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Zusammenfas sung

In der vorliegenden Arbeit wird die Struktur der Grundgleichungen zur Beschrei-
'bung ebener Balkendeformationen unter Verwendung verallgemeinerter Dehnungs- und
zugeordneter SpannungsmaBe untersucht. Eine einfachste, konsistent formulierte
geometrisch nichtlineare Balkentheorie bei Auftreten kleiner Dehnungen und
finiter Rotationen wird hergeleitet. Fihrt man zus&tzliche Beschrénkungen der
Balkendeformationen ein, lassen sich konsistente Vereinfachungen der Grund-
gleichungen angeben. Es wird gezeigt, daB8 die Formulierung adequater Balken-
theorien einen guten Einblick in nichtlineare Theorien diinner Schalen gibt. So
kénnen vereinfachte Schalenvarianten hinsichtlich ihrer Konsistenz einem Vorab-
test unterzogen werden. Die Leistungsfdhigkeit des theoretischen Konzepts wird

anhand verschiedener Testbeispiele aufgezeigt.

Summary

The structure of the basic equations for in-plane finite deflections of rods is
analysed in terms of generalized strains and work-conjugate stresses. A most
simple consistent nonlinear rod theory for small strains and unrestricted
rotations is presented. Consistent simplifications of the basic relations are
discussed under additional restrictions imposed on the rod deformation. It is
shown that the construction of adequate rod theories gives a good insight into
the nonlinear theories of elastic shells and the consistency or inconsistency of
simplified variants can be enlightened. Theoretical concepts are illustrated by

various numerical examples.
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1. INTRODUCTION

In the theory of thin elastic shells the changes of the shell middle surface
metric and curvature tensors from the undeformed to the deformed configuration
are used as natural strain measures. However, the fundamenéal considerations of
KOITER, JOHN and others (see [1-4]) showed that any other in-surface and bending
strain measure differing from the conventional ones by terms of O(nez) and
o(nez/h), respectively, are egquivalent in the sense of the first approximation of
the shell strain energy. Here n is a maximum strain in the shell, h the shell
thickness and © a common parameter for small quantities defined in [1-4]. Based
on these results various modified strain measures have been proposed in the shell
literature. It is shown in [5,6] that other than the conventional strain measures
are more convenient to formulate the basic shell equations in terms of stress
resultants (or stress function) and a finite rotation vector, which had been
first proposed by REISSNER for axisymmetric deformations of thin shells of
revolution [7]. However, general numerical approximation procedures as finite
difference and finite element methods are mainly based on shell equations
formulated in terms of displacements.

Modified change of curvature tensors for a displacemental formulation of
nonlinear shell theories and Lagrangean shell equations have been derived by
KOITER [8] and BUDIANSKY [9], whereas the full set of entirely Lagrangean shell
equations for small strains and unrestricted rotations was given by
PIETRASZKIEWICZ and SZWABOWICZ [10]. However, these equations are very complex
and intractable for general numerical approximation procedures. On the other hand
there is a wide variety of simplified shell equations, published in the
literature, which have been derived under the assumption of additional restric-
tions (sometimes not explicitly stated) imposed on the magnitude of displacements
and/or rotations. We mention only those given in [8,11-23]. It should be pointed
out that all nonlinear shell equations, widely used in theory and engineering
practice, are valid only in restricted domaines of applicability, whereas these

domains are in general not well-defined. Moreover we have shown recently [17,23]



that some shell theories formulated with the attempt to extend the range of
applicability are not consistent and lead to unrealistic behaviour of the shell
structure. These results initiated the investigations of the present report.

Subject of this paper is the formulation of flexible rod theories for highly
nonlinear in-plane deformations under assumptions analogous to those of the first
approximation shell theory. Two main topics are analysed. First, generalized
strain measures are defined, which include as special cases various knowh strain
measures published in the literature for rod boundary value problems. They yield
also the modified strain measures of the nonlinear shell theory in their
one-dimensional reduced form. Next, work-conjugate stress resultants and stress
couples are defined by applying the virtual work principle, and corresponding
field equations are derived in a straightforward way. As a result a unified
approach to the in-plane rod boundary value problem is obtained, whereas the
mathematical structure of the basic equations and the physical meaning of the
associated variables are discussed.

The displacemental formulation of rod boundary value problems is studied in
more detail. A most simple fully general theory is presented and consistently
simplified versions of it are derived, whereas their range of applicability is
established. Finally numerical results are presented for various rod boundary
value problems.

The mathematical structure of the equations of in-plane deformations of rods
is the same as for the cylindrical bending of shells. Therefore theoretical and
numerical results of this paper give a comprehensive description of corresponding
shell problems as well. Moreover the derivation of simplified rod theories yields
a good insight into similar investigations of the nonlinear theory of shells. In
particular a partial verification of various simplified nonlinear shell theories
is achieved by a reduction to their one-dimensional form.

There is a vast number of publications on the deformation of rods. For

historical review and bibliography the reader is referred to [24,25]. Plane



deformations of rods (including material non-linearity) within the frame of the
Kirchhoff hypothesis or equivalent assumptions have been considered in [26,27].
Theories of rods with a richer structure (including shear deformation and other
effects) and the qualitative behaviour of solutions have been subject of many
publications, e.g. [25,28,29]. In the aforementioned papers the basic equations
are form&lated in terms of static and deformation variables. Less attention has
been devoted to a displacemental formulation of rod theories, in particular for
the case of unrestricted deflections and/or rotations. Various relations are
given in [30-32], however, a full set of equations in terms of displacements with
proper boundary conditions has been derived only for the special case of straight
beams [33,34].
2. GEOMETRY OF DEFORMATION

We shall consider the smooth in-plane deformation of a flexible rod or what is

equivalent the cylindrical deformation of a shell. We assume that cross-sections

that are normal to a reference line in the initial configuration of the rod

remain planar, normal to the deformed reference line and suffer no strains in
their planes (Kirchhoff's hypothesis [24]). However, at this stage of the
analysis no restrictions as to the magnitude of strains and displacements
(rotations) are imposed. In other words as a model for the rod we take a curved
extensional elastica [27].

Within this model the configuration of the rod is determined by a single
vector function of a material coordinate s, s e[s1,52]. To have all quantities in
physical components we assume s to be the arc length in the initial configuration
M of the reference line with the position vector r= s(s). Thus the unit tangent

vector and unit normal vector at any point M € M are (Fig. 1)

e(s) = r' = cosdi + sindj , n(s) = k x e = - sindi + cos®j , . (2.1)
~ ~ ~ -~ o~ ~ o

where ¢(s) denotes the tangent angle to M and the prime indicates diffgrentiation

with respect to the arc length s. By (2.1) the curvature of M is

als) = 3"-2 = &' . (2.2)
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Fig. 1. Geometry of deformation of the rod reference line

Considering the deformation of the rod we take as a rule that all quantities
associated to the deformed configuration are distinguished by an additional bar,
e.g. the position vector of the deformed reference line M is denoted by g =
g(s). Obviously g' is the tangent vector to M but not necessarily a unit vector,

which will be denoted by é. Let us define
A(s) =ds/ds , 0 <A<+ o, (2.3)

with ds = |r'|. Then for M the following relations hold

r'(s) = A(coswe + sinwn) , n(s) = k x e = - sinwe + coswn ,
G=A‘r'ten=21 0",
~ ~
where
w(s) = d(s) - O(s) . (2.5)

The displacement field of the reference line is given by



u(s) = £(s) - £(s) . (2.6)

It follows that the local deformation of the rod determined by a mapping of {e,n}
into {r' ,é} consists of a parallel translation given by (2.6) and a rigid finite
rotation (2.5) followed by a stretch (2.3) of the reference line.

For later use it is desirable to express the relations (2.3-4) in terms of the

displacement field

- - -1

rr=e+u' , n=2 (2+‘)§xg'). (2.7)

As an immediate consequence one gets

12 = 1 + 23°2' +u'-u’ ,

_ (2.8)
G = A {2°g" + (5xg')-g" + o1 + 2°(5x2')]} .

The second derivative of the displacement field may be expressed in the form

u'' = (g:g')'s + (2°g')'2 +kxu'. (2.9)

Substituting (2.9) into (2.8)2 the curvature of the deformed reference line is

obtained as
- -3 2
o= A [(2-2')'(1 + s°2') - (s'g')'(g-g') + 20l . (2.10)

The derivatives of the displacement field can be expressed with the help of (2.7)

and (2.4)1 in terms of the stretch and the angle of rotation as follows

u' = (Acosw - 1)3 + Asinwg ,
(2.11)
3" = (A'cosw - Am'sinm)s + (A'sinw + )u»'cosm)g .

Additional relations may now be derived using component forms of the displacement
field with respect to the initial unit base {5,2} and to the unit base {‘i',i} of
the global coordinate system, respectively.
3. STRAIN MEASURES
The strains of the rod reference line are uniquely determined by the stretch A
and the pure change of curvature ¥ = - 0 + 0. However, these quantities are by no

means the only possible strain measures and even not the most suitable ones for



the formulation of the general rod boundary value problem. It is apparent that an
appropriate choice of ;he strain measures is closely related to the problem under
consideration. In the general case of finite strains this problem is fairly open
since, as it has been pointed out by LIBAI and SIMMONDS [35], the conventional
strains and changes of curvature are no longer “natural® variables for the
description of the deformation. In what follows we shall consider a wide class of
strain measures defined by the generalized formulas

Fea oz, F--2M5+004+1m, (3.1)

where k, 1 1, are small dimensionless constants. The strains given by (3.1)

17 72
fulfill basic requirements imposed on strain measures (HILL [36]). In particular
they vanish in the initial configuration and for rigid body deformations, i.e.
when A = 1 and ¢ = 0. In the case of an inextensional deformation (A = 1) the
definitions (3.1) lead to ¥ = 0 and X = - 0 + o for an arbitrary choice of
constants k, 11 and 12. Furthermore we shall show later that the strain measures
(3.1) become identical with the classical ones in the case of small deformation.
The definition (3.1)1 is the one-dimensional counterpart to HILL's generalized
strain tensor [36]. In particular for k = 1 it corresponds to the GREEN strain ¥
and for k = 1/2 to the nominal (“"engineering") strain . Definition (3.1)2
contains various flexural strains used in the theory of rods as well as various
change of curvature measures used in the shell theory in their reduced
one-dimensional form (Tab.1). We shall show in chapter 6 that for small strains
all particular cases of the generalized change of curvature measure (3.1)2 are
equivalent in the sense of the first approximation to the strain energy function.
The choice of one of them is therefore a matter of simplicity of the
corresponding field equations. This aspect is studied throughout the paper. It is
interesting to note that in the theory of large strains [37] other than the
conventional change of curvature measure turn to be more convenient. In this

case, however, various flexural measures are no longer equivalent, what may be

illustrated by an elementary example of the uniform deformation of a ring (Fig.
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Fig. 2. Uniform deformation of a ring: Comparison of various measures of

change of curvature

The definitions (3.1) of strain measures may still be generalized. According
to HILL [36] as the extensional strain measure can be taken any smooth monotone
function f_(A) of the stretch A such that f (1) = O and afe/ax|1 = 1. The
definition (3.1)1 fulfills these requirements. In analogy, as the general measure
of flexural strains can be taken any smooth function fu(a,o,l) such that

fu(o,o,1) = O and fx(3’°’1) = + (6 - o). However, in order to be physically

acceptable, some additional conditions like monotony conditions should be imposed

on a function fx'



4. CONJUGATE STRESSES. EQUATIONS OF EQUILIBRIUM
Although the equilibrium equations for rods may be obtained in different ways,
their structure, as it was pointed out by ANTMAN [25], is of exactly the same

form. Only the mechanical variables may have different physical meaning.
We define a generalized stress resultant N and a generalized stress couple M

as coefficients in the invariant expression of the internal virtual work

2
oW, = (N6 + M6%)ds , (4.1)

1
where 6¥, 6X denote the virtual changes of the strain measures (3.1). Since the
function g(s) determines the deformation of the rod reference line the virtual
changes of the strain measures may be expressed in terms of virtual displacements

62. Indeed, from (2.4) we have
2 - .= 2-, - .- - -
6(\7) = 2r'+6r' , 6(0A"0) = 3-65" + 5"-62 . (4.2)

Furthermore, the orthogonality conditions of the base vectors é "z-;' =0, ﬁ-é =1

imply the identities

r'+6n = - n*6r' , n*6n =20, (4.3)
~N ~ ~ -~ ~ ~

and by this
Eoen = - ATESE . (4.4)

Using (4.2) and (4.4) the virtual changes of the strain measures (3.1) can be

expressed in the form

67 - 12<k-1)§,_6§,,
6% = - {[2(1, - 1a2-1g 12A2(k‘1)oJ§- - A-1X'A2(l"1)§}-6§' (4.5)
20410 -,
~ ~

Inserting (4.5) into (4.1) and performing integration by parts the internal

virtual work reads
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&2
’ ~ - ~ . - ~ - s2
oW, = - I T'e6rds + [T+6r - (n x M)+6n] ’ (4.6)
1 ~ L2 -~ ~ ~ ”~ ~ 51
8

1

where the stress resultant vector i and stress couple vector é are given by

e 02%VE - @ - 0a25 1 2% e
-1, . 2(14=1), - (4.7)
+ A7 AT M),
e - a2 R (4.8)

We assume furthermore that the loads acting on the rod upper and lower
surfaces are reduced to the statically equivalent load acting on the reference
line with the intensity p(s) per unit length of its initial configuration. Then

~

the conditions of equilibrium of the rod can be expressed in the weak form

)
- 8,
oW, - Ig-ésds - [awelﬁ1 =0, (4.9)
8

1
which may be identified as a one-dimensional principle of virtual work. The last
term in (4.9) represents the virtual work of the loads acting at the rod end
cross-sections and will be specified in the next chapter.

Whenever vector fields i and p are continuous functions, (4.9) together with

(4.6) yield the following local equations of equilibrium
T +p=0, (4.10)

where the stress resultant vector E is defined by (4.7). To establish a physical

interpretation of the mechanical variables let us recall that the true stress

resultant and stress couple vectors are defined by (LOVE [24])

~

ﬁ-:”?;di=ﬁé+§i, ﬁ=”§5xzaz=_ﬁk, (4.11)
~ ~ ~ ~ ~ ~ ~

A A
where E denotes the true stress vector at the rod cross-section in the deformed

configuration obtained from the Cauchy stress tensor T by t = ié. In (4.11) E
~ ~ ~

denotes the coordinate along the normal to the deformed reference line M and the
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integration has to be carried out over the deformed rod cross-section.

The equilibrium equations expressing the global balance of force and moment

have the form [24,27]

B +age0
_ _ _ (4.12)
M'+r" xN= 0,
~ ~ ~
where p denotes the load vector per unit length of M. From (4.12)2 we obtain the

well-known relations Q = A" 1H' and the system of equations (4.12) reduces to
(Fo + A7 H'R) " + Ap = 0 (4.13)
~ ~ s

Keeping in mind the definitions (4.7-8) a comparison of the equations (4.13) and
(4.10) leads to the following identifications

Ap . (4.14)
~

TN

13-4
XY
n
¥ q]

4
In other words the components of the stress resultant vector (4.7) with respect

to the unit base vectors in the deformed configuration of the rod are the true

axial and the true shearing-forces. Therefore we may write

N

=N2+Q2,

- A{AZ(k-1)§

- e, - 1a2e=g g 3201 5y (4.15)

2
- - 1-1(§'5)' - 1-1(AA2(1’-1)ﬁ

101

)n

Furthermore the component of the stress couple (4.8) along the unit vector 5 is

the true stress couple

= - Mk, o= a2la-ly (4.16)

i

The relations (4.15)1 and (4.16) can be inverted leading to the generalized
stress resultant N and the stress couple M as a function of the true variables:

ﬁ = A-1{A2(1-k)ﬁ + [(211 _ 1)l2(1-k)8 -1 l2(1-11)o]ﬁ} ,

2
-1,201-14)

(4.17)

<41

= A

These relations show the physical meaning of the generalized stress measures. In

correspondence to Tab. 1 we list in Tab. 2 the particular form of the strain
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measures with associated conjugate stress measures as functions of the true
stresses N and M. It follows that the strain measures €, p are work-conjugate to

the true stress variables N and M.

k 11 l2 strains conjugate stresses
Y N = A" (F + M)
1 1 0 -
x M=A M
Y N2 ([N + G- o))
1 1 1 1
(-] M=A M
v .| 8 =2V E s 250
1 3/2 0 2
] M=2A ™
. N=A"[F 4+ (25 - 27 0))
132 2
X MewA ™
Y No=A"TR + 2G5 - A7 )R]
1 3/2 2 2
K M= AN
¥ N = A"V - G
1 0 0 _
x M= AM
€ N =N
1/2 1/2 0 -
u M=M
€ N =N - AoM
/2 0 (i} _
x M=aM

Table 2. Strain measures and work-conjugate stresses

The vector equilibrium equations (4.10) can now be presented in various
component forms. Using the relations (4.15-16) we obtain the classical

equilibrium equations expressed with respect to the deformed configuration M

[24,27]

Q' + AON + pen = 0 , (4.18)
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Introducing (4.15)2 3 and (4.16) these equations may be expressed in terms of the
3
generalized stress and couple resultants.
A different scalar form of the equilibrium equations results from representing

the stress resultant vector (4.15) in the global coordinate system {x,y}

§=H£+Vj

. __ . (4.19)
H=cosdN - s8in®Q , V = sindN + cosdQ .
Then the equations (4.10) take the form
H' + p*i =0
~ re
Vi + pj=0 (4.20)

~ o~
M' + A(8in®H - cosdV) = 0
To express the horizontal and vertical components H, V in terms of N and M the
relations (4.19) and (4.15) should be applied.
Finally let us consider the form of equilibrium equations expressed entirely
with respect to the initial configuration of the rod. With the help of (4.7),

(2.7) and (2.10) the stress resultant vector i can be represented by

I-fe+ln,
Fe(l+eudr - (w22 Vg. (4.21)
§ = (munT + (14 ewn 22N,
where
p o 20y (@, - 1)2214-5/2)
o[(1 + 3-3')(203')' - (2-2')(2-2')'] + (4.22)
+ ol(21, - 1)a2(14=3/2) _ 1212(k'1)]}§ ,

The stretch A in terms of the displacements is given by (2.8)1. Hence (4.10)

reads

T - 06 + pee = 0,
(4.23)

6' + og + pn=20,

~ o~
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and by (4.21-4.22) and (2.8)1 they may be presented entirely in terms of the
'generalized stress and couple resultants ﬁ, ﬁ, the displacements and their
derivatives, respectively.
5. BOUNDARY CONDITIONS
The boundary conditions are obtained using the principle of virtual work
(4.9). We assume that the loads acting at the end cross-sections of the rod are
equivalent to a load vector f* per unit area of the end cross-sections in the

initial configuration (Fig. 3). In general f* is a function of the normal

Ay

Fig. 3. Loads acting at the rod end cross-sections

coordinate E, the displacements and their derivatives, f* = f*(E, r, r',...).

Whatever its nature is, the work done in any virtual deformation of the rod is

given by

2 - -.52
= [P*esr + H*‘én]s , (5.1)
~ ”~ ~ ~

1 1

82 s

few 1 ° =1[ If*-(bi' + E6n)da)

051 ~ ~ ~ &
A

q
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where the resultant load vector E* and the resultant static moment H* are defined
~

by

E*(sq) = J]é*dA , g*(sq) = J]kz*dA R q=1,2. (5.2)
A
q Aq

The static moment §* has been introduced in [10] in the frame of the nonlinear
shell theory.
In view of (5.1) and (4.6) the principle of virtual work (4.9) yields
82
~ - -~ - - ~ -52
- J (I' + p)'ésds + [(2 - E*)-ér + (2 x M- E*)-ag]s =0 . (5.3)

p 1
1

The vanishing of the first term in (5.3) leads to the equilibrium equations
(4.10). The terms in the brackets should vanish at the rod ends and this provides
a convenient starting point for the discussion of various possible forms of the
boundary conditions. Let us note that the deformation of the rod ends is
determined by three kinematical variables, i.e. two components of the position
vector'i(sq) and one parameter describing the rotation of the end cross-sections.
Depending on the choice of this rotational parameter we arrive at various forms
of the boundary conditions. In the classical formulation [24,26,27] the angle of
rotation is used. From (2.4)2 we have

én=-nx 6w , w=uwk. (5.4)
-~ ~ ~ ~ ~
Hence the terms in brackets in (5.3) can be transformed further

8
[ - poeor + (B - w0 6wl 2, (5.5)
1

where the resultant load couple is defined by

M*(sq) = n x H* = I]éa x f*3A = - Mkk . (5.6)
~ ~ ~r -~ ~ ~
A

q

From (5.5) we derive the following form of the boundary conditions



T=Fx or ©T= g*

~ ~ ~

- at s = s,,8, (5.7)
M= Mx or W = wk

where an asterisk indicates prescribed quantities at the rod ends. Various
component forms of boundary conditions follow from (5.7) and (4.15-16),(4.19) or
(4.21). It should be pointed out that the geometric boundary condition (5.7)2,
being linear in the angle of rotation, becomes nonlinear with respect to
displacements and their derivatives. Indeed, by (2.11)1 and (2.8)1 we have

n-u'
~ N

m(B) = arcsin . (5.8)
JQi + 203‘)2 + (5°E')2

A form of the boundary conditions alternative to (5.7) may be derived in a

way analogous to that of the general shell theory [10]. Using the decomposition

é(sq) = n e + nn, the identity nen = 1 yields
2
n(s ) = + v1 + n_ . (5.9)
q "= v

Thus the conly independent geometric end parameters are the two components of the
displacement.vector-B(sq) ==g - r and the component n, describing the rotation of
the end cross-sections.
Applying the relation
6n(s ) =D r'6n , D=e°*r' =1+ e*u' , (5.10)
~ g ~ ~ ~ ~
the boundary term in (5.3) may be further transformed into
s

H*)6n ] 2, (5.11)
v 81

[ - Fo)esu + (0 A2ME -

H¥(s ) = D r'eH% . (5.12)
q ~

Thus the virtual work principle leads to the following boundary conditions

% = F*% or u = u*

~ ~ ~

1. 214~ at s 5, , (5.13)
D A“'M = H* or n = n¥%

where the corresponding component form follows from (4.21). The rotational
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boundary parameter nv expressed in terms of displacements by using (2.7)2 and
(2.8)1 is obtained as

neu'
~ ~

nv(g) = - ]
(1 + 5.2,)2 + (2.2,)2 . (5.14)
On the other hand it follows from (2.4)2 that n, = -sinw. Thus, the boundary
conditions in the form (5.13) and (5.7) are equivalent and may be transformed to
each other.
6. CONSTITUTIVE EQUATIONS
‘ To complete the set of equations for the rod boundary-value problem the
equilibrium equations and corresponding boundary conditions, formulated in pre-
vious chapters, have to be supplemented by appropriate one-dimensional constJ':-
tutive equations. For hyperelastic rods, the general form of these equations has
been obtained by Tadjbakhish [26]. Alternatively the one-dimensional constitutive
equations can be derived by specializing the three-dimensional constitutive laws
under Kirchhoff constraints [27].
Although our subsequent considerations will be mainly restricted to the
theory of small strains it is of some interest to present one-dimensional

constitutive equations for finite strains. We assume that the material of the rod

is hyperelastic, homogeneous and isotropic. Then the strain energy is a function

W = W(A1,12,A3) of the principle stretches li’ i=1, 2, 3. The constitutive
equations in terms of principle components 'T‘<'u> of the Cauchy (true) stress
tensor are [39]

=<ii>

IT = AiBW/ali , I = A1A213 (6.1)

Here W is the strain energy per unit volume of the initial configuration of the

rod. Within the Kirchhoff hypothesis >‘2 = A3 = 1 and

A = (- £E) A =14 E(- 25 + o)) (6.2)

where A = 11(0) and E denote the stretch ané the normal coordinate to the

reference line, respectively. With (6.2) the natural strain measures of the rod
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reference line are
e=A-1, upu=-A0+0 (6.3)

As a consequence of the Kirchhoff assumptions the strain energy is a function
W(A1) = W(e,u) of the strains (6.3). Furthermore from (6.2) it follows by

differentiation
(1 - Eo) W/0e = GW/611 ’ (1 - Eg) dW/0u = an/611 . (6.4)

Recalling next the definitions (4.11) of the true axial force N and true re-
sultant couple M and applying (6.1), (6.4) we obtain the following form of the

one-dimensional constitutive equations for hyperelastic rods

2

- ”i"”’cm = H aW/eA, dA = 8T/dc ,

= ”i"”’gda = ” aW/6\, EAA = 83/du ,

(6.5)

4]

where I is the one-dimensional strain-energy function per unit length of the

undeformed reference line
Z = ZI(e,p) = J]ﬁ(1 - Eo)dA (6.6)

The constitutive equations in the form (6.5) may be obtained by different
arguments. We have shown that N, M and e, p are work-conjugate stresses and
strains (see Tab. 2). Hence, taking variation of (6.6) and comparing it with the

internal virtual work expression (4.1) for the constants k = 1 =1/2, 1, = 0 we

1 2

arrive at (6.5).
The constitutive equations (6.5) have been obtained in [27] in a slightly
different way. Replacing the measure of change of curvature p by % = - (¢ - o),

which is a particular case of (3.1)2, it follows
- -2 -~ -1
x/0e = - (1 + e) “(p - o) , Ox/du = (1 + ) , (6.7)

and accordingly with the help of (6.5) we may derive an equivalent form of the
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constitutive equations

= 8z/6e + (1 + )5 az/8% ,

b4}

) - (6.8)
B=(1+e7 8z/0k ,

where x(eg, %) = I [e, ule,%)]. These equations first derived in [27] are,
however, more complicated, because N, M and e, # are not work-conjugates. Let N,
M, denote work-conjugate stresses with strain measures e, %. From (4.15) taking k

= 1/2, l1 = 12 = 0 one gets (Tab. 2)

N=N-oM, M= (1+ €)M, (6.9)

and by these equations (6.8) reduces to the form identical to (6.5). Formally
expressing strains ¢, p by the generalized ones (3.1) and defining the strain
energy I = I [e(¥),u(¥, ¥)] we obtain the constitutive equations in terms of the

generalized variables
~ o~ ~ ~
N=238Z/dy , M= 3Li/ox . (6.10)

The explicite form of the one-dimensional stress-strain relations (6.5) or (6.10)
can now be derived whenever the strain-energy function W is specified. The
equations (6.10) complete the set of equations for the non-linear rod
boundary-value problem in terms of the generalized variables.

Further simplifications of the constitutive equations in the case of small
strains follow from considerations given above. However the a priori assumed
Kirchhoff hypothesis provides no information about the error of the resulting
stress-strain relations. Therefore, our subsequent considerations will be based
on fundamental estimations achieved within the first approximation shell theory
[1-4]. Thus considering the plane deformation of rods as a problem equivalent to
the cylindrical bending of shells we can reflect the same aspects of nonlinear
shell theories.

We assume that the rod is thin, h/R << 1, the deformation is smooth, (h/L)2
<< 1, and strains in the rod space remain small n << 1. Here h denotes the rod

thickness and R, L, n are minimum radius of curvature, minimum wave length of
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deformation pattern and maximum strain, respectively. Under these assumptions it
has been proved that the relative error in LOVE's form of the two-dimensional
strain energy function is 0(92) at a sufficient distance to the shell boundary

[1-4], where the small dimensionless parameter & is defined by
2 2
6° = max {(h/L)°, h/R, n} << 1 (6.11)

Hence in the particular case of cylindrical bending of a shell or in-plane
deformation of rods the strain energy per unit length of the undeformed reference
line is

I=1/2 (c112 + szz) [1+ 0(0)?)] . (6.12)

Here C C., are material constants characterizing the extensional and bending

12 72
rigidity of the rod and y, x are conventional strain measures (Tab. 1) for which

the following estimations hold [2]
v = 0(n), x = 0(n/h) . (6.13)

It follows from (6.12-13) that strain measures differing from the conventional
ones by terms of O(nez) and O(nez/h), respectively, are equivalent in the sense
of the first approximation to the strain energy function [4]. We shall show now
that this is the case for the generalized strains defined by (3.1).

Let us define the maximum extensional strain of the reference line by

e, = sup |A(s) - 1|<n. (6.14)
s1<s<'s2

Since € < 1 the following expansion holds

e+ gqe + ql(q - 1)52/2! + ... +

Qlg - 1eea(g = i+ 1)e /il + ... (6.15)
for any rational number g. With the help of (6.15) the difference between

conventional strains and generalized ones (3.1) may be estimated to be

~

2 ~
Y-y=o0ol1 - k)em] , X - x= 0[11 ne /b + (1, - 1) /R ] (6.16)

Consequently the strain measures y and y are equivalent in the aforementioned
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sense whenever |1 - k| = O(nez/ei), whereas the changes of curvature X and x are
equivalent if|l,| + |1, - 1,| = o(n/e ).

1° 12 the conventional

Under the above restrictions upon the constants k, 1
strain measures in the strain energy expression (6.12) may be replaced by the
generalized ones without violation of its accuracy

~2 ~2

I=1/2 (€% + %) . (6.17)

Consequently, the one-dimensional constitutive equations in terms of the

generalized variables according to (6.10) are

~ o~ ~
N=c¥, M=CJ. (6.18)

7. STATIONARY PRINCIPLE OF TOTAL POTENTIAL ENERGY
We turn now to the formulation of rod boundary vélue-problems in terms of
displacements. Using relations (2.8)1 and (2.10) the generalized strains (3.1)

may be transformed into:

T ={[1 + 2(e+u') + (g-g')z + (2-2')2]k -1}/(2x) ,
14-3/2,

X=-1[1+2(eu")+ (g'g')z + (E'E')zl

(7.1)
%U-rgy)%gﬂ'-(yy)%gW'+

+ ol1 + 2(e-u') + (eeu)? + (n-u')z]} +0(1+1 % ,
~ N ~ ~ o~ o 2
Hence, the strain energy of the rod is a functional

8,

Ulu) = 1/2] [C1§2(2) + ngz(g)]ds , (7.2)

5

defined on the space of displacement fields. Let us assume furthermore that the
reduced loading acting along the rod reference line is conservative, i.e. there
exists a functional of the potential energy V(g) such that

5

2
j poégds = - 5v(2;65) . (7.3)

~

&4

Obviously the dead load is conservative and the potential energy is given by
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)

viu) = - I peuds , p = const. (7.4)
~ ~ e "
59
Let us consider next the pressure load. By definition [40] the current load

vector remains normal to the deformed reference line and maintains the same

magnitude per unit length, i.e.

pds = - gnds , (7.5)

where the pressure magnitude q is constant during the rod deformation. Noting
that ds = Ads, from (7.5) and (2.7), one gets

g(g) = - q(g + § X E') . (7.6)
Furthermore it is easy to verify the following identity

2(2' x 65) = - 6(2 x 2') + (g x 6u)' , (7.7)

which enables to transform the virtual work done by pressure load into

2
8
I p(2)°63ds = - 6V(2,62) + [qE/Z -(5 X 65)]82 s (7.8)
5, 1
where
&2
V(u) = I glneu - £°(2 x 2')/2]&3 . (7.9)
5

1
It follows from (7.8) that the pressure load is conservative with a potential

energy given by (7.9), if the last term on the right hand side of (7.8) vanishes,

ke(ux 6u) = ubw - wbu = 0 at s = s S, . (7.10)

o~ ~ ~ 1’ 2

This is the case whenever

u = e*u = const. or W = n°u = const. at s =8,, 5, . (7.11)

Loads acting at the end cross-sections of the rod are conservative if there

exists a potential Ve[g(sq)] such that
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52 )
[6W ] € = - [6V (u,6u)] . (7.12)
e 81 e w~ ~ 51

An example of conservative end loading is 5* = const., i.e. dead loads (see [10])

with an associated potential Ve given by
82 - )
[V (u)] © = [Fkeu + H%<(n(u) - n)] , (7.13)
e ~ 51 ~ ~ ~ ~ ~ ~ 81
where F* = const. and H* = const. by definition (5.2).
whenever loads acting on the rod are conservative the functional of total

potential energy is defined by

8
Ju) = Uu) + V(w) + [V (u)] 2 (7.14)
~ -~ ~ e o 81

Hence applying standard variational procedure it can be proved that the
equilibrium equations (4.23) and the static boundary conditions (5.13) are

Euler-Lagrange equations of the variational problem
6J(g,62) =0 . (7.15)
for all kinematical admissible variations 62 of the displacement field.

Using the functional of the total potential energy (7.14) and applying the
general procedure developed by STUMPF [41], the corresponding nonlinear stability
equations for rods may be derived.

8.CONSISTENT VARIANTS OF ROD THEORIES

The equivalence of different strain measures in the sense of the first
approximation to the strain energy is of considerable importance for at least two
reasons. First, because essential simplifications of the basic equations may be
achieved by an appropriate selection of the strain measures and second, because
it enables to distinguish between significant and irrelevant terms in the various
simplified relations of the theory of rods. In what follows a detailed exposition
of these two aspects is given for the case when the governing equations are
formulated in terms of the displacements in a fully Lagrangean description.

Using the decomposition of the displacement field g(s) = ue + wn we define a

linearized strain & and a linearized rotation ¢ analogous to the shell theory
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[8]:
§=ewu' =u' -ov, ¢=nu'=w +o0u . ‘ (8.1)

Introducing (8.1) into (7.1) yields the generalized strain measures in terms of
the linearized quantities & and ¢. It follows that among equivalent strain
measures the kinematical relations take the simplest form for k = 1, 11 = 3/2 and

l2 = 2:

Yy=8+ 1/202 + 1/2q>2 )

(8.2)
Xe=-~-0' -0¢'® + 908 ,

The corresponding static equations may be obtained from the principle of virtual
work or by specialization of the general equations (4.23) and (5.13). Thus the

equilibrium equations are

[(1 +8)N-o¢'M- (¢M)']'- o[M' + oN + &'M + (M)'] + p =0 ,
u (8.3)
[M* + oN + M + (8M)']" + o[ (1 + )N - ¢'M - (eM)'] + P, = 0.

Here N, M are the conjugate stresses and couple resultants related to the strains
(8.2) by the constitutive equations (6.18) and P, Py denote the components of
the load vector p with respect to the undeformed base {e,n}. The corresponding

~

boundary conditions have the form

(1 + 8)N - ¢'M - (gpM)* = Fﬁ or u = uk

M' + 9N + &'M + (8M)' = F: or w = wk (8.4)

(1 + 2v) 44 + (/1 + 0)2 M=H% or n =n%*

where z*(sq) = F:g + F:B’ q = 1,2, and H* is defined by (5.12). The rotational
boundary parameter n, (5.14) may now be expressed in terms of the linearized
quantities (8.1). It should be pointed out that within the assumption of the
first approximation theory the derived variant of the rod theory is the simplest
one for unrestricted rotations and/or displacements. In the particular case of
straight beams an analogous theory had been derived by EPSTEIN and MURRAY [33].

For many purposes it is worthwhile to examine possible simplifications
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resulting from suitable restrictions imposed on the rod deformation. As in the
case of general shells [8,12-17], simplified variants for rods may be formulated
utilizing the estimation (6.12) for the strain energy function, which implies
that terms in the extensional and flexural strain measures of O(nez) and of
O(nez/h), respectively, may be omitted. To obtain a precise estimation of various
terms in the strain-displacement relations we first note that the linearized
quantities and their derivatives (8.1) can be expressed by (2.11) in terms of the

nominal strain € = A - 1 and the angle of rotation w

8=(1+e)cosw-1 , o=1(14+¢€)s8inw , (8.5)

. 9 =-(14+€) w' sin w + €' cos w ,

. (8.6)
' = (1 + ) w cos w+ e'sin w .
Furthermore the following estimations hold
w' = 0(n/h) , €' = O(e/L) . (8.7)

To obtain (8.7)1 we note that the measure of change of curvature x can be
expressed by (2.4)3 and (2.5) as x = - (1 + e)zw'. Thus (6.13)2 and (6.14) imply
(8.7)1. The estimation (8.7)2 follows from (6.14) and the definition of the wave
length of deformation pattern [4].

In view of the assumption of small strains it follows from (8.5-6) that the
strain-displacement relations (8.2) can be simplified further if the magnitude of
rotation is additionally restricted. Using the relations (8.5-6) the non-linear

contribution in (8.2)2 can be expressed asl
0'8 + 98 = (1 +€) wicos w-1-¢€) + e'sin o (8.8)

Thus, within the classification scheme proposed by PIETRASZKIEWICZ [12,14] the
expression (8.2)2 for the bending strain may be simplified to the linear form, if
w = 0(92), i.e. for the case of moderate rotations. Under this restriction it

2 = o(nez). Consequently, within the accuracy

follows from (8.5) and (6.14) that &
of the strain energy (6.12) the strain-displacement relations of the theory of

rods undergoing moderate rotations take the reduced form
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vy =8+ 1/2 ¢2 y x= - @' . (8.9)
with the corresponding rotational boundary parameter
nv(g) = - ¢ + 0(no) . (8.10)

The 1linear approximation for n, in (8.10) is consistent with the
strain-displacement relations (8.9). Indeed, inserting (8.9) into the principle
of virtual work and applying standard variational calculation one gets the

following form of the equilibrium equations

N* - o(M* + oN) + P, = o,
(8.11)
M'' 4+ oN + (oN)' + P, = o,

and associated boundary conditions

N = Fu or u = u¥ ,

‘M' 4+ gN = Fw or we=uwk, (8.12)

M=H* or ¢ =¢%,
This variant of the rod theory is the one-dimensional counterpart of the
non-linear SANDER-KOITER theory of shells [8,11]. Its linearization leads to the
one-dimensional counterpart of the "best" linear theory of shells [1].

Whenever loads acting on the rod are conservative the equilibrium equations
and static boundary conditions for the theory of unrestricted as well as for
moderate rotations are Euler-Lagrange equations of the variational problem
(7.15). Comparing both theories two features are of considerable importance. In
the case of unrestricted rotations the strain energy is the functional of the
displacement components u, w and their derivatives up to second order, whereas
for the case of moderate rotations the strain energy does not depend on the
second derivative of the tangential displacement u. This implies corresponding
continuity requirements on the shape functions, when the finite element method is
applied. Furthermore for unrestricted rotations the third (rotational) geometric

boundary condition is non-linear with respect to the displacements and it becomes
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llinear in the case of moderate rotations.

A further simplification of the strain-displacement relations (8.9) may be
achieved under the additional assumption on the wave length of deformation
pattern, which leads to the classical theory of shallow rods presented in many
papers.

It is worthwhile to note that variants of the nonlinear theories of rods
undergoing unrestricted or moderate rotations and the simplified theory of
shallow rods discussed above are the only consistent ones. Indeed, introducing
the assumption of small strains into (7.1) the generalized strain measures in
terms of the displacements take the form

Y= 04 (k- 1/2)8 + 1/2¢2 + (k - 1)8(8° + ¢2) +

+ (k - 1% + 26262 + 92174 + o)

= -¢'+¢°'-<11-1)v'e-(211-12-1)a(e+1/zez+1/2¢2‘ (8.13)

—(211-3)[1/2¢'¢2+3/2¢'62-906'+1/2(02+¢2)(¢'0-¢0')+0(ne2/h, e2/R) .

It follows that for any choice of the constants k, 11, 12 different from k = 1
11 = 3/2 , l2 = 2, i.e. for any equivalent strain measures different from (8.2)
the kinematical relation take a much more complicated form. Furthermore the
expressions (8.13) still contain terms, which can be ommited within the accuracy
of the first approximation theory. In fact using (8.5-7) it can be shown that
for any choice of the strain measures the strain-displacement relations can be
simplified to the form (8.2).
9. COMPARATIVE ANALYSIS. CONCLUSIONS

In the previous chapter we pointed out that within the first approximation
theory only three variants, describing the rod boundary value problem based on
different levels of nonlinearity, are fully consistent. In the case of general
shells the situation is less obvious. A wide variety of nonlinear shell theories
had been proposed in the literature. In this chapter we shall show that partial

verification of the consistency or inconsistency of shell theories can be

achieved by reducing of the basic shell equations to their one-dimensional form
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describing the cylindrical bending of shells. Accordingly, various geometrically
nonlinear shell theories known in the literature will be considered. For later
reference the corresponding strain-displacement relations in their reduced

one-dimensional form are listed in Tab. 3.

strain-displacement relations shell (rod) theory
Y =8 + 1/26% + l/2<p2 “large rotations", Nolte and Stumpf [16]
s1 *large rotations”, Pietraszkiewicz [13]
X = -9' - @'0 + ¢d (theory of unrestricted rotations for rods)

2
y=904+1/2¢
s2 “small finite deflections*, Sanders [11], Koiter [8]
X = -9 (theory of moderate rotations for rods)

2
Y =8+ 1/29
s3 "moderate rotations”, Pietraszkiewicz [12,14]
X = -@' - 08

vy =8 + 1/202 + 1/2@2
s4 2 2 “large rotations”, Schmidt [15]
X o -¢' - 08 - 1/209" - 1/29'¢

Y= 8 ¢ 1/262 + 1/292
s5 2 2 »large rotations®, Pietraszkiewicz [14]
Xe -p' - 08 - 9'0 - 1/200" - @'

Yy =9+ 1/202 + l/2v2
s6 2 “moderately large rotations*, Basar [19], Harte [18]
X = -@' - 00 + g8 - 1/209

2
Yy =8 +1/2¢
s7 2 “large deformation and rotations”, Yaghmai [21]#*x)
x = -@' - 0d + @8 - 1/20¢

Yy =8+ 1/262 + 1/2&92
s8 2 “large displacements", Varpasuo [22]%*)
X = -9' - '8 - 1/209

*x) theory of axisymmetric shells of revolution

Table 3. Shell strain - displacement relations in one-dimensional reduced form

In order to provide some informations about the accuracy of various theories

let us consider the error in the associated strain measures defined by

e =€ - Y, e =h(u- x) (9.1)

s ~
where we have chosen € and u as the (exact) reference strain measures and h, ¥, %

denote here the rod thickness and any strain measures, the errcr of which we want
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to analyse. Using now the relations (8.7-8) and the estimation (8.9) the errors
(9.1) can be obtained for any strain measures according to Tab. 3. Exemplarily

let us present the results for the moderate rotation theory S2:
. 4 . 2 2 . 2 .
e. = 2 gin w/2 + 2 € sin"w/2 cos"w/2 , e = 2nsin“w/2 + e/hL sin w. (9.2)

It is seen that the errors in the simplified strain expressions depend mainly on
the magnitude of the rotation and in a less significant way on the extensional
strain and on the ratio thickness over wavelength of deformation pattern. A
complete graphic representation of relative errors for different forms of
flexural strains is given in Fig. 4. Therefore and with the help of the
aforementioned estimation of corresponding extensional strains the range of
applicability for various theories may be outlined. In particular structural
rotations of problems described by the moderate rotation theory S2 should not

exceed 1 0°+1 5°.

S5
p— /—'
gLO‘ S
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S6,57

N
o
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Fig. 4. Relative error for various shell strain - displacement relations
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The given formulation of simplified theories is based on the assumption that
small terms in the strain-displacement relations, i.e. with neglectible
contributions to the energy expression, lead to small differences in the
solution. However, this has been proved only in the linear case [1]. To give
inéight into this and related problems in the nonlinear case numerical
calculations of various rod boundary value problems have been carried out.

Three structures loaded by a singular force, the classical elastica (Fig. 5),
a moderately deep circular arch (Fig. 6a-d) and a deep circular arch (Fig. 7)

have been analysed. The results were obtained by using a finite element method

R, - classical critical load

=
3 L -.W
P
5 | ,
5L r
120°
]
P
..—./'
’ L o ¢ shss
e ° 60° ) .
20° - S8 =
“‘ -
| | | | 1 L | 1
o} 0.2 0.4 0.6 0.8

rlE

Fig. 5. Eulerian elastica: Load vs deflection predicated by different

theories

with high-precision elements described in [17,42]. Since our ultimate aim is to
compare solutions of various theories a comprehensive study of the accuracy of

numerical solutions has been carried out and a comparsion with analytical and
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numerical solutions available in the literature has been made. In particular our
results based on the simplest exact theory S1 are in full agreement with the
analytical solutions of an extensible [43] and inextensible [46] theory for
finite deflections of rods (Fig. 6a,7). For two examples, moderately-deep and
deep arch (Fig.6a,7) the strain energy due to extensional deformation is less
than 0.5% of the total strain energy. It is worthwhile to mention further that
the solution obtained by applying the one-dimensional finite rotation theory S1
differs very slightly from a FE solution of the three-dimensional elasticity

theory published in [44] (Fig. 6a,7).

16
1}
PR?
EJ
121
10F E=!07psi
hzb=1in
R=100.in
8r
6 [ theory S1
i analytical solution [42]
|IFEMI[31]
o] f E— numerical solution [44]
©o o000 FEM[43]
2
1 | | L L

01 02 03 04 05 06

Ry 3

Fig. 6a. Moderately deep arch: Load vs deflection predicated by different

finite deflection theories
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All three analysed problems are highly geometrically non-linear and therefore:
it is obvious that the consistent theory of moderate rotations S2 may reflect the
real structural response only in a limited range of loading. It should be pointed
out that significant differences between the solutions of moderate and finite
rotation theory arise at load levels with maximum rotations about 10 + 20° (Fig.
5,6b,7). This observation corresponds to the results of theoretical error
estimates carried out before. Furthermore it is remarkable that the difference in
the solutions for moderate and finite rotation theory are not only of
quantitative but also of qualitative nature. This may be observed in all examples

but the case of the moderately-deep arch (Fig. 6b) is of particular interest. The

N
o
T

—
o
T
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T

-15
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Fig. 6b. Moderately deep arch: Load vs deflection - Analysis of moderate
rotation shell theories
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real behaviour of this structure indicates the so-called “"looping-effects" [17],
i.e. the equilibrium path contains "loops" with many extremum points (in Fig.
6a-d only parts of the equilibrium path are shown), whereas the solution for the
moderate rotation theory does not display these phenomena. During the numerical
analysis of various examples the modified moderate variant S3 (Tab.3) leads
within the range of validity to neglectible deviations in the solutions.
Therefore it does not seem to be meaningful to retain the additional term o8 in
the flexural strain expression (in contrary to the statement made in [15]).

Within the range of higher nonlinearity refined shell theories are
characterized by nonlinear flexural strain measures. Beside the large rotation
shell theory given recently by the authors [16] with strain measures identical to
the simplest general rod theory (8.2) six additional variants have been analysed

(Tab. 3).
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Fig. 6c. Moderately deep arch: Load vs deflection - Analysis of refined
shell theories



34

201

R
e
o

15

10 AN

-10-

-15

- 20|

Fig. 6d. Moderately deep arch: Load vs deflection -~ Analysis of
refined shell theories

Apart from various quantitative differences along the load-displacement path
the theories S6 [18,19] and S7 [21] predicate critical loads with remarkable
deviations to the reference solution S1 (Fig. 5, 6c ). Additionally S7
yields unsatisfactory results in the postbuckling range according to Fig. 6c, due
té an extensional measure identical with the moderate rotation theory S2.
Therefore the theories S6 and S7, in spite of more retained terms in the strain
measures, cannot be treated as consistent improvements of the moderate rotation
theory. Moreover theory S8 shows the influence of inconsistent simplifications of
the strain measures to the stability of the solution algorithms. Not only the
results differ strongly from the exact ones, but also no convergence of the

iterative procedure has been obtained at points denoted by a question sign in
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Fig. 6d. It seems that the corresponding equilibrium equations are ill-con-
ditioned.

Recently variants of large rotation shell theories have been formulated in
[14,15] here denoted by S4 and S5 (Tab. 3). When compared with the results given

in [13,17,23], formal transformations under the additional demand of a greater

01 theory S
ianalytical solution[45]
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Fig. 7. Deep arch: Load vs deflection predicated by different theories
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error margin in the strain energy expression lead to a non-dependency of the
strain energy on second derivatives of tangential displacements. Subsequently
convergence problems during the iteration process, as in the case S8, appear in
the large rotation range. Apart from this by strong quantitative and qualitative
deviations in the prediction of the nonlinear structural response (Fig. 7) these
shell variants, though formally correct in the sence of [12], cannot be regarded
as a consistent extension of the moderate rotation theory. Moreover numerical
results based on refined shell variants S4 + S8 again harmonize with the error

estimates represented in Fig. 4.

The theoretical investigations of previous chapters and the numerical results
of this section leads to the following conclusions:

a) within the first approximation rod theory an appropriate choice of the strain
measures yields a simple form of the basic equations valid for small strains
and unresticted displacements and/or rotations;

b) formulations of simplified variants of rod theories require a rigorous
approach; in particular an estimation term by term in the strain-displacement-
and other relations can lead to inconsistances;

c) there are rod problems for which the solutions according to the unrestricted
or moderate rotation rod theory and various variants containing nonlinear
change of curvature expressions differ not only quantitatively but also
qualitatively;

d) rod theories which are not consistent can lead to numerical instaﬁilities when
approximation procedures are applied.

Finally let us point out that equivalent problems arise also in the nonlinear

theories of general shells and the concluding remarks of this paper are valid

also in this case [23].
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