote the list of
elements to be refined. Then:

i) Cut each element 7' € E by bisecting its longest edge.

ii) Set E to the set of elements having nonconforming (hanging) nodes.
i) Is E#0

YES: GOTO i)
NO: EXIT

Although the simplicity of the algorithin is noteworthy, the efficient handling of hanging
nodes is, from an implcementational point of view, relatively cumbersome. [For this reason,
RivARA's Backward Longest-Edge Refinement Algorithm is adopted, cf. [Rivara 1997].
The interesting feature of this method is that the resulting refined meshes are identical to
those of the original method [RIvARA 1991], but hanging nodes are not created at any
stage of the algorithm. RIVARA’s approach is based on the computation of the so-called
Longest-Edge Propagalion Path (LEPP). Further details are omitted.

Remark 6.2.2.1 As mentioned before, the algorithim presented in this subsection is sta-
ble. Hence, degenerated elements cannol occur and, in many cases, the aspect ratios of
the elements created by this method are relatively small. [t is well known that smail aspect
ratios result in a small condition number of Lhe respective sysiem of equalions in generel,
¢f. [SHEWCHUK 2002/. Clearly, this improves the performance of the numerical solution
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scheme, if iterative solvers are used. However, it should be noted that the finite element
code developed is based on a sparse direct solver and consequently, decrease of performance
due to highly anisotropic meshes is not an issue.

Remark 6.2.2.2 According to [RIVARA 1997/, the Longest-Edge Propagation Path
(LEPP) ”...is the set of all the neighbor tetrahedra (by the longest edge) having re-
spective longest-edge greater than or equal to the longest edge of the preceding tetrahedra
in the path.” Il is claimed that this path is finite. This property is essential, since oth-
erwise endless loops may be generated. However, this property can only be guaranteed,
if all edges in the triangulation have different lengths. For ezample, consider two edges
of a facet between two neighboring tetrahedra elements. Furthermore, assume the edges
have the same lengths and they are the longest edges of both elements. If for each of the
tetrahedra elements a different edge is marked as the longest one, the LEPP is infinile.
As a result, it produces indeed an endless loop. It should be noted that such a problem is
not of academic nature and occurs in applications. In the developed finite element code,
this problem is eliminated by choosing the longest-edge having the largest number. How-
ever, for more complex problems this simple strategy does not work. Fortunately, in all
computations such a case has not been found.

6.3 Variational refinement criteria

Within a variational framework, the standard displacement finite element method may
be regarded as constrained minimization, with solutions restricted to a finite-dimensional
subspace V,, C V. The constrained functional is

_ [ I{p), ifpeV
Tne) = { +00, otherwise (64)

and the reduced problem reads
inf  Ih(¢p). (6.5)
peV,
?lan, =P
The subspaces V), are generated by introducing a triangulation 7}, of Q and a standard
finite element interpolation of the form

Ni
on(X) =D aNo(X) (6.6)

a=1

where N, is the number of nodes, N, denotes the nodal shape function of node a and z,
is the nodal position vector in the deformed configuration. Classically, one regards V;, as
a sequence of parameterized subspaces, e. g., by the mesh size h, and seeks a sequence ¢,
of approximate solutions such that I(¢,) — I(p).
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Suppose instead that Vj, represents a net of linear spaces parameterized by a directed
index set A. Recall that a directed set is a set A together with a binary relation < having
the following properties: i) a < a for all a € A (reflexivity); if a < b and b < ¢, then
a < c (transitivity); for any pair a,b € A, there exists c € Asuchthat a < cand b < ¢
(directedness). In the present work, nets of subspaces generated by edge bisection are
considered. Thus, V), < V,, if the triangulation 7}, corresponding to V},, can be reached
from the triangulation 7, corresponding to Vj,, by a sequence of edge bisections. In
addition, it is supposed that there is an element 0 € A that precedes all other elements.
The corresponding triangulation 7 is the initial mesh, and Vj is the corresponding initial

solution space.

As noted earlier, the variational principle supplies an unambiguous comparison criterion
for judging the relative quality of two test functions: ¢, is better than ¢, if and only if
I(spy,) < I(¢py,)- Hence, the problem of variational mesh adaption can be formulated as
the minimum problem

inf  In(@) + peN, (6.7)
pev,

vlan, =@,
heA

where N; denotes the number of nodes in the triangulation 7, and g, > 0 is an energy
tolerance. Evidently, p. represents the energy cost of introducing an additional node
in the mesh and, therefore, may be regarded as a chemical potential. The role played
by the second term in (6.7) is to assign a cost p. to the introduction of an additional
node. This cost in turn sets an upper limit to the size of the mesh. Thus, if gy, = 0
minimization of I, results in run-away meshes, since the energy is always lowered by the
introduction of additional nodes. By way of contrast, suppose that g, > 0 and that the
initial triangulation 7 is coarse, so that the Vy-minimizer is not a solution of (6.7). Then,
as convergence is approached the addition of nodes results in diminishing energy returns
and the second term in (6.7) is expected to dominate, with the result that the process of
mesh refinement is eventually held in check.

The problem (6.7) of finding absolute minimizers in the collection of spaces {V},,h € A} is
of combinatorial complexity and, therefore, intractable in general. Instead, an algorithm
will be developed which finds local minimizers, i. e., minimizers that are stable with
respect to a single edge bisection. In order to formalize this notion, let £(7},) denote the
collection of edges of 7. In addition, for all e € £(7,) let 0. : A — A denote a mapping
such that 75, () is the triangulation resulting from the bisection of e. Then, 7}, is defined
as bisection-stable if

w(Th) = Joax (inf I, — inf I, () < pte. (6.8)
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Thus, 7}, is bisection-stable, if the addition of one node lowers 7, at best by an amount
p(74) less than g, and thus the addition is to be rejected. The basic h-refinement strategy
that emerges from these considerations may be summarized as follows:

i) Initialize h = 0.
ii) Find e € £(7,,) for which x(7},) is attained.
i) Is p(7n) > pe

YES: Reset h — og.(h), GOTO ii)
NO: EXIT
Remark 6.3.0.3 Instead of bisecting single edges sequentially, alternative strategies may

be devised by ordering the supercritical edges according to the indicator inf I, — inf I,, ()
and targeting for bisection a subset of those edges. For instance, with

o(Th) = . EnElz‘% ) (inf I, — inf I, () (6.9)
the refinement procedure
refine e € E(Ti) i inf Iy —inf Ly > a (1(Th) — p(Th)) + p(Ts) (6.10)

will be applied in Section 6.9. Clearly, the domain of the parameter a is [0, 1]. In standard
adaptive codes, it is usually set to 0.5, ¢f. [VERFURTH 1996]. For a = 0 all edges are
refined, while setting a = 1.0 is identical to the method described in the present section.

Remark 6.3.0.4 If the aspect ratio of the elements needs to be maintained, edges can be
bisected by means of RIVARA ’s algorithm as discussed in Subsection 6.2.2, which guaran-
tees a lower bound on the element aspect ratio. More specifically, for the edge e € E(T})
characterized by p(7,) > p., all neighboring elements, i. e., T € wg, are refined by ap-
plying the method presented in Subsection 6.2.2. However, it should be noted that in a
strict variational framework aspect ratio is a poor measure of mesh quality. Indeed, as will
become evident from the subsequent examples energy minimization often leads to strongly
anisotropic meshes.

Remark 6.3.0.5 Higher-order elements, such as 10-node quadratic tetrahedra are com-
monly implemented by recourse to GAUSSIAN quadrature. This introduces bounded errors
that do not affect convergence in general. However, it should be noted that some of the
strict ordering of energies implied by the variational structure of the problems may be lost
due to numerical quadrature errors.
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6.4 Bisection criteria derived from
local energy bounds

Evidently, a drawback of the strategy just outlined is that the energy u(7,) released by
bisection is costly to compute exactly. An alternative strategy consists of working with
a lower bound of (7). A convenient such lower bound can be obtained by constraining
the relaxation of the displacement field upon bisection of an edge e to a certain sub-mesh
Si(e) of Ty, or element patch, containing e. For instance, Sy(e) can be set to the ring of
elements incident to e, i. e., the star St(e) = w,. Evidently,

4 A

thoc(Tn) = max ¢ In(epp) — inf Ia.,(h)(‘P) » < 1(7n) (6.11)
cEE(T) PEV,
¢lan, =%,
L supp(p—y, )CSh(e) )

supplies the requisite lower bound. In this expression, ¢, is minimizer of I, and supp
denotes the support of a function. Thus, p,.(7}) is computed by constraining the relaxed
displacements ¢ on the bisected mesh 7, ) to differ from the minimizer ¢, on the un-
bisected mesh 7, only within the neighborhood S (e) of the bisected edge e. Conveniently,
this computation is local and its cost is constant, independent of the size of the mesh.
The resulting h-adaption strategy is:

i) Initialize h = 0.
it) Find e € £(T,,) for which p0.(T3) is attained.

ii) Is ﬂ'loc(Tl;) > Me

YES: Reset h — a.(h), GOTO ii)
NO: EXIT

Remark 6.4.0.6 Because of the lower bound property phoc(Th) < pioc, the adaption strat-
egy based on the local estimate p,.(T;) may be expected to accept meshes that would
otherwise be bisection-unstable according to the global energy criterion.

Remark 6.4.0.7 When dealing with constant-strain elements, the case of boundary edges
connected to one single element, henceforth referred to as sharp edges, may require special
handling. For sharp edges, the local patch Sp(e) consists of one single constant-strain
element in the special case in which the local patch is taken to coincide with the star of the
edge, Si(e) = St(e). Under these conditions, bisection of a sharp edge leaves the energy
invariant, with the result that sharp edges are never targeted for bisection. In order to
avoid this artifact the local patches of sharp edges needs to be extended beyond their stars.
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Remark 6.4.0.8 The problem of sharp edges alluded to in Remark 6.4.0.7 does not arise
when higher-order elements, such as 10-node quadratic tetrahedra, are in use.

6.5 Comparison of the proposed refinement criteria
to classical error estimates

Locally constrained problems such as advocated in the previous sections have also been
proposed as a basis for deriving a posteriori error bounds in linear problems [VERFURTH
1996; AINSWORTH & ODEN 2000]. The analogies between those concepts and the
variational h-adaption as suggested in the present work are highlighted in this section.

For linear systems the potential energy has the representation
1
I(u) = ia(u, u) — l(u) (6.12)

where a(u,u) is a quadratic form and /(u) a bounded linear functional. As mentioned
before, edge bisection generates a directed index set. Consequently, the space of interpo-
lations associated with the refined mesh 7,'°¥ can be written as a direct sum, i. e.,

Upew E Vo ®VY and Upew =u+v, u€Vyy, veEV, (6.13)

with V4 denoting the interpolation space corresponding to the non-refined triangulation
T2, Using Eqs. (6.13), together with Eq. (6.12), the lower bound of the energy released
by bisection of edge e reads

In(u) - inf Ip,y(u+v) = sup [—a(u, v) — %a(v,'v) + l(v)] . (6.14)
veY, veY,
(ut+v)lan, = (utv)lgn, =6

Clearly, the stationarity condition associated with the optimization problem (6.14) is

a(u+v,w) =l{w) YweV. (6.15)
Substituting the admissible choice w = v into Eq. (6.15) and the resulting equation into
Eq. (6.14), finally gives

L(w) -  inf Lgy(u+v)= %a('v,'v), (6.16)
vey,
(u+v)|8nl=ﬁ

with v computed from the weak form (6.15).

The by now classical error estimate 7 proposed in [BABUSKA & RHEINBOLDT 1978;
BERNADI, METIVET & VERFURTH 1993] can be recast into the variational form

n=||Vv|lo2 with v =arg tl,IEl{; Ig(v), Ig(v) = %a(u +v,u+v)—Il(v). (6.17)
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For further details, cf. [VERFURTH 1996]. Evidently, the stationarity condition of I is
given by Eq. (6.15). Since for linearized elasticity theory the energy norm is equivalent
to the L, norm ||Vv||o2, the equivalent indicator

n= %a(v,v)‘/2 (6.18)

can be considered without loss of generality. By comparing Eq. (6.18) to Eq. (6.16) the
analogy between the variational h-adaption presented in this work and classical error
estimates becomes apparent. In this respect, the variational method can be understood
as the canonical extension of the classical method.

It should be carefully noted that the functional framework just outlined does not carry
over to general nonlinear problems. For instance, in problems such as finite elasticity it
is natural to resort to weak topologies, with the result that the solution space is not a
normed space. Furthermore, if geometrical constraints such as local invertibility of the
deformations are appended the solution space is not even a linear space. Finally, the
minimizers are a fortiriori non-unique by virtue of geometrical instabilities such as buck-
ling or material instabilities such as twinning. Under these conditions the notion of error,
defined as the norm distance between approximate solutions and a unique minimizer, fails

to apply.

Remark 6.5.0.9 Error estimates for linear elliptical problems according to Eq. (6.17)
require the introduction of an enriched space V 3 v. In the present work, V = View/Vou
is defined as the space spanned by the global interpolation functions associated with the
nodes newly inserted by edge-bisection. In classical error estimates for linear elliptical
problems, V is usually spanned by bubble functions, ¢f. [VERFURTH 1996/.

6.6 h-adaption combined with VALE formulations

In principle, variational r-adaption according to Chapter 4 and h-adaptive finite element
formulations as discussed in the present chapter can be combined sequentially to obtain
a variational hr-adaption strategy. A limited application of variational r-adaption in
the context of variational h-adaption is for purposes of optimizing the location of the
nodes inserted by bisection. Conveniently, when local energy estimates are used the r-
optimization can also be performed locally in combination with the solution of problem
(6.11).
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6.7 Energy-based mesh coarsening

Analogously, to Section 6.4, a local bound of the energy released by edge-bisection is used
in order to drive mesh coarsening. More specifically, u.c(75) according to Eq (6.14) and

Poc(Th) = _ min Alu(e), (6.19)
with
Aln(e) = In(epn) — inf Lo.w)() (6.20)
wev,
#lag, =@

supp(p—),)CSh(e)

are computed first. Then, the following combined refinement/de-refinement algorithm
can be developed:

i) For all e € £(T,) DO:

a) IF Al(€) > arer (B1oc(Th) = Proc(Th)) + Pioc(Th), mark e for refinement.
b) IF Al(e) < tevarse (H1oc(Tr) — Ploc(Tn)) + Proc(Tn), mark e for coarsening.

ii) Apply coarsening.
iii) Compress arrays and update the data structure.

iiii) Apply refinement.

Here, arer € [0,1] and @cparse € [0, Qrer) are numerical parameters controlling mesh refine-
ment and coarsening, respectively. According to this procedure, a previously refined edge
is coarsened if de-refinement of this edge results in only a relatively small energy increase.
Step iii) is necessary, since coarsening leads to "holes” in the arrays storing the edges, the
nodes and the elements.

Except for step ii), the given pseudo-code is well-defined. The local coarsening strategy
presented in this subsection is different compared to the procedures developed in [RIVARA
1991; BANSCH 1991B; BANscH 1991A). It can be understood as the inverse of the
refinement method discussed in Subsection 6.2.1 and 6.2.2. This implies two consequences.
First, only previously refined edges are allowed to be coarsened and second, the order of
de-refinement is important. This is highlighted in Fig. 6.2. To guarantee the correct
order of coarsening additional information is required. For that purpose, the simple data
structure as given in Appendix C has been coded. For a compact notation, the following
definitions are introduced:

Definition 1 Mesh refinement by bisecting an edge p generates the children ¢, C p and
¢2 C p and some additional edges a, ...,a; & p. The set {c,,c3,0ay,...,a;} is referred to
as the set of edges generated by bisection of p and edge p as the parent of ¢, and c;.
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©) ® O

Figure 6.2: Mesh refinement in two dimensions by applying edge-bisection (o5 and o
according to Section 6.3). Coarsening of edge 7 of the final mesh requires
elimination of edge 10 first, i. e., de-refinement of edge 2 and 9.

Definition 2 For an element T generated by bisection of p, the so-called child edge is
the child ¢, or co which belongs to E(T) (see Eq. (6.2)).

Based on those definitions, together with the data structure contained in Appendix C,
the following unrefinement algorithm is proposed:

For each edge e marked for coarsening DO:

i) Has e been generated by bisection of an edge p?

YES: Get the children ¢; and ¢, of p.
NO: Next edge, GOTO i)

ii) Have ¢; and ¢; not been bisected once again? AND
Is for every T € w,, Uw,, (see Eq. (6.3)) ¢ or cp the child edge of T? AND
Is every edge belonging to the set of edges generated
by bisection of p not marked for refinement?

YES: Coarsen all elements in w,, Uw,, by unrefining ¢; and c;.
NO: Next edge, GOTO i)

For example, suppose edge e = 10 in Fig. 6.2 is to be coarsened. Edge e = 10 has been
generated by bisection of the old edge p = 2 which has the children edge ¢; = 2 (new)
and c; = 9. Consequently, the neighboring elements w,, U w,, of edges 2 and 9 are given
by elements (2, 6, 10) and (7, 9, 10), respectively. As a result, de-refinement of edge 10
removes those elements and creates the new element (2(old), 6, 7).

Remark 6.7.0.10 Clearly, since RIVARA’s algorithm is also based on edge-bisection, the
proposed coarsening strategy can be applied to this method as well. However, in RIVARA’s
tmplementation, elements are marked for de- or refinement. In the case of refinement,
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the modifications have already been mentioned in Remark 6.8.0.4. For coarsening, all
neighboring edges E(T) of an element T are marked for de-refinement, if they were not
marked for refinement before.

6.8 Transfer of history variables

If h-refinement is applied to mechanical problems requiring the use of history variables
such as plasticity theory, these variables have to be mapped between different meshes.
As already mentioned in Section 4.8, the transfer operator of the history variables follows
consistently from the variational principle, cf. [ORTIZ & QUIGLEY 1991; RADOVITZKY
& ORrtiz 1999]. In the present work, those variables are assumed to be piecewise constant
over the VORONOI cell containing the GAUSS point g of the element e. In this case, the
variational transfer operator maps the state variable of the nearest old quadrature point
to the new quadrature point. This procedure shows several advantages, cf. Section 4.8.

Suppose that the quadrature points i = 1,-- - , n corresponding to the refined mesh ‘I;fﬁ"e)

have the same nearest old quadrature point associated with the parent mesh ﬁm).
Then, for mesh refinement, the just described transfer operator reads

aim®) = gleoa)  y] < i<, (6.21)
or alternatively in matrix notation
(™) =[1,... 1] alcase), (6.22)
N’
=A€ER"

Clearly, tensor-valued variables are mapped by applying Eq. (6.22) to each component.

If h-refinement is coupled to a coarsening strategy such as that discussed in the previous
section, the inverse relation of Eq. (6.22) is required additionally. More specifically, a
vector B € R" has to be derived such that

alcoamse) — B . ffine) (6.23)

Evidently, since Eq. (6.23) is a pseudoinverse of Eq. (6.22), the composition of B and A
has to represent the identity on R, i. e.,

B-A=1. (6.24)

Since the components of B are weighting coefficients, it is natural to postulate B; > 0.
However, these restrictions are not sufficient to compute the vector B uniquely. In this
work, this problem is solved by choosing a physically motivated pseudoinverse. More
precisely, this inverse is based on dissipation considerations.
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In what follows, Q2 denotes the domain of the VORONOI cell containing the quadrature
point of the coarse mesh. Then,

T
Dy, = / / D dt dv (6.25)

Q t=0

represents the total energy dissipated in Q. Since the adaptive h-refinement strategy
presented in this chapter is purely energy-driven, it is canonical the enforce the postulate

Deot (T =: D™ = DE =: D (T,E™). (6.26)

This condition ensures that the dissipated energy is not affected by the mesh transfer
operator. Based on Eq. (6.26) the vector B can be computed.

In many cases, postulate (6.26) can be simplified significantly. For instance, if standard
dissipative solids based on a positively homogeneous yield function of degree one are
considered, the dissipation reads D = A £, cf. Remark 2.4.1.6. If additionally the
internal variable a governing isotropic hardening/softening obeys the evolution equation
& = A with a(t = 0) = 0 (which is fulfilled for many material models), Eq. (6.25) simplifies
to

pleoarse) _ yed glcoarsa)), .y, (6.27)

m

since the state variables are constant over Q (in the case of the coarse mesh). Here, V
is the volume of the domain 2. Analogously, the dissipated energy obtained from the
refined discretization is given by

DI = 553 3 aOler VO, (6:29)

i=1

Thus, enforcing condition (6.26) leads to the mesh transfer operator
= V(‘) ne
a(cm)h:j' = Z 7 asﬁ )|!=T- (629)
i=1

It can be verified easily that B; = V®/V > 0 and A- B = 1. As a consequence, B indeed
represents a pseudoinverse of A.

6.9 Numerical examples

The performance of the novel h-adaption presented in this chapter is demonstrated by
means of several examples: a notched specimen in uniaxial tension; the indentation of a
hyperelastic block; and the indentation of an elastic-plastic block. One clear performance
measure of primary importance is the rate of convergence. Specifically, the influence of
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variational h-adaption and combined hr-adaption on the convergence rate is analyzed.
An additional central question concerns the characterization of the mesh geometries that
are energetically optimal. A common rule-of-thumb is to assume that the quality of an
element is commensurate with its aspect ratio, defined as the ratio between the outer and
inner radii of the element. However, the aspect ratio enters error estimates as a direct con-
sequence of the use of matrix-norm bounds that are isotropic in nature and, consequently,
not tight in general. In particular, those estimates are insensitive to the directionality of
the gradients in the error function. Aspect ratio bounds can be maintained throughout
the mesh refinement process, e. g., by recourse to RIVARA’s Longest-Edge Propagation
Path (LEPP) bisection algorithm [RIVARA 1991; BANSCH 1991B; RIVARA & LEVIN
1992; RIVARA 1997]. Therefore, it is ascertained whether appending constraints on the
aspect ratio of the elements speeds up or slows down convergence.

6.9.1 TUniaxial tensile test of a notched specimen

The first example is the numerical analysis of a uniaxial tensile test of a notched speci-
men. This mechanical problem has already been computed by using the VALE formula-
tion according to Chapter 4. The complete description of the system is given in Fig. 4.6.
Analogous to Subsection 4.6.2, a hyperelastic material model defined by the energy func-
tional (2.29) is considered. The LAME constants are assumed to be A = 12115.38 N/m?
and p = 8071.92N/m?.

The response of the specimen is baselined by means of a coarse discretization consisting
of 10-node quadratic tetrahedral elements. The corresponding finite element mesh, defor-
mation and the stored energy distribution are shown in Fig. 6.3. As expected, the energy
density attains its maximum in the vicinity of the crack tip; and is nearly uniform in the
thickness direction of the slab.

Based on the initial mesh, four different adaptive computations are performed: an un-
constrained variational h-adaption calculation according to the algorithm on page 143
with a. set to 0.5, 0.7 and 1.0 and a constrained variational h-adaption calculation,
in which a lower bound on the aspect ratio of the elements is maintained by means of
RIVARA’s Longest-Edge Propagation Path (LEPP) bisection algorithm [R1VvARA 1991;
BANSCH 1991B; RIVARA & LEVIN 1992; RivarRA 1997|. For the computation based
on RIVARA’s method, a is set to 1.0. Coarsening is not considered throughout this
subsection.

Fig. 6.4 shows the results of the four adaptive calculations. The final meshes obtained
by constrained and unconstrained variational h-adaption stand in sharp contrast to one
another, Fig. 6.4. Thus, unconstrained variational h-adaption clearly allocates resources in
such a way as to exploit the directionality of the gradients in the variation of the solution,
Fig. 6.4a) - ¢). In particular, it results in highly anisotropic mesh refinement: a high
degree of mesh refinement in the directions normal to the crack tip; and simultaneously a
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Figure 6.3: Geometry of the hyperelastic three-dimensional notched specimen under-
going large deformations in uniaxial tension. a) initial discretization; the
octant of the specimen considered in the calculations is highlighted; b) de-
formed body and stored-energy distribution, showing concentration at the
crack tips and nearly uniform variation across the specimen

nearly uniform mesh size in the direction of the crack tip from, i. e., across the thickness
of the specimen. It bears emphasis that this anisotropic refinement occurs spontaneously
as an energetic optimum, and is not the result of empirical criteria built into the adaption
strategy. By way of contrast, the constrained variational h-adaption calculation results
in isotropic mesh refinement, with equi-axed elements distributed through the thickness
of the specimen, Fig. 6.4d).

The influence of o on the discretizations can be seen by comparing the meshes in
Fig. 6.4a) - ¢). The greater ., the more localized is the refined region. However, it will
be shown that all adaptive schemes based on the purely energy-driven algorithm lead to
almost identical results.

The convergence rates in energy of the constrained and unconstrained variational h-
adaption calculations are compared in Fig. 6.5 with the convergence rate resulting from
uniform refinement. It is noteworthy that in the linear range, the energy error plotted in
the ordinate reduces to: a(up,up) — a(u,u) = a(up — u,up — u) = ||uy — u||%, and hence
may be thought of as generalizing the conventional energy-norm error to the nonlinear
range. Clearly, the performance of unconstrained variational h-adaption is superior to
that of constrained variational h-adaption. In particular, anisotropic mesh refinement
results in higher convergence rates than isotropic mesh refinement. Thus, far from being
detrimental, highly-elongated elements oriented according to the gradients in the solution
are beneficial to performance. Conversely, constraints designed to eliminate elongated el-
ements, while resulting in meshes that are more "pleasing to the eye”, have a detrimental
effect on the rate of convergence.
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c) d)

Figure 6.4: Hyperelastic three-dimensional notched specimen undergoing large deforma-
tions in uniaxial tension. Final mesh geometries resulting from: a) uncon-
strained variational h-adaption a,. = 0.5; b) awer = 0.75; ¢) awer = 1.0; d)
constrained variational h-adaption using RIVARA's LEPP algorithm

According to Fig. 6.5, the influence of a,f on the performance seems to be negligible.
Unfortunately, a closed form solution for the best a,.¢ does not exist (not even in linearized
elasticity) and furthermore, it would depend on the physical problem under investigation.
For the particular example analyzed in this subsection, a,.; = 0.5 is preferred, since it leads
to almost the same results as apr = 0.75 and a, = 1.0 by requiring only 15 refinement
steps instead of 29 and 105, respectively. The choice o = 0.5 is well aceepted in adaptive
finite element formulations, cf. [VERFURTH 1996].
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Figure 6.5: Hyperelastic three-dimensional notched specimen undergoing large deforma-
tions in uniaxial tension. Convergence rates resulting from unconstrained
and constrained variational h-adaption. The convergence rate corresponding
to uniform refinement is also shown for comparison.

Figure 6.6: Indentation of a hyperelastic block by a circular rigid punch. Initial dis-
cretization: dimensions (in m), loading conditions and initial discretization

6.9.2 Indentation of a block: fixed force

Next, indentation of a block is analyzed numerically by using the presented h-adaption.
The dimensions, loading conditions together with the initial discretization are depicted
in Fig. 6.6. Loading is controlled by prescribing the vertical displacements within the
grey colored circle (see Fig. 6.6). Symmetry of the geometry and the boundary conditions
have been taken into account. As a consequence, only one quarter of the system has been
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a) b)

Figure 6.7: Indentation of a hyperelastic block by a circular rigid punch, initial mesh:
a) deformed configuration; b) stored-energy distribution

discretized.

6.9.2.1 Hyperelastic material model

At first, the material response is assumed to be governed by the hyperelastic poten-
tial (2.29). The LAME constants are identical to those in Subsection 6.9.1.

The response predicted by the initial finite element mesh, consisting of 10-node quadratic
tetrahedral elements, is shown in Fig. 6.7. It corresponds to an amplitude of the displace-
ment of u = 0.1 m. As expected, the strain-energy attains its maximum under the punch
and exhibits power-law decay away from it, Fig. 6.7b). However, the region immediately
under the punch is highly confined and is in a state of high triaxiality and comparatively
lower energy. Owing to the concentration and fine structure of the strain-energy, the
problem lends itself ideally to mesh adaption.

Fig. 6.8 displays the final meshes obtained by means of three adaption strategies: uncon-
strained variational h-adaption; unconstrained variational hr-adaption; and constrained
variational h-adaption using RIVARA’s LEPP algorithm to maintain a lower bound on the
aspect ratio of the elements. As remarked earlier, the variational hr-adaption procedure
employed in the calculations consists of alternating edge bisection and the variational
r-adaption scheme described in [MOSLER & ORTIz 2005]. In all cases, only the ener-
getically most favorable edge is bisected at each step (ags = 1.0). As in the case of the
notched specimen described in the foregoing, the strain-energy distribution under punch
exhibits not only concentration but also marked directionality. Thus, whereas the strain-
energy displays rapid variation in the radial direction, it varies slowly in the orthogonal
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b)

Figure 6.8: Indentation of a hyperelastic block by a circular rigid punch. Final meshes
after: a) unconstrained variational h-adaption; b) constrained variational
h-adaption using RIVARA’s LEPP algorithm; ¢) unconstrained variational
hr-adaption

directions, and, in particular, it is constant in the circumferential direction. As expected,
the LEPP-constrained scheme results in an isotropic mesh that is insensitive to the di-
rectionality of the solution. In consequence, at any given depth of indentation it inserts
a larger number of nodes than the remaining algorithms. In contrast, unconstrained h-
and hr-adaption result in highly anisotropic and directional meshes that trace the fine
structure of the energy-density field.

Fig. 6.9 compares the energy convergence behavior of the three methods. As may be seen
from this comparison, hr-adaptivity results in appreciable but modest gains in the rate
of convergence relative to h-adaptivity. In addition, both h- and hr-adaptivity handily
out-perform constrained h-adaptivity. For instance, a 676-node unconstrained h-adaption
solution has lower energy than a 1490-node constrained computation. If, in addition,
r-adaption is allowed for, the size of the mesh can be further reduced to 491 nodes at
no increase in energy. These performance differentials, similar to those observed in the
notched specimen example, provide compelling demonstration of the fact that element
aspect ratio does not correlate well with performance in problems exhibiting strong di-
rectionality in the energy-density field.

6.9.2.2 Elastoplastic material model

Next, the applicability of the variational approach to inelastic materials is demonstrated.
The problem is identical in every way to that treated in the preceding paragraph with
the sole exception that the material is now assumed to obey multiplicative Jo-flow theory
of plasticity. As discussed in Section 2.5, a time discretization using variational consti-
tutive updates [ORTIZ & STAINIER 1999; RApOvITZKY & ORTIZ 1999] confers the
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Figure 6.9: Indentation of a hyperelastic block by a circular rigid punch. Convergence
in energy resulting from: unconstrained variational h-adaption; constrained
variational h-adaption using RIVARA’s LEPP algorithm; unconstrained vari-
ational hr-adaption; and uniform mesh refinement

incremental problem a variational structure identical to that of a hyperelastic problem.
In particular, the deformation mapping at time ¢,,, minimizes an incremental potential
energy defined in terms of an effective strain-energy density that encodes both the elastic
and the inelastic behavior of the material. In this setting, variational h-adaptivity consists
of optimizing the mesh at every time step with respect to the incremental potential energy.
In particular, for any given time step the variational h-adaptivity solution procedure is
identical to that pertaining to an elastic problem.

The maximum depth of indentation considered in the calculations is 0.02 m. All meshes
consist of 10-node quadratic tetrahedral elements. For definiteness, the implementation is
based on the variational constitutive update as discussed in Chapter 2.5. More specifically,
the voN MISES model described in Subsection 2.5.3 is adopted. The elastic dilatant
material response is specified by Eq. (2.96), i. e., a HENCKY model is applied. The part
of the energy due to plastic work is chosen according to

p py 1 (n+1)/n
UP(eP) = '7‘:"__:5;’ [1 + (Z—S)] . (6.30)

In addition, the yield function (2.88) is modified such that
$(Z,Q) = ||dev[Z]||; — Q(eP), (6.31)

with Q := 9¥P/3cP. The material parameters used in the calculations are summarized in
Table 6.1.

The state variables are assumed to be piecewise constant over the VORONOI cells defined
by the quadrature points. More specifically, the transfer of the history variables follows
the algorithm discussed in Section 6.8.
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Table 6.1: Indentation of an elastoplastic block: material parameters
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Figure 6.10: Indentation of an elastic-plastic block. Distribution of effective plastic
strain €P: a) two uniform refinement steps; b) unconstrained h-adaption;
c¢) constrained h-adaption using RIVARA’s LEPP algorithm

As in the previous examples, two different adaptive computations are performed: uncon-
strained variational h-adaption; and constrained variational h-adaption using RIVARA’s
LEPP algorithm to maintain a lower bound on the aspect ratio of the elements. In addi-
tion, two uniform refinement steps are evaluated by way of baseline. The distribution of
the effective plastic strain P is given in Fig. 6.10. Fig. 6.10a) shows a mesh generated by
applying two uniform refinement steps to the initial discretization of Fig. 6.6. The meshes
in Figs. 6.10b) and c) are the result of the unconstrained and constrained variational h-
adaption schemes, respectively. As in the preceding examples, the contrast between the
unconstrained and constrained adaption schemes is clearly evident in Figs. 6.10b) and c).
Thus, the unconstrained variational h-adaption strategy results in a highly anisotropic
and localized mesh that is in sharp contrast to the isotropic and diffuse mesh produced
by the constrained strategy. In particular, the unconstrained mesh traces a slip cone that
separates the triaxial plug under the indentor from the matrix. The elements tiling the
slip cone are flat and elongated, with the result that the entire slip-cone mechanism is
represented with a modicum of degrees of freedom. The corresponding plastic strain field
is highly localized to the slip cone, and elastic unloading occurs elsewhere. By way of
contrast, the constrained plastic strain field is diffuse and does not show signs of localiza-
tion. This excessive numerical diffusion effectively eliminates all traces of the slip cone
and results in an artificially smooth plastic strain distribution.

The various load-displacement diagrams are collected in Fig. 6.11 for ease of comparison.
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Figure 6.11: Indentation of an elastic-plastic block. Load-displacement diagrams ob-
tained from: initial mesh (uniform 0); two uniform refinement steps (uni-
form 1 and 2); and variational h-adaption

As expected, the coarse discretizations overestimate the indentation load and stiffness.
Uniform refinement progressively relaxes the predicted response, but an overly stiff re-
sponse remains even at the finest level of refinement. In contrast, the adaptive solutions
predict a clear failure load, with the most compliant response corresponding to the un-
constrained solution. However, a certain lag is observed initially in the adaptive solutions
which results from the gradual way in which refinement is introduced. Control over this
lag can be exerted through the choice of energy tolerance p..

Remark 6.9.2.1 It should be noted that the curve corresponding to the h-adaptive com-
putations illustrated in Fig. 6.11 are based on different discretizations and hence, cannot
be interpreted as standard load-displacement diagrams. However, the two different energy-
based mesh adaptions can be roughly compared to one another. By choosing a.s = 0.75
in the case of the unconstrained algorithm and ayg = 1.0 for the coupling with RIVARA’s
LEPP, the predicted number of nodes within each load step is similar for both methods.

6.9.3 Indentation of a block: moving force

The performance of the energy-based h-refinement combined with the variational coars-
ening strategy according to Section 6.7 is demonstrated by means of a numerical analysis
of an indentation of a block. The dimensions of the cube are: 1.0 x 1.0 x 1.0 [m]. For
the material response, the hyperelastic model according to Subsection 6.9.2.1 is adopted.
Except on the top of the cube, the normal component of displacement field is set to zero
on the boundaries. As displayed in Fig. 6.12a) a vertical displacement of magnitude 0.1 m
is prescribed on the left corner of the front of the structure first. Then, the combined
refinement / coarsening formulation according to Section 6.7 is applied resulting in the
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Figure 6.12: Indentation of an elastic block. Final meshes after constrained variational
h-adaption coupled to variational coarsening

new triangulation presented in Fig. 6.12b). Subsequently, the load is moved to the right
corner of the structure and the mesh adaption is performed once again, see Fig. 6.12¢).
Refinement and coarsening is controlled by setting aier = 0.02 and aegarse = 0.01. How-
ever, different values of aye and aguse lead to almost identical results. The aspect ratio
of the elements is maintained by means of RIVARA's Longest-Edge Propagation Path
(LEPP) bisection algorithm.

[t is evident from the figures that the combined algorithm leads to a mesh-refinement of
regions showing large energy densities and to coarsening where the energy is relatively low.
As a consequence, and fully analogous to the VALE formulated presented in Chapter 4, the
adaptive finite element formulation can be applied to problems characterized by moving
singularities. Clearly, in particular for the numerical analysis of crack propagation, this is
of utmost importance. In Chapter 7.2, some first ideas concerning the coupling of cohesive
elements with variational-based mesh adaptions will be sketched.



Chapter 7

Conclusion and outlook

7.1 Conclusion

Variational constitutive updates In the first part of the present work, a state of the
art review on constitutive updates has been given. Special emphasis has been on a class of
updates characterized by a variational structure. More precisely, within this framework,
the deformation mapping as well as the history variables follow jointly from minimizing an
incremental potential. This minimization principle represents the essential ingredient for
all variational adaptive schemes discussed in this work. Since slightly different variational
constitutive updates can be found in the literature, attention has been turned to a coherent
representation.

Strong discontinuity approaches A novel class of finite element formulations al-
lowing for the numerical analysis of localized material failure at finite strains has been
proposed in Chapter 3. The model is characterized by a discontinuous approximation of
the displacement field, and it is based on the Enhanced Assumed Strain (EAS) concept.
More specifically, it falls into the range of the Strong Discontinuity Approach (SDA). Since
the approximation of the deformation is essential for the model, a detailed analysis of the
kinematics has been given. In contrast to other approaches dealing with displacement dis-
continuities such as the eXtended Finite Element Method (X-FEM) or classical interface
laws, the SDA shows a coupling of the strains across the surface defined by the displace-
ment jumps. A comparison between different SDAs has demonstrated that, except for
the notation, the kinematics of all models are equivalent in the case of standard constant
strain triangle elements. For the development of the interface laws connecting the dis-
placement discontinuity with the traction vector, a new method has been proposed. It is
based on the fact that the condition of traction equilibrium can be re-written such that
it is formally identical to the necessary condition of yielding known from classical plastic-
ity theories (continuous deformation mapping). This concept highlights the similarities
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between standard constitutive models and those based on cohesive traction-separation
laws. This similarity suggests an implementation of the SDA being analogous to nowa-
days classical computational plasticity. Consequently, a predictor-corrector algorithm has
been adopted. More precisely, a return-mapping-type method has been developed, i. e.,
in contrast to SDAs published previously which are based on the static condensation, the
novel implementation is formally identical to that of standard computational plasticity
theory. As a result, existing subroutines can be used with only minor modifications nec-
essary. Referring to the class of interface laws or the type of finite elements, no special
assumption has been made. Consequently, the suggested numerical framework can be
applied to a broad range of different traction-separation laws. Furthermore, it allows for
higher order displacement approximations.

Since the computation of the topology of the singular surface characterized by displace-
ment discontinuities is not unique, different methods for choosing the physically most
relevant topology have finally been compared to each other. It has been shown that for
a quite general class of constitutive models, the postulate of maximum dissipation, the
postulate of maximum inelastic deformations and an approach based on maximizing the
compatibility between the smooth and the discontinuous part of the deformation mapping
are equivalent.

Variational Arbitrary Lagrangian-Eulerian (VALE) formulations Since the re-
sults predicted by cohesive finite element formulations such as the SDA depend signifi-
cantly on the quality of the numerical approximation of the continuous deformation, a
family of adaptive strategies has been discussed in Chapter 4. Based on the variational
constitutive updates presented in Chapter 2, a Variational Arbitrary Lagrangian-Eulerian
(VALE) formulation has been advocated. In contrast to classical finite element models,
the proposed method seeks to minimize the energy function governing the underlying
physical problem with respect to both the finite element mesh over the deformed as well
as the undeformed configuration of the body. Unfortunately, the solution of the result-
ing optimization problems is not without difficulty. More specifically, it has been shown
that the problem is nonconvex and highly singular (i. e., the respective HEsSIAN). For
that reason, an algorithm based on a viscous-type relaxation combined with effective line
search strategies has been elaborated. This method eliminates the aforementioned dif-
ficulties without changing the solution of the unrelaxed problem. Within the numerical
optimization, constraints have been enforced that surface nodes remain in the surface and
move within their corresponding surface component, namely within their faces or edges;
and that vertices in the boundary representation of the domain remain fixed. This re-
striction can be relaxed by allowing nodes to migrate in and out of the boundary. For
that purpose, a fully variational algorithm having O(/N) complexity has been developed.
The energy release corresponding to node migration is estimated by means of a local opti-
mization problem depending on only six degrees of freedom. The resulting finite element



7.1 Conclusion 159

method can be applied to any physical model characterized by an extremum principle.
Details necessary for standard dissipative solids such as the transfer of the history vari-
ables have been discussed. Finally, it has been shown that the discretizations generated
by the energy-driven adaptive scheme outperform triangulations in which elements with
large aspect ratios are avoided a priori.

Variational-based remeshing strategies Within the VALE formulation according
to Chapter 4 the mesh connectivity has been kept constant. However, this may lead to
strong topological constraints that severely limit the meshes that can be attained by r-
adaptivity. Therefore, a novel variational-based remeshing strategy has been advocated
in Chapter 5. Based on local mesh transformations, the connectivity of an initial triangu-
lation is modified such that the solution associated with the new discretization is closer to
the analytical extremum. Hence, improvement of the solution is guaranteed. Numerical
analyses have demonstrated the performance of the energy-driven remeshing method and
the combined VALE-remeshing algorithm. The examples have shown that the proposed
approach leads to meshes that outperform those resulting from purely geometrical element
measures.

Variational h-adaptive finite element formulation The variational adaptive finite
element formulations presented in Chapters 4 — 5 improve significantly the numerical
solution. However, sometimes a further improvement is desirable. For that reason, a
variational h-adaption has been developed in Chapter 6. Analogous to the VALE formu-
lation and the energy-driven remeshing strategy, the proposed h-adaptive method can be
applied to any mechanical problem characterized by a minimization principle, provided
the deformation field is sufficiently smooth, i. e., continuous. Mesh refinement realized
by using edge-bisection algorithms is applied when the released energy or incremental
pseudo-energy exceeds a certain threshold value. In order to avoid global recomputes, the
energy release by mesh refinement is estimated by a lower bound obtained by relaxing
a local patch of elements. This bound can be computed locally, which reduces the com-
plexity of the refinement algorithm to O(N). By comparing the proposed error indicator
to classical error estimates it has been shown that both concepts are almost identical for
linearized elasticity theory. In this respect, the novel variational method can be under-
stood as a canonical extension of classical concepts. The resulting algorithm allows for
energy-driven mesh refinement as well as coarsening. For standard dissipative solids, a
consistent transfer operator necessary for mapping the history variables between different
meshes has been developed. It is noteworthy that the variational strategies presented in
Chapters 4 — 6 can be easily combined. As a prototype, a variational hr-adaptive method
has been implemented. The performance of the energy-driven h-refinement has been illus-
trated by several numerical examples. It is remarkable that anisotropic mesh refinement
arises spontaneously, without recourse to empirical rules, as a result of variational h-
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adaption. The resulting elements, while optimal in an energy sense, are highly elongated
or flattened, and supply varying degrees of spatial resolution in different directions. The
ability to resolve sharp gradients in one direction without excessive mesh refinement in the
remaining directions is of critical importance for dealing efficiently with features such as
slip surfaces and shear bands. Indeed, in these cases isotropic mesh refinement inevitably
leads to rapid growth of the problem size.

Although highly anisotropic meshes are, in many cases, very efficient from an energetical
point of view, sometimes it may be desirable to enforce elements having relatively small
aspect ratios. For instance, if iterative solvers are used, highly distorted meshes may slow
down the computation. Consequently, the variational h-adaption has been combined with
RIVARA’s longest-edge bisection algorithm guaranteeing an upper bound of the aspect
ratio. However, it should be emphasized once again that in contrast to the purely energy-
driven formulation, the combined method is not optimal from an energetical point of
view.

7.2 OQOutlook and future work

In the present work, different numerical models for the simulation of material failure at
finite strains have been discussed. Conceptually, these approaches can be grouped into
cohesive finite element formulations and variational mesh adaptions. The performance of
these methods has been demonstrated by several numerical examples. However, for more
complex mechanical problems such as cracking in large engineering structures, a combina-
tion of both classes of algorithms seems to be necessary. The coupling of variational mesh
adaption with cohesive finite element formulations represents one of the ongoing research
subjects. First ideas can be found in [NEGRI 2005B; MOSLER, ORTIZ & PANDOLFI
2006]. They will be briefly discussed in the remaining part of this section.

Following [FRANCFORT & MARIGO 1998; BOURDIN, FRANCFORT & MARIGO 2000;
DAL MAsO & ZANINI 2005; YANG, MoOTA & ORTIZ 2005], crack propagation in brittle
materials or the formation of slip bands can be recast into a minimization principle of the

type

inf In(ep, [u]) (7.1)
el
defined by the (pseudo) potential
e [ul) = [ (@) av + [ S(tu) a (72)
2 /X4

depending on the continuous deformation mapping ¢ and the displacement discontinuity
[u]. Here, ¥ represents the (pseudo) bulk energy and ¥ is associated with the energy
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corresponding to the cohesive surfaces. It is noteworthy that the limit of integration of
the second term can be re-written as

0 ={XeQ | [|[u] (X)I| #0}. (7.3)

Clearly, if the space of special functions with bounded variations (SBV) is chosen as
the domain of ¢, [u] = [¢], and the minimization problem (7.1) reads simply infe Ij.
Unfortunately, the solution of the optimization problem (7.1) is not without difficulty.

Very recently, [NEGR1 20058] and [ORT1Z & PANDOLFI 2005; MOSLER, ORTIZ & PAN-
DOLFI 2006] published first ideas for solving the minimization problem (7.1). Roughly
speaking, these authors combined the VALE method according to Chapter 4 with clas-
sical interface cohesive finite elements, cf. [ORTIZ & PANDOLFI 2005]. As mentioned
before, one essential problem associated with interface elements is that the topology of
0,81 is approximated by facets between neighboring bulk elements. As a consequence, the
space of admissible 9,82 is relatively small which results, in many cases, in locking effects.
More specifically, the numerically computed dissipation is often overestimated, cf. [GAN-
GULY, VAvVASIS & PAPouULIA 2005]. However, within the numerical methods advocated
in [NEGRI 2005B; MOSLER, ORTIZ & PANDOLFI 2006] the finite element mesh over
the reference configuration of the body follows from the underlying physical minimization
problem (7.1) as well. This leads to an improvement of the topology of the cohesive sur-
faces and hence, reduces locking effects. More precisely, [NEGRI 20058B] proved (under
certain assumptions) that the finite element discretization of Eq. (7.1) I'-converges to the
original problem (in the space of special functions with bounded variations). The first
numerical results obtained from the combined VALE cohesive finite element formulation
are very promising. However, further investigations are necessary.

Alternatively, the variational h-adaption as discussed in Chapter 6 can be coupled with
cohesive finite elements. The performance of such an algorithm is illustrated here. For the
sake of simplicity, cracking is modeled by using traction-free internal surfaces. Further-
more, those surfaces are defined explicitely by changing the essential boundary conditions.
However, it should be noted that although the more general case, i. e., traction-separation
laws with a continuous softening response, requires a transfer of the history variables, it
does not lead to further problems in principle. Based on the prototype model, the prob-
lem shown in Fig. 4.6.2 is re-analyzed numerically. First, the variational h-adaption pre-
sented in Chapter 6 is applied. Subsequently, crack propagation is taken into account by
modifying the DIRICHLET boundaries and the energy-driven mesh-refinement/coarsening
strategy is used once again. It can be seen that before cracking (Fig. 7.1a)), the discretiza-
tion in the vicinity of the crack tip is very fine, while the triangulation of the remaining
part of the structure is relatively coarse. Due to crack growth, the region showing high
energy densities moves. According to Fig. 7.1b), this leads to a re-meshing. More pre-
cisely, the variational h-refinement algorithm automatically adapts the mesh such that
only domains characterized by high energy densities are refined. As a consequence, the
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Figure 7.1: Numerical analysis of the notched specimen shown in Fig. 4.6 by using
the variational h-adaptive finite element formulation according to Chap-
ter 6 combined with R1IVARA’s LEPP algorithm. The solution is symmetric
about three orthogonal axes and only one eighth of the system is given,
cf. Fig. 6.3a). Crack propagation is approximated by changing the essen-
tial boundaries: a) deformed configuration before cracking; b) after crack
propagation.

combination of cohesive finite element approaches with variational h-adaption seems to
be very promising. Clearly, further work in this direction is required.

As the final prototype model, classical interface models are combined with the energy-
driven remeshing strategy advocated in Chapter 5. For cracking in brittle materials, the
finite element framework proposed in [OrTIZ & PANDOLFI 1999] is adopted. However,
the Strong Discontinuity Approach (SDA) presented in Chapter 3 could be applied as
well. It is an educated guess that the variational remeshing method leads to a new trian-
gulation whose facets are aligned with the crack surface corresponding to the analytical
solution. First results obtained from the coupled approach are given in Fig. 7.2, The fig-
ures correspond to different stages of cracking in a plain concrete slab subjected to mode-I
loading. It is evident from this example that the variational method leads to remeshing
and hence, to a different set of admissible crack paths compared to the initial mesh. For
the analyzed structure, this does not have a strong effect on the structural behavior of
the system, since the facets of the initial mesh are already aligned with the expected path
of the primary crack. However, the topology of the secondary cracks which are hard to
see in Fig. 7.2 are optimized. More precisely, the local mesh transformations lower the
pseudo energy, and hence, the energy-driven remeshing strategy improves the quality of
the solution.
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7.2 Outlook and future work

Numerical analysis of a notched slab subjected to mode-I type loading by
using the variational remeshing strategy presented in Chapter 5 combined
with cohesive interface elements: three deformed configurations: a) before

crack propagation; b) intermediate stage; ¢) fully open crack

Although the coupled models briefly presented in this section have to be understood as
prototypes, the efficiency of the resulting approaches can already be recognized.

)
Figure 7.2

a
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Appendix A

A tetrahedral shape measure

In this appendix, a tetrahedral shape measure fulfilling the conditions enumerated in
Remark 4.6.2.1 is briefly presented. It was advocated in [KNUPP 2000A; KNUPP 2000B;
FREITAG & KNUPP 2002]. The shape measure is based on the condition number of
the mapping connecting an element e to its ideal counterpart (all edges have the same
length). Clearly, this mapping measures the deviation of the physical to the ideal simplex.
According to Fig. A.1, this mapping is given by F € L(R},R}) with F : £ —» J W1 ¢,

In the present work, the reference element
Qum = span{0, e, ez, €3} (A.1)
is chosen. It can be seen directly, that the simplex

Qigear = span{0, &1, (1/2, V3/2,0), (1/2, V3/6,v2/V3)} (A2)

. _ element in
ideal W JwW { physical

element J coordinates

reference
element

Figure A.1: Different configurations of a simplex element
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is ideal, i. e., all edges of this element have the same length. Consequently, the mapping
connecting y to Qigea is characterized by the matrix

1 12 1/2
W:=|0 v3/2 V3/6 (A.3)
0 0 V2/V3

and J is the classical JACOBIAN matrix. It can be shown in a straightforward manner
that
a(J) = n}in K(AWY /(I W) (A.4)

is a shape measure for simplex elements with k¥ being a condition number, i. e., g fulfills
the criteria according to Remark 4.6.2.1 and the shape of two simplex elements can be
compared to one another by simply evaluating the function g, i. e.,

g(JM) > g(J®) <= the shape of element 1 is better. (A.5)
Evidently, this maximum principle is equivalent to
K(JD W) < x(J®P W) <= the shape of element 1 is better. (A.6)

It is noteworthy that this criterion is equivalent to minimizing the interpolation error.
More precisely, the local interpolation error for affine meshes is given by

o = Tivlmg < ¢ (I )™ DT olisr Vo € WHIR(Q).  (AT)

Here, I1v, | ® |mp, €, || ® || and W*¥(Q2) denote the LAGRANGIAN interpolation of v by
polynomials of order &, a semi-norm defining the classical SOBOLEV norms, a constant
greater than zero, the induced EUCLIDIAN norm and the SOBOLEV spaces over the phys-
ical simplex 2, respectively, cf. [ERN & GUERMOND 2004]. For sufficiently smooth
functions v, the estimate (A.7) is optimal.

If, without loss of generality, the ideal element is chosen as the reference element and the
condition number based on the EUCLIDIAN norm is used, criterion (A.6) reads

TN NTO < ITD) ITD7'|| <=  the shape of element 1 is better.  (A.8)

However, since ||J|| < & diam(¢), criterion (A.8) is equivalent to minimizing the
local interpolation error (A.7) (if element 1 and 2 have almost the same diameter). As
a consequence, the shape measure as defined by Eq. (A.4) is mathematically sound. It
should be noted that several other shape measures exist which do not show this property,
cf. [SHEWCHUK 2002].

Based on criterion (A.6) a given initial triangulation can be improved (with respect to
the interpolation error) by applying the optimization strategy

i}r‘lflgmm with 18.,‘,“,=:Ve_l‘:(f(J.-))p and f(J)=«x(J W), (A.9)

i=1
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In what follows, the exponent p is set to p = 2. Although the induced EUCLIDIAN norm
appears canonically in the error estimate (A.7), it is not well suited for numerical com-
putations. Hence, the condition number based on the FROBENIUS norm |A| := VA : A

is used, i. e., k2(A) = (A: A) (A7 : A7),

If principle (A.9) (with p = 2) in conjunction with a NEWTON iteration is applied to
improve an initial discretization, the first and second derivatives of Igeon are required.
Hence, the derivatives of k?(J W 1) with respect to the nodal coordinates X @) (1<i<

4) have to be computed. They are summarized below.
With A := JW™ and f(J):=(A:A)(4A7': A7),

of of oA aJ
8X  0A dJ 86X

and hence,

O _ OF o O
8X. 0A; * BX,
Using
sz) _Xl(l) Xl(a) _ X{l) Xf“) _Xsl)
J=| xP -x{" xP-x" xP-xP |,
X§2) _ Xél) Xéa) _ Xél) X?E.a) _ X:gl)

Eq. (A.11) reads
of _ O -1 . p0,

ax® "~ A’
with
nl) = (-1;,-1;-1)

The second derivatives are given by

dX@oxW 9A?

o), = (], T n, e,
ij iojp

Finally, applying

SllAP] _
A = 2A
d olla~" ] 04" T A-l, A-T
T =2A": —aA— =-2A AT A ’
the first derivative of f(A) with respect to A
9|x(A)%]

— ~112 4 _ 2 A-T _  a-1_ o-T
g =24 A-2]|AFAT.A7" -4

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)
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and the second derivative of f(A)

2
—62[;)‘;‘:) l_ o AP 181 - 440 [A™T- A AT

-4[AT-A"-.4T|0A

+ 2JAPATR[ATT. AT . A7Y (A.19)
+2lAP [ATT-A7']®[AT- AT

+2/AF [AT-A1- AT @A™

are calculated. Here, [A®B];jx := Ay Bj and [A®B];x := Aa Bjs.



Appendix B

Derivatives of a neo-HOOKEan energy
functional

Closed form expressions for the stress tensors and their derivatives defined by the free
energy functional

1
2

are summarized in this appendix. They have been given earlier in [THOUTIREDDY 2003;
THOUTIREDDY & ORTIZ 2004; KUHL, ASKES & STEINMANN 2004].

,\log2J+%p,(trC—3—2logJ), J=detF, trC=C:1 (B.1)

Using Eq. (B.1), the first PIOLA-KIRCHOFF stress tensor reads

oy . _r
P—aF—(/\logJ ) F~" +p F (B.2)

and the MANDEL stresses result in
M=U1-FT.P=(W¥—-AlogJ+u)1-pC. (B.3)

Computing the second derivatives of ¥, closed from expressions of the tangent tensors

oP

a—F=’\F_T®F-T+ p1®1+ (- A logJ) FTQF! (B.4)
2
C=F—T‘?’%-F-T= J(P-22logJ+2p+)) 1®1
—J (¥ =X logJ +p) 181 (B.5)
+Jp (CR1+1C-C®1-1QC +CR1)
and oM
a_F=[’\ (logJ—1)—p] 1@ F T +p [1®F - 19F” - FT®1] (B.6)

are computed. Here, [A®B);ju := Ay Bji and [AQB);iju := Ay Bijx.
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Appendix C

Data structure for coarsening of a
finite element mesh

In this appendix, a simple data structure providing all information necessary for the
local mesh refinement/coarsening strategy according to Section 6.7 is given. Its main
ingredients are two vectors of the type Element and Edge. Parts of the respective classes
are shown in Fig. C.1.

class Edge

{

private:
int Nr;
std: :vector<int > Element_List; // neighboring elements
std: :vector< pair< int, int> > Parents; [/ parent edges (the vertices)
int Node_List[3]; // nodes defining the edge
int Cut; // = 1 for refinement

// =-1 for coarsening

class Element

{

private:
int Nr;
int Node_List[10]; // nodes defining the element
int Edge_List[6]; // edges

std: :vector< pair< int, int> > Child_Edge; // list of child edges (vertices)

Figure C.1: Parts of the c++ classes storing the information of the edges and the ele-
ment objects
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Albert Meyers: April 1977
Ein Beitrag zum optimalen Entwurf von schnellanfenden Zentrifugenschalen

Berend Fischer: April 1977
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Wojciech Pietraszkiewicz: Mai 1977
Introduction to the Non-Linear Theory of Shells

Wilfried Ullenboom: Juni 1977
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Pawel Rafalski: Mirz 1978
Minimum Principles in Plasticity

Peter Hilgers: Juli 1978
Der Einsatz eines Mikrorechners zur hybriden Optimierung und Schwingungsanalyse

Hans-Albert Lauert: August 1979
Optimierung von Stiben unter dynamischer periodischer Beanspruchung bei Beachtung von Span-
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Martin Fritz: Juli 1979
Berechnund der Auflagerkriifte und der Muskelkréifte des Menschen bei ebenen Bewegungen auf-
grund von kinematographischen Aufnahmen

H. Stumpf/F. J. Biehl: Dezember 1979
Approximations and Error Estimates in Eigenvalue Problems of Elastic Systems with Application
to Eigenvibrations of Orthotropic Plates
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Heinrich Oeynhausen: November 1981
Verzweigungslasten elastoplastisch deformierter, dickwandiger Kreiszylinder unter Innendruck und
Axialkraft

F.-J. Biehl: Dezember 1981
Zweiseitige Eingrenzung von Feldgré8en beim einseitigen Kontaktproblem

Maria K. Duszek: Juni 1982
Foundations of the Non-Linear Plastic Shell Theory

Reinhard Piltner: Juli 1982
Spezielle finite Elemente mit Léchern, Ecken und Rissen unter Verwendung von analytischen
Teillosungen

Petrisor Mazilu: Dezember 1982
Variationsprinzipe der Thermoplastizitiit I. Wirmeausbreitung und Plastizitiit

Helmut Stumpf: Dezember 1982
Unified Operator Description, Nonlinear Buckling and Post-Buckling Analysis of Thin Elastic
Shells

Bernd Kaempf: Mérz 1983
Ein Exremal-Variationsprinzip fiir die instationiire Wiirmeleitung mit einer Anwendung auf ther-
moelastische Probleme unter Verwendung der finiten Elemente



Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

36

37

38

. 39

. 40

41

42

43

. 45

. 46

. 47

. 48

49

50

. 81

. 52

. 53

Alfred Kraft: Juli 1983
Zum methodischen Entwurf mechanischer Systeme im Hinblick auf optimales Schwingungsverhal-
ten

Petrisor Mazilu: August 1983
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Theoretische und experimentelle Untersuchungen zu einem thero-plastischen Stoffgesetz

Jan Kubik: April 1985
Thermodiffusion Flows in a Solid with a Dominant Constituent

Horst J. Klepp: Juni 1985
Uber die Gleichgewichtslagen und Gleichgewichtsbereiche nichtlinearer autonomer Systeme

J. Makowski/L.-P. Nolte/H. Stumpf: Juli 1985
Finite In-Plane Deformations of Flexible Rods - Insight into Nonlinar Shell Problems

Franz Karl Labisch: August 1985
Grundlagen einer Analyse mehrdeutiger Lésungen nichtlinearer Randwertprobleme der Elastostatik
mit Hilfe von Variationsverfahren

J. Chroscielewski/L.-P. Nolte: Oktober 1985
Strategien zur Losung nichtlinearer Probleme der Strukturmechanik und ihre modulare Aufberei-
tung im Konzept MESY

Karl-Heinz Biirger: Dezember 1985
Gewichtsoptimierung rotationssymmetrischer Platten unter instationiirer Erregung

Ulrich Schmid: Februar 1987
Zur Berechnung des plastischen Setzens von Schraubenfedern

Jorg Frischbier: . Miirz 1987
Theorie der StoBbelastung ortotroper Platten und ihr experimentelle Uberpriifung am Beispiel
einer unidirektional verstiirkten CFK-Verbundplatte

W. Tampczynski: Juli 1987
Strain history effect in cyclic plasticity

Dieter Weichert: Dezember 1987
Zum Problem geometrischer Nichtlinearitiiten in der Plastizititstheorie
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Heinz Antes/Thomas Meise/Thomas Wiebe: Januar 1988
Wellenausbreitung in akustischen Medien Randelement-Prozeduren im 2-D Frequenzraum und im
3-D Zeitbereich

Wojciech Pietraszkiewicz: Miirz 1988
Geometrically non-linear theories of thin elastic shells

Jerzy Makowski/Helmut Stumpf: April 1988
Finite strain theory of rods

Andreas Pape: Mai 1988
Zur Beschreibung des transienten und stationiiren Verfestigungsverhaltens von Stahl mit Hilfe eines
nichtlinearen Grenzflichenmodells

Johannes Grof-Weege: Juni 1988
Zum Einspielverhalten von Flichentragwerken

Peihua LIU: Juli 1988
Optimierung von Kreisplatten unter dynamischer nicht rotationssymmetrischer Last

Reinhard Schmidt: August 1988
Die Anwendung von Zustandsbeobachtern zur Schwingungsiiberwachung und Schadensfriiherken-
nung auf mechanische Konstruktionen

Martin Pitzer: Juli 1988
Vergleich einiger FE-Formulierungen auf der Basis eines inelastischen Stoffgesetzes

Jerzy Makowski/Helmut Stumpf: Dezember 1988
Geometric structure of fully nonlinear and linearized Cosserat type shell theory

O. T. Bruhns: Januar 1989
Grofle plastische Forminderungen - Bad Honnef 1988

Khanh Chau Le/Helmut Stumpf/Dieter Weichert: Juli 1989
Variational principles of fracture mechanics

Guido Obermilller: Juni 1989
Ein Beitrag zur Strukturoptimierung unter stochastischen Lasten

Herbert Diehl: Juni 1989
Ein Materialmodell zur Berechnung von Hochgeschwindigkeitsdeformationen metallischer Werk-
stofle unter besonderer Beriicksichtigung der Schiidigung durch Scherbiinder

Michael Geis: November 1989
Zur Berechnund ebener, elastodynamischer Rifiprobleme mit der Randelementmethode

Giinter Renker: November 1989
Zur Identifikation nichtlinearer strukturmechanischer Systeme

Berthold Schieck: November 1989
Grofe elastische Dehnungen in Schalen aus hyperelastischen inkompressiblen Materialien

Frank Szepan: Dezember 1989
Ein elastisch-viskoplastisches Stofigesetz zur Beschreibung grofer Forménderungen unter Beriick-
sichtigung der thermomechanischen Kopplung

Christian Scholz: Dezember 1989
Ein Beitrag zur Gestaltsoptimierung druckbelasteter Rotationsschalen

J. Badur/H. Stumpf: Dezember 1989
On the influence of E. and F. Cosserat on modern continuum mechanics and field theory
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Werner Fornefeld: Januar 1990
Zur Parameteridentifikation und Berechnung von Hochgeschwindigkeitsdeformationen metallischer
Werkstoffe anhand eines Kontinuums-Damage-Modells

J. Saczuk/H. Stumpf: April 1990
On statical shakedown theorems for non-linear problems

Andreas Feldmiiller: April 1991
Ein thermoplastisches Stoffgesetz isotrop geschiidigter Kontinua

Ulfert Rott: April 1991
Ein neues Konzept zur Berechnung viskoplastischer Strukturen

Thomas Heinrich Pingel: Juli 1991
Beitrag zur Herleitung und numerischen Realisierung eines mathematischen Modells der menschli-
chen Wirbels#ule

O. T. Bruhns: Dezember 1991
Grofle plastische Formiinderungen - Bad Honnef 1991

J. Makowski/J. Chroscielewski/H. Stumpf:
Computational Analysis of Shells Undergoing Large Elastic Deformation Part I:Theoretical Foun-
dations

J. Chroscielewski/J. Makowski/H. Stumpf:
Computational Analysis of Shells Undergoing Large Elastic Deformation Part II: Finite Element
Implementation

R. H. Frania/H. Waller: Mai 1992
Entwicklung und Anwendung spezieller finiter Elemente fiir Kerbspannungsprobleme im Maschie-
nebau

B. Bischoff-Beiermann: Juli 1992
Zur selbstkonsistenten Berechnung von Eigenspannungen in polykristallinem Eis unter Beriicksich-
tigung der Monokristallanisotropie

J. Pohé: Februar 1993
Ein Beitrag zur Stoffgesetzentwicklung fiir polykristallines Eis

U. Kikillus: Mai 1993
Ein Beitrag zum zyklischen Kiechverhalten von Ck 15

T. Guo: Juni 1993
Untersuchung des singuliren Rifispitzenfeldes bei stationiirem Riflwachstum in verfestigendem Ma-
terial

Achim Menne: Januar 1994
Identifikation der dynamischen Eigenschaften von hydrodynamischen Wandlern

Uwe Folchert: Januar 1994
Identifikation der dynamischen Eigenschaften Hydrodynamischer Kopplungen

Jorg Korber: April 1994
Ein verallgemeinertes Finite-Element-Verfahren mit asymptotischer Stabilisierung angewendet auf
viskoplastische Materialmodelle

Peer Schiegle: April 1994
Ein Beitag zur Berechnung des Deformationsverhaltens anisotrop geschiadigter Kontinua unter
Beriicksichtigung der thermoplastischen Kopplung

Egbert Schopphoff: Juli 1994
Dreidimensionale mechanische Analyse der menschlichen Wirbelsiule
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Christoph Beerens: Juli 1994
Zur Modellierung nichtlinearer Diampfungsphéinomene in der Strukturmechanik

K. C. Le/H. Stumpf: November 1994
Finte elastoplasticity with microstructure

O. T. Bruhns: Dezember 1994
GrofBle plastische Formiinderungen - Bad Honnef 1994

Armin Lenzen: Dezember 1994
Untersuchung von dynamischen Systemen mit der Singuliirwertzerlegung - Erfassung von Struk-
turverinderungen

J. Makowski/H. Stumpf: Dezember 1994
Mechanics of Irregular Shell Structures

J. Chroscielewski/J. Makowski/H. Stumpf: Dezember 1994
Finte Elements for Irregular Nonlinear Shells

W. Krings/A. Lenzen/u. a.: Februar 1995
Festschrift zum 60. Geburtstag von Heinz Waller

Ralf Podleschny: April 1995
Untersuchung zum Instabilitéitsverhalten scherbeanspruchter Risse

Bernd Westerhoft: Juli 1995
Eine Untersuchung zum geschwindigkeitsabhiingigen Verhalten von Stahl

Marc Mittelbach: Dezember 1995
Simulation des Deformations- und Schiidigungsverhaltens beim Sto8versuch mit eirem Kontinuums-
Damage-Modell

Ulrich Hoppe: Mai 1996
Uber grundlegende Konzepte der nichtlinearen Kontinuumsmechanik und Schalentheorie

Marcus Otto: Juni 1996
Erweiterung des Kaustikenverfahrens zur Analyse rdumlicher Spannungskonzentrationen

Horst Lanzerath: Juli 1996
Zur Modalanalyse unter Verwendung der Randelementemethode

Andreas Wichtmann: August 1996
Entwicklung eines thermodynamisch konsistenten Stoffgesetzes zur Beschreibung der Reckalterung

Bjarne Fossa: Oktober 1986
Ein Beitrag zur FlieSflichenmessung bei vorgedehnten Stoffen

Khanh Chau Le: Dezember 1996
Kontinuumsmechanisches Modellieren von Medien mit veréinderlicher Mikrostruktur

Holger Behrens: 7 Januar 1997
Nichtlineare Modellierung und Identifikation hydrodynamischer Kupplungen mit allge- meinen dis-
kreten Modellansiitzen

Johannes Moosheimer: Juli 1997
Gesteuerte Schwingungsdimpfung mit Elektrorheologischen Fluiden

Dirk Klaus Anding: Oktober 1997
Zur simultanen Bestimmung materialabhiingiger Koeffizienten inelastischer Stoffgesetze

Stephan Weng: Dezember 1997
Ein Evolutionsmodell zur mechanischen Analyse biologischer Strukturen
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Michael StraBberger: Dezember 1997
Aktive Schallreduktion durch digitale Zustandsregelung der Strukturschwingungen mit Hilfe piezo-
keramischer Aktoren

Hans-Jorg Becker: Dezember 1997
Simultation des Deformationsverhaltens polykristallinen Eises auf der Basis eines monokristallinen
Stofigesetzes

Thomas Nerzak: Dezember 1997
Modellierung und Simulation der Ausbreitung adiabatischer Scherbéinder in metallischen Werkstof-
fen bei Hochgeschwindigkeitsdeformationen

O. T. Bruhns: Miirz 1998
Grofle plastische Formiinderungen

Jan Steinhausen: August 1998
Die Beschreibung der Dynamik von Antriebsstringen durch Black-Box-Modelle hydrodynamischer
Kupplungen

Thomas Pandorf: August 1998
Experimentelle und numerische Untersuchungen zur Kerbspitzenbeanspruchung bei schlagbelaste-
ten Biegeproben

Claus Oberste-Brandenburg: Juni 1999
Ein Materialmodell zur Beschreibung der Austenit-Martensit Phasentransformation unter Beriick-
sichtigung der transformationsinduzierten Plastizitiit

Michael Mirtens: Dezember 1999
Regelung mechanischer Strukturen mit Hilfe piezokeramischer Stapelaktoren

Dirk Kamarys: Dezember 1999
Detektion von Systemveriinderungen durch neue Identifikationsverfahren in der experimentellen
Modalanalyse

Wolfgang Hiese; Januar 2000
Giiltigkeitskriterien zur Bestimmung von Scherbruchzéhigkeiten

Peter Jaschke: Februar 2000
Mathematische Modellierung des Betriebsverhaltens hydrodynamischer Kupplungen mit hybriden
Modellansiitzen

Stefan Miiller: Februar 2000
Zum Einsatz von semi-aktiven Aktoren zur optimalen Schwingungsreduktion in Tragwerken

Dirk Eichel: Juni 2000
Zur Kondensation strukturdynamischer Aufgaben mit Hilfe von Polynommatrizen

Andreas Biirgel: August 2000
Bruchmechanische Kennwerte beim Wechsel im Versagensverhalten dynamisch scherbeanspruchter
Risse

Daniela Liirding: Mirz 2001
Modellierung groler Deformationen in orthotropen, hyperelastischen Schalenstrukturen

Thorsten Quent: Mai 2001
Ein mikromechanisch begriindetes Modell zur Beschreibung des duktilen Verhaltens metallischer
Werkstofle bei endlichen Deformationen unter Beriicksichtigung von Porenschiidigung

Ndzi C. Bongmba: Mai 2001
Ein finites anisotropes Materialmodell auf der Basis der Hencky-Dehnung und der logarithmischen
Rate zur Beschreibung duktiler Schiidigung
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Henning Schiitte: August 2001
Ein finites Modell fiir spride Schidigung basierend auf der Ausbreitung von Mikrorissen

Henner Vogelsang: Dezember 2001
Parameteridentifikation fiir ein selbstkonsistentes Stoffmodell unter Beriicksichtigung von Phasen-
transformationen

Jsrn Mosler: Dezember 2002
Finite Elemente mit sprungstetigen Abbildungen des Verschiebungsfeldes fiir numerische Analysen
lokalisierter Versagenszustinde

Karin Preusch: Mai 2003
Hierarchische Schalenmodelle fiir nichtlineare Kontinua mit der p-Version der Finite-Element Me-
thode

Christoph Miiller: August 2003
Thermodynamic modeling of polycrystalline shape memory alloys at finite strains

Martin Heiderich: Juni 2004
Ein Beitrag zur zerstérungsfreien Schiadigungsanalyse

Raoul Costamagna: Juli 2004
Globale Materialbeziehungen fiir das gekliiftete Gebirge

Markus Bol: Januar 2005
Numerische Simulation von Polymernetzwerken mit Hilfe der Finite-Elemente-Methode

Gregor Kotucha: August 2005
Regularisierung von Problemen der Topologieoptimierung unter Einbeziehung von Dichtegradien-
ten

Michael Steiner: Februar 2006
Deformations- und Versagensverhalten innendruckbeanspruchter Stahlrohre durch Stofibelastung

Dirk Bergmannshoff: Dezember 2006
Das Instabilitiitsverhalten zug-/scherbeanspruchter Risse bei Variation des Belastungspfades

Olaf Schilling: - Januar 2007
Uber eine implizite Partikelmethode zur Simulation von Umformprozessen

Jérn Mosler: Mai 2007
On the numerical modeling of localized material failure at finite strains by means of variational
mesh adaption and cohesive elements
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