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Summary

Basic equations of fully general Cosserat-type theory of finite elastic
deformation of shells are discussed. It is shown that virtually the same
theory can be developed either by descent from the three-dimensional continuum
mechanics or by purely direct considerations. The underlying geometric
structure of the configuration space and the associated tangent space are
examined. Particular attention is devoted to the fact that the configuration
space is an infinite dimensional manifold and not a linear space. Starting
from a weak formulation of the theory the linearized equations about finitely
deformed state of the shell are subsequently derived. The explicit form of the
constitutive relations for rubber-like shells are developed. These equations
include consistently and adequately effects due to transverse shear and
transverse normal deformation of the shell. Finally, to assess the accuracy of

the theory the solutions of two buckling problems are presented.

Zusammenfassung

Die Gleichungen der ganz allgemeinen Cosserat-Theorie finit-elastischer
Verformungen von Schalen werden diskutiert. Es wird gezeigt, daB8 im
wesentlichen dieselbe Theorie entwickelt werden kann durch Herleitung aus dem
dreidimensionalen Kontinuum oder durch direkte Uberlegungen. Die zugrunde
liegende geometrische Struktur des Konfigurationsraums und des =zugehérigen
Tangentenraums werden untersucht. Besondere Aufmerksamkeit wird der Tatsache
gewidmet, daB der Konfigurationsraum eine unendlich-dimensionale Menge und
kein linearer Raum ist. Ausgehend von der schwachen Formulierung der Theorie
werden die linearisierten Gleichungen um einen endlich verformten Zustand der
Schale hergeleitet. AnschlieBend wird die explizite Form der konstitutiven
Beziehungen fir gummiartige Schalen entwickelt. Diese Gleichungen schlieBen
konsistent und addquat Effekte der transversalen Schub- und transversalen
Querverformung der Schale ein. Um die Genauigkeit der Theorie zu

veranschaulichen, werden die Lésungen zweier Beulprobleme wiedergegeben.
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1. Introduction

The buckling analysis of shells subjected to static loadings can effectively
be carried out through a linearization of the pertinent nonlinear boundary
value problem about given equilibrium states. The resulting linearized
equations are usually referred to as buckling equations or equations of
critical equilibrium and we shall adopt this terminology here. Within the
classical Kirchhoff-Love type theory of shells the buckling equations have
been subject of extensive investigations in the past (cf. [10,17,22,23] and
references cited therein). A review of that vast literature is not our
intention nor it is relevant to the subject of this paper. It is to be noted,
however, that in most previous investigations not only strains are assumed to
be small but also effects due to transverse shear and transverse normal
deformation of the shell are ignored. While it is expected that these effects
will be negligible for thin shells made of conventional structural materials,
the problem of buckling of shells undergoing finite elastic deformations
cannot be adequately set down within these restrictions. It is known from the
three-dimensional analysis of shell-like structures made up of highly
deformable materials, like natural and synthetic rubbers or biological
tissues, that buckling phenomena need not necessarily be attributed to the
slenderness of the bodies but may occur in thick-walled shells as well.
Moreover, many materials capable to undergo finite elastic deformation are
incompressible or nearly so. In turn, the incompressibility condition causes
highly nonlinear deformation through the shell thickness (cf. Appendix B).
With an exception of the papers by GREEN and NAGHDI (7] and ZUBOV [26]
buckling equations for large elastic shell deformations including the

aforementioned features had not been considered in the literature.

The aim of this paper is to derive the buckling equations for a fully general
theory of elastic shells whose foundations have been set down by SIMMONDS
[19], LIBAI and SIMMONDS [11], REISSNER [18] and others. In this theory the
two-dimensional equilibrium equations are obtained as exact implications of
the three-dimensional balance laws of linear and angular momentum. The strain
measures conjugate to the stress resultants and couples and the underlying
kinematical structure of the theory are next disclosed in a natural way from
the mechanical work identity being equivalent to the local equilibrium
equations. In this sense the basic shell equations are exact and the resulting
theory is independent of any specific physical interpretation that may be
assigned to the comprised ingredients. An unavoidable approximate character,

reflecting a manner in which this theory may be expected to approximate the
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three-dimensional one, appears only in the constitutive relations that give
the stress resultants and couples in the form of arbitrary functions of the
conjugate strains. Actually, the theory of shells arrived at in this way
enjoys the structure identical to that in the Cosserat shell theory. However,
we have to point out that there is an ambiguity in the used terminology.
Originally, E. and F. COSSERAT [5] postulated, ab initio, that a shell is a
two~-dimensional continuum to each point of which a rigid triad is attached.
Later this idea has been generalized by replacying the rigid triad by three
deformable directors [6], single deformable director (8] or even an arbitrary
number of deformable directors [15]. The results due to SIMMONDS ([19], LIBAI
and SIMMONDS [11] and REISSNER [18] show that the kinematical model adopted by
E. and F. COSSERAT [5] is preferable to later proposed models.

In Chapt. 2 we give a brief account of the complete set of equations for the
shell modelled by the Cosserat surface. In Chapt. 3 the wunderlying
configuration space and its associated tangent space is constructed, concepts
which are central to the subsequant developments and have not been previously
investigated in the literature. In particular, we show that the configuration
space for the shell modelled by the Cosserat surface is an infinite

dimensional manifold and not a linear space.

In Chapt. 4 we derive the buckling equations as linearized equations about
given finitely deformed equilibrium states of the shell. Because the
configuration space is not a linear space the lack of its algebraic structure
makes the process of linearization non-standard and an appeal to the advanced
calculus on manifolds becomes unavoidable. In this aspect our approach
parallels to that of SIMO and VU-QUOC (21], who considered the spatial

deformation of linearly elastic rods.

In Chapt. 5 we establish sufficient conditions for the tangent operator to be
symmetric, a property of major importance in the analysis of buckling

problems. Finally, in Chapt. 6 we present two illustrate examples.



2. Governing equations

We shall consider an elastostatic theory of shells whose origin is going back
to E. and F. COSSERAT [S]. Related and more recent contributions can be found
in [11,18,19]. A short summary of the governing equations presented
below unifies and, in some aspects, generalizes slightly different approaches
adapted in the cited papers. Our notation scheme is standard. In particular, R
denotes the set of real numbers and &° is the three-dimensional Euclidean
point space whose translation space is E>. The elements of E° are called
vectors and u*v, u x v and u ® v are the standard notations for the inner
product, the cross product and the tensor product of two vectors u and v. The
elements of the vector space L(Ea, E3) of linear transformations of E3 into
itself are called (second order) tensors. The composition ST of two tensors S
and T, the transposition ST and the trace trS of S are then defined as usual.
We shall also adopt the convention that lower-case Greek indices have the
range 1, 2, lower-case Latin indices have the range 1, 2, 3 and that
diagonally repeated indices are summed over their range. Moreover, we shall
assume that various fields appearing have sufficient smoothness to justify any

operations required.

By a shell we mean a thin (in s&me sense) three-dimensional body that may be
modelled by the Cosserat surface C in its original definition [S], 1i.e.
C comprises two ingredients, a material surface S called the carrying surface
and a triad of rigid vectors called the directors. More precisely, a carrying
surface is an orientable two-dimensional manifold S that can be imbedded into
the physical space g3 by a diffeomorphism S -» &%. The image of S in g is a
smooth surface M called the current (deformed) configuration of the carrying
surface. The directors in the current configuration of the Cosserat surface C
are represented by a triad {Ai} of linearly independent spatial vectors
attached to each point of M. We shall identify the particles of S with their
material coordinates & = (Ea, o = 1,2). Then the current configuration of the

Cosserat surface C is specified by the vector-valued functions

r = r(g), A=A(8), 1i=123 (2.1)

where r is the position vector of M relative to a fixed frame of reference.

Whenever there is no danger of confusion we may identify the carrying surface
S with its initial (undeformed) configuration M whose position vector will be

denoted by r(€). The directors in the initial configuration of C constitute a



4

triad {al(é)} which we shall assume to coincide with the natural basis of {g“}
on M, i.e.

a8 =r,, al(f)= eaBaa X a, . (2.2)

B

[\

Here e“B denotes the usual permutation tensor on M, a3 is the unit normal
vector to M and a comma indicates differentiation with respect to the material

coordinates Ea. We next denote by ai(g) the reciprocal base vectors, so that

o _ o 3 _
a (€)-aB(€) = SB , al(& = aa(s), (2.3)
where 6; is the Kronecker symbol.

Since the directors are assumed to be rigid, the deformation of the Cosserat

surface relative to the initial configuration is described by

r(£) r(€) + u(g), (2.4a)

Ai(ﬁ) Q(E)a!(ﬁ), i=1,2,3 (2. 4b)
where the displacement field u determines the deformation of the carrying
surface and Q is a proper orthogonal tensor (rotation tensor) specifying the
deformation of the directors. In general, the deformation of the directors is
independent of the deformation of the carrying surface. Also, we make no
assumptions about the magnitude of the displacements, rotations and strains
associated with (2.4). However, in order to ensure that the deformation (2.4)
be non-singular and orientation preserving we require that

)-53 > 0. (2.5a,b)

det(r, r ) >0 B® xT
[ 4 o

B B

The first restriction is the consequence of usual continuity assumptions while

the second one implies, in particular, that A3 cannot be tangent to M.

The suitable strain measures consist of the stretching vectors EB(ﬁ) defined

by

E. =r,_-A, =u,

B B B

+ (1 - Q)aB, . | (2.6a)

and the bending vectors xﬁ(g) defined as the axial vectors of the

skew-symmetric tensors R_ (&) = Q, QT , i.e.

B B



KB X v = RBV for every veE" . (2.6b)

These strain measures have to satisfy the compatibility equations [11]

B - = 7
€ (E¢|B Aa X KB) =0, (2.72)
of 1 _ -
£ (KalB + 2 Ka X KB) =0, (2. )
representing the integrability conditions for E_, and K_,. In (2.7) and

B B

henceforth ( ) indicates the covariant differentiation in the metric of M.

|8
The mechanical variables entering the theory of shells modelled by the
Cosserat surface C consist of the stress resultants NB(E) and the couples
HB(E) representing the action of one part of the shell upon another along the
coordinate lines EB = const. on M and they are defined per unit length of
these lines. The local equilibrium equations expressing the balance laws are
[11,18]

NB|’3 +p=0, MBIB s x N +1=0, (2.8)

B
where p(€) and 1(&) are the external surface force and couple defined per unit
area of M. The equilibrium equations (2.8) can be obtained either by descent
from three-dimensions or by direct two-dimensional considerations (cf.

Appendix A).

In order to formulate the associated boundary conditions we assume that M is
connected with a piecewise smooth boundary 8M whose position vector is r(s) =
r(€%(s)). Here s denotes the arc length parameter along 8M. At each regular

point of 3M we define the orthonormal triad {v(s), t(s), aa(s)} such that

t(s)

"
I
1}
P
[
o+
I

ds (V] ds (2.9)

v(s)

1]
o+
b3
[

]
<
V]
<

|
™

are the tangent and the outward normal vectors to 8M lying in the tangent

plane.
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»*
Let now aM denote the part of 8M where the boundary force N (s) and the
*
boundary couple M (s) are prescribed and let aM denote the complementary part
of M, i.e. M = BM U BM , where the dlsplacements u (s) and the rotations

Q (s) are specified. Then the boundary conditions are

NB ** B *
Vg N, Mv M along &M (2.10a}

u=u , Q along aMd . (2.10b)

o
[}

If statical and geometrical quantities are prescribed on the same part of dM,
then they must be complementary to each other. We shall also admit that 6M; or
even M may be empty sets. In the last case the boundary conditions (2.10) are

to be replaced by suitable periodicity conditioms.

The field equations and boundary conditions given above are independent of the
particular constitutive relations. Now we define the shell to be elastic if
its mechanical response can be characterized by vector-valued functions NB and

MB defined on some common domain G x M such that

Y- - 4B .
W=wPeE, k., 0 wW=iE, x; 0. (2.11)
In the hyperelastic case, the response functions NB and mB are given by
W=, =2 (2.12)
B B

where the strain energy function & = @(E , Ka; €) is defined per unit area of
M. The explicit dependence of NB MB and ® on £ signifies a nonhomogeneity of
the shell which may be caused by the variable curvature of M and the variable
shell thickness. In the most general case the domain G of the constitutive
equations is defined as a set of four-tuples (Ea’ Ka) at each point of which
the invertibility conditions (2.5) are satisfied and the response functions
are restricted solely by the principle of material frame-indifference and a
possible material symmetry. It is to be noted, however, that if a shell
modelled by the Cosserat surface C is given a specific three-dimensional
interpretation the invertibility conditions will assume a more restrictive
form than (2.5). Therefore no usefull properties of G, like convexity, can be
established once and for all. Moreover, the response functions must satisfy
suitable restrictions to be physically reasonable to ensure the existence of
solutions with the desired degree of smoothness, and yet they should admit the

multiplicity of the solutions. The determination of a full set of constitutive
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restrictions remains as the main open problem of the shell theory (cf. ANTMAN
[2]1).



3. Principle of virtual displacements

The Cosserat surface C manifests itself through its configurations in the
physical space. A set of all configurations of C, denoted by C(C), is called
the configuration space. In turn, each configuration represents a deformed
state of the Cosserat surface and, according to (2.4), it is completely
determined by the displacement field u of the carrying surface and the field
of proper orthogonal tensors Q specifying the rigid deformation of the
directors. At any fixed point € € M the displacement u(§) is an element of the
vector space E>. Moreover, the set of all proper orthogonal tensors Q(£), i.e.
of all isometric transformations of E° into itself preserving the orientation
of E°, constitutes the noncommutative Lie group SO(3) called the rotation
group of £ [1]. Accordingly, the configuration space of the Cosserat surface

may be defined as
CC) = {u = (u, Q | u:M » Ex SO(3)} . (3.1)
We require u to be of the class C2 on M.

Unlike the case of particle mechanics, where the idea of a configuration space
is a direct reflection of the intuitive notion of the degress of freedom of
the system, the situation we are concerned with here is more involved in a
twofold sense. Firstly, the configuration space of the Cosserat surface
understood as the collection of two fields u and Q is infite dimensional.
Secondly, the presence of SO(3) in the definition of C(C) causes the lack of
the algebraic structure of linear spaces. In fact the configuration space c(e)
can be endowed with the structure of an infinite dimensional
Riemannian manifold. However, to avoid a rather cumbersome formalism we point
out that u(€) e Ex SO(3) at any fixed point § € M. Clearly, E’x SO(3) enjoys
the structure of the six dimensional manifold. Moreover, it may be equipped
with the group structure and thus with the structure of the Lie group. The
group operation is defined by u + v = (u + v, RQ) for any u = (u, Q) and v =
(v, R) and the identity element is of the form 1 = (0, 1). All algebraic
operations are understood here point-wise, i.e. at § € M. An appeal to
point-wise operations on the elements of the configuration space C(C),
wherever this is feasible, will simplify our analysis considerably since the

structure of E°x SO(3) is well exposed in the theory of rigid body [1].

Once the configuration space of the Cosserat surface has been defined the

concept of virtual displacements may be introduced in a natural way as
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elements of the tangent space of C(C). The tangent space of a manifold
generalizes the notion of tangent plane to a surface in the Euclidean space.
The construction of the tangent space of C(C) given below is, to a large
extent, analogous to its counterpart in the mechanics of rigid body, with the
difference that in our case the configuration space is infinite dimensional
(cf. also SIMO and VU-QUOC [21]).

The first notion we should introduce is that of "tangent vector" at a point u
= (u, Q) of C(C). To this end we first recall that the Lie algebra so(3)
of the Lie group SO(3) is defined as the tangent space of SO0(3) at the
identity. Actually, so(3) is the three dimensional vector space of all
skew-symmetric tensors with the commutator taken as the Lie bracket [ , 1,
i.e. [®, ¥] = &% - ¥® for any ®, ¥ € so(3). The Lie bracket satisfies the

following condition
[®, [¥, Q]] + [Q, [® ¥]] + [¥, [Q @]] =0, (3.2)

called the Jacobi identity. The elements of so(3) are called infinitesimal
generators (or infinitesimal rotations) since Q(n) = exp(n¥), m € R, is a
one-parameter subgroup of S0(3), i.e. exp(n¥) € SO(3) for every ¥ € so(3).
Here the exponential function exp: so(3) » SO(3) is defined by

exp¥ = %r P=1+v+:d+ .. (3.3)

2

:I:MB

0

We also recall that another example of the Lie algebra is furnished by E> with
the usual cross product as the Lie bracket: [p, ¥] = ¢ x ¢ for any @, ¥ € E.
These two Lie algebras are isomorphic, i.e. they are indistinguishable from
the mathematical point of view, with the isomorphism ad: E> > so(3) called the

ad joint representation of E3 defined by
(adyp)v = [y, vl = Yy x v for every v € ES . (3.4)

Traditionally, ¢y € E3 is called the axial vector of the skew-symmetric tensor
¥ = ady € so(3).

Now let u = (u, Q) € C(C) and let us consider two fields @:M - E> and &:¥ >

so(3) defined on M. A mapping R » n » u(n) € C(C) defined by

u(n) = (u + nG, (exp(n@))Q) , (3.5)
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represents a curve on C(C) such that u(0) = u. The tangent vector to this
curve at u is
d

Du = — ul(n)

- A
& = (4, % (3.6)

|n=0

what can easily be shown using the definition (3.3) of the exponential
function. A set of all tangent vectors at u € C(C), denoted by TuC[C), is
called the tangent space of C(C) at u. It is obvious that TuC(C) is a linear
space. Physically, the element Du = (G, @Q) € TuC(C) represents the
infinitesimal deformation superimposed on any configuration u € C(C) of the
Cosserat surface. Moreover, it immediately follows that the tangent space of
C(C) at the identity 1 = (0, 1) € C(C) is

T,C0) = {@ & | & §:45 Ex s0(3)} . (3.7)

Recalling next that the two Lie algebras so(3) and E> are isomorphic, we may

define the tangent space of the configuration space C(C) as
TC(C) = =8 & | & ¥o>E xE} (3.8)

where %(E) is the axial vector of the skew-symmetric tensor @(E), i.e. @(E) =
ad(£).

For elements of the tangent space (3.8) we introduce the notion of generalized
virtual displacements understood in the sense of a collection of the virtual
displacement of the carrying surface and the virtual rotation of the

directors.

Let now u = (u, Q) € C(C) be an arbitrary configuration of the Cosserat
surface and let 4 = (8, %) e TC(C) denote kinematical admissible generalized
virtual displacements, i.e. ﬁ = 0 along aMd. Consider the following functional

I[u; lAl] = '[J.{NB' ({\I,B -Qx ;’) + HB' $’B} dA -

B8
M
- ”(p cQ+1 -9 da- J(N*- 4+M - ) as, (3.9)
M oM

where the stress resultants NB and the couples MB are to be regarded as
functions of u through the constitutive equations (2.11) and the kinematical

relations (2.6). We also admit the external surface and boundary lcadings to
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* »*
be configuration dependent, i.e. p, 1, N and M may depend on u. The
but depends nonlinearly on u.

£>

functional (3.9) is linear in

Using Stokes’ theorem the funciional (3.9) can be transformed yielding

u & = - [[toflg+pebv 0 v 7 ¥ s b an s
o B
¢ [tafog - )-8+ 0ffvy - w) - as (3.10)
AN B

A
+ i{(NBvB) u + (MBVB)°$} ds
a

The second line integral in (3.10) vanishes for d must be kinematically
admissible. Moreover, from (3.10) it follows that u € C(C) is an equilibrium
configuration satisfying the equilibrium equations (2.8) and the static

boundary condition (2.10a) if and only if

Iu; 61 =0, vi@eTcE, &=0alongan, . (3.11)
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4. Buckling equations

In the previous chapter we regarded the elements of the tangent space TC(C) as
virtual displacements. Actually, the tangent space models locally a
configuration space. Most linearizations in physics consist in replacing a
given configuration space by its tangent space at a point. This concept will
be used to derive the buckling equations, i.e. the linearized equations about
a given equilibrium state of the shell.

Let u = (u, Q) € C(C) be an equilibrium configuration of the Cosserat surface
and let, as before, & = (4, ﬁ) € TC(C) denote a kinematically admissible
virtual displacement. Consider now another kinematically admissible element of
the tangent space which we denote by d = (X, %], U e TC(C). We may regard d as
the infinitesimal generator of a one-parameter family of configurations

represented by a curve
u(n) = (u + n&, exp(n¥)q), n=z0 (4.1)

on the configuration space and such that u(0) = u. Here, in accordance with
our notation schenme, ¥ = ad&. In physical term, d represents a small
deformation superimposed on the equilibrium configuration u. By virtue of the
principle of virtual displacements (3.11) the configurations of the shell

represented by (4.1) are equilibrium ones if and only if:
Ilu(n); 4 =0, wieTC(C), & =0 along aM, . (4.2)

The buckling equations can now be obtained by linearization of the
functional I[u(q); Q] in the principle of virtual displacements (4.2) about

the equilibrium configuration u, i.e.

pIfu; ¥, &1 = & 1tucm; 81,0 = 0 (4.3)

Hence, it only remains to calculate the first differential of the functional
(3.9).

According to (4.1) the position vector of the carrying surface and the

directors in the configuration u(n) of the shell are given by

r(n) =r +nu, (4.4)
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Aﬁn)=(mmhMDA1=(1+n¥+..JA1=A1+n$xA1+.... (4.5)

The associated strains we denote by EB(n) and KB(n). Then the corresponding

stresses Nﬁ(n) and Mﬁ(n) are determined by the constitutive equations (2.11).

Adopting the same notation convention for the external loadings it follows
from (3.9)

ImmnG]=”mﬁmwﬁﬁ-¢x(a3+&$n+
M

N uﬁ(n)oQ,B - pm) oA - 1Py aa - (4.6)
- I{N*(n)-ﬁ + H*(n)~$} ds ,
oM

and hence

mm;&ﬁ]=”wfwﬁﬁ-$xF$)-W4$xﬁg+
‘M

+ DMB-Q,B - Dp-f - D1-} dA - (4.7)
- J(DN*-G + DM P ds .
M
f

Here DF is the short notation for the directional derivative DFIu, M] of the

quantity F evaluated at u € C(C) in the direction d e TCLC):

4 d
. =2 4.8
DF[u; u] & F[u(n)]ln:O . ( )
In particular, from (4.4) we obtain
Dr = 4, DA =¥ x A . (4.9)

If F represents a vector field defined through its components with respect to
the rotated base Ai, as the internal stresses NB, MB or the external loadings

* *
p, 1, N, M, then F(n) = Fi(n)Ai(n) and with the use of (4.9) one gets
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DF = DF'A_ + F'DA, = DF'A + F' x A (4.10)

?

and hence

i

¥sDFA1=DF-¥xF, (4.11)

may be called the corotational differential of the field F. Here again ¥ is
short for ¥[u; X] = DFl[u; H]Ax‘ For later use we note that in the case of a

tensor field T = TijAla Aj the corotational differential of T is given by
¥EDT11A1®AJ=DT-¥T+T¥, ¥ = ady . (4.12)

In particular, if T is a field with values in so(3) then ¥ = DT - [¥, TI,
where [ , ] denotes the Lie bracket. The formula (4.12) can be shown by direct
use of the definition (4.8), the relation (4.9) and the following identities
T(ue v) = (Tuwe v, (ue v)T = u o(T'v) valid for any second order tensor T

and any vectors u and v.

Now, differentiation of the constitutive relations (2.11) with the use of the
formula (4.11) yields

¥ =c®¥ +cB¥ | (4.13)
1 B 2 B

Yo _ ~aB o

M = C3 EB + C4 kB ,

where the second order tensors (elasticity tensors) C:B = C:B(EA. KA; g, p=
1,2,3,4, are defined by

CaB - aN CaB =:6N'“
a ’ ’
1 E 8 2 3K 8
(4.14)
B e _am®
' 3K
3 dE P 4 a 8

In the case of a hypereiastic shell the elasticity tensors are given by the
second partial derivatives of the strain energy function @(Ea, Ka; €) and they
enjoy the following symmetry conditions

c‘;‘B = (c‘j“)T , p=1,4 aB=1,2

(4.15)
c‘:ﬁ = (cf‘")T . aB=1,2
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The corotational differentials EB’ KB of the strain measures entering the
linearized constitutive equations (4.13) have the form

EB = X’B - ¥ x ;’B , KB = M’B . (4.16a,b)

To show this, we note that in view of (4.4), (4.5) and (2.6)

E (n) = r,

. (n) - A_(n) = E +M&B-$xA)+.“ (4.17)

B B B B
and hence
v Vv -
DE, =u, _, - A _=u,, - R xE, . (4.18)
B~ "8 ¥"13 g ¥"’B ¥ 8
From (4.18) and the formula (4.11) the relation (4.16a) follows. Next, setting

Q) = (exp(n¥))Q = (1 + n¥ + ...)Q e SO(3) (4.19)

at any £ € M, by the definition (2.6b) of the bending vectors we have ﬁB(nJ =

adKB(n), where iB(n) € so(3) is given by
= T = e 4.20
Rg(m) = Q, g(mMQ (m) = Ry + n(¥, 5 + b, &g1) + (4.20)
Differentiation of (4.20) yields
= o (a.21
DR, ¥,B + ¥, Rgl . (4.21)
Clearly, DEB € so(3) at any £ € M. Moreover, we have DEB = ad(DKB) what in
view of (4.21) implies that
- 4.22)
DKg %B+$x%, (

and hence (4.16b) follows.

Having established the linearized constitutive equations and the linearized
kinematical relations we are now ready to derive the remaining linearized
field equations and the boundary conditions. To this end we apply the formula
(4.11) to the differentials of the stresses and the external loadings entering
(4.7) yielding
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JI{ﬁS-(G,B - ¥ x F,B) + ﬁﬁ'ﬁ,B + NB-(X,B x @) +
M

DIlu; 4, 4]

+ ($ X NB)'(G,B - @ X F,B) + (m X MB)'Q,B -
(4.23)
- (¥ + ¥ X p)'ﬁ - X+ % X 1)-3} dA -
- I{(ﬁ* s P x N+ M + P x M) ds .
8Mf

»* *
It is to be noted here that ;, Y, ﬁ and ﬁ are, by their definitions, linear
in U at the most. Applying now the Stokes’ theorem to (4.23) and subsequently
making use of the identity

;’B X (¥ X NB) = -(m X T,

B r .24
B) x N° + ¥ x (r,B x NB) , (4.24)

we finally obtain

DI[u; d, &] = - II{[NBIB + m'ﬁ x NB + 5 + % X (NB|B + p)l'ﬁ +
M

+ [Mﬁlﬁ + $’B X MB + ;,B X ﬁB + (X,B - $ X ;'B) x NB +1 +

+ ¥ x (HB|B +Fg X N+ 1)1} da + (4.25)

»* »* A
+ J{[ﬁBvB -N + ¥ X (NBVB -N)leu +
oM

»* »*
+ [MBVB -M $ X (MBVB - M )]'ﬁ} ds .
The underlined terms in (4.25) vanish identically whenever u € C(C) is an

equilibrium configuration. Consequently, the varitional equation (4.3) implies

the following buckling equations
NB| + ¥ x NP+ P=0, (4.26a)
B B
ﬁBIB + EB x M° + F,g X NP EB xN+Y=0, (4.26b)

with the corresponding static boundary conditions
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E 3
o =¥, ¥¥» =¥ along aM_ . (4.27)

In (4.26) we have introduced the kinematical relations (4.186).
system of equations

boundary conditions

The above
is to be supplemented by the homogeneous geometric

=0, $=0 along o, . ' (4.28)
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S. Symmetry conditions

Of major importance in the analysis of buckling problems are the symmetry
properties of the bilinear functiénal (4.23). To examine this problem we

define the anti-symmetric part
DI®fu; 4, 8] = DIfu; &, &1 - prlw; G, U1, (5.1)
v
of the bilinear functional (4.23) for kinematically admissible ﬁ, u € TC(C).

Let EB and ﬁB denote the linearized strains associated with the displacement

field & e TC(C). Using the constitutive relations (4.13) and some standard

vector and tensor identities the anti-symmetric part (5.1) of the functional

(4.23) can be expressed in the form

DI*[u; Y, 81 =”sz +J‘J‘ {nB-($x$)|B - (g x N x ¥ aa -
M M

- DIa [I.l; lvlg lAJ.] ’
ext

where
- 4B, - B, -
L=C (ﬁa ® EB ﬁa ® ﬁB) +C, (ﬁa ® KB Ea ® ﬁB) *
(5.3)
aB. - aB. -
* C, (ﬁaafB f“‘m@ﬁﬁ)+c4 (ﬁagﬁB §a®ﬁ6).
and

DI:xt[u; g, &1 - JI {Dplu; d]1-4 - Dplu; 41+ +
e N4 A (5.4)
+ Dl[u; Ul*$ - DL[u; Q)-} dA +

+ J (DN [u; 18 - DN [w; A1+% + DM [w; Y& - DM [w; Q193 ds
aM
£

with Dplu; X], etc. defined by the formula (4.11). Applying next Stokes’
theorem to the second surface integral in (5.2) and subsequently making use of

the equilibrium equation (2.8b) we finally obtain
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DIy d, & = J (T -1-%x Pt da +j o) x ) ds +

M aM
d (5.5)
[ a vV A
+ | M -($ x $) ds - DI" [u; u, ul
J ext
oM
£
Accordingly, at any equilibrium configuration u € C(C)
DI*[u; U, 8] = O for any ¥, & € TC(C) with i =& = 0 on oM, (5.6)

whenever the following conditions hold:

a) ¥y =0 at any £ € M

b) DI;ﬁ[u; X, d1 =0 for any g, & e TC(C)

»*

c)1=0 on M and M =0 along aﬁf

These conditions are sufficient for the bilinear functional (4.23) and
(4.25), respectively, to be symmetric at any equilibrium configuration u €
c(c).

By virtue of (4.15) the condition a) is satisfied identically for hyperelastic
shells. Conditions b) and c) indicate that the couple loadings acting on the
shell are in general nonconservative. Moreover, our analysis clearly shows
that at a nonequilibrium configuration the bilinear functional DI[u; d, 4] is
nonsymmetric in general. The analogous result has been previously established
by SIMO and VU-QUOC [21] for spatial deformation of linearly elastic rods.
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6. Closing remarks

The generality of the buckling equations derived in this paper enables the
buckling analysis of shells wundergoing an arbitrarily large elastic
deformation. Some special problems have been considered in detail in [13,14].

Here some additional remarks are pertinent.

As special cases the buckling equations for shells with a more restricted
kinematical structure can be obtained. In particular assuming that the
rotation tensor Q is not an independent variable but it is determined by the
local deformation of the shell reference surface the buckling equations can be
reduced to those derived within shell theory based on the Kirchhoff-Love
normality hypothesis. In this special case the transverse shear deformation is
excluded but not the transverse normal deformation. Adopting ANTMAN’s
terminology we shall refer to this case as unshearable shell model while the
general theory of this paper will be called shearable model. The relevance of
the shear deformation on the buckling behavior of shells is illustrated below

for the buckling problem of circular plates.

The validity of the buckling equations presented .in this paper is not
delimited by magnitude of étrains, displacements and/or rotations, specific
properties of a material or even the shell thickness. Their range of
applicability will be solely confined by an accuracy of specific constitutive

relations employed in the analysis.

A fairly general form of. the constitutive equations for rubber-like shells
is derived in the Appendix B within a single kinematical assumption (cf. also
(12]). These constitutive relations represent a substantial extension of
earlier propositions [3,4,20] in a twofold sense. Firstly, they incorporate
the transverse shear deformation. Secondly, they admit an arbitrary
transverse normal deformation of the shell consistent with the
incompressibility condition. Moreover, in our derivation of the constitutive
equations the reference surface may be arbitrarily allocated in the shell
space without need of representing all relations in the form of power
" expansion with respect to the normal coordinate. This allows to obtain the
solutions for shells of virtually arbitrary thickness. For the problem of long
circular cylindrical shells (circular rings) under external pressure
closed-form solutions of the governing buckling equations had been obtained in
[14). Representative examples are shown in Fig. 1. It should be noted that the

characteristic behavior of our solutions coincides with the three-dimensional
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one. Also, qualitatively there is reasonable coincidence of our solutions with
the three-dimensional solutions and experimental results, even for fairly
thick shells. In Fig. 2 the comparsion of our solutions [13] with the
three-dimensional ones is presented for the circular plate under uniform
radial loading. The results are in good agreement for relatively thin plates.
However, there exists fundamental divergence in the solutions in the limiting
case when the plate thickness grows indefinietely large. Nevertheless this
example clearly shows that the transverse shear deformation can have a

signifant influence on the buckling behavior of moderately thick shells.

Another essential feature of the buckling equations derived here 1is their
lower order with a clear physical interpretation of the independent
kinematical wvariables. This makes them very attractive for a numerical
analysis applying the finite element method with standard isoparametric c®

elements.
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Appendix A

Derivation of the equilibrium equations

The equilibrium equations for shells whose vectorial form is formally
identical to that of (2.8) are well-known in the 1literature (cf. the
discussion by ERICKSEN and TRUESDELL [6] and NAGHDI [15]). One has to note,

however, that the methods of derivation vary throughout the literature and
consequently the static variables entering these equations have different
physical meaning. A brief derivation 1is included here not only for
completeness but also for illustration that virtually contrasting arguments
lead to the same form of the equilibrium equations. Moreover, the method of
derivation employed here clearly shows that the equilibrium equations (2.8)
are straightforward and exact implications of the three-dimensional balance

laws.

I. Direct approach (cf. [6,15])

In this approach a shell is regarded as the material surface S to which a
microstructure may be ascribed. The basic postulates, not different in

principle from their counterparts in continuum mechanics, are:

a) external loadings acting on the shell consist of the surface force p and
the surface couple 1 both defined per unit area of the undeformed

configuration ¥ of S,

b) the action of the part of the shell outside any imagined, smooth, closed
curve 38S' enclosing a subregion S’c S on the part inside is equipollent to
the stress resultant Nv and the couple resultant Mv defined per unit length
of the image M’ of 8S’.

In consistence, the force £(S’) and the torque m(S’) acting on the part S’ of

the shell are given by

£(S") =INV ds +”pdA,
aM’ M

v

(A.1)

m(S’) = I (Mv +rx Nv) ds + JI (L+r xp)da.
amM’ M
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Here the external loadings and the stress and couple resultants are to be
regarded as functions of the material coordinates & = (EB). Moreover, as Nv
and Mv concern one additional postulate is to be made (Cauchy’s postulate in

the continuum mechanics):

c) if two curves 3M’ and 3M" on M have a common normal direction at € in the

tangent plane to M then
N (§) =N(§) , M (£ =M I(£) . (A.2)

Under suitable smoothness assumptions the postulate (A.2) implies that

=
t

N (€, v(€)) N (&) vg(£)

(A.3)

M
v

B
MV(E, v(€)) = M (&) vB(E) .

Introducing now (A.3) into (A.1) and applying subsequently Stokes’ theorem one
finds

£(s’) = ” (N"3|13 +p) dA,
e

(A.4)
m(S’) = JI (HB| +r,, X NB +1+r X (NB| + p)} dA.
B B B
M’
In view of the arbitrariness of S’¢c S the static balance laws
f(s’) =0, m(S’) =0 (A.5)

imply the local equilibrium equations (2.8).

II. Descent from three-dimensions (e¢f. [11,19])

Consider now a shell as a three-dimensional body B which, for simplicity, we
may identify with its initial configuration B ¢ €3, Let {61} = {&, &} denote
material coordinates taken to be normal ones in B and let us define the shell
reference surface M by € = 0. Assuming that £ € [- h: , + h: ], the position
vector of any particle in the initial configuration of the shell may be

expressed in the form
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X(g, &) =r(g) + €a (&) . (A.6)

Under an arbitrary smooth deformation x: B - 83 of the shell the same particle

will move to a new place whose position vector may be represented by

x(£, ) =r(§) +Z& €, < 0)=0 (A.7)
where r denotes the position vector of the deformed reference surface M =
x(M).

The force F(P) and the torque M(P) acting on any part P ¢ B of the shell are

F(P) = J TndS + J £ av ,

apP P
(A.8)

M(P) = I x X TndS + J x x £ dv ,
aP P

where T(X) denotes the first Piola-Kirchhoff stress tensor, f(X) is the body
force and n(X) denotes the outward unit normal vector to the boundary 8% of P
c B. Assume now that P is obtained by normals to M along a smooth curve &M’
bounding M’'< M. Then the boundary 8P consists of three parts, the upper M+ and
lower M: shell faces with the position vectors Xi(é, £) = X(&k - hf ) and the
edge 3P being the ruled surface with the position vectors X (s, &) = r(s) +
Eas(s). We have [15,27]

+  + + + +
nds” =t (g8 7 h 8 5t aa
(A.9)
#* »*
ndsS = ngBudE ds ,
where
i i
g =x’ 4 g.g =6 ’
! t e (A.10)

p=1-26H + €X, dV = ud€ dA .

Using the expressions (A.9) the force and the torque given by (A.8) may be

reduced to the form
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F(P) = J NBVB ds + IJ p dA , (A.11)
aM’ v

M(?)=I(MB+FxN3)des+IJ (L+F xp)dA,
am’ M

where the stress and couple resultants are defined by

+ +
M) = I ™ pee, ¥ = I zx ™ pde (A.12)

and the statically equivalent surface loadings are

+

p = I £fpde + [(T° 7 hiB ™)’

(A.13)
+
+
1=J§xfud€+ (g x (Tsxh:BTB)uli.
winere '1'1 = 'l‘gi are the nominal stress vectors. Now the three-dimensional

(static) balance laws F(P) = 0 and M(P) = 0 imply the local equilibrium
equations (2.8) for shells.
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Appendix B

Determination of the constitutive equations

In section 3 the constitutive equations had been assumed in the very general
form (2.11). For rubber-like shells undergoing finite strain deformation we
derived in [12] constitutive equations by descent from the three-dimensional
theory. Here a short review should expose and clearify some basic results of
[12,24].

We regard the shell as a three-dimensional body whose particles are identified
with their material coordinates {51} = {€, €&} taken to be normal ones in the
initial configuration of the shell. Then the position vector of any point of

the shell space may be expressed in the form

+

X(g, &) =r(g) + 633(6). § e - h: , +h 1] (B.1)

where r denotes the position vector of the undeformed reference surface M and
hb= h:+ h: is the initial shell thickness. The natural base vectors and the

components of the metric tensor associated with (B.1) are given by

ga = “5 aB , 8“’ = (p-ljg aB , 83 = 33 = a3 ) (B.2)
g,,= 88, g'l=g'g’, (B.3)
where

B B B -t 1« « «
=3 =- = = - - .4

My, =3, - €., (u ) . (5 §(2m3, - bo)1 (B.4)
= B _ 2

g = det B, = 1 - 2HE + K&° , (B.5)
=a . 1.8 - 8

baB 3,83 H > bB , K = det ba . (B.6)

Various geometric quantities entering into these relations have standard
meaning [11,15,17].

A two-dimensional strain energy function (per unit area of M) for the shell

made of a hyperelastic material may formally be defined by
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+ +  +h

o = I W(C)pdE | J

= -h
o

(B.7)

m
—

Here W(C) is a three-dimensional strain energy density, C = F'F denotes the
right Cauchy-Green deformation tensor and F is the deformation gradient. For a
rubber-like material it is usually assumed that W = w(Il, Iz) and [ = 1
(incompressibility condition), where Ii , i =1, 2, 3, are the principle
invariants of C. Denoting by x(£, &) the position vector of a particle in the
deformed configuration of the shell the incompressibility condition can be
expressed in the form

B . _
€ (x,axx,B) X,e = M, (B.8)

where ( )’E indicates partial differentiation with respect to the normal

coordinate §. Moreover, the principle invariants I1 and I2 are given by [33]

= g%8 3 p = o =33
L =8 gg*8,, I1,7gg8 *+8 . (B.9)
where ’
. = % ° g . =x ¢ "R B. 10
gOtB x,ax,B, 83 x,ux,g, 81s x,€ xE, ( )
N S S 1
g o € (gM €33 ~ 83 g:ca) ’ (B.11)
2 = _;_ u2 oA B éaB é)uc . ’ (B.12)

From (2.12), (B.7) and (B.9) - (B.12) it follows that the determination of the
constitutive relations for rubber-like shells requires to show that under
suitable assumptions the components of the metric tensor (B.10) can be
expressed as functions of the strain measures EB , KB and of the normal
coordinate £ such that the incompressibility condition (B.8) is satisfied
identically. The solution of this problem given below follows our earlier

papers [12,24].

Assume that the three-dimensional deformation of the shell is constrained such

that the position vector x(§, &) may be expressed in the form

x(€, &) =r(&) + C(§, £)a(8), &g 0) =0 (B. 13)
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Here an unknow function ¢ accommodates an arbitrary transverse normal
deformation of the shell consistent with the kinematical constraint (B.13).
The differentiation of (B.13) with the use of the definitions (2.6) of EB and

KB yields
X, =A +E +C(K xA -bSA)+& A =
o o o (13 3 oa B o 3
= - - B
= {aaB + E«B c(baB KaB)} A" + (Ea + g,a) A3 , (B.14)
x’E=C’€A3’

where we have set

- B _ _ AB ' 5
Eu-EaBA +EaA3’ Ka-— € KaBAA+KaA3. (B. 15)

Introducing now (B.14) into (B.8) the incompressibility condition reads

(1 -2z + k&2 & =2, (1 - 288 + kD) , (B.16)

% g

where the following quantities have been introduced

-1 -1 o8 = = YA = B 1 =B
AE (&) = > (P’a X r,B) A3 =1+a EaB + > E EaB ,
- _1 g = _
H(E) = > Ag €7 T, (A3’B X A3) =
= 1 aB 1 zeB - B.17
AE{H 22 Kg+3E (baB KaB)}, ( )
_1 B, A =
X(E) = > Ag € (As,a X A .B) A =
_ _ 3o _1
AE{K 4 (baB ZKaB)}.
and
goB o 8 A EM-EBa. RoB - %8B JAK K, - xBx (B. 18)
©K

Recalling that (£, 0) = 0 the first-order differential equation (B.16) can be
integrated yielding

K - 3nE% + 3¢ = AcE (3 - 3HE + KE) . (B.19)
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The general solution of this cubic algebraic equation is of the form
S &) =208 Ay, #, X H K) . (B.20)

Introducing now (B.20) into (B.14) and (B.9) - (B.12) and subsequently into
(B.7) we obtain the expression for the strain energy & as a function of the
strain measures EB and KB . It is to be noted, however, that the presence of
c’u in the expression (B.14) implies that ¢ depends also upon the derivatives
of EB and KB (cf. [12]). Therefore, in order to preserve the conventional
structure of the shell theory considered in this paper we assume that c’a 2 0.
This is not an essential restriction whenever the wave-length of deformation
pattern is sufficiently long. We next note that the strain energy function ¢
derived within the assumption (B.13) does not depend on KB = KB~A3 , i.e. the

most general form of ¢ is

®=0(E ., E ,K_: . (B.21)
(aBococB&)
Consequently, also the components MB = MB-A3 of the couples vanish, i.e. MB =
0.

The essential feature of our derivation of the strain energy function ¢ and
via & the constitutive relations is this that a power expansion with respect
to the normal coordinate £ is not required. This fact may efficiently be used
in the analysis of some special problems as cylindrical deformation of shells
[14] or flexural buckling of circular plates [13]. In the general case of
- relatively thin shells it is appropriate to represent the solution of the

algebraic equation (B.19) in the form

(g, &) = Ag (€ + % ke EZ + é xg 63 + .00, (B.21)
K& =2 (Ag ¥ - H) ,

= - 2 -
Xe 3&5 (Ks +2H) - 2 (AE X-XK),

Expressing also the remaining geometric quantities (B.9) - (B.12) in the form
of power expansions with respect to £ different levels of approximations for ¢

may be derived.

In the particular case when A3 is constrained to remain normal to the deformed

reference surface the derived relations give the constitutive equations for
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unshearable shell model. In this instance Ecz = 0 and E ='EBoc . Moreover, X

aB

and K have meaning of the mean and Gaussian curvatures of the deformed

reference surface of the shell.
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