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ON THE INFLUENCE OF E. AND F. COSSERAT
ON MODERN CONTINUUM MECHANICS AND FIELD THEORY

SUMMARY

For the formulation and solution of many engineering problems considered
nowaday there is a need to introduce additionally rotational degrees of
freedom. Continuum models with internal structures of this type are connected
with the names of E. & F. Cosserat, but it is a cumbersome task to read their
original papers and understand all results given therein. The aim of this
paper is a reexamination of the original work of E. & F. Cosserat and to show
that connections and analogies of their results with modern continuum
mechanics and field theory are deeper than commonly recognized.
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§ 1. Introduction

During the past few years there had been an increasing interest in continuum
models with additional degrees of freedom. Examples are the theory of thin
shells and the theory of plasticity. The widely used Kirchhoff-Love type shell
theories are based on a 3-parameter description with the middle surface
displacement vector as primary unknown. This is an adequate description for
many shell problems under the assumption of small strains. If we want to drop
this restriction we can construct higher order ‘shell models by introducing
additional rotational degrees of freedom. To consider the behavior of material
with block structure in the framework of a continuum theory of plasticity, a
constitutive model can be constructed taking into account the influence of

relative rotations between individual blocks.

These examples show that for many problems of continuum mechanics there is a
need for models with additional rotational degrees of freedom, which leads
directly to the concept of E. and F. Cosserat, who defined a generalized
continuum with three translational degrees of freedom and three rotational
degrees of freedom: It is assumed that to each material point of the continuum
is attached a local rigid coordinate cross. During the deformation the rigid
crosses are displaced and rotated with respect to any fixed coordinate system.
Howgver, while the translational movement is widely understood the analysis of
rotation is difficult and still poorly known.

Unfortunately the basic results in the papers of E. and F. Cosserat are
presented in a description and by using notations no more familiar nowadays.
Therefore these results are difficult to understand even for experts of

mechanics.

The aim of this paper is a reexamination of the original work of E. and F.
Cosserat from the point of view of modern continuum theory. The paper contains
a brief exposition of the basic Cosserat concept in the language and spirit of
continuum mechanics or, more generally, of modern field theory. It is shown
that the Cosserat model lies at the very foundation of so-called generalized

models of continuum mechanics and physics.



§ 2. Prehistory of rotational kinematics

Among the first things we notice about the physical world are two kinds of
motion: the first is associated with a translational change of place with
respect to a stationary reference frame, and the second is assocliated with
rotation. Numerous mathematical models derived for the description of physical
phenomena often used some  obvious and some not so obvious consequences of
translational and rotational symmetry. These two kinds of freedom of motion,
observed in physics of atoms, molecules, fluids and solids are fundamental to
modern visualizing and computing. They are sometimes very complex problems of
theoretical and applied physics. However, whereas the translatiocnal movement
is widely understood, the analysis of rotation is difficult and still poorly
known and often reserved for experts in non-Abelian group theory or mechanics
(see ARGYRIS [1982]).

The modern. study of rotation in 3-dimensional space had been opened by
HAMILTON [1848] in his fundamental work devoted to the quaternion theory. In
this theory the subject of a momental quaternion as a set of fourth order was

introduced
A= A, + A1i + AZJ + A3k = (AO,A)

together with the fundamental multiplication rule for A = (AO,A) and B =
(BO,B)

AB = (A ,A)(B ,B) = (AB - AB, AxB + AB+BA) . (1)

The quaternion 1 = (1,0) now is the identity quaternion, 1 A=A 1 = A, in the
algebra of quaternions where the quaternions i = (0,1,0,0), j = (0,0,1,0) and
k = (0,0,0,1) span the base in a vector space. The multiplication rule applied

to the base 1,1, j,k may conveniently be written as

ij=-Ji=k, J)k=-kj=1i, ki=-ik =
(2)

The quaternion A = (A,,-A) is called conjugate to A, so that WAl = V(AA) = (Az

+ A%)Y2 5 the quaternion norm.



From the point of view of 3-dimensional rotations only quaternions with the
norm equal to 1 are important. The set of such quaternions are elements of the
3-parameter group Sp(1) with (1) as group multiplication. Physically, it means
that we will replace the vector field theory subject to the constraint
condition A“A"" =1, u =0,1,2,3 by a three rotational parameter field theory
which ldentically satisfies the constraint ApA"' = 1. With respect to the
isomorphism between Sp(1) and SU(2), the universal covering group of SO(3), we
can obtain a usefiul description of the quaternion A € Sp(1) by introducing the
2-dimensional representation of the algebra su(2) (Pauli matrices @, o

1=1,2, 3)

a b A +A_i A _i+A
= - [ o3 1772) _ , o0 1 2 3
R(A) [-b 3 ] [ A 1A Ao'Aai] Ao +(A 0 +A 0"+A 071

where (3)

and a,b are complex numbers representing the 2-dimensional rotation matrix R €
SU(2). Since SU(2) is locally isomorphic to SO(3) it is easy to see that f!(AJ
may also be represented by three Euler angles «,B8,7 (fig. 1) (EULER [1862])
or by a rotation vector A = Ae whose parameters are traditionally used to
describe the special orthogonal group SO(3). The final result of these

transformations is the relation

~i(a+y)r2

R(a,B,7) = [ cos Br2 - 22540 B2 ]
] ? .
ez(a—-a')/a sin B/2 ei(a+7)’2cos B/2
or
0 . 1 2 3
R(A) = cos Avz2 0 - i sin A2 (7\10‘ + Azo' + 130 ) .

At present we are aware of the fact that Hamilton’s quaternions so much
related to Pauli’s spinors play a significant role in the history of rotation
theory. Hamilton also hoped that quaternions would have a significance in
3-dimensional space analogous to that of complex numbers in the plane.
Hamilton gave the following description of his discovery of quaternions in a
letter to his son Archibald:

In October, 1843, having recently returned from a meeting of the British

Association in York, the desire to discover the laws of the multiplication of
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triplets regained with me a certain strength and earnestness, which had for
years been dormant, but was then on the point of being gratified, and was
occasionally talked of with you. Every morning in the early part of the
above-cited month, on my coming down to breakfast, your brother William Edwin
and yourself used to ask me, "Well, Papa, can you multiply tripletes ?"
Whereto I was always obliged to reply, with a sad shake of the head, "No, I
can only add and subtract them”. But on the 16th day of the same month - which
happened to be a Monday and a Council day of the Royal Irish Academy -~ I was
walking in to attend and preside, and your mother was walkihg with me, along
the Royal Canal, to which she had perhaps been driven; and although she talked
with me now and then, yet an under-current of thought was going on in my mind,
which gave at last a result, whereof it is not too much to say that I felt at
once the importance. An electric circuit seemed to close; and a spark flashed
forth, the herald (as I foresaw immediately) of many long years to come.of
definitely directed thought and work, by myself if spared, and at all events
on the parts of others, if I should ever be allowed to live long enough
distinctly to communicate the discovery. I pulled out on the spot a
pocket-book, which still exists, and made an entry there and then. Nor could I
resist the impulse - unphilosophical as it may have been - to cut with a knife
on a stone of Brougham Bridge, as we passed it, the fundamental formula with
the symbols, i, j,k ;

which contains the solution of the Problem, but of course, as an inscription,
has long since mouldered away [Instead a plaque on the bridge now commemorates

this event].

G. DARBOUX [1887] first extended the Hamilton’s approach to the case of the
construction of a spinor by a 3-dimensional vector satisfying constraint
condition. He has rewritten the equation of motion of a rigid body attached at
one fixed point

«=fr-9q , B=wyp-ar , ¥ =oq-fp
(here («,B,¥) denotes - in Darboux notation - the position vector of a point

on a unit sphere fixed in the body with a2
angular velocity of rotation of the body) in terms of a spinor wA

+ Bz*' 72=1 and (p,q,r) is the
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wA = z(p gt Ao+ T 0AB) wB R A,B=1,2 . (4)
where o' is defined by (3). The rigid-body kinematics governed by the position
vector («,B,¥) 1is now described by two component of the spinor wA and two
spinor equations (4). It is certainly remarkable that Darboux formulated this

problem many years before the discovery of Pauli’s spinor and quantum spin.

At the same time, long before Cosserat, correctness and meaning of the
controversial paper of MacCULLAGH [1839] had been discussed. Let us recall
that the paper was devoted to the construction of a model of elastic medium

which can simultaneously describe observed reflection and refraction.

The energy of deformation in MacCullagh continuum depends on the rotational
components of deformation. Numerous works, especially by Fresnel, Neumann,
Thomson, Boussinesq (see WHITTAKER [1910]) who extensively criticized the
rotational continuum gave a substantial contribution to the development of the
mathematical theory of elasticity. As a result, the fundamental equations of
classical 3-dimensional Cauchy continuum had been developed and examined in
the books by MOSSOTTI [1851], CLEBSCH [1862], KIRCHHOFF [1874], THOMSON & TAIT
[1879], DUHEM [1891] and HERTZ [1894]. First of all, constitutive relations
for isotropic and anisotropic continua had been discussed. Geometrically as
well as physically nonlinear formulations of the state of stress and strain in
finite deformed Cauchy medium were successfully applied by HELMHOLTZ [1897],
APPELL [1903] and LORENTZ [1903], who worked also on formulations in Eulerian
and Lagrangian description, on fundamental conservation laws in rotational
fluid flow, etec.

However in the theory of rods and plates, respectively, attention had been
directed to the explanation of flexural and bending properties of very thin
shell-like bodies. But the problem of some kind of rotational energy of
deformation returned into interest and conceptions, first discussed by CLEBSCH
(18601, [1862], KIRCHHOFF [1874] and DUHEM [1891], [1893]. A. Clebsch,
adopting from Kirchhoff the concept of "stress-resultants" and "stress-couple"
and using this hypothesis, formulated the energetically conjugate couple for
“rotational energy". The rotational measure of deformation, similar as in
Duhem’s work, has been rewritten as a function of motion of so-called "hidden

rigid triad”. For this reason, we can say that E. and F. Cosserat generalized



7

and developed Kirchhoff’s, Clebsch’s and Duhem’s works.

§ 3. The main results of E. and F. Cosserat

This chapter 1is devoted to the interpretation of the results of the
outstanding work of E. and F. COSSERAT [1909] in the light of modern continuum
theory. It turns out that connections and analogies of the Cosserat model with

the classical field theory are deeper then has commonly been recognized.

Let us discuss now several aspects of Cosserat’s monograph. In particular, the
development of two most important aspects of Cosserat’s approach will be
discussed independently in the following two chapters entiteled "the
unification sector" and "the conservation sector”. Now we present briefly the

fundamental results of Cosserat.

3.1 n-dimensional continua

In axiomatic continuum mechanics the deformation is defined as a mapping « of
a Borel set Q describing a n-dimensional submanifold into the Euclidean space
RP (BETOUNES [1987]1). The notion of deformation is appropriate for
submanifolds Q which idealize strings, membranes or solids. More physically
speaking, we consider the n-dimensional ©body manifold immersed in
p-dimensional space. Interesting cases exist for n = p only. The method of
immersion is frequently used also in field theory, particularly in the
generalized Kaluza-Klein theory (see also LAGOUDAS [19]), where one considers
the suitable immersion of four-dimensiénal Riemannian submanifold in

five-dimensional space-tinme.

The starting point of the work of E. and F. Cosserat is quite similar. They
assume that: "“A deformable line is a one-parameter ensemble of triads; a
deformable surface is an ensemble of two parameters; a deformable medium is an
ensemble with three paramaters P, i=1,2,3. When there is motion, the time t
must be added to these geometric parameters pl" (COSSERAT [1909], p. 2).

Thus they consider four cases of immersions in Rp, p=6

=]
i}

1 -~ statics of deformable line p.=Ep =s; u=1
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n=2 - statics of deformable surface p“ = pi.P2 H =12
- dynamics of deformable line p“ = t, P} p=0,1
n=3 - statics of deformable medium p” S pPyP B E 1,2,3
- dynamics of deformable surface pu = t,pi,p2 ;7 m=0,1,2
n=4 - dynamics of deformable medium p_ = t,pl,pa,p3 i 0 =0,1,2,3

The main feature of such approach is that the structure of the theory remains
independent of the dimension of the submanifold.

All measures of deformation are indexed via index u which is connected with a
differentation with respect to the holonomic parameters p“. However, the
quantity of these measures is strictly dependent on the dimension of R . In
the Cosserat theory the dimension p = 6 is equal to the dimension of a group
T(3)eS0(3).

The measures for p = 1,2,3 are called translational measures of deformation or
geometrical rates of translation defined as follows (COSSERAT [1909], p. 155).

ax 8y az
p=1 € =z=a— +a'== + a"— ,
d a a
u Py Py apu
ax ay z
p=2 n =B +B = +B'— |, (5)
Fe] a8 8
u Pu Py Py
ax ay 9z
p=3 E =9y — +9'=L +y"—= , u=0,123
a a ]
K Pu P‘.l Pu
and for p = 4,5,6 they are called rotational measures of deformation or
geometrical rates of rotations
oB , 8B’ ~98”
p=4 P, =735, *¥ gz *t¥5
F:] F.) d
M Py Py Pe
a'b' 167l Ilawl
p=>5 q, =ags *azs +alzso, (6)
] Py Py Py
do do’ da”
p=26 r =B — +B’-— + B"'— |, p.=0,1,2,3
o] d a
n Py Py Py

where x = xD1 + yD2 + zD3 describes the position vector and

(7)

<R ™R
<R WK
~
®
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is the rotation matrix connecting the unrotated rigid triad Da and the rotated
oned withd =RD , a=1,223 (fig. 1).
a a a

From the following constitutive equations (COSSERAT [1909], p. 160)

aw W aw
Al = = B = =— C’ = —
a ? » a 1]
1} €u uﬁ 811“ cu )
oW W W
P’ = o= ’ Q’ S e R, S =
3 3 ’ ar
M Py (7] q, M u

with the total energy W one can obtain the Cosserat measures of stresses for

u=1,2,3 and the Cosserat momentum and angular momentum for p = O:

A’d +B d_+C d

translational : N“
Mol TR u o3

(9)
rotational : M"

Pﬂ d1 + Q# d2 + R# d3 .

Also the form of the equations of motion is independent of the dimension of
the body submanifold. Using (9) we write all Cosserat equations of motion in
compact form (COSSERAT [1909], p. 161)

| (10)
Hu|# + x,ux Nu +m=0

In these equations of motion the external sources p and m and the position
vector x = x’d1 + y’d2 + z’d3 are assumed to be referred to the corotational

base d .
a

It is essential for a deeper understanding of the n-dimensional approach that
the time plays the role of a geometric coordinate parametrizing the
submanifold under consideration. It means, for instance, that a moving string
is treated as a surface (world sheet) swept out by the line during any motion.
The sheet is, similar to a material surface, parametrized by two internal
coordinates, say Tt and s, where T represents the internal time and s a length
parameter. The formal treatment of the internal time as a geometrical
coordinate is similar to that in modern string theory where the discussed

approach is recognized as the basic mathematical formalism.
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3.2 T(3)pS0(3) wunification

We frequently analyze a physical system which is naturally and conveniently
divided into individual parts called extended objects. The objects of
dimensionality higher than of a point, among them strings, membranes and bags,
may idealize any classical medium only if they do not possess an internal
structure or internal degree of freedom. However, the presence of an internal
geometry such as "Zitterbewegung” in a theory of electron, leads to new
generalized models of field theory.

From the point of view of continuum mechanics the simplest internal structure
is the existence of rotational degrees of freedom. The question arises: how to
connect two, physically different flelds in a compatible model which can
describe the displacement and rotation fields independently but also their
mutual interaction. The first idea which comes into mind is to consider only
first gradients of the fields in the Lagrangean action energy W . Candidates
for such measure of strength of field are the deformation gradient F = Grad(X
+ u) and the gradient of rotation tensor F’ = Grad R or the gradient of
rotation vector F” = Grad w. The question how the fields interact between
themself and how many independent measures must be defined to describe
completely the model is, for obvious reasons, rather difficult to answer,
especially when the reader is not familiar with the fundamentals of symmetry
groups and affine spaces as presented, for instance, in BETOUNES [1987] or
LAGOUDAS [1989].

In their treatment of unification of displacement and rotation fields
E. and F. Cosserat used a formalism which had been applied earlier in dynamics
of rigid body motion. The rigid body, in general, possesses six degrees of
freedom of motion and very often it is convenient to describe the motion in a

moving frame connected with the own axis of the moving body.

We recall that the motion described with respect to the moving reference frame
is characterized by a translation vector and a rotation vector or rotation

parameters
x(t) = xa(t)da(t) = x’d1 + y’d2 + z’d3 , R(t) = R( a(t),B(t),>(t) ) .

The rates of change of position and orientation are measured in the moving
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frame as well and determined by

*a as b

v(t) = 2(t) = x 4+ x%d_ = (x*+ €k 0 )d = £d + nd + d,

1 on-1y _ - (11)
© =€ (RR ") =p d1+ q d2+ r d3 = wada

with the permutation tensor € and with

€= X'+ qz’-ry’ , n= §’+ rx’ -pz’ , '€= z'+ py’ - qx’

8 siny - P sinB cosy q = é cosy + P sinBsiny r = é + @ cosB

p

where x’, y’, 2z’ denote the components of the position vector in the
moving frame. These are nothing else but the translational and rotational
velocities referred to the moving frame. A formal exchange of the time
parameter t and the geometric parameters pl 1=1,2,3 in (11) leads to the
definition of translational and rotational measures of deformation as
geometrical rates calculated in this same moving frame. The quantities
3 .ﬂj.CJ and p.,q.,r , J=1,2,3 are functions of displacements and rotatlions

J b R R
and given by (5) and (6).

The reason for the difference between the definition of translational measures
1h (5) and (11) is due to the fact that in eqns. (5) the components x,y,z of
the position vector are expressed in the fixed reference base DL= dh(t=°)
However, with the components x', y’, 2’ of the position vector in the moving
frame, the translational measure of deformation (S) will have the following
form similar to (11), (COSSERAT [1909], p. 123)

£ = 3—’;: +qz -ry .,

n o= g%; + rlx' - piz‘ , (12)1
g, = g—z; *Py -aqx

p, = 25351n7 - g%lsinﬁ cosy ,

q = gglcosw + g%lsinﬁ siny , (12)2
r = 8y ba cosB .

—_— o —
i apl ap1

In a modern Cosserat notation (12)1 corresponds to strain measures 7“8 and
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(12]2 to curvature measures k (see also KAFADAR, ERINGEN [1971]).

«f

Although we actually know many ways to derive the above results, the
construction of a unified field-theoretic model is, in some sense, a still

open problem and a good field for research intuition.

3.3 Local symmetry

The time dependent (local in time) special orthogonal group SO0(3) was
well-known long time before Cosserat. Nonlinearity of equations of motion
which follows from the non-Abelity of SO(3) was also known in the mechanics of
rigid body.

In 1909, E. and F. Cosserat extended the conception of time locality on
simultaneous, space-time locality for the semi-simple multiplication of the
translation group T(3) and rotation group SO(3). In this manner, a new type
of nonlinearity has been introduced to the mechanics of deformable continuum.
Together with the geometrical nonlinearity associated with the Abelian group
T(3), the Cosserat continuum possesses an additional nonlinearity connected
with the fully local non-Abelian group SO(3).

These results have been obtained in 1909, many years before YANG and MILLS

[1954] discovered the non-Abelity as a new kind of nonlinearity in theoretical
physics.

3.4 Least action principle

The least action principle given by W. R. Hamilton (1834) establishes an
application of the calculus of variation to the Lagrange equation of second
kind

d aW _aw _
Ea—q‘n- a—qn-’o. (13)

Hamilton has shown that the equations (13) are equivalent to the variational
principle
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t
P Itjwtqn,qn) dt =0 . (14)

This is the least action principle applied to functions q = qn(t) vwhich are
time-dependent only. The principle states that if the functions qn(t) are the
solution of (13) then the action integral (14) achieves an extremum for a
variation restricted to Sqn(ti) = Sqn(ta) = 0 , whatever the chosen end times
t,, t, may be. _

Hamilton’s principle can of course be extended to the case of functions

depending on variables. Then the principle states that the integral action
= | axt W(q,,8,q,)

attains an extremum leading to the Euler-Lagrange equations of motion

g W _ oW
aqt,u aqt

=0. A (15)
E. and F. COSSERAT [1909] had been the first to extend the Lagrange formalism
to the mechanic of deformable continua. The main Cosserat question had been
how to find equations of motion for the rotational parameters when they are
unknown functions not only of time but of space coordinates as well.
Stimulated by the papers of MacCULLAGH [1839], J. LARMOR and G. KIRCHHOFF

[1874] E. and F. Cosserat have applied the least action principle to the
following functional

t

N , t 16
= 1III W(ix,y,z, A A WA, Eu S Cu Py 9,y rp) dxdydzd (16)

where Ax, Ay, Az are the components of the Gibb’s rotation vector.

3.5 Conservation principles

The Hamilton principle of least action connected with the theorems of_NOETHER
[1918] yields a relation between conservation laws and symmetry groups. Such
relation was independently discovered by E. and F. Cosserat. They required

that the action density W must be invariant in the group of Euclidean
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displacements. As a result they obtained the following strong conservation law
(COSSERAT [1909], p. 126).

5—'0 » 530 ’ E’-o

W oz aW oy

P ap

’ B

W _ox _ oW 8z _ 0 oW 3y _ W ox _
9z 3 3x dp, » 78x 9p ay op.
% Pu 6% P 6% Pu aa—z Pu
B B B B

The first three equations show that W is independent of a displacement, the
latter ones indicate that W does not depend in an arbitrary manner on the
first derivatives of the displacements with respect to the holonomic
coordinates p“, vhere u = 0,1, 2,3.

3.6 Simplifications of the model

Let us consider now special cases of the Cosserat continuum model. The first
is well-known as the inextensible medium or "exotic medium". The concept of
inextensible continuum based on the Appell’s principle of solidification was
first applied to an inextensible one dimensional string, THOMSON & TAIT
[1879]. The inextension is identical with the assumption that the energy of
translational movement is of higher order small than the torsional and bending
energy. Therefore the string may be considered to be rigid along the
tangential direction and that its total length is constant. For static
deformations of a thin rod it means that the translational measure of
deformation tends to zero. The simplest example considered by Cosserat is the

"Euler elastica"
" - _d . = <)/ 8
AB" +R sing =0 , s )=0) (18)

where A is the flexural rigidity. Eqn. (18) describes the inextensible bending
deformation of a plane, isotropic, homogeneous, linearly elastic rod with
constant circular cross section under the action of a force Rz applied to the

end of the rod from which s is measured. We recall here that this elastica
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equation, expressed in terms of Euler angles «,B,¥ (originaly denoted by
¢, 9,¥) written down for this same, but spatially deformed rod has the form of
the rotational equation of motion of a rigid body (CLEBCH [1862], KIRCHHOFF
[1874]):

Cly’+ a’cosB)’ =0 ,

[Aa'sinzﬂ + C(y’+ a’cosB)cosB]’ - Rxsinﬁcosa - Rysinﬁsina =0,
(19)
A(B”-a’zsinﬁcosﬁ) + Co/ (y’+ a’cosB)sing - R*cosBsina +

+ RycosBcosa + stinB =0 .

Here A,C are coefficients describing the flexural and torsional rigidity,
respectively. Additionally, the Eulerian angles are measured in a way that the
2 axis of fig.1 coincides with the straight central axis of the rod. The three
equations of equilibrium (19) are presented in Navier’s form under the

assumption that the translational deformations 61,n1, §1 are equal to zero.

Stafting from the analogy between the equations of motion of a heavy rigid
body rotating about a fixed point and the equation of equlibrium of an
inextensible string, KIRCHHOFF [1874] has proved the validity of the

additional conservation law

d 1 2 2 2,) _ A
E[T+5(A,c+13s<-+Cr)]-o

which means that the following quantity

T+ %( Ac2+ Bie2+ Crz) = const (20)

is conserved during an inextensible motion. The conserved quantity (20)
consists of a tension force T and the rotational energy expressed by

curvatures k , k* and twist =t

Kk = B’siny - a’sinBcosy , Ke = B’cosy + a’sinBsiny

T=19 + a'cosB . (21)

Note that formulae (21) are in agreement with the eqns. (12) when we identify
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(k,k*,T) with the components of the curvature vector (pl,ql,rl) in (12)2. For
the Euler elastica considered above the conserved quantity (20) has the simple

form
1, omr2
—chosB + EA(B ) = const

and is the first integral of the Euler equation (18). From this we conclude
that the conserved quantity is constant along the rod axis and can be

interpreted as an unknown tension (compression) force.

Of course, speaking about conservation and conserved quantities, we mean here
the conservation in space, what is a generalization of the notion
“conservation”. We note also that from the mathematical point of view, in the
Kirchhoff’s kinetic analogue we identify the time coordinate with the space
coordinate in a way that the logical structure of the theory remains without
any change. We agree with suggestions, that the Kirchhoff’s kinetic analogue
was some kind of patfern for the geometrization of space-time in Cosserat’s

n-dimensional approach.

The 3-dimensional counterpart of an inextensible line is difficult to imagine.
Nevertheless, one can find the mechanical analogue of an inextensionable
string in the hydrodynamics of nematic liquid crystal where the internal
energy is a function of rotational changes of a unit vector n correlated
with the mean orientation of molecular axies (ERICKSEN [1961]). A similar
behavior can be found in the theory of elasticity of amorphic materials as

metallic glass, window glass, etc.

Another example in which the "exotic" Cosserat continuum has been used to
describe systems with non-mechanical energy are the non-equilibrium states of
disordered magnets (DZYALOSHINSKII & VOLOVIK [1980]). In such magnets as, for
instance, spin glasses the internal energy of spin systems is a function of
gradients (in space and time) of the local rotation. These gradients, denoted
by ©, and w are used in Cosserat medium as (pi,qi,rl) according to (12')2 and

(p,q,r) according to (11). The thermodynamically conjugated variables s = g—z‘ ,

7k = % play the role of vectors of angular momentum and moments. As has been
k

shown by Dzyaloshinskii and Volovik these dynamical variables satisfy the
following set of governing equations
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Vo - Vluk toxe =p

k1 °*

Vtmk - Vku + WX wk jk , (22)

= k k
Vts T wWwxXS8+ sz + ¥ xw&
= ptdx * qxdz * rtds ’ @ = pd1 + qdz + rd3

where P, =" P, and Jk are known densities. Let us note that the first two
equations of (22) correspond to the equations of the space-time compatibility
for strains and the last one corresponds to the equation of motion (10)
satisfying the inextenéibility conditions N'= 0. It should be pointed out that
in the disordered magnet continuum the Cosserat assumption about
nonseparability of the action integral into purely spatial and purely temporal
parts is valid.

The next particular model of continuum, derived by Cossefat, is based on the
concept of hidden triad and concealed action integral W. E. and F. Cosserat
considered a different reduced form of the action functional in the hope that
some relation between their model and the classical Cauchy model can be found.
In fact, if one supposes that the independent micro-rotation of the Cosserat
model become identical with a macro-rotation of the material neighbourhood of
particle then the action functional W(E ,n N pu,qu ru) W[ulu,uluv) becomes
a function of the displacement u and its derivatives only. Such "hidden"
rotations lead to the model of a second-order continuum with the internal

energy expressed by second derivatives of displacement as well.

It is obvious that even a successive reduction of the action functional to the
form W(E ,n C 0,0,0) does not lead directly to the Cauchy model. Because of
this reason Cosserat considered the action functional W(e RN v2 ,0,0,0) in
which the translational measures gu,nu,cu (12 functions) :re present in the
action functional only via ten expressions 81’71’¢1’u defined by the
following formulae (COSSERAT [1909], p. 176)
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=1 2 2 _ -
e =3(& + n, +& -1, p, =§&+n+ gL,
e, =22+ 02 + &% - 1) o, =EE+n+LL
2 2 °2 2 2 i 2 2 2 2°°
= 12 2 2 _ -
e, =3+, + L0 - 1), o, =58 +n + 8L, (23)
= 2 _ 2 2
v = 6253 P, v &8 =gt
¥, =88 +am + g%,
¥ = €152 + mnn, * c1cz
The expressions (81,271.2¢1,202) = Euv » B,V = 0,1,2,3 are nothing else but

the components of the Green strain tensor defined in 4-dimensional Cartesian
coordinate system. From this we note that the concealed action functional

W(Euv) cannot be directly obtained from W(gg,n“,c“,o,o,O) by a simple exchange

of E",nu,cu. to gz,nz,c; . As a first consequence of these assumptions

Cosserat obtained the result that the moment stress measure is equal to zero.
The next one was that stress measures (AL,BL,CL) i = 0,1 energetically coupled
with (€ ,n ,L ) are connected with the second Piola-Kirchhoff stress tensor

[
in the following manner (COSSERAT [1909], p.176).

. _ . OW aw aw aw
Al = 61351* Ekg;j + gjggk + & 351.

, _ oW aw W aw
Bi = n1531+ ﬂkagj + nja;k +7 56!,

. * aw aw W
© % %3t Sar, T Cay, T O3y,

1 J k ! (24)
A =1 M £+ € N
v du 16¢1 ’

, _ 1 W oW _ s as
B’ = St "1561 , (1,3,k=1,2,3, cyclic indices)

SNy
C =3 3w St ciﬁai ’

with (£,%,&) according to (11) and (Ei.nl.ql) according to (12)1. From the
point of view of the so-called corotational description, which frequently is
used in contemporary computational mechanics, the equations (23) and (24) lead
to Dbasic relations between the total Lagrangian description and the
co-rotational description. The relations inform us that during passing from
one description to the other an exchange of both strain and stress measures
follows. From conceptual standpoint the exchange is rather serious - the

metric conjugate tensors {Piola-Kirchhoff - Green} are replaced by semi-metric
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conjugate measures { A;,BL,CL - Eu,n“,qu } . Most applications of such
Cosserat continuum with hidden triad and concealed W deal with the models of
thin, shell-like bodies, where the local rotations remain large even if the

strains are small.

Another consequence of the hidden triad assumption can be observed by
considering the equations of motion for the rotation parameters. E. and F.
Cosserat have shown, after some additional derivations, that from six basic
equations of motion threé differential equations from six basic equations of
motion reduce to an algebraic identity for the components of a Cauchy type
stress tensor and velocity (COSSERAT [1909], p. 175)

9p -p )=8B2_c¥ |
vz

zy dt  —dt
- ~dx 4z
D(pzx pxz) - CE AEE ’ (25)
- = A4y _ pdx -
D(pxy pyx) = Adt B&E , D =det F

where (A,B,C) are the =zero .  components of (9)1. In the co-rotational
description of the Cauchy continuum the equations (25) play an important role,
because during the computational process they represent sufficlent conditions

between the micro- and macro-rotations.

§ 4. The unification sector

H. WEYL [1917] had been the first to introduce the electromagnetic interaction
as a special vector field of the group of phase transformations in a charged
field. Following the same method YANG and MILLS [1954] formulated their theory
by considering the non-Abelian group of rotation in iso-space. Such an
approach was based on two possibilities either by means of an additional
internal group space or by means of a localization of the group space-time
symmetry. As a result UTIYAMA [1956] has formulated a generalization of these
two approaches. He considered conditions for a full invariance of the
Lagrangian written in terms of a set of matter fields and a n-parameter global
Lie group, representing some internal symmetry. During localization of the
global group, from invariance condition, he obtained 4xn new compensating
fields interacting with matter. It appeared that the new fields, arising form
space-time symmetries have a univeral significance and this gave rise to a

gravitational theory more general then general relativity. We have to point
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out that this gravitation theory taking into account the spin has similarities
with the Cosserat continuum (HEHL [1968]). KRONER [1965] had been the first to
consider the geometrical analogy between the localization of T(3)pSO(3) in
Cosserat non-relativistic continuum and the localization of the Poincare
10-parameter group. We can find a full explanation of this analogy in EDELEN
[1985].

It is worth to note that many works published on this subject show_that the
first translational measure of deformation in the Cosserat model plays a role
identical as the vielbein fields in gravitation model based on Riemann-Cartan
geometry. It means that the same formalism of anholonomic reference frame can
be applied for the description of Cosserat continuum. Such possibilities are
widely used in shell models based on Cosserat surface (REISSNER [1974],
FERRARESE [1976] and by MAKOWSKI & STUMPF [1988], [1989] and by FERRARESE
[1976] in three-dimensional continuum).

The advantage of the formalism introduced by Utiyama lies in its generality.
Most of the results obtained so far can immediately be used for other
hypothetical space-time symmetry. The largest one, known up to now, is
represented by the 15-parameter restricted conformal group, generating the
most general transformations of coordinates under which electrodynamics are
covariant. Among the Lie groups most application have found those which
describe a space of constant curvature.A generalization of a simple Poincaré
group is De Sitter group S0(3,2) or, next in order, the conformal group
S0(4,2).

The same geometrical procedure based on replacing a contracted group by a
single larger group of inner symmetry has been applied to construct
generalized models of mechanical continua. In 1958 ERICKSEN & TRUESDELL
generalized the concept of T(3)pSO(3) continua to T(3)pGL(n,R) by requiring
the set of n-Cosserat directors to be deformable. In the particular case, when
n = 3 and the directors become undeformable, the T(3)PGL(3,R) model is reduced
to the Cosserat continuum with the displacement and rotation fields as
independent primary unknowns. In Ericksen-Truesdell continuum, a deformation
between the undeformed Da and the deformed directors dal is described by means
of an element of the 9-parameter group GL(3,R) represented (in Ericksen &
Truesdell notation) by A = dae D* = AKNGKGGN. The action of any element of
GL(3,R) is realized by three pure micro-stretches in the main directions of
the micro-deformation which are oriented in space by three parameters and,

finally, by three parameters of the global rotation identical with the
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Cosserat rotation field.

Analogous to the Cosserat approach the set of moving and deforming directors
is a natural frame to describe completely the mechanical behavior of a
generalized continuum. Because the deformed directors are not connected with
any coordinate system, the differentiation of a geometrical object, given in
such anholonomic base, with respect to Lagrangian coordinates is possible only
after pull-back ‘the object to a Lagrangian holonomic frame. Of course, the
result.of differentiation must next be pushed-forward to the anholonomic base.
For instance, applying this procedure to da(XN) Ericksen and Truesdell

obtained the fundamental measure of micro-deformation [1958, (6.4)]

.y -1 -1
= = 26
FH (BHA) A + A WHA , M 1,2,3 (26)

which, in general, is represented by 27 director gradients and the known
formula 4 D = WD for undeformed triad D (ERICKSEN & TRUESDELL [1958]).
When, however, the directors form a rigid triad with a constant metric with
only 9 independent director gradients in (26), it follows that F w =" F: and
Fu corresponds to the Cosserat rotation measures of deformation. From the
point of view of modern geometry the formula (26) describes the rule of change
of connection under co-ordinate transformation or the transformation of gauge

potential fields under a gauge transformation.

Additionally, Ericksen and Truesdell completed the above measure (26) by a
translation-like measure = F A'1 with F = Grad x and a metric measure gab =
da-db of the deformed directors. As a result they obtained the complete state
of deformation described altogether by 27+9+6 = 42 functions of generalized
strain for a T(3)bGL(3,R) deformable continuum. From the geometrical point of
view also other works , concerning a generalization of microstructure, are a
continuation of Cosserat’s approach too (see also: TOUPIN [1962], MINDLIN
[1964], KOITER [1964], MAUGIN & ERINGEN [1972]).

While ERICKSEN & TRUESDELL introduce a kinematical concept of deformation
analogous to the one of Cosserat, they use a different concept for stresses.
First of all the stress measures (only two not three) are of Cauchy type, what
means that they are defined in Eulerian description and specified in a
holonomic base only. It would be interesting to define stress measures of
Cauchy type also referred to either anholonomic -da or Da base and next to

connect these quantities with appropriate Eulerian measures of deformation.



22

Secondly, in contrast to Cosserat, the energetically conjugate couples of
Lagrangean measures of strain and stress do not occur, so the problem of

Lagrangian stresses in Ericksen-Truesdell continuum remains still open.

An interesting feature is the fact, that most papers devoted to generalized
continua, for example ERICKSEN [1961], MINDLIN [1964], TOUPIN [1964],
precisely investigate the Lagrangean theory of deformation and an Eulerian
theory of stresses. It results from the opinion, still yet expressed in
McLELLAN [1984], that the Cauchy stress tensor even in the infinitesimal
strain theory is not conjugate to any strain measure. This opinion created
difficulties in the construction of constitutive relations between appropriate

measures of stress and strain, what would finaly close the theory.

The Ericksen-Truesdell model of T(3)bGL(n,R) deformable continuum has
initiated a new branch of research connected with the unification of various
approaches with the aim of entering into the microscopic world of matter by
means of field theories. Numerous papers have been devoted to investigations
of continuum mechanical theories of materials with structure. Main research
directions were stimulated mainly by the papers of TRUESDELL & TOUPIN [1960],
ERICKSEN [1961], [1982], TOUPIN [1962], [1964], MINDLIN [1964], GREEN, NAGHDI
& WAINWRIGHT (1965], COHEN & DeSILVA [1966], WOZNIAK [1968], ERINGEN [1972],
(19761, ANTMAN [1972], CAPRIZ & PODIO GUIDUGLI [1983], BETOUNES [1987] and
LAGOUDAS [1989]. As a result more or less complete nonlinear models of
mechanical continua had been obtained in which the deformation is described
not only by the usual displacement vector field, but also by other scalar,
vector, spinor or tensor fields as well. The common language for such
unification of physically different fields was and still is the geometry
language, especially the language of modern differential geometry.

An important turning point in the application of models of mechanical continua
had been the joint GAMM/IUTAM symposium held in Freudenstadt and Stuttgart and
devoted to the mechanics of generalized continua, KRONER [1968]. There Kr&ner
has presented a spatial diagram with a logical structure of relations between
various branches of mechanical activities (fig. 2). It was confirmed that many
elements of a general model need a deeper physical interpretation and more
intensive relation to applications. From this time the model of generalized
mechanical continua has been extended and adopted to describe very different

and, sometimes, very complex physical phenomena.

We would like to draw the attention of the reader to the fact that the problem
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of constructing a unified model is more complicated then the geometrical
problem of finding a common covering group for phenomena which can be
described by two, three or more simple groups. The unification, accepted from
physical point of view, still remains the most difficult problem of field
theory. Thus some ideas were developed independently or parallely in

theoretical physics as well as in continuum mechanics.

Yet a new branch of generalized continuum mechanics had been opened with the
investigations of EDELEN [1985], LAGOUDAS & EDELEN [1989] and LAGOUDAS [1989]
considering mechanical structures of solids with a dense distribiution of
defects. They started with the concept of broken translational and rotational
symmetry connected with Utiyama’s procedure of the minimal coupling and
minimal replacement. The physical meaning of the minimal replacement operation
and the requirement of invariance of Lagrangean led to a generalization of the

Frame Indifference Principle.

§ S. The conservation sector

The symmetries which occur in Lagrangian field theory can generally be
classified as discrete or continuous. The well-known discrete symmetfies
include the Time Reversal Invariance, CP or CPT Invariance. However, among the
continuous symmetries are well-known the Galilean, Lorentz, Poincaré, DeSitter
groups connected with space-time and the groups U(1), SU(2), SU(3), s0(32),
EBXES’ etc. connected rather by internal structure of fundamental interactions
then by space-time. From the formal point of view the continuous symmetries
can be divided into two kinds: the symmetry under continuous
coordinate-independent transformation (global symmetry) and the symmetry under
coordinate-dependent transformation (local symmetry). It is commonly accepted
that the Frame Indifference Principle, for instance, is based on an invariance
requirement with repect to transformations which are global in space and local
in time (ROHRLICH [1965], WOZNIAK [1968], OLVER [1986]).

Generally speaking, every transformation is specified by a finite set of
numerical parameters. In particular, the elements of Lie groups are
characterized via n parameters which play the role of co-ordinates on the
group manifold and are the partners of their generators in an appropriate Lie
algebra. In the special case, which had been used in Cosserat’s approach, the
n parameters of the local group may be treated as fundamental primary fields

which are continuous functions of the coordinates.
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The invariance of a theory with respect to the group transformation is usually
understood as invariance of equation of motions or invariance of the
Euler-Lagrange equations. It 1is convenient to formulate and explore  the
symmetry requirement in an equivalent manner, i.e. by considering a Lagrangian
formulation of the field theory where basic dynamical equations ("equations of
motion") are derived from an action integral defined on suitable Lagrangian
densities. Consequences of the action integral invariance with respect to the
Lie group of transformation had been studied before Cosserat by HERTZ [1894],
APPELL [1903], LORENTZ [1903], and afterwards by HERGLOTZ [1911], MIE [1912],
(1913], H. REISSNER [1916] and WEYL [1917]. Of course, most works in field
theory, especially after the discoveries of Hilbert, Klein, Einstein and Weyl
were stimulated by the rapid development of relativity theory rather then by

the development of models of mechanical continua.

In 1918 Emmy Noether generalized the Cosserat result concerning the action

integral invariance for the case of a n-parameter continuous groups of

transformations. The frist fundaﬁental result had been obtained for groups of

global symmetry stating that if the action integral is ‘invariant under the

n-parameter symmetry group2 then 1? linearly independent combinations of
8 8

-d ——— can be written as divergences, NOETHER

Lagrange expressions Lu = EU; " auu .

[1918]:
81 =Idx“ [Luéu:—dv.l"‘] =0 , a=1,2..,0 (27)

with the additional assumption that all field equations follow from the action
integral I(Un(x“))=Idx“2(xv,UH,UnJ) in a simple form. Here (~)H denotes a
common index depending on vector, spinor or tensor properties of Uu’ The
conserved quantity J* in (27) is known as the symmetry current and from the
mathematical point of view it is the vector with n values in the Lie algebra
of a suitable group of transformation. For instance, the symmetry current
connected with the Lorentz group is known as the energy-momentum tensor.
Similar sources has the Eshelby tensor used in fracture mechanics and here
interpreted as the current of T(3)° symmetry group (LE, STUMPF, WEICHERT
[1989]). The conserved currents J"acorresponding to invariance under global
symmetry groups have now a remarkable property: they are not only linear
combinations of Ln but also the divergence of an antisymmetric tensor a"M”“a

too. Such conservation current E. Noether called improper-one in contrast to
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other proper conservation current.

Additionaly, if conservation laws duJ"° = 0 hold independent of a fulfillment
of the equation of motion LH#: 0 we speak about strong conservation laws.
However, 1if conservation laws take place when Lu = 0 we speak about weak

conservation laws.

The second part of the fundamental work of Noether is concerned with the
n-parameter local symmetry group. The second Noether theorem states that if
the action integral 1is invariant under n-parameter local group of
transformations ‘then the Lagrangean expressions I..M and their derivatives
commonly with symmetry currents generally fulfill n-identities:

- _ Ha _ Ha _ _ -
GI-Idx“[[LuUZ d (LU €, -d e LNU‘:' ea)] 0 (28)

where, in oder to express this theorem similar to (27) we have assumed that
total variation of the function Un(x) is given by 3Un = U;ea(x] + Uﬁaanea(X) .
The above relations, usually refered to as Noether identities establish the
dependence between Lagrangean expressions meaning that n of the
Euler-Lagrangean equations are dependent (BERGMAN [1949], OLVER [1986]).

Note furthermore that in the framework of Lagrangean field theory, the action
integral may be simmultenously related with some symmetry groups, global as
well as local. It means that a field-theoretical model can possess a few

conserved currents simmultaneously.

Let us point out, that in spite of their formal similarity, the Hamiltonian
field theory does not explain mutual relations between invariance and
conservation. Applications of the Hamiltonian approaches to continuum
mechanics can be found in the papers of DZYALOSHINSKII and VOLOVIK [1980] and
Simo et al. [1988]. Most hope is connected with the fact that the Hamiltonian
formulation of mechanics is now incorporated into the differential-geometrical
analysis on manifolds. Similar to the Lagrangean, we have now two equivalent
Hamiltonian formulations of classical mechanics: in the physical language of
canonical variables, Poisson and Dirac brackets and canonical transformation
on one side and the geometrical formulation in terms of symplectic spaces,

Hamiltonian vector fields, exterior calculus, etc, on the other.
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Probably a first application of the Noether theorem had been given by
BESSEL-HAGEN [1921] who derived ten integrals of the n-body problem and
conservation of momentum and energy of the classical Maxwell electrodynamics.
The conservation laws expressed in terms of energy-momentum tensor and angular
momentum tensor were also discussed in the papers of WEYSSENHOFF and RAABE
[1947] and BERGMAN [1949]. It should be noted also that an application of
Noether’s theorems some time requieres to determine the symmetry of nonlinear
differential equations under which the equations remain invariant. For this
reason, the investigation of conserved currents, especially for nonlinear
equations such as Korteweg-deVries, Hopf, time-dependent Ginzburg-Landau,
Langevin, Fokker-Plank equations, etc., remain still open, (OLVER [1986]).

Stimulated by the papers of Cosserat and own work GUNTER [1958], [1962] has
applied the first Noether theorem to the linear elastostatics. He extended the
Noether theorem to covariant form and discussed conservation 1laws which
correspond to the rotation and similarity invariances. Following Cosserat
TOUPIN [1964] postulated that the action integral I is invariant under global
seven-parameter group of Euclidian displacements and obtained seven strong

conservation laws

L _ 8¢ _ _ _ _
ﬁ = ﬁ - 0 ’ Kij Kji - 0 ’ 1’.’—1'2)3
_ . 0% 8% . 8% . 8% (29)

KU X% * 80 * Xax T8t

a J aj

8L L4 8L
i, 3x ai,o ad
’ aj»a.

including the original Cosserat conservation laws (17). The above formulae
establish the fundamental equivalence between conservation and invariance for

generalized Cosserat continua.

The unification of Toupin’s and Giinter's approach one can find in the
monograph of WOZNIAK [1968] where different forms of conservation laws are
presented based on the Euclidian group of transformation for many

sophisticated generalized continua.

At the present time most works, devoted to conserved quantities (momentun,
energy, angular momentum, etc.), take into account the material as well as

spatial symmetry transformations. Such a distinction is particularly important
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in modeling continuous distribiutions of defects in solid media, where
conserved quantities are present accompanying spatial as well as material
defects. It is worth noting that the problem of material conservation laws
also become important in the context of fracture mechanics where, according to
Eshelby, the material energy-momentum tensor describes the material force
acting on a crack (see LE, STUMPF, WEICHERT [1989]).

New interesting results concerning conservation laws, which seem ta have no
counterparts in continuum physics, we can find in papers of KLUGE [1969],
[1981]. It is shown that for the Cosserat continuum with a dense distribiution
of dislocation and disclination the field equations can be written in terms of
stress functions and appropriate densities of defects only. Therefore, similar
to the fleld theory, the laws of conservarion of energy, momentum and angular
momentum for such "dual" problem may also be derived. The balance equations
introduced in natural way contain the Peach-Kéhler and the Nabarro force for

dislocations and analogous forces connected with disclinations (KLUGE [19811).

From the point of view of applications other difficulties arise from the form
of the conservation laws. Since the generators of symmetry cannot be put in a
natural correspondence to classical objects, the physical interpretation of

conserved quantities requires additional transformations (OLVER [1986]).
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