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ZUSAMMENFASSUNG

Die vorliegende Arbeit behandelt die Ableitung, Klassifizierung
und Rechtfertigung von geometrisch nichtlinearen Theorien filir diinne,
elastische Schalen, die auf der sogenannten "ersten Approximation"
der Verformungsenergiedichte beruhen. Ausgehend von der allgemeinen
geometrisch nichtlinearen Kirchhoff-Love Schalentheorie, die fur
kleine Dehnungen und beliebige Rotationen giiltig ist [1], wird eine
Familie von vereinfachten Theorien hergeleitet, in denen die Rota-
tionen als grof, mittelgroB oder klein vorausgesetzt werden. Ins-
besondere werden neue Theorien fir solche Schalenprobleme angegeben,
bei denen die Schalenelemente groBen Rotationen um Tangenten zur
Mittelfldche unterworfen werden, wdhrend die Rotationen um Normalen
klein, mittelgroB oder ebenfalls groB sind. AuBerdem wird gezeigt,
wie sich aus der allgemeinen Kirchhoff-Love Schalentheorie mit
Hilfe geeigneter, konsistenter Vereinfachungen die geometrisch nicht-
lineare Schalentheorie bei Auftreten von Rotationen mittlerer GréBen-

ordnung ableiten 14Bt, die kiirzlich entwickelt worden ist.

SUMMARY

This report is concerned with the derivation, classification and
justification of geometrically non-linear theories for thin, elastic
shells which are based on the so called "first approximation" of
the strain energy function. Starting from the general geometrically
non-linear Kirchhoff-Love type theory of shells undergoing small
strains and arbitrary rotations [1], a family of simplified theories
is derived by restricting the magnitude of the rotations to be large,
moderate or small. In particular new theories are given for such
shell problems in which the shell material elements undergo large
rotations about tangents to the shell middle surface, whereas the
rotations about normals are small, moderate or even large, too.
Furthermore it is shown that under appropriate consistent simplifi-
cations the general first-approximation shell theory reduces to the
geometricaily non-linear theory of shells undergoing moderate rota-~

tions, which has been established in the literature recently.
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ON CONSISTENT APPROXIMATIONS IN THE GEOMETRICALLY NON-LINEAR

THEORY OF SHELLS

by

W. Pietraszkiewicz (Gdarisk)

1. INTRODUCTION

In the work [1] a set of equations for the non-linear theory of thin
shells undergoing small strains and unrestricted rotations was derived.
All shell relations were referred to the undeformed shell middle surface.
A modified tensor of change of curvature and a new independent para-
meter describing the finite rotation of the shell boundary element were
introduced. In the case of an elastic material and conservative surface
and boundary loadings the theory allowed for proper variational formula-

tion of geometrically non-linear shell problems.

The non-linear shell relations derived in [1] are still quite complex,
since no kind of restrictions have been imposed on rotations of the
shell material elements. For many engineering shell problems it is
hardly necessary to allow rotations of any magnitude. Some shell struc-
tures would become unserviceable if really finite rotations were permit-
ted to occure. Therefore, it is certainly worthwhile to discuss possible
simplifications of complex non-linear shell relations obtained in [1] re-

sulting from consistently restricted rotations.

Several approximation schemes leading to simplified sets of equa-
tions of geometrically non-linear theory of shells were proposed in
the literature. In the works of Chien [26], Koiter [14], Pietraszkiewicz
[2,4,18] and Simmonds [40] various restrictions were imposed on middle
surface strains and changes of curvatures to derive various sets of
approximate shell equations, among which the most important were mem-
brane, bending and inextensional bending shell equations. Mushtari and
Galimov [11], Galimov [12], Lecnard [35], Sanders [13], Koiter [141],
Shapovalov [31], Pietraszkiewicz [2] and Kabanov [29] restricted com-

ponents of the linearized rotation vector and some of displacement

*) This work was prepared under an Agreement on Scientific Cooperation
between the Institute of Fluid-Flow Machinery of the Polish Academy of
Sciences in Gdahsk and the Institut flir Mechanik of the Ruhr-Universi-
tat Bochum, FRG.
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gradients as compared with strains, relative thickness and/or variability
of deformation state and derived several simplified variants of shell
relations under various names. Among the best known are approximate

shell relations of medium bending theory given in [11], with moderate-

ly small rotations proposed in [13] and with small finite deflections
discussed in [14]. A varicty of simplified variants of non-linear shell
equations derived by Duszek [28,36] followed from restricting displace-
ments and their surface gradients in terms of several independent small
parameters, while those given by Novotny [37] were obtained from

three-dimensional equations through a formal asymptotic procedure.

Most of the simplified variants proposed in the works referred to
above, were derived by omitting some terms in definitions of strain
measures, in equilibrium equations, in boundary conditions and/or in
compatibility conditions. The terms were usually omitted because of
their relaﬁive smallness as compared with other terms in the same
relations, but not because of their small contribution to the strain
energy of a shell. Such procedures, although formally correct, not
always lead to satisfactory sets of shell equations. They do not
assure that the (local)simplifications of the equations are consistent
within the assumed approximation to the (global) variational formula-
tion of the shell problem. By applying such formal procedures some
supposedly important terms are retained in the equations, although
their contribution to the elastic shell strain energy may be negligib-
ly small indeed. On the other hand, by discussing possible simplifi-
cations only of the equations we may construct such approximate system
of shell relations, which cannot be derivable from any variational
principle. In order to avoid this, only strain-displacement relations
were simplified in [12 -14] by omitting terms which were small as
cémpared with leading terms, but other shell equations were generated
from the simplified strain measures using a principle of virtual

displacements.

The lack of appropriate variational formulation is a serious dis-
advantage of all simplified procedures based on omission of supposed-
ly small terms from the shell equations. The main reason is that the
most powerful numerical procedures used nowadays, such as the finite
element method or the finite difference energy method, may be applied
only if the problem allows for a variational formulation. Otherwise,

some special methods of solution, which are not so effective, should



be used.

In this report we shall formulate approximate variants of geometri-
cally non-linear equations of thin elastic shells undergoing small,
moderate, large or finite rotations. The scheme of simplifications, pro-
posed in our earlier works [3-5], is based on consistent restrictions
of rotation angles of material elements during the shell deformation.
Strains and rotations may be exactly separated from each other [16]
by the polar decomposition of the shell deformation gradient tensor.
Since in the geometrically non-linear theory of shells strains are
restricted to be small everywhere, further possible approximations are

most natural if they follow from consistently restricted rotations.

The restrictions assumed on the rotations are formulated in terms
of one common small parameter 6 defined in [19] and redefined in [20]
using physical arguments. The rotations are said to be small, moderate,
large or finite if the rotation angles allowed are of the order of 02,
6, /o or 1, respectively. Order-of-magnitude discussion allows then to
estimate orders of linearized rotations and linearized strains and,
therefore, orders of all terms in the definitions of the surface strain
tensor YaB and of the tensor of change of surface curvature XaB' Only
those two strain measures appear in the first-approximation theory of
thin elastic shells, for which the elastic strain energy function I
becomes [21,22] aquadratic form, with respeét to the shell strain

measure to within a relative error 0(92) as compared with unity.

For each of the simplified variants of shell equations only those
terms are omitted in the strain-displacement relations, whose con-
tribution to the shell strain energy lies within the error margin
already introduced to ¥ within the first approximation theory. Other
shell relations (equilibrium equations, geometric and static boundary
and corner conditions) are generated from the simplified strain-
displacement relations by applying the variational principle of virtual
displacements. Therefore, the simplifications assumed in this work are
consistent in the sense of an error introduced to the shell strain
energy function and assure the existence of variational principles

for each of the approximate variants of shell equations.

Many shell structures are manufactured to be quite rigid for in-

surface deformation being flexible for out-of-surface deformation.



This feature of thin-walled structures is taken into account in our
classification scheme by restricting not only the value of the rota-
tion angle but also the direction of the rotation axis. Therefore,

we assume different restricitons on particular components of the
finite rotation vector g and associate the names "small, moderate, large

or finite rotation" with the particular component of {.

In the consistent theory of shells undergoing moderate rotations
the tensor of change of curvature becomes a linear function of dis-
placements. As a result, all transformations are much simpler than
in the general case. In particular, the fourth boundary condition
for a moment takes the same form as in the classical linear theory of
shells. The consistent set of equations may be constructed either by
direct transformations as given in [3-5], or by applying to this parti-
cular case the general scheme of derivation given in [1]. The latter
approach is used here. The shell relations of the moderate rotation
theory contain, as special cases, the equations of various simplified
- variants of the non-linear shell theory, which have been proposed in
the literature [8-~15]. The problem was discussed in detail in [6,38],

where a variety of variational functionals was constructed.

As the principal new results of the work several variants of the
consistent theory of shells undergoing large rotations are constructed.
Only out-of-surface rotations are assumed to be always large, while
in-surface rotations are supposed to be either small or moderate or
large. This allows to discuss three particular cases of the shell

equations with large/small or large/moderate or simply large rotations.

The variant of theory of shells undergoing large/small rotations
represents the simplest case within the large rotation theory. It
exhibits certain features of the general theory discussed in [1],
leading at the same time to relatively simple shell relations. In the
process of derivation it is shown, in particular, that approximate
expressions for the shell strain measures, which are consistent to
whithin indicated error in the strain energy function, may lead to
some splitting of the boundary terms. In order to restore appropriate
structure of the static boundary conditions some small terms, already

neglected from strain-displacement relations, should be retained in



boundary conditions. The boundary terms themselves are constructed by
expanding the exact non-rational square-root functions given in [11]
into series and retaining only terms within a desired accuracy. The
relative error introduced into X does not exceed 0(62) compatible with

the accuracy of the first-approximation theory.

Besides the main variant of the large/small rotation theory two
consistently simplified variants are proposed. The simplified variants
are constructed by allowing greater relative error in the strain energy
to be 0(8v8) or 0(8), respectively. Within the consistent approxima-
tions both strain measures become quadratic polynomials in displace-
ments. Equilibrium equations and two of the static boundary and corner
conditions are linear both in displacements and internal stress and
moment resultants, while the remaining static boundary and corner
conditions contain also some squares of the displacemental variables.
The simplified variants of large/small rotation shell theory seem to
be particularly suitable and convenient to apply in engineering cal-

culations of various shell structures.

Finally, the Lagrangian shell equations are derived for the
variant of theory of shells undergoing large rotations in all direc-
tions. The relations obtained are obviously more complicated than for
the large/small rotation theory. As a special case appropriate shell
relations for the large/moderate rotation theory are also derived.

It is interesting to note that within the accuracy of the first-
approximation theory some parameters at the shell boundary should

be estimated here with a higher precision, directly from their exact
definitions given in [1] for unrestricted strains. This proves once
again that in geometrically non-linear theory it is not advisable to
omit strains with respect to unity at too early stage of derivation
of shell equations, since occasionally such procedure may lead to
inaccurate results. Again, two simplified variants of the large
rotation theory are constructed allowing for a greater error 0(6v0)
or 0(0) in the strain energy function. The simplified shell relations
may be applied in engineering calculations, when the lower accuracy

of ¥ is regarded as satisfactory.

The shell relations derived here for the large rotation range

have no counterpart in the literature. In our earlier works [3,4]



the approximate strain measures and generated by them appropriate equili-
brium equations were given, but at that time we failed to construct
appropriate boundary conditions. In [14,31,32] the tensor of change of curva-
ture was proposed in the form of quadratic polynomials of displacements
by omitting some terms which were supposedly small with respect to other
supposedly principal terms. Such procedure and boundary conditions

given in [31] cannot be regarded as consistent from the variational

point of view and cannot be compared with our consistently derived shell

relations.

Possible simplifications of relations of the geometrically non-linear
theory of shells resulting only from consistently restricted in-surface
rotations are not discussed here. It has been found that even in the
simplest case of the finite/small rotations, within relative accuracy
0(92) of ¥ only few terms may be omitted from the exact definition of
the tensor of change of curvature. It seems, therefore, that considerably
simplified shell relations derived in [29,30] for finite/small rotations
cannot be regarded as justified within the first-approximation theory of
shells.

The classification of the simplified shell relations presented in this
report assures, within the assumed error limits, the existence of the gene-
ral Hu-Washizu variational principle [1,41] for each of the approximate
versions of shell relations. It should be noted that even for the simplest
version of the theory of shells undergoing large/small rotations the varia-
tionally derived definitions of physical quantities at the boundary still
contain some non-rational square-root functions of the displacement parame-
ters. In this report all the non-rational functions are expanded into series
where only those terms which are important within the prescribed accuracy
are taken into account. Such equivalent polynomial representations of the
non-rational expressions are convenient for numerical calculations. Besides,
the procedure clearly indicates which boundary terms are really important
in the particular approximate version of the shell theory. In some theore-
tical considerations it may be more convenient to preserve the original
non-rational structure of the boundary conditions of the exact theory [1] .
Then some of the small terms which have been omitted here from the defini-
tions of the shell strain measures, beccause of their small contribution
to the elastic strain energy of a shell, should additionally be taken into

account. Then the shell relations would becom more complex.



2. BASIC RELATIONS FOR THIN SHELLS UNDERGOING SMALL ELASTIC
STRAINS

The notation used in this paper follows that of [1-5]. In order to
make the work self-contained let us remind, without derivation, some

results given in [1] and in our earlier papers.

The deformation of the shell middle surface is described by a dis-
o
placement vector u = u 2, + wn, where a, are base vectors of the reference
surface M and n is a unit normal to M. The surface strain tensor ¥y aB

and the modlfled tensor of change of curvature X can be presented in

aB
the following symmetric forms
=L ara -a )
Yag = 2 “eata TP T g
X . = 1 [ L@ b.m)+1 @m., -b. m) + (2.1)
B A8 7aB B A|a A
A K
+gpa(m’8+b8m)‘)+t.ps(m +bam)\)] +baB(1+yK)
where
(2.2)
0 —l(u +u )-b w, w -L(u -u ) =€
aB 2 |87 "Bla’ " Pap” * Pap T 2 Bla alB af
== (1+6)) + (6 , - ) —‘Efn
™= Oy TO AT TY¥E
(2.3)
_ k .1 x2 1 kp 1 xp —l’é
m = 1+ GK + 5 (67) 5 66 + 5w pr i
a _ aB __aB
2 1 + 2y + 2(Yay8 YBY )

The deformation of the shell boundary element is described by three

displacements u=uay + utE + wn and three components of the deformed

. - a a
unit normal n = nv +n t + nn. Heren = n v and n, = n t ,where
o ~ AV tr~ ~ AV) o t o
L=t a is a unit vector tangent to the reference boundary contour C
o ., .
andlg = vwg is an outward unit vector normal to C.

The parameters n_ and n can be expressed in terms of u and n, by

t
the formulae
. cvctnvf ch . cvcnv-+ctD (2.4)
= T i +2v -c2 ' I T v — 2
t 1 zytt S 1-+Zytt <y



where
= — = - — 0‘
cv evt ® . cy 1 + ett P =W =0t , Yep = Y BtatB
(2.5)
- a B _ o B
vt = %V b v Bep T Ottt D= - Va e - ni) - Cﬁ

Let N®B and M®B be the Lagrangian symmetric internal force and couple
resultant tensors of the shell in an eguilibrium state. For any additio-

nal virtual displacement field Qg = Guwgé

+ qu, subject to geometric
constraints, the internal virtual work, performed by the stress and
couple resultant tensors on variations of corresponding strain measures,

can be transformed as follows [1]:

_ aB afB _
IVW = ”(N 8Y,q + M B, q)dA =

M

=-(PTB| - suda +|[(TPv ) .6u+R__6n_ +R_ 6n_+R 6nlds =
JJ~ B ~ ~ B ~ AV v tv t \Y)
M C

—-PPB ) ]

= “T, 6udA+J( u+M6nv)ds+Z£k 52‘]( (2.6)
M C

where
EP = TA82A + Tég

of

AB_ A aB+aaBprMKp) + (nxla—bin)M +

af Ay Kp Y Kp Kp Kp
1 1 - 1 M -b M
+€T€T L [om )|p+bl< o - [ )Ip e 1

B _ aB . _aB Kp A aB
T = @ (N +a b M) +(n +bn )M +
aB.Au Kp _ Kp
+ee, [ (1, M) |p b @M 1 (2.7)

P = TBv +Q , M=R + fR v + kRv

o
f

[d Ry, + DRy 32 (G R, + TR TN +

a
+ [QR ,+h R ~535 (R, +r R)IE +

a (2.8)
[thv + th - EE (gRtv + er)]R

+



= v
F (ngtv + rvRv)~ + (gthv + rth)E + (gRtv + er)R
F, = E(s, +0) - E(s, - 0)
n = n - =Dn _
dv = B-(Ktnt - Ttn) ’ dt =3 (otn Ktnv) , d D (Ttnv otnt)
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% T ! R ' 70
n nt nt
hy=7 (en - k) » by =57 (ken, - on) » h=--(on - 1n)
) (2.9)
__ L oett ot
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_ o, B _ o, B _ a; . B
o, = bt t T, =BVt Ky = £V |Bt
= - Y
Kov = a4+ Oouyy ¥ ®e oM, = Va Ry
’a .
= + + + = = .
Ktv (evt m)Mvv (1 ett)Mtv - 3 Rtv (2.10)
= _ ’E
Ky = vavv + ¢tMtv = Y3 Ry
- -d2a
my = -wv(l + ett) + wt(evt ) = a M
- - - S .11
m wv(evt ®) ¢E(1 + va) =¥ o, (2.11)
2 2 3
= + - =
o R N S T q a2t

Let the shell be subjected to the conservative middle surface load
p= pgeu + pn and to the conservative resultant boundary force E==Nv2+
+ NtE + Nn and the boundary static moment H = HVB + Hts + Hn. Then
the external virtual work performed by Py N and H on variations of
corresponding displacemental parameters, can be presented in analogous

to (2.6) form [1]
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EVW = ”g 62dA+ J(E- 62‘ + Hvanv + HttSnt + Hén)ds =

(2.12)

[t}
=
L]

(=]
e
g
+
—
t

* . * * . .
(P 65 + M Gnv)ds + Z'lj"] ng
C J

Here starred gqguantities have exactly the same structure as those given

B

in (2.8), only there E v, should be replaced by E and va,R , Rv by Hv'

B tv

Ht, H, respectively.

From IVW = EVW we have the following Lagrangian equilibrium equations

and corresponding static and geometric boundary conditions:

38i8+p=g in M

P = P¥ and M = M* oan

F. = F¥ at each M, € C (2.13)
~) ~] j f

u=u*¥andn = n¥ on C

~  ~ v v u

u, = u¥ at each M, € C

~ A i u

Within the first-approximation theory of thin isotropic and elastic
shells the strain energy function may be approximated [21,22] by the

quadratic expression

_h _aBlu h2 2,2
T = 5 H (‘ymsyhJ + 12 XGBXAU) + O(Ehn 07)
(2.14)
aBip _ E aX_BRu ou_BA 2v 0B _Ap
H EETIrY (a "a +a a + v @ )

where h is the small thickness, E is the Young's modulus and v is the
Poisson's ratio. The error of I at any point of the shell is expressed

through the small parameter 6 defined by [19,20,2,4]

h
a

]

6 = max (&, , V) (2.15)

’
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where L is the smallest wavelength of deformation patterns at M, d is
the distance of the point from the lateral shell boundary, R is the

smallest principal radius of curvature of M and n is the largest strain

in the shell space.

From (2.14)1 we obtain the constitutive equations

oB ox Eh of aB K ' 2
N =gy T Tz [y T eva Tyl somane’)
(2.16)
aB _ _3x _ _ Eh3 oB . _aB K L2 2
Moo= Myg  12(17V7) (A =v)x™+vax ] +0Ehnon)

Deformation near a point of the shell middle surface may be exactly
decomposed [3-5] into a rigid-body translation, a pure stretch along
principal directions of strain and a rigid-body rotation of the princi-
pal directions. The rotations may be calculated through a finite rotation
vector = e sinw, where the unit vector e describes direction of the
rotation axis while w is the rotation angle about the rotation axis.
Within small strains but unrestricted rotations @ may be approximated
by [16]

~ gbo Loy L2 -
Q=€7To (1 +58)-707(0, -0, )3, +¢n (2.17)

The relations (2.1) - (2.13) are exact and are valid for an arbitrary
deformation of the shell middle surface M . One would expect that within
the first approximation theory the mid-surface strains should always be neg-
lected with respect to unity and that nv ' nt , N and va ’ Rtv ’ Rv should

t
to (2.15) the maximal value of YuB may reach 0(82) , for example, in case

be identified with mv . mt , m and va . K v " Kv , respectively. According
of a very thin shell made of a composite or a polymer with relatively small
Young'’s modulus. When discussing boundary conditions in the large rotation
shell theory (see p. 5 and 6) it will be shown that within the desired accu-
racy terms 0(082) should be taken into account in the approximate expressions
for n , D, n/D and va . As a result, the mid-surface strains va and Ytt
will explicitly appear in the approximate formulae. However, for the shell
structures made of stell, aluminum, concrete etc. n << 62 , as a rule, within
the elastic range of shell deformation and strains may be omitted with respect

to unity even if other terms 0(082) are taken into account.
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3. CLASSIFICATION OF ROTATIONS

The shell relations given above were obtained by restricting strains
to be small everywhere in the shell. This has led to consistently

simplified relations of geometrically non-linear theory of thin shells
[11.

By the polar decomposition theorem strains and rotations of the
shell material elements have been exactly separated from each other
in [3,4]. Therefore, further consistent simplifications of the geome-
trically non-linear shell relations may be achieved by imposing addi-

tional restrictions on the rotations of the shell material elements.

The basic parameter describing the magnitude of a finite rotation
is the rotation angle w. According to the exact theory of finite rota-
tions in shells [5] the angle w appears in many shell relations as an
argument of trigonometric functions sinw, cos w, 2cos w/2 etc. Expan-
ding the trigonometric functions into Taylor series in the vicinity of
w = O we obtain, for example

3 5 2 L
N w w . w w
sinw = w - —T-+ E_ = eee , cosw =1 - ET-+ T (3.1)

It is seen, that substantial simplification of shell relations may be
achieved if the restrictions put on rotations permit to approximate
the series (3.1) by their leading terms. Approximation of (3.1) by
their two first terms lead also to some simplification of geometri-

cally non-linear shell relations.

For a thin isotropic elastic shell undergoing small strains there
exists a small parameter 6 defined by (2.15). This parameter is used

here to introduce the following classification of rotations:

w < 0(82) - small rotations
w = 0(8) - moderate rotations
w = 0(/55 - large rotations
w = 0(1) - finite rotations

Since terms of the order of 62, referred to as 0(62),are small

they may be neglected as compared with unity. In the case of small
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and moderate rotations this allows to approximate all trigonometric
functions of w by their leading terms in Taylor series, while in the case

of large rotations two first terms of the series should be retained.

Note that for |w| < w/2 we have 0(|2J) = O(sinw) = O(w). Therefore,
the classification proposed above restricts only the magnitude of the
finite rotation vector but not its direction. It is known, however, that
many shell structures are manufactured to be quite rigid for in-surface
deformation even if they are allowed to be flexible for out-of-surface
deformation. The rotational parts of the both deformations may also

of the

~

be estimated by respective components § =‘2“2 and Qa =Q 'Eu
finite rotation vector. The names "small, moderate, large or finite rota-

tions" may then be associated with the particular component of Q.

In what follows we shall discuss possible simplifications of shell
strain measures (2.1), and other shell relations generated by them,
resulting from consistently restricted rotations. The measures YaB and

XaB are defined directly in terms of linearized quantities Ga ' wa and

B

@(or waB)° For any restrictions imposed on finite rotations estimates

for qh and ¢ follow from (2.17). The estimate for 6 may then be

afB

found by solving (2.1)1 with respect to ea and taking into account

t
tha Ya

B

are always small. In each case of restricted rotations we ob-

B

tain estimates for linearized quantities according to the following

scheme:

Restrictions on rotations Estimate of the quantity

e, Q N ©® 60.8
Am;;all small 62 _;é n —
moderate small 0 62 62
moderate moderate e 0 02
large small Vo' 62 ;)
large moderate /o' ) )
large large ) /o' 0
finite small 1 02 1
finite moderate 1 0 1 -
finite large 1 /o' 1'“ h
finite finite 1 1 1

——e -l

Table

1



- 14 -

From the approximate form of the shell strain energy function
(2.14) it follows, that within the first-approximation theory YaB are2
already calculated with an error 0(n62) while XaB with an error O(-1§%).
Even if we would use better approximations for YaB or XaB the accuracy
of ¥ could not be raised within the first-approximation theory dis-
cussed here. Such accuracy of ¥ might be raised only if the second-
approximation [22] to the elastic strain energy were used. Then,
however, it would be necessary to introduce into the theory some addi-
tional strain and stress measures and the whole shell theory would be-

come much more complex [5,23].

In the following parts of the paper estimates for linearized gqguan-
tities given in the table 1 will be used to simplify YuB and xaB within
the error already introduced by using here the first-approximation
theory of shells. We shall also discuss possible simplifications of
strain measures and resulting shell equations to within larger error
O(Eh|120/65 orevenO(Eh1126) of the strain energy function (2.14). In
the estimation procedure covariant derivatives of various terms will
be estimated dividing their maximal value by a parameter A defined by

= min (L,d,/hR, ) . (3.2)

@|o

1
/'
In a variety of shell problems each of the parameters appearing
in definitions of 6 or A may assume different values, which in
extreme cases may differ by one or even two orders from each other.
Since in our classification scheme we are using only one common measure
6 of various small quantities, the estimation procedure should take
into account also such cases when a particular parameter plays a domi-
nant role in the definition of 6. In order to assure this we assume

92

here that y . = O(n) = 0(62), hx g = O(n) = 0(8%), b = 0() = 0(F)=

aB

= 0(%), what allows to relate various terms of those orders to the

common parameter 6.

Within small rotations estimates of all terms in the strain-dis-
placement relations (2.1) allow to reduce definitions of the strain
measures to the form known in the linear bending theory of shells. Since
the linear shell theory is discussed in many monographs we shall not

discuss the case here.
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4. THEORY OF SHELLS UNDERGOING MODERATE ROTATIONS

Within the moderate rotation theory estimates of the linearized quan-

s . . . : : = -9 + b - b
tities given in tab. 1 and the identity wka!ﬁ eaBIX AB|G quA

allow to reduce the shell strain measures to the form

1 1 2 1 A 2
0B * 2 PP t T 24p? "7 (Oyuyp T OgWy) T OMET)

YaB

. (4.1)
__1 A _ A _ né
Xag = " 21% |8 *98|a *Pu Org T 0ag) TR0y Ty F O

A Ao v o_ o83 _ o mBy
anB + bsexa) = O A) = 0O( A) and might be

omitted as well in (4.1)2 within the same accuracy of the strain energy

Here in XaB terms ;— (b

function [5]. Note that these terms are linear in displacements and their
derivatives. In the linear shell theory the linearized temnsor of change

£ t = -(b _ -
of curvature KaB (baB baB
expression (4.1)2, while for the simplified expression a modified de-

) is defined conventionally by the full

finition [21] of the tensor of change of curvature is used: p g = KaB +
1 A A . . .

+ = + .
) (b elB bBeAa) Since our tensor Y 8 was so defined in [1] as to

have the same linear parts with Ka , we follow the convention and keep

B

here all linear terms indicated in (4.1)2.

When (4.1)2 is compared with (2.1)2 it is easy to note that within

AB

moderate rotations the parameters mu and m appear in (4.1)2 in approximate

degenerate forms: ma = _¢h and i = 1. As a result, all transformations
leading to consistent shell relations become much simpler than in the
general case. In particular, if (4.1) is introduced into IVW then it

transforms into the form

- |8 . B )
VW = ”z IB Suda + J[(g vB) 6}3+Mw6ﬁ]v+Mt\;&ﬁ‘t]ds (4.2)
where for components of EF we have
prB o N B L B L AoB L Bty o LoeronB Jgfyt
o 2 o 2 a o 2 vl o
. (4.3)
B aB af
=N
T 0, + M |a

P
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Since in this case

)]

fi
O
j= 13
[}

=8¢ , 8t = 8A = O
v
v v (4.4)
d
m, = i, = - = - - —
[ N Gnt Gq)t ttduv otGut 3s Sw
it is possible to perform direct transformation [4,5] of the last term

in (4.2) and obtain an equivalent form of (4.2) compatible with (2.6)3:

- _ |8 -
IVW = JJE IB . 63dA+J(£- 65 +M6nv)ds + E E—k . ng (4.5)

M C k
where now

dMm
tv . d
= TM¥ — oMb+ 3 B = g5 M0
. (4.0)
M= Mvv' E= Mt\)Ba’ 'E;k = [Mtv(sk+o) _Mtv(sk_o) ]Q(Sk)

The line integral in (4.2) is a counterpart of the 1line integral
(2.6)2 of the general theory. Therefore, in order to transform it into

(4.5) we may also apply general approach discussed in [1]. The approxi-

B

mate strain measures (4.1) generate (4.3) and components of T vB in the
A
line integral. The smallest terms containing moment resultants in T B

3
are O(%-M) = O(Egé-ggﬁ, while in TB they are 0(%—M), where M is the

largest eigenvalue of MaB. Therefore, only terms of the same or lower
order should be retained in QM andlg of (2.8). When all parameters
(2.9) % (2.11) are estimated it follows that the leading terms in
most of the parameters given in (2.8) are of a higher order, except in

the following quantities

92 62
d\) = ‘[’t + O(T) , dt = —O’t + O(T) r g = =1+ 0(0)
. (4.7)
va = M\)\) + 0(6M) , Rt\) = Mtv+0(9M)

If now (4.7) is introduced into (2.8) we obtain, within assumed
accuracy of the moderate rotation shell theory, the relations coin-

ciding with (4.6).

It is interesting to note, in particular, that R, = 0(6M) and does

not appear at the shell boundary within the approximations (4.1) of
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the moderate rotation theory. As a result, within the same approximation
only two components of the external static boundary moment H= Hvx-bﬁbg
may be assumed at C. Since the whole structure of EVW should be the same
as of IVW described by (4.2) + (4.6), definitions of starred quantities

follow from (4.6), where Hv and H, should be introduced in place of M

and Mtv' respectively. Then the ngrangian equilibrium equations and .
appropriate static and geometric boundary and corner conditions follow
immediately from specialization of (2.13). These shell relations were
already discussed in detail in [4-6,38]. We remind their extended compo-

nent form here just in order to make the paper complete:

3
Y L S R A
o 2 o 2 o o
+% (GMNS - of% )‘)]l - (tDN ag +M°‘B|a) +p*=0 b in M
aB aB AB _ A 0B _ Ao B _
(@ N + M | | byg M b M wN) +p =
A8 AaB _ Aa B _ ‘
(N baM w Na)“a"s +T M =N+ TH

AB A OB_ lwAB o 1 Ao, B Ba. A

[N - b M 5 Na-E(w N, tw Na)+

+ %-(GAQNS - B A)]t Vg ~ oM =N -oH r onCg
(tpmNO”3 + Mm'slm)vB + adgmt =N + ;—SH
Mvv = Hv J

.+ - .- = . - -
M v(sJ 0) Mtv(sj 0) Ht(sj +0) Ht(sj 0) at each Mj € Cf
u = ut , u. . =uw¥ , w=w¥, o = wt on C

u

w(si) = w*(si) at each M, € Cu (4.8)
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In many engineering shell structures only rotations Qa are allowed
to be moderate while rotation 2 is supposed to be always small. Within
such moderate/small rotation theory the relations (4.1) and (4.8) may
be considerably simplified by omitting there terms underlined by a solid

line.

The set of shell relations (4.1) and (4.8) contains, as special
cases, the equations of various simplified variants of the geometri-
cally non-linear theory of shells which have been proposed in the litera-
ture [8-15]. Detailed review of those special cases was given in [6],
where also many variational principles were constructed (see also [38]).
An extensive discussion of shell stability problems within the simplified
moderate rotation theory (without two last terms in (4.1)1) has been

presented by Stumpf [39].
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S. THEORY OF SHELLS UNDERGOING LARGE/SMALL ROTATIONS

Within the theory of shells undergoing large rotations it is
reasonable to assume that only Qa are always large, while {0 are
allowed to be large, moderate or small. This leads to three different
types of approximation within the large rotation shell theory. Our
earlier papers [3,4,17] contain derivation of simplified forms of
strain measures and of equilibrium equations for the large rotation
shell theory, without discussion of appropriate boundary conditions.
In what follows several complete sets of Lagrangian shell equations

are presented.

The variant of geometrically non-linear theory of shells undergoing
large/small rotations represents the simplest case within the large
rotation theory. It exhibits certain important features of the general
theory [1], such as the non-linear expression for Xop* necessity to
express Gnt and 6n in terms of 62 and Gnv. At the same time it leads
to shell relations which are still not too complex and, therefore,
applicable in numerical calculations of shell structures. Keeping this
in mind, the derivation of equations of the variant is presented in
more detail, independently of the results which may be given for more

advanced variants of the non-linear shell theory.

Using estimates of the linearized quantities given in table 1 for

the shell strain measures we obtain approximate formulae

A 1 A 2
aeAB - E-(Gam ) + 0(n6")

Ce .1 1 A
Yop = Oup T 200 * 20 8 %%

o

N P - K 0 A oML K
Xog = 3 L6, + 800 - (14080, +0 eux]|s+“ss+°s)[ (1+6 )0, +

U R TIRY u 1 A A
+«oeM]|a} L@ ) g+ @ o) [ T+500, 0" |5 +u, 007 )+

pa
A1 Ao 1.2 : A 1 A, 1A
+ = { [1 +8) +5(8; 2 =(67)2 - s -
@, A (85) rz-eue ]|B [1 +e}\+2(el). a-eue}\]la}
1,2 pre ) - Lo +p) 1 ne
2 (P,85g *2pg )\a) 2(Py0g +Dg )0, + Ebas“’ @, *O5)  (5,1)

Note that within indicated error m appears in (5.1)2 in an appro-
ximate form while m, are split into three separate parts,
written in two first lines of (5.1)2. When (5.1) is introduced into

IVW, after some transformation we obtain
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= e B - B -
IvW = Jﬁg IB Suda + LE Vg Suds + I,
M ¢ (5.2)
I T PIC S0 W e PR ~
IM = JM [(6a+ea)6m)\ +w.a6(p)\ S (@ wua) + cpaam]des
C
where
T g i L e
o o 2 o o
1 A~ A L L0B B ~B Bl .0\
-l -m |+ M+ o -m | - 0| M)
_ABer 1o A B KD B, A Kp
'™ Ip > [0" (6 M )|p+cp(eKM ),
(5.3)
AB a. Kp _ Kpy _ (ABae _ LAB Kp
+a e (8 M )Ip O [oM 1 - @, - 8" (M)
B _ aB ~ ) aB B Ay _ B a LY T
™ = QN + ( m ba(p)\)M + [sa(l +08)) e)m][(c‘s'< + GK)M ]Ip
- (bBcp +mB -b (pB)M'<p
K p 'Klp Kp ' .
~ K u ~ k 1 A2 1 Au
m = =(1+8)9 +¢ eu)\ »om=1+86_+3(8)) -2-(}”6)\ (5.4)

The line integral (5.2)2 is transformed further to obtain

= =~ g ’ v g g ' ' ~
IM I(K.Wamv + Kwé‘xﬁv + MWcva + Ktv&nt +1<t\)6:ﬁt + Mtvamt +1<v6m )ds (5.5)
C

where the following abbreviations

'3 = . + =
va Mvv'+evavv evtMtv ' Ktv Mtv + etvav * ettMt\)

’ = - t = .
Kov tpMtv ' Ktv + ¢Mvv ! (5.6)

ﬁv=—<pv, lﬂt=-tpt ' m;=nptcp ' mi':=—kpvtp

have been introduced. Since
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=
I
=
+
7
~
"
tal
+
7~

vV vV vV tv tv tv

(5.7)

we note that only some most important terms of the products va6mv and
Kivdmt have appeared in (5.5). Other terms of the products have not
appeared in (5.5), since their contributions to the elastic strain
energy is negligibly small indeed within the assumptions of the first-
approximation theory of shells undergoing large/small rotations. This

has led to splitting of each of the boundary terms vaémv and Ktvdmt into

three separate parts.

The form of IM given in (5.5) is not convenient for a proper formu-
lation of static boundery and corner conditions. However, within the
same approximation we are allowed to retain in (5.5) some small terms
which have been omitted from (5.1) and (5.3) and write (5.5) in an alter-

native form, which is equivalent to (5.5) within the error of the first

approximation theory:

IM = J(KvVva-+Ktv6mt-+Kv6m)ds = J(vaGnv-+Rtv6nt-+RV6n)ds (5.8)
C

where an identity M

B A _'fg_ aB
(lkadm -+¢h6m) . M (llaan -+qh6n) has been used.

This formaly shorter representation of IM can now be transformed into

the final form (2.6). The appropriate transformations could be performed
directly, expressing the approximate quantities n, and 1 in terms of
nv and u ., similarly as it was performed with the exact quantities nt
and n in [1]. Such procedure would lead again to the non-rational expre-
ssions for the parameters (2.9) where the small terms, retained in nt in
order to present the boundary integral in the form (2.5), would also appear.
As a result, such direct transformations would give us more complex formulae
for Q , F and M than it is necessary within the approximation of the

large/small rotation theory.

In what follows we prefer to use an alternative approach, which has already
been suggested in p.4. The approach is based on the consistent reduction of
the exact formulae (2.8) to within the error already introduced into the appro-
ximate expressions (5.3) by using the simplifying assumptions of the larée/
/small rotation theory. The approximate strain measures (5.1) generate con-
B

sistently reduced expression E'VB in (5.2)1 , where from (5.3) we note



2 2/
the accuracy T)‘B = ,.. + O(ng) and TB = ,.. + O(QTTEM) . Therefore,

within the large/small rotation theory appropriate components of the quan-
tities Q , F and M should be calculated with the same accuracy. The
estimation procedure allows to simplify the formulae (2.8) by taking into
account only the terms which are important within the desired degree of
accuracy. Besides, the procedure leads to the equivalent polynomial repre-

sentations for Q.+ F and M , which are more convenient in applications.

Let us expand (2.9) into series and omit all terms within the indicated

error to obtain

= - - - 2

2y ®, - @0, - @8,) +0(6 /8)
= - - 2

n, O+ (@B - @8 ) +0(8 V/8) (5.9)
= 3 - _ _1 2 3

n 1+ evv + ett + A + 0(86°) , D (1 5 wv + B) + 0(6°%)

nv 1

-~ = L 2

D qb + (wvett t vt 2 ¢%) + 0(0 “63

e - 6. -6 -1l + 062/ (5.10)

D mt Pt T Py 2 wth .

n _ _ 1 2 3
5 [1 + (evv + ett + 3 wb) + C] + 0(8°)
= - B2 _ -
A evyett 85t = Yuv T Vet
B=-¢ (6, -0 )-lez-lcp‘*ﬂ( (5.11)
v v tt t vt 2 vt 8 "v tt )
=2 - 1 2 + L
C=A-3B+ cpv(eW + + 3 q%

The parameters n , D and n/D have been estimated here with a higher
precision. This is performed in order to estimate the internal boundary

force components Q , F and M with a desired accuracy.

When (5.9) and (5.10) are introduced into (2.8) and (2.9), after careful

estimation of all terms we obtain



= (1, + M, - — +0(93M)

Q = Ty * K OIM, - 55 x
ar, 92

Qt = - (Ut + Ktw\))Mtv - 3= + O(TM) (5.12)
dF 82/8

Q= (1,0, - 0 @I, -5 + O™

- (w2
FV (wV(pt + (p\’e\)t)M\)\) +

1.3 2
+ (Wb + 3(‘)\)ett ¢Eevt + mvevv + 2 ¢% + qxq%)mtv +0(6°M)

Ft = (q%¢% + mtevt)Mvv +

+ (¢E - ¢x6

N —

2
ve T 200, T 206, ¢+ ¢%qk * @M, + 0(8%M)

+[6 (26 + 28 ) + @ - @20 +

= 1'2
F= {wth + evt vt Ty e T 29 v vt

* w\)wt(ze\)\) + et

1 2 -
. Zwv)]}mw (5.13)

1m2 2 2 2
- - + +C+ + +
{1+ 26vv+39tt+2 v'+q%f+[evv evt+3ett Sevvett ¢ va Ytt

2 152y - 2 /or
+2°tt)+‘°t(2eu +0, . +=P?) - 9.6 IIM__ + 0(6<VBM)

12
+ va(e v tt 27v v t vt tv

AAY)

_ 2 _ a2 - 1.3
M Mvv + (evv * wv)Mvv + [ evt * wv(zwvett 3¢Eevt * 2 wﬁ) +

M +[-06 . (8 + 20 + L 2y - mze M  + 0(02/8)

+ +
va Ytt AWV) vt vy tt 2 v t vt tv

In deriving (5.13)3 more accurate estimates for Rov and Rtv have
’

4
been used

= - 2/
Ry (1 +0, +v, + Ytt)Mvv + (e\)t q»Mtv + 0(064vVeM)

- 2 Jon
R, = (evt + thvv + (1 + ett * Yoy t ytt)Mtv + 0(8°VoM)

In exactly the same way EVW may be transformed in order to obtain compa-

tible definitions for Qt ’ Q% ¢ Q%, F%x Ft , F¥ and M* . In performing
v



the transformations one should remember that the structure of the starred
quantities should be exactly the same as the one for the unstarred quantities,

only now N , Hv , H and H should appear in place of EB“B ' Rv

; R
t v tv
“and Rv , respectively. Taking this into account, for the starred quantities

the following compatible definitions have been obtained

dF’\")

* = - —
Q) = (T + OB - 33

dF:
* — _ -t .
oF (0 + < @)H - — (5.14)

ar*
* — - _ 9F”
QF = (1,0, - 0, Q) - 5

1
* = ?) -
Fy = [0, + 0, (6, + 20, +5¢0) - @6 o +¢@oH
F* = [¢ —s.peA + @ (26 + 8 -lcpz)]H + ©%H
t t v vt t v tt 2 7V t t
F*¥ = - {1 + (20 + 20 +—1-t.p2) + [ +08 )6 +8 +—1—w2)
ANV tt 2 v vV tt vy tt 2 v
L (5.15)
+ A + c]}Ht- [wt - wvevt + (pt(ZB\N + ett + > va)]H
1 -
K = - - - -
Mk =H +{ -0, +oe) -6, (B +06, +7¢) -0
- 1.3 - 1.3
O 08, -@8, +se)IE + o + (208, - 200 +5e)IlH

The consistent set of Lagrangian shell equations for the large/small
rotation theory takes now the general form (2.12), only in this particular
case the components of EF are given by (5.3), the components of @ and
M are given by (5.12) and (5.13). The appropriate compatible definitions
for the external boundary forces follow from (5.14) and (5.15).



For some shell structures undergoing large/small rotations we may
be interested to apply simpler relations, allowing for some small loss
of accuracy of the solution. Such simplified relations may be obtained
if we allow for a slightly greater error O(Ehnze/g) in the strain
energy function (2.13)1.Within this slightly greater error the strain

measures reduce to

1 1 1
Yug = O T 7 PP * 7 Oy Oipm 3 (95055 * Ogyg) 0 (n6ve)
X = l—(ﬁ + m ) (eAw + eAw ) o+ T my, +@.myp ) (5.16)
ab - 2 Talp gla’ 72 Yara|R B | 2 ERRd '
12 A 1 A X )
- = (8. +b - = n
2 g * Pg8g) T 5 (B + B0 )@+ 5 b @+ O (=)

Note that within this slightly worse approximation koth strain
measures become quadratic polynomials in displacements and their surface
derivatives. Again, ﬁ; is split here into two separate parts written
in the first line of (5.16)2. When (5.19) are introduced into IVW we

obtain (5.2)1, only now

_ [~ ~ ¥o14+8
I, = IM (6m - 8 8y + @ fm)vds , W \ (5.17)
C
S T L R T
2 o o, 2 I*)
_1 Aa. R Bo A 1 A oB B ar AB Kp
5 ( +w Nu) 5 (baM + b'M ) a ¢%|pM
{5.18)
_ 1 Bp B, Ao
5 0t T |
B _ af <, Bp B Kp aB n B «p
T =N+ [+ 8 M ]|p+8|pM b, M b’O M~ + b @M

............................

The definitions (5.18) become now much simpler as compared with

{(5.3) Eor the unsimplified large/small rotation theory.

hgain we note, that each of the exact product terms vadnv and

Rtvﬁnt is described in (5.17}) by two most important terms. Other terms
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do not appear at all and the boundary integral (5.17) may be written as

IM = J(vadmv + Kthmt + dem)ds (5.19)
C

where the simplified definitions (5.4)1, (5.6)1 and (5.17)2 are used.

Now the expressions (5.18) are given with the following accuracy:

AB 878 8 92 s .
T = ... + O(—xﬂu) and T = ... + 0(—rM). Within the accuracy it is

. ~ ~o ~ ~e S
bl i i
possible now to identify the parameters va R Ktv R Kv and mv ‘ mt , M
with approximate values of the respective parameters va ' Rtv ’ Rv and

n,,n ., n of the exact theory. Upon the elimination of &Et and &m

the appropriate definitions for the boundary quantities follow directly

from (5.11) - (5.13), in which some small terms should be omitted:
dr dar
g = (TtMtv - 75;-)2 - (OtMtv + 7;;—)5 +
drF
Lo, -oepm - 5o 1n

E- oM 0+ @Mt - (5.20)

1 2. 2
L1420, +30, +5 @ +ODM, + (O, +o 0N, In

2
M=M + (BW + npv)Mv

AAY \Y]

Appropriate definitions for starred quantities follow from (5.14)

and (5.20) to be

4ar* dF§
o = (I,H - —2)v - (0, H +—=—)t +
~ tv ds ‘~ tv ds '~
drF

+ [(Ttmv -0 0JH, - G5 In

(5.21)

Tk = -
EY - 08 + 0L

1 2
[(1 + 2evv + 2ett + E-wv)Ht +<ptH]2

k= -
M Hv (evt + tovtot) Ht + (DVH



- 27 =

The Lagrangian shell equations for the simplified variant of shell
theory with large/small rotations may now be given in the general vector
form (2.13), where (5.18), (5.20) and (5.21) should be used. Let us

present them in an extended component form:
equilibrium equations in M

AB 1 A of B, A 1 AoB B a)\) _15 (w)‘aN2+wBGNC};)

IN +3 (eaN +eaN )+5 (eaN —eaN
1 0B Bads  _AB kp _1  A.Bo . B.Ap
5 (oo E + by —aTe | (@' MP +°M"?) | ]IB
(5.22)

_pA aB Ky PP B M<P _ %o M*P P Kp A
bB{tpaN +[(1+0 )M ]|p+6K|pM b @M chppM +b (pM }+p'=0

Bq)M +b c;omp}lB

B Ky B B M<P _ K m™B
{o N +[(1+6 )M ]|p+G|M b oM -b

Kip

AB A B Ao B A aB __AB kp _ A,BP + D=0
(N"+ 0 N W' N - b M a cpKlpM ©'M |p) P

bys

static boundary conditions on Cf

AB. ., Aaf AaB . AaB _AB kp . A Bp d
- - - - M - — -
(N +eaN w Na baM a "pK|DM ® Ip)vlvﬂ * TtMtv ds (‘D\)Mtv)
d
=N, +TH - & ((‘0\) t)
INB L (0M%B 1 oBn®h) 4 1 (028 _ Bty J L (renB Bt -
2 o o 2 a o 2 o a

1 o AeB CBLOaA  _AB ke _ 1 A Bo B -
> (b M- +b M) -2t | M 5 @M+ )I]tAB

af K, Bp B
{o N +[(1+6K)M ]|p+6K|p

d 1 2 2
+ 1o [« +26W+3ett+2 (pv+(.pt)Mtv+( Lt c.pt)MW] =

d 1 2
=N + i [(1 +2evv+26tt+2 (pv)Ht + (ptH]

2
[1+ Oyt tD\J)]M\)\) = H, - (@@ + 0, )H + ¢ H



static corner conditions at each Mj € Cf:
F(s. + 0) - F(s, - 0) = F¥(s, + 0) - F¥(s. - 0) (5.24)
~ ] ~ ] ~ J ~ J

geometric boundary conditions on Cu:

= u¥ =1k = wk = Tk 5.25)
u =u u, =u w=w n_ =n .
v v ' t t Y v (

geometric boundary conditions at each M, € Cu:

5(51) = Ef(si) (5.26)

The structure of shell relations (5.17) and (5.22) - (5.2¢) is
relatively simple as far as the theory of shells undergoing large
rotations is concerned. Both strain measures are quadratic polynomials

af oB

in ua, w.Equilibrium equations are linear both in N , and ua, w.

Also two of the static boundary conditions (5.23) are linear both in

NaB, MaB

and ua, w at C, while the remaining two (5.23) and one of

3,4
B’ MaB

(5.24) are linear in Na but contain some quadratic terms in ua,w

as well. Also E; in (5.25) is a quadratic polynomial in displacements.

In some engineering applications we may be interested in using even
simpler relations which are applicable within the theory of shells
undergoing large/small rotations. This goal may be achieved only at the
expence of a larger loss in accuracy of the strain energy function. Let
us then allow the error O(Ehnze) in (2.14)1. Within this larger error
the strain measures may be taken in an extremely simple form following
from (5.16) by omitting there terms marked by dots. As a result of the
simplification terms marked by dots do not appear also in (5.18), (5.22)

and (5.23).

This extremely simple variant of the non-linear theory of shells
may be applied to those engineering shell problems, in which the relative
accuracy O(8) in the strain energy function is regarded as satisfactory.
Within the large rotation range any numerical calculations are very com-
plex anyway and numerical procedures used may themselves introduce sub-
stantial round-off errors. For these reasons the simplest variant of the
non-linear shell equations should prove to be popular in engineering

calculations of nonlinear shell problems within the large rotation range.



6. THEORY OF SHELLS UNDERGOING LARGE ROTATIONS

Under simplifying assumptions of large/large rotation theory estimates
of the linearized quantities given in tab. 1 do not permit to simplify
the strain tensor (2.1)1. The tensor of change of curvature (2.1)2 may

be approximated by

=L 42 A 1 -
Xag =2 L™l * Lgfaa) t 7 Wgm,g g,y
1A - A _ 1 A A k 1 kp
3 [ba(ew ww) +b8(6>‘a w)\a)] +3 (bawm+b8mm) (aK+2 w pr)
L A A H 1 A né
5 (b9p +Dgd ) (0 + @) + = bog® @) + O (6.1)

Note that terms in the first line of (6.1) are exact. Since those
terms are responsible for the proper form of moment boundary conditions,

the transformation of IVW with (2.1)1 and (6.1) leads to (2.6)2, where

now
e R A T Y R N T I WAL
‘o o a 2 a o K 2 Kp
- [+ ez)am - oM _ 1B (o M®) s +bz(a)‘5 —w)‘B)wapMKp -
- ot (1P ueP) l, -2 i - bgw}‘)tppMKp +a*8cpa(1‘f‘,<m"°) l, (6.2)
™ = o ein -blio, +ehe )P4 (146 1f MO -
- bsthKp _(eBa'_wBa)(laKMKp)lp * bAKwABprKp * bKSDBMKp

The quantities (6.2) are generated from (6.1) by the principle of

virtual displacements and have definite accuracy. Let

A8 _ o O8) , o[2B]

T +

(6.3)

- (B T

L
2
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62
It follows from (6.2) that T( B)a::e calculated to within O(T M), and
YNy
T[AB] and TB to within O(————-M) The quantities Q, F and M should

be calculated within the same accuracy.

Some parameters appearing in (2.9) may be approximated, to within

indicated errors, by the following expansions:

- _ 2/5
n, =, te0-96 +o6, * 0(6°v8)

= - _ 2
ng o= 0 tp\)(p + "p\)evt "ptev\) +o(8 /5.)

t (6.4)
n =146 _+8 +Lp2+A+O(9:3-)
AVAV) tt
1 2 2 2
D = -[1-5 (@) + 97 +0o @ +6 ) + Bl + 0(6°V0)
n
= - O+ 6. -©8 o, @2 +¢% +o(e?
D v o't v tt Tt vt 2
T 1 2 2 2
—5_= (pt+(p\)(p_mvevt+wtevv+5Lpt“p\)ﬂ'p y+o(er) - (6.5)
n _ 2.1 2 2 e
5 = -[1 +B\N+ett+q> +35 ((pv+gp) cp(cpvq)t+evt) +c1]+0(0 vQ)
A =60 0 - 92 - -
T Yuvott ve ~ Tov T Yt
-1 2_1
B, = 8((.’) +w) [cpq) +e 20 06 -00 ) -2y, .1 (6.6)

_ 1 2 2 2,1 2 2
CL = AByt 5 @ 4000, 40 +0" 5 (@ +0T)]
In (6.4) and (6.5) parameters n, D and n/D have been estimated with
a higher precision from their exact expressions derived for finite mid-
surface strains [1]. The higher accuracy of those parameters is necessary
in order to estimate F with a desired accuracy following from the accuracy
B

of T vB. Now it is possible to estimate all terms appearing in (2.8)2 and

obtain the following approximate definitions for the boundary functions
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dr
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Introducing (2.10) into (6.7) - (6.9) it is easy to obtain those defini-

tions expressed in terms of Mv\) and Mt\) and the displacement parameters

dF\) 92
Q, = T, * (TP IM, - 55 + oM

= - - 2
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dp e
1 0? + 2 _ ot 82v/8
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drF 02/0
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Again, in obtaining the formulae (6.11)3 and (6.12) more accurate estimates

for R and R have been used
AVAV} tv
- _ 2/
Ryy (1 + evv + You + ytt)MW + (evt ¥) Mtv + 0(6¢voM)
(6.13)
= 2‘/
Rt (evt + ) Mvv + (1 + stt + You + Ytt)Mtv + 0(0-voM)

Since the structure of starred guantities P¥, gf, F* and M* is, exactly
the same as of P, Q F and M, respectively, definitions for the starred
quantities follow directly from (2.8)1, (6.7), (6.8) and (6.9), where N,

. B .
Hv' H_, H should be but in place of T v, va, Rtv’ Rv' respectively.

t B

The consistent Lagrangian shell relations for the large rotation
theory can now be presented in the general vector form (2.12), where
(6.2), (6.10) - (6.12)and appropriate expressions for starred quantities
should be introduced. The component forms of the Lagrangian shell rela-
tions are easy to write as well. These component relations are quite

complex and we do not present them explicitly here.

Again, the shell relations just derived may be simplified further
at the expence of some loss in accuracy of the strain energy function.
Let us then assume a slightly greater error O(Ehn26¥§3 in (2.13)1. Within
this error the strain tensor (2.1)1 cannot be simplified, while (6.1)

is reduced to

Xop = %—[(63-—w%a)mkls-k(63-—w§8)mxla]-+%-(eiﬁxls-feéﬁlla)+
+ % “"a‘E,s“"s;“,a) - %- [b;(exs_“’xs) +bé(em—wm)] - (6.13)
- %-(b2m8'+b2¢h)wk + %-basméwk + O(D%E
where
af'"’k'“’u“ux , ﬁ=1+6i+1—prm (6.15)

2 Kp

Here m appears in an approximated form, while @, are splittéd into two

A
separate parts indicated in the first line of (6.14). When (2.1), and
(6.14) are introduced into IVW, after transformations it takes the

form (5.2)1, where now
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Here T(AB) are given to within terms 0(——/6_ M) and TD‘B], TB to

within O(—— M), what is lower by a factor /_ as compared with analogous
quantities (6.2) of the unsimplified large rotation theory. Again, within

the same error (6.16) can be given in an alternative equivalent form

- o .1
IM J(R\Nénv + Rt\)ﬁnt + Rvsn)ds (6.18)
C

t
Appropriate definitions for Q, F and M follow immediately from

in which 8n, and én should be expressed in terms of 62 and Gnv as in (2.4)

(6.7) - (6.9) with slightly larger error to be

dar
v 8ve
Q= TRy T a3 T of A )
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The Lagrangian shell eguations (2.13) with (6.17) and (6.19)-(6.21)
become much simpler than those of the unsimplified large rotation theory.
They may be applied to shell problems with all rotations allowed to be

large.

At the expence of a greater error O(Ehnze) in the strain energy func-

tion (2.14)1 we may approximate (6.14) by

L L Ay L oM A
XoB = (maIB'+m8|a) 5 (0, IB-FmABm |a)-+2 (eamllB'+eB A|a)
(6.22)
1o: = L A n
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Then (6.17) and (6.18) reduce to
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Appropriate definitions for boundary quantities follow from (H.19)-(6.21)

by omitting terms marked by a dotted line.



7. THEORY OF SHELLS UNDERGOING LARGE/MODERATE ROTATIONS

This is an intermediate variant of the theory of shells under-
going large rotations. All shell relations can easily be constructed
by appropriate simplifications of the large rotation theory discussed
in the section 6. In particular, when § is supposed to be moderate all
relations given in (6.1), (6.2), (6.6) - (6.12)are simplified by omitting
there terms underlined by a solid line. The resulting shell relations
assure the relative accuracy 0(62) of the strain energy function (2.14)1

of the elastic shell.

In exactly the same way two other simplified variants of the theory
of shells undergoing large/moderate rotations may be constructed. We
should just omit some terms in appropriate relations of sec. 6, which
are small within the relative accuracy 0(6v8) or 0(8) of the shell
strain energy (2.14)1. We do not elaborate those variants here, since

the reader can easily construct them himself, if necessary.
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