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SUMMARY

Following well-known variational principles of the linear plate
theory a variational formulation with relaxed continuity requirements
of the von Karman-plate theory will be established, which is suitable for
numerical applications.
Proceeding from the basic principle of the stationary value of potential
energy the Legendre transformation in dual variables produces the Hellin-
ger-Reissner functional and in addition a functional that is defined as
a Hu-Washizu functional with respect to the membrane part of the von
Karman-plate. The formulation of the Hu-Washizu functional is found by
the analogy between the problems of stretching and bending of plates.
Removing all side conditions the functionals are presented in their
generalized and modified form.
Thus, by these general representations the application of various finite-
element shape functions is allowed.
The numerical part of the present work is referring only to linear or
constant local limited shape functibns of Ritz type. Subsequently, the
optimization of the functionals résults in solving nonlinear equations

by the iterative scheme of the Newton-Raphson method.

ZUSAMMENFASSUNG

Ausgehend von bekannten Variationsprinzipien der linearen Platten-
theorie findet eine fir die numerische Anwendung geeigente Variations-
formulierung mit gelockerten Stetigkeitsbedingungen fir die von Karméan'
sche Plattentheorie statt.

Unter Zugrundelgung des Prinzips vom stationdren Wert des Gesamtpoten-
tials fihrt die Legendre Transformation in den jeweisl zueinander dualen
FeldgrdBen auf das Hellinger-Reissner Funktional und ein bezliglich des
Membrananteils der Karméan-Platte definiertes Hu-Washizu Funktional. Die
Formulierung des Hu-Washizu Funktionals geht auf die zwischen Scheibe

und Platte bestehende statisch-geometrische Analogie zurilick.

Die Befreiung aller Nebenbedingungen stellt beide Funktionale in ihrer
verallgemeinerten und modifizierten Fassung vor.

Die auf diese Weise allgemein gehaltenen Darstellungen gestatten so die
Anwendung der verschiedenartigsten Finite-Element-Ans&dtze. Im numerischen

Teil der vorliegenden Arbeit werden ausschlieBlich lineare oder konstante
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lokal begrenzte Ritz-Ansdtze benutzt. Die Optimierung der Funktionale
geschieht anschliefend durch iterative L&sung nichtlinearer Gleichungs-

systeme mit Hilfe des Newton-Raphson-Verfahrens.
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NOTATIONS

Coordinate systems

i : . .
x Fixed Cartesian coordinate system

o® Material coordinate system

Signs of operations

i,j;+.. = 1,2,3 1Indices of the threedimensional Euclidean space

a,B,... =1,2 Indices of the twodimensional Riemannean space

(°"),a Partial derivative with respect to Ga

(...)[a Covariant derivative with respect to Oa

o Exterior boundary

Cl, C2 Exterior boundaries of geometrical and statical field
quantities

T Interelement boundary

(...)% Prescribed field quantities

(.;.),(...) Reference to positive and negative interelement boundaries

<...> Discontinuity

o Symbol for any product of two tensors

y Nabla-Operator

I Unit tensor

Geometrical quantities

x Vector of position
g;i a1 Base vectors of the space; of a surface
'E, v n Triad of a curve on an surface

a Metric tensor

aB

b 8 Tensor of change of curvature

a

r: Christoffel symbol

Y
€ Permutationtensor
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Riemann-Christoffel tensor
Geodetic curvatures of a curve

Torsion; normal curvatures of a surface

Statical and kinematical quantities

p*¥ , p*
tv’ “wv

Quantities of

Tensor of membrane stresses, of bending moments
Strain tensors

Tangential and normal deflection

Airy's stress function

Linear strain tensor

Rotation vector of the normal n on a surface

= -1
3'\)

T Y3t

Force vector of membrane stresses

=F
't

= -F

[

Prescribed membrane forces on C2

Prescribed bending moment on‘C2 and T
Vertical loads per unit area

Vertical loads per unit length of C2 and
Singular vertical force on any corner of 02

Prescribed stretching on C1 and T

Prescribed effective change of curvature on C, and T

1

Prescribed singular shear strain at any corner of C1

energy

W(Ya ,¥ )function of strain energy

B aB
WC(N“B,MaB) function of complementary energy

W _(k ) strain energy of stretching

M aB



W ' = W_{(k_ _) strain energy of bending

B B aB
WCM = WCM(NQB) complementary energy of stretching
WCB = WCB(MQB) complementary energy of bending

Quantities of material

HGBAU Tensor of elastic constants
E:OLB;\u Inverse tensor of elastic constants
E Young's modulus

v Poisson's ratio
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INTRODUCTION

In geometrically linear plate theory the finite-element-method has
found a wide range of application. In case of Kirchhoff-type plate theory
there is a boundary value problem of fourth order by the bipotential
equation in the plate deflection ug with geometric boundary conditions of
first order. The equivalent variational principle contains under the sur-
face integral derivatives of second order in L The boundary integrals
. This means,

are described by u, itself and by the normal derivative u

that after finite iransformation the applied shape functigg; have to be
twice differentiable and continuity up to the first derivative has to

be assured at interelement boundaries. Rectangular conforming plate ele-
ments are easily given by Schdfer [1] by means of Hermite interpolation
polymonials. From the mathematical point of view it suffices, to choose
twelve modal parameters for each element, in order to satisfy the conti-
nuity requirements mentioned above. However, the finite-element-method
requires sixteen for the description of a constang state of twisting.
Conforming triangular elements exhibit already numbers of parameters up

to twenty-one.

Starting from the principle of the minimum of potential energy, the numeri-
cal treatment of rectengular elements by the aid of Hermite - polynomials
may be seen e. g. in [3] and [4]. Linear trial functions for stress func-
tions in linear plate bending theory constitute the basis for numerical
applications of the complementary functional, Numerical calculations, shear
forces including and neglecting, are carried out by Knothe [5] after Hoppe
[6] had worked before with quadratic shape functions.

Proceeding from the principle of Hellinger-Reissner, mixed finite-element-
models of plate bending are presented in the numerical preparation of
Connor [7]. He takes into consideration the influence of shear forces too.
These functionals are fomulated - without shear deformation in reduced
form - by involving jump terms. Thereby, without reference to the theory
of distribution, the jump conditions are developed by means of a simp-

le representation of sequences for the Heaviside function and the delta
function as well as the doublet function as its both derivatives. The
advantage of this procedure, pointed out by Connor, exists in a formal
way of application, but it is disadvantageous, because direct imagination
has been lost. Another detailed explanation of the modified Hellinger-
Reissner functional (attached with jump terms) of linear plate theory

represents Washizu [8] by the aid of Lagrange multipliers.
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Mixed finite-element-procedures on the basis of stress functions by Schéfer
in connection with the tensor of change of curvature are not performed up
to now in the literature. Likewise, there is no mixed model developed by
the strain tensor in linear membrane theory.

Originially, the desire to remove high continuity requirements in varia-
tional functionals was initiated by some considerations of Pian [9], [10].
First of all, it is a question of modification of the complementary energy
functional by means of trial functions, which satisfy the equilibrium equa-
tions. These functions are polynomials, and they do not exist of nodal but
of so-called generalized parameters. Thereby, the unsatisfied transitional
conditions are taken inot consideration by means of continuous shape func-
tions with nodal parameters. A subsequent elemination process takes care
that the underlying functional contains only displacement parameters. The
corresponding geometric model starts from the modified functional with
displacements as independent variables and makes use of polynomials for
displacement fields. By Pian both formulations are called hybrid models

and they were applied at first to membranes. A hybrid performance for
Reissner's functional is given by Pian iﬁﬁflll. Referring to this func-
tional Connor [7] presents numerical calculations for plate bending theory.
Examimations of Prager [12] are also based on the Reissner functional of
linear plate theory. Discontinuities of static field variables are allowed,
whereas dual geometric quantities must be contninuous.

The reduced form of the functionals mentioned above arises from a simple
reflection by Herrmann [13], [14]. The decisive idea has to be seen in
integration by parts, so that to a certain extent continuity requirements
of a field variable can be shifted off to the dual. Thus in case of

plate theory, the bending moment and the deflection only must be continuous.
On the contrary, the effective shear force and the first derivatives of the
deflection may be discontinuous. These facts are included in those cases
shown by Connor [7]. Sometimes, the literatur refers to this functional
explicitly as the Herrmann - functional.

Bufler [16], [17] has given up the restrictions made by Prager. All variab-
les need not to be continuous. The variational principle is formulated in
such way, that on interelement boundaries the jumps of static field variables
correspond to mean values of the dual geometric variables respectively and
vice versa. Continuity prevails in nodal points only. Numerical calcula-
tions do not exist. Prager as well as Bufler do not represent their func-

tionals in a reduced form.



A detailed summary of the variational principles considered above for

linear plate theory is found in the contribution of Knothe [18].

The first calculations of geometrically nonlinear plate problems
proceed from differential equations of the von Karman plate. So, Levy
[19]) has treated various types of suppoerted plates with different loads
by choosing global shape functions for the deflection and the Airy stress
function; Poisson's ratio was chosen to v = 0,316. Way [20] makes use
of the principle of stationary value of potential energy, in order to
examine the clamped plate by application of global trial functions in
displacements. An extensive discussion about von Karméan's equations and
pertaining variational functionals offers Wolmir [21] in his standard
book. Therein, iterative schemes of numerical calculations are demonstra-
ted too, which start from Euler's equation and from the energy integral
respectively. Moreover, instability problems are discussed. Bergan and
Clough [22] apply a conforming quadrilateral element as displacement
model to the variational functional in displacements of the von Karman-
plate. The selected model consists of four triangles with nineteen degrees
of freedom altogether. The solution results in solving the nonlinear
equations by applying Newton-Raphson's process. Just so, the authors of
the treatise [23] proceed from themvariational functional displacements.
They use a bilinear appoximation for membrane displacements and additional-
ly bicubic Hermite-polynomicals for the deflection. The iterative solu-
tion of the system of nonlinear equations takes place by successive appro-
ximations with linear systems of equations. The conjugate variational
functional for the nonlinear shallow shell theory of Donnel-Marguerre and
for the von Karman-plate constitutes the basis for finite-element formu-
lations of Gass-Tabarrok [24]. By means of Hermite-polynomials rectangular
element models with twelve parameters are derived for the deflection and
the Airy stress function. The algorithm for solving nonlinear equations
follows by applying the Newton-Raphson procedure and the incremental
method. Further details about other possibilities of finite-element calcu-
lations for the von Karman-plate are described by Tabarrok and Dost in
[25]. It is a matter of generalizations of the conjugate functional and
of that in displacements. The static-geometric analogy, indicated by the
Airy stress function is not followed. Basic examinations with respect to
convex properties of the functional in displacements have led to the
complementary functional of the von Karman-plate. This was done by Stumpf

(261, [27], [28] using the transformation of Legendre. As pointed out,
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under certain conditions both functionals become appearent to be extremum
principles. You will find more details for nonlinear shells in [29]. For
the complementary functional of the plate numerical calculations with
global shape functions are published in [30]. Up to now, there was no
success in getting numerical results for it by the finite-element-scheme.
Nemat-Nasser [31], [32] was the firs, who removed all continuity require-
ments in variational principles of geometrically nonlinear elasticity
problems. An extension to geometrically nonlinear plates and shells has not
been yet performed. On the other hand, use has been made already by the

reduced form of generalized nonlinear variational functionals [33].

The present work starts from the contribution of Nemat-Nasser [31],
[32] and relates them to the von Karman-plate. Furthermore, the represen-
tations of Prager [12], Herrmann [13] and Bufler [16] will be put as a
foundation too. The modified functional of Hellinger-Reissner and in addi-
tion a functional, that is defined in the sense of Hu-Washizu exclusiveiy
with respect to the membrane part of the von Karman-plate, are to be dis-
cussed. In chapter 5 this functional will be derived as a new variational
principle from the functional in displacements. Thereby, static-geometric
analogies based on examinations of Elias [34]1, [35], [36] turn out to be
very useful. Finally, this consideration of analogy reveals ail continuity
requirements to the stress function appearing in the corresponding boundary
integral of the variational expression (s. chapter 5.2.). With regard‘to |
later possible reflections for shallow shells a tensor formulation is pré—
ferred and so distance will be kept from the x,y-description of Elias.
Separately, in chapter 3 against common use all jump terms are not developed
individually but directly general for surface tensors of any order. Subsé-
‘quently, both functionals are represented in chapter 7.2 in the reduced
form by permitting all discontinuities. Until now, discontinuities of field
variables in nodal points have not been regarded; they will be involved in
the following for the sake of clearness.

According to special local limited shape functions of Ritz-type various
types of modifications are forthcoming in the treatment of numerical exam-
ples ciscussed in chapter 8.2.. Especially, constant shape functions for
membrane stresses have proved to be very advantageous. Moreover, complete-
ly unknown are trial functions for the state of membrane strains related
to the Airy stress function in the Hu-Washizu functional, because this
functional itself is introduced as a new variational principlef

It shall be not unmentioned, that calculations with partly local and global

shape functions respectively have been proved. By this means, rather good
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results were obtained. One could imagine, that it might be possible to
apply this concept on element level too by using shape functions of diffe-
rent degrees of freedom. Then, by means of the corresponding equations

for interior and boundary nodal points it might be checked, if possibly
the system of equations became ill-conditioned.

In view of tensorial formulations in the present work most of the impor-
tant formulae of tensor calculus are prepared separately in chapter Al

to A3. This representation is self-contained and for general considerations
it is referred to surfaces of any curvature. In special case of a plane,
regarding von Karman-plates, the tensor of curvature equals zero. The nota-
tion of tensor descriptions chosen here is similar to that from Pietrasz-
kiewicz [37]. Particular attention will be payed to the facts arising

on the boundary of the plate, in order to guarantee complete formulations
at curved edges. This desire will be supported by the treatise of chapter
B, which refers to surface edges of any curvature. Initial starting-points
to that problem for plane surfaces are disclosed in a publication of
Fraeijs de Veubeke and Zienkiewicz [38] but without any detailed prove.
Appendix C1 gives a glimpse into the formulation of generalized integral
theorems. The proof of these theorems can be looked up in fundamental
books like those of Gurtin [39], Lagally [40], Kistner [41] or Trostel
[42]. special integral transformations generated by the cited integral
theorems are made available in chapter C2 for the descriptions of the
chapter 1 to 9. Chapter 10 gives a graphical demonstration of numerical
results.

After getting the system of nonlinear equations by carrying out the

first variation, all functionals were optimized by the iterative scheme

of Newton-Raphson. In doing so, it was aspired to optimize the functionals,
which were determined for numerical calculation, only by linear or constant
element shape functions.

Thereby, it was not necessary to write a new program for the Newton-Raph-
son procedure, because this could be borrowed from the computer library

of the Ruhr-Universitdt Bochum. An incremental formulation with numerical
results can be inspected in chapter 9 and 10.

In order to compare the results of the treated variational principles,

all examples were referred to the simply supported plate with unmovable
edges.

In addition, the clamped plate with movable edges will be considered.
Furthermore, an example, where the plate is loaded by asingular force, will

be of interest too.



1. INTRODUCTURY REMARKS TO THE EULEREAN AND LAGRANGEAN DESCRIP-

TION

In geometrically linear theory the equilibrium statements are formu-
lated by means of descriptions with respect to the undeformed body. This
is justified only for small deformations. However, if the elastic body
suffers large deformations, then the state of equilibrium depends ondis-
placements. That is why equilibrium conditions must be established in
the deforméﬁ state of the system, and this is done in differential form
as well as in linear theory.

Subsequently, the connection of the displacement relations with interior
stresses by Hooke's' law offers the possibility, to ascertain strains and
stresses of the body. Formally, there is no difference between geometri-
cally linear and nonlinear theory, only the descriptions of both theories
are quite different. In the first, it is necessary to perform all des-
criptions within the undeformed system, the second however makes it possi-
ble to describe all facts within the deformed or the undeformed (reference)
state.

Mathematically, this is done by introduction of two coordinate systems xi
and xi of the undeformed and the deformed state. Then, the behavior of the

deformation can be seized analytically by

X7 = XT(CX7) (1.1)
or X7 XX, (esenes) (1.2)
If both functions are uniquely defined and continuous with continuously

partial derivatives, they are'inverse formulations one of each other. This

is true, only if the Jacobian determinant J is neither zero nor infinite.

J = o/e/(g;:-() (1.3)

The coordinates xi alone fix a point solely in the cartesian frame ii'
They do not suffice in general, to say something about geometries of the
undeformed body. To do so, curvilinear coordinates Gj(j =1,2,3) are intro-
duced. o

The coordinates

: r 7'
x" = x"CO7) (1.4)



are known as Lagrangean or material coordinates.
The state of deformation is completely defined by Lagrange-coordinates,

if (1.4) is substituted into (1.2). This kind of description is called
Lagrangean or material approach.

X7 = XTCO7) s

Analogous regards with respect to the deformed state of the body lead to

the representation
X7 = XCO7) (1.6)

where the new introduced coordinates 5j measure the deformed body.
Coordinates, indicated by (1.6), are called Eulerian or local coordinates
as well. In order to develop Eulerian or local descriptions of the boundary
problem the relations of (1.6) are substituted into those of (1.1). This
yields

X" = " (E7) (1.7)

In practice, both descriptions are performed by the displacement vec-
tor u.
For instance, in Lagrangean description the displacement vector is

referred to the known basis g& of the undeformed system.

a4 = z/';g,- (1.8)

A

Since the base vectors depend on 03, this is also valid for the compo-

nents of u.
w® = &%) (1.9)

By this, relation (1.5) is received again, because the position vectors
‘g,‘g of the deformed and the undeformed system are related to each other

by

Y = v » A (1.10)

This means in components by the aid of (1.4)

X" = xTCO7) 2 U (O7) = X&) (1.11)



Completely analogous are the facts for the Eulerian description. The dis-
placement vector is represented in the known basis éi of the deformed

system.

4 = i'g; (1.12)

Thus, as explained above, the components are concluded to be dependent of

Bulerian parameter lines 87.
g7 = a7 ce” (1.13)
Now, it follows from (1.10)

’!:Z-”

A

or

s XOT) - GCEY) - X7 (1.14)

- and that is identical to (1.7).

Eulerian's description is unsuitable for practical calculation, since
the base vectors of the deformed body are not known. They are present not
before the state of displacement is ascertained. This is the reason, why

the Lagrangean approach must be applied.



2. THE PRINCIPLE OF THE STATIONARY VALUE OF POTENTIAL ENERGY

A x3

Fig. 1

Starting from threedimensional elasticity theory, the‘governing
equations of the boundary value problem are reduced to the basis Eu(a==1,2)
‘of the middle surface in thin shell theory by introducing appropriate
field variables. Thereby, the middle surface is defined in such way, that
each of its points bisects the thickness h of the shell-structure.

Taking into account the deformations and their relation to statical field
variables, additional assumptions allow to develop various types of con-
sistent shell theories. In case of the von Karmin-plate theory the follow-
ing assumptions exist:

The plate is homogeneous, elastic and isotropic and the state of stresses
is approximately plane and parallel to the middle surface. Strains are
small everywhere. Within moderate rotation theory, as it holds for the
von Karman-plate, squares of the rotations around tangents to the middle
surface are small of the same order as the strains, whereas rotations
around normals perpendicular to the middle surface are neglegibly small.
Hooke's law is valid and the hypothesis of Kirchhoff-Love may be assumed
[43].



within the range of these assumptions the deformation of the plate conti-
nuum is described by two surface strain measures, which are referred to
the basis 2:1 (0 = 1,2) of the plate middle surface:

(2.1)

(2.2)

The quantities Yo 8 are known as components of the surface Lagrangean strain
tensor while Kqg 8T called the components of the Lagrangean tensor of
change of curvature of the surface.

Geometric quantities, supplied with a dash, are related to the deformed
surface, and they are expressed in terms of geometric quantities of the
reference surface, because Lagrangean approach is used.

Since baB = 0 for the von Karman-plate the components of the strain mea-

sures turn out to be
fx/s = ﬁayg "}i Y% % (2.3)
HKup = = Yls . (2.4)

Therein, GGB indicates the linear strain tensor,

Epg = FCels #nte) (2.5)

The componenets ¢ are known as linearized rotations of the normal to the

surface [37].

%" = x : (2.6)

By means of the p.rinciple of virtual work one gets the principle of the
stationary value of potential energy in Lagrangean description. This has
to be done on the premises of conservative forces by integration through
the thickness of the plate.

L= [W(rep, sy) 05 - [ pres
~

A

‘f(/o;’%w fle:”r)&é ’fewé@&é
2

<2

—f A’:ﬁ»’ o4 - [ /«: A3 ]c‘, (2.7)
&



p* and P:v stand for vertical loads in the interior and on the boundary
of the plate.Ptv and P:v represent prescribed membrane forces and K:
signifies a predicted bending moment, while by K% singular forces are
taken into account, which are acting upon single corner of the edge.

Ny *
[# ws ], = 5 [Micaro) - Mwta=o)] thts) [, 20

All prescribed quantities are measured per unit area and unit length re-
spectively of the undeformed configuration. C1 signifies that part of the
whole boundary, where geometric field quantities are prescribed. On the
other segment C2 static boundary conditions exist. Out of

dup Tl rlpae » mts ) =0
(2.9)

X‘yg g //3/:(/8 = 0

from (2.3), (2.4) and (2.6) the functional is related to further subsidiary

conditions on cl:

> »
Ay —, = O &y ~ Ly = O

. . (2.10)
e - & =2 e -5, = O

Within moderate rotation plate-theory the relation @, = -8 holds on the

boundary, where the vector
-~ o
L=z-n =/fg

measures rotation of the normal n [37]). Deriving the functional (2.7), use
has been made already of linear elastic behavior of the material based on
Hooke's law.

The fumction of energy demsity W(y

K
aB’"aB
mentary energy density Wc(NaB,MuB) are quadratic forms of their indepen-

)as well as the function of comple-

dent variables and they are positive definite.

I's
W/fd/!, )(,ys) _-?_/”K/S?/of(/“/‘ )’y ,;'_‘2.. lt'%/(y.) )
= W”/)",/,) 14 Wg/)f7g)

Wern OV 22D+ Weg 07 %)

y (2.11)

W %)

L}



Herein, the tensor HGBAH of elastic constants and EaBA as - its inverse

have the following form:

/‘/‘(/’Vs £h [axa“//

wh S 2r_ Bﬂij
e (%) a

v & r -5 a
v

(2.12)
7 r 2

Eqprer =525 [ Fur g »@guamn = 55 gp Ol

Using both energy density functions, constitutive equations are derived,

which are completely equivalent to the transformation of Legendre.

W N 24
o 6’,5,3

b <= W (Ypn) » Wew W) - ¥y, (213)
&Mﬂ JA '/s
NS J

2D Wea - oS
& Hxa M . L% ] x4
¢ <= W (s) #*\Wea (17%) = 1% ity (2.10)
W,
g" ,«,‘3;9 = My J

Taking into consideration the constitutive equations (2.13), (2.14) and
relations (2.3) to (2.6), the first variation of (2.7) is received by
the aid of both integral transformations (C2.4) and (C2.7).

ST = [ [ 17 » Wy + p" ] s ot
~
[ w Py Aot ot
4
"f (/O/: - W) %y ot -f(/‘f-: - Naw ) U ot
<z <,

S KRR S N AR W

<

4 [/k: -t )l |, (2.15)

The fundamental lemma of variational calculus yields the equilibriwn and
statical boundary conditions as natural conditions.

The vertical components of membrane forces and the effective shear force
were introduced in (2.15) by the abbreviations



Np = NP0

NP W oy 7 (2.16)

2

P = Musr 72 Mupy = 206 C Ay = A) (2.17)

Therein, Ke is the geodesic curvature of the boundary curve.
Some contributions of Stumpf [26]1, [27], [28] are pointing out, when the
functional achieves a minimum, the solution is uniquely defined and for

what class of functions this is valid if occasion arises.
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3. TO THE DEFINITION OF DISCONTINUITIES

The functional (2.7) reveals, that admissable shape functions must
satisfy certain requirements of continuity and of differentiability. In
the next chapter the functional shall be modified in such way that all
requirements to the shape functions may be dropped and discontinuities
are allowed. The formulation of these facts demands some reflections,

which are to be explained regarding figure 2.

Fig. 2

Figure 2 shows a section of the plate devided into finite elements. The
nodal point K is common point of all adjacent corner points. It also
proves to be the point of intersection of all grid lines G. On two oppo-
site:sides +and -, the unit vectors of the triad E v, n obey the follow-

ing relations:

Foaf = lf i gn m0 > frfeco G
> -

S e g e (PP )z, =0 - e sk =2  (3.2)
~ o # - ~ -

7n rn =2 (3.3)
*~ -

A surface tensor of the order n(n 2 O) may be given by T. Then the dis-

continuity or the jump of T is represented in the basis of the positive
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boundary. Without loss of general validity, it suffices to show only one
component of the complete jump.

KT> = #1&ertr DF®P0...0F0....00 * (3.4)
"~

4 # »

oY AP :
T D= (TN THT DN gy Hph (325)

3 L d

with

The relations (3.1) and (3.2) transform the jump component of (3.5) into

the final definition, which depends on the order n of the tensor.

" :neven; n =0

<7;/...(-.."> = rfﬂ’u-f..."' * Z”...l‘,..y (3.6)
* - «F" : n odd
where
s on A
Jev. . t.r = 7 o );s :};\
» d v’ (3.7)

vty
4
e &l A
77y B b

7:2;.. ?...”

Let $ and $ Just as T and y be components, defined by (3.7), and let they
belong to the tensors T andAE of the order n and m respectively. The for-
mula (3.6) specifies the corresponding discontinuities. Now, the sum

$ * + T ¢ shall be split up as follows:

TV »r T =&l TrTXUVYr¥) rbr=-)(7-7)(¥-¥) (3.8)
P - - * - » - » - -

The solution of this equation for the unknown factor o is

«£= 7. (3.9)

Furthermore, it can be concluded, that parenthetical expressions in (3.8),

which belong to each other, are linearly independent. For instance
C.C¥r V) r GCW-%) = O (3.10)
’ - r» - Pe 2

only holds for c,

this can be verified by the equation

(Cre)¥ric-c)¥ =0

=c, = O. On account of the independence of Y and Y
+ -

If line integrals have to be integrated by parts, then care must be
taken separately of integrated terms at corners, where the curve is not
smooth. This may happen at exterior or interior boundaries of the plate.

An explanation for it will be given in chapter 4.
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4. THE MODIFIED FUNCTIONAL OF HELLINGER-REISSNER

The foregoing expositions of chapter 2 have expressed, that the varia-
tional principle in displacements is related to the compatibility con-
ditions and to the geometric boundary conditions, both as necessary re-
strictions. Since the geometric transitional conditions correspond to
the geometric boundary conditions, those must be satisfied by geometric
field quantities of the functional too.

Except for the constitutive equations, all side conditions are taken now
into the functional by means of Lagrange mulitpliers. This shall be called
generalization with regard to the compatibility and to geometric bounda-
ry conditions and modification with respect to geometric transitional
conditions.

If one applies at the same time the transformation of Legendre to the

functional, then the modified functional of Helliner-Reissner appears.

Io= [1-W.AN*EM®P) o M*Pryp e N*Prypl dA } LEGENORE
A

TRANSFORMATION

-fp"'uadA | -f(li’,:uv +Py u,/ds
A c2
-f{e’:ua . Kv"ﬁv)ds '{K:UJ ]Cz > external load
¢;
!
Jabwiar - [kc400, -6,k
r M © T

~[17p = 31udp + Ul + Usatyrp) 1N 0dA
A

.........

. . s GENERALIZATION
of(u:-u,)Svds of(u;’-u‘ }S‘ds
c1 saceses C, -------

ftuf-u)Vas 16~ B, M ds

[ ( G

- [<u,>8,d0 - [¢u>é,do ]
PN AN

-[<us> 9 do [<B>hda > MODIFICATION
r r

AR - ) (4-1)
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The total of interior boundaries of the plate is indicated by I'. Parallel
to the middle surface of the plate membrane forces do not exist. In verti-
cal direction however the plate is stressed by the line load P;v. More-
over, a bending moment K: is acting on I'. Ohterwise, all geometric and
static quantities are distinguished by an asterisk, if they are given
from the beginning. All variables, which are supplied with the sign “ have
the meaning of Lagrange multipliers.

The multipiers ﬁas and ﬂGB may be symmetrical as long as no contradiction
arises.

The paranthetical expression on C, takes into account, that geometrical

1
conditions at corner points are not fullfilled.

Ay - .
[eet” et ) ] =5 [en'tar) —ctcad] 7 ca) > (4.2)

P 4

The last sum of (3.1) eliminates all incompatibilities of the deflection

u, on grid lines G at the nodes K (s. figure 3).

3
S DT =YY [eh(6i-0)-ct(B5-2)] T C6) e
Xk 6 » £ - x «

According to the stationary condition of the functional the first varia-
tion must vanish. Therefore, two expressions are integrated by parts after
variation. This yields in view of all discontinuities by means of the

integral theorems (C2.4) and (C2.7):

Jf/§‘$4 EFO/ZCQQ;Q *¢Z4AL f‘”@xé?%/p)4%€7
P

='-J[ /; ‘7‘4; ayZ/‘.416§7 7 jg(//ibr’c7c”} ’ /KW'6%;?4L%4
A c
-Jf.A;’£5; Uy A5 * j& ;42; Uy o
V4 (o

*f//:?,ayytﬂ/ # {Kwo/_'/ff)ofé‘ * f//_{}yy/{/y * {}Zwﬂﬂ{_'e)é/é-
bad b

*f ivr' 0/{:’: o6 )‘f ﬁ;,d’z/, o6 . (4.4)
7 ro -
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. —f/;'/’/ﬂ:/x/ e
7

= —f/;m/‘yg Uy AT 1‘%//‘2}#?%.27‘&»0/2« )aés
4 c
f/(/:;/’,%, f/*?:fa/'flx)/f 7‘-././/_';»&0/// # /?:/0@/? Dot 6
Vad r ) ) B

?‘Z /7fp/f(} ‘Z /_4,;0”/(, td [/1;/,) Q/J/g ]C‘ (4.5)

The last two sums over all grid lines G include integrated terms. The
minus sign of the second sum arises by the fact that on g a lower limit

and on g an upper limit of integration exists at the node K (s. figure 2).

As abbreviations the formulae (2.16) and (2.17) were used. In accordance
with definition (3.6) it is possible, to introduce the next transforma-

tions:
44n»¢727; # {Zawéy%éu
= ?(C\/y/ # /_V/r' )/<‘/»’) * (”wv} ';',//f//-{//) (4.6)
Neyp U, » Ny 7y
’ » - -

= ?'//j/,, r Mw )oK ttey # K Ny > T ety - &) (4.7)

/Viw f/éL)CV%% //cé;’fxéa/hV?ﬁ
R o - - -

= ‘z’[(/g’.,, ni/,)—(/g.; r/_%)f/<4/:> * BuprMo> ;-’d’/{a »44) (4.8)

f?&u’éfaf;' » /ff}w»afzgg
= FOMuwr # Ho0 )L oS+ & Mor> 55050 - f20) (4.9)

For the integrated terms one receives the transformation
er 5‘%& -~ Mty
» - -

= T v M)y 2 K ML TS ) (4.10)



- 15 -

If all expressions of (4.4) to (4.10) are introduced into (4.1), the first
variation of the functional attains its final form. The linear independence
of all quantities subject to variation is assured by the considerations

- of (3.10) made for equation (3.8). This leads to the Euler-Lagrange—equa-
tiong and to all boundary and interelement boundary conditions.Particular-
ly, the physical meaning of all Lagrange multipliers is specified.

= [( O _ 3 I af constit.
61, 2{/ Typ ! SN -Af{W-xapléM dA

aNeh equations
'/[74::/1 {u Ip + Yply * YUz J16N*Fda strain-
A displ. -
j{xaﬁ’ uy ﬁjaﬁﬁf’dA o 4 ~ relations
A
- Aj/v“ﬁ/ﬁ Su,dA - Aj (M*Pl 5+ NP1, - p% 6uyda } EQUILIBRIUM
jr = Ny JBuyds - [IR% - Ky, J6u,ds
c
. . statical
-/[ an < ('Rw * Nv)](su.?ds 4 boundary‘
. conditions
- [(Kk) - 4,,180,ds - (K[ -M,,)6u, Ie, ]
. cj (u?-u, 185, ds o Jtu*-u )88 as '
! G . geom,
f{u -y, )6V ds + [{u;-u3)57'tlc ( boundary
1 . .
conditions
j (8- ,)5M,,ds
f(Nw> ’6(u -, Jdo ¢f<:§7lv>216{u, -u,/da
r * -
'f[an '< v * ‘,>]216(?3¢93)d0 statical

F interelement
bound. cond.

/{K - > 11803, - B, )0

-Z<Mtv>2".5(i“3':’3) )
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- [Cu,> 85,d0 - [<up> 83,d0
r r

- J¢us> 6V da - [<B,> 8 do
r r

'Z("'J > sz;

-[(N2P NP b7, 0a

A
- [ (@j__l’_- M%F) 5% o 3 dA

- (:'?‘.t"-/\“lw)butds
-[1V - (B, +R,)]6uyds
[

-[i#M -#,,)80,ds

¢

-NT M )6u3lc

/
-rf/...e.-gna,wu.- 1By, .1) 650

_Z ”s' 3{1?" -/14,, 116uy >

geometrical
interelement
bound. cond.

Lagrange -
Factors

(4.11)
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5. A MIXED HU-WASHIZU FUNCTIONAL

5.1. The derivation of the Hu-Washizu functional

It is possible, to derive the Bu-Washizu functional from the principle
of the stationary value of potential energy (2.7) with subsidiary condi-
tions (2.9) and (2.10). With regard to all terms of (2.7), which are in-
fluenced by stretching of the plate middle surface, the Bu-Washizu func-
tional is developed, if the first side condition of (2.9) and the geome-
tric boundary conditions of membrane displacements in (2.10) are removed.
The corresponding Lagrange factors are defined already by consideration
of the modified Reissner functional according to (4.11). Applying also
Legendre's transforamtion (2.14) with respect to the bending part, it

follows
Ly = f Wor ( Voog ) 7 - f Weg (7)ot 57 - [ o ety oA
7 Y » '
*Jr/q'ﬂﬂ)(yaaV%7
P
-'/‘/V“/’[)ﬁ% - 21///141 "ﬂ/g/u Rt s //1:/)]4//
p-

»  d »
—J[(CALV o # 141969?.)483 "jhfi¢ Hy ots -'Jrﬁﬂjiéi?ané
(N [

e

. 4
f’[.XZ éyB.YC}
» *
*f(ﬁf'”ﬁ)ﬁ//waé ff(”/"‘/;)/VVVM (5.1.-‘1)
< <

The preceding operations define the functional (5.1.1) in the sense of
Hu-Washizu only with respect to the membrane part of the von Karman-plate.
Now, after integration by parts, applied to membrane displacements in the

fifth integral, one receives another form of the functional.

7, = fWM//.c/g)a/ﬂ -fv\/c,(//'“)afi —f,o"'agow
V4 4 V4
7 =

'f /V‘/,/ﬁ Hal'
V4
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'j(/evt”g f/«:/fr’)?é’[/«)‘*ﬂz ]c?

3

-:/.(’/2;: - N ety o -jf(’/ai‘ - My ) by 04
c Cz

*
*[{A/f, & 5 N &y Jods (5.1.2)
Cy

In this functional three side conditions of the state of membrane stresses

are forthcoming:
Equilibrium equations in A and statical boundary conditions on c2:

In A: /V“”/,, e O (5.1.3)

»
on C,: Ppy =WNyp = O
(5.1.4)

»
p// = /Vf/ > O

Introducing Airy's stress function F, these conditions can be satisfied.
For later convenience it is suitable to use a representation according

to [44], and that is
AR e S YA (5.1.5)

X% = e*% £, (5.1.6)

.

5.2. The transformation of the membrane boundary integral

The difficulty, which arises by introducing Airy's stress function
is now to transform the last integral of (5.1.2) in a proper way. The pre-
‘'scribed boundary displacements u; shall be differentiable as far as

needed. With (5.1.5) it follows at first
» »* L 4
‘/.(/Vw Lo New il Dot =f,/v“”,;, 2 o4
s, g
I'e A *
= f’X /n ¥ th o (5.2.1)
Cr

Since covariant and partial derivatives of the scalar xau: are equal to

each other, the next relation holds.
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« 2 * o« > P A
X et = (Xt ) = X2t /o ¥ (5.2.2)
This relation is used for partial integration of (5.2.1).

f’)(“/,. APt ot = -f«“ﬂ,"‘/,\ AV M ), (5.2.3)
& S, ,

The integrated term states the difference of values on both limits of the

intervall C,, over which was integrated from S, to s,.

1 1

>
(X%l Do, = Koa) Che Cs) = X'a,) thats,) (5.2.4)

Instead of covariant derivatives of the components of boundary displace-

ments a well-known decomposition is used.

- » L ”» »
bt In = Flttnlon » etrju) » Tl h ~tta/x)
> -
= Cwa * XD (5.2.5)
Berein, w , are components of the tensor of infinitesimal rotation about
the normal n.
Lur = Flah —itnfe ) (5.2.6)

Formula (B1.10) transforms the tensor (5.2.5) subsequently to the coordi-
nate system of the boundary.

» * »
éﬁyf/ﬁ e Ow taFr # Ouw ~&u ) Fu Vi

” » »
v Oon ~ Lo ) by % Bow e ¥, (5.2.7)

Considering the orthogonality relations of (Al.11) a scalar multiplication

of (5.2.7) by tk leads to

-

” L 4 »
é(:/a /_x: @/f e * (9?1‘ - &Iy )V, . (5.2.8)

Consequently, after further multiplication by xa the integrand of the
right hand side of (5.2.3) is represented in the vector base of the boun-
dary system.

X2 Sl = =X B - X (B - o) (5.2.9)

Following definition (5.1.6) the physical components in the boundary system

are
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L

%/-’9()(?‘;‘-'/:,

’

(5.2.10)
o
X) = 9( ))x = /c:,.f
such that (5.2.9) changes to
— X%l H P = FL o * y
2l /2 = Lo Cpr = e (O -~ &0 ) (5.2.11)
Because of F _ = F _ in view of (B2.5), the second term of the right hand

£ 'S
side of (5.2.11) can be integrated once more. Hence it follows

S ESPVVE = [[Fcol -2%), » £ 0" [oq
< ) o5

* [0.;/"ch -( ¢¥F)A . .(‘5‘.2.12-)

At all corners of the boundary C1 the whole lot of discontinuities

v »
[0 F]. =5 [Oorcavor-Ohca-0)] Fra)

-

has to be taken into consideration.

With m’\“’t as infinitesimal rotation on C1 the abbreviations, used in

(5.2.12), stand for

» *
0,-& = &#
» (5.2.13)
Dy = Epy

» »* 4 - &
ir = GOy 0 P = F gy P s 2 T)

«
oh ¥ »

*
* 2A |
sFwmpndss = E€ o= ¥ . (5.2.14)

If w:B is substituted by (5.2.5), there is another relation for @*.

*

¥ e TP lOp —wn ) = T uuty (5.2.15)

Since ¢* is continuous at corner points, only values onthe limits of the

intervall are retained.

. *
CP ) = P ) fry - P e, Fea,) (5.2.16)
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Finally the complete transformation of the boundary integral (5.2.1) is
finished together with (5.2.3) and (5.2.12). -

[ Pnaion = -[[rco* 2000 » % 87 [ o
<o

. <,

s [OS Ao Xl ) (P F)
(5.2.17)

5.3. About geometrical interxpretation ¢of the transformed

boundary integral

' To the result of (5.2.17) a physical interpretation is possible, if
length and direction of t and vy are examined after deformation. In the
deformed configuration they may be transposed to the vectors‘E and‘i. The
vector of position g in the state of deformation is related to the unde-

formed configuration by the displacement vector u.
- r s ’ . (5.3.1)

Ay

Differentiating along parameters s and v using (2.6), (5.2.6) and (A3.4),
this yields with baB =0

f; - L [l
x A
= ‘{ )"(”/ée' "%3‘/3?‘_’)/
= (A F Oy DL # (Er -0 )P » e (5.3.2)
Yy =2 res

= 2 # (27,4; er‘féﬁbﬁ f{))’
4

s Bpr) b COvr #rror ) « Som (5.3.3)

U]

In addition, the transformation rule (B1.2) has come into account.

It can be observed by (5.3.2) together with (5.3.3) that the unit vectors
t and v perform a rigid body rotation by w,, and then rotate opposite to
each other by evt. The right angle between t and v becomes smaller by

the qunatitiy 2th.

Consequently, a boundary element ds suffers an effective rotation of

& = L - Ou (5.3.4)
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Moving into direction of s, the change of w admits a clear interpretation
too. First, the gradient of rotation is by definition -

%2 (5.3.5)

P« s = TE hlon

In Buclidean spaces the sequence of covariant derivatives is interchange-
able. Using this fact and regarding also the proPerties.of the sftensor,

it follows from (5.3.5)
Hur = g & (e Lo v e Lo ) = c"“/‘@//x , (5.3.6)

As abbreviation the tensor T?u is introduced for the present.

e (5.3.7) -

G

For the transformation of its'éovariant derivative formula (B2.14) is

~
;?/u <

available.

7;/-‘"(7//,/ # 7»’6»'),’; ey “73?,")’ja

Multiplication by e? yields according to (5.3.5) with (5.3.7)

Pos = Tpne * Tohe = - Gorr # Bpp o, (5.3.8)

This expression is part of the change of inplane curvature [35] which is

denoted by K 3+ Here, referring to £371,(6.5.9)]1 it is signified by

knt and specified by the name effective curvature (Ersatzkrimmung [45]).
/émf = (/;4 = ﬁ/f;i

- Corr * Cup - Cpns

- %’452054 # Cppy - Xu  Boo - éﬂk') - {5.3.9)

Formula (B2.8) has been used.

In relation (6.5.9) of [37], there must be set K, = O and instead of the
nonlinear strain tensor the linear one has to be introduced, since all
membrane boundary conditions are geometrically linear. By the way, it may
be allowed to keep the present definition of mathematical sign for knt

in contrast to that from [37].
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S5.4. The final form of the Hu-Washizu functional

On account of the transformed boundary integral (5.2.17) the defini-
tion of the functional (5.1.2) can be delivered from membrane displace-~
ments. The last two integrated terms of (5.2.17) are not needed. Now, the
functional (5.1.2) appears in the following form:

.Z; = J[VV¢4(2§QZ » j?zsz 4(i/4)6V%7
7
JJ[,A/‘éﬁ,n;94 P4 -Jf14/“V25294 oA _.jf/o tﬁ’rdﬂﬂﬁ7
7 V4 A
»* * *
-fﬁ.'yl/soé —'f/(///ﬁ'/oé -[/(f”sjcz
<z

<,

» . »
N O R K PPN S P R
& S

The subsidiary.conditions are defined as follows:

In A: Xu/g > ”JA(/Q .—..-0
o a (5.4.2)
A/M'f 6‘/’/‘_/93 = O
On Cl: AVE’ -ty O
» (5.4.3)
Ao - fee=o
Oon C2: /r'” - fF = V/j
(5.4.4)
*
X - X, =0

It is remarked that in functional (5.4.1) the linear strain tensor eaB is
to treat as independent field variable. Another possibility arises, if

one chooses the nonlinear strain teﬁsor YaB for free variation.
B 7 = | pets otF
Zy = \N‘ut/f;a)cVZV ~ | Wesg (77 )x # P As
A V4 V-2

fJ['A/‘vifgﬁ o "j-/V‘Vv//%% “'ifﬁﬁu'éﬁys)cvof
V-4 7
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"f(/q:; 4’3 * /(/:/gr)oé - [’(':”3 .Tc,
(7

[k e D%t + [ DA,
& _ (5.4.5)

All side conditions of (5.4.2) to (5.4.4) are not changed.
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6. THE GENERALIZATION AND MODIFICATION OF THE BU-WASHIZU

FUNCTIONAL

In order to generalize the Hu-Washizu functional, all side conditions
are added to the functional by means of Lagrange multipliers. The modifi-
cation takes place in the same way as it was done in chapter 4 for the
Reissner functional by removing all geometric and static interelement
boundary conditions. Here, those quantities distinguished by a hat = are
Lagrange factors again. Also, the Lagrange factor éaB shall be symmetrical

as long as no contradiction turns up.

I, = AjWM!;'m}dA jw /M"”/dA -Afp”u3dA )
3
+ ch Xgp dA - IN ﬁ(;’,p - 2-U3,¢U3,/3}dA original
f u_.,ds fK {3 de ) [Kfugfcz functional
[]
k™ F ds 0;'X,d v
/ R j S + [DVF]C' J
- [Anttu, . uyJdo - jK 1B, -p,1do ] ,
r ’ T line loads
- [# (3(F + Flda jo /x X,)do f
Foc
j(xap‘ U3 ap }"A.'.’.“fdA j(Na/’ a’gﬂAFl A} «
o [tu¥-u,)Vds { )Mds
Cj7 3 k f /3 p GENERAL[-
« [IF*-F)Ras f(X -x,)Dds ZATION
L
* lluf-uw)f, I - m-*. FIR I J
- [<us> $do - [<8,> dao ‘
',[ FH TP do - [<X¢> 8 a0 > MODIFICATION
r
- 2 <uy DT, -2<XF> S, . (6.1)
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Singular conditions at corner points on C2 exist for the Airy  stress

function completely in analogy to those of the plate deflection uj.

" ¢} P
[(/{,“/r) /p/]c, = Z_, [F”{d,‘) - /:(4’/)]/?,(1,') /CZ (6.2.)

Reference was taken already to the corresponding expression for uy in
chapter 4.

The line loads P:v and K: of the plate discover their analogy by a distri-
buted change of in-plane curvature k;t and by a distributed stretching
quantity D:.

By the sum

S<AS8 =S5 fege-0) - Fegere)] §ege) (6.3)

all incompatibilities of the stress function on grid lines G at the nodes

K are included.

The BHu-~Washizu functional attains a stationary value, if the first varia---

tion vanishes. Before describing the final form of the variation, some
more integral transformations are needed. Two of them are prepared al-
ready by the formulae (4.4) to (4.10) and they may be comprised once more

for the sake of completeness.

‘f/';"/saﬂf/g /gf/g 6/’7
~

o[ L p Loty ot o §( A e+ B Sty ) ot
7 c

Ty
AN
*kl

(Y f.{%o;)g/%<,6},>4¥5' *Jf<f/ébr)>§r¢qcaz’ jzéb)aﬂg'
r

v ‘~£§;,)6/Qf473,>6ﬂ9' fJ[<:A43p;>§!6/2’fﬁ “xfﬁ)kd?'

* <
\‘.\o \'\-
N
™~
\‘\)

” d

# 2 FO T » M)t > 2L M FI 2 )

’

o [ A Aovs ] (6.4)
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~ ~7
-f N oy ol # /‘;/ vy A6
y ~

A - A
f/ FONo = Mo ) 1ot 5 f</v,> TSl v )l (6.5)
- A
Integral theoxem (C2.10)} provides another transformation and that is

-ffa’?é./gaéx/go/sf’/?m Q//q
P2

A A A
s [T Bupton St o § B o4
V-4 c
ff/-&:,,,, # 5’\,,,- - @:v;; )0”/-’44 - [ é/f 0/’/’]4 (6.6)
c

where the first of relations (5.2.10) was used. The paranthetical term
of the last integral coincides with definition (5.3.9), such that

a

- Pl -t
Kue = = Cppy "ﬁ//,/ "ﬁ,ﬁ;{ . (6.7)

Keeping in mind that discontinuities are admitted, one gets finally especial-
ly with (6.3)

[& T Buy S Von ot
~
=-f5'”g'm§’:% Von SF AT
e
,lf[é///x’( L ;4.}0/’/{]04 "[é/)‘;]c
c
»’f}”/é,/ f(_é// )/<X/>0/g *f<§:/>;0f(2("—?<’)9/5—
” Vsl
,'[;*/A, c k)t s [CELSES s Flote
Vad * B ; 7

-5 E(En ¢ Bon) AL FS -SKESESF ) . 68
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It is not necessary, to examine also the bending part of the functional,
because its variational statement is the same as in the variation of
Hellinger-Reissner's principle (s. 4.11). For that reason only the mem-

brane part of the Hu~Washizu functional is interesting and shall be varied.

oI,

= VARIATION OF THE BENDING PART +

aw, :
- [== _N%P)5y dA
,3/37«0 Fap

2

ssses sovece

. .6 .1 SN P
!{7;,3 Oap ua,auyp}GN dA

+ j‘(N’ﬁ - anS'pAF/w\ )] Géuf,dA
A
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displ.-
relations

stress -
stressft.-
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- [eXeP8 41, 5FdA compat.
Aj af'9d cond.
« [tF*-F)Rds + [1x}-x,160ds -UF™-FI8R, ] boundary
¢ ¢, : cond.
. a | A - ,. geom.
- [tky -k, J6Fds - [(D]-6,)5X ds o[(o:-e,,,;a/-‘lci boundary
K~ G cond.
R : . . statical
-[<F>8Fde - [(XDbsda +T R85, interel.
r r. G cond.

= [kt - Kkne D1 18(F « Flda - [1D)- (8,1 161X, - X,Jdo
. ’- r * -

S8 >L8(F - F )

+ [(R -k, JoFds - [(D-6,)6xas *uﬁ,-éw}a/-]cz
& ‘ g e T
= JUF = $lhoy = ke JI5<F>da

.......

F

}
j
}
|
} statical
|
|
|

- [t - 5'(53“ +6,)18<X,>da -fo‘g'- 3060y =84, NBCFD

geom.

interel.
cond.

, LAGRANGE
FACTORS

(6.9)
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Due to the expositions of chapter 3 the linear independence of all varied
quantities is guaranteed. Consequently, the Euler-Lagrange—equations, the
transitional and boundary conditions for the membrane part are obtained.
Out of this, the physical meaning of all Lagrange multipliers is clari-
fied.

The second integral of (6.9) shows the strain-displacement relation, which
serves as equation of definition for the linear strain tensor having been

a Lagrange factor.
Cup = Papn - ?!”:,x 4@, 5 (6.10)

All quantities defined by eaB must be expressed by (6.10). Especially,
this applies for the compatibility equation (C2.13).

A
e’ s fen = O (6.11)
In (6.11) reference is taken to (6.10).

«®e A2 -
& & (fx/ - E’%,xé/s’/)/p} = O (6.12)

This equation can be transformed. At first, it follows

e Te” (L, Hs )/e

r'd 4 C AN
& 6/’ (4/3 /a? s, 8 # e ﬂ:égf)

¢ 2
e’ 6/3 &'y, x 5/3439 .

]

After that, subsequent differentiation yields by paying attention to the

fact of interchangeable sequence of derivatives

€ e tryu 4 /ae D/
= & ”’5/”(”; /ua //3/49 » A2, i ”3%?%)
- @ x?é.,/”

= S n /D)y = cootetlinli) = -2 K.

s /0(9« 4/343?

Alternatively the compatibility equation (6.11) gains the equivalent

formulation

e ryfer r K =0 (6.13)
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Herein, according to (A3.13), the quantity
K = ot FCR S = oter & xdD

is the GauBtan curvature of the plate.
It still remains, to study the case, if the linear strain tensor is subject
to variation instead of the nonlinear and the functional (5.4.1) is put as

a foundation. . In this case, only the first and the fifth integral of the
functional (6.1) will change.

L, = fWu/é\'ﬁ+§”s,x”g/)/I”
7
.“”Jmﬂga/W-w (6.14)
7

_The first variation of the function of energy density is now

aﬁ\NC, 3 éll!éL aféaﬁ * éalkéﬁ 4/27gx

P Eup o) Uy

where E W - W
&WH - &WM ¢ = /V’
Zi;;: > %/

easily can be recognized. In the last expression use has been made of
definition (2.16). |

Hence, it follows

j‘a/.Wﬂdi = %/y‘y’di "f/v“a/‘é/':,xo/ﬂ.
V4 V4 ~7

Obviously, in consequence of these considerations the variational state-
ment of (6.9) is not affected.
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7. "REDUCTION OF THE. FUNCTIONALS

7.1. Some transformations by means of partial integration

The variational principles (4.1), (6.1) and (6.14) in the present
form still exhibit a decisive disadvantage. High degrees of discontinui-
ties of the deflection uqy and of the Airy stress function F cause a lot
of numerical work at interelement boundaries.

This defficency can be removed, if repeated integration by parts is per-
formed in all three functionals. In [14] such a procedure was described
for the first time in linear plate theory.

The functioﬁal of Hellinger-Reissner and of Hu-Washizu contain the follow-
ing two integ;als:

~f//”’m/«,s o - f</9w> o o6
7 P - (7.1.1)

where due to (4.11) ﬁ:is a Lagrange factor defined by
”
M = '}"(M,;y »/‘4//)'
A -

After integration by parts of the first integral one receives

- /7’4Aé73'4' ikl ~ K ADF( e v Mow JotE”
2 s ws ’ -
Vas
- f/f"/’/ e AT ff(/f » )
In 3« /5 % fr ) ots
V' c

[ I F B ) ot
r

ff?'(/‘/u v Mup ) L fao > ol ff(/v/,,a};’(/!, - S dots, (7.1.2)
~ g - hod » -

That means in case of continuity of the bending moment Mv that the de-
v

flection uqy of the plate needs not to satisfy the transitional condition

<fo)p =0,

Analogously, the functionals (6.1) and (6.14) respectively must be treated
with respect to the Airy stress function F. The corresponding integrals

are of the form
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[ X e O Flnatr - [<N>F ot
P 4 (7.1.3)

with the Lagrangefactor

,;c‘z-’(*&g‘f *.@t‘f).

The surface integral shall be integrated by parts. For the sake of simpli-
city, the tensor Tp)t may be defined for the present.

79}: ("pf‘ﬂa @R/@

Presuming continuity of the field quantities GauB' theorem provides at
first with (5.2.10) the transformation

'f re'x,c/” rGd

~

[ 7o £o wm -$ 7Ly A o4
~ c

®9 A
ff E Oy Ao r‘f(ﬂy Xp #Cpr Xy )obs (7.1.4)
~ ¢

If discontinuities are included at interelement boundaries, from (7.1.4)
follows entirely for (7.1.3)

'ff' xs’gﬁﬂ&y oy A5 —f<9<,>;;—’/‘ﬁ,,. r 8, )ats-
J €

Ve

i} fé,dveﬁa&‘/’/a /f; o7 *f(ﬁ,, K, » Cor X, )eots
A ¢
"[<9//)§"/2<f - X, )t
Vad
XD F O Dot [ DI FOX K)ot .139)
Val Vad

The significance of this transformation is evident in the same sense as

it was for the deflection u, in (7.1.2). Independent of continuity or

3

' disconitnuity of the normal derivative xt = ~F N of the stress function
’
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the line integral vanishes, provided the linear stretching quantity ett

is continuous.
Before presenting the final form of the functionals another integral trans-
formation may be regarded for the Reissner functional. Recalling the de-

finition of the Lagrange factors s_ and §V from (4.11), it follows

t

f”“ﬂ;/”“/’ f‘///s/k)é/i “f<é/.?)‘)’:0/6_" <”ﬁ>”;0/5
V4 r Ve

::-"[/Vlmég e AT ff//V,,;(/,. > Ny t1, ) 04
V4 c

[ I Fltty - ot s [KMDF ottt )t 10
Vi Ved

7.2. The reduced form of the functionals

The relations (7.1.2), (7.1.5) and (?.1.6) specify the functionals to

their final form, which is determined for numerical calculations.

The modified Retissner functional:
JZ;==-][»VQ ) oty _J[’o oty AT
. ¢ 4
-j Ny ctw . f FN bttty AT
7 ~
,jr,g/‘Vaé eWEY 4
) 4
* »
rf(/r, Ny v & Nyw ) o ,‘f/»/,,/s,&é
< c

*Jf(/473# -zzx;k’kiu» » Mooty
<,

;[/4/3* - ) M [ o »f/S’: Mop ot
Co
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"f /9::: f/ffs "'{/3)0/6' 'f/(’/*f(/}’ 'ﬂ_w)é/é‘

Vid 7
o<W 33 ot - 22Dt 2 [ Mo D F Ctts - 20, )t
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2 esp FC e — 1) (7.2.1)

The modified Hu-Washizu functional:

Z;= [[M,m/s)—\/s/mm“”)J// —f,o*z/,a//
V4 : z
[ 105y oy ot ¢ [ € Gty £yoir
b4 4
"95 Mer 3, 05 "f@// X, o4
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"f(éfx*‘”:)(/?«w N ) ots *//J’: My o4
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*»* »
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o Vad
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KD EChs - it

Vad

"25'<:473:> ?r(?fﬁx - {7?u.) * JE.<f/‘;>E?22§%w - f;kw ) (7.2.2)

The side condition
Yup = Cip - Etuty = 2

offers the possibility, to treat the Hu-Washizu functional with Yas or

eds as independent variables in choice.
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8. NUMERICAL APPLICATIONS

8.1. Prelaminaries

Referring mainly to the simply supported plate with unmovable edges
the functionals (7.2.1) and (7.2.2) are proved with respect to their
numerical applicability.

Only a constant load P* exists, measured per unit area of the undeformed
configuration. Now, by introduction of dimensionless quantities the nume-
rical treatment of all examples is performed with respect to dimension-

less coordinates Xyr X,e Original quantities are supplied by a dash and

are referred to the original system il' X

2.

Fig. 3

The relations between original and normalized field quantities are as

follows:
7, £h° v E4T
/Wkﬁ = =7 Mup /Vgﬁ = =z AQ”
- ‘43, . - ,6e
)ﬁ94 = z;} )ﬁgd ’ 6294 = :;3 ézpq &
- - 52 (8.1.1)
ts = Aus ’ e = 2
= _ £4° M
/‘- - az F 4 /o - 7— /o J

The application of normalized variables proves to be very useful for pro-
gramming and shows that numerical values of all field quantities have no

big differences to each other. The dimension of the functionals always
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amounts to Eh3/aZ2.

Following the modified functionals (7.2,1) and (7.2.2), numerical examples
will be presented for different kind of element shape functions. Either
quadratic or triangular elements are chosen as type of elements. Because
of the symmetry of the problems, it suffices to refer all subséquent con-
siderations constantly to the first quadrant of the plate. At last,numeri-
cal calcualtions result in solving nonlinear equations by the iterative

scheme of Newton-Raphson.

8.2. Numerical examples for the simply supported plate

The boundary conditions for the Reissner functional read

on Cy: & = o by = o0
te = O | . (8.2.1)
on CZ: oy = O J

On the other hand Washizu's functional is related to the boundary condi-

tions
on Cl: : 3
sy = O s Kaer = O
X,c,‘ = 0 .
g (8.2.2)

¢9fﬁ s O

on C :' . v = &

2
EXAMPLE 1: Modified Hellinger—Reissner funktional
Type of element: quadratic elements

Shape functions:

M
ap’

Number of unknowns: 183

N a,, u linear
ag’ 3 a
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From functional (7.2.1) follows that no jump terms appear.

[,94 """'/‘V\/c(/ya(/!, ”ar/s)o/” - fﬁ*‘f(r a4
~ V4
~

-f s, p U o7 o [FHgp thy 27
J “

ff Mpp Hox AT - (8.2.3)
A ~

Numerical results are shown in figure 6 to 11.

'EXAMPLE 2: Modified Hellinger-Reigsner functional
Type of element: quadratic elements

Shape functions:

MdB' uy, U linear
N eonstant
af

Number of unknowns: . 171

By choice of constant membrane stresses for each element additional jump

terms arise.
Ze2 ="j\Né(7V9¢,/4ge)aVZ7 - J[ /9*27,¢9/47
V4 V4
~ 4

*f</Vw> ey o5~ ” f</‘4;}4/, o/ (8.2.4)
r r

Figure 12 and 13 show a graphical representation of membrane stresses.
The other results vary scarcely from those of the previous example. Figure

14 gives a graphical demonstration of values of IR depending on the

2
vertical load p*, where the free parameter n stands for the number of

elements of the whole plate.
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'EXAMPLE 3:. ~ Modified Hellinger—Reissner functional
Type of element: quadratic elements

Shape functions:

My N, linear in xz-direction
eonstant in = 2—d1:rection
My N,, linear in :cz—dwectwn
constant in xz-direction
u,, Uy linear
N12, M12 congtant
Number of unknowns: 171
Loy = Los *‘/.</V//>ﬂgo/6" # f< HMer > fBa o6 (8.2.5)
r r
With the exception of Uys Uy and le the resﬁlts are plotted in figure 15
to 17.
EXAMPLE 4: Modified Hellinger-Reissner functional

Type of elements:

Shape functions:

v’ NW constant on T
ug, linear
Number of unknowns: 171

The simple form of the shape functions reduces the functional (7.2.1) by
the third and the fifth surface integral.

Loy =—f\/\/C(/V:;A,/4a/1)a// - jﬁxﬂ_;&//
V4 V4
j'{
’ z/vx/y Ay, 5/3,/9 V4
V4

,tf</1/,,> Wy G j<Mﬂ'>/3“ oG (8.2.6)
Vad Vad
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The trial function M, = const is based on a concept of Hermann [13] and
is known only in linear plate theory. Now, in von Karman's plate theory

a similar element function is chosen for membrane stresses. By this, along
the sides of any triangular plate-element constant but continuous bending

moments Mvv and constant but continuous normal stresses va are given.

N

gm/s”
N \

N

.liww
=\
2w

Fig. 4

For each side of the triangle the following relations hold ( i = 1,2,3):

/T = My <37, (8.2.7)
Wow = Nep 2 Vs : (8.2.8)
/;44 = ‘2: Cup /Tor 7 (8.2.9)
-
Neg = D Cen [Tor | (8.2.10)
The tensors MaB and NaB are solutions of the equations (8.2.7) and (8.2.8),

where the coefficients gaB are symmetrical. Finally, the twisting moment

Mtv and the shear stress vector Ntv are specified on each side by

yy = Mg Fe (8.2.11)
4'// ’/:-("(4/!
Ner = Nup letn (8.2.12)

With relations (8.2.7) to (8.2.12) the functional (8.2.6) has been opti-

mized. The results are to be seen in figure 18 to 21.
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" "EXAMPLE 5: ModZ fied = Hu-Washizu functional
type of elements: quadratic elements

Shape functions:

MaB' eaB' us, F ' linear
Number of unknowns: 173

Owing to the continuity of the shape functions all jump terms disappear
in functional (7.2.2)

4 4

“[ #ep o tlsin 8 -[ ot tw

v 4 V4

fjc’,,, Cin Clggp Lo AK +5£€” Ky c4 (8.2.13)
Y 4 ) Pl

A graphical representation of results can bé found in figure 22 to 24.

" EXAMPLE 6: Modified Hu-Washizu functional
Type of elements: quadratic elements

Shape functions:
MaB' Yog* Y3’ F linear

Number of unknowns: 173

The continuity of the shape functions leads to the fact that the following
relations hold on the boundaries. |

On C: d;( = Q0
on T: L Use> = O (8.2.14)
L o> =29
éecause of the diécontinuity of Bv = -ug only one jump term remains in
’

the functional (7.2.2).

Lz = J[\V%; (Fup) od# - J[ Weg (i) of 7
7 Y 4

V-4 s
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,:f Yoe Xy oth —'/'</9.a) 8. Xeott™ (8.2.15)
< Vad

The results of interest are shown in figure 25 and 26.

In this case too, a demonstration of the remaining results is not re-
quired, because numerical divergence compared to previous results is not
worth mentioning. It is very interesting to compare figure 25 and 26 with
figure 22 and 23. Approximately, the functional satisfies the transitional

condition u3 1 = O along the xz-axis. This means on I' = X,

' 4
S, = C, »r Flte) =
Moreover, u

= O is a property of u, on the boundary C. Hence, it

3,t 3

follows on C:

)".:{ s éﬂl’ ’ ?‘/3’/%,/ = &//

- EXAMPLE 7: Modified Hu-Washizu functional
Type of elements: triangular elements

Shape functions:

Mw' Yetr constant on T
u,, F linear
Number of unknowns: 162

The choice of these shape functions implies that two surface integrals
drop out in (7.2.2). Paying attention to

L l3p>=0 onT

the resulting functional is of the form:

]”3 = f[W,q ()"x/g)"\"/ca(M«/g)Jﬁ// -f/o*;/za//
~ 7
ff)}/ X, ots #f<f”>’x//5-
< r

_f3'</’.)/gf O 7‘/.< Moy Be o6 (8.2.16)
Vel

7
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All facts concerning Mvv are treated already in example 4. The considera-

tions for Ytt are quite the same.

7tt

V&

’—””;f’
2“

Fig. 5

On each side of the triangle the relations

Vv = Oup lxla . (8.2.17)

< « ¢
are evident.

The solution for the inverse of equation (8.2.17) is

Yes = 2 oup S (8.2,18)

In consequence of the symmetry of the strain tensor the factors daB are
i
symmetrical too.
The tensor YcB defines subsequently all shear strains on the boundaries
of the triangle.
= 5 . 2 (8.2.19)
)j’f =8 4-'4“‘

<

. Only results of interest are represented in figure 27 and 28.

"~ EXAMPLE 8: Modified Hellinger-Reissner funetional

In this example a concentrated force is acting on the midpoint (x1==0,x2==0)
of the plate.

Type of elements: quadratic elements

Shape functions:

MaB' uj, u linear
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N constant
af

Number of unknowns: 171

This functional differs from that of example 2 only by the load term.

Here, the concentrated force must be normalized by
- ,_:A” »*
= L5 P

The functional is

Zes == [We (Nop, Hsp)ot®? = p ety c0,0)
. ” ’

f//"/x/s’/g 4(3/(//7 */?”K/ﬁ”&#”h/’di
~ 4
ff</v‘;y>//’;o/€ "j‘</yf‘/>”f/@_-

R ‘ rr

Vid

The results are demonstrated in figure 29 to 34.

8.3;Ah.example for the clamped plate

(8.2.20)

1

It shall be supposed . that all edges of the supported plate are movable

for in-plane directions. This case requires the following boundary condi-

"tions for Reissner's functional:

On CI: Uy = O
o | (8.3.1)

S = ) .

.On C2: ”‘73 -2 [
8.3.

Mo = © | (8.3.2)
EXAMPLE 9: Modified Hellinger-Reissner functional
Type of elements: quadratic elements

Shape functions;:

MaB' uz, linear
N constant
aB

Number of unknowns: 184
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The difference between the present functional and functional IR2 exists

in additional boundary integrals.

Zoe = ~[We Cligs, tra)etr = [ o "etr ot

V4

”
/ z
# /V%/g by A "‘fz /yat/9 Ay 43, 1 o
V4 &

"f”////yéé *f Wep thy o4

G _ 2

,‘/</V,,)”,a/@— | *f</1///>4/, A5 (8.3.3)
B o4 Vad ,

A graphical representation of the results is shown in figure 35 to 40.
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9. AN INCREMENTAL VARIATIONAL FORMULATION

In this method the actual load of the system is divided into a certain
numer of increments. Then, after each increment a linear calculation
follows by solving a system of linear algebraic equations. In doinguéo:”
each time the real solution of the nonlinear system will be reached sub-
sequently by an iterative process involving all nonlinear terms [46], [50].
This incremental formulation in Lagrangean approach shall be demonstrated

by means of functional I_,. After applying GauB' theorem this functional

R2
has been established from functional (4.1). Consequently, the variatio-
nal statements can be derived'immediately with reference to (4.1).

According to the kind of shape functions of example 2 the following dis-

continuities exist:

On Cy: I S (9.1)
onT : K frD> 0O
K Mppp 20O ¢ (9.2)
K Newp #0

Other discontinuities do not appear in (4.1). If integration by parts is
performed again due to (7.1.6), one gets with (9.1) and (9.2) the func-
tional: '

Leo ==[Wer Vot = [Weg ) ot
. ~ V4
~[ 41 T ts fop [ENT ttrattrpot?
4 V4 ‘
[ Wy -[ o %utr ot
~ ~
»
-J[ /E;J'JVJ o "J[ /?::/4,’423
S G

—[(/2,: - N2 )by oth ,f(,o/: - Neo )ty &4
) <
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f‘fﬂ;: /\47;’06 "j’//f*/yf/aé

K2 & ,

[CAS o) Moot = [ oD Mopates
Cor 77
"f</V//)//wo/é“ "f</‘/x/)/¢/6’
Vad Vid

*
-[ # s I, (9.3)

The special case of the simply supported plate appears by deleting appro-
priate terms. For the sake of completeness this shall be not done yet for
the present.

It is assumed now that the state éf displacements and that of stresses
are known under the present load. In this state the loads are increased
by an increment A(...). In consequence, the field quantities increase
incrementally too and also the value of the functional.

Field quantities, which are known already in the reference state are
distinguished by an index o, whereas increments are not indicated sepa-

rately.

.Z:ez 4 45@2

—f\/\/c,., (NS W) s —f\/\/c;///"y’f w7
A ~

U]

—[(/%’ Pa f1B) (G # 265) fp AT

V4

[FOHT o 0P (o v tts), (2 w25, 07
A

-f(ﬁ“rﬂf’/’);, (lox # ) AP

V4

—f(,o"'f 20" )k ity ) AP

X

[P 2 28,)CE )
<

-[(/(’.a# * 41/7:)//5’: » S0 ) o
& .
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. f(ﬂ:' « 25 ) Ny # Moy ) ot
Co
4[(5{,* -fAé/:)(/l;,, * Mew o4
[
[ A5+ 88 )= (B 28, ) [ s » Moot
(o
= [[CRr # 85 )= (Hiow # Wy ) ] £ » t0r) s
23
-![/A,*f-é/ox: )‘(/1;”' »/V,,)J/K/’/ » Uy )t
-f</§, f/B,)(’/;,w * M) 6
Ved
fj</12;y » WNow > (4;, . Uy ) o6
Vel
,f< Wpw # Now D Con # 28, ) 206
Vel
YL ARY-V IOV AV SN (9.4)

Obviously, there is no doubt.that the functions of energy density are
continuously differentiable with respect to their arguments, so that a
taylor-expansion up to the second order is possible. Without that, a
further expansion is not performable, since the energy functions are qua-

dratic forms.

ch//l?“/e"/v(/’)'

° 2
= Wew (W 7) - 37\/‘/—2;; w7 g 9/‘79“7,\’;‘/‘&” NN (9.s)
ch//"‘;&’f //’/g)

2
a7 - G4l e % B " 0
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. In any adjacent state the functional (9.3) attains a stationary value,
if the first variation of the incremental functional (9.4) vanishes.
After integration by parts and using relations (9.5) and (9.6), the first

variation leads to:

6/?,£c;3 b 4141}2 )
{f[ It _ 20l fy v Go i 4o By g ) ] SN it

2N
j[ TS, » tts oy ]S ot

f [ “‘/’// s CN k) w » p* ] Aoty ot
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,‘(j’/éxf—a?,)//bwa - f/m"-m)//r/ﬂoé
3 &

- cf(/e': - ln)lnots - [CR-Boh ot
4 <2
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-_/'//9,” = B D Mo s - f</f‘u)o”/%wé
c Vad

-f (P = Now) oty s - [CAL - M)ttty s
Cz

Cz
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&

»f(/V”)/mza/é' "f<“"'} oty 6 } (9.7)
. /’ -

7

As you see, the first variation yields the Euler-Lagrange—equations, all
boundary and interelement boundary conditions of the original and of the
incrementally deformed configuration. If boundary conditions of the simply
supported plate are taken into considereation, the functional (8.2.2) can
be formulated directly in incremental form. This formulation is then more
simplified, if constant terms are dropped, which do not contribute any-
thing to the variation. Thus, the following functional can be put as a

basis for numerical calculations:

Loy » A2k
2
j'[- 67\~4uf jF 5pi;;ﬁf;;79ﬁ /Va7ﬁ4/4% 1.4/47
& Wea 2’ Wes o e
‘f[ g/u/:/s//w 2 Dara 7 7]t

—f(ﬁ*rap‘)z?, o

*f(/;“///g A 7‘/'7”2: /;r,x g MX/Z:”:,A'J A4
V4
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ff(/vosd//g’x”%/’ ,‘.ZZA;K/S”!;XWSI/ fg/yay’/}‘;x”oj’/
7

*/[(f‘.’w)”/ » S Mow) 22, f_</V//}z/,a]4/é‘
7

"f[</1/,;>//, s Mg S the # K Nav) tr ] 6 (9.8)
V4
Numerical‘calculations were performed for
>
L
b a

with five load increments, where two kinds of iteration have been applied .
within each increment. The first possibility requires the right side of
the system of equations to be constant, in order to establish the itera-
tion process by involving all nonlinear terms into the system matrix.--

The second possibilitiy consists in calculating with unchanged system
matrix while iterating by the right side of the system of equations. Both
iteration processes were stopped, when the maximum norm

. e -5
wox |7 - 4§2=£- & #O

LA | (9.9)

was fullfilled, wherein zi 3 stands for the i-th component of the solution
L4

vector ascertained incrementally after the j-th iteration.

Figure 41 shows the graph of the midpoint deflection of the plate with

iteration and without it as well.
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10. REPRESENTATION OF NUMERICAL RESULTS
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Fig. 7: Bending moment in xl—direction
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. EXAMPLE 6:
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Fig. 28: Airy's stress function
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Ineremental calculation of example 2: (s. chapter 8)

y 071314277

linear
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I \/ 1) [051757543]
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Fig. 41: Load-displacement-curve of the midpoint

deflection

1. Newton-Raphson procedure
2. Incrementally without iteration

3. Incrementally with iteration by the system matrix

of the system of equations

4. Incrementally with iteration by the right side of

the system of equations
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11. CONCLUDING REMARKS

In order to gain experience about numerical efficiency of the functio-
nals proposed in chapter 8 and 9, it was reasonable to refer the whole lot
of examples to one case of supported plates. The choice was made for the
simply supported plate with unmovable edges, because boundary conditions
are very simple in such case. In consequence of the regular element divi-
sion the finite transformation of the functionals is free of coordinates.
That is why the input of all data was quite simple. Moreover, all ma-
trices could be calculated by hand before digital calculation set on. As
usual, the relation between local and global unknowns was performed by
incidence matrices and only after generating the systems of equations,
attention was payed to the homogeneous boundary conditions. With respect
to the nonlinear problems,this was done by deleting appropriate rows and
identifying the corresponding unknowns with zero. After that, the remain-
ing equations and unknowns have been rearrangea by another numbering. To
the contrary, the order of linear systems of equations remained unaffected.
All elements of rows and columns, coming into question from boundary con-
ditions, were set to zero, whereas corresponding diagonal elements were
occupied by one. The numbering of global unknowns took place in such way
that a bandwidth of the system of equations has been generated small as
possible. Nevertheless, for the sake of simplicity, its utilization was
renounced and instead of Cholesky's procedure for solving the linear

systems of equations the elimination process of GauB was applied.

It was to be expected that Newton-Raphson's procedure needed more compu-
tational storage than the algorithm of incremental calculation. On the
other hand, the need for computational time of both procedures was quite
the contrary. An immediate calculation of the nonlinear equations took
about three to five minutes unlike the incremental method, for which con-
sidereably more time was necessary. For instance, the incremental calcu-
lation of example 2 ran up to 50 minutes by iterating the system matrix,
and to 35 minutes by iterating the right side of the system of equations.
Each time, five load increments from null to one had been chosen. Als
expected, the number of iterations for both iteration methods were diffe-
rent. An illustration of these facts can be found e. g. in [46]. In-sum-
mary, there were 31 and 22 iterations respectively for the five load
increments mentioned above to be necessary for an accuracy indicated by
(9.9).

Of course, it would have been possible, to optimize the functionals by
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other shape functions too, but it was the intention of the present work

to keep numerical efforts small. So, there are still further possibilities
to choose shape functions of higher order degrées. By the way,in such cases
it might be calculated with a lower number of elements. Since all boundary
and interelement boundary conditions were satisfied in functional IRl' its
results are obviously the best. This could also be true for functional IHI’
but here a lot of numerical work would be necessary for computing the func-
tion of energy density, and this is not recommendable to do for shape
functions of higher order degrees. Against that, all other functionals are
qualified for such .shape functions.

Experiences, which have been made during numerical calculations have
shown that functionals with jump terms are very stable numerically. Just
slight errors in the functionals IR1 and IH1 broke off digital calcual-
tions unlike in other functionals, for which computational results still
had been obtained. This was extremely helpful in searching mistakes. Func-

tional I turned out to be the best with respect to practical operation.

R2
It is convenient for writing computer programs and numerical results are

assured to be as good as those from Ig,+ For this reason, functional I

was chosen for the incremental method.lThe results, which have been ob1§2
tained in this manner, are identical with those of Newton-Raphson's method.
This is recognizable already by the values of the midpoint deflection plot-
ted in figure 41.

At the end of comments, the other values of the midpoint deflection may

be listed, which have been gained by application of the Newton-Raphson

procedure to all other functionals referring to the simply supported plate:

Examples u3/h
1 0,51705263
2 0,51757543
3 0,51788251
4 0,52165107
5 0,51518353
6 0,51600689

7 0,52005804
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APPENDIX A

This first chapter A of the appendix serves to recall elementary rela-
tions of tensor calculus on curved surfaces. The special case of plane
surfaces becomes evident, if the tensor of curvature baB is set to zero

in all considerations treated completely general.

Al Geometrical relations on surfaces of any curvature

Fig. Al
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Any given surface M in threedimensional Eukledean space can be de-

fined by the vector function (s. figure Al)
> Ay 4 o 2 A sy £
y = Of = FO%) = ) SOV X e, (A1.1)
Aot .

By partial differentiation of r with respect to x* and &% respectively
covariant base vectors are defined in both coordinate systems.

> .
%} = T e = € (A1.2)
Qr _ Dx
Do T T opn Fr T 2« (A1.3)

With Kronecker's symbol 62 contravariant base vectors 38 are introduced

into the system of curvilinear coordinates according to the definition

far «=/%
7 %
a, a = = (a1.4)
far « #/5

4

In cartesian coordinates covariant and contravariant base vectors coincide.

Because
go* _ P2 Ix* _ p«
20"~ Ix* 297 T 7

“holds in case of admissible coordinate transformations, with respect to

(A1.3) a corresponding relation can be given for the contravariant basis

too.
”®
%2, - a” (31.5)
x A

Both .vector bases may be represented mutually as linear combinations by

the formulae
Ky = a‘(/‘g a/ = Sy = o ' X
. (a1.6)
e o -4
of = a®™ == s o a

where the linear factors adu and aau are called covariant and contravariant

metric tensor components.
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The orthogonality relation

A
&V ae/g/ = /n
results from (Al.4) by use of (Al1.6).
If (A1.6) is substituted into the basis of any tensor T of n-th order, for
example

B co r /
r:f‘yf“.f/g“@e@...egge

A
then it shows, that metric tensor components raise up and down indices of
the given tensor, as for instance
>y

77

7.0. S

rr T e e, (a1.7)

By definition of the permutation tensor € the base vectors are related

to the untt normal n as follows:

Exp = (Qu X ) 2
7 s (A1.8)

With a = det (aa ) this is equivalent to:

B
g X=4,/‘.‘—'?
6‘;%'/6—' o « =/
- & =2 4, A=A
- X =g, =2
6¢=;:‘;;1 o " =
- o 52 3 f3v oy

As is known, the §-tensor of fourth order is originated by tensorial

multiplication of both permutation tensors.
5,(/’ Ce /3/‘/’ ,0/‘“0?;“ ‘0;4 /‘( (Al.g)

Pigure Al shows a triad of orthonormal vectors N Eony which move. along
the boundary curve C. The unit normgl n is declared already by (A1.8). The
unit tangent t and the outward unit normal v are defined to be
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' Ay JO* «
,'/ea/,,"a.,xT: w £
A YL (a1.10)
A — x
2=y L~ 3 Qu ” ,
Because of ‘
T 2
{ s P =7
.;./.—.0
the following orthogonality relations must be valid.
#”
£ Fw = 7
~
o sy = 7 - (a1.11)
F¥a = o
These relations are used in the definition of n.
»® A x2
w2l g xG el & GG X
At first, this identity leads to the equations
o
f/’&f/’e“”{
K/’ y
é‘a%/f =
Due to (Al1.11), a representation of the components is found.
. x/} 20
SN R
(A1.12)

e = C?ﬁﬁ /Jd y uw = Cgan 7

A2 The transformation of tensors

The definition of any tensor is based on its behaviour of transfor-
mation, if a new coordinate system e'“ is introduced. It is possible to

express new and old coordinates by each other.

ﬁl‘( - &)A’/&/g)
e - o re”)

(a2.1)
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This is only true, if the Jacobian determinant

D27, %)
{A2.2)

2o, ©%)

7 o= oter( 25255

is neither zero nor infinite.
Characteristic for admissible coordinate transformations is the validity

.

of
g’ _ g% &a}” _ 7
o o P
P &é 2 (A2.3)
207 _ Qo 20V _
o' " Do~ ) .
By use of these orthogonalities in conjunction with
o . 207
~ o = A ~/$
2 . (A2.4)
’ _ &@
La = Som &y

transformation rules for contravariant base vectors are obtained.

a” = 2% a//ﬁ

- per = (A2.5)
4 op&'"

o =

~ 207 ~

- The tensor T may be referred to old and new base vectors.

ro_ o
=7 eheg,e.. 02 08
Jeed o s ) ) ' L 4
= 7w 00 020 g

Now, the application of (A2.4) and (A2.5) yields finally the transforma-

tion rules for tensor components.

e _ 2o* 287 9% 207
T Sor 557 U seroem T e o
A2.6)
P _ gor g 9@'*’9@”7;«,...
. neS T 90”987 T Do 287 e
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A3 The covariant derivative

Partial derivatives of the base vectors 2, ga and'g respectively
along parameter lines generate new vectors, which can be referred to the
original basis again. For any surface, embedded in threedimensional Eucli-
dean space, these equations of derivatives are well-known and they are

called according to GauB~Weingarten (48].

Pl 1
Y « ” &«
: s - 9
e’ s = /;,, a’ s by H (a3.1)
?\.’/K s = 62’:\4/3 J

Herein, Christoffel’s symbol PZB is not a tensor, since it does not satis-

fy the transformation rule of a third-ordered tensor according to (A2.6).

The equation of definition for the Christoffel symbol reads:

- XA V
Tp = FA T (Grpp # Appq - Cupn ) (33.2)

Definite explanations about curvature properties of any surface are ob-
tained by the tensor of curvature baB having come into appearence in
(A3.1),

. = . = . (a3.3)
,/’ e ™ ,4._4 I\a-'xl/, ~M A—aﬁ/‘

By means of the equations of GauB-Weingarten (A3.1) it is possible to
differentiate a tensor of any order with respect to Gaussian parameter
lines., In case of space vector it follows

”
yZ4 = e & :‘é/,i’l

A

(A3.4)
f./,/:(ﬁxébéd/’”“)g””’//’f .
Herein,
Z/x/= 4 f/-,,"”
" “s r (33.5)

Vad
ifp = s 2 B4 e (a3.6)



signify covariant derivatives of ua>and ug.

They are tensors as it can be verified by proving their behaviour of
transformation.

If a, is a surface vector, then uqy vanishes in (A3.4). In special case
of a plane surface, there is no difference between partial and covariant

derivative of u, since ba =0,

3 B

ﬂg/x = /(3,;( (a3.7)

Generally, this is always true for a scalar function.
Partial differentiation of a second order tensor turns out to be quite
analogous to that of a vector. Again, equations of GauB-Weingarten are

used.

A s p

x s
rr’(a QGQ()/

Tunly 2“0 27 » 87 Tun 210 2x féfi,;,g“e’:f (A.3.8)

b

The covariant derivative of the tensor components
” ~
;;/3// = lxay "/’x/ /;r/ - /-;g‘r Jwre (A3.9)

satisfies the transformation rule of (A2.6) for a third ordered tensor.
Further expositions for tensor components of mixed type and for higher
ordered tersors méy'be dropped for the sake of shortness.

Within these facts, a significant role plays the surface Riemann—-Christof-
fel temsor, which is related to twice covariant derivatives of a vector

by ‘the formula
) »
To its definition the tensor of curvature baB is available, that is

/?x/}a ‘/;:: bx/‘é/g,a . (a3.11)

By means of the Gaussian curvature K another definition is possible.

./é.,/.,/, s Eun Epu K (a3.12)

with ‘
K=ol 6L) = Fl4r ba 67 (a3.13)
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In Buclidean. spaces the sequence. of covariant derivatives is interchangeable
since Riemann's- Christoffel tensor is equal to zero in that case. It shall

be recalled that certain derivatiwves vanish identically:
%/ =
Vs 4 / A = Q K/f / A o

el = Epla =0
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‘APPENDIX B

Bl Representative descriptions in. the system of the triad

normal plane rectifying plane

// tangential plane

Fig. Bl

Coordinate transformation of the system of the triad is performed by

introducing
- -’ . /7 I ’
&l - / R gx = Q -“-/
. 2
o er , g -e ey B0

into (A2,3) to (A2,5),.
This generates the transformation formulae
o

e f’xlf » 250

A P

it

(B1.2)
ol

bed » 2 2
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where
“ 4059" . D
/ - &/ ’ fﬁ( = gﬁu
« Vol el 27
G v R I

The transformations of (B1.2) allow to refer each tensor at a point C € C
to the basis of the parameter lines t and v. For instance, a vector u

is transformed as follows:

g =@ = (P s PP ) vt f it P (B1.3)

with

x
Ay = //a//

”

Ly w L ¥

(B1.4)

Proceeding from cartesian coordinates the Nabla-vector V is transformed to

the surface basis by (A1.5) and then to the boundary basis by (B1.2).

v -z

[=7'x/, @'x® g_fﬁ
=7;f£‘®f 7 7;"’,?:’@2,) # 7/{3@{ /Xy (B1.5)
where
Tee = Ten K87 Tow = Tga 2t

(B1.6)
/‘x/s /‘//:

Tap = 7:93 f'ﬁ¢/4 ) 7oy

Chépter B2 refers to the transformation of a third ordered tensor.
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® v (B1.7)

The physical components are defined by

Fere = 7(/3/‘2"///’ s Jory = 7';/,//“//’/)‘
7;/’, - 7;/‘//&//');)’ ) 7//, _ z:/g//xf/))r

be \
Tppr = 7,;/4/ /x//!/ 5 Iovr = 7;/”‘)1052/’/ (B1.8)

7
Tarr = Tapy #5270  Toer = Taap VP

Otherwise, the components of the tensors are reobtained by scalar

products.

Hu = & - Zu

= ”{ /X }‘”A’/K (Bl.g)
7;/3 =[¢- a/,@c’/,t
= Vit ety P Tl v Tor Al Tow e (81.10)

p
/ ” ;:'/r‘ )/’)/73 ;/r 7 (31.11)

It is evident that raising up and down of indices does not change anything.
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B2 ‘Differentiation in the system of the triad

Within the infinite variety of possibilities, to determine normal and
tangential derivatives of tensors, only derivatives with respect to the

parameters s,t and v are significant (s. figure B1).
First of all, the boundary base vectors t, v, n shall be differentiated

with respect to s by the formulae of Burali-Forti (371, [47].

)-/:4 = )(ff' * Bop
(B2.1)

I

a / L

~bo 2 - by !

»?
kT |

Since the geodesic curvatures K and K, of the parameter lines t and v are
equal to zero in the tangential plane the other derivatives follow imme-

diately.
g,f = é}/i‘l
f,/ = bﬂf (B2.2)
2 T~ bor 2 - Cﬁv ﬁz
|
Lo = b
Lo = bor 2 ¢ (B2.3)
» - "é/f,f - b 2 )

{

The quantities

bir
Do

Y

bupnlF7

b 2 27"

stand for measures of normal curvature in the rectifying and the normal

plane.. The torsion of the surface is measured by

K, R
Zi){ = léqﬁ 4 .

Now, T may be a tensor of order n. The total differential is given by
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A7 = 4/1",v Zr

~ .

In consequence of

ey - 2z . ¢
o3 At ~

the following two directional derivatives

gL | ety

o cls ~~

o/l _ odr. vaa
er’f o ~

are identical. Since between different directional derivatives must be

distinguished, the notation for partial differentiation is recommendable,

‘ such that

27 _ &7 :
Z“ ‘_; (B2.4)

If T represents a scalar quantity ¢, formula (B2.4) simply leads to

’4; = é/. (B2.5)

Quite different facts exist already with regard to a vector, for instance

a space vector.

o = d/,g &}{,fﬁﬂ,?z

Partial differentiation with respect to s and t yields

L= sl rllolls tlps Ll rdlell, #ast FLH,

~ p

Lo Hory » Uiyt llyef 00, rtlarp » 8,

7’

From the equality of (B2.4) and by use of (B2.1) and (B2.2) the following

derivatives are concluded hereafter:

ﬁe,: &2 = M Ay
Lpe= Uug * Wty | | (B2.6)

X
A S
]
X
a4
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If the components of the gradient of a scalar ¢
Ve =Fb2 » 2.1

are introduced into the first two relations of (B2.6) derivatives of

second order arise for ¢.

(B2.7)

Relation (B1.5) represents a second ordered tensor in the basis of the

triad.

T = 7ie £0F v Tufoy *Tngef *Twor

On ground of (B2.4) partial derivatives of the physical components have
the following form:

<

Tiv,e =lwes v X (70 r Tor )

Tevyp =leva v Xl 700 = 72p ) L
(B2.8)
Tote =les v Xl 70w = Tov )

7»’/," =Twa » %( 770 f/Ta'f)J

It is also possible to transform covariant derivatives to the basis of the
triad. This may be demonstrated by means of a second order tensor T, where

use is made of (A3.8) and (B1.2),

J,s =

g 0a’), t’
= 7;/,/,/“/”/’“{@'{ # 7;,;///‘//’//._/@}_7

Tty P PO L e Teply e 2 0

f(é/t Tee * b fw)ﬂ @fr (6;;7;»' fé;p?f»’)zt@g

sl Bre7en + Ber7ip )t @9t 2 (bre 7or * by To)2®% (B2.9)

On the other hand, partial differentiation of (Bl1.5) with respect to t
yields by paying attention to (B2.2):
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®
N

2L 2l XL T X

]
N
N
-
t™~n
®
1N
A S
3
3
Y
t~
®

f(<6f( Tre # De Toe # (Brr 7p0 + bor 7;?/)2! &

4 (in-7;f # 6nr a;’

N v
N
®
i~

£®2 + (ot Tve #» bow 7or) ) ® 22 (82.10)

As you see, simple relations originate from the equality of (B2.9) and
(B2.10) due to (B2.4).

Trr e = 7}46-/xf//’ )

Tui2 ¢ = 7'/5// A5z (/ .

Tt ¢ = 7;,;/// “pre” ? (21D
Tovr = Tualy e J

In the same way, derivatives referred to the parameter line v are deve-

loped.
Ter> = /"/s// //// 7 )
leie = /;v'f»//s d
} (B2.12)

oo = Toplr 2027

,
Tonwe = Taply 272"

The componenets T Blk belong to a tensor of third order. In accordance
with (B1.7) and (B1.8) they are recovered by (B1.11) if relations (B2.11)
and (B2.12) are taken into account additionally.

P
7oy l’x‘ﬁ /)’s‘ 7;,//}%'3 ! (B2.13)
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8

Finally, contractions of Tt IA enforce very simple transformations, which

are needed below,

T =Tt # T ) EP T 7 Tonp )’ 2w

7'“’4// = 7eer * Tenw )85 20 Tone » Zonr ) 2% (B2.15)
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APPENDIX C

Cl Generalized integral theorems

Let there be any given product o between the Nabla-operator Z and
any scalar, vectorial or tensorial field function 2‘ (5) . Then GauB theorem
in tensor analysis of threedimensional space can be formulated completely

~general [39], [40], [42]. The product referred 'to can be given as scalar
or vector product or as product of dyades. Now, the gemeralized integral
theorem of GauB3 is formulated by

~Vo AV =

t‘ﬁ'

ﬁo-g drF (C1.1)

oxr

jo

<

<\ <‘\.

/
AV = _/‘[ogya/f’ (C1.2)
J )

The meaning of n is obvious; it is the unit normal vector of a differen-
tial area dF. The Nabla-vector :‘:7: (Nabla-left) differentiates the factors
standing on the left hand side.

If two field functions @ (r) and ¥(r) are related to the Nahla-vector by

different products, then it follows for example:

f(Yo[)o Forv =f(4gog)of4/f' (€1.3)
v T )

i ¢
|FoVo¥uv =f~!04jo'g¢// (C1.4)
v F

A very simple instruction is offered by Lagally [40] in order to perform
integration by parts, even if the differential expression in question is
rather complicated. This shall be clarified with reference to example
(C1.4). After carrying out the operation required in the volume integral,
it follows in detail
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or
f:foVo’Y’a/V = f{ogyog’a// - f{o?—ofo/v. (c1.5)
V~ - F v

By means of (C1.5) the procedure for partial integration of a volume inte-
gral is clear: After integration by parts the unit normal appears in the
surface irtegral instead of the Nabla-vector. The next step is to subtract
a further volume integral from the surface integral. This volume integral
is of the same form as thg original one, but with the difference that
Nabla-left has to be inserted.

In Euclidean space the Nabla-operator can be represented in a half-symbolic
déscription, so called by Klingbeil [48].

V = }l. Vv, = Zl.f.--)/z (C1.6)

In this form the components Vi generate immediately covariant derivatives
of tensor componen;s.'The basis of the tensor however remains unaffected.
The generalized integral theorem of GauB permits a generalization of Green's
integral formulae. In order to derive the second formula of Green, inte-

gration by parts is applied to a proper integral and that is
/joYoYoYa/V
v .

[foxoVopgur - [foFoyoyan,
F v

- The second integral on the right is partially integrated once more and

this leads at last to the result

[[£0FoF0¥ - FoVoToF Iwv

v

=f[g°“°?°f ‘{O?Ofof]//. (€1.7)
F

For the sake of clearness, 4ll Nabla-right operators are also shown off by
sign in analogy to Nabla-left.
In special case of scalar functions for ¢ and ¥ the second formula of

Green appeafs in that form, which is well-known in the analysis of real
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functions.

f(# W:-" - WH )y = [/¢ Yo - 7?24)0/;

C2 Special cases of generalized integral theorems on plane

surfaces

Be given wa' w3 as components of a space vector Y. Moreover, ¢ may

B

. : o
be a scalar function and T~ components of the surface tensor T of second

order. Integration by parts shall be applied to the plane surface inte-

grals
fr’(/g%%’/’ (c2.1)
A -
f 7 foup oA F | (€2.2)
rd
j 7;(/3 & (Pé‘/’a ¢/93 4/17 (€2.3)
A . :

Integration of (C2;1) yields with appropriately chosen products by (C1.5)
in the plane

-

<t

frrEa [ TEun
c

X

The change from symbolic to tensorial description is easily performed.
With (C1.6) in the plane it follows in detail for the integrands:

FoeVE = 7200,V a(ha +Kn)
7 Y s
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T2 = 700, Va2 Ky )

= 7%/ %

Ter® = r¥a.ed, - 2 (K@ Yiz)
¥

7o Yo Tev ¥

i

Finally it follows
[75 Yty a7
V4

c [P a8 2GS W s Tio W )t (€2.4)
c

V4

For integration of (C2.2) Green's second formula (Cl1.7) is available.
The third component of ¥ emerges from xp3 = 2' -n.

[[7--%%% -7--T%% Jar
A
= Yg[‘Z"'Z.?”’S -7V 2% ] o (c2.5)

< '

If only Nabla-right operators V are chosen, this leads after transposition
to

[7-YY% - %YV T ]ow

[[r‘?% - %‘3;?..7"‘104.

Neg, de—

In special remind of (A3.6), (Bl1,10) and (B2,15) the integrands represent

as follows;
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T oYY = T W% e
BYC T B T
T2 V% = 70w » 70 %,
% T = (Toee > Tww) %

The last four relations generate a description in components for the trans-

formation of (C2.5).
f[7x/’7’s/x/‘,7—¢ésx9”:]¢//
V.4

=f[ I '%,u r T B = /7//,/ *7»”’,"’)% ]4&3 (€2.6)
c

=9 in view of (B2.6), partial integration can be
3't 3'5 :

applied once more and this provides the final form of the transformation -

(c2.5).

Because of V¥

L7 ey - T S Y T
P .

=FI 7w Yoo = (Toe #Toe » Tems )% Jots ~[ 70 K], ()
c

The expression

4
[7;,, "”y]c - Z [ 7;/(‘5,,' ro) - 7;,0 (‘!,"’9)_] %(1/')

P 4
has to be taken into account at all corners s, of the boundary curve C.
Partial integration of (C2.3) follows by the differential operator
2w x V =sx 'V =-€.V = Q€

~ ~r A ~ ~ e

also by using Green's second integral formula in the shape of (Cl1.7)

[17¢T-22(V-)¢ - (008 o
V4

[Tl EXTE)F - [ (T £)9] o4
<
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Since §T = ~€ and v+ € = t, it results after transposition
_/'[[-- (V-E)TE) # - $CT-E)TE)T7 ] #
V4

‘f[[”.{’/?'é')i‘ - peVE) T ]oa . (€2.8)
c N

Successively, (C2.8) will be transformed to a tensor description, for

which especially formulae (A1.12) and (B2.13) are used.

(VEIF = T €4/

Z"(Y'~) v

BTG = €l 8
T £CTE)F = T B = T e

d /?,f)aozr = (r’f,y-z‘f)é

Introducing these relations into (C2.8) the tensorial formulation is

obtained.

j [€TET Tnblon - €€ L for #] 07

f[ﬂf Po =T Be ~(Tuer = 7;/,/)?"_]&4 (C2.9)
c

Since ¢ e = ¢ 3 with respect ot (B2.5), on the boundary curve C partial
’ [4

integration is performable again.

A 3
[Ie€” 7y #lon ~€5 € Ton fon $ ] oti?
~
’f[ﬂ}if,- (Tt ~Toze ~T0es) b s =[ 7o # ], (C2.10)
c

Similar to (C2,7), the singularities

p , _
[7'/.4 /Jc = }_: [ Toels. »0) = 7, /4_,--—0)] #s.)
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must be taken into consideration at corners s Qf the boundary curve C.

At the end of this chapter it shall be remarked, that form (C2.9) the
compatibility condition is disclosed, if the scalar function is supposed
to be ¢ = 1 everywhere and if the tensor T is identified with the linear
strain tensor @ of (2.5) or (6.10). Then it follows from (C2.9)

f(ﬁﬁ,/ - By ) oth -fc‘"é‘/"@, /oa oA (c2.11)
< ”

Herein, C may be any given closed curve and A may be the area enclosed by

C. Because of
45%0&:’ - Cs%v&/ = 46;

according to (5.3.8), the line integral of (C2.11) is equal to zero. This

means, that the integrand of the surface integral must vanish identically.

oce _ A)
€ & @,/, fea = O (C2.12)
By (4.3.6) an alternative form for (C2.12) is permissible, and that is

A |
E" R fa = O, (C2.13)
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