RUHR-UNIVERSITAT BOCHUM

Bogdan Raniecki
Klaus Thermann

Infinitesimal Thermoplasticity
and Kinematics of Finite
Elastic-Plastic Deformations.
Basic Concepts

Heft Nr. 2

Mitteilungen

aus dem
Institut fur Mechanik



Institut fur Mechanik

RUHR-UNIVERSITAT BOCHUM

Bogdan Raniecki/ Klaus Thermann

Infinitesimal Thermoplasticity and Kinematics
of Finite Elastic -Plastic Deformations.

Basic Concepts

Mitteilungen aus dem Institut fir Mechanik Nr. 2

Juni 1978
Nachdruck Februar 1984



Editor:
Institut fir Mechanik der Ruhr-Universitdt Bochum

© 1978 Dr. inz. Bogdan Raniecki, Institute of
Fundamental Technological Research, Warsaw, Poland.
Dr.-Ing. Klaus Thermann, Institut fiir Mechanik,
Ruhr-Universitdt Bochum. ’



SUMMARY

The first three parts of the paper are devoted to the
discussion of the theory of elastic-plastic materials
within the framework of classical thermodynamics of
irreversible processes. The strains are assumed to be
infinitesimal. The notion of hypothetical homogeneous
reversible process is introduced, and concepts of con-
strained equilibrium and local state are used, according
to the idea of Kestin and Rice [6]. The notion of the
entropy is introduced in classical manner, basing on the
Caratheodory's theorem. It is assumed that dissipative
forces posses the potential, and with the help of this
postulate the generalized non-isothermal plastic flow
rules are derived. The possible coupied effects between
elastic behaviour, plastic flow and temperature are dis-
cussed in detail, and a few alternative forms of equations
for the temperature are derived. It is shown how the
experimental facts concerning the so called "stored
energy due to plastic deformations of metals™ could be
incorporated into the presented framework. It is noted
that due to our inability to contrive a real process
which would be close to the assumed hypothetical rever-
sible process it is impossible to separate the reversible
heat of internal changes from that due to the dissipation
of the mechanical work.

Part IV contains a presentation and comparison of various
original ideas contained in the current literature on
kinematics of finite elastic-plastic deformations. The
basic kinematic quantities like strain and stretching as
well as their decompositions into elastic and plastic parts
are discussed. The elastic-plastic body is considered as

a material with an "intermediate configuration". Relations
between the coordinate - free or absolute notation and a
representation in convected coordinates are worked out in
detail. '



ZUSAMMENFASSUNG

Teil I bis III der Arbeit sind einer Diskussion der
Theorie elastisch-plastischer Materialien im Rahmen der
klassischen Thermodynamik irreversibler Prozesse gewidmet.
Die Verzerrungen werden als infinitesimal angenommen. Der
Begriff eines hypothetischen, homogenen reversiblen Pro-
zesses wird eingefiihrt, und es wird, Kestin und Rice [6]
folgend, das Konzept des eingeschrinkten Gleichgewichts
und des lokalen Zustandes benutzt. Der Begriff der Entro-
pie wird in klassischer Form auf der Grundlage Caratheo-
dorys Theorem eingefiihrt. Es wird angenommen, daB dissi-
pative Krifte ein Potential besitzen. Mit Hilfe dieses
Postulats werden verallgemeinerte nicht isotherme plasti-
sche FlieBregeln abgeleitet. Die méglichen Kopplungseffekte
zwischen elastischem Verhalten, plastischem FlieSen und
der Temperatur werden im Detail diskutiert und zwei alter-
native Formen der Gleichungen fiir die Temperatur abgelei-
“tet. Es wird gezeigt, wie die experimentellen Befunde, die
die sogenannte "gespeicherte Energie  infolge plastischer
Deformationen von Metallen'betreffen, in den dargestell-
ten Rahmen eingearbeitet werden kénnen. Es wird angemerkt,
daB es unmdglich ist, die reversible Warme infolge innerer
Enderungen von der durch Dissipation mechanischer Arbeit
erzeugten Wiarme zu trennen, da wir nicht in der Lage sind,
einen wirklichen ProzeB anzugeben, der dem angenommenen
hypothetischen reversiblen Proze8 nshekommt.

Teil IV enthilt eine Darstellung und einen Vergleich ver-
schiedener aus der Literatur bekannter Uberlegungen zur
Kinematik endlicher elasto-plastischer Deformationen. Die
grundlegenden kinematischen GréBen, wie Verzerrungen und
Verzerrungsgeschwindigkeiten, und ihre Zerlegungen in
elastische und plastische Anteile werden diskutiert. Der
elasto-plastische K&rper wird als ein Material mit einer
"Zwischenkonfiguration" betrachtet. Die Beziehungen
zwischen einer koordinatenfreien oder absoluten Schreib-
weise und der Darstellung in konvektiven Koordinaten
werden eingehend besprochen.
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PREFACE

These lectures were presented in a seminar for doctor
students, organized by Lehrstuhl I fiir Mechanik at
Ruhr-Universitédt Bochum during winter term 1977/78.
They are partly a result of our cooperation and dis-
cussions when the first author (B. R.) stayed at Bochum
with a fellowship from Alexander von Humboldt-Stiftung.
The financial support of this foundation as well as the
stimulating discussions with Professor Th. Lehmann are
greatfully acknowledged.

Part I to III, dealing with infinitesimal thermoplasticity
is based on B. R.'s previous work in the field and has been
written by him alone. Part IV gives an introduction to the
kinematics of finite elastic-plastic deformations and
should be considered as the first step in an attempt to
generalize the concepts of infinitesimal thermoplasticity.

Bogdan Raniecki Klaus Thermann
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I HOMOGENEOUS PROCESSES IN UNIFORM MATERIAL SYSTEMS

1. Fundamental Equation of State - Dissipation

1.1. Basic Concepts of Classical Thermodynamics
Concerning the First Law

Consider the piece of metal of unit mass whose
physical properties (i. e. state variables) in any
equilibrium state are the same at every particle. Such
a piece of metal is said to be a uniform material system.
Assume that the material system is a closed one, i. e.,
it does not exchange mass with its surrounding, and that
it is chemically inert. It is evident that the actual
macroscopically homogeneous solid may be regarded to be
uniform only for a restricted class of thermomechanical
interactions. However, it is this class for which the
thermomechanical properties are supposed to be determined
in an experimental program. Further development of the
theory (part II) which includes non-uniform continuous
systems will enable to predict the surface response of
a solid under a general class of thermo-mechanical inter-
actions, i. e. it will enable to verify the complete
theory.

Let us first briefly recall the most fundamental
concepts of thermodynamics [1] concerning the first law.
One introduces as primitive notions various idealized
walls or partitions such as "adiabatic", "diathermal",
"rigid" etc. Such walls are regarded as external con-
straints which hold the system in equilibrium. The
set of independent measurable properties which are rele-
vant for the analysis of a system when the latter is in
equilibrium is then called its state. The existence of a
function of state called "empirical temperature"” © one
deduces from the "Zeroth Law" according to which "if each

of two systems is in equilibrium with a third one, then



they are in equilibrium with each other". The empirical
temperature is then regarded as an independent state
variable and together with some numbér of variables of
"displacement"-type describes the state of a system [1].

Denote symbolically by "1" and "2" two equilibrium
states of a system. The First Law of Thermodynamics
states that:

a) If "" and "2" are arbitrary prescribed
equilibrium states of an adiabatically
enclosed system such that a real process
from "2" to "1" is impossible then there
exists the real process from "1" to "2".

b) The work w done on the system in a real
adiabatic process depends on these terminal
states albne, i. e., it is independent of the
manner in which the process proceeds.

The first law associates with a system the new state
function % called internal energy function. In passing we
note that in thermodynamics the notion of a state is
conceptually related with the notion of the intermal
energy. Now, the difference between the values of w
calculated for any two states is equal to the work
done on system in any adiabatic process between these
states

Au-w(t2) =0 , Au=u(2)-u() (1.1

where W (1, 2) is the work done on the system in the
transition 1 — 2. One assumes that the internal energy
function is continuous and differentiable. It is additive*)

*) This is true if effects of surface tension and mutual
long-range interaction between different parts of the
system are negligible.
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i. e. the energy of a compound system is equal to the sum
of internal energies of the constitutive system.

Assume that the adiabatic isolation is removed and
consider a non-adiabatic process between the same equili-
brium states 1 and 2. The left-hand side of equation (1.4)1
will now fail to vanish. It is equal to heat 4 absorbed
by the system in this process

9(12)= Au- w(12) (1.2)

The above equation may be regarded as the definition of
heat "heat absorbed by a system in any particular process
between given states is the difference between the work
which would have done on the system had the process between
the given terminal states been adiabatic, and the work
actually done on a system in this process".

1.2. State of Elastic-Plastic Material System

To describe some observed phenomena the notions of
constraints are used also in a more general sense (see
e. g. [2]). It isbelieved that equilibrium is maintained
not only by external constraints but also by internal one.
The internal constraints may be developed by the system'
itself in the course of a process, and they do not need
to be of concrete nature, like walls or partitions*). One
also introduce the associated notion of "constrained
equilibrium". It is this notion which was used by
Vakulenko [3, 4], Kestin [5], Kestin and Rice [6], when
applying the concepts of classical thermodynamics to
plastically strained material systems. It was also adopted
tacitly by many other writers (see e. g. Lehmann [7, 81).

*) For example "a stoichiometric mixture of oxygen and
hydrogen at low tempreature reacts to form water vapor
at such a slow rate that we can regard the system as
having been constrained by an ideal anticatalyst
(Kestin [5]1)".



We assume that the state of an elastic-plastic uniform
material system in constrained equilibrium is described by
the empirical temperature ¢ , the tensor of elastic
infinitesimal strains gfe’
second-order tensor A

, one scalar & and one symmetric

J

9, &9, 4 B=p" (1.3)
Here we may note:

Remark

1. € and total strain £ alone can not be taken as

state variables since the energy function would not be a
single-valued function of state.

2. 6, g(e) and the tensor {:f") of inelastic strain
(or plastic strain; g= §(e)+§w ) alone are not appropriate
state variables since after an isothermal cycle in g(e) ,
,g‘:’ space we would get from equation (1.2) 9=-w,(au=0)

what is not in agreement with experimental observations.

3. The necessity of introductions of quantities such
as & and 2 follows from the following macroscopic obser-
vations (i) the heat output in a cyclic isothermal process
in €-6@ space (6 being the macroscopic stress tensor)
is not equal to the work done on a material system in such
a process. (ii) expansion and translation of the yield
surface in & -space (hardening of metals).

The quantities & and é in a certain global sense
represent the change of internal constraints. They are
also called internal variables or internal (hidden)
coordinates. Viewed macroscopically the internal coordinates
are to signify the most dominant aspects of the micro-
structural changes. Generally, there exist still a lot of
uncertainities concerning the number and clear physical
meaning of such parameters. Hence, it is still an open
question of thermoplasticity what are the operational



definitions of internal parameters. Here we intend to des-
cribe the observed motion of yield surface in & -space
and for this purpose it is most convenient to assume that
one scalar and one tensor form a set of appropriate
internal parameters.

1.3. Homogeneous Processes - Work

Under prescribed boundary conditions a real process
in a uniform system can not be represented, in general,
by a curve in the 14-dimensional space*) of state variables
(1.3), for it is the matter of experience that in a system
undergoing rapid changes the'phenomena such as waves, heat
transport preclude the uniformity of the system. However,
when the changes of external boundary conditions proceed
at an infinitesimal rate the system may be assumed to be
uniform at any time of a process and to go through a
continuous sequence of states. Such processes are called
"homogeneous processes" (or pseudostatic processes [1]).
The homogeneous process between two terminal constrained
equilibrium states 1 and 2 can be represented by a line
in the representative space. For a homogeneous process
from a given state to a sufficiently close neighboring
state ("infinitesimal homogeneous process") the first
law (1.2) can be written as

A4 =du—-dw (1.4)

Since the empirical temperature.is defined in thermal
equilibrium it follows that during the homogeneous process

*) The J4-dimensional euclidean space with coordinates
(1.3) is called thermodgnamic configuration space or
representative space [1l].




the uniform material system is assumed to be not far from
the thermal equilibrium with its surroundings. However the
external and internal forces which do work in a homogeneous
process are not exclusively those which hold the system in
a constrained equilibrium. Therefore, in thermodynamics

one singles out a special class of homogeneous processes,
namely reversible processes*), by the additional require-
ment that in the course of the latter the work done on a
system is done precisely by the forces which hold the
system in constrained equilibrium. Such forces are functions
of state variables (1.3), and therefore they constitute the
additional thermodynamics properties of a system. They are
called the reversible thermodynamic forces. One of the most
important features of reversible processes is that the heat
absorbed by the system and work done on the system are the
same for all reversible processes between the given states

[21.

Denote by

, r ,
[e5 0,7 (7=0,2=g)
the set of reversible forces corresponding to the set
{é“if’&j of external and internal coordinates. In
general ¢° need not to be identified with the macroscopic
stress tensor § acting on a system in real homogeneous
process i. e., in general § is not a function of state
variables (1.3) alone. The tensor &° represents the
external reversible forces, whereas the forces £7=[]T

and % are reversible intermal forces. The infinitesimal

*) The concepts of classical thermodynamics can be applied
only to such systems for which one can indicate, at
least conceptually, the reversible processes [51.



increment of work in a reversible process w° may be
written as

(1.5)

Here superscript ,,0' in w’ emphasizes the reversible
nature of the process, 8 denotes the density of a
material, (’é{ represents recoverable external work. The term
dW represents the work of internal forces (internal
work) Macroscopically this work displays in the form of
hardening of a metal and can also be detected in the iso-
thermal cyclic process in &° space. In a reversible
process this work could be done by some agency only by
means of very special manner of manipulations of the
internal constraints. Conceptually it is possible to do

so. However, during all real infinitesimal homogeneous

processes of plastic deformation some agency performs the
work on the system only by direct manipulation of external
constraints

- lede = le& + Lo ad |
dw=tgds = foads oaf (1.6)
——— ———
dw aw
5] ©)

i. e. in the course of actual homogeneous process internal
coordinates 4 and [-f may vary though internal forces

are unbalanced. Here & is the macroscopic stress tensor.
This tensor is partly balanced i. e. only the part $-g°
remains unbalanced in an actual homogeneous process.

During such process the system may undergo permanent change
of shape represented by an increment of inelastic strain
d_ém' which is not a state variable. The part 3’-§ 'dé(;)



of the total work which does not occur in a reversible
process indicate that an actual process is irreversible.
1.4. The Second Law of Thermodynamics - Entropy

a) The Second Law of Thermodynamics which is known as
"Principle of Carathéodory" is the following [1]

"In every neighbourhood of any state 1
of an adiabatically isolated system there
are states inaccessible from 1"

Since the Second Law is valid for all adiabatic
processes (not necessarily homogeneous or reversible)
then it must hold a fortiori for reversible processes.
In this section the attenuation will be restricted to
the reversible processes. For such processes equation
(1.5) holds. Substituting it into (1.4) written for
reversible processes, i. e. into d¢°= du-dw® , and
taking into account (1.3) the heat dg2° absorbed by a
system in an infinitesimal reversible process may be
expressed as a linear differential form

g’ a6+ (2% - - Lg%} ag?+ /:.)d&+{zg‘-g’- 0)4g (1.7)

i. e., dq° is a linear homogeneous function of the
differentials of 14 independent state wvariables.

Before we proceed to discuss the conclusions which
follow from the Second Law with reference to reversible

processes, it appears desirable first to discuss briefly
the linear differential forms [1].
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b) Consider the linear differential form
n ,
adl= X (x)ax; = Z X:(x)dx; (1.8)
e~/
and corresponding total differential equation

d[,= X,_' (Xg) dx,; =0 (1'9)

Assume that the functions X; are continuous and
differentiable. It is always possible to find a set of
functions x;(t) ,(c=1,...,n) which satisfies the equation

X; (%) ;‘:i =0 (1.10)
for if the n-/ functions  x:(t),(c=/..,n-/) are
prescribed at will the remaining function X, (t)
may be found by solution of the resulting ordinary
differential equation of first order. Such set of
functions X;(¢) defines a "solution curve" in
n-dimensional Euclidean space £, with coordinates X, .
However, for particular set of the functions X (%)
there may exist functions £(x;) and A(x;) such that
the differential form oL can be expressed as

al = k(";) dle(x,:) = k(x;)g—-f_ dx}; (1.11)
4
80 that
2R
){}' = &k (x) 5}; (1.12)

The differential form <L is then called "integrable"
since the equation (1.9) reduces to d£=0 which in
turn has the solution

R (x;) = const (1.13)



c)
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The function k(x;) 1is said to be integrating denomina-

tor of dL . Note that £ and R are not uniquely defined.

For if some pair of such functions 4« , £ has been found
then

Yo kfafR) . p*o
is an equivalent pair, where # is an arbitrary function
of £ . The necessary and sufficient condition for the
differential form 44 to be integrable is the following

=

aX; oX
e = % [ 5,2 e)

=0

8X 3)(; a/\/‘,
e +X/6(.5;J-_Bx‘-) (1.14)

2xn

Note that G;ﬂ, is not identically equal to zero only
if ¢+4+k . Hence, when m=2 the differential form is
integrable. To check whether the given form <L is inte-
grable or not, the condition (1.14) requires knowledge
of explicite forms of functions X; . In thermodynamics,
however, the use is made of a "qualitative" criterion
which follows from the fact that when the form £4 is
integrable any "solution curve” of (1.9) which passes
through a prescribed initial point (in £.) must lie on
a fixed hyper-surface R = const. containing this initial
point. This criterion is known as Caratheodory's theorem.

"If every neighbourhood of any arbitrary point 1 in
En contains.points 1A' inaccessible from 1 along.solution
curves of the equation (1.9) then the form L is
integrable".

Using the above Carathéodory theorem we may conclude
form the Second Law of Thermodynamics that differential
form (1.7) for c4° is integrable. There exist functions,
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we denote by 7 and s , such that

9_ —_ _L 0. (e)__,_ ¢ —-l~ 6’ -
dg'=Tds = du- ¢ g-dg Sﬂdé gu.d (1.15)
or
du=Tds + Lg%dg” + L J-ap + Lnas (1.16)

Further conclusions which follow from the Second
Law are the following*):

1. The integrating denominator 7 can be chosen so that
it is made to be a unique function of the empirical
temperature ¢ alone for any uniform material system
i. e. independently of specific properties of the
system concerned

T=T7(8)
For this reason 7 (&) is called the absolute

temperature function. The sign of the absolute
temperature is fixed by convention to be positive.

2. The function S corresponding to absolute temperature
is called metrical**) entropy function. The entropy
is additive i. e. the entropy of a compound material
system consisting of two uniform material subsystems
is the sum of the entropies of its constituent
gystems.

*) The justification is rather lengthy but concerns
any thermodynamical system. It can be found in the
book [1].

**) The word "metrical" is omitted in further
analysis.
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Both 7 and s are functions of state of a material
system. Therefore & can be eliminated from the equations

‘S[E(e)l g} é} 5) ; 7 = 7-(@)

and we can use the set

Y

as the set of independent properties constituting .the
state of the material system

S

= {5,6% 8,4 (1.17)

du(Y¥) = T(y)ds + L Y9 de+ L 00V af +§ (Y%t
(1.18)

From (1.18) we get the set of so called "state
equations”

3u (Y™ 1, du(y)
s S A oL ). (1.19)
1 oo oulY g, _ 2uly¥) .
g2 =@ J 3°T To9%

Once the internal energy is a known function of
variables Y** all equilibrium properties of a material
system described by (1.19) are known. For this reason
equation (1.18) is called Gibbs fundamental equation of
state, and the function 1« (Y*¢) - the thermodynamic
potential. Note, however, that the internal energy is
a thermodynamic potential only if it is expressed in
terms of variables )/'5'S i. e. for example «(7,£® 8, 4)
or wu(s, €958, 4) are functions of state but they are
not thermodynamic potentials. Note that from (1.15)1 it
follows that in the course of any reversible adiabatic
process (d¢°=0) we have ds$=0 , i. e. a reversible
adiabatic process coincides with the isentropic one.
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1.5. Thermodynamic Potentials

The functions which are derived by application of the
technique of Legendre transformation (Appendix A) to the
internal energy function ZL(ysﬂ are called thermodynamic
potentials. Knowledge of a single such function is equiva-
lent to knowledge of all equations of state which in turn
contain complete information on the thermostatic properties
of a material system. The different Legendre transforms of
U have different sets of independent variables which can
be chosen at will.

The stress, strain and the temperature are the physical
quantities which can easier be controled and measured than
entropy in any experimental programm. It is in applications
more convenient to use the following two sets

Ye={T g%, 8] or Y-[T e p,6] 20

g

as sets of independent variables, rather then the sets used -
hitherto.

The Helmholtz potential or Helmholtz free energy ¢ ,
when taken with reverse sign, is that partial Legendre
transform of WU which replaces the entropy by the temperature
as independent variable. The natural variables of the free
energy function are the elements of Y’ , thus

9p(yrs) — [u,— 7—5]5=s(y7'5) (1.21)

Alternatively, if the set Y’° is taken as a set of
independent variables then the so called Gibbs function or
Gibbs free energy is the appriopriate thermodynamical
potential. The Gibbs function g¢ , while taken with
reverse sign is the Legendre transform of 3¢ with
respect to variables £
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P g(yrc) — [g @ - ga,éfe)] (e) {yrs) (1.22)

The complete differentials 4¢ and 4g are

dg = du-Tds - 5dT—-5dT+3L °d§‘e’+§/g.¢ + Zat (1.23)

dg = -sdT - [ @ q6° + rdb (1.24)

g 7.
s~ R *3

on account of (1.18), (1.21) and (1.22).
The full relationship between internal energy, free

energy and Gibbs function is summarized in the following
schematic comparison*).

Internal energy | it Gibbs Function
w=w(y*® </’()=’m)=u—73_ qgy™)=¢- 5{ %£®
2ulY™) e 29(Y™
e R
f o du(y®) .o Op(yT) / 29(Y™)
§§ = ag_e)_ '§§=9—E(e)— §§ =_a§o (1.26)
1 p_ duly®) | 1a_ 200 |1 29(Y7) | (4o
§/~7_ Y 3[]_—-—-9é 7= 38 (1.27)
1 ou(Y*®) | 1. ee(y™ 1. 3gly™)
3°= 32 %= %% $r= | (.28
Table 4

*) Equations (1.25) and (1.26) are sometimes called
"caloric equations of state" and "thermic equations of
state"” respectively [9].
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1.6. The Entropy Principle - Energy Dissipation

a) So far in section 1.4 only part of the content of
the Second Law has been exhausted. Namely, the entropy s
and absolute temperature T have been defined in the course
of arguments relating to reversible processes alone. The
statement of the Second Law, however, concerns adiabatic
processes of any kind. Therefore, the further conclusion
may be drawn from it, which is referred to as "Entropy

Principle”:*)

"The entropy of the final equilibrium state 2 of
any adiabatic process is never less than that of its
initial state 1".

AS= 85 >0 (1.29)

b) Consider an arbitrary (non-adiabatic) homogeneous
process in a material system A (Fig. 1) between given
states 1 and 2. To account for the interactions of A with
its surroundings assume the latter to be equivalent to an
ideal system B [2] in perfect thermal contact with A ,
the compound system ( being adiabatically isolated
(Fig. 1). By an ideal system B we mean a system which
undergoes only reversible processes.

= adiabatic

wa(l
matercal diathermal
system wa ll
A
. compounel
System C
cdeal system B
Fig. 1

*) When the Second Law is formulated in the form given in
sec. 1.4 then the "Entropy Principle" can be deduced
from it only under the assumption that the set of states
accessible in adiabatic processes from a given state is
a connected set [1]. Therefore, the Entropy Principle
is often referred to as "Second Part of the Second Law
of Thermodynamics" [5]. '
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Applying the entropy principle to the compound system C

we get
AS(A) + As(B) >0
But &)
(8) °
As = a;—g(m
7
and

ag°® - _ag®  TH_T®

Vi

on account of diathermic contact.

Thus, for the system A we may write (superscript (A)
is henceforth omitted)

2
aglt) - ¢ (1.30)
J T(t) -

AS —

This is so called "Inequality of Clausius". Its counter-
part for infinitesimal homogeneous processes is the
following

Tds —dg >0 (1.31)

c) Consider two sufficiently close neighboring states
1 and 1'. Por an infinitesimal homogeneous process 1 — 1!
the equation (1.4) is valid, and 44 and AW can be measured.
Let us compare these quantities with the corresponding
quantities of heat (4° and work dw’ which are exchanged
in the course of an infinitesimal reversible process between
the same states. d4° and dw’ are uniquely determined
according to the properties of reversible processes
( dg°=Tds and the increment of the entropy does not
depend on the manner in which the infinitesimal process
proceeds). However, in general
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dg’;é ag and dw’ & dw

but the change of internal energy &% is the same. Thus,
du=dg°+dw’= dg +dw

or

d(%s dw -dw® = dg°- dg (1.32)

where d‘{% is so called "energy dissipation" or "work

dissipation" in an infinitesimal homogeneous process.

Substituting (1.5) and (1.6) into (1.32), and accoun-
ting for that d,a,°= 7Tds we get

Tds =dg +dw (1.33)
(D)

Tds = dw = aw -aw’
(c) D)

=dw —dw —dw =dw +dw —dw —dw >0 (1.34)
(R) *) &) () (%) ()
or
d .
e7ds = 6 -dg® +gag —[Jdf -mdb30
@ (1.35)
¢ = g-¢°

on account of (1.31). Here gd'=§—§,° is so called
dissipative stress tensor, and d,&s) is the "entropy
production" due to dissipation in an infinitesimal homo-
geneous process. The set {g‘d) -1, -76'} of forces occuring
in (1.35) will be called the set of dissipative thermo-
dynamics forces. Note that from (1.%32) and (1.%34) it
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follows one of the most important properties of reversible
processes, namely, of all homogeneous processes occuring
between a given initial and a given- final state of a
uniform material system, the amount of heat -d¢° delivered
by the system to surroundings and the work done on a system
are minima for reversible processes.

2. The Fundamental Postulate - Basic Problems of
Thermoplasticity for Homogeneous Processes

a) The notions of empirical temperature, entropy and
absolute temperature are dd€ined in the course of arguments
relating to reversible processes and, therefore, equations
of state may be strictly used only when analysing such
ideal processes. To go beyond the usual "thermostatics" and
to be able to analyse arbitrary homogeneous process we
assume the following postulate

"We assume that the fundamental equation of state
(1.18) is valid in the course of any homogeneous
process”.

This is the particular form of the more general postulate
of local state formulated in part II. Equation (1.33) and
(1.34) can be rewritten introducing rates

Té=L(c%6%+ g6 - B -mb)+§ (2.1)

sTs= g 6@+ (-8B - b =35W >0 (2.2)

b) The basic problem of thermoplasticity for homoge-
neous processes may be formulated in a few alternative
forms. Generally one can prescribe arbitrarily 7 functions
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e. g. one of the following pairs*),

ire}, (nel, [ne), [ae)

and assume that the initial (t=%) internal state is known

Bl =p. ) =¢ (2.3)

Y=, t=t,

The wish is to determine all other . quantities representing
the thermodynamics properties of a uniform material system.

Consider one of such problems.
Problem

Given 7 functions

7-('6))' g(t) ; te [t"lt']

and the initial wvalues (2.3). Find 47 functions

£(4), g“”(t), g“"(t), s“(t) a'lt), Bet), [1(), utt), s(t), 4(8), =(¢), 4(2)
which satisfy (2.3).

The above problem can be solved by using the following
47 equations:
_ (e) (<) a P . .
1. E=¢7°+£Y, 0 =8-¢ and the equation (2.1) which
follows from the First Law and the first part of the

Second Law of thermodynamics.

2. 34 "constitutive equations” which describe the proper-
ties of the particular material. These are expressed

*) Th. Lehmann [7, 9] introduces the term "independent
process variables" for such a pair.
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through two groups of statements:

i.) One internal energy function U and 14 equations
of state which are derivable from % *) (equations
contained in the first column of table 1). This
group of equations describes the thermostatic
properties of the material.

i.i.) 19 rate equations (or "phenomenological equations")

which link the dissipative forces {gd' g [],-n:j

N ° . )~ -
with rates [ §@ ¢4 £ &'} occuring in the
expression (2.2) for the entropy production. The
general form of such equations are very briefly

discussed in sec. 3.

3. Rate Equations

a) There is no generally acceptable principle to
follow when postulating the rate equation. We assume,
therefore, that they have the following general form

g“- % (£98° 8,6, Y]) (3.1)
s =4 (£96 8, ¢ Y,) (3.2)
- = % (5% 6% 8,6 Y)) (3.3)
- = ,)43 (é(e), —édi .ﬁ.; 4) I’r) | (3.4)

*) Equivalently one can use any other thermodynamic
potential and corresponding equations of states (e. g.
equations of second or third column in table 1).
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-
where y(, denotes the set consisting of internal
variables and temperature

o =167}

The functioss %, %, % ,% have to be choosen in

such a manner that inequality (2.2) is satisfied

TN LN L R Y N,
) AT (3.5)

for every admissible process. Here O is called the
dissipative function. More specific functions (3.1)-(3.4)
can be obtained by assuming that forces g“, g, '«/-71 -
possess so called dissipative potential

Y(ED £ B £ y])

such that
L % L PLTA kel
R 580 g = 260 5 R T g TFT 5E (3.6)

When the potential 4 has continous second deriva-
tives with respect to all rates the assumption (3.6) is
equivalent to so called "Gyarmaty postulat"™ [10]. Recently
Edelen [11, 12] has shown that this postulat exclude from
the consideration only such forces which when multiplied
by conjugate rate are equal to zero i. e. so called
"nondissipative forces". Some of the writers (see e. g.
(13, 14, 15]) assume additionally that the dissipative
potential is a convex function of variables £ ce 2, £
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In the case of materials with instantaneous elasticity
range (no visco-elastic effects) it is expedient to assume
that

/‘L .
+ =0 (or ?—é.(e,=9) (3.7)

so that (c¢f. (1.5), (1.6) and (1.34))
s =0. §=g° (3.8)

M./ = 'A./ . M’/
RY ®& ' @ € W @) W

[
<
|
g
I
<
]
3
|
g

(3.9)

Henceforth in this section and part III eq. (3.7) will be
assumed to be satisfied.

b) If the rate equations (3.2-3.4) are invariant under
a change of time scale then the material is said to be
"rate independent". Assume the postulate (3.6). For rate
independent elastic-plastic materials dissipative poten-
tial /¢ does not depend on é‘e) and is a homogeneous function
of order one with respect to the variables g’- {é“", g , 6}

i. e.

N (rx° VI = v ¥ % Yi) for arbitrary 7>0 (3.10)

and the surfaces 4 = const. are the same as the surfaces
D= const. in é“fé , & space. Moreover the dissipative
forces

X = {‘E, ‘U, "f} | (3.11)

~

are not independent. There exists a function £ called
"yield function" such that

E(X,Yi)=0 <¢f 2°+0 (3.12)
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and the relations inverse with respect to (3.6) have
the form (see appendix A, sec. 2)

[$ Q)

£ . .
’=/[g—)(i it x°20 (F=o0) (3.13)

Tnequality (2.2) (with g”"=g ) can be satisfied only if

2F oF 2F
—L. L. £t 50 (F=0 (3.14)
Assuming additionally that states with 4 >0 are

inaccessible - and adopting an appriopriate "unloading
criterion" we get the following generalized nonisothermal
plastic flow rules

. 2F . 0 . OF
) _ g1 -2 = =1 - = i} o
£ =A3g ; ~A Aag; t =5z (3.15)
F F=F=0,/A20
§@ g f=0g. £=0 (3.16)
~ ~) o~ ~
v
i FE<0 or £F=0 and £ <0
where
v
a .
h o= dt [F' é:—.wnst} (3.17)
& =const
mere [J=1](8 53,4 T) and w=7(g,5,4,T)

are state functions related with the Gibbs function g

by (1.27) and (1.28); (§°=g) . Note that until [J

and # are independent of & the equations (3.15) differs
essentially from associated plastic flow rules [16]*).

*) [/ and # are independent of € if elastic properties
are not influenced by plastic deformation (see part III).
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Note also that in the presented approximation the thermo-
dynamic potential (for example Gibbs function g ) and the
function F completely describe the properties of elastic-
plastic rate-independent materials [17, 18].

ITI CONTINUOUS MATERTAL SYSTEMS - BASIC POSTULATES
4, Physical Concepts of a Continuum (5]

In this short part we shall underline very briefly the
main concepts which are used when dealing with material
systems the thermodynamical properties of which are different
in various parts. Since we intend to use the language of
continuum physics we imagine that a given piece of metal
has been divided into a finite number (say N ) of elemen-
tary subsystems (cells) of volume AV . It is supposed that
the volume AV is very small at macroscopic scale and at
the same time it must contain a large number of crystalli-
tes in order the principles of statistics and method of
phenomenolbgical thermodynamics to be applicable to them.

A reasonable elementary subsystem is supposed to have
volume of order not less then 10'9 cm3 what corresponds
to about 1015 number of atoms. Assume that mass AM; and
internal energy of every cell can be determined. The mass
of the whole composite system is

N _

M=z 84V (4.1)
sl .

where §:, =Am; / AV is the average density. Similarly

any extensive*) quantity (i. e. quantity which is propor-

tional to mass in a uniform system) representing a property

*) Temperature and stress are examples of nonextensive
quantities which in thermodynamics are termed
"intensive quantities".
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of the piece of metal may be expressed as a sum

N N
Z=21L z am; = 7 2:3.aV (4.2)
es] =1
where 2; is the corresponding specific quantity per unit
of mass 2= 2 /[Am; . For example the total internal
energy is a sum of specific internal energies

N
U= 2 u8.aV (4.3)
c=1
When one adopts the continuum point of view, one approxi-
mates the sums (4.1)-(4.3) by integrals according to the
formula

L= lfz(xa)s(x»aﬂ/ +7 | (4.4)

where 4, is the remainder. Bearing in mind the order of
magnitude of Al one can neglect /g asserting that

r, < Z (4.5)

The above equations (4.4)-(4.5) may be used to estimate
whether the continuum approach represents an adequate
approximation in any particular set of circumstances.

When one utilizes the continuum approach, while
examining the behaviour of a thermodynamical system,
the latter is termed a "continuous thermodynamical system".
The usual notion of a "body" in Mechanics of Continuous
Media may be regarded here as a synonym of "continuous
thermodynamical system" and a "particle" may be identified
with infinitesimal cell provided that inequalities of the
type (4.5) are satisfied.
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5. Principle of Local State

Let the body A occupy at fixed time the spatial
region D with boundary S . With every point of a space
we associate an "infinitesimal elementary material system"
or "particle". The position of a particle is indicated by
radius vector T whose components in some Cartesian coor-
dinate system are (Fig. 2)

F = {X;,}

adiabatic wall

Xz
i D s
n
ideal system B
r —
— continous system A

>
%

Fig. 2

To analyse processes which take place in continuous
material system we shall adopt the approximate formalism
which is known as the "classical thermodynamics of irrever-
sible processes" [6, 19, 20]. Accordingly we adopt the
principle of local state. It asserts that the continuous
system may be thought of as a collection of elementary
subsystems each of which undergoes a homogeneous irrever-
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sible process and that the fundamental equation of state,
hence also all equations of state discussed in the previous
sections remain valid locally and instantaneously. In other
words, the state of an elementary subsystem is determined
by the same thermodynamic properties as would be used if
the subsystem were uniform instaﬁtaneously. The rates and
spatial gradients are specifically excluded from the des-
cription of state of a body. In particular, we are free

to use the notions of temperature and entropy understanding
that these quantities are defined in the manner given in
part I. In accordance with the principle of local state,
the "nonequilibrium state" of the whole body is described
by 14 fields

ém(x‘:) ) ..S(X;)} E("i) ) 8(x;)

and a velocity field w . Here S(X;) is the specific entropy
field.

The determination of the range of validity of the
principle of local state is the subject of separate, both
theoretical and experimental studies. In thermoelasticity
this problem is partially resolved by Jjustification that
the principle can be adopted if noticable changes of strain
and temperature occur only in a time period much greater
than the so called times of relaxation Z; and ¢ ,
respectively, and if the spatial gradients of strain and
temperature are bounded. The values of T , 7, depend,
of course, on many factors but one can assert that they
are of the order

-9 -12
T, ~ 10 sec , T~ 10 sec

Thus even the phenomena associated with strain rates
of the order 10’ sec™ ' could be analysed within this
approximate theory. There exists, however, very little
informations concerning the times of relaxation related
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to internal coordinates. Some discussion may be found in
recent paper [21].

6. Entropy Production when Heat Conduction is Taken
into Account

Let us recall the local form of the principles of
conservation of momentum and moment of momentum assuming.
that there are no acting body forces and couple stresses.
These principle are

div G = 8u and & =67 (6.1)

respectively, where u is the displacement vector. Using
(6.1) and assuming that there are no heat sources within
the system, the local form of the principle of conservation
of energy takes the form (see e. g. [22])

. 1 . .
L=38¢f-gawg (6.2)

Here ¢ is the heat flux per unit time and unit surface,
£ 1is the infinitesimal strain tensor related with the
displacement vector U by

2E =(grad &) + (grad g)r (6.3)

Equation (6.2) corresponds to equations (1.4) and (1.6)
taken together i. e. it is sufficient to interpretate é
in (1.4) as

j=-fawg (6.4)

o~

Now, according to the principle of local state we can take
equation (1.18) to be valid locally*)

*) In part II we do not adopt an assumption (3.8).
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i(y*) =T(y)é + $ 0+ Lpbriné (e

This equation is also called "Gibbs fundamental equation".
A1l equations of state (1.19) (or any other presented in
table 1) remain also valid but the consideration presented
in sec. 1.6 have to be modified since now not every elemen-
tary subsystem is surrounded by an ideal system and there
is some eergy dissipated in the process of heat transport.
We can assume, however, that the whole body is surrounded
by an ideal system B . Arguments similar to that presented
in sec. (1.6), but applied to rates give :

. ‘n
§@ o[22 4 (6.6)
7—'(5)
S
s+ 85 0 (6.7)
o (8)
where 7. is outward unit normal to S , ¢ heat flux

~

delivered to B through the surface S ( g"m)-g >0
when heat leaves the body A ). Now, assuming that

o(8) _ q(A) ) T(A) _ 7.(5) (6.8)

we get the Inequality of Clausius for continuous systems*)
(superseript A is henceforth omitted)

£3:§d.v +fgd5 >0 (6.9)

S

*) Note, however that equations (6.7) is assumed directly
in form of rates. If one does not adopt the postulat of
local state the proper, generalization of (1.30) should
be expressed in the form of time intergrals between two
equilibrium states.
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Here we have utilized the fact that entropy is additive
and introduced the specific entropy S per unit mass. The
inequality (6.9) can be equivalently expressed in the
following form

f 3% 45 + Jg s dv (6.10)
D

Jssd
D
j E)dv (6.11)

Equation (6.10) represents the global form of the balance
equation for the entropy whereas 2% is the rate of entropy
production per unit mass. From (6.10) we obtain the follo-
wing local expressions*)

$s = -d&v(%) + 3(5) (6.12)

S >0 (6.13)
(0

By eliminating ¢ and $ between (6.2), (6.5) and
(6.12) we find that

Té = - é dev? +(;°/) (6.14)
. . / . -
TS = sy — = ¢ (grod 7)
- gac,é'(e)_/_gﬁ(c‘)_gé -l — 7L_ (qrattr)>0 (6.15)

where ég is the rate of energy dissipation defined by
(1.34). It is seen that equation (1.%3) is the same as
(6.14) (see 6.4). However the expression for entropy

*) In fact (6.12) can be modified - see I. Miller [23].
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production (6.15) contains a new term -%-(Qra,dT)/T

(cf.eq. 1.35)_. This term represents energy loss dissipated
due to transport of heat. We note that now a new quantity
enters the theory: grad7 , and we need an additional
phenomenological equation which would relate "rate" %

with grad 7 and other dissipative forces. There is,
however, no experimental evidence of thermodynamic coupling
between the internal energy dissipation cg.; and dissipation
due to heat transport. Therefore we assume that ¢ derends
on state and grad 7 alone

grad T = #; (4, Y,) (6.16)

Accounting for (3.1)-(3.4) and (6.16) we can deduce
that if the inequality (6.15) is to be satisfied for arbi-
trary é‘e’, é“i é, ¢ and 4 then the following two inequa-
lities must be satisfied

{%;0 , z~'@50 (6.17)
A particular form of the equation (6.16) is the well
known Fouries Law for heat conduction

@=—§ grad T ; k.o T

¢l e

7,',- >0 for T- =0 (6.18)

113

ITI EQUILIBRIUM PROPERTIES OF THERMOPLASTIC BEHAVIOUR
7. Reference State - Unloaded States
In this part we shall adopt the assumption (3.8).

Morever we assume that the free energy ¢ has the following
form
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g(y™) = (v )+ g (Y (7.1)

where (¢cf. 1.20)

YE= (T 8,8) . YI={n, YV ={nE 4] @.2

It will become clear in sec. 8 that assumption (7.1)
is equivalent to the neglection of the influence of para-
meters & and £ on elastic constants and thermal expansion
coefficients.

From (7.1) it follows that the Gibbs and entropy
functions can also be presented in the form of a sum

g(Y") =g (%) +9(Y&) (7.3)

(E’)

(G))

S(Y%) = s(YE) + g UVE); s(y™)=g 0]+ 3 1%6) )

where

V' ={Tg &, ¢}, Yo={Tg} (7.5)

S’(YD = (z (yz) ] 9 (YT) = [é’} é (e)](e) (e)(yr} (7'6)

() (€)
9¢ (Vi) 3g (Vs)
T\ _ _ _&) T) = — _(E) .
o (Ye)= =57 ® (¥s) oT 77
-~ 9e(Yi)
o R, )
5 (V) =-3F (7.8)

The function ﬁ, represents the change of entropy due to
hardening associated with plastic deformation. Assumption
(7.1) makes it possible to present also the internal
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energy function in the form of a sum provided that U is
expressed in terms of*) Y™ or Y, e. g.,

u(y™) = (%(y:J"‘(%(sz (7.9
where
w (VD)= ¢ (Ye) + Ts(Yi)

(E) (E) ()

(7.10)

w(Y7)

(H)

T T
+Ts(Ye)
2 Ve) 5 (e
The function [ (YZ) represents stored energy due to
isothermal cold. work [25], [18] and will be briefly
discussed in sec. 9.

Among all possible constrained states of a uniform
material system we distinguish the unloaded (natural)
states which are characterized by

T=T7,, £9=0. g=¢ (7.11)

~

J

Here /, is a certain reference temperature. The unloaded

state for which

B=0, 4£=0 (7.12)

~

we shall call reference state. From (7.11) it follows that

2¢ J
(€) 0. = =0 (7.13)
?)E(e) f‘?=.0 v 9@ g§=0

T=T, T=%

*) The function w expressed in terms of those variables
is not a thermodynamical potential.



Without any physical restrictions we can also assume that

¢ =0 for p=0, =10 (7.14)
) ~
Hence,
-5—% =0 -for P=0,46=0 (7.15)
Y a =~ =)

Consider an isothermal process in a uniform system
(T=0,T7;=0) . In the course of such process the rate
of function ¢ is exactly equal %o []/3/3 + mé[8
(ef.(1.27), (1.28) and (7.1)), and under assumption (3.8)
it follows from (2.2) that [6]

c-é95 ¢ ¢ (7.16)
~o (#)

It is seen that in the absence of stresses the potential (%
can only decrease. This fact is independent of particular
‘plastic properties of the material under consideration,
and it indicates the "direction" of possible spontaneous,

isothermal changes of internal state in absence of stresses.
8. Thermostatic Coupled Effects in Thermoplasticty
8.1. Basic Definitions

Let us introduce the following definitions of the
physical quantities that characterize the thermo-mechanical

properties of a material system:

(1) The isothermal elastic stiffness L and compliances M

o Bs(Y™) o (y™)
Q(YE)= 7e@ =8 JE.e (8.1)
9"’¢

L ‘m S~
4mn 98;}‘ 36}:2‘
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M(Y™) = 96;— = -8 s (8.2)

(ii) Specific heat ¢, at constant é‘e) and specific heat

C. at constant stress

9s(y*‘-) du(y™) *9(y™)

(Y®) =T 37 - 77 = -7 57— (8.3
Ly -T2 g 29 (V") (8.
(iii) Thermal Expansion tensor &
% (Y7°) = %_mr—i) = -8 %ZQ/TW) (8.5)
Consider the identity
g = 2207 (8.6)

r) )
0 £ éte) - é(e) (yra')

By calculating the partial derivatives from both sides of
the above equation with respect to € we get

-1
=% or zL#J"S Mesmn = Oim an,’*‘ (%'m &y, (8.7)
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Now, calculation of the partial derivative of both sides of
eq. (8.6) with respect to 7 gives
(Y% 3

9¢®
T 0e® BT

=)

Hence

SOV oy g 2507

e (8.8)

Finally, let us derive the relation between (., and Ce
by differentiating the equality

s (YY) $(y’ﬂ

2= £y
with respect to temperature

9s (V) , 2s(Y), 940 _ ds(Y™)
T e T 9T

Accounting for (8.3)-(8.5) and (8.8) we get the following
relation

6, () = [ 6+ Le(Le)],

8.
é )= é(e)(yrcr) ( 9)

Note that to justify identities (8.7)-(8.9) we have
not used assumption (7.1). Note also that if (7.41) holds
then { , M and % are independent of £ and 4 . However
¢ and ¢ can still be influenced by the hardening.
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(A)
Sometimes one uses so called adiabatic stiffness £

defined by

Z)(y ) _ gzr_(e()ys_&) - g %’%M (8.10)
Let us find the relation between Z) and L .

iig“) _ 3:;(;\/") . gg_(ym) ® g;e()ys‘) (8.11)
But
OT(Y®) _ 1 8sly™) _ 1 ag(y™) BT(Y¥) 1 28y") T (8.12)
2E® 8 9s ST LB 8 0T 2sy%) 1

or

Accounting for (8.8), (8.3) and substituting (8.12) into
(8.11) we finally get

(A)

Loy = L)+ ¢ (Le)o (Le) (8.1%)

One usually deals with so called intrinsic stable
materials with respect to thermoelastic properties. For
such materials the matrix of second order derivatives
of w with respect to & and £ is positive definite*).
The conditions of positive-definitness imply

¢ >0 d'éte)' ,/:;dé(e) >0 for every d'é(e) +9

*) The physical content of this stability criterion is
known as La Chatelier's principle [2]. Recently more
common is to require the function w« to be convex with
respect to s and @ .
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Thus the tensor 4 is positive-definite. Note that from
(8.11) it follows that £* is also positive-definite,
whereas (8.9) indicates that ¢>¢C .

8.2. Coupled Effects

To discuss some coupled effects let us calculate the
total differentials of dependent state variables assuming
in sequence: the set Y™° and VY'° as a set of independent
state variables. Accounting for assumption (7.1), definitions
(8.1)-(8.5) and (8.8) we find

Tds(Y™) = ¢ dT+ ¢ dg® (Loc + T[ o §‘% A6 (8.12)

N 4 ~ LN

heat heat of el. heat of internal
capaci- deformation  Structural changes
ty Tds

(#)

f_l—‘ L4 a ‘ & A
70 T (I§)
Tds(Y") = GdT+ 35 %42 "T['af'“é_*a%d&] (613

o

thermostatic
plezocaloric
effect

dg (V7)) = L ag® - 4
Al

elagticity elastic thermal stresses

e)(y“’) = d6' +&dl (8.15)

T

thermal expansion

ar (8.14)

7/

— R
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d

3o

of] ar (8.16)

a0
= = db hat %4
af op ot * 5% ) +‘ar -
énéernc‘z( structuy- ﬁntelrna(
ral changes thermal forces
, | . N
_ on % g 4+ % or 8.1
m’—@'dﬁ{'a!& t T (8.17)

The interpretation of various terms occuring in eqs.
(8.12)~(8.17) follows directly from the physical sense of
corresponding partial derivatives. For example, 7 25( )/"’)/35

represents the heat produced in an experiment in the course
of which B , & and T are kept constant but stress varies.
This effect is called "thermostatic piezocaloric effect".
The consequence of the assumption (7.1) is, among other,
prediction that the internal changes have no influence on
the above mentioned heat.

The names associated with term CZ(;‘;) and both terms
in eq. (8.17) are rather general. One can not give more
accurate interpretation until the concrete physical meaning
is attached to the internal parameters p2 and & . Never-
theless we have introduced such general names in order to
underline the fact that new thermostatic effects may occur
when the body is plastically strained.

The possible couplings are illustrated*) by the
diagram in fig. 3. In three outer corners are temperature
T , stress & and internal reversible forces // and T .
In the three corresponding inner corners appear entropy s,

*) This is a development of a diagram given by Nye [26].



elastic strain £° and internal coordinates f , ¢ . All
these quantities are "direct" results of changes of 7 , @ ,
[l and ® . The double lines represents the "principal
effects". The diagram also illustrates what is called the
"coupled effects". These are répresented by lines joining
pairs of points which are not both at the same corner. The
lines connecting 7, S , § and &° denote the coupled
effect of thermoelastic behaviour, whereas the dotted
lines indicate couplings which are excluded from the
consideration due to the assumption (7.1).

glastic thermal stresses

Fig. 3. The diagram of some coupled effects in
thermoplasticty.
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9. On the Stored Energy of Isothermal Plastic Deformations

The metal is said to be cold worked if it is plastically
deformed at the temperature less than (approximately) - half
of the melting temperature. The most of mechanical work
expanded in the isothermal process of cold work is conver-
ted into heat, but the remainder is stored in the metal
changing its internal energy. The experimental investiga-
tions show that the part of mechanical work that remains
in a metal may vary from 2 % to 15 %.

Consider an isothermal (7 = const.) cyclic process in
§ space which begins at some state 1 and ends at another
state 2. From (7.9) we get

2
@ = (du +So(u. =u (Y(,)—u,()/&J (9.1)
1

where

On the other hand from the first law (1.4) we obtain (cf.
1.6)

5)-51’—f¢9+f—6(yaJ dg +[-§- -ag”

1

| (9.2)
= Q(12) + g{(/,z)

The second integral in (9.2) vanishes since T = const., &
is a state fu.nct:.on and depends only on 7 and £9 (cf.
7.1), and 6 —8‘9) . Whence

(2

u (‘/Z)—(gg(?'ﬂ = Q(12) + W (12) (9.3)

")
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If the state 1 is choosen to be such that f, =9, =0
then from (7.10), (7.14) and (7.15) it follows that

;,:)(?l)z) =0 . It is seen that & (Y7)  represents

stored energy due to isothermal cold work from the state at
which A,=0,6=0 . It is equal to the difference between
work expanded in cold work and heat  —& (1,2) which is
absorbed by surrounding. This remark is illustrated in

fig. 4 on the background of simple tension curve. Note

that to derive (9.3) we have not used any "constitutive
equations",

} B
true \
stress
6'--'?2‘e
W(2)=u+[-Q(1
Winz)=u+[-@(12)]
state 1
(B=0;6=0)
I =
o /b .
state 2 (B +9; b +0) true strain &= 4{n (C/L,)
¢

Fig. 4. The inelastic work (area under the curve 0BCD )
is not equal to the heat absorbed by a surrounding.
A - actual area of cross-section, ¢ - actual
length, ¢, - initial length, P - force.

i. e. (9.3) is valid independently of particular properties
of a metal under consideration, provided (7.1) holds. The
heat —@(1,2) which takes part in such kind of experiments,
however, is not generally equal to energy dissipation.
Indeed, from (2.2), (1.28), (3.8) and (7.1) it follows that

W(12) = W(12) -y (12) (9.4)
() ) (H)
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where

2 (2 (1)
winz)=[dy . o012 =2 () =% (Vi)

(2) ")
or through (9.4), (7.10) and (9.3)

(n

2)
W12) = -Q(12) - T [ (V7) -(g)(y;)] - (9.5)

It is seen that the heat absorbed by the surrounding

- @ (1,2) when reduced by the heat of internal structural
changes (cf. 8.12) is equal to the total energy dissipation
in a cyclic isothermal process in & -space. While inelastic
" deformations certainly change the entropy of a metal the
heat of internal changes isbelieved to be small compared
to the increase of internal energy. The term 7}3) in (7.10)
is, therefore, frequently neglected, so that the free
energy increase is equated directly to stored energy.

0.3

0.2

A stracn rate 3; e’ 0.2/min |

u fw
%) ')
el A
/

S 78°K —
%ﬁem P-

02 Ok 06 08 1o 12 1+ 16
—

Torsiona( strain ndft

o.1

Fig. 5. The ratio /‘tg as a function of strain in an

82.6Au-17.4Ag alloy deformed by torsion at 78°K
and room temperature. Appleton and Bever.



In fig. 5-7 the results of experiments made by Appleton
and Bever, and Degtiarev are presented (see [25] pg. 54-55
and 62). For torsion strain is expressed as nd/{ where n
is the number of turns, d diameter of the specimen and

{ its length. These figures contain some informations
concerning the character of the changes of al;t) with tempe-
rature and primary hardening. However one should rather be
careful when using such data to determine.thé thermo-
static properties of a metal. There are a number of
techniques of measurements of stored energy and there
are some uncertainities wheather particular technique

concerns stored energy due to isothermal plastic deformation

|
200 o
|
|
o
[
|
160 H
< ]
! | Torstonal strain ndft = 0.5%
> |
] !
S 120 -
N . — .
>:‘: ‘\ Strain rate Voax © 0.2[min
S \
V
s &
RS \
] \
S N
X SN
v o N
0 100 200 300 oo

——

Temperature of deformation,°kK

Fig. 6. The stored energy as a function of temperature of

deformation in an 82.6Au-17.4Ag alloy deformed by
torsion. Appleton and Bever.
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Fig. 7. ZEnergy stored in secondary compression of copper after
various amounts of primary extension.Degtiarev,Polakowski.

or any other conditions. In the latter case the stored
energy is generally not a state function such as «

(see [25]). ®

In the so called "recovery" stage of annealing, the
physical properties (e. g. yield stress) that suffered
changes as a result of plastic deformations tend to
recover their original values. This is done on expense
of stored energy (cf. [27]).

10. Pree Energy of a Material with Constant Y and «

Let us assume that M and x are known and are
independent of € and 7 . As a consequence the specific
heats (; and ¢, are merely functions of 7 , £ and ¢ since
from (7.1), (7.7), (8.4) and (8.5) it follows that

9(2) [3g = const. Imagine that the measurements of

w and C and C(; have been done so that these quantities
(#)
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are known functions of T , A and ¢ . Under the adopted
assumptions concerning &/ and % one can express wu') y G
and ¢, in the form

¢ (Y7) = ¢ (1) + ac(Ye)

o (Ye) = ¢/ (T) + ac(YE) (10.1)

u (YI) = % (B,4) +au (V)

(H) (H) (H)
where

AC =U =AU =0 for /-”=Q)5—=0
#) (#) ~
(10.2)

AU =0 T=T,
b for

2 /
Here C;(7) and G ( 7) are the specific heats measured
from the reference state ( S=0, 6=0, T=7, ; unstrained
plastically test speciments). AC represents the diffe-

rence between (; (orc,) measured from the arbitrary
unloaded state and C; (or CO,’ ) « The equality
’ /
Cg—=C =06—0

follows from the identity (8.9). From this identity it
follows also that

1 bJ

e =c (T) +

. =C o Lo (10.3)

Function {(;L; ( é,(r) represents the stored energy
due to isothermal cold-work at reference temperature 7,
whereas Al}é ( YZ.' ) is the difference between the stored

energy measured at /+ 7, and (%— . Note also that from
the second equality (8.3) it follows that
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2 Ak - ac(YZ) (10.4)

o7
i. e., Aﬁ. and A(C are not independent.

Now, by integrating the equations (8.1) and (8.5) we
find the following expressions for the thermodynamics

potentials , P, 9 (ef. (7.1), (7.3) and (7.6))
(E) "y g
T 5
lﬁ‘;(yé)=él— N(e)éh’(e) ?I ‘ +fcé()d
E, A
-
;o
_rf;lcs(ﬁ)dﬁ S (T-T) + ¢ (10.5)
T
-

_
, — .
—rf;’_c;(/,)dr, ~s(T-T) + % (10.6)

S (B 4T + ‘;(@}4) (10.7)

lH)

where

%:.O for é:g /0:0

/

s, and ¢ denote entropy and free energy, respectively,
in the reference state.



For isotropic materials

IR

t\

imn = M (dim Sin * Sim S"‘) +A 653' Imn (10.8)

1
M&J,'mn = l;'t, (Jﬁmé‘a‘n-'.&:m (Y&’m) - VJé‘mn,

Z/w (24 +3A)

where A and M are Lame's constant of ordinary infinitesi-
mal elasticity. One can also simplify the expressions
(10.5)=-(10.7) expanding rg and (g into the Taylor

series at point £9=0, T=T,, £=0 4=0 and retaining
only the terms of second order.

Calculating the entropy & (cf. 7.15) we obtain

s (Yi)= 5 (8,8) +a8(Y5) (10.9)
where
"1 9
1 1 '
A“s;) (Ye =ff Y{IJCU' ffa—T- (H) yl'JdT (10.10)
T T

and gg represents the difference between the entropy in
the reference state and the entropy in an arbitrary
unloaded state. This simple example illustrates the well
known fact that the entropy (5 can not be determined
neither through measurement of specific heats nor energy
stored in isothermal process of plastic deformations. The
experimental determination of the function 5; is one of
the actual unsolved problems of the thermostatic of plasti-
city. It occurs as a consequence of our inability to con-
trive a real process which would be close to the assumed
hypothetical reversible process at the very beginning of
the development of the theory. Perhaps the partial solu-
tion may be found in reinterpretation of the so called
"isothermal annealing” technique of measurement of stored
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energy?

Generally one expects help in this matter from
statistical physics. Still another view is that these
difficulties one will overcome by well guess of the form
of the dissipation potential [28]. From the point of view
of applied thermoplasticity, however, this problem is not
very important since it is believed that the values of the
term 5) T is rather less than that of (ff) [27]. Since,
on the other hand the plastic deformations affect specific
heat negligibly, the assumption (ﬁ)r- © is rather Justified.
Such simplification is frequently assumed in applicatioms.
It is equivalent with the assumption that the entropy of an
elastic-plastic material is the same as the entropy of an
elastic material. |

11. Equatiou.:for Temperature in Thermoplasticity

The fUhcamental set of field equations in thermo-
plasticity can be expressed in terms of fields 7 (x t)
g (x,t) (total strain) & (x,¢), B(x,t), 4(% ¢
and u(x,t) alone, if one assumes that one of the thermo-
dynamic potentials (e. g. ¢ ), the function £ (occuring
in (3.15)-(3.17)) and ¥, (cf. 6.16) are known. It consists
of the 23 equations:

(1) % equilibrium equations (6.1)

(ii) 6 kinematical relations (6.3)

(iii) 7 equations (5.15)2 39 (3.16)2 3 for the internal
coordinates £ and 4 . The g’and w have to be
eliminated from these equation by use of ('1.27)3

, and (1.28)3.

(iv) 6 strain-stress relations (cf. 8.15)

é= ﬂg _/_%7'-+_§:(£)

where é";’ is given by (3.15), and (3.16),.
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(v) One equation for temperature which various alterna-
tive forms we shall now derive.

Eliminating 7S between (6.14) and (8.12) or (8.13)
gives two alternative forms of the equation for temperature.

: o %% 4 '
SeT=8u ~TE% Ly - oT[5B-p *ghb]-dig (1)

]
due to heat of due to heat of

e(ast. deformation internal changes
I

.. i _oT[% 6, % ] w '
867 —gl - Tu§ - 97[5%’_-5@ . (;]_dwg (11.2)

due to plezocaloric effect

where (»]1;/) is energy dissipation given by (cf. 1.34 and 3.8)

e~

W=a(g 89 -0-6-nt) (11.3)

Here 9 can be eliminated by use of e. g. Fourier's Law
(6.18), whereas . [1 and @ can be eliminated with the
help of appropriate: state equations. Note that if the
assumption (7.1) is not adopted then the equations
(11.1)-(11.2) are still valid but 5, occuring in these
equations has to be replaced by total entropy s . One
can also derive the equation (11.2) from (11.1) by using
the thermodynamic identities (8.7), (8.9) and elasticity

relations of the type (8.14)-(8.15).

Under assumption (7.1) we can present the equations
for temperature still in other alternative forms, noting
that (ef. (1.27)-(1.28)5 3, (7.10))

1]

2 -

—[ﬂé + it +3T%-é +8 7T
(11.4)
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Substituting (11.4) into (11.1) and (11.2) we finally
obtain

. o . u ou .
.o _T 0, _ Zw® . -
g T=géP-Ti% Ly -s[7a.p + & 4] -avg

. (11.5)
Qca‘i":?,-é.,w-T%'i -3 :_ﬁ?g .,.%:‘_? g.] - divg
In the equations (11.5) the entropy function does not
occur explicitly. However, the difficulties related with
the undetermined entropy function still exist. They display
at the moment when one applies the inequality (6.17)1 to

restrict the class of postulated equations for g:(‘) .

IV KINEMATICS OF FINITE ELASTO-PLASTIC DEFORMATIONS
12. Introduction

As is well known, the infinitesimal strain tensor is
not a suitable strain measure for finite deformations,
since it does not vanish under finite rigid body rotations.
In an attempt to carry over the thermodynamical concepts ‘
developed so far it'is first of all necessary to redefine
the basic kinematic quantities like strain and stretching
as well as their decompositions into elastic and plastic
parts. The elastic-plastic body is considered as a material
with an "intermediate configuration". This seems to be the
most fruitful concept when dealing with finite deformations
of metals. What is presented here is a concise presentation
and comparison of various original ideas contained in the
current literature on kinematics of finite elastic-plastic
deformations. We mention especially the work of Lehmann,
Lee, Sidoroff and Mandel. We have worked out in detail the
relations between the coordinate-free or absolute notation
and a representation in convected coordinates. It is hoped
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that this will be a help for the student to find his way
through the literature.

13. Deformation Gradients

1%3.1. The Intermediate Configuration, Definition of
Deformation Gradients

We consider a material body which in its natural stress-
' free configuration at temperature 6, occupies the region B3’
in space at time t, . During a motion its material particles
are carried to various positions in space. Points in space
can be identified by their cartesian coordinates with
respect to some fixed cartesian frame of reference with
orthonormal base vectors £, .

B (time t)
B’ (time f,)

,,B* (time t)

~% )

¥
Fig. 8. Initial (B°), actual(®) and intermediate (&)
configuration

To identify material points we can use their cartesian

coordinates at time ¢, , denoted by X* . A motion is then
prescribed by

x* = x*(%% ¢) (13.1)



- 53 -

where X* are the cartesian coordinates of the material
particle at time ¢ which was initially (at time ¢, ) at £% .
The set of all points x(%2°,t), %Pe B° define the actual
configuration 8 , & region in space, occupied by the body
at time t .

In addition, we let correspond to ® at each instant
of time t a third configuration B* which will be called
intermediate or unloaded configuration

£% — k(2R ¢) (13.2)

This configuration would be obtained if the deformed body
is instantaneously unloaded in a process of purely elastic
deformations where all material elements become unstressed
and are reduced to the reference temperature & . A compa-
rison between the initial configuration A’ and the inter-
mediate configuration B then reveals the plastic part of
the total deformation from B to B . For the purpose of our
study it is sufficient to consider homogeneous deformations
where all material elements undergo the same deformations,
stresses and temperature changes. The stress free configu-
ration A" is then obtained by reduction to the temperature
9, and removal of the surface tractions in B . In the case
of inhomogeneous deformations residual stresses will remain
if the body was plastically deformed and the surface trac-
tions are removed. To remove the residual stress distribu-
tion the body has to be considered dissected into small ele-
ments - which undergo different reductions in shape. As

a result, the intermediate configuration will be incompa-
tible. Also in this case the following analysis remains
valid if (13.2) is interpreted as a local mapping which
gives the image of an infinitesimal material element.

Let dX , dX , df be infinitesimal vectors connecting
the same material particles in R° . B and 3% . We then



have
8x°° ° 8x°‘ )
ax = d’xxgcc PYY d'xp«e,u = gxP Cu (gp'd-)SJ
x* ° 13,
=a—-)2& (guﬁgp)dlﬁ (33)
= Fdx
and
X% o X 0
dg = d”?“gu. = g;:ﬁ dxﬁgw = a;ﬁ go& (.@p'd.’.‘)
B e (13.4)
= _5';(;75 (roQ .e.b) d’?.(,

The linear transformations or second order tensors

&
F =X cos (13.5)
X

and

9x
L= o &%

(13.6)

relating the infinitesimal neighbourhood of a material
particle in the three configurations are the (total) defor-
mation gradient and the plastic deformation gradient*).
Since the correspondence between material particles in 3,
%’ and B* is one to one the linear -relations (13.3) and
(1%3.4) are invertible. Hence we have

*) Since we consider homogeneous deformations the
gradients £ , £, are the same for all material points,
i. e. x* and 29X* independent of %# . In this
1 (E L
case the linear relations (13.3%) and (13.4) hold for
vectors between any two material particles, not
necessarily infinitesimal vectors.
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a5 = Fdf = FE af = Fdf (13.7)
where
-1 Vet 2x¥ Ix* OxX¥
fe=FFE = Pk (e Qp)z,—ﬁ (g08) = 3¢ pYe O e (13.8)

describes the elastic transition from 3* to 3 .

It follows from (13.8) that the total transformation
f is multiplicatively decomposed into a plastic and elastic
transformation

F=FF (13.9)
Thus, f can be interpreted as the result of a plastic
transformation from the initial configuration to the
intermediate configuration followed by a purely elastic
transformation from the intermediate to the actual confi-
guration. This concept is now used by many authors, e. g.
Lee [31], Lehmann [32], Mandel [13], Sidoroff [33].
Following Halphen [15] it dates back to an idea of

Eckart [30] as early as 1948.

Note, that the intermediate configuration is defined
only up to an arbitrary rotation and therefore the decom-
position (13.9) is not unique. Indeed, if the intermediate
configuration is rotated by & , Q* being orthogonal
(§7= ¢ ’) it follows

where
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yield another decomposition. The behaviour of kinematic
quantities under rotations of the intermediate (and actual)
configurations is needed for the discussion of invariance
requirements of constitutive equations. These invariance
requirements are automatically satisfied if all tensors

are related to base vectors of a convected coordinate
system. Before we introduce the convected coordinate system
we discuss shortly curvilinear spatial coordinate systems in
order to make clear the difference.

13.2. Curvilinear Spatial Coordinate Systems
If invertible functions
3
= £y vt y®) (13.10)

are given, we can use both Y* and x* for the identification
of points in space. Keeping two of the three numbers y' ,

vy, y5 fixed and changing the remaining one, say yﬁ ’
equation (3.10) defines coordinate lines y“ of a new, gene-
rally curvilinear, coordinate system. The base vectors to
these coordinate lines Yp are

.4
Gy = %—p €. (13.11)

As before, the set of points {7“}, {Y“f and {;“} define
the spatial regions occupied by the body in the initial,
actual ‘and intermediate configuration, i. e.

o), e gy, Rt= )T a2

j

*) Note that we have used X* and Y* in two meanings. In
(13.10) they denote an arbitrary space point, in (13.12)
only those points, which lie in the region 8 .
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-4

Similary Go, G

~ Y ~

»*
® 3 Qx are base vectors of the same coor-

dinate systems in regions 3°, B and B , respectively

(see fig. 9).

Fig. 9.

By use of (13.12) the cartesian coordinates can be

Curvilinear coordinate system in space

expressed by the curvilinear coordinates and (13.1),

(13.2) give

y* = y*(yht)

y = y(yh¢)

From
0”8 s 0" qgr G

d'.5 dx .goc ayﬁ )' ~o y ~p 5)”' A

. o 8£“ dog» .ox- °

= = g = d

d?\(. dx -?ao ayor“ y ~ 0 y =r | ‘o

b oo ogqfve = O g¥fo - gqifgt = O qergt
ax = ax <& 9?‘5 d Eu d)/ <p ayrd)’ gﬁ

(13.13)

(13.14)

(13.15)

(13.16)

- (13.17)



and

E dx

~e ~

dx =Fdx . d

IXxk

d5 =

X a

=5d

/

(13.18)

we get as representations for the linear transformations

~ a °ﬁ ~
= e ?
Lo ByA 624G

As example, we verify (13%.19):

2v* 0p o 0 ° op o
a’;p (6,26 ) 7" Gy = 538 Gu ag” (6" G,)

Fag =

39 . dy ¥
In (13.21) i is the inverse of YL

(13.19)
(13.20)

(13.21)

The matrices of the deformation gradients are now
related to base vectors of different points in space and

therefor transform like two-point tensor fields.

1%3.3. Convected Coordinates

For the identification of material particles we choose
three numbers §° in one-to-one correspondence with the
cartesian coordinates of material points in B , i. e.

3= x(5)

(13.22)
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Inserting this in (13.1) and (13.2) the motion is given by
= X (%¢) (13.23)
K= X"(%'¢) (13.24)

(13.22) defines a net of coordinate lines %' in the initial
configuration with base wvectors

g, = 3;“ €u (13.25)

~

which is deformed together with the body according to
(13.23) and (13.24), respectively. The f‘ are therefore
called convected coordinates. Note, that the curvilinear
coordinate net ?5 is defined only in those regions of space
that are occupied by body.

g
B
, B
g& *
A %
R
€

Fig. 10. Convected coordinate system

The base vectors to a coordinate line %° , where £ (ke i)
are constant, are time dependent and given by

oY)
X
R

in B (13.26)

1

Xy V‘;GI
Pd
&

1 8

¥

.in B (13.27)

X,
I
Dy ©
NG
1{0))
&K
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Again, from the coordinate free relations for infinitesimal
vectors between material points in X , 2 and &

af = Fdx . dx = F, dX (13.28)

) ~ ~e

dx = Fd

IXo

J

we obtain easily representations for the deformation
gradients. E. g.

hence, the base vectors at the same material particle in B
and 2 obey

g; = fé; (13.29)
This gives the representation of F as

F=6.90648" =g0f (13.30)

Qo

Indeed, fgo, = (359

~

k) o o

)9{.' = gz, {-z"'goa') =£‘:.
' -1

From go‘-= £ 9. the inverse transformation
follows as

[

F7= Gog’ o (13.31)

-~

The transpose of Ff and £ are

FT=4d%g. (13.32)

*)

(F7) = F = 3"6 g. (13.33)

*) Since (F7')" = (FT)” we write for simplicity f-T.



F™ and fﬁr

~

and g; when

[

Ky,
I

9 -

In the same manner representations for [

yield the contravariant base vectors §;
operating on ¢° and ¢° , respectively

Flgt

r~

Fg*

and F. are

(13.34)

(13.35)

obtained. For future reference the results are listed

tn

SN
QD

i
g,

o
(O

oy
L
o &9

H

belowe.
N o=
®w g"
g‘s
w 9O o
R g =
*QN 1A
w >
% °
e 9| g
s S
S J
2| F-
S ~
~ T
S £ =
<
< -1
: | £7-
.
-7
¥ | F=

zQQo IKQQ 3_'
©. <«
® @ &
1 1Q l‘Qo
c. © o

LQ
e "
Qe

Table (13.36)

The use of base vectors of a convected coordinate system
leads to particularly simple forms for the matrices of
deformation gradients, which become unity. The dependence
of £, f.» £, on the material coordinates (in the case
of inhomogeneous deformations) and on time is now incor-

porated in the base vectors.
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13.4. Behaviour under Rigid Body Rotations

If the (ho:ﬁogeneously) deformed body is rotated in the
actual configuration dx goes into dx

ax = gax (13.37)

~1
where @ is proper orthogonal (Q7=Q , det @ = /) . Rotation
of the intermediate configuration transforms d4X into af

*

@k (E7-0 aetar-1) (13.38)

Q
X*l

?

o *
Since dxX remains unchanged,

(13.39)

IXo

=d

XKoo I

a

the transformation behaviour of the deformation gradients
is obtained from

d_5=£:d?fo./ dﬁ"./.'_;&, C@=f—pdg
as
F-2r (13.40)
r— »
L=8% (13.41)
r *T
Le= Q£ 8 (13.42)

14. Strain

14.1. Definition of Strain Measures and their Decomposition

With the help of the linear transformations £ , £
and £, which relate vectors between two material points in
the initial, actual and intermediate configuration



- 63 -

dx = Fdx
ax = Fdx (14.1)
dy = F, dx

we can easily calculate the square of the arc lengths in
0 %

B ,R and B .

For example,

= L} . (] = o . T o
foax - foax = dX- R dx

— ~1 -1 _ LT -t

= L AxE ax = dAx- £, £, dx

02
The result of similar calculations for 4+ and di is
summarized in the following table:

ds*= dx-dx d% - FFd k- Fodx
(14.2)
o ~ o ° -1
dst= | dx- (EF7)dx 45 - df df- (£ ET) i
-1 0 r °
af*= | dx- (R E) dx | dk-£7F, dx dx - dX
\7 7 \4
strain tensors  strain tensors Strain tensors
in B in B° in B*
[ Euterian (Lagrangian
description) description)

If we know the position of material particles in one
configuration and two symmetric tensors we are able to
calculate the length of line elements between material
particles in the two other configurations. The symmetric
tensors occuring in (14.2) are therefore basic for the
definition of strain. Furthermore, we can distinguish
between strain measures related to the actual, initial
and intermediate configuration. They appear in the first,



second and third column of the table (14.2), respectively.
With the notation

g = frf ; ge le /:e ; -Cp = ~pT~P (14.3)
B=FF, B.-=LF, B, =FE (14.4)

and (14.2) we obtain for the difference of the square of
the line elements

a8 - as* = | dy-(1-87)ax |df-(C-1)ax |aX-(C.-8;)dk
as-df* = | dax-(1-8)ax | af- (C-C)af | af-(C-1)af |(14+5)
af*-dai® = | ax-(8)-B"dx| d-(C,~[)af | af-(1-B)af

(14.5) motivates the definition of the total, elastic and
plastic strain measures according to

2g=1-8" 2= (-1 26 =Ce-B
Zee=1-§;’ 28,=C-C, 28 =C,- 1 (14.6)
2¢,-8,- 2§,= (-1 2£,-1-8

This definition of elastic and plastic strain tensors leads

in all three cases to an additive decomposition of the
total strain

»

[] ] * *
= &+, £=£,+6. (w7

the

§-=E+§P, ) ~

As can be seen from (14.6) the total, elastic and plastic
strain tensors are defined in terms of

B and B, in the Eulerian description,
and in terms of

C .

¢ and (, in the Lagrangian description.
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The tensors £, £, , £ , related to the intermediate
configuration, are defined by (, and B, . Thus the total
strain £ can not be expressed in a simple way by the
gradient of deformation. These tensors are introduced
by Sidoroff [33]. £ and £ with £, defined as £, =¢£ -&,
are used by Green and Naghdi [34, 35, 36l]
£ , £ and £ are interrelated by

9

~

= fréf)- = FTQ*F . 6*_‘:5 éfe (14.8)

UM,
no

A~ ~ J ~

with analogous formulae for their elastic and plastic
components. Lehmann [32, 38] has introduced a multipli-
kative decomposition of the left and right Cauchy-Green
tensors 8 and ¢

-~

! Al . Y -1
é = ~p ée = .@e §p W:l'th .59 = le éP.‘e (1409)
1] T 4 -1
C=Cle =C ( with ( =F£C(F - (14.10)
Clearly,
! - - T
B.Be = £, 8.F'Be =FLEETE'EF = GE(REY =8

14.2. Representation in Convected Coordinates

It is illustrative to give representations of the
tensors defined above in convected coordinates. Since the
deformation gradients can be expressed as dyadic products
of base vectors of the three configurations (13.%6), this
is a simple exercise.
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For example,

¢ =FF =(§9g8,)(9.98") =(9:4.) $0 5" = g, §0 §"

We obtain in the same manner

T ¥y o %,
ge = ~C f = .Q g
QP= Fp = Jix éi‘” é‘

(14.11)

B.=FE B.F =079 gof"

Observing, that the unit tensor can be represented as

[ *,

=g, gog" = S dog" - G §og* (1.12)

~

the strain measures §° , & and 5 and their elastic and
plastic parts (14.6) become

26 =[-8 =1(9, -.) g'%g"

de = ..], —ée = (9ur. —5514) Qiggb (14.15)
-1 -1 j* 4 ¢k
26, B'-8 = (Ju=gu) g'eyg



2§ - ¢-1 =
2,=C-(p=
28,=C-[ =
26 = (-8~

Zé:e.;- Qe_l =
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(9, ~4.) o g
(9;,,,' 9*m) Q"'“ ékj

»

(g%in _93‘:‘) é’b‘” gk/_
(gck-goix.J Q*‘:Q é‘K

(9., 9:) §'® §"

* - o %
28,= 178 = (Gu-§.) fod"

(14.14)

(14.15)

Equations (14.11)=(14.15) show the importance of the metric
J.. » §: for the description of strain*).
This can be expected, of course, since the metric coeffi-
cients are directly connected with the length of line

coefficients ¢, ,

elements, e. ge.

As’=dx-dx =

Note further, that all strain measures ¢ , g

-

A8g, d5g, = g9, Afast = g, atiatt

and

their elastic and plastic parts have the same covariant
components, however with respect to different base vectors.

They, therefore, define different tensors.

14.3. Behaviour under Superimposed Rigid Body Rotations

Under rigid body rotations of the intermediate and
actual configuration, described by the orthogonal tensors
Qf and Q}respectively,the deformation gradients transform

*) Relating these coefficients to different base vectors

all previously defined kinematic quantities can be

expressed.
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into (13.40)-(13.42)

*7
]

L~ QL@

F=9rF E-¢% (14.16)

'
7

The behaviour of the kinematic tensors under such rotations
is listed below.

Behaviour under transformation | Quantities
X= 'X (invariance) g’; QP) ér.ée:,éop; gel
, , (14.17)
X,-:QEQ é,ée)é,ée)ép,&
- * %7 ¥
A=q X Ce, B, £ £, £,
E. g.

14.4, Discussion

Introduction of the notion of intermediate configu-
ration enables to present rigorous geometrical interpre-
tation of various measures of elastic and plastic deforma-
tion, and shows how the total finite strain can be decom-
posed into two parts. This is the first and very fundamental
step to their full operational definitions. The concept of
intermediate configuration seems also to be very useful
when developing the thermodynamic theory of elastic-plastic
rate-independent behaviour of metals since the thermo-
elastic characteristics of metals are measured with respect
to actual unstressed configuration no matter wheather the
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given piece of metal was or was not previously plastically
deformed. Moreover thermo-elastic properties of metals so
experimentally determined are essentially not influenced

by previous plastic deformations. Thus the theory that
utilizes the notion of the intermediate configuration may
directly refer to the results of such measurements, and to
be relatively simple. Bearing in mind this pragmatic point
of view it is expedient to take as a basic external para-
meter of thermodynamic state such measure of elastic strains
defined in sec. 14 that is completely expressed in terms of
£, (i. e., such which is independent of £, ). For example,
tensor &¢ (or le ) may be treated as proper thermodynamic
state parameter (it may be used for description of elastic
properties) but not tensor £ . The latter depend also on

£ what means that knowledge of the very special (initial)
configuration of a plastically deformed and unstressed piece
of metal is required for determination of its thermoelastic
state. There is no strong physical arguments why it should
be so. Hence, pair £. and temperature can not be taken alone
to describe the thermo-elastic state of previously plasti-
cally deformed material.

On the other hand, use of the tensor g: leads to some
problems in the case of nonisotropic elastic behaviour.
Under rigid body rotation of intermediate configuration
tensor §: transforms according to Q*.é: Q‘T « If one
assumes the elastic response (with respect to the unstressed
intermediate configuration) to be invariant under such
rotation one gets as a conclusion that elastic behaviour
must be necessary isotropic. This problem can be solved by
selection of well specified orientation of an intermediate
configuration. The decomposition F = fgﬁ; becames then
unique. Such specification of the intermediate configu-
ration can be done in various manner. For example Mandel
[13] has introduced the concept of so called "director
frame". The discussion of this concept is, however, beyond
the scope of this seminar-notes. Some other possibilities

are mentioned in sec. 15.
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15. Rate of Deformation
15.1. Definitions and Decompositions
As in the discussion of strain our starting point is

again the relation between infinitesimal vectors between
two material points in the various configurations

dx = Fody (15.1)

Since dX is unchanged the material time derivatives give

(ag)'= Faf = FFdx = FEdE (15.2)
@f) = £ df = £ £7dx = £ £ af. (15.3)

EF7 is the spatial gradient of the velocity field and will
be denoted by L , the corresponding quantity in the inter-
mediate configuration £ will be denoted by £ .

(dx) =4ax ; L=FF" (15.4)
@) = Laf; L =LE (15.5)

Their symmetric and skew parts describe stretching (2 D%
and spin (W, W") in the actual and intermediate configu~
ration

L=p+YW, D=g(L+lT)={Lt] WwW-L(L-LT) (15.0)
[0, D= (e8] {0 W £-£7). s

1] ~

*) {} denotes always the symmetric part of the tensor
in brackets.
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The rate of change in length of material line elements can
now be expressed by D and ).

Lonn Y
o
>

\/

It

-
N,
><
R
3
ll
o

N,

o

<.
Il

b Y

=

w

™~

=

X

]

A

12,4
do

)
x

™

;. (15.8)
(d3) = (dE-a¥) = 2df (%) = 20%- Lag = aX-20°dE | (15.9)
taking into account that

dx-Wdy = Wdg-dy = - Wdx-dx =0

for a skew tensor W . It follows that

~

(a8 -ad®) = dk- D'af = Flax- 0°F dx - ax- £, BF, o (15-10)

L(as* - aB) = e Dy -ax-£79E ax = ax-(D-£7DE ) dy.

This motivates the definition of plastic and elastic rate
of deformation temsors by

{2)

) = 5D (15.11)
@ . _
ge = Q "Ee- Q¥fe,, (15.12)

the total stretching tensor beeing additively decomposed

(z) (2)
2=20+2,. (15.13)

An additive decomposition is also obtained if we take the

‘material derivative of the total deformation gradient and
use its multiplikative decomposition:

= =1 _ J : -1 -1 S et -t
,é,' =fFE H-E;«Ep) (ch;) E'EGEFEP:EQ +~e£;o~p~e
_ - (15.14)
=£efe,,+feé*fe1»
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Taking symmetric parts

D"—-‘ {.éefe-’} + {E& L-*f,e-’} (15-15)

we identify formally the first and second term with
- {E f"} . (15.16)

2 -{rLE}l (15.17)

D, +32,. (15.18)

(1)
QP as defined by (15.17) is not a suitable measure of the

rate of plastic deformation, since it depends also on the
plastic spin W".

) - - -
D =@ e E ) = {EPE T +{EWET  (15.19)
( )
That is, £ can assume arbitrary values if (@¥?) = o,

since this condition only implies /. 0, leaving w*
unspecified.

In order to avoid these difficulties it is straight-
forward to define

D=0 -{eWE"} ={RDE" (15.20)
) )
(se D 5 (15.21)

These measures appear also in some natural manner if we
use convected coordinates (see 15.2).

Since the rate of plastic deformation measures defined
above all depend on D* the question arises whether we can not
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use Q* itself as plastic stretching tensor. However, 2
depends on the orientation of the intermediate configu-
ration and is not physically acceptable unless the inter-
mediate configuration will be specified. Lee [31] has
used a special choice of the intermediate configuration
such that the elastic transformation £. becomes a pure
deformation. With this special configuration (denoted

by £ , £/ ) he defines

/ *! ‘-l
3 =147 - {£E7]
By use of the polar decomposition theorem

fe=VeRe, Y%= Ve R, orthogonal ;

it follows
- - . ! 1
‘E - Eefb ‘—~e ge ~p - Ae ~pP )

Rl ={RyRf (15-22)

It is also possible to select such specific interme-
diate configuration that the rate of plastic deformation
defined by (15.17) becomes physically acceptable. Following
Wang [37] let us take a particular intermediate configuration
(denoted by £ and £, ) such that
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J— - - ___,7-_'7.

W=t (EE -ETET) -2 (15.23)
and let us define

_ 2 =1 — - 2 _._ _

‘QQ = { fe .Ee } ; Qp = {-Ee ”EP ff' 1 Le 1} (15024)

We shall now show that
(3)

'v\D.p = @P
) ’
where . is defined by (15.20).

P

By'substituting the folléwing relation

E-Rdw, E-¢wme . (§7-07) 5.2

~

1

into (15’.23)4 it can be shown that
¢ = -g*ww (15.26)

where yy*is the plastic spin defined by (15.‘7)3 and (15.5)2.
This equation gives the variation of the transformation from
arbitrary choosen intermediate configuration to that selected
by Wang, i. e., if bﬁﬂﬂ is known one can solve equation
(15.26) with respect to @ and determine the variation in
time of the orientation of Wang's intermediate configuration.

Now, substituting (15.25) into (15.24) and using (15.26)
one eventually obtain the required result

- " - = Q) -
@e=9e+{£eiv*e'f; 2,= 0. -{F, W'F ’} =) .

~ N ~e

Finally let us note that if the definition (15.24) is
replaced by
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= [ -T2 ===
’D - { Fe fp Ep -\'.Ce. }
then under constraints (15.23) we get

= 173
P ~p ¢

It thus follows that within the same specification of the
intermediate configuration we have still freedom in the
definition of the rate of plastic deformation.

15.2. Description in Convected Coordinates

Using table (13.%), the material time derivatives of
base vectors ¢. , §. , _3‘ R §° can be written down directly

~

g;=F§; = FETg = Lg, (15.27)

;'i = (fpr)f:(f_r)fg" = ‘f'rfrg‘ = -érg" (15.28)

.= E§ = EEg =L (15.29)

o =1 E LT (15.50)
As consequences,

4 =geg=1(g4) 904" (15.31)

[ - gte = (fgl)for (15,32

where the covariant components are calculated from g L P
and g‘;'é*i; °

*
Stretching in B and B is now expressible by the
metric changes gb.‘ and éx s
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~ 59700 [F (05" gog)] = - § § 7 508, 15.3)
Pe (4}~ < 1 o 5.3

By use of (15.27)-(15.34) straightforward calculations
would give the components in convected coordinates of the
various measures of strain rate, defined in 15.1. Instead
of doing it this way we prefer the opposite direction,
showing first how strain rate components can be defined,
using the convected coordinate system and then go back

to the coordinate-free notation. All tensor components

will be related to the base vectors g: s gi of the convected
coordinate system in the actual configuration.

According to (15.33) the total rate of deformation
can be decomposed into

Y L1t sy ‘ .
din = 2,' (gin,‘;m) + Z (im. ?wo) (15 35)

The first and second term contain the metric in A ,Zf
and 2 , y 4 , respectively and may therefore be used as
measures of elastic and plastic rate of deformation

(2) .

i = % (G i) (15.36)
2 * o 4 "‘"

f,tik. = ZI' (95&'96») = 7, 9in ' (15.37)

With the same argument another decomposition follows from
the contravariant components in (15.3%3)

-4 = 4 g%~ LU= e LT3 (15.38)
g’im _ —‘2{' (giz_‘&‘ig}‘ | (15.39)
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AN SR S L (15.40
P

The decomposition of the mixed components
S BPYY
v =729 9« (15.41)

is more involved and has been worked out by Lehmann [281].
His starting point is the metric transformation matrix

‘w4 (15.42)

P e

o,/ ¥

Q g 9/"6 =9 9rmgm5951< =

This is the component form of the multiplicative decompo-
sition (cf. (14.9) and (14.11))

B= 8/8, (15.43)

§ = qﬂirgm Z, (g':e gz+z"'0g:) = :,' é— {g,agz-f-gk@g.) (15.44)
Xp =50' re ;92 = PQ,L;C .ng. (15.45)
8, =,9¥ Irw % {QJQQ +g @g;) = il,: % (g‘:sg +g @_g;) (15.46)

With

(3)8 = 94, | (15.47)

*) Note, that %;m = '% 9,;,(5“).9;; = 2_ g,,rg Qmeg g_sz, m,/

the two decompositions beeing indeed different.
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we have

e

2af = 5)c @ = (#7)% (45 42 + 4%

® 4D,
Ko
S

O S S NS
- (@) 4% 98 + )5 4k (15.48)

Hence
(5)': _ _7 =1,
dy = 7 4+ %‘;@i (15.49)

®
N~
ﬁ -,

© A

(15.50)

Expressed by the metric coefficients we have

*)
<
.

Li =3 978 (§9,) = £ (9% + 9% F0)  (15.51)
3). ' .
(CP“J( - % gwé‘zs; Gre (15.52)

The corresponding rate of deformation tensors are now
defined by

(1) e O
2 = 47 9:09,; ). =27 9.0,

It is clear that all these measures are not effected by
rigid body motions superimposed on the intermediate

configuration because the metric remains invariant under
such motions.

We still have to justify the notation in (15.53),

since 3 and 2,. are already defined in subchapter (15.1).
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It is sufficient to do this for the plastic parts, the
elastic parts beeing always 2-2, . We use (13.36) and

(2)

.gt'x:},/'g,:k,‘"'% é:) Zl(ij 9*5)

l

¥ * * *® ]
LG g g LG =g g
* -] % -f (15054)
=Q$ ‘Q-.-: =“e'-‘.q‘.9’£-;g‘<
-T =]
= 9"; " Le .Q e P
{2) (2) N 2 I Y
In fact, 2, = g;,‘ geg ==£t DF . (15.55)
With the help of (15 54)
Gy ey *  #er &) sr
g"' B 2 Yes g gf‘z g {ge'gpgs)gs gr‘g
— At (l) *sr
=909 G9.9,.
Now from (15.46) §r59,.,4 g, = Le g, = ~e~cr~&
(3)- ( " -T_% ™
ama  di=g" B, REg -9 EVE g,
- G-
Hence £, TQ*~CT= d g.09"
@) 3),
e ! k k _ -T % T
and D, -dif(g.eg +g%g)={F DE ] (15.56)
(%)
The coordinate-free representation of 2, is obtained
from
*. % 1 /% * ¥, ¥ x| ¥ ¥T) #y
di--46%) = ~4(g-gr+§g7) - g a4
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as

(¢)
~P

A YA (15.57)

Finally, we show how the elastic rate of deformation
measures are related to time derivatives of elastic strain.
Since

2)

%i& = 27' (9;,;“9*;;).

and, according to (14.13)

[ -1

% (g., _gx;.z) = g‘-.éeg‘b J -§e =2’ (-.l.— ée )
it follows
(2) ’ .
do=(g:769.) =97 €f *9: 8 de * 9 be b
T
= g{'{~e +£’w§e +§eé)gg f

(2) . _1182
D, = é+Lg, +g L = & = 1(1-8]) (15.58)

4)
Y, and D, are obtained

3) -1 _4 43

D, - L{8 (B,-18, +8. L)} = 1{8'8,} (15.59)
w . r 7 ak

D =L (8,1 - 4L (8-1)-L(B-)8 =5 (8-1)  (15.60)

@ 3 )
Thus, the elastic rate of deformation measures Qe,be,~e

can be expressed by objective time“?erivatives of strain
measures. It can be verified that 2, admits the represen-
tation

u) . . o . .
Bo={EE7'} < H{E (8-t +8L)}, L-£E (15.61)

which is formally like (15.59), however, 4=£f"' replaced
by Le=FF
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15.3. Behaviour under Rigid Body Rotations

The transformation behaviour of material time deriva-
tives of the deformation gradients is

E=(gF) - CF+ak (15.62)

E=(268)-0RE +QELT+eF & (15.63)

E = (8E) - 25+ Q'E (15.64)
Hence

4= FF' ~(@F+RE)F'Q - Qg™+ 018" (15.65)

= BB =@ E+QE)EQ = 8¢+ 808 (15.68)

Le=LE =(8L28T+QELET+EEGT)EY  (15.67)

= Q0 +QLQ + 2R (15.68)
§={L} ={oL&t-1(eLe+44Q) = 422" (15.69)
=1t = et (15.70)

where in the last two equations use has been made of the
fact that £'@" and @%¢*" are skew tensors.
From

(15.71)

=0 R - QLR 8T =0V R L =-TLE,

-~ ~

\?QI

it can be seen that K, transforms like £, , i. e.

@— =g g*_f (15.72)
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It is now easy to establish the corresponding relations for
the various plastic and elastic rate of deformation tensors.

w 5)
Apart of ﬂn and 7,

& = ‘ ") @ F

D - {EUE ) = lene (e +8%'e") R ¢
- QR QTCE T+ AR L E ]
- 2d e+ EQ QE G

(1—) - 3] ) 3

0, =2-0,=02.4 -el6,eg* "¢

all other measures are objective.

For example,

The main results are summarized below.

which transform according to

Behaviour under transformation Quantities
2 ® w
D D
- _ r ] =PI ZPI~NPIRp
X = @ X ‘g. @ @y ®
@0; Qe-) 'Q@l Q
X=g%a7 s
more complicated 2 *
P F/ ~&) ~prL L

(15.73)

(15.74)

(15.75)

(15.76)

(15.77)
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15.4. Summary and Comparison

For ease of comparison the results of this chapter are
summarized in table (15.78). Exept for J, which behaves
different all other measures of plastic rate of deformation
have similar structure. They are based on * , the stretching
of the intermediate configuration, and modified by the
elastic transformation £, . Interpretation in convected

(¢3)
coordinates shows that j; s Do s ﬁ: are obtained by relating

the covariant, contravariant and mixed components of Q* to
the corresponding convected base in the actual configuration.
Lee's measure éﬁ can also be expressed by metric coeffi-
cients and their time derivatives. Since, however, the

square root of 5 ==Zf is involved complicated irrational
functions would result. Whereas vanishing change of arec
length in the intermediate configuration, @%%)' =0,

implies vanishing plastic rate of deformation it does not
follow from (A4 -di*)'= 0 that the elastic rates are zero.
This will only be true for 52 which thus has a special

property.

The differences in all measures (always apart from
b ,5; ) disappear if the elastic deformation can be
c;;sidered as infinitesimal. This condition will frequently
be met when dealing with metal plasticity unless the hydro-
static pressure is very high. The principal stretches of
the elastic transformation beeing small, £ can be written
in the form

bo=leBe=(1+))E yl=lyT =e<1  (15.79)

Substituting (15.68) for £, and neglecting ) compared to
unity, results in

(15.80)
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1)
The procedure has to be applied with more care to ¥,
Retaining the linear term in ¥ , we have

e
®
I
x
]
® 1
-—.—:.a
+
ot
?
P
&
: *
&'
n_‘:

(15.81)
(1+1) R RS (1-p)) +{ 1+ 0) R WS (11

The members with ¢ are not necessarily small compared with
R, ¥R

since the plastic spin W* can be made arbitrarily
large.
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APPENDIX A

1. Legendre Transformation [24]

Let be given a continuous scalar function

Y= Y%, ) (A1)

of an n-vector X ={x;| i{=1.n and an m-vector wu= {ud]

«=1+-m . Suppose that Y has continuous first deri-
varives. Let there be two more vectors: n-vector y = {%.{
and m-vector Vv = {V«.ﬂ which are related with x and w
by the following equations

2y _ Y
%5':8)(5 ) v“—-?u," (42)

Equation (AZ),] define a transformation from the {X, U}

- space to the {4;] -space which we suppose to be single-

valued (for each Uy ) and to have an inverse expressing

each .X,', }n terms of '3; and w, . Therefore we assume that
' A

det [ Bxgzle +0. (43)

Now, consider the following problem: to show that there
exists a scalar function X = X(x;,u,‘) in terms of which
just mentioned inverse transformation is expressible as

X; = %—5— . The solution of this problem is most straight-
13

forward by using the technique of Legendre transformations.

The Legendre transform X of function Y is defined as

X(Yz,uu) = [yﬂj—”x; - X (3, ) (as)
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where  x: = X (4, 4,) is the inverse of (A2),].

By differentiating (A4) with respect to Y and by
inserting (A2) into obtained result we find that the
function X(%;,u,) is the solution of the problem:

29X oy oy _ 24 _,. (45)
9?‘. = 5" XJ + Z. 9_;; bxd 97" =%

Note that
%_y.&‘i_ﬂ’_ﬂé’_‘i--v (46)
Ouy 0wy Gu, Ox Ou,

on account of (A2).

Whenever (A3) holds the development can be given
in the reverse order, from (A6-A5) with given X(%,u.)
back to (A2) with ¥ defined by

Y= [%x —X]y.=?c(x-% )

A Legendre dual transformation is therefore completely
symmetrical with respect to its two "active sets of
variables" ¥; and % . The function X and Y are some-
times said to be dual of each other.

One can provide the following geometrical inter-
pretation of a Legendre transformation: Let 4, be fixed,
u,=4u, . Then the locus of points (in m+! dimensional

space {Y,%;} ) satisfying (41) is the hyper-surface S .
The hyper-surface S (Fig. A1) may be equally well repre-
sented as the envelope of the tangent hyper-planes. The
family of tangent hyper-planes may be characterized by
giving the intercept - X of a hyper-plane along the

Y -~axis as a function of the slopes 4; (cf. (42),).
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<Y

Fig. A1

2. Legendre Transformation when Function Y is
Homogeneous of Order One

Let the function (A1) be nonnegative and homogeneous
of order one with respect to {x:} in the sense that

y ('tX;} Zc,‘) = 'L'Y[s(.:, ux) (A7)

for arbitrary T>0 and every {u,‘} . Suppose also that
Y= 0 only if x=0 and that Y as a function of {x;}
is of the class C* in the domain of determination
excluding the point {x;}={0} . The Euler theorem then
asserts that such a function has the property

?
9—3‘: X; = yl"i,ug). (AB)

The transformation (A2) 1 is now not a single valued since
y; is not uniquely determined at {x;}={o} . Moreover, the
condition (A3) is not satisfied. Indeed, the differenti-
ation of (A8) with respect to x; yields



"~ oy -

9)(‘?%!' v

The above set of equations should be satisfied for
arbitrary vector ({x;] . Therefore '

Y
X '5)(5 -

det 0 (410)
for all {x} +0} and the problem of finding the inverse
relations with respect to that of (A2) 1 is more involved
[42]. To find the inverse relations let us assume for
simplicity that the rank of the matrix

2ty

2x; ?xd'

.

is m-1 . Then from (A10) it follows that only n-I
functions determined by (A2),‘ are independent i. e.,
there exists a function we denote by £ such that

Fly, wa) =0 if % 40 (411)

Now consider the set of homogeneous equations for unknown

{2

2ty
. = A
7%, @xj ZJ 0. (412)

The general solution of this set can be written in the form
= Az X;, )
3 = g LT e

where A is arbitrary multiplier and 2}‘ ( XS, Ug) is
any non-zero vector which satisfies (A12). This vector
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can be expressed as

* OF

Z7 =

' b= 4 i )

since £ [%-(x;, U), U] =0  and

2 Y pF oy

= = 0.
DYy %9, Iy I

Thus, the general solution of (A12) can be presented in
the form

2R
2J=jl9—yi.

Comparing (A9) with (A12) we see that for every
{s:}e{r=0}  there correspond infinite number of {x:}
which are determined by the formula

oF,
xc = A —97*
and for every {‘;:fe {F,= 0} the zero's vector {ch is
assigned

X; = 0.

Conversely, suppose that X. is defined by (A13) and %
is prescribed. Let ¢, =Y%;(x,4.) be functions such that
equation

A [71'(’(“" Ue), e = 0

is satisfj‘.ed.identically. Then one can show that

2y
Yo = 9x:

where Y is homogeneous function of order one with
respect to X; .
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Further specification of inverse relation can proceed as
follows. For given %, the locus of points (in the space
{y:} ) satisfying the eq. (A'M),] represents a surface. If
this surface is regular (i. e. it has unique tangent plane
at every point) then the derivatives 24/2%. can not all
vanish at any point of a surface £=0 i. e. there exists
such %4 that

gf =0 while E =0.

Yo

Now, since }’(x;)-_—y;)r; is positive except the point ¥ =0
at which Y vanishes, the pair (A,f) should satisfy

the condition

y=A§—§;7;>0 when F=0

The product %/ 91-,'/2}; can not vanish because otherwise
there could exists A+ 0 such that ¥ would be equal
to zero at x #0 . To satisfy the above inequality,
by convention, the sign of function ¥ is taken so that

A>0 and 96?.>o when [ = 0,
9};“ ’

Thus, when A = 0 X can vanish only if A=0 , and
extended form of the inverse relation is the following

X; = A 25 if F=0 and A >0

X; = 0 if E#0. (413)
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